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Abstract

Machine Learning Augmented Nuclear Data Evaluations

by

Pedro Junior Vicente Valdez

Doctor of Philosophy in Engineering – Nuclear Engineering

University of California, Berkeley

Professor Massimiliano Fratoni, Chair

With the fast increase in computational power over the last decade, including the develop-
ment of better Graphical Processing Units (GPUs), the field of Machine Learning (ML) and
Artificial Intelligence (AI) has improved drastically since its inception in the 1980s. With
more efficient algorithms and faster training times, the prominence of ML/AI throughout
business and technology sectors has only grown. However, its extension to Nuclear Physics
and Engineering remains limited to date. In this work, we explore the possible roles of ML
in the Nuclear Data Evaluation pipeline including the development of (1) NucML and (2) an
ML-based solution for neutron-induced evaluations. To catalyze future development in the
area, NucML, the first end-to-end ML-augmented nuclear data evaluation pipeline was de-
veloped. This Python toolbox contains various capabilities ranging from loading ML-ready
datasets to automatic validation of trained models using an in-house developed criticality
benchmark public repository. It allows any user to focus on model development, in addition,
to quickly navigating each step of the proposed enhanced pipeline in a modular easy-to-use
fashion. Using the ML-enhanced framework and the newly developed code, several proof-
of-concept ML models including Decision Tree, K-Nearest-Neighbor, and Gradient Boosting
Machines were fitted to nuclear data from the EXFOR database to infer neutron-induce reac-
tion cross sections. All models were used to predict nuclear data for several well-characterized
isotopes in literature including 239Pu, 238U, 235U, and 233U. Afterward, data for several iso-
topes of interest including 35Cl, a less studied but important nuclide for advanced nuclear
reactors, was generated. The predicted values for several of these isotopes were used to
create an evaluation and tested using various benchmarks using SERPENT2 including the
233U Jezebel and 235U-reflected 233U spheres. Results for these proof-of-concept models in
some cases outperforming the current release of the ENDF library by up to 200%. Once
the models were validated, they were used to predict the 35Cl(n,p)35S at the same energy
points as the new LBNL/UCB measurements. The predicted values described the cross
sections 150% more accurately than any of the evaluated data libraries, which overestimate
experimental results by up to a factor of five. The proof-of-concept models explored in this



2

work, reliant on learning underlying patterns of cross section data from other radionuclides,
demonstrate evidence that ML models can aid traditional physics-guided models and have a
role to play in nuclear data evaluations. Furthermore, incorporating ML models in the nu-
clear data pipeline can allow evaluators to make faster human-bias-free decisions in areas of
uncertainty as well as better inform future data measurement campaigns on areas of greatest
sensitivity in EXFOR.
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Chapter 1

Introduction

Nuclear technology is part of many industries ranging from energy generation to agriculture
and food. Most popularly, nuclear reactors are used all over the world for clean and reli-
able power generation. Other applications of reactors include marine and space propulsion
and energy generation due to the long-lasting performance and durability of nuclear-based
technologies. In nuclear medicine, radioactive tracers are given to patients allowing the
generation of images by detecting the outgoing radiation. Other imagining techniques in-
cluding CT and PET scans also rely on nuclear-based principles. Sterilization and targeted
radioisotope therapy are two additional medical applications of nuclear radiation.

In order to design, simulate, and build these systems, accurate nuclear data must be mea-
sured, compiled, and evaluated. Many of the previously mentioned and other technologies
were successfully built due to the availability of relevant experimental data collected through-
out the years. However, appropriate datasets for many of the new prospective technologies
are still not available. This limits the possibility of further innovation and development.
One of the most important technology concepts includes advanced nuclear reactors (ANR)
including the Molten Salt Reactor (MSR). In a world where climate change is a pressing con-
cern, clean energy technologies must be fast-tracked. To bring these concepts to reality, new
nuclear data must be gathered and evaluated and state-of-the-art tools must be developed
for better decision making in areas of uncertainty.

1.1 Nuclear Data and Data Evaluation Overview

Nuclear data encompasses a variety of data types that represent relevant nuclear physics.
These include particle and nuclei cross sections, emitted particle energy spectra, angular
distributions, fission product yields, nuclear structure, decay properties, and more. Accurate
and representative data is required for the design, simulation, and construction of nuclear
systems. The United States government and many other international private and public
entities have spent considerable resources collecting experimental nuclear data throughout
the decades to better understand the behavior of isotopes important for nuclear power and
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nuclear weapon development such as uranium and plutonium isotopes. Additionally, data
for many of the structural materials used in the current fleet of light water reactors have been
extensively researched. Nevertheless, significant gaps remain in cross section data for many
elements, isotopes, reaction channels, and energy ranges. Such missing information often
constitutes a critical obstacle to the development of new technologies such as ANRs. Filling
these gaps, in general, requires lengthy and costly experimental campaigns. Such efforts are
often limited by the availability of appropriate measurement facilities and resources. These
are consequently modeled using different physics-based tools and models.

There are two types of nuclear data: measured and evaluated. The former consists
of experimentally measured data while the latter are recommended set of values based on
experimental and theoretical calculations. Not all measured and evaluated data is stored
in a single resource. There are a variety of nuclear databases designed for different data
types. Each of these ”libraries” has different objectives and compilation processes, some
more complex than others. Regional evaluated libraries, those containing a curated set of
recommended values, are used in various applications including modeling and simulating fis-
sion and fusion reactors, shielding and radiation protection design, criticality safety, nuclear
physics research, etc. For example, neutron-induced cross sections are needed to simulate
various aspects of nuclear power reactors including the temperature and power distribution
using either Monte Carlo or deterministic codes. To apply any sort of new approach to this
area we need to understand how a nuclear data evaluation is carried including its advantages
and disadvantages.

Nuclear Data Pipeline

Regional libraries like the Evaluated Nuclear Data File (ENDF) or the Joint Evaluated Fis-
sion and Fusion (JEFF) are end products of what is called a nuclear data evaluation [5] [17].
These evaluations contain recommended data for not only energy differential cross sections
but also fission product yields, decay data, covariance for neutron cross section, product
energy-angle distributions, etc. These are generated by evaluators using a variety of tools
including physics-based model codes (i.e., TALYS and EMPIRE). These codes are guided and
constrained by data from experimental databases like the Experimental Nuclear Reaction
Data (EXFOR) database and the Experimental Unevaluated Nuclear Data List (XUNDL)
[15] [xundl]. Bot the ENDF and JEFF library are examples of evaluated libraries while EX-
FOR and XUNDL fall within the unevaluated database category. Other evaluated libraries
include the Japanese Evaluated Nuclear Data Library (JENDL), the Chinese Evaluated Nu-
clear Data Library (CENDL), and the Talys Evaluated Nuclear Data Library (TENDL) [19]
[7] [11].

Derived studies in applications that utilize these libraries consequently rely on the judg-
ments of evaluators (i.e. the person in charge of carrying the evaluation effort) and the
available experimental data and benchmarks to provide the best set of recommended values.
However, there are many instances where such experimental data is not available for a spe-
cific isotope-reaction channel pair or limited to a different energy range. In these significant
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gaps and areas of uncertainty, values are based purely on known physics and the evalua-
tors’ expertise. Without the constraints of experimental data points, these calculations are
due to carry on higher human-bias and uncertainties. Furthermore, the current evaluation
methodology often requires parameter optimization and fine-tuning to reach an adequate
fit of the experimental data. The evaluation process consumes time and resources that are
sometimes not readily available. The process of deriving this set of recommendations is called
the nuclear data evaluation pipeline (Figure 1.1). Briefly, the steps of the pipeline consist of
compilation, evaluation, processing, and validation. More detailed information can be found
in Reference [2].

Compilation

The compilation phase is the first step in the evaluation pipeline and it begins with the
Nuclear Science References (NSR) which stores sources to publications from journals, internal
reports, and proceedings containing experimental results. These publications are ideally
generated from carefully designed experimental campaigns. Once in the NSR, numerical
results including mean values and uncertainties are extracted and compiled into one of two
databases, XUNDL or EXFOR. The EXFOR library is the nuclear reaction compilation
database. Not only are reaction cross sections included but also fission yields, resonance
integrals, polarization data, and much more. The XUNDL database contains compiled
experimental nuclear structure data. Once experimental values are incorporated into the
appropriate library the evaluation phase can begin. Since this work deals with neutron-
induced cross sections, the rest of the pipeline will be described specifically on this topic.

Evaluation

The evaluation process is carried out by an evaluator to derive a set of recommended val-
ues. Depending on the task, appropriate datasets are gathered and their quality is assessed.
The selected data is used to guide physics-based model calculations which result in best
estimates, dependent on data availability, of mean values including uncertainties and covari-
ances. In other words, the evaluation proceeds through the application of a model designed
to reproduce and explain the experimental data as closely as possible. These values can then
be processed to form part of one or more regional libraries. Most of the data generated for
libraries such as ENDF are mostly relevant to neutron-induced thermal (0.025eV) and fast
(1 MeV) energy cross sections. Data at 14.1 MeV is also of interest to counter-proliferation.

Processing

Once the evaluation is finished, the next step is processing. It is in this step where data
is processed into a format compatible with a particular application or user code. It is a
nontrivial step that requires knowledge of the evaluation process, the physics used, and the
formatting limitations presented by application codes (i.e. MCNP, SCALE, Serpent2). It is
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Figure 1.1: Nuclear data evaluation pipeline. Taken from Reference [2].
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also a fundamental preceding action to the final step in the nuclear data evaluation pipeline,
the validation phase.

Validation

Once the recommended set of values are in a suitable format, the validation step can begin.
In this step, user codes and user defined problems are used to validate the generated data.
These problems usually consist of integral benchmarks for which the measurements are known
to a high degree of accuracy. Benchmark values are dependant on the interplay between
different types of data (i.e. cross sections, emitted particle spectra, etc.) making it, in some
cases, complicated in the validation of a single interaction type. A common example of
benchmarks is critical assemblies for which the ratio of neutron production to neutron loss
(keff ) is precisely known. Reaction rate measurements and fission spectrum transmission
experiments are other types of benchmarks that can be used to validate neutron interactions.
Once a library has been validated, it can be released for use in application codes. The
validation step is perhaps the most important phase in the evaluation pipeline.

1.2 Machine Learning

Machine Learning (ML), a subset of Artificial Intelligence (AI), consists of algorithms that
can learn from data without explicitly programming them to do so. It is particularly resource-
ful in cases where it is either difficult or unfeasible to program a conventional algorithm to
tackle a given task. The fields of ML/AI have improved drastically since its inception in the
1980s in part thanks to the fast increase in computational power over the last decade. This
includes better Core Processing Units (CPU), faster storage Input/Output (I/O) speeds, and
the development of better Graphical Processing Units (GPU). These hardware-based devel-
opments allow for bigger dataset handling capacities and faster ingestion and computations.
High-speed processing times by CPUs and GPUs we’re key for the takeoff of ML as a field,
especially in the case of Deep Learning, a subset of ML based on artificial neural networks.
These developments coupled with the Big Data era, more efficient ML algorithms, and bet-
ter optimization methods, allows for more accurate models with faster iteration times. As a
consequence, the prominence of ML/AI throughout business and technology sectors has only
grown translating into a significant impact in our daily lives. Some of the most popular appli-
cations include autonomous machines, natural language processing powered speech-to-text
and text-to-speech, optical character recognition, image recognition, AI-powered Chatbots,
efficient fraud detection, etc.

Nowadays, ML/AI tools and codes are widely accessible in many programming languages.
Some of these allow the fast prototyping and testing of ML techniques due to the incorpora-
tion of Automatic-ML (AutoML) capabilities. Moreover, powerful clusters are available for
use through many cloud-based providers (i.e., Amazon Web Services, Google Cloud Plat-
form, and Microsoft Azure) allowing industries and the scientific community to train very
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complex models without the need to invest and maintain new clusters. But even with the
continuous growth of ML/AI throughout virtually every industry, its extension/application
to Nuclear Physics and Engineering remains very limited. To the best of our knowledge,
there has not been any work in applied ML to nuclear data evaluations and measurements
beyond stating its potential application.

1.3 Motivation, purpose, and scope of the thesis

Data for nuclear reactors are needed for several calculations including reactor and fuel de-
sign which in turn are needed for shielding, decay heat, safeguards, and material damage
calculations to name a few. While there are extensive documentation and data around light
water reactors, big gaps exist in the energy region of interest for new ANRs. Furthermore,
the lack of experimental data for new materials used in these concepts acts as a block for
innovation and development. Not only is there a lack of experimental cross section data
but also benchmark data. Without the latter, the validation phase becomes challenging and
resulting evaluations will carry higher than usual uncertainties. Some of the current needs
relevant to the advancement of ANRs identified by Berstein et al are:

• Improved 238U(n,n’) cross section due to the reaction being a limiting factor in fast
spectrum reactors including those using metallic cores and chloride salts.

• Improved 35Cl(n,p) cross section is needed for low uncertainty criticality calculations
in molten chloride salt systems.

• Better graphite data for high-temperature reactors.

• Refined thermal neutron scattering law in molecular compounds such as molten salts
needed for transport calculations since there are no cross section measurements that
account for the molecular bond effects.

• Improved (n,x) cross sections of heavy actinides for high burnup fuel and molten salt
reactor buildups.

Currently, modeling neutron-induced reaction cross sections is a nontrivial problem as
there is no one-model fits-all approach and the physics are not fully understood. In traditional
physics-based tools, several physical parameters need to be adjusted for the model to generate
a good function that fits and explains the available experimental cross section data accurately.
Unfortunately, in some cases, these parameters can give too much flexibility consequently
overfitting the data at the expense of physical meaning.

The fission and capture cross sections are often manually tuned in the final stages of the
validation process to ensure that unitarity is conserved and for the benchmark results to be
as accurate as possible. The tuning process is a significant source of uncertainty and human
bias since this is an evaluator-dependent process. A common product of the validation design
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for these types of isotopes is the little confidence in the independent fission and capture cross
sections. These values are ultimately used for important calculations including reactor power
distributions. Accurate data and especially higher confidences in individual cross sections
are needed to, for example, ensure materials do not exceed safety limits.

Although there are many potential applications of ML in the field of nuclear data, this
work focuses on its potential role in supporting neutron-induced cross section evaluation to
support the current nuclear data needs. We believe that the nuclear data users can benefit
from the application of ML/AI to better inform cross sections in areas of uncertainty and
iterate faster through the evaluation steps, especially in cases where new data is incorporated
and quick adjustments need to be made. The possibility of applying these tools comes in
big part thanks to the abundance of experimental data collected throughout the years. The
EXFOR database contains more than four million data points. Having collected this amount
of data makes the nuclear data field a prime candidate for the application of ML methods.
These algorithms may be able to leverage data from well explored (isotope, reaction-channel)
pairs and learn patterns and behaviors that can be applied to other less measured isotopes
including those envisioned to be used in advanced reactor concepts.

For this work, a ML-augmented evaluation pipeline (Figure 1.2) was designed to infer
neutron-induced reaction cross sections. Similar to the traditional evaluation methodology,
the proposed framework starts with the compilation of all available and applicable datasets.
Once collected and processed, a variety of ML models were designed and trained. The
performance was evaluated with unseen data and compared relative to the ENDF library. To
validate the models, we generated data for several reaction channels including total, inelastic,
fission, and elastic cross sections for various isotopes ranging from 233U to 35Cl. Isotopes
like 233U and 239Pu were chosen to inspect the performance and demonstrate the reliability
of trained ML algorithms in well-researched isotopes. When applicable, the generated cross
sections were compiled into .ace files and tested on various benchmarks with SERPENT2 [12].
Once the models were validated, cross sections were predicted for less researched isotopes
where data is scarce with the hope that these may be able to extrapolate knowledge from
other similar reactions. This included (n,p) cross section data for 35Cl due to the lack of
data in the operating region of the Molten Chloride Fast Reactor.

The proposed framework requires specialized tools and software that are currently not
available. These tools need to allow researchers to quickly navigate the pipeline seamlessly
to allow for fast experimentation using modern tools. For this, we also created and released
NucML, the first and only end-to-end python-based supervised machine learning pipeline
for enhanced bias-free nuclear data generation and evaluation. NucML’s capabilities were
designed to support every step of the pipeline and to make it possible to modernize the
current data pipelines for compatibility with state-of-the-art ML technologies. These frame-
works and software are not meant to replace the evaluator or the physics guided tools but to
enhance their analytical power and extract meaningful physics. In this thesis, I describe the
proposed ML-augmented evaluation pipeline, the capabilities of NucML, and the application
of the developed tools to several benchmarks and reaction cross sections of interest.
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Chapter 2

Nucleus and Nuclear Reaction
Background

In this work, a machine learning-augmented nuclear data evaluation for neutron-induced
cross section is proposed with the hope of providing useful information in areas of uncer-
tainty. Understanding the interactions between the neutron and a target nucleus is important
so relevant features can be gathered and/or created. In this section the most basic factors in-
fluencing neutron-induced cross sections are reviewed. Other non-neutron induced reactions
are out of the scope of this work and are therefore not included.

2.1 Nucleons

For a neutron-induced reaction to happen, a traveling neutron and a given nucleus must
interact. While the cross section will be dependent on the energy of the incoming projectile,
it is more so on the interacting nuclei. It is therefore important to know what characteristics
define a nucleus and which features can have an effect on cross section behavior. A nucleus
is made of bound protons (Z) and neutrons (N), and an orbiting electron cloud. Protons
are positively charged particles that are balanced with negatively charged electrons and are
bound to neutrons by the nuclear force, a short-range, charge independent, spin-dependent
attractive force. Naturally occurring elements have a different abundance of stable and
radioactive isotopes. For example, Uranium has an isotopic abundance of 99.274% 238U,
0.72% 235U, 0.005% 234U and traces of 233U and 236U. Synthetic isotopes that do not occur
naturally also exists (i.e. 232U). Using techniques like mass spectrometry, precise atomic
masses for these and other isotopes have been measured. Other than their mass, there are
many more characteristics and properties that make isotopes unique and different from each
other.
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Nuclear Radius, Mass Excess, and Binding Energy

Based on the constant density model (Fermi model), the radii of any nucleus is directly
related to its mass number by

R = roA
1/3 (2.1)

where ro is a charge distribution dependent constant ranging from 1.1-1.5 femtometer
(fm) and A is the mass number. The nuclear radius for many isotopes is in the order of
10−12 cm. Measuring the mass of the nucleus accurately is important since it is not equal
to the sum of the masses of its components but smaller. The difference is called the mass
defect (Eq. 2.2) which arises due to the conversion of mass into energy during the formation
of the nucleus.

∆m = [Zmp +Nmn]−M(nucleus) (2.2)

The mass excess is a measure of the strength of the nuclear force. In energy form, it
represents the binding energy (BE) of the nucleus (Eq. 2.3). In other words, it is the
energy required to break the nucleus into its constituents. Higher BE translates to increased
stability.

BE = ∆mc2 (2.3)

A popular depiction of the BE is the BE per nucleon (BE/A). The mean BE increases
along with the number of nucleons until around A = 50 (Figure 2.1). Higher stable nuclei
have mass numbers ranging from A = 50 and A = 70 where the BE/A is nearly constant.
Above this mass number, coulomb repulsive forces between protons start to counteract the
short-range attractive nuclear forces. This causes a decrease in the BE/A in heavy nuclei.
Consequently, heavier nuclei with an overall lower BE can be split up into more stable nuclei
with higher BE. During a fission process, energy is released due to this difference in BE. For
a very low mass number, the surface tension effect causes a reduction in the BE since surface
nucleons are less strongly bound than interior ones. The fraction of nucleons on the surface
is proportional to 1/R. Similar to fission, the left-hand-side (LHS) of the graph indicates the
possibility of energy release by merging lighter nucleus to form heavier more stable nuclei.
This process is called fusion. A related quantity to binding stability is the packing fraction
(Eq. 2.4) where positive values indicate instability and can therefore undergo fission and
fusion processes. Negative values indicate that there is a mass defect meaning stability
(Figure 2.2).

P =
M − A
A

=
∆

A
(2.4)
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Figure 2.1: Mean binding energy per nucleon (BE/A) as a function of the mass number (A).
Standard deviation shown in light blue.

Stability

Stability comes mostly due to certain combinations of protons and neutrons. In light nuclei,
both the number of neutrons and protons tend to be equal due to Pauli’s principle which
states that no more than two protons or neutrons can occupy the given energy state (quantum
level). Energy levels are filled up in sequence giving rise to a stable nucleus. Nuclei with an
even number of protons and an even number of neutrons have higher stability (symmetry
effect). In heavier nuclei, the trend starts to deviate from the Z = N behavior mostly in
the form of neutron excess (Figure 2.3). More neutrons are needed to balance the repulsive
Coulomb forces between the increasing number of protons which weakens the overall bonds in
the nuclei. Isotopes with an unstable nucleus are radioisotopes and experience radioactivity
due to the tendency of converting nucleons to reach stability.

If there is an excess of protons, the nucleus will tend to transform some of these to
neutrons by positron emission (β+) (2.6) or by electron capture (EC) (2.7). In the case of
neutron excess, the nuclei will tend to gain positive charge by β− decay (2.7).
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Figure 2.2: Packing fraction as a function of the mass number (A). Nuclei above the hori-
zontal line at zero indicate instability and the possibility of energy release by fusion or fission
to reach lower packing fraction values (higher binding energy nuclei).

p→ n+ β+ + ve (2.5)

p+ e− → n+ ve (2.6)

n→ p+ β− + v̄e (2.7)

The energy released or needed for a decay to occur for a given nuclei (Z,A) can be
represented in terms of the Q-value for β+ decay (Eq. 2.9), β− decay (Eq. 2.8), and EC
decay (Eq. 2.10). There are other types of decay including neutron emission, alpha decay,
and fission for which the energy released or required can be calculated.

Qβ− = [M(Z,A)−M(Z + 1, A)]c2 (2.8)

Qβ+ = [M(Z + 1, A)−M(Z,A)]c2 (2.9)

Qβec = [M(Z,A)−M(Z + 1, A)]c2 (2.10)
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Figure 2.3: Number of Protons vs Number of Neutrons. The orange line represents the
Z = N behaviour. Deviations from the trend are mostly in terms of neutron excess.

For the nucleus to be stable against decay via neutron emission, the binding energy of
the neutron must be positive (Eq. 2.12). Similarly, stability against proton and alpha decay
translates into positive binding energy (Eq. 2.12).

B(n) = [M(A− 1, Z) +M(n)−M(Z,A)]c2 (2.11)

B(α) = [M(A− 4, Z − 2) +M(α)−M(Z,A)]c2 (2.12)

Energy Levels

A nucleus can be on its ground state or an excited state. The former means all nucleons at
their lowest energy levels. Above the ground state, several excited states start to appear at
isotope-dependent energies. The distribution of these energy states including the distance
between them and the magnitude of the energy levels are nuclei dependent. Heavier nuclei
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Figure 2.4: Excitation levels in mirror nuclei 37Ca and 37Cl. Image taken from Reference [9].

have more frequent energy levels than lighter nuclei but the energy of the first excited state
is higher in the former. The magnitude of the energy levels is also affected by the presence
of a magic number of nucleons. In mirror nuclei, where the number of protons in one nucleus
equals the number of neutrons in another, the energy levels are found to be very similar
(Figure 2.4).

In any case, excited states are not stable and will usually decay to a ground state through
the emission of gamma rays or internal conversion. The energy levels correspond directly to
the resonances shown in cross sections.

2.2 Nuclear Reactions and Reaction Mechanisms

A collision between a neutron and a target nucleus will produce changes in nuclear compo-
sition and/or in the energy state as permitted by the various conservation laws. Due to the
neutral nature of the neutron, it does not experience repulsion and is, therefore, useful to
penetrate the nucleus and induce reactions. There are different types of interactions that
can take place as long as conservation laws are obeyed (nucleons, charge, linear and angular
momentum, energy). The energy released or needed for any given reaction (Q) depends on
the final (Ef ) and initial (Ei) kinetic energy (conservation of energy).

Q = Ef − Ei (2.13)
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The reaction is said to be exothermic if Q is positive or endothermic if negative. In an
endothermic reaction, energy must be provided for the process to take place. In these types
of reactions the energy Q represents the threshold energy. In an exothermic reaction, mass
is converted into released kinetic energy. Thus, the Q-value is useful to predict whether a
certain reaction is energetically possible. There are various reaction mechanisms including
compound, direct, and pre-equilibrium reactions. The most common mechanism is through
the formation of a compound nucleus.

Compound Nucleus Reactions

In compound nucleus reactions, the incident neutron is absorbed by the target nucleus A
ZX

forming a compound nucleus A+1
ZX. The kinetic and binding energy of the neutron is dis-

tributed among the nucleons until equilibrium is reached. During this transition, nucleons
near the surface may escape if the excitation energy meets at least the particle’s separation
energy. This can continue while the energy is above the threshold requirements. Once below
the threshold energy, gamma emission can take place until the ground state is reached. The
compound system can decay in several ways including fission, where the nuclei split into two
or three large fragments. This is a common decay mechanism in a heavy nucleus. Another
possibility is radioactive decay into a more stable nucleus (beta, alpha, etc.). Due to the
time involved in the formation of the compound nucleus and the long decay times, the decay
mechanisms are thought to be independent of the mode of formation of the compound system
(the memory of formation is lost). Of the possible decay modes, the exit channels with neu-
tron emission are more favored since the emission of charged particles involves overcoming
the coulomb barrier.

Several aspects need to be understood in compound systems including the properties of
energy levels that could be excited, the density of energy states as a function of energy,
the mechanisms of de-excitation, etc. Not all states in a nucleus are excited with equal
probability and are therefore populated differently depending on the reaction and the energy.
This phenomenon allows an experimentalist to get information on the reaction mechanism
and the nuclear structure.

Resonances

The probability of interactions between a neutron and a target nuclei is dependent on many
variables including the material involve and the energy of the incident neutron. Generally,
this probability decreases as the energy increases. However, at low energies spikes may
suddenly appear. These resonances are due to quantum mechanics where the neutron wave
resonates with the target cavity at certain frequencies. At these points, a large interaction
probability exists and therefore a resonance appears. The energy region where cross sections
have increased probability of interaction due to these sudden variations is called the resonance
region (Figure 2.5).
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Figure 2.5: 35Cl(n,total) cross section plot.

The energies at which these peaks are located correspond directly to an excited level in
the compound nucleus A+1

ZX. In other words, if the kinetic energy of the incoming neutron
(En) and the neutron binding energy (Bn(A + 1, Z)) sum up to a value that corresponds
to an excitation level, a resonance will occur with a high probability. Figure 2.5 shows the
total cross section plot for 35Cl. The first resonance is located approximately at 4 ∗ 10−4

MeV. Since the neutron separation energy is 8579.79 keV we should expect to observe the
first resonance at approximately 8580.19 keV (the kinetic energy plus the neutron binding
energy). Figure 2.6 shows some of the energy levels for 36Cl, the compound nucleus formed
upon neutron absorption in the 35Cl nucleus. Indeed, there is an excited state with energy
of 8580.18 keV responsible for the first resonance in 35Cl.

With the formation of the compound nucleus, there are several possible subsequent events.
One possibility is the de-excitation by the emission of a gamma-ray (photon) of lower energy.
In this scenario, the compound nucleus may still be in an excited state and, if the energy
allows it, a cascade of gamma-ray emissions can continue. Another possible outcome is the
ejection of the same projectile particle by elastic or inelastic scattering.

In any nuclei, the level frequency increases as the energy increases due to the various pos-
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Figure 2.6: Excitation levels for 36Cl.
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sible configurations of the nucleons. This translates into an increase in resonance frequency
as a function of energy. At high enough energies, the excited levels will tend to have shorter
lifetimes and vice versa. This is due to Heisenberg’s uncertainty principle,

∆E∆t ≥ h̄ (2.14)

where ∆E represents the energy and ∆t the time. Similarly, the uncertainty principle
may be represented in terms of the level’s width Γ and its lifetime τ (Eq. 2.15).

Γτ ≥ h̄ (2.15)

This latter relationship means the resonance’s width increases as the lifetime decreases
and therefore as energy increases. There comes a point where the width of the resonances
start overlapping each other causing the peaks to soften. The lifetime of high energy reso-
nances is small enough and the uncertainty in energies high that our experimental resolution
is unable to capture and therefore measure these values. This leads to the unresolved reso-
nance region where the cross section values are averaged and presented as a smooth line.

As previously mentioned, there are various possible decay modes for a compound system.
For every possible mode (j), a partial width Γj exists. The total width of the level is the
sum of all partial widths (Eq. 2.16).

Γ = Γ1 + Γ2 + Γ3 + ... (2.16)

What the total width characterizes is the total probability of decay which corresponds
to the full width of the resonance peak measured at one half the maximum height.

It is evident that the location of the resonances is a direct function of the available
excitation levels in the compound nucleus. The density of these nuclear levels is isotope
dependent. The general trend is that heavier nuclei start exhibiting resonances at lower
energies than lighter nuclei. Additionally, the energy of the excited states decreases with
increasing mass number. Energy states for heavy nuclei start to appear as soon as 0.1 MeV.
For lighter nuclei, this number is higher and the levels are widely separated by about 1 MeV.
In a heavy nucleus, these are approximately 50 keV apart. Magic number nuclei are an
exception to these rules. There are several models that attempt to model the level density.
One of these is the Fermi’s gas model

ρ(E) = ρ(0)e2(aE)1/2. (2.17)

where ρ(0) and a are empirical constants. Each energy level is characterized by a def-
inite spin, parity, and width. There are other models but none that explains perfectly the
experimental measurements. It is not the scope of this thesis to understand other models
but to create our own using ML.
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Direct Reactions

In direct reactions, emission takes place relatively immediately without the formation of
the compound nucleus. The behavior and characteristics of direct reactions differ signifi-
cantly from compound reactions since the former is a one-step process while the latter is a
two-step process. While still possible at low energies, direct reactions are most commonly
encountered at high energies while compound nucleus based reactions tend to happen at
low energies. Direct reactions include stripping and its inverse, pick-up, knock-out, and
heavy-ion reactions.

2.3 Reaction Types

There are many possible reaction types including most popularly elastic and inelastic scat-
tering, transmutation, capture, fission, and charged particle emission channels like (n,α) and
(n,p). In this section, we describe the most common reaction types.

Elastic Scattering

In elastic scattering, the kinetic energy of the neutron is redistributed but conserved (Q = 0)
and internal states are unchanged. An example of elastic collisions is the reaction

n+ 235U→ n+ 235U

where a neutron hits a 235U nucleus resulting in a loss of neutron kinetic energy and a
change in direction. The lost KE is transferred to the target nucleus. Since the neutron
lacks charge, it can start scattering elastically at very low energies. There are two possible
scattering mechanisms: compound or potential elastic scattering. In the former, the neutron
first forms a compound nucleus followed by the re-emission of the neutron. In the latter,
the neutron is never absorbed. Instead, it is deflected away from the nucleus surface by
the short-range nuclear force. The most common form of scattering is potential scattering
although at higher kinetic energies resonance behavior starts to take place via compound
scattering. Potential scattering is analogous to billiard balls collisions and takes place at
energies up to around 1 MeV. The cross section for potential scattering is almost constant
and a function of the nucleus’s radius (Eq. 2.18).

σel = 4πR2. (2.18)

The amount of energy that the neutron loses depends on the target nucleus. A larger
target nucleus means the neutron loses a negligible amount of energy while lighter nuclei
are more effective in reducing the energy of the neutron. The maximum transfer of energy
happens on a head-on collision in which the neutron does not change its initial direction.
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Inelastic Scattering

In inelastic scattering, the neutron becomes part of the target nucleus, therefore, being
a compound nucleus reaction. For inelastic scattering to occur the energy provided must
be close to one of the excited states of the target nucleus. This means kinetic energy is
transformed to allow for excitation of the nuclei. The energy release for these type of reactions
is negative (endothermic) since energy Ex is required to excite the nuclei (Q = −Ex). An
example of inelastic collision is the reaction

n+ 238U→ n
′
+ 238U

∗

where the outgoing 238U nuclei is left in an excited state and the neutron loses energy.
Inelastic scattering is a threshold reaction and it is more pronounced in heavy nuclei where
there are higher levels at lower energies. For lighter nuclei, the inelastic scattering cross
section at low energies is virtually zero. When the threshold energy is met, inelastic scat-
tering cross sections are nearly equal to the elastic cross section. For the reaction above the
threshold, energy is around 44 keV. For light nuclei like 16O the threshold energy is 6 MeV
with magic nuclei behaving similarly.

Transmutation

In a transmutation type of reaction, there is a rearrangement of the nucleons between the
incoming neutron and the target. There are many possibilities for the outcome of these
reactions as long as the conservation of nucleons law is obeyed. An example is the reaction

n+ 27Al→ 24Na + 4He

where the number of neutrons and protons are rearranged on the left-hand-side (LHS)
and the right-hand-side (RHS) of the reaction.

Capture Reactions

In this type of reaction, the excited compound system is created by the interaction of the
incoming neutron. Next, the target nucleus decays into a ground state via one or more
gamma rays (cascade emission). An example is the reaction

n+ 238U→ 239U
∗ → 239U + γ +Q

whereupon capture of the neutron by 238U, the 239U excited system is created followed
by the release of excitation energy in the forms of gamma rays. Figure 2.7 shows the excited
levels and their direct relationship with the resonances presented in the 238U cross section.
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Figure 2.7: 238U(n,γ)239U reaction cross section. The first excited levels of 239U are shown
connected to the respective resonance peak. Image taken from Reference [9].

This type of reaction is often called radiative capture due to the release of gamma rays and
can occur at any neutron energies. The capture cross section also follows a 1/v behavior
at low energies for most nuclei followed by a resonance region in the same energy range as
elastic scattering since the compound nucleus formed is the same in both reaction types.
Above the resonance region, the capture cross section drops since other interactions start to
open up energetically.

Fission

When a compound nucleus is formed by the absorption of a neutron in a heavy nucleus
like 235U, it may split into two or sometimes three fragments with higher probability than in
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lighter nuclei. At the right energies, this mode becomes competitive with high width reaction
channels like capture. This splitting is usually accompanied by a couple of neutrons which
allows for chain reactions to exist. An example is the reaction

n+ 235U→ 236U
∗ → 139

56Ba + 94
36Kr + 3n

whereupon capture of the neutron by 235U, the excited 236U nucleus splits resulting in
two fission products and three neutrons. Other possible fission products are possible and
the probabilities are usually represented as fission yields. The produced fission products can
keep decaying depending on their lifetime.

2.4 Cross Section

cross sections are used to quantify the probability of interaction between an incoming pro-
jectile and a target. It is a unit of measurement given in length squared. The most common
unit is the barn (1b = 10−24cm2). In pure geometric terms, it describes the ratio of the
target area to the total area however, due to quantum effects this is not purely dependent on
hard properties like the nuclear radius although for some reactions it will come close to the
actual area. The cross section captures many properties of the interacting nuclei including
the nature and forces between them. For each reaction type, there will be a cross section
value at given energy for a given isotope. Non-threshold reactions have large values at low
neutron energy due to fewer competing modes while threshold reactions start to play in only
above certain energies. One example is 238U for which fission is only possible above 1 MeV.

During the neutron lifetime, it will have a certain total probability of collision (σt). Upon
interaction, it will either be scattered (σs) or absorbed (σa):

σtotal = σs + σa (2.19)

Furthermore, scattering can be either elastic or inelastic.

σs = σel + σin (2.20)

Absorption cross sections consist of reactions that terminate the neutron history including
capture, charge particle emission, and fission.

σa = σγ + σf + σp + σα + ... (2.21)

The resonances of all these happen over the same resonance region while the peak values
for each mode may vary (each mode contributes to the total width of the resonance). At
low energies, the total cross section for non-threshold interactions behaves as
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σtot = 4πR2 +
C√
E

(2.22)

where C is a constant. The second term accounts for the radiative capture. Once the
resonance region begins there comes an energy point where the resonances are too close
together (high width) and experimental values cannot be obtained. This region is called
the unresolved resonance region where the smooth values are averages. Recommended cross
sections in this area heavily rely on theory and modeling codes.

2.5 Current Experimental and Modeling Needs

Most theoretical models by themselves, especially of low energy neutron-induce reactions, are
not ideal for predicting cross sections at the level of accuracy needed for real-world applica-
tions. To provide useful information, these models are guided by experimental measurements
in the evaluation process to derive a set of recommended values. However, there are still gaps
in data or high uncertainties due to the lack of measured data points for specific isotopes and
reactions. Even with the extensive experimental campaigns and theoretical developments,
the need for improved data and models remains. Berstein et al. reported some of the most
important needs in the nuclear data field [2]. Some of the suggestions include:

• Fission reaction mechanisms understanding for better (n,f) evaluations:

– Measurements are not always easily obtained. Some targets are short-lived leading
to high uncertainties and observables are not always easily measured.

– There is a lack of a theoretical framework and models for fission-related data
evaluations. Pre- and post-scission are modeled separately but lack the level of
accuracy needed for predicting nuclear quantities.

• Elastic and inelastic scattering improvements need to be made due to their impact on
neutron populations and their properties in nuclear applications.

– Scattering data does not produce easily measured signals leading to a deficiency
of high-quality experimental data and disagreement between evaluations.

– Errors in scattering cross sections are difficult to manage. Compensating errors
are resistant to the validation process.

∗ Compensating errors occur due to the nature of the validation step. Evalua-
tions using criticality benchmarks risk producing various combination of val-
ues that produces the same result of keff = 1. The number of combinations
varies causing disagreements between organizations and causes uncertainty
in the recommended cross sections.
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• Improved (n,p) reaction cross sections are needed due to their potential for the produc-
tion of therapeutic radionuclides. This is difficult due to the high-energies used leading
to orders of magnitude differences between modeling codes. While many reactions of
interest take place on stable nuclide, difficulties still arise in experimental settings due
to decreasing monitor reactions at high energies.

These are some of the needs that a hybrid ML-based solution could tackle given the
correct information.

2.6 Summary

This overview gives a general idea of the factors that influence cross section behavior. It is
primarily a function of the projectile, in this case, the neutron and a target particle. The
target can be an isotope or a non-pure naturally occurring element. In any case, this means
the cross section is at least a function of the number of protons and the number of neutrons.
Each nucleus has a set of defined and discrete energy levels that can be excited upon inter-
acting with an energy-carrying projectile. Excited states cause resonances in cross sections
which are important since these are the sources of high interaction probability in reactions.
While some excited levels have been measured experimentally, there are still uncertainties
at higher energy states where our experimental capabilities are unable to measure due to
the extremely low lifetimes. Additionally, collectivity in heavy nuclei is difficult to model.
The reviewed concepts should help create a usable data set that can help machine learning
models model cross section data.
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Chapter 3

Methodology - NucML

As previously mentioned, there are several stages in the traditional Nuclear Data Evaluation
(NDE) pipeline including compilation, evaluation, processing, and validation [2]. In this
work, we proposed a modified Machine Learning augmented Nuclear Data Evaluation (ML-
NDE) pipeline for neutron-induced cross sections to help address some of the previously
mentioned issues for both the traditional NDE and the nuclear data field including

• Lack of relevant data for important isotopes like 35Cl.

• High uncertainty in data-lacking reaction evaluations

• High consumption of time and resources

• Bias in the generation of solutions

• Benchmark overfitting and compensating error in fissile isotopes with criticality eval-
uations

In this chapter, we describe in detail the ML-NDE, its advantages, and its disadvantages.
We also introduce NucML a python toolbox for accelerated ML-based evaluation created to
navigate the ML-NDE seamlessly.

3.1 Machine Learning-augmented Nuclear Data

Evaluation

As mentioned previously, it is important to have accurate cross section data and uncertainties
to build safe and reliable systems. While extensive experimental reaction data exists for
some of the most popular isotopes including 233U and 239Pu, there are still many for which
uncertainties are high. These include isotopes like 35Cl, an important material in chlorine-
based molten salt reactors. In these technologies where datasets for relevant materials are
scarce, high uncertainties impact the operational and safety analysis greatly. Evaluated data
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relies on the judgments of evaluators to provide the best set of values given known physics
and expertise. Missing data causes traditional modeling codes to be unconstrained and
results in an increase in human-bias in the generation of solutions. This is especially true in
modeling methods that require parameter optimization and fine-tuning to reach an adequate
fit of the few experimental data points available. The uncertainty is significantly worse when
there are virtually no applicable benchmarks to validate the model with. Furthermore, this
process can consume considerable resources that are sometimes not readily available.

Figure 1.2 presents a potential evaluation pipeline augmented by ML. Its steps can be
summarized as dataset creation, feature extraction and processing, ML model training and
evaluation, hybrid library generation, and validation which in turn informs model selection.
Similar to the nuclear data pipeline, it ends on the application side. The main major dif-
ference is the use of ML models in the evaluation phase rather than physic-guided modeling
codes. What makes an ML-NDE pipeline possible is the extensive set of experimental cam-
paigns and data points collected throughout the years. The major steps can be summarized
as follows:

1. The first step consists of collecting the relevant experimental data. For ML to effec-
tively tackle this challenge, a representative dataset containing the physical properties
and features that are believed to affect cross section behavior is needed. This mainly
includes data from the EXFOR database, the Atomic Mass Evaluation, the Evaluated
Nuclear Structure Data File, and any other appropriate experimental data source.

2. After data collection, feature extraction and processing are performed. This step
consists mostly of cleaning the data and transform it into a form suitable for ML
algorithms. This process is model-dependent and needs to be carefully performed.
Some models require stronger normalization and transformation techniques than oth-
ers. Dataset sparsity can also be detrimental to training optimization for certain types
of models.

3. After having all features in an ML-friendly format, the chosen model is trained and
its performance is first evaluated using an unseen dataset subset. The trained model
can then be used to generate ML-derived recommended values (libraries) based purely
on patterns and behaviors it learned from the training dataset. These models are
trained using data from the Experimental Nuclear Reaction Data (EXFOR) database,
the XUNDL library, and the Atomic Mass Evaluation (AME) [15] [20].

4. These cross sections are then validated using benchmark calculations. In this particular
challenge, it is not possible to just rely on the validation subset performance for model
selection. The error from the benchmark must have a higher weight on model selection
since these are our closest representations to real-world deployment scenarios. However,
the benchmark loss is currently not directly taken into account in model training and
since it provides essential metrics for further improvement, it must participate in model
selection in another way. In this work, the average performance on a set of benchmarks
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is used as the selection technique. This process is iterative until an optimal set of model
parameters is found.

5. The selected models can then be used to make predictions to inform evaluators in areas
of uncertainties. An implicit benefit of ML-based solutions applied to the traditional
NDE is the reduction of human bias.

Limitations and Considerations of the ML-NDE

Several aspects require caution when implementing ML pipelines to this area in particular.
Theoretically derived data including physical parameters or factors that scientists think can
help the model learn behaviors in cross sections must not be included in the dataset. Includ-
ing them will cause the ML model to have the same constraints as those other models used
to derive said theoretical data. For example, filling missing values with ENDF data means
the model will not only learn characteristics from the real physical phenomena but also from
those models used to create the evaluated library (i.e., TALYS, EMPIRE). Also, it inherits
the bias in the creation of these values. Next, splitting must be performed in a stratified
manner rather than randomly. It is important to fit the model on a representative diverse
dataset, otherwise, it will have poor performance on data types that were not included in
the training set. A clear example is elastic scattering of which there are thirty-seven thou-
sand datapoints. Approximately two-thirds of those belong exclusively to 237Np. Random
splitting risks the majority of the elastic scattering points in the training subset belonging
to 237Np. This can translate into poor predicting capabilities on other non-seen isotopes.
Another issue arises in the validation phase. Similar to the current nuclear data pipeline,
integral benchmarks are part of the validation step to inform model selection. This means
there is a risk of overfitting to a particular benchmark. The model selection process must
be based on the average performance on all benchmarks. On the other hand, cleaning the
data is a non-trivial process. This step is a hybrid realm between the data sciences and
the nuclear data field. Although there might be good causes to discard one dataset versus
another, this is outside the scope of the work presented here.

ML applied to cross section and nuclear evaluation presents very unique characteristics
that are not usually present in common ML challenges due to the physical nature and mean-
ing of the EXFOR database. EXFOR datapoints consist of experimental measurements of a
variety of isotopes undertaken by researchers at different facilities. These carry uncertainty
that is a function of the experimental settings, procedures, and more. Measurements are
therefore only an approximation of an unknown true cross section value. The evaluation
pipeline recognizes this and therefore incorporates the validation phase by the use of bench-
marks. Benchmarks provide a very important way of ultimately validating derived cross
section data. For example, a critical assembly has a multiplication factor of 1 (critical).
This is an actual true value. In other words, the assembly is critical or it is not (there is
no in-between) and there exists a set of true cross section values that allows this assembly
to exists in a criticality state given the composition and the geometry. These hidden sets
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of cross section values would ideally be the labels in our datasets, however, we only have
measurements that we regard as being close enough to these unknown true values. Com-
peting experimental campaigns and outliers exist in EXFOR and this is why traditionally
the evaluator inspects each dataset for quality. To limit bias, the proposed pipeline does not
discard data points manually and therefore an odd issue arises.

Most machine learning models try to minimize a given loss function which itself is a
function of the predicted value and the given label. Knowing that our labels are not ideal or
accurate enough and that the benchmarks are currently not part of the training loss function
directly, it may not be in our interest to completely minimize the loss with respect to the
EXFOR dataset if this means increasing the loss with respect to the integral benchmarks.
Given any model selection process (i.e., cross-validation, train-val-test), an optimal model
with the lowest mean absolute error (MAE) and no overfitting will in some cases perform
worse in a benchmark than an over-fitted model. This is due to the ”approximation” nature
of the dataset, the high uncertainties in some measurements, and the frequent presence of
outliers. In other words, the EXFOR database converged model might not be the best
model. Given these arguments, one must understand the limitations and carefully go about
the training process on these types of experimental datasets.

3.2 NucML: Python-toolbox for Accelerated

ML-based Evaluations

The application of ML to nuclear data requires specialized tools and software that are cur-
rently not available. These tools need to allow researchers to quickly navigate the pipeline
seamlessly to allow for fast experimentation using modern tools. For this, we created and
released NucML, the first and only end-to-end python-based supervised machine learning
pipeline for enhanced bias-free nuclear data generation and evaluation. These tools are not
meant to replace the evaluator or the physics-guided tools but to enhance their analytical
power, extract meaningful physics, and modernize the current data pipelines for compati-
bility with state-of-the-art ML technologies. In this chapter, we describe the NucML ca-
pabilities for each step of the ML-NDE and the underlying philosophy behind the designed
workflow. For information on the implementation, source code, and documentation please
visit https://pedrojrv.github.io/nucml/ and https://github.com/pedrojrv/nucml.

(1) Experimentation and Compilation

Nuclear data can be found in a variety of formats and in different data sources. While the
modernization of various of these databases is underway, there is a need now for ready-to-use
datasets for ML applications. Reaction data from EXFOR is available to download in either
various .x4 files or a single .xc4 file, both of which are in formats not compatible with today’s
ML technologies. The structure and formats of these files were designed for compatibility
with other types of software including codes like EMPIRE which converts EXFOR native
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files into individual isotopic .C4 files for later use. Another database of interest is the
Experimental Unevaluated Nuclear Data List (XUNDL). The format in XUNDL files is also
incompatible with current ML workflows. The Reference Input Parameter Library (RIPL)
offers more easy-to-parse .dat files but still offers challenges [4]. These and many other
nuclear data sources require modernization.

Identifying, parsing, and formatting all nuclear data sources can be a tedious time-
consuming job. NucML contains a variety of utilities that make it easy to download the
latest versions of the EXFOR, RIPL, ENDF, and AME libraries easily. To convert these
into ML-friendly datasets, parsing utilities are available to read library-native formats, re-
structure the information, and store the resulting data structure into single easy-to-use files
in various formats including CSV, JSON, hdf5, and even parquets and Google BigQuery
tables.

NucML Datasets

Transforming these nuclear data sources is just one step towards the integration into ML
pipelines. NucML uses the resulting restructured data to make core functionalities avail-
able. Datasets like EXFOR, even if converted to ML-friendly formats, cannot be considered
ML− ready. Feature engineering is an important stage of any ML workflow. In this phase,
features are filtered to only include relevant information, new features are engineered, data is
transformed according to model-dependent requirements (i.e. one-hot encoding for categor-
ical features), standardization and normalization take place, and much more. Engineering
new features is just as important as any other step in the ML workflow and is known to be
a quick and easy way to boost model performance.

The AME database contains plenty of information including the precise atomic mass,
binding energy, mass excess, beta decay energies, and Q-values for many types of reactions.
These can complement EXFOR and the XUNDL/RIPL library. NucML Datasets makes
incorporating AME features easy by automatically appending when loading every dataset.
In cases where experimental campaigns used a natural target, AME data is interpolated using
different methods to create usable information for these data points. Other core capabilities
of all NucML Dataset loader functions include easy train-validation-test splits, recommended
filters, feature filtering, normalization and standardization (i.e. power transformers, standard
scalers, robust scalers), categorical data encoding, and more. Additionally, more features
can be added by passing user-defined functions that make use of the already available data.
It is through these optional capabilities that truly ML-ready datasets can be prepared and
loaded.

Some of the most popular ML libraries including Scikit-learn, XGBoost, TensorFlow,
and PyTorch have different data requirements for optimized loading and training. By de-
fault, NucML Datasets returns pandas DataFrame objects which are compatible with all
scikit-learn models. Although any user can subsequently transform these data structures,
several functionalities are provided to return library-dependent objects. For example, for
TensorFlow, a tf.data.Dataset objects can be loaded with user-specified options including
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batch sizes, shuffle buffers, and cache/prefetch instructions. Other objects supported are
DataLoader and DMatrix for PyTorch and XGBoost respectively.

NucML’s Experimentation and Compilation Capabilities

There is an extensive set of utilities provided by NucML to support the experimentation
and compilation phase of the ML-NDE. The most important loader functions support many
data formats including simple NumPy arrays and TensorFlow Dataset objects. Some of
these functions include:

• nucml.datasets.generate exfor dataset: Generates all needed EXFOR datasets for neutron-
, proton-, alpha-, deuterons-, gammas-, and helion-induce reactions. This function can
be used to update EXFOR whenever new C4 files are added.

• nucml.datasets.load ame: Loads any of the three Atomic Mass Evaluation 2016 files.
It also offers some capabilities to generate synthetic data for natural targets which is
needed to join with EXFOR.

• nucml.datasets.load xundl: Loads the XUNDL structure levels data. It also provides
utilities to use user-defined cut-off parameters.

• nucml.datasets.load xundl ground states: Loads only ground state information for all
available isotopes in XUNDL.

• nucml.datasets.load xundl headers: Loads headers from RIPL .dat files. It contains
basic information including the number of gamma rays measured, levels detected, and
more.

• nucml.datasets.load xundl isotopic: Loads level or gamma records for any given iso-
tope.

• nucml.datasets.load xundl ml: Loads an ML-ready dataset for inference of nuclear
level’s energies and nuclear level density. Categorical data is one-hot-encoded by de-
fault and standardization is applied with parameters fitted on the training set.

• nucml.datasets.load ripl parameters: Loads the provided RIPL cut-off parameters pro-
vided by the Reference Input Parameter Library (RIPL). The returned parameters can
be used with the nucml.datasets.load xundl to return a filtered set of nuclear levels.

• nucml.datasets.load evaluation: Reads an evaluation file for a specific isotope, reaction
channel, and evaluated library. Supported regional libraries include endfb8.0, jendl4.0,
jeff3.3, and tendl.2019.

• nucml.datasets.load exfor: This is the main loading function for EXFOR. It loads the
EXFOR dataset in its various forms including ML-ready datasets for different particle
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induce reactions or all of them. A set of recommended transformations is applied
by default including energy thresholds for low energy inference, unskewing functions,
standardization and normalization, filters for wrongly reported data, among others.
Visit the documentation for more.

While these are the main loader functions for nuclear data, a set of general and prepos-
sessing utilities are used to support these capabilities. Some of which include:

• nucml.general utilities.parse isotope: Helps standardize isotope formatting to work
with all NucML’s utilities.

• nucml.general utilities.parse mt: Helps standardize the reaction type formatting to
work with all NucML’s utilities.

• nucml.general utilities.save obj: Saves a python object including trained ML models,
arrays, lists, and any other python-based generated object for later use.

• nucml.processing.impute values: An isotope-specific data imputation function. It uses
all available data for a given proton (Z) and mass number (A) to linearly interpolate
missing values. This is the main process behind the Atomic Mass Evaluation natural
target data generation.

• nucml.processing.normalize features: Applies a transformer or normalizer to a set of
specific features in the user-provided data. Different normalizers are supported includ-
ing “poweryeo”, “standard”, “minmax”, “maxabs”, “robust”, and “quantilenormal”.
This is the main normalizer engine behind all ML-ready datasets.

(2) Evaluation using ML

In the evaluation phase of the traditional NDE pipeline, relevant data is used to guide physics-
based model calculations which result in best estimates, dependent on data availability, of
mean values including uncertainties and covariances. These values can then form part of
one or more regional libraries (i.e., ENDF). As previously mentioned, the ML-NDE pipeline
instead makes use of trained ML models to create reaction cross section data and therefore
to generate ML-based libraries.

The NucML Model utilities provide various python scripts to train various ML algorithms
including scikit-learn models (i.e. K-nearest-neighbors, Decision Trees), Gradient Boosting
Machines, and Neural Networks. It is built around a strict ML management philosophy by
keeping track of model hyperparameters and resulting performance metrics for the supported
models. The files created from the training iterations can then be used to analyze the impact
of different hyperparameters on model performance. These scripts also take care of saving the
model, the scaler/normalized used, and the path to all needed objects for future persistence.
If the model object needs to be accessed later, the path for both the model and scaler is saved
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within the management file. There is no need to retrain the models. Other ML management
tools like Comet ML and Weights and Biases can be configured and used using user-provided
credentials. Based on the management files, different plotting utilities are offered to make
analyzing the generated data easier. It is the goal of NucML to first and foremost provide
researchers the framework and tools to create, train, and analyze their models rather than
providing a set of optimized algorithms.

NucML’s ML Evaluation Capabilities

Most of NucML’s capabilities deal with data, processing, and validation. The Evaluation
phase consists mainly of effectively training ML models. This is user-dependent but included
is a list of the training scripts used in this work to help anyone get started. All scripts are
built on top of a strict experiment tracking framework. Every model trained is saved for
later loading and validation. In each script execution, a specific scaler is fitted and it is saved
along with the model. Similarly, the performance metrics calculated on the train, test, and
validation subset are saved under the same file. At the end of the experimentation iterations
the results file will contain:

• Model Name

• Scaler Type

• Performance Metrics (i.e. MAE, MSE, etc.)

• Model-specific Hyperparameters

• Location of Saved Model and Scaler

• Training Time

This strict management is important for post-training analysis of hyperparameters and
will be useful for benchmark validation but more on the latter later. Models included in
NucML and command line arguments include:

• K-Nearest-Neighbor (Scikit-Learn):

– Distance Metric

– Nearest Neighbors (K)

• Decision Tree (Scikit-Learn):

– Distance Metric (Euclidean, Manhattan)

– Nearest Neighbors (K)

– Weights (Uniform, Distance)



CHAPTER 3. METHODOLOGY - NUCML 33

• Gradient Boosting Machine (XGBoost):

– Max Bin

– Max Depth

– L2 Regularization

– Objective Function

• Neural Network (TensorFlow)

Common command-line arguments between all training scripts are the EXFOR dataset
mode, normalizer type, and the MT strategy. The higher the EXFOR dataset mode, the
more features included in the resulting dataset. In the next Chapter, these features will
be defined along with the normalizers supported. Even though every user should develop
their training scripts NucML does contain some functions that can make training models on
EXFOR easier. These include:

• nucml.model.model building.compile and fit: This utility allows the user to train any
TensorFlow model by simply passing the model architecture, the training and testing
data, training parameters (i.e. batch size, epochs, learning rate, and methods). If ML
management utilities such as Weights and Biases or Comet ML are being used, the
function also enables to append service-specific callbacks. It also allows continuing
training if checkpoints have been saved.

• nucml.model.model building.get callbacks: Returns a list of TensorFlow callbacks. Use-
ful when custom or module supported learning rate adjustments are to be made during
training (i.e. reduce on plateau, exponential decay, etc.). Other callbacks included by
default are checkpointing and early stopping which allows training to be stopped if the
validation loss has stopped declining.

• nucml.model.model building.get xgboost params: XGBoost training require model pa-
rameters to be passed. This function returns a dictionary containing all hyperparame-
ters needed to train a Gradient Boosting Machine model with EXFOR. Its customiza-
tion allows the user to define the learning rate, regularization strength, max depth,
grow policy, max bin, objective function, and GPU specification.

Furthermore, utility functions are given so that any user can keep careful track of their
experimental campaigns including:

• nucml.model.utilities.create error df: When a user starts training their models using
EXFOR, the validation utilities still require a carefully formatted DataFrame with
model information and performance metrics. This function transforms the calculated
metrics into a pandas DataFrame for insertion into the main results file.
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• nucml.model.utilities.train test error df: Once all performance metrics have been cal-
culated on all three subsets (train, validation, testing), this utility joins the results and
returns a single concise DataFrame row.

• nucml.model.utilities.load model and scaler: Since the results file contains the path to
both the saved model and scaler, this utility will load and return both objects.

• nucml.model.utilities.make predictions: Given a numpy array, the function will trans-
form the data into an appropriate format for the given model (DMatrix, TensorFlow,
etc.) and pass it to the model for predictions which are then returned.

• nucml.model.utilities.regression error metrics: Calculates the Mean Absolute Error
(MAE), Mean Squared Error (MSE), EVS, MAEM, and R2 between two given vectors.
Useful to calculate performance metrics when coupled with model predictions and true
data.

• nucml.model.utilities.get best models df: Given the results file generated by the train-
ing iterations, this function filters and returns the three best models based on the main
performance metric on the test, train, and validation set.

• nucml.model.utilities.cleanup model dir: After some time, accumulated files can take
considerable storage. This utility allows the user to delete all models except for the
best models in terms of the main performance metric on the train, validation, and
testing set.

(3) Processing

In the processing stage, evaluated data is transformed into formats (i.e. ACE files) readable
by user codes like SERPENT and MCNP. Having a great model is only half the process.
Tools are needed to efficiently create entire evaluated libraries consisting of cross sections
for all needed isotopes and reaction channels. Currently, NucML offers the capabilities to
create isotopic ACE files by simply supplying a user-trained model. The python package will
take care of querying the model for predictions using the same energy grid as the original
ACE files for compatibility. Additionally, some stability options are included. Since these
algorithms are not expected to be perfect, NucML Ace is built under the assumption that
the best solution is a hybrid solution. In other words, traditional tools must work together
with ML models to create a good evaluation. By default, NucML Ace will stabilize the 1/v
region using evaluated library values and all values after the first resonance are filled with
ML generated values.
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NucML’s Processing Capabilities

• nucml.ace.data utilities.convert dos to unix: Useful if working on both Windows and
Linux, it allows to convert any file from DOS to UNIX. NucML uses this to make new
benchmark inputs compatible with transport codes.

• nucml.ace.data utilities.create new ace: Generates a new ACE file ready to be used
in transport codes from ML generated data. It utilizes both an XSS array using the
original ACE format for a given isotope or a DataFrame as long as the length matches
the original ACE energy array.

• nucml.ace.data utilities.create mt2 mt3 mt101: This is an experimental feature made
available for cases where there is lacking data for either the MT2 or MT3 reaction
channel. The user is responsible for checking the consistency of the generated cross
sections. An easy alternative is to adjust generated cross sections. This utility function
calculates the (n,nonelastic) reaction channel (MT3) as the summation of 4, 5, 11, 16,
17, 18, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 41, 42, 44, 45, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117. Subsequently, the
(n,disappearance) cross section (MT101) is calculated as:

MT101 =
117∑

N=102

MTN

After calculating both the (n,nonelastic) and (n,disappearance), then the (n,elastic)
scattering is calculated as

MT2 = MT1 −MT3

This process enforces these physical constraints at the expense of noise introduction to
either the (n,nonelastic) or (n,elastic) cross sections.

• nucml.ace.data utilities.enforce unitarity: In cases where unitarity has not been en-
forced, the MT2 cross section can be calculated as

MT2 = MT1 −MT3

However, this will lead to some negative values which are not valid. This utility
function will add back the negative values to the total cross section to effectively
conserve unitarity. This adjustment is optional and is performed automatically if the
user does not provide an already constrained set of cross sections.

• nucml.ace.data utilities.fill ml xs: ML models (other than neural networks) are ex-
pected to be unstable at very low energy regions, especially in the 1/v region. KNN
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models, for example, are purely a function of dataset completeness and Decision Trees
have a square-like behavior due to the underlying feature-splitting process. This means
that even though the trend may be predicted correctly, smooth values may not be pre-
dicted for these energy regions where the cross section behaves somewhat predictably.
Therefore, a hybrid approach can be taken to correct this behavior. The user can do
it manually or NucML will find the nearest resonance peak on the evaluated data and
replace lower energy cross section values up to the peak energy point with evaluated
information. This provides the stability of physics-based models while conserving ML-
generated information in the resonance and fast energy region. NucML uses scipy’s
implementation where a peak is defined as:

...any sample whose two direct neighbors have a smaller amplitude. For flat peaks (more
than one sample of equal amplitude wide) the index of the middle sample is returned
(rounded down in case the number of samples is even).

Since we are only searching for the first resonance peak, a set of default parameters is
provided that has worked with many common nuclei.

• nucml.ace.data utilities.get energies: Retrieves the energy array for the original evalu-
ated files for a given isotope. This is useful for users to have their ML models predict
the needed data at these specific energies which are required by SERPENT2 since
custom energy grids are not supported.

• nucml.ace.data utilities.get final ml ace df: Given a set of ML generated XS (adjusted),
this function allows to fill in other reaction channels not included by the ML model
predictions. This is useful since for some calculations some reaction channels are not
required but are still present in the ACE files. This allows making ML-generated ACE
files compatible.

• nucml.ace.data utilities.modify xss w df: Using the ML generated cross section, this
function modifies the original ACE XSS array with the ML values.

• nucml.ace.data utilities.reduce ace filesize: The size of the generated and copied ACE
files can be reduced considerably by eliminating other temperature cross sections (i.e.
.06c). This utility function will eliminate all but room temperature cross sections.

• Other useful functions to help users explore and modify ACE files include get xs for mt,
get to skip lines, get pointers, get nxs jxs xss, get nxs dictionary, get mt xs pointers array,
get mt array w pointers, get mt array, and get jxs dictionary.

(4) Validation and Application

Validation is perhaps the most important step in the entire pipeline. The evaluated data
must perform at least better in applicable benchmarks than the previously released version
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Figure 3.1: NucML Validation and Model Selection Process using the Benchmark Repository.

of the library. In ML solutions, generalization is the end-goal. As previously mentioned,
algorithms usually optimize and try to minimize a loss function but EXFOR is far from
perfect. A model that generalizes well to other EXFOR datapoints is not necessarily the
best. Therefore, we cannot rely on performance metrics derived from EXFOR data (even if
splitted or cross-validated) to select the best performing model. Instead, a series of trained
models need to be tested and validated using all available benchmarks. The model with the
best average performance can be regarded as the best model. This is quite different from
both established NDE and traditional ML but so is the nature of the challenge.

The benchmarking utilities provided are built on top of this methodology. Once a series
of models are trained there are various steps needed to set up the validation phase. These
are depicted in Figure 3.1 and include:

1. Querying the model for relevant cross section data for a given benchmark: NucML
will look for a metadata file associated with every available benchmark containing the
composition. This information is used to query the model for cross section data for
each relevant isotope and each needed reaction channel. The predicted values are then
passed into the processing step.

2. Processing the results and converting them into appropriate user-code formats: The
predicted values are processed according to user-provided methodologies. The default
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mode consists of correcting the 1/v region for all reactions (when applicable) using
evaluated data. Every value after the first resonance peak is filled using the ML-
generated values. After all reactions for all isotopes have been adjusted, the original
ACE file is copied and modified using the new data.

3. Building metadata files used by Monte-Carlo codes: The .xsdir file contains the ACE
files path for every isotope. This is used by SERPENT2 to load the applicable reaction
information when needed. NucML will keep track of the previously ML-generated ACE
files to create a new .xsdir file that can be used by SERPENT2 to find the ML-generated
files.

4. Modify the benchmark inputs accordingly: Once all cross section related files are cre-
ated, the code will modify the template benchmark input file with the appropriate
paths and store them in user define directories.

5. Run the benchmark files with SERPENT2: NucML will also keep track of generated
benchmark input files. Once all previous steps are finished, the code will create a
single bash script that contains all needed instructions for running each benchmark
and converting the output files into more friendly formats for later use.

6. Analyze the output: Once all simulations have finished running, all results can be
easily gathered and analyzed in conjunction with model hyperparameters and perfor-
mance metrics to find the best overall algorithm. Additional capabilities include a fast
and easy comparison between ML- and ENDF-based benchmark calculations for fast
reporting.

This process has to be performed for each trained model and each benchmark. By making
use of a benchmark template repository, NucML can seamlessly run all steps of the validation
phase for all trained models and all available benchmarks. The capability of adding user-
defined benchmarks is also available.

NucML’s Validation and Application Capabilities

• nucml.ace.data utilities.generate bench ml xs: This is one of the core functions of the
validation stage NucML utilities. By providing simple information such as the bench-
mark name, NucML will generate all needed cross sections. By setting a threshold,
cross sections will be generated using ML models for all isotopes with composition
above the defined threshold. There are instructions available to add user-defined
benchmark inputs. By providing a list of trained ML models along with the stor-
ing information, NucML will automatically search for all models, load them, and use
them to predict the needed cross sections using the original isotopes ACE energy grid.

• nucml.ace.data utilities.generate serpent bash: To automate running all generated bench-
mark model cases, this function searches for all benchmark inputs and builds a bash
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script with desired specifications that contains all needed commands to run all monte-
carlo simulations and convert results using a simple MATLAB conversion script.

• nucml.ace.data utilities.copy ace w name: When creating new benchmark inputs it
is important to provide any cross section not provided by ML for the benchmark
calculation to run without any error. This function allows copying evaluated ACE files
to cover those needed cross sections.

• nucml.ace.data utilities.copy benchmark files: NucML’s validation utilities are built
on top of a template benchmark repository. For every ML model to be tested a new
set of benchmark input and supporting files are needed. This function takes care of
the transfer from the repository to a location of choice.

• nucml.ace.data utilities.gather benchmark results: This utility function gathers the
criticality results from all resulting MATLAB (.mat) files from SERPENT2 in a given
directory. This makes it easy to collect and analyze hyperparameters as a function of
the criticality benchmark results. While the intended capability is to simply collect
the multiplication factor, other information (i.e. detectors) can be easily extracted by
modifying the source code for this function.

• nucml.ace.data utilities.generate sss xsdata: SERPENT2 needs a .xsdir file containing
the path to the needed ACE files. This function generates the metadata file using the
appropriate directories.

(5) Other Capabilities

The result of this effort is a comprehensive suite of tools to aid the current nuclear data
evaluation pipeline. Each of the NucML methods contains utilities that can be used by
many activities of the NDE pipeline (Figure 3.2) and the traditional ML workflow. To allow
researchers to quickly set up and begin working on their ML models, a variety of tutorials
are included in the code’s GitHub repository. These notebooks allow anyone to explore all
core functionalities along with more miscellaneous functions that allow easy exploration of
EXFOR, AME, ENSDF, and ENDF.

One major objective was not only to aid the NDE pipeline but also to make data and
benchmark information available in a modern easy-to-access way. As a result, several ready-
to-use particle-induce reaction ML-datasets are provided through a Google Cloud storage
bucket making it available to all the community without the need to install any tools or codes.
These include neutron-, proton-, gamma-, and -alpha induce reaction cross section datasets.
Furthermore, a public repository has been created to store community-made benchmarks.
While a working version NucML can easily be installed through the Python Package Index,
any user can easily modify the source code to suit any of their needs.
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Figure 3.2: ML-enhanced Nuclear Data Evaluation Steps and applicable NucML Modules.

Data Analysis Speed Improvements

Currently, the online EXFOR user interface (UI) provides users the ability to extract data
for quick analysis. Unfortunately, there is no API or modern interface to quickly extract
data using the most popular programming languages. Furthermore, miscellaneous activities
like plotting reaction cross sections can be slow for widely experimented isotopes and reac-
tion channels. NucML, taking advantage of data locality, can accelerate data analysis and
exploratory data analysis. Utility functions are included to help with everyday tasks such
as plots of experimental data from EXFOR, comparison of different evaluated libraries, er-
ror calculations between EXFOR and ENDF datapoints using custom and standard energy
grids, and much more. For example, the time needed to plot all experimental points for
233U(n,f) using NucML was approximately 10 seconds, a 95% improvement in speed relative
to the EXFOR user interface ( 28 seconds). NucML does not only support static plotting
but also interacting Plotly plots. These types of speed improvements in nuclear data analysis
are noticeable across all of NucML functionalities. As for modeling improvements, there are
no other software or pipelines to compare with. This is the first ML-evaluation software of
its kind.
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3.3 Summary

Nuclear data evaluations are important for every industry and technology that utilizes
nuclear-based technology. The next generation of nuclear reactors including Molten Chloride
Fast Reactors needs accurate cross section data to be designed safely and reliably. Organi-
zations in charge of producing regional evaluated libraries have an important task at hand.
Evaluators must be given all available tools to aid this difficult process.

NucML is the first and only end-to-end python-based supervised machine learning pipeline
for enhanced bias-free nuclear data generation and evaluation to support the advancement
of next-generation nuclear systems. It offers capabilities that allow researchers to navigate
through each step of the ML-based nuclear data cross section evaluation pipeline. Some of
the supported activities include dataset parsing and compilation of reaction data, exploratory
data analysis, data manipulation, feature engineering, model training and evaluation, and
validation via criticality benchmarks. Some of the inherent benefits of this approach are the
reduced human-bias in the generation and solution and fast iteration times. The resulting
data from these models can aid the current NDE and help decisions in uncertain scenarios.
Future work includes adding more capabilities to support other modeling codes, create ACE
files with user-provided energy grids, incorporate more databases, and directly integrate
traditional modeling codes.
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Chapter 4

Data and Benchmarks

To provide useful information to a model for cross section inference, a dataset with relevant
features must be built. There are many factors that cross sections depend on including the
incident neutron’s energy and the target isotope. As reviewed in Chapter 2, an isotope, in
turn, has a variety of top-level properties including the:

• Number of Protons (Z)

• Number of Neutrons (N)

• Mass Number (A)

• Precise Atomic Mass (M)

From these isotopic properties, several more features and quantities can be calculated
including the:

• Radius of the Nuclei (R)

• Surface Nuclei Fraction in the Nucleus (1/R)

• Binding energy (BE) and the binding energy per nucleon (BE/A) including the neutron
and proton binding energy.

• Packing Fraction (PF)

• Mass Excess (∆)

• Q-value for β+, β−, α, etc.

This section provides a brief overview of the databases used for gathering the data to train
the ML models: the EXFOR database and the Atomic Mass Evaluation 2016 (AME2016).
Additionally, a brief description is given for the criticality benchmark cases used to validate
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trained models. Data in the EXFOR and AME2016 libraries were used to compile a working
dataset that was manipulated and transformed for modeling using machine learning algo-
rithms using NucML. The ENDF library was used as a benchmark to compare ML-solutions.

4.1 EXFOR

The nuclear reaction compilation database, known as the EXFOR library was collected from
the International Atomic Energy Agency (IAEA) [15]. As mentioned previously, it is the
database for experimental nuclear reaction data. In addition to reaction cross sections,
this database contains resonance integrals, fission yields, polarization data, etc. For this
work, only neutron-induce reaction cross sections were extracted. All other data types were
discarded from the dataset and are therefore out of the scope of the following exploration
and discussion.

Through international collaboration between the Nuclear Reaction Data Centres (super-
vised by the IAEA Nuclear Data Section), the compilation of experimental data takes place
by identifying the literature for publications where reaction measurements have been made.
Once identified, the National Nuclear Data Center (NNDC), the institution responsible for
data measured in the United States and Canada, creates an EXFOR entry number for the
identified experimental campaign. The reported data is revised between institutions for in-
corporation into the EXFOR Master File. The database contains approximately 4.5 million
reaction data points covering a variety of isotopes and reaction channels across different
facilities.

Before attempting to apply any ML-based solutions it is important to explore and un-
derstand the strengths and limitations of this database. An ML model is only as good as the
dataset is trained on meaning that in an ideal scenario, the dataset must be representative.
In this particular field, obtaining new experimental data is not a trivial task. It takes re-
sources, including facilities, target material, and time to perform new measurements. These
resources are sometimes not readily available.

Table 4.1 contains a list of the extracted features from EXFOR. In the following subsec-
tions, a brief description and exploration of each of these will be carried.

Energy

In the dataset, there are a couple of measurements with energies of 0 eV. Data points with
zero energy are invalid and were therefore filtered out. The Energy distribution has a high
Fisher-Pearson coefficient of skewness of 3.85 and, as expected, a high standard deviation
( 2.62E+06) both of which are detrimental to model training and optimization. In later
sections in feature engineering and processing, all features will be normalized/standardized
to bring features to approximately the same order of magnitudes with similar standard devi-
ations. The skewness of the Energy feature is however resistant to these normalizers. Both a
Box Con power transformer and simple logarithm transformation have a more significant im-
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pact on skewness resulting in a Fisher-Pearson coefficient of approximately 0.096 and 0.626
respectively. Both will be explored when pre-processing the data in a later section.

Cross Section

The cross section statistics are similar to those of the Energy feature although in different
magnitudes. The standard deviation is very high ( 6.18E05) and has an FP-coefficient of
138.58. For this particular data feature, we must be careful not to change the nature of the
data since this is our regression label. These values represent physical reaction probabilities
(although not in the usual 0-1 scale). Similarly to the Energy feature, there are several data
points where the cross section is 0. These are not incorrect but are still filtered out to be able
to apply a log transformation. The fraction of data points with a cross section value of zero
is minimal. A log transformation brought down the skewness coefficient to 1.01, still high
but much better. A log transformation also creates correlation. The Pearson correlation
coefficient is -0.0192 and -0.43 for non-transformed and transformed data respectively for
the 235U(n,g)236U reaction. This means ML models will at least be able to learn the general
trend and location in terms of energy and cross section. A Box Con transformer was able
to achieve a much lower skewness coefficient, however, it changes the nature of the data due
to the parametric nature of the function. One non-model related benefit of applying a log
transformation is the easy direct visualization of results obtained by ML models.

Reaction Channel

The reaction type is one of the most important features as it identifies what reaction channel
each measurement belongs to. Table 4.2 shows the distribution of reaction channel points
across EXFOR and the reaction notation translation for each ENDF integer-code (MT).
A big portion of the neutron-induce reactions belongs to the (n,total) channel covering
approximately 75% of the entire dataset. There is also a decent amount of information for
fission and capture.

In general, class imbalances need to be kept in mind when developing models. Perfor-
mance in highly explored reaction channels will certainly be strong provided the quality of
the data is high while the performance in other less studied channels might be low due to
the lack of training data. This is true especially for some channels for which we have less
than one thousand data points. Predictions on these will be challenging, may be inaccurate,
and will carry higher uncertainty. However, if the reaction channel can be represented in
a non-categorical format that allows us to represent the channel as a set of an arbitrary
number of outgoing particles, the model may be able to extrapolate knowledge from other
reactions channels. Not only does model development affect generalization but also feature
engineering and data representation.
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Figure 4.1: EXFOR’s energy histogram before (left) and (after) applying the logarithm
transformer.

Figure 4.2: EXFOR’s cross section histogram before (left) and (after) applying the logarithm
transformer.
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Table 4.2: Reaction Channel Distribution.

ENDF integer-code (MT) Reaction Notation Datapoints
1 (n,total) 3229171
18 (n,fission) 514890
102 (n,g) 216201
9000 Production Data 99895
51 (n,n1) 50571
4 (n,inelastic) 37751
2 (n,elastic) 37417

103 (n,p) 17574
107 (n,a) 15669
16 (n,2n) 11754

9001 Production Data 11028
101 (n,disap) 7896
105 (n,t) 2086
3 (n,nonelastic) 1290
17 (n,3n) 601
104 (n,d) 275
28 (n,n+p) 237
155 (n,t+a) 141
22 (n,n+a) 140
37 (n,4n) 135
33 (n,n+t) 128

1003 a Unknown/Unassigned 103
24 (n,2n+a) 98
106 (n,helion) 62
112 (n,p+a) 42
29 (n,n+2a) 42
108 (n,2a) 39
111 (n,2p) 36
32 (n,n+d) 23

2103 a (n,p)DI 21
153 (n,6n) 18
152 (n,5n) 17

1108 a (n,2a)CALC 13
160 (n,7n) 11
41 (n,2n+p) 11

203 a (n,Xp) 9
161 (n,8n) 6
158 (n,n+a+d) 5
113 (n,t+2a) 2
159 (n,2n+p+a) 1

a
These reaction channels were dropped out
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Energy, Cross Section, and Reaction Channel

Energy and cross sections are usually visualized as a function of the isotope and reaction
channel pair. For example, Figure 4.3 shows the available data points for the 56Fe(n,total)
reaction channel. In this example, data comes from a variety of experimental campaigns,
each color representing a different one. These are usually performed by different authors
in different institutions and even using different measurement methods. This increases the
complexity of the challenge since experimental methods are not standardized nor they can
be since the method is dependent on the phenomena being measured, the energy region of
interest, etc.

Due to the experimental nature of the database, the quality standards by which mea-
surements are incorporated are not high. There exists a variety of conflicting experimental
campaigns in many researched reactions. For example, Figure 4.4 shows the 35Cl(n,p)35S
reaction channel cross section. In the 101 to 106 eV energy region, the campaigns performed
by Koehler and Popov differ significantly in almost every region including the 1/v region
and the magnitude of the first two resonance peaks [10] [18]. In the traditional evaluation
pipeline, it is the job of the evaluator to analyze the information and methodology of every
dataset and discard or adapt them to come up with a set of recommended values. In this
work, we rely on the algorithm’s ability to be robust against outliers. In a later section,
outlier detection techniques are explored.

Additionally, there are many scenarios where collected data only covers very specific
energy regions. Calculations performed during the traditional evaluation process make
theoretical-based assumptions in these areas of uncertainty. The 35Cl(n,p)35S is a good
example of a reaction where the available experimental points cover just a small fraction
of the energy range of interest for many applications (see Figure 4.4). These are situations
where a machine learning solution can help provide information by extrapolating learned
knowledge from other isotopes and reaction channels. The model must be able to navigate
through this field of measurements of varying quality and specifications.

Novelty and Outlier Detection

Discarding EXFOR datasets is part of the evaluation pipeline performed by an evaluator.
However, this introduces person-specific biases. ML-based solutions have the advantage of
providing human-bias free inferences, provided the data is also as free from bias as possible.
Still, some pre-processing techniques have been proven to be useful for novelty and outlier
detection.

In ML and statistics, there are a variety of useful metrics that can be calculated to detect
outliers, however, due to the experimental nature of this particular dataset and the resonance
behavior of many reaction channels, it becomes extremely difficult to do this systematically
and automatically. Figure 4.5 shows the 235U(n,g)236U reaction cross section plot. This is an
example of a single reaction for a single isotope. Unfortunately, typical statistics techniques
for outlier detection may categorize resonances (peaks) points as outliers. These are the
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Figure 4.3: 56Fe(n,total) reaction channel cross section.

Figure 4.4: 35Cl(n,p)35S reaction channel cross section.
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most important quantum physics phenomena that we need to model and must therefore be
treated and manipulated carefully. Common techniques like filtering base on the first and
third quartile, as shown in Figure 4.6, results in loss of important data not only from the
resonance region but also the 1/v region which is not acceptable.

These traditional statistics-based techniques analyze the distribution of the data and typ-
ically ”shave-off” data from both maximums and minimums. For these types of challenges,
more advanced methods can be employed including robust covariance, one-class Support
Vector Machines (SVM), Local Outlier Factor (LOF) algorithms, and Isolation Forests (IF)
to try and clean the data better. Figure 4.7 shows the identification of outliers in the res-
onance section of the 235U(n,g)236U reaction by all four algorithms given a contamination
parameter of 0.3%.

Each algorithm has its advantages and disadvantages and assumptions about the data.
One class SVM works generally well but its performance is limited by the presence of outliers.
This fact makes them suitable for novelty detection (outlier detection after fitting to a non-
contaminated sample). RC assumes the data is Gaussian thus degrading all multi-modal
data. Still, it works well as an outlier detector. IF and LOF algorithms are generally better
suited relative to SVM and RC for multi-modal data sets. The LOF algorithm, for example,
is resistant to density variations as a function of energy since from this model’s perspective,
outliers are a function of nearby neighbors. LOF appears to work better than all three
previously mentioned models. The IF, RC, and SVM algorithms consider some of the top
cross section points as outliers but LOF since there are enough neighboring samples locally.
In general, these are more optimal than traditional statistics techniques.

One major disadvantage of all four methods is the contamination parameter. These
algorithms require to be given the expected fractional amount of outliers/noise. This is
difficult to determine or calculate for datasets like EXFOR. The contamination parameter
will be reaction and isotope dependent. Additionally, this type of filtering operation would
need to be optimized to act on each reaction channel for each isotope independently since
outliers are not a function of other experimental measurements. For example, 35Cl(n,p)35S
data points should not be provided when detecting outliers for the 235U(n,g)236U reaction.
Unexpected and incorrect outcomes would result from these types of interactions. This
makes this problem complex but still accomplishable. A viable approach is the tuning of the
contamination parameter as a function of benchmark performance. This limits this approach
to isotopes for which significant benchmark data exists. In the absence of benchmark data,
the problem is completely unsupervised so outlier detection model selection and tuning can
be a challenge.

Even without the utilization of these types of data cleaning techniques, many ML models
are by nature resistant to outliers provided enough data is present and can provide bias-free
predictions. In this work, the dataset was only checked for consistency and converted into a
clean numerical format.
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Figure 4.5: 235U(n,g)236U Reaction Cross Section plot. Left figure shows box plot of the
cross section values.

Figure 4.6: Filtered 235U(n,g)236U Reaction Cross Section plot. Left figure shows box plot
of the cross section values.
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Table 4.3: EXFOR Status Distribution.

EXFOR Status Tag Datapoints
Other 2181990

Approved-by-Author 1691538
Correlated 231849
Dependent 126722
Preliminary 20622
Outdated 2513

Re-normalized 175

Table 4.4: Center-of-Mass Distribution.

Center-of-Mass Tag Datapoints
Lab 4250745

Center of Mass 4664

EXFOR Status and the Center-of-Mass Flag

While the EXFOR Status is not included in the final dataset it is good practice to understand
where the data comes from. It is assumed that all missing tags are either ”approved by
authors” or ”accepted” but not outdated and therefore filled with the key ”Other” (see
Table 4.3). A very small fraction (around twenty thousand data points) are categorized as
outdated. One would be tempted to drop these datapoints but this will only introduce the
bias of both the model developers and the people responsible for evaluating the experimental
data points using this schema. Unless an experimental campaign was evidently erroneously
performed, then no data deletion should take place. The database was left as is in terms of
the EXFOR status.

As for the center-of-mass flag, most of the experimental campaigns are taken at the lab
frame (see Table 4.4).

EXFOR C4 Fields 7 and 8

The EXFOR C4 files contain a pair of flexible data input columns that are author- and
experiment-dependent. A tag is included to help identify the meaning of the values in these
two input fields. Table 4.5 contains the tag value counts for this field. Missing tags were
filled with ”Other”.

Target and Product Meta-stable State

The meta-stable state of both the target and the residual nucleus form part of the limited
information provided also in the EXFOR C4 files. According to the documentation, data-
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Table 4.5: Identifier Tag for Fields 7 and 8
in the EXFOR C4 Files.

Identification Tag Datapoints
Other 4116656

Secondary Energy 93019
Level 42778

Excitation 2288
Secondary Energy Range 666

Half Life 2

Table 4.6: Target and Product Meta-Stable State Distribution.

Meta-Stable State Tag Target Datapoints Product Datapoints
All 4243232 4238714
M 12140 11162
M1 32 214
M2 5 317

Ground 0 4549
More than 1 0 333

L 0 101
Unknown 0 19

points with no specified meta-stable state are defined to cover all available states. Table 4.6
indicates the datapoints distribution of the meta-stable state values across the dataset.

Proton and Neutron Distribution

As mentioned previously, the (n,tot) reaction channel accounts for a big portion of the
dataset causing a class imbalance. However, not only will the predictive power of a model
depend on the amount of information on exit channels but also on the distribution of the
target isotopes. Therefore, to further understand the possible model limitations and other
imbalances included in the dataset, the distribution of proton and neutron numbers must be
understood. Figure 4.8 shows the distribution of protons and neutrons across EXFOR.

Four main peaks appear in the distribution, two for protons and two for neutrons. The
majority of the experimental campaigns seem to be focused at around 26 and 90 protons,
and 26 and 145 neutrons. These peaks specifically correspond to high research including 56Fe
and 235U. This translates into higher predictive power for isotopes having a similar or near
number of protons and neutrons. Predictive potential on mirror nuclei might also increase
since excitation levels between these are highly similar.

We can further explore what other isotopes have the highest and lowest number of exper-
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Figure 4.8: Proton and Neutron Distribution in the extracted EXFOR datapoints.

imental data points (see Table 4.7). Most of the data focuses on 56Fe, an important isotope
used for structural materials in all kinds of nuclear technologies, and fissile and fertile iso-
topes like 239Pu, 235U, 233U, and 238U. Additionally, amongst the most explore isotopes,
there are many alloying materials including 58Ni and 52Cr. Shielding isotopes like 207Pb have
also been highly researched. On the other extreme, there are a lot of isotopes that do not
have any measurements at all. Table 4.7 shows some of the lowest researched materials for
which only one measurement exists. The majority of these are radioactive and therefore hard
to handle in production and experimental settings. There are other isotopes for which no
measurements have been performed. These types of isotopes are ideal to apply learned pat-
terns from other highly researched materials using models that might be able to extrapolate
knowledge.
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Table 4.7: Data point Counts for Various Isotopes.

Highest Researched Isotopes Lowest Researched Isotopes
56Fe 238200 132Ce 1

239Pu 213599 199Pt 1
235U 186577 220Rn 1
233U 132923 146Pm 1
238U 130275 121Sn 1

237Np 125097 127Xe 1
91Zr 102540 151Pm 1
28Si 99885 249Cm 1

207Pb 96396 125Sn 1
241Pu 95073 135Ce 1
27Al 91938 169Er 1
12C 83096 99Mo 1

240Pu 81318 95Zr 1
52Cr 77458 88Rb 1
58Ni 74314 76Br 1

Table 4.8: Natural/Isotopic EXFOR Campaigns.

Target Sample Type EXFOR Distribution
Isotopic 3218578
Natural 1036831

Natural and Isotopic Experimental Campaigns

Not all experiments take place in mono-isotopic target samples. Approximately 25% of
all experimental campaigns in EXFOR were performed on naturally occurring samples (see
Table 4.8). A model must be able to distinguish between natural and isotopic reactions. The
handling of these natural samples will be extremely important.

Table 4.9 shows the highest researched naturally occurring target samples. These are not
the usual fissile and fertile isotopes but rather elements that are usually used in bulk including
structural materials like Iron. Others include Zirconium, Germanium, and Lead which are
used for fuel cladding, detectors, and shielding respectively. Including a ”flag” feature that
identifies if the target is isotopic or naturally-occurring will help our model distinguish them
with the additional advantage of providing flexibility for cross section inference for both
types of materials.
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Table 4.9: Natural Target Distribution.

Target Element EXFOR Datapoints
Fe 185562
Si 80428
Zr 79841
C 58210

Cu 36163
O 36101
Sn 35144
Te 29506
Mg 26676
Ni 26032
Pb 25273
Ge 23033

4.2 Atomic Mass Evaluation

The Atomic Mass Evaluation 2016 (AME2016) contains 3436 data points, each concerning a
particular isotope. It includes a variety of experimental data used to derive a set of atomic
mass values. Also, various reaction, separation, and decay energies for each isotope were
extracted. A list of the extracted features and their value ranges can be found in Table
4.10 along with the corresponding uncertainties. The description of each feature will not be
described here. For more information on the database and its contents, see Reference [20].

4.3 Feature Engineering

To create a more complete dataset with more relevant data for models to use, a couple of
features were calculated and added.

Nucleus Radius and Neutron to Nucleus Radius Ratio

As mentioned in the previous chapter, scattering reactions at low energies are in some cases
an approximate function of the target nucleus radius. To provide the model with a sense
of the geometric aspect of the nuclei and the neutron, a pair of features were added to the
dataset: the nuclide radius (Eq. 4.1) and the neutron-to-nuclide radius ratio (Eq. 4.2).

Nuclide Radius = ro · A1/3 (4.1)
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Table 4.10: Atomic Mass Evaluation Featuresa.

Feature Name Values (min, max) Input Type
# of Protons 0, 9 Integer

# of Neutrons 0, 178 Integer
Atomic Mass Number 1, 295 Integer

Mass Excess (keV) -9.165285e+04, 2.01512e+05 Float
Uncertainty (keV) 0, 2.003e+03 Float

Binding Energy (keV) -2267, 8794.553 Float
Uncertainty (keV) 0, 667 Float

β− Decay Energy (keV) -28945, 31687 Float
Uncertainty (keV) 0, 2003 Float

Atomic Mass (micro-amu) 1.007000e+06, 2.952163e+08 Float
Uncertainty (micro-amu) 0, 2150 Float

S(2n) Energy (keV) -3120, 40541 Float
Uncertainty (keV) 0, 2.003000e+03 Float

S(2p) Energy (keV) -7630, 55187 Float
Uncertainty (keV) 0, 2014 Float
Q(a) Energy (keV) -25474.73, 11920 Float
Uncertainty (keV) 0, 2042 Float

Q(2B-) Energy (keV) -37359, 52098 Float
Uncertainty (keV) 0, 2003 Float

Q(ep) Energy (keV) -52959, 28352 Float
Uncertainty (keV) 0, 2003 Float

Q(B-n) Energy (keV) -39622, 31755 Float
Uncertainty (keV) 0, 2003 Float
S(n) Energy (keV) -2488, 27715 Float
Uncertainty (keV) 0, 2011 Float
S(p) Energy (keV) -4527, 31008 Float
Uncertainty (keV) 0, 2832 Float

a
The reported uncertainties are with respect to the preceding feature
name
Other Q-values include: Q(4B-), Q(d,a), Q(p,a), Q(n,a), Q(g,p), Q(g,n),
Q(g,pn), Q(g,d), Q(g,t), Q(g,He3), Q(g,2p), Q(g,2n), Q(g,a), Q(p,n),
Q(p,2p), Q(p,pn), Q(p,d), Q(p,2n), Q(p,t), Q(p,3He), q(n,2p), Q(n,np),
Q(n,d), Q(n,2n), Q(n,t), Q(n,3He), Q(d,t), Q(d,3He), Q(3He,t), Q(3He,
a), and Q(t,a).
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Figure 4.9: Nucleus Radius and Neutron-to-Nuclide Radius Ratio Histogram.

Nuclide to Neutron Radius Ratio =
ro · A1/3

rn
(4.2)

The neutron radius was assumed to be 0.8 fm and the ro parameter was set to 1.25
fm. The resulting distribution can be observed in the plotted histograms in Figure 4.9.
As expected, due to the high concentration of heavy nuclei data points in the dataset, the
skewness of the nucleus radius histogram is noticeable.

Neutron/Proton Valence Number and Promiscuity Factor

As an indication of possible collectivity to aid resonance predictions, the number of valence
neutrons and protons relative to the magic numbers (2, 8, 20, 28, 40, 50, 82, 126, and 184)
was added. Having obtained the valence numbers, the promiscuity factor was also calculated
and added (Eq. 4.3).

P-factor =
Nn ∗Np

Np +Nn

(4.3)

Additionally, even-even, odd-odd, and even-odd nuclei have different behaviors in terms
of nucleus stability. To represent this, three categorical variables capturing their applicable
group were added (see Table 4.11).
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Table 4.11: Neutron and Proton Valence Type Distribution.

Neutron-Proton Valence Type EXFOR Distribution
even-even 1764332
odd-even 1307899
even-odd 998656
odd-odd 184522

Table 4.12: Evaluated Libraries Versions.

Library Version
Evaluated Nuclear Data File (ENDF) B-VIII.0

TALYS Evaluated Nuclear Data Library (TENDL) 2019
Joint Evaluated Fission and Fusion (JEFF) 3.3

Japanese Evaluated Nuclear Data File (JENDL) 4.0

Other characteristics incorporated into the dataset included the fraction of nucleons in
the surface (1/R), the packing fraction, the level density (using fermi’s gas model), and the
geometric elastic scattering cross section (4πR2).

4.4 Evaluated Libraries

Different evaluations for comparison are needed since the evaluation is not a perfect standard-
ized process. It is organization- and evaluator-dependent and there are always disagreements
between these. Figure 4.10 shows the 99Tc(n,elastic)99Tc reaction cross section. The ENDF
evaluation predicts a higher base for the resonances than the other evaluations. Furthermore,
the thermal and fast energy regions are in disagreement between all evaluations. Comparing
to only one would introduce bias in the validation process.

These regional libraries often need to be processed further into a format suitable for
application codes. For example, the ENDF library is often processed with tools like NJOY
and AMPX into a format suitable for transport codes like MCNP, SERPENT2, and SCALE.
Once in the appropriate format, these libraries can be tested on the validation step using
integral benchmarks (i.e. critical assemblies). The validation step is used to verify that the
generated nuclear data performs as expected. As a measure of current predicting power,
various evaluated libraries were downloaded. These provide a benchmark for our ML models
to compare to. Table 4.12 shows the versions of the libraries used in this work. The JEFF
evaluation contains mostly fission data and was therefore only use when applicable.

Not only was the ENDF evaluation use for comparison but the same energy grid was
used to query cross section from the ML models in addition to the energy points of the
experimental datapoints. This was performed to be able to calculate errors relative to ENDF
and ML respectively.
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Figure 4.10: 99Tc(n,elastic)99Tc reaction cross section.

4.5 Feature Processing and Data Preparation

In this section, we give an overview of the dataset transformations and standardization
procedures which are important for model optimization and performance. As mentioned
previously, the original EXFOR dataset consists of approximately six million experimental
data points. The general goal focuses on providing validated cross sections for isotopic
and naturally occurring samples. Due to the restrictions on data representation, which are
discussed in later sections, all molecular data points were dropped. These include light and
heavy water measurements.

Scalers, Transformers, and Normalizers

The optimization of machine learning algorithms has various aspects, amongst which is
data representation. The majority of the ML algorithms can behave unexpectedly when
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features are not transformed correctly. The general practice is to standardize or normalize
the data, however, the selected method is often model- and challenge-dependent. Algorithms
like SVM assume features are centered around zero and have a variance of the same order.
Similarly, Nearest Neighbors and other dimensionality-distance-driven algorithms assume
higher variance features are more important. In other words, larger variance features will
dominate the objective function and the model will be unable to learn from lower magnitude
variance features. Consequently, different scalers and transformers were tested. In all cases,
the normalization technique was fitted on the training set of the data. The parameters
obtained were used to transform the validation and test set.

Standard Scaler

Standardization is one of the most popular normalization technique (Eq. 4.4). This transfor-
mation gives the feature x the properties of a standard normal distribution with µ = 0 and
σ = 1 where µ is the mean and σ is the standard deviation from the mean. This prevents
the high-low variance issue that many ML models present. This normalization is applied
feature-wise meaning each has its own set of parameters calculated during the scalers fitting.

x
′
=
x− x̄
σ

(4.4)

Min-Max Scaler and Max-Abs Scaler

An alternative to standardization is the min-max normalizer (Eq. 4.6 which scales all features
(X) between a given minimum (min) and maximum (max). The range is often between zero
and one. This scaler provides robustness to very small standard deviations of features and
preserves dataset sparseness.

xstd =
X −X.min()

X.max()−X.min()
(4.5)

xscaled = Xstd ∗ (max−min) +min. (4.6)

The max-abs scaler is a similar normalizer but transforms the data to lie in the [-1, 1]
range. It is suited for data that is already centered at zero and/or for sparse data.

Robust Scaler

In datasets where the number of outliers is suspected to be high, normalizing using data-
dependent parameters is not recommended since mean and variances are heavily impacted.
The robust scaler uses more robust estimates for the center and range of the data. Specifi-
cally, it removes the median and scales the data according to the interquartile range. The
interquartile range is the range between the 1st and 3rd quartile. Similar to other scalers,
the median and interquartile range parameters are stored for later use.
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Power Transformer

Highly positively or negatively skewed features can heavily impact the training in many
ML algorithms. The tail region of skewed features may act as an outlier for a statistical
model, especially regression-based. Although there are models that are robust to skewness
and outliers, like Tree-based models, this type of data limit the possibility to try other
ML-models effectively. A common solution consists of transforming skewed data into a
Gaussian- or Normal-like distribution using power transformers. In this work, the Yeo-
Johnson transformer (Eq. 4.7) was tested, a parametric-monotonic transform function that
aims to preserve the rank of the values along with each feature. This method finds an optimal
parameter (λ) that minimizes skewness through maximum likelihood estimation. Once fitted
to the training set, the same parameters were used to transform the testing and validation
set.

x
(λ)
i =



− [(−xi+1)2−λ−1]
(2−λ) if λ 6= 2, xi < 0,

[(xi+1)λ−1]
λ

if λ 6= 0, xi ≥ 0,

ln (xi + 1) if λ = 0, xi ≥ 0

− ln(−xi + 1) if λ = 2, xi < 0

(4.7)

Natural Data in the Atomic Mass Evaluation

As mentioned, the EXFOR database does not only contain pure isotopic targets but also
naturally available samples.. Since the AME library only contains isotopic information, one
entry per element was created to represent natural element data. The atomic masses were
filled using generally accepted values.

Other features in the AME, including Q-values and separation energies, are calculated
using isotopic information. Leaving empty values for these features in the newly created
entries for natural data is not an option due to the abundance of natural sample data in
EXFOR and the formatting requirements for many ML algorithms. Two options exist:
(1) drop all the natural target data in EXFOR or (2) impute these properties using isotopic
information for each element. The former means losing valuable data while the latter creates
uncertainty. The latter approach was taken to avoid the loss of information. Data for the
newly created entries were calculated by linear interpolation using all the available isotopes
for each natural element. This approach is not meant to yield highly accurate information,
but to provide acceptable imputed values that captures the general trend. Figure 4.11 depicts
the imputed values for natural uranium and also for missing isotopic data. For any other
missing values, a value of zero was set.
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Figure 4.11: AME isotopic data (orange) for all Uranium isotopes. Blue points signify
interpolated data.
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Figure 4.12: Missing Uncertainties as a function of the Experimental Campaign’s Year.

Energy and Cross Section

As mentioned earlier, the cross section is directly dependent on the energy and it is therefore
important for the model to process these features in the best way possible. A big portion of
the measurements in EXFOR was performed around the thermal energy region (0.023 eV).
Machine learning algorithms, especially neural networks suffer from vanishing and explod-
ing gradient problems where the multiplication of many small numbers causes gradients to
default to zero and exploding gradient where the multiplication of many big numbers causes
gradients to numerically explode. In this particular challenge, numerical instabilities quickly
arise due to the small numbers used to represents the energy. Converting the energy from
the eV to MeV will give rise to the opposing issue of exploding gradients. To address this
the logarithm transformation was applied to both the Energy and the Cross Section. While
the variance has been minimized, it is still big enough to prompt for the application of an
additional normalizer such as those described in previous sections.

Uncertainty

While it is of interest to take into account and calculate the uncertainty in the ML-model
predictions, it is not possible to do so accurately given the current state of EXFOR. Of the 4.5
million data points, approximately 88% and 17% of the energy and cross section uncertainty
values respectively were either not reported, missing, or documented in another format not
easily accessible. Figure 4.12 shows a histogram of missing uncertainty values as a function
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Table 4.13: Dataset Split.

Split Datapoints
Train 3347293

Validation 418411
Test 418411

of the year the experimental campaign was undertaken. Evidently, many experiments from
the 60s to the 80s did not report cross section uncertainties. For the Energy, the matter is
worse. Even today, the uncertainty in energy is not appropriately reported. This may not
be an artifact of the experimental campaign but of the EXFOR database.

This makes it harder for the model to accurately infer or propagate uncertainties since
not enough accurate information to train on is available. In an attempt to partially solve
this issue an imputing framework was created.

1. First, the uncertainty as a percentage was obtained for each entry when available.

2. The dataset was grouped by reaction channel and the missing uncertainty values were
filled by the groups mean. For example, all (n,total) data points were extracted and the
average uncertainty percentage among all these points was used to fill missing values
for other data points of the same reaction type.

3. Persistent missing values were filled similarly only this time grouped by institutions.

4. The third round of imputation was performed using the mean grouped by isotope.

5. Any remaining missing uncertainty values were filled by the dataset mean.

In a second version of the dataset, both the uncertainty in energy and in cross section
were dropped and not used.

Categorical Variables

All features marked as categorical in both Table 4.1 and Table 4.10 were one-hot encoded.
These were therefore not subject to any transformer or normalizer to preserve sparsity.

Splitting the Dataset: Train, Test, and Validation

Previous to any further transformations the dataset was split into a training, validation, and
testing set. It is common practice to split a dataset in 60-20-20 or 70-15-15 but for datasets
where samples are upwards of a million, it is becoming common practice to split the data in
80-10-10. This latter approach was taken (see Table 4.13).
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Table 4.14: EXFOR and AME features skewness.

Feature Calculated Skewness
ELV/HL 724.315247
Energy 689.584529
Data 139.742977

Neutron Nucleus Radius Ratio 2.652843
S(2n) 1.001953
S(p) 1.001594

Q(p,2p) -1.001594
Q(g,p) -1.001594

Q(n,np) -1.001594
Q(n,d) -1.001668

Q(d,3He) -1.001710
Q(t,a) -1.001902

Q(g,2n) -1.001953
Q(p,t) -1.002031

Q(p,2n) -1.593202
Q(B-n) -1.593206
Q(4B-) -1.677550
Q(ep) -1.696255

Q(n,2p) -1.711368
Q(2B-) -1.715373

Beta Decay Energy -1.924420
Q(p,n) -1.924420

Q(3He,t) -1.924420
Binding Energy -3.828846

Numerical Features

The numerical features in the training set were standardized/normalized using one of the
described scalers/transformers mentioned in Section 4.5. The choice of scaler will be impor-
tant, particularly in this challenge where the majority of the features have a certain degree
of skewness and high variance. Table 4.14 shows the calculated skewness using the Fisher-
Pearson coefficients. For normally distributed data the value should be zero. Values greater
than zero represent more weight in the right tail and vice-versa. All features not listed have
a skewness value between plus and minus one.

Reaction Channel (MT)

How the reaction channel is represented in the dataset will play an important role in the
designed ML-base solutions. It can be treated either as a categorical or a numerical feature.
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Treating it as a categorical variable is a simple and elegant solution but comes with some
disadvantages. The solution will be limited to reactions that were only available at the time
of training. Adding other reaction channels will not be possible. For example, the (n,n+3a)
reaction channel is not included in the training set, however, it is part of the listed reactions
in ENDF. Similarly there are many others not included like (n,3na), (n,2n+2a), (n,n+3He),
and (n,n+d+2a). Still, the one-hot encoding representation might suffice for inferences
relevant to power reactor applications since rare reactions do not play an important role.

An alternative representation might be needed for other applications and to better rep-
resent the interaction physics. In this work, one numerical approach was tested. First, a
feature is created for every possible outgoing particle, one for a neutron, a proton, a gamma,
and so on. For the (n,2n) reaction, for example, the number two will be placed in the out-
going neutrons feature. Similarly, for the (n,3n) and (n,4n) reactions, a three and a four
are placed respectively in the outgoing neutron feature. For (n,g), a one is placed under the
outgoing gammas feature. In this approach, one important issue arises. Multi-nuclei out-
going particles like alpha and tritons also need to be represented. Two options exist. The
first option consists of also creating an outgoing feature for these particles. Alternatively,
these particles need to be decomposed into their individual outgoing nuclei. In the latter
approach, a new feature indicating nuclei binding might be appropriate, else distinguishing
between multi-nuclei and single multiple nuclei particles will not be possible. Data represen-
tation issues will always arise. There are other reactions like (n,n+a+d) where the number
of outgoing particles is not one but multiple. The representation is limited and this reaction
cannot be included.

Decisions need to be made on a goal-basis on how the data will be represented. Whatever
approach is taken, the limitations need to be understood throughout not only training but
also production. One big advantage of the numerical representation is the possible extrapo-
lation of knowledge to other outgoing particles that have not been considered. An example
scheme of a numerical representation can be seen in Table 4.15.In this work both, numerical
and categorical approaches, were tested.

Specific Filtering

A filtering framework was written to discard several datapoints that were deemed inconsis-
tent. Measurements dropped included:

• Molecular data points such as those concerning heavy and light water measurements.

• Datapoints with the tag ”DERIV”.

• Measurements with energy or cross section reported as zero.

• Experiments with MT values of 1003, 2103, 1108, and 203. These amounted to a total
of 147 data points.
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4.6 Data Sets

In order to test the usefulness of new features, three different datasets where compiled. These
will be referred to in the following sections by their number.

• Dataset A: ”Energy”, ”Data”, ”Z”, ”N”, ”A”, ”MT”, ”Center of Mass Flag”, ”Element
Flag”

• Dataset B: Dataset 0 Features, ”Atomic Mass Micro”, ”Nucleus Radius”, ”Neutron
Nucleus Radius Ratio”

• Dataset C: Dataset 1 Features, ”Mass Excess”, ”Binding Energy”, ”B Decay Energy”,
”S(n)”, ”S(p)”, ”S(2n)”, ”S(2p)”

• Dataset D: Dataset 2 Features, ”N valence”, ”Z valence”, ”P factor”, ”N tag”, ”Z tag”,
”NZ tag”

• Dataset E: Dataset 3 Features plus all Q-values.

4.7 Criticality Benchmarks

During the last phase of the nuclear data evaluation, it is important to validate our models
with benchmarks, especially critcality assemblies. In this section, the benchmarks that were
created as part of this work are described which included:

• U233-MET-FAST-001: 233U Jezebel

• U233-MET-FAST-002: 235U Surrounded 233U Core (10kg)

• U233-MET-FAST-002: 235U Surrounded 233U Core (7.6kg)

• PU-MET-FAST-019: Sphere of Plutonium Reflected by Beryllium

• PU-MET-FAST-005: Sphere of Plutonium Reflected by Tungsten

233U Jezebel

The 233Jezebel critical assembly (U233-MET-FAST-001) was an unreflected (bare) near-
spherical criticality benchmark operated at the Los Alamos National Laboratory. Two dif-
ferent configurations were tested:

• Configuration A:

– Mass: 16.556kg

– Average Density: 18.424g/cm3
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Table 4.16: 233U Jezebel Assembly Characteristics.

Description Value
Core Density 18.424 g/cm3

233U Core Mass 16.535 +- 0.4 wt.% +- 0.066 kg
Core Radius 5.9838 cm

Table 4.17: 233U Jezebel Composition.

Isotope Density (atoms/barn-cm)
233U 4.6712E-02
234U 5.9026E-04
235U 1.4281E-05
238U 2.8561E-04

– Supercritical: 25 Cents

– Calculated Critical Mass: 16.235kg

– Calculated Average Density: 18.424g/cm3

• Configuration B:

– Mass: 16.651kg

– Average Density: 18.424g/cm3

– Supercritical: 1 Cent

– Calculated Critical Mass: 16.269kg

– Calculated Average Density: 18.424g/cm3

Some corrections were performed to come up with an idealized bare sphere of a homoge-
neous material with composition as described in Table 4.17 and configuration as described in
Table 4.16. More information on these and several other model assumptions and derivations
can be found in Reference [3].

233U Spheres Surrounded by 235U

Two critical experiments using spherical masses of uranium highly enriched in 233U sur-
rounded by uranium highly enriched in 235U were undertaken at Los Alamos Scientific Lab-
oratory using the Planet universal assembly.

The ”10kg Experiment” and the ”7.6kg Experiment” contained 10.012kg and 7.601kg of
core mass respectively. Both used a 210PoBe neutron source with a strength of approximately
105 neutrons/sec. The core density for the ”10” and ”7” kg experiments was 18.621 and
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Table 4.18: Model Description and Dimensions.

The 10kg Experiment
Description Value

Core Density 18.621 g/cm3
Core Mass 10012 grams Uranium

Core Radius 5.0444 cm
Surrounding Uranium Shell Thickness 1.2217 +- 1%
Surrounding Uranium Shell Density 18.8 g/cm3

Configuration Outer Radius 6.2661 cm
The 7.6kg Experiment

Description Value
Core Density 18.644 g/cm3

Core Mass 7601 grams Uranium
Core Radius 4.5999 cm

Surrounding Uranium Shell Thickness 1.9888 +- 1%
Surrounding Uranium Shell Density 18.8 g/cm3

Configuration Outer Radius 6.5887 cm

Table 4.19: Atom Density for the Uranium Spheres.

233U Core
Isotope 10kg Experiment (atoms/barn-cm) 7.6kg Experiment (atoms/barn-cm)
233U 4.7253 ∗ 10−2 4.7312 ∗ 10−2
234U 5.2705 ∗ 10−4 5.2770 ∗ 10−4
238U 3.2975 ∗ 10−4 3.3015 ∗ 10−4

Surrounding 235U Sphere
Isotope 10kg Experiment (atoms/barn-cm) 7.6kg Experiment (atoms/barn-cm)
235U 4.4892 ∗ 10−2 4.4892 ∗ 10−2
238U 3.2340 ∗ 10−3 3.2340 ∗ 10−3

18.644 g/cm3 respectively while the surrounding 235U sphere’s density was the same for
both experiments (18.8 g/cm3).

Based on data collected throughout the benchmark experiment, an idealized model was
derived for both the ”10” and ”7” kg experiments. The model dimensions and characteristics
are described in Table 4.18. The core and surrounding Uranium atomic number densities
are given in Table 4.19. More information on these and several model assumptions and
derivations can be found in Reference [3]
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Figure 4.13: Beryllium-reflected Plutonium Core Criticality Benchmark Computational
Model. Image taken from Reference [3].

Sphere of Plutonium Reflected By Beryllium

Undertaken using the VNIITF Criticality Test Facility, this assembly consisted of a sphere
of plutonium reflected by beryllium. While the original geometry is quite complex some
assumptions and corrections were made during the criticality benchmark evaluation. The
homogenized model can be seen in Figure 4.13. More information on these and several model
assumptions and derivations can be found in Reference X.

The inner core and outer radii are 1.4 cm and 5.35 cm. The reflector inner and outer
radii are 5.35 cm and 11.0 cm. The plutonium atom densities used can be found in Table
4.20 along with the beryllium shells values as well. Since delayed critical was not obtained
the experimental keff was less than 1.00. The benchmark model keff is 0.9992 +- 0.0015.

Plutonium Sphere Reflected by Tungsten

Performed at Los Alamos Scientific Laboratory using the Planet universal assembly machine,
a slightly subcritical spherical mass of delta-phase plutonium reflected by tungsten was built
and measured. The core was composed of two hemispheres of delta-phase plutonium alloy
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Table 4.20: Plutonium Core and Beryllium
Shell Compositions.

Plutonium Core
Isotope Atom Densities (atoms/barn-cm)
239Pu 4.7253 ∗ 10−2
240Pu 5.2705 ∗ 10−4
241Pu 3.2975 ∗ 10−4

Ga 2.2105 ∗ 10−3

C 3.0246 ∗ 10−4

Fe 3.2525 ∗ 10−4

W 7.4100 ∗ 10−5

Ni 1.4187 ∗ 10−3

Surrounding 235U Sphere
Isotope Atom Densities (atoms/barn-cm)

Be 1.2081 ∗ 10−1

O 8.2064 ∗ 10−5

C 1.0020 ∗ 10−4

Fe 5.0939 ∗ 10−5

Table 4.21: Model Description and Dimensions.

Description Value
Core Density 15.778 g/cm3

Core Mass 8471 grams Plutonium Alloy
Core Radius 5.0419 cm

Surrounding Tungsten Shell Thickness 4.699 +- 1 cm%
Surrounding Tungsten Shell Density 17.21 g/cm3

Configuration Outer Radius 9.7409 cm

having a diameter of 3.970 inches with a 0.85-inch diameter source cavity at the center.
For the tungsten reflector, several thicknesses were constructed to enclose the plutonium
hemispheres. A 210PoBe neutron source with a strength of approximately 105 neutrons/sec
was used.

Based on data collected throughout the benchmark experiment, an idealized model was
derived. The model dimensions and characteristics are described in Table 4.21. The core and
surrounding geometries atomic number densities are given in Table 4.22. More information
on these and several model assumptions and derivations can be found in Reference [3].
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Table 4.22: Tungsten-Reflected Plutonium
Sphere Composition.

Plutonium Alloy Core
Isotope Atom Densities (atoms/barn-cm)
239Pu 3.7291 ∗ 10−2
240Pu 1.9277 ∗ 10−3
241Pu 1.2196 ∗ 10−4

Ga 1.3628 ∗ 10−3

Surrounding Tungsten Sphere
Isotope Atom Densities (atoms/barn-cm)

W 5.1468 ∗ 10−2

Ni 9.7124 ∗ 10−3

Cu 4.0774 ∗ 10−3

Zr 7.9528 ∗ 10−4

4.8 Summary

Implementing and designing data pipelines is important for future data incorporation into
any nuclear data-driven effort. In this section, an overview of the EXFOR, AME, RIPL,
and ENDF databases relevant to this work was described. The EXFOR library is the main
source of neutron-induced reaction data. Approximately 4.5 million data points were gath-
ered and formatted for reaction modeling. Additionally, isotopic information including Q-
values, Beta-decay energies, precise atomic masses, and more were gathered from the Atomic
Mass Evaluation. To take advantage of natural target experimental campaigns in EXFOR,
AME information was used to impute natural target information. RIPL contains isotopic
energy level information. Resonances in cross sections are directly related to energy level
location. To take advantage of the information in XUNDL, the RIPL cut-off parameters
were used to obtain a limited dataset of nuclear levels. Linear interpolation was then used to
calculate nuclear level densities at the appropriate experimental energies from EXFOR. In-
formation from EXFOR, AME, and RIPL was eventually joined to build 5 different datasets
with different features. To validate models trained on the gathered data, several criticality
benchmarks were used. These will also allow the models to be evaluated at different energy
ranges and using different materials.
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Chapter 5

Machine Learning Algorithms

Having explored and transformed the data, the machine learning model training (evaluation)
phase can begin. This challenge falls under the supervised model regime meaning our dataset
has labels. The labels are cross sections, a continuous numerical value making it a regression-
based supervised challenge.

In general, a model is a mathematical structure that predicts an output ŷ based on an
input xij where i represents the row number and j the features. The most popular example
is a simple linear regression model where the output is described as ŷ =

∑
j θjxij. In all

models, the parameters/coefficients are the unknown variables that need to be learned from
the training data. In the case of a simple linear model, the parameters are the weights θj.
There are a variety of regression algorithms including K-Nearest Neighbors (KNN), Linear
and Logistic Regression, Support Vector Machines (SVM), Decision Trees (DT), Random
Forests (RF), Gradient Boosting Machines (GBM), Neural Networks (NN), etc. The true
goal of any ML algorithm is a generalization, meaning adequate performance when deployed
in real-world conditions. The model selection will depend on many factors including the
type and complexity of the problem. As the complexity increases a more powerful model is
needed but also more data is required for training to prevent overfitting.

In this chapter, a very brief overview of the KNN, DT, GBM, and NN algorithm im-
plementations used in this work is given. In each section, the hyperparameter optimization
task is explained and the final parameters are presented. Further details on all these models
can be found in References [8][14][6]. For both the KNN and DT models, the Scikit-Learn
implementations were used [16]. For the GBM and NN, the XGBoost and TensorFlow im-
plementations were used respectively [6][13].

5.1 K-Nearest-Neighbors (KNN)

The KNN regression algorithm calculates a new data point’s value by first querying the K
nearest data points available in the training set and sorting them by increasing distance,
hence the model’s name. Here, K is a hyperparameter that has to be set before training.
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There are a variety of available distance metrics that can be used to measure the distance
between points in the i dimensional space where i is the number of training features including
the Euclidean and Manhattan distance. The Euclidean distance is calculated between points
p and x by taking the square root of the squared difference between (p1, p2, ..., pn) and
(x1, x2, ..., xn) (Eq. 5.1). The Manhattan distance is calculated as the absolute difference
between points x and p (Eq. 5.2).

d(p, q) =

√√√√ n∑
i=1

(pi − xi)2. (5.1)

d(p, q) =
n∑
i=1

|pi − xi|. (5.2)

By default, the weight of neighboring points is uniform and the value of a new data point
is calculated simply as the mean of the K nearest points (Eq. 5.3).

New Point =
1

K

K∑
i

ki. (5.3)

Alternatively, the K nearest points can be weighted according to distance, meaning the
closest points have a heavier influence on the new data point’s value (they are weighted by
the inverse of their distance). The model performance will not only depend on the chosen
distance metric and weight function but also on the variance and the scales/magnitudes
of the dataset features. In general, features with higher variance and higher magnitudes
will tend to be given preference by distance-drive models. Important information in other
features might be missed if the dataset is not correctly transformed and normalized.

There are many types of nearest neighbor algorithms including brute force, k-d tree, and
ball tree. The most accurate, but also the most computationally expensive, is the brute
force algorithm. In contrast to other models, the training stage of the KNN brute-force
algorithm consists of computing the distances between all points in the dataset. As the
number of samples (N) and the number of dimensions (D) increases, so does the complexity
by O[DN2]. Consequently, the application of this algorithm becomes unfeasible for large
datasets.

A trained model will store the multi-dimensional feature vector and the corresponding
label for each of the training samples. The actual query and distance computation takes place
once an inference is requested. Even if an optimal k hyperparameter is found, care must
be taken not to incorporate irrelevant or extra features as it can have a significant impact
on the model’s accuracy while increasing complexity. In the case of high-dimensional data,
it is worth exploring dimensionality reduction techniques (DRT). These can help avoid the
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Table 5.1: Experimented K-Nearest-Neighbor Model Parameters.

Parameter Values Tested
Number of Neighbors (K) 1-20

Weight Function Distance
Algorithm Brute

Distance Metric Manhattan, Euclidean
Normalizer/Standardizer SS, QN, RS, MAXABS, MINMAX, PT

curse of dimensionality which states that as the dimensions increase, the euclidean distance
cannot be reliably used as all vectors become almost equidistant to the search query vector.
The most popular DRT’s is Principal Component Analysis (PCA).

Although a very simple algorithm, KNN has been successfully applied to a variety of
challenges including satellite imagery classification and fraud detection. Simple models also
allow studying the characteristics of a dataset with less interference. A major advantage
is the non-parametric nature of the algorithm. This makes it suitable for problems where
decision boundaries are not well defined. The range of parameters tested in this work is
specified in Table 5.1.

Training

While the size of the EXFOR dataset is large, brute-force calculations are still feasible. Even
though the training and inferences time will be large, the challenge’s objective does not
carry a time constraint. This makes the training scenarios simpler by limiting the number
of hyperparameters to the number of neighbors (K), the distance metric, and the weight
function. Just by observing a cross section plot, it is evident that the weight function needs
to be a function of the distance. Datapoints closer to the query energy should have a higher
influence than data points farther away.

Before training the model with Datasets B-E, the Dataset A was used to test the impact
of different scalers and normalizers in generalization performance. Figure 5.1 shows the
validation MAE for several models trained with different scalers. From this information, it
is evident that the Min-Max scaler generally achieved better performance.

All these normalization objects were fitted to all but the Energy feature. The only
process applied to the Energy was a logarithmic transformation. To investigate the effect
of Energy normalization, the Min-Max transformer was applied sequentially after the log
transformation in a set of training iterations and compared to the un-transformed results.
The validation MAE of these training processes can be observed in Figure 5.2. Based on these
results, the Min-Max scaler was chosen and the Energy was included in the scaled features in
addition to the logarithmic transformation. Similarly, to choose the optimal distance metric,
several models were trained using either the euclidean or Manhattan distance. Figure 5.2
also shows the effect of both on the Validation MAE. The best distance metric is less obvious,
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Figure 5.1: Effect of Different Normalizer/Transformer on the Validation MAE.

however, in general, the manhattan distance seemed to achieve better overall performance
and was therefore chosen for all other models.

For model selection, the best performing training iterations in terms of validation perfor-
mance were chosen. Since KNN are not loss-driven algorithms, training cannot be visualized
as usual (loss vs time step). Instead, we can visualize a set of similar models by comparing
the effect of K on the overall validation MAE. Since the Brut Force approach was chosen,
other hyperparameters are not valid. Figures 5.3 represents the mean absolute error (MAE),
for the Train, Test, and Validation sets, as a function of the parameter K (number of nearest
neighbors) for all models fitted to datasets A.

In this case, it can be observed that at k = 9 both the validation and test MAE starts to
increase and deviate from a downwards trend. This, coupled with a steady decrease in train
MAE, indicates overfitting. Based on this information, the model with k = 9 was selected
for Dataset A. Similarly, the best models were selected for the other modeling scenarios with
Datasets B-E. Table 5.2 summarizes the performance metrics for these models. Appendix A
contains the training curves for all other models fitted to Datasets B through E.

There are just so many combinations of parameters that can be tested using KNN algo-
rithms. Performance and learning limits quickly reach a plateau translating into constrain
predicting power. Still, in the Results section, we will explore how these models can perform
adequately in terms of cross section inferences and benchmark performance.
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Figure 5.2: Effect of the ”Distance Metric” (left) and ”Energy” Min-Max Normalization
(right) on the Validation MAE.

Figure 5.3: Performance Metrics as a Function of the k Hyperparameter for KNN Models
Trained on Dataset A.
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Table 5.2: Final Set of KNN Hyperparameters and Performance Metrics.

Dataset K Nearest Neighbors Train MAE Val MAE Test MAE
A 9 0.025922 0.119721 0.119763
B 9 0.025921 0.119010 0.118578
C 11 0.025873 0.115434 0.115954
D 13 0.025876 0.115373 0.115669
E 13 0.025852 0.115209 0.116056

5.2 Decision Tree (DT)

Decision Tree (DT) models also belong to the family of non-parametric methods and can
be applied to both classification and regression tasks. The model approaches both tasks
by learning simple if-then-else decision rules from the available features. DT’s are therefore
white-box models meaning any prediction can be explained by Boolean logic. The deeper
the tree is allowed to be built, the more complex the rules become translating into a higher
risk of overfitting.

Decision Trees are very powerful and have been used successfully in many applications.
Splits are created feature-wise independent of variances and ranges meaning very little data
preparation is needed. Additionally, these can handle multi-output problems which means
that both the cross section and uncertainties can be predicted. If built appropriately and
limiting tree complexity, generalization can be achieved. DTs are built based on the training
data and are very sensitive to variations in the data. Training on a slightly different dataset
might result in a completely different model. Ensemble trees and gradient boosting trees
tackle this issue by building multiple trees.

The training process starts by feeding in the training vectors xi and the label vector yi.
The decision tree will try’s to find an optimal point θ = (j, tm) to split the data Q at node
m by setting up a threshold tm for each feature j in such a way that the impurity G(Q, θ)
is minimized (Eq. 5.5). For regression tasks, the impurity criteria to minimize is the Mean
Squared Error or the Mean Absolute Error.

θ∗ = argminθG(Q, θ) (5.4)

G(Q, θ) =
nleft
Nm

H(Qleft(θ)) +
nright
Nm

H(Qright(θ)) (5.5)

where:

H(Xm) =
1

Nm

∑
i∈Nm

(yi − ȳm)2 (5.6)
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Table 5.3: Experimented Decision Tree Model Pa-
rameters.

Parameter Values Tested
Criterion Mean Squared Error
Splitter Best

Max Depth 10-400
Minimum Samples for Split 2-15
Minimum Samples for Leaf 2-15

ȳm =
1

Nm

∑
i∈Nm

yi (5.7)

An advantage of DT relative to KNN is the little data preparation needed (i.e. nor-
malization, one-hot-encoding, etc.). The best splits are found feature-wise independent of
each others scales. While there are a variety of DT implementations that are capable of
creating trees with multiple branches, the scikit-learn implementation is built around an
optimized version of the CART algorithm meaning only binary trees are created through
the training process. There are many mechanisms to prevent overfitting in DT’s during and
post-training. As mentioned, decision trees will create splits (internal nodes) feature-wise to
reduce the MSE (impurity). In addition to setting the maximum depth the tree is allowed
to have, two other hyperparameters can help prevent overfitting. These are the minimum
number of samples required to split (MSS) an internal node and the minimum number of
samples required to be a leaf node (MSL). The former is simple, if X amount of samples
are not above the MSS then the internal node becomes a leaf. In the latter, the algorithm
only allows a leaf to be created if there are MSL numbers of samples minimum. A popular
post-training technique is pruning, where the tree is allowed to build as many decisions as
possible followed by the fractional removal of some of the last leaf nodes. More information
on the DT can be found in reference [14].

Training

For all Decision Tree models trained the ”Best” splitter algorithm was used given the size
of EXFOR. The training scenarios are more complex relative to the KNN model. There
are four main hyperparameters to tune: the training criterion, max depth, MSL, and MSS.
Furthermore, these parameters will be dataset-dependent. As mentioned previously, the DT
algorithm does not require that data be normalized. Other than taking the logarithm for both
the Energy and Cross Section, no scalers or normalizers were applied to the dataset. Datasets
A-E were used to train a variety of decision tree models with varying hyperparameters in
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our effort to find the best model. Table 5.3 shows the hyperparameters tweaked along with
their explored ranges.

Figure 5.4 shows the Train and Validation MAE as a function of the Max Depth, the main
hyperparameter in terms of model complexity, for all different models trained on Dataset A.
As expected, as max depth increases, the easier a low Train MAE is achieved. Even with a
low Max Depth of 50, a low enough error is achieved as long as low regularization is applied.

It is difficult to visualize the impact of more than two hyperparameters on the perfor-
mance metric without 3D visualizations. To tune the decision tree hyperparameters visu-
alizations can help guide future training iterations. Figure 5.5 shows the effect of the Max
Depth and the MSS, one of the main DT model regularizers, on the Training MAE. Con-
firming our earlier statement, Max Depths as low as 50 can achieve performance as long as
no regularization is applied. The minimum MSS value allowed is two. This is because no
splits can happen with only one value left. As soon as the MSS value is greater than two,
the Training MAE increases. Figure 5.6 shows the same hyperparameters as a function of
the Validation MAE. The trend here is rather different than that observed in Figure 5.5.
Regularization is usually needed for generalization and this trend is evident in Figure 5.6.
As the MSS increases, the Validation MAE decreases. The best models appear to be located
at Max Depth of 50 and MSS of 10.

As for the MSL, Figure 5.7 shows the effect of the Max Depth and the MSL, the next
main regularizer, on the Training MAE. The trend, in this case, is more dramatic. As soon
as the MSL increases so does the Training MAE with a steeper slope independent of the
Max Depth. As for the effect on the Validation MAE (Figure 5.8), models with low Max
Depth and somewhat high MLS are more optimal. The best models appear to be located at
Max Depth of 50 and MSL of 6. The same trend is observed in models train on Datasets
B-E.

Low MSS and MSL clearly lead to model overfitting when comparing the training and
testing metrics. This can also be verified by visualizing the Training and Validation MAE
as a function of both the MSS and MSL. Figure 5.9 and 5.10 show the effect of both these
hyperparameters on the Training and Validation MAE. Opposite trends are observed. Higher
MSS and MSL does lead to better generalization.

With this information and trends in mind, several models were trained using a standard
Grid Search algorithm to search for the best combination of hyperparameters. Table 5.4
shows a list of different performance metrics for the best overall models trained in Datasets
A-E. It can be observed that the best max depth for all datasets is around 70-80 while the
best MSS and MSL are 10 and 7 respectively for all cases.

Decision Tree models can be used to get feature importance’s. Per the documentation:
“The importance of a feature is computed as the (normalized) total reduction of the

criterion brought by that feature. It is also known as the Gini importance.”
Figure 5.11 shows feature importances extracted from the best model trained on Dataset

A. The Energy, Number of Protons, Number of Neutrons, and Mass Number appear to be
some of the most important features. While the Gini Importance for the reaction channels is
not high, it does not mean their not important. Feature importances can be misleading for
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Figure 5.4: Effect of ”Max Depth” on the Training and Validation MAE using Dataset A.

Figure 5.5: Effect of the Max Depth and the MSS on the Training MAE using Dataset A.
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Figure 5.6: Effect of the Max Depth and the MSS on the Validation MAE using Dataset A.

Figure 5.7: Effect of the Max Depth and the MSL on the Training MAE using Dataset A.
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Figure 5.8: Effect of the Max Depth and the MSL on the Validation MAE using Dataset A.

Figure 5.9: Effect of the MSS and the MSL on the Training MAE using Dataset A.
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Figure 5.10: Effect of the MSS and the MSL on the Validation MAE using Dataset A.

Table 5.4: Final Set of Decision Tree Hyperparameters

Dataset Max Depth MSS MSL Train MAE Val MAE Test MAE
A 77 10 7 0.094472 0.118891 0.119736
B 70 10 7 0.094443 0.118699 0.119142
C 79 10 7 0.094436 0.119583 0.119327
D 70 10 7 0.094523 0.118764 0.119485
E 80 10 7 0.094559 0.118741 0.119347

high cardinality features. Without the reaction channels, it would be impossible for a model
to distinguish between them. In this particular scenario, the relative importance between
the reaction channels is based on the amount of data present in EXFOR as shown by the
big Gini Importance value for MT1. Calculated feature importances for Dataset B-E can be
found in Appendix B.

Decision Trees are very powerful models but these also have limitations in terms of
generalization. Still, these and all other trained models set the baseline for more complex
models and will also be tested using benchmark calculations in later sections.
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Figure 5.11: Feature Gini Importance for Decision Tree model trained on Dataset A.

5.3 Gradient Boosting Machines (GMB)

Gradient Boosting Machines are amongst the most powerful algorithms for structure data. In
this work, we use the XGBoost implementation of GBMs. From the official documentation:

XGBoost is an optimized distributed gradient boosting library designed to be
highly efficient, flexible and portable. It implements machine learning algorithms
under the Gradient Boosting framework. XGBoost provides a parallel tree boost-
ing (also known as GBDT, GBM) that solve many data science problems in a
fast and accurate way. The same code runs on major distributed environment
(Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

The previously described Decision Trees are based on the CART type regression trees.
This means only binary trees are built during the training process. XGBoost trains an
ensemble of CART type regression trees meaning multiple trees are built. Contrary to
traditional optimization problems where gradients are taken this is a more complex task
since all trees cannot be built at once. XGBoost relies on the additive strategy meaning
learned trees are never refitted; rather new trees are built afterward and added. The training
procedure is rather complex and out of the scope of this work. For more information on the
training methods and parameters, please see Reference [6].
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Table 5.5: Experimented XGBoost Hyperparameters.

Parameter Experimental Ranges
Objective Function RMSE, Huber, RMSLE

Booster GBTree
Learning Rate 0.1-0.5

Number of Trees (rounds) 5-60
Max Depth 5-30

Tree Method GPU Histogram
Grow Policy Depth-wise, Loss Guided
Max Leaves 0

Max Bin 0-30000
Gamma (Minimum Loss Reduction) 0-0.001

L2 Regularization 0-1
Deterministic Histogram True or False
Early Stopping Method True or False

Training

For all XGB models trained the GBTree booster algorithm was used given the size of EXFOR.
To accelerate training the GPU Histogram tree method implementation was used. The
training scenarios are more complex relative to the KNN and DT algorithm implementations
due to the number of available hyperparameters. The two main hyperparameters of an
XGBoost model are the Max Depth (MD) and the Number of Trees (NT). The former
controls the maximum allowed depth of the individual trees built during the training process
while the latter controls the total number of individual trees to be built. XGBoost is an
ensemble technique meaning it sequentially adds new trees, limited by the set NT, to correct
the performance of prior models. As both number increases, higher complexity is given to
the model consequently increasing the risk of overfitting increases as well.

As more powerful models are trained, regularization will become important for increased
generalization. Regularization can be applied not only by reducing the NT and the max-
imum allowed depth but also by increasing Gamma and the L2 Regularization strength.
The Gamma hyperparameter specifies the minimum reduction in loss required to make a
further partition on a leaf node. In XGBoost models and Neural Network, large weights
can have a detrimental effect on the model. As the L2 Regularization strength increase,
the more constrained these weights and consequently the model. To avoid overfitting, early
stopping techniques can also be used to stop training and spending unnecessary computa-
tional resources when overfitting signs start to appear by setting an evaluation metric, an
evaluation dataset, and a given number of iterations to wait for the performance metric to
decrease. In early stopping techniques, the learning rate becomes important. Too large and
the model will be unable to keep learning. To small and the training might take longer than
needed. A combination of these hyperparameters can be used to find an optimal design that
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Figure 5.12: Effect of ”L2” and ”Max Depth” on the Training MAE.

generalizes well. Similar to DT algorithms, XGBoost models do not require that data be
normalized. Other than taking the logarithm for both the Energy and Cross Section, no
scalers or normalizers were applied to the dataset. Datasets A-E were used to train a variety
of algorithms in our effort to find the best model.

Before applying a Grid Search algorithm to find the optimal hyperparameters, a paramet-
ric approach was taken to observe the effect of the different hyperparameters on the Training
and Validation MAE. Figure 5.12 and 5.13 shows the Train and Validation MAE as a func-
tion of the Max Depth and L2 Regularization for all different models trained on Dataset A.
The number of rounds was fixed to 10. As expected, a low Train MAE is achieved as the
max depth increases. Similarly, as this number increases the Validation MAE also decreases.
Due to memory constraints, Max Depths greater than 30 cannot be tested therefore setting
a maximum allowed number. However, higher-memory GPUs should be used to train these
models with Max Depths greater than 30 as there are no signs of overfitting at this point.
The role of L2 regularization on generalization is also shown in both these figures. Several
training iterations were performed using 0, 1, 2, and 3 as the L2 Regularization strength
hyperparameter. A regularization strength between 1 and 2 seems to offer the best perfor-
mance in terms of both the Training and Validation MAE. Both Figure 5.12 and 5.13 show
the interactive effect between L2 and Max Depth on model performance. The surface plots
show that max depths greater than 30 should be explored with L2 Regularization strength
set to 1.5. No signs of overfitting are observed, in contrast to Decision Trees. In short, even
with a max depth as high as 30, low enough error and no overfitting is achieved as long as
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Figure 5.13: Effect of ”L2” and ”Max Depth” on the Validation MAE.

some regularization is applied.
A particular hyperparameter that was fundamental for model generalization is the Max-

imum Bin (MB). This parameter specifies the maximum number of bins by which a feature
will be split to find the best split point when constructing the tree nodes. The default value of
the XGBoost implementation is 256, a generally accepted value for most applications. How-
ever, nuclear data requires very fine grids. The level of resolution must be high enough that
it allows to capture and separate overlapping resonances. Increasing the MB will therefore
be important for optimal use of XGBoost models in the evaluation pipeline. To accurately
model cross sections occurring at different energies for any isotope and reaction channel, a
fine grid must be created. This means that 256 splits will not suffice to accurately describe
the needed energy/cross section behavior (i.e. too coarse). To investigate the effect of the
Max Bin parameter on both the Training and Validation MAE, several models were trained
with differing Max Bin values. A 3D plot showing the effect of the Max Bin and Max Depth
is shown in Figure 5.14. Increasing the number of bins will allow us to fit better models to
this particular dataset along with a higher max depth. Confirming our expectations, as MD
increases, performance quickly reaches a plateau for a low MB. Quick performance gains are
observed with a steep gradient for increasing MB. A similar trend can be observed on the
Validation MAE (Figure 5.15).

The interaction between the Max Depth and the L2 Regularization strength indicated an
optimal value between 1-2. This was confirmed by plotting the interaction between the Max
Bin and the L2 Regularization strength. As observed in Figure 5.16 and 5.17, local minima
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Figure 5.14: Effect of ”Max Bin” and ”Max Depth” on the Training MAE.

Figure 5.15: Effect of ”Max Bin” and ”Max Depth” on the Validation MAE.
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Figure 5.16: Effect of ”Max Bin” and ”L2” on the Training MAE.

Figure 5.17: Effect of ”Max Bin” and ”L2” on the Validation MAE.
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Figure 5.18: Training and Validation Loss as a Function of the Number of Trees (rounds)
for the best XGB Model trained on Dataset A.

Table 5.6: Final Set of XGBoost Model Hyperparameters.

Dataset Max Depth L2 Regularization Max Bin Train MAE Val MAE Test MAE
A 30 3 10000 0.093399 0.114572 0.114719
B 30 1 20000 0.079715 0.114399 0.115458
C 30 3 10000 0.094528 0.114533 0.115727
D 30 1 10000 0.088638 0.114844 0.114683
E 30 3 20000 0.088554 0.114577 0.115488

in terms of Training and Validation performance seem to be located at L2 values of 2 for
any Max Bin value. From all this information, it is evident that future training iterations
should focus on exploring higher max depths.

The Learning Rate for all iterations was set to 0.8. Figure 5.18 shows the training and
validation loss as a function of the number of rounds (trees) for the best model based on
Dataset A. While the loss decreases quickly at first, it reaches a plateau at approximately 8
rounds. Based on this, the number of rounds was set to 10 for all training iterations. More
figures exploring the hyperparameter optimization challenge can be found in Appendix C.

Based on the information gathered through the parametric exploration of hyperparam-
eters, several models were trained using a Grid Search algorithm to search for the most
optimal combination of hyperparameters using the ranges given in Table 5.5. Table 5.6
shows a list of different performance metrics for the best overall models trained in Datasets
A-E.

XGBoost models can also be used to get feature importances. While Decision Tree’s offer
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Figure 5.19: ’Average Gain’-based Feature Importances for the XGBoost model trained on
Dataset A.

the same capability, it is only computed based on a single fitted tree. XGBoost models are
an ensemble of trees. Consequently, the feature importance of each feature can be defined
differently. Two popular options include ’weight’ and ’gain’. The former calculates the
importance based on the number of times a feature is used to split the data across all trees
while the latter gets the average gain across all splits the feature is used in.

Figure 5.19 and 5.20 shows feature importance’s extracted from the best XGBoost model
trained on Dataset A. As expected, Energy appears to have no importance in the Gain-based
calculations. Energy is simply a query point in space that is common for all cross sections
and reaction channels. Instead, Figure 5.19 shows the features that help reduce the overall
loss in this regression-based challenge. Contrary to the Decision Tree importances, here
the reaction channels are quite important. These are fundamental to distinguish between
different reaction scenarios in addition to the number of protons, neutrons, and the mass
number. Figure 5.20 on the other hand shows reduced importance for the MT features. Since
Weight-based importances are calculated in terms of the number of splits, it is expected that
the reaction channels with most data are more important since most of the splits will be
done for these scenarios. The Energy is not shown in this plot since the magnitude of the
importance was too high to be plotted but it presented itself as the most important ’weight’-
based feature. Calculated ’gain’ and ’weight’-based feature importances for Dataset B-E can
be found in Appendix C.
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Figure 5.20: ’Weight/Split’-based Feature Importances for the XGBoost model trained on
Dataset A.

XGBoost models are very powerful, often regarded as the best for structure data. The
complexity of the model unfortunately also means a higher number of hyperparameters
combinations to search for and to optimize. In this section, we discussed the hyperparameter
optimization challenge for the Dataset built here that led to a set of best models. Reaching
an optimization limit, increasing the number of rounds proved to be not beneficial. The
performance seems to be plateauing after a couple of rounds. Since there are no signs of
overfitting, a higher max depth should provide better overall performance. The selected best-
performing models for each Dataset were saved and prepared for later testing using criticality
benchmarks. Feature importance’s calculated here will also help later experimental iterations
using neural networks.

5.4 Summary

In this chapter, an overview of three popular algorithms (KNN, DT, and XGboost) was given.
The different hyperparameters available in each of these were explored at first parametrically
to understand the impact on both the training and validation loss using Datasets A-E. This
analysis started with a rather simple algorithm (KNN) and moved towards more complex
and powerful models. After a detailed analysis of hyperparameter interactions using 3D
visualizations, a Grid Search algorithm was used with a limited search space provided by
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the parametric exploration. Tables 5.2, 5.4, and 5.6 show the resulting best models for
Datasets A-E. Between all models, XGBoost showed the best performance in the validation
set. Comparison of losses with previously published models is not possible as these set the
first-ever benchmarks of ML applied to the EXFOR database.
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Chapter 6

Results

The main goal is the development of proof-of-concept ML-NDE pipelines with validated
models using the designed framework. Chapter 4 contains detailed information regarding
the different ML models trained using data mainly from EXFOR. The traditional perfor-
mance metrics and generalization potential evaluations are given and a set of models were
selected based on hyperparameter optimization. These models set the first-ever benchmark
of ML models applied to neutron-induced cross sections. Iterating through the models and
coming up with a set of performance metrics usually marks the end of the ML pipeline (not
accounting for deployment). However, in the ML-NDE pipeline, these models are to be vali-
dated using criticality benchmarks. Even though the previous three chapters mark important
achievements in the path towards ML-enhanced nuclear data evaluations, here we addition-
ally provide proof-of-concept criticality benchmark model validation. The potential impact
of ML to support cross section data generation for use in modeling and simulation is demon-
strated with five main examples. First, 233U cross section data was predicted and tested
using the 233U Jezebel benchmark (U233-MET-FAST-001). 233U was chosen for validation
due to the extensive data available in terms of both EXFOR data points and benchmarks.
Moreover, this benchmark is almost monoisotopic presenting a good isolated environment for
model testing. Other criticality benchmarks presented here include U233-MET-FAST-002
(10kg), U233-MET-FAST-002 (7.6kg), and PU-MET-FAST-019. The 35Cl(n,p)35S reaction
cross section was also chosen as an example of prediction capabilities in an energy region
lacking experimental data important for new reactor concepts like the MCFR. Other individ-
ual isotopes of interest are explored, and dataset issues are raised. All of these experiments
were possible thanks to NucML, the main deliverable as part of this work.

6.1 NucML

Due to the lack of specialized tools for the application of ML to the Nuclear Data Evaluation
field, this work aimed first and foremost at providing a complete ML-enhanced evaluation
pipeline framework for inference of neutron-induced reaction cross sections and the tools
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necessary to seamlessly navigate it. From this endeavor, NucML was born. NucML is the first
and only end-to-end python-based supervised machine learning pipeline for enhanced bias-
free nuclear data generation and evaluation to support the advancement of next-generation
nuclear systems. It offers capabilities that allow researchers to navigate through each step
of the ML-based nuclear data cross section evaluation pipeline. Some of the supported
activities include dataset parsing and compilation of reaction data, exploratory data analysis,
data manipulation, feature engineering, model training and evaluation, and validation via
criticality benchmarks. NucML’s source code can be found in GitHub and has been made
public to the community through the Python Package Index manager. The code is thoroughly
documented making it easy to use. For information on the implementation, source code, and
documentation please visit https://pedrojrv.github.io/nucml/ and https://github.

com/pedrojrv/nucml.

Datasets

In Chapter 4, a detailed exploration of feature impact on model performance was described.
Part of NucML’s ML-ready datasets include 5 different combination of features:

• Dataset A: ”Energy”, ”Data”, ”Z”, ”N”, ”A”, ”MT”, ”Center of Mass Flag”, ”Element
Flag”

• Dataset B: Dataset A Features, ”Atomic Mass Micro”, ”Nucleus Radius”, ”Neutron
Nucleus Radius Ratio”

• Dataset C: Dataset B Features, ”Mass Excess”, ”Binding Energy”, ”B Decay Energy”,
”S(n)”, ”S(p)”, ”S(2n)”, ”S(2p)”

• Dataset D: Dataset C Features, ”N valence”, ”Z valence”, ”P factor”, ”N tag”, ”Z
tag”, ”NZ tag”

• Dataset E: Dataset D Features plus all Q-values.

For information on the data type meaning please refer to Chapter 3. After analyzing
the results of all trained models including performance metrics and feature importances, the
best dataset was found to be Dataset C. While dataset D and E contained some features
that might be relevant for future exploration of ML-based solutions, their impact on model
performance was marginal and in some cases negative. The criticality benchmark calculations
were performed using all models trained on Dataset C.

6.2 Criticality Benchmarks

All benchmark performances will be compared to the ENDF library and in the appropriate
cases to other evaluated libraries like JEFF and JENDL. For an overview of the benchmark
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geometry and composition please refer to Chapter 3. The 1/v region for all ML-generated
cross section was adjusted in post-processing due to the instabilities presented by both mod-
els. This goes in line with the expected hybrid implementation. In other words, the solution
presented here consists of a machine learning and traditional tools hybrid modeling tech-
nique. Furthermore, only isotopes for which the total fraction is above 10% were considered
for ML-based cross section generation. Trace quantities of other isotopes were left as is and
imported from the ENDF library. During the compilation process, the cross sections were
run through standard checks (i.e. making sure the appropriate reaction channels sum up
to the total cross section). All KNN, DT, and XGB models were used to generate these
cross sections for the needed reactions, not just the best models. The reason will become
apparent in a moment. The generated cross sections were compiled into ACE format and
metadata files needed by SERPENT2 were generated for all cases using NucML’s automatic
framework. Other data files including fission product yields we’re not modified.

U233-MET-FAST-001

The 233U Jezebel benchmark was selected due to the simple, almost mono-isotopic nature.
The generated cross sections included 233U (n,tot), (n,γ), (n,inelastic), (n,elastic), and (n,f).
All other trace uranium isotopes were left unchanged due to the small contribution to the
total composition.

KNN Model Selection and Performance

Of the KNN parameters tested the ”distance” weight function and the Manhattan distance
worked best. As for the scalers, the min-max achieved better results. The top graph in
Figure 6.1 represents the MAE for the train and validation sets as a function of the parameter
K (number of nearest neighbors) for the models trained on dataset A. The model with k = 8,
as seen in Table 6.1, served as our traditionally selected model since it is at this point that
the validation MAE starts to increase and deviate from a downwards trajectory while the
train MAE kept decreasing indicating overfitting. Using this model, the Jezebel benchmark
was run using the 233U KNN-generated cross sections. The results for this model are listed
in Table 6.1. The performance is adequate with an error of 0.3870%.

To find if the traditionally selected model was indeed the best model in terms of bench-
mark performance, 233U cross sections were generated using all KNN models. The bottom
graph in Figure 6.1 depicts the validation MAE and the multiplication factor as a function
of K. As expected, the traditional model selection technique does not seem to correlate with
benchmark performance. Still, in this specific case, the validation set provides better bench-
mark results than that of the overfitted model (k = 20) by around 41%. On the other side,
handpicking the model with the best benchmark performance (k = 10) leads to an improve-
ment of 98% relative to the validation-based selected model. This is a big difference and
already outperforms the ENDF-based benchmark results. One drawback of performing this
kind of analysis in KNN models is that there is no loss function being optimized. The per-
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Figure 6.1: Train and validation MAE as a function of the number of neighbors (k) (top).
Validation MAE and Multiplication Factor (keff ) error relative to 1 as a function of the
number of neighbors (k) (bottom). Both the train and validation MAE are in a log10 scale.
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Figure 6.2: Comparison of KNN generated and ENDF/B-VIII.0 cross sections for fission and
radioactive capture.

formance comes strictly from the dataset completeness. Still, it provides important insight
into the dataset issues causing deviation from the expected validation MAE/multiplication
factor correlation.

The deviations could be explained by a variety of factors. Let us take the best benchmark
model (k = 10) for example. Figure 6.2 shows the fission and capture cross section results
along with the absolute differences relative to the ENDF cross sections. As expected, the
resonance region is where most of the differences arise. Overall, the generated cross sections
for 233U compare well to those in ENDF with the exception of the (n,elastic) cross section
(Figure 6.4). As seen in Figure 6.3, the experimental datapoints available are scarce. This
limits the model’s performance in this particular (isotope, reaction-channel) pair. Because
of the high availability of other reaction channels, the MT 2 cross section was calculated
as the difference between the ML generated (n,tot) and (n,nonelastic) cross sections. The
resulting values show some erratic behavior at low energies. In intermediate energies, the
resonances seem to have a higher magnitude in both directions relative to ENDF. This is a
clear example of the limitations of using this type of model and performance metrics when
working with databases like EXFOR. There are also differences in the transition between the
resonance and fast energy regions. This is to be expected since resonances exist in the fast



CHAPTER 6. RESULTS 104

Figure 6.3: 233U(n,elastic) reaction channel experimental datapoints in EXFOR vs the
ENDF/B-VIII.0 evaluation.

energy region but our capabilities/resolution do not allow us to measure them and therefore
an average is taken in ENDF. In a real ML-hybrid modeling scenario, the evaluator would
need to make a decision based on benchmark performance.

DT Model Selection and Performance

Decision Trees on the other hand do optimize for MSE. As mentioned, a balance between the
max depth, MSS, and MSL must be found to achieve good generalization and performance.
Table 6.1 shows the results on the Jezebel benchmark for the validation-based and train-
based selected models along with the final model parameters. Similar to the KNN results,
the performance is adequate for the validation-based model with an error of around 0.011%.
The error is already better than that of the ENDF-based benchmark calculations. Having
observed that traditional model selection techniques may not yield the best model in terms
of benchmark performance, a parametric study was performed by generating the 233U cross
sections and running the benchmark using every trained DT model.

Figure 6.5 depicts the train (top) and validation (bottom) MAE as a function of the max
depth and the multiplication factor. The MSS and the MSL parameters were also changed.
The validation-based selected model achieved much better performance in the benchmark
relative to the train-based selected model. However, similar to the outcome in the KNN
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Figure 6.4: KNN inferred cross section values for the 233U elastic channel vs the ENDF/B-
VIII.0 evaluation.

based models, the figure shows that the lowest validation MAE does not yield the best
benchmark performer. For both the validation and train MAE, there is a value where the
optimal benchmark performer can be found. Handpicking the model based on benchmark
performance leads to an improvement of 87% relative to the validation-based model.

XGBoost Model Selection and Performance

XGBoost models did not seem to have the same performance as simpler models. There exists
the possibility that XGBoost benchmark performance is affected by the dataset selected. As
we have seen so far, the correlation between validation MAE and benchmark performance is
not always so straightforward. Additionally, we did not see signs of overfitting on even the
best models. Higher complexity designs were not tested due to the memory requirements.
High-Performance Computing systems should be used to train more complex models that
can potentially outperform KNN and DT in benchmark calculations.

U233-MET-FAST-002 (7.6kg and 10kg)

The next tested benchmark were both the 10kg and 7.6kg 235U-reflected 233U spheres. This
case is one step more complex since cross section data needs to be generated not only for
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Figure 6.5: Train and validation mean absolute error (MAE) as a function of the max depth
and the multiplication factor error relative to 1. Both the train and validation MAE are in
a log10 scale.
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233U but also for the surrounding 235U shell. The same methodology taken during the U233-
MET-FAST-001 benchmark validation was taken and three models for each algorithm were
taken. Table 6.2 and 6.3 shows the results for the train-, validation-, and hand-picked-based
KNN, DT, and XGBoost models.

Similar conclusions can be drawn from these results. In all cases, the Train-based model
outperforms the Validation-based model. For the KNN algorithm, both the train- and hand-
picked-based models outperform the evaluation showing improvements of 39% and 160%
respectively. In this particular benchmark, in contrast to the U233-MET-FAST-001, the
hand-picked XGBoost model also outperformed the ENDF evaluation in this more complex
scenario by 54%. As for the decision tree models, the hand-picked model generated library
achieved a multiplication factor of 1 (zero error) making it the most accurate model in
terms of benchmark performance in this work. This is a boost in performance of 200%.
This further reinforces our hypothesis that outlier detection will become important for ML
applications to the nuclear data field.

Having some of these ML models outperformed the evaluation in the 10kg assembly of
the U233-MET-FAST-002 criticality benchmark, the expectation is to further outperform the
regional library in the 7.6kg assembly. The KNN algorithm did not continue to outperform
the evaluation in this case, not even the hand-picked model. The same occurred for the
XGBoost models. While the results do not outperform the evaluation in this case, it is still
promising to see models performed adequately given that this is the first iteration of this
effort setting the benchmark for future work. Decision Tree models in this case continue to
outperform the evaluation proving to be one of the most robust algorithms here. Both the
validation and the hand-picked model manage to get a performance boost of 23% and 118%
respectively.

PU-MET-FAST-019

This benchmark presents itself as an excellent example of the needed improvements in EX-
FOR. The models were successfully compiled and run for criticality calculations using the
Beryllium-reflected Plutonium Sphere. However, the results were highly inconsistent and
erroneous. After inspection, the Plutonium cross sections appear to be processed correctly,
however, inferred values for Beryllium were unstable.

Figure 6.6 shows all available datapoints for the 9Be(n,tot) reaction in the EXFOR library.
It is evident that wrong datasets are forming part of the training dataset at low-energy
regions. There are 4.5 million datapoints and inspecting each one manually is not possible
for a single person. Unfortunately, all models trained here used some of these datapoints
for training and therefore predict wrongly the correct cross section values. Re-training a
set of Machine Learning models can take weeks and these types of mistakes simply set
back the overall goal and waste computational resources. Figure 6.6 contains the 9Be(n,tot)
predictions performed by a sample DT model that was trained on an EXFOR version of the
dataset containing this erroneous points. The following benchmark was therefore not tested.
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Figure 6.6: 9Be(n,tot) Cross Section Values in EXFOR.

Overall Performance Comparison Between ENDF and
ML-enhanced Evaluations

A model cannot be selected and compared based on a single benchmark calculation. This
can make the process overfit to these singly selected scenarios. To more accurately select the
best models, the average performance between all available benchmarks should be used as a
key metric for model selection. In this work, all models were used to generate cross sections
and tested using all three benchmarks presented here. Using this more rigorous criterion,
there are 43 models of all parameters explored able to outperform the ENDF library. Table
6.4 shows only the best models for each algorithm. The XGBoost models were not able
to outperform ENDF on average compare to the KNN and DT both of which outperform
the regional library by 105% and 200% respectively. Still, these are only three benchmarks.
Future work should focus on gathering more criticality benchmarks and splitting them into a
train and validation set. Otherwise, even though this average performance model selection,
we can overfit to a set of benchmarks.

Other Benchmarks

NucML’s benchmark repository is aimed to be an open source, collaborative effort where
users can add their own inputs to form part of the ML-NDE pipeline project. Any valid
model added can be used by NucML’s pipeline to measure the impact of ML-generated cross
sections and validate models more accurately. As mentioned previously, NucML’s current
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Table 6.4: Average Criticality Benchmark Error.

Library Average Error Standard Deviation
Number of Models

ENDF 0.028833 0.009654 N/A
KNN (k = 19) 0.008967 0.000440 1

DT (MD=110, MSS=5, MSL=1) 0.000100 0.000430 42
XGB (MD=10, MB=20000, L2=3) 0.115767 0.16541 0

benchmarks include:

• U233-MET-FAST-001: 233U Jezebel

• U233-MET-FAST-002: 235U Surrounded 233U Core (10kg)

• U233-MET-FAST-002: 235U Surrounded 233U Core (7.6kg)

• PU-MET-FAST-019: Sphere of Plutonium Reflected by Beryllium

• PU-MET-FAST-005: Sphere of Plutonium Reflected by Tungsten

Other sets of benchmarks of interested forming part of the source code include all eight
cases of Water-moderated U(2.35)O2 Fuel Rods in 2.032-cm Square-pitch Arrays. These
are thermal benchmarks that can immensely aid the validation of models in the thermal
region. Not only are these benchmarks included in their original form but also tailored to
NucML’s needed format for validation. Detailed instructions are provided for any user to
add their own even they wish to not be included as part of the public repository but needed
to validate their models. Visit https://github.com/pedrojrv/ML_Nuclear_Data/tree/

master/Benchmarks for more information.

6.3 35Cl(n,p)35S Cross Section

35Cl, instead, has far less experimental data and in particular, the lack of data for the (n,p)
reaction in the energy range above 0.1 MeV has a substantial impact on the development of
molten chloride fast spectrum reactors. Recently, a measurement performed at the University
of California, Berkeley at about 2.5 MeV has shown that existing data libraries overestimate
measured points by up to a factor of five [1]. Therefore, 35Cl was chosen to demonstrate the
capability of the ML model to generate cross section data for data-starved reactions, and its
viability was evaluated against the new measurements whose results were not known to the
algorithm at any stage. The cross section for 35Cl(n,p)35S was inferred using the validated
KNN, DT, and XGBoost models.
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Figure 6.7: 35Cl(n,p)35S Cross Section Generated using a trained KNN model.

Figure 6.8: 35Cl(n,p)35S Cross Section Generated using a trained Decision Tree model.
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Figure 6.9: 35Cl(n,p)35S Cross Section Generated using a trained XGBoost model.

Figures 6.7-6.9 show the inference values for the best KNN, DT, and XGBoost model
respectively along with the available EXFOR datapoints, the new LBNL/UCB measure-
ments, and the ENDF/B-VIII.0 evaluation. Table 6.5 shows the errors and overall MAE of
these models with respect to the LBNL/UCB measurements for the ML-generated values,
the ENDF/B-VIII.0 library, and the JENDL-4.0 library.

All models presented here were able to predict the cross section values better than any of
the evaluated libraries. The KNN models were able to do so by looking at other nearby points
in the multi-dimensional space, not easily observed by humans. Decision Trees and XGBoost
models outperformed ENDF by learning a set of if-then-else rules based on important features
from not only other X(n,p)Y reactions but also other reaction channels. Not only was the
magnitude of the newly measured datapoints more accurately described by all three models,
but the expected trend after 106 eV seems similar to that of the ENDF evaluation even
when no known datapoints were available in the entire dataset constraining the calculations.
There is certainly room for improvement. Due to the if-then-else nature, the DT predictions
have a step-like behavior. Post-processing smoothing can be applied to make the 1/v region
and the resonance peaks smoother. The same can be applied to the KNN model predictions.

The KNN model predictions in the low energy region are surprisings. Being a simple
model, the queries at points below 102 eV should be flat as there are no other nearby
points. The model seems to have found closer points using the features provided for training.
The smoothness at these energies and at higher energies are due to the low amount of
data available. As mentioned previously, the KNN model is simply as good as the dataset
completeness. It does not ”learn” rules but rather looks at the nearby space to come up
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Figure 6.10: Energy Distribution of all the (n,p) reaction datapoints in EXFOR and of the
Available 35Cl(n,p)35S values.

with a value based on model parameters. The DT model on the other hand can take further
advantage of the dataset due to its higher complexity and learning capabilities. The XGBoost
model, being an ensemble technique where new trees are built to correct previous mistakes, is
more powerful and behaves somewhat similar to the DT model. The DTs used here are based
on the scikit-learn CART implementation. XGBoost models also built CART-type trees.
Interestingly, both the DT and XGBoost models predict resonances in the unknown fast
energy region with similar magnitudes and overall treed. Of course, without any experimental
data, it is rather difficult to validate these models. However, the fact that various models of
different architecture and design come to similar conclusions might mean that the evaluation
needs to be revisited. Overall, the KNN model predicted the new LBNL/UCB measurements
more accurately but the XGBoost model seems to be more generalizable.

Figure 6.10 shows an energy distribution of all the (n,p) reaction datapoints in the entire
EXFOR library and for the 35Cl(n,p)35S data point energy values. It is evident that these
models might also be informed by not only other X(n,p)Y reactions in the vicinity but also
other reaction channels. This makes any of these algorithms capable of predicting the cross
section values rather accurately.

There is certainly room for improvement. The XGB, DT, and KNN model seem to
be overfitting some of the EXFOR datapoints in the 1/v region. The DT model is more
resistant to the other conflicting experimental campaigns but presents step-wise behavior,
similar to the XGBoost model. More ”smooth” models like Neural Networks might create
more consistent and stable results in all energy regions. In any case, these proof-of-concept
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Figure 6.11: 12C(n,tot) Cross Section Values in EXFOR.

models demonstrate the capability for aiding cross section evaluations in areas of uncertainty.
While the generated values are not completely correct, it can assist the evaluator in key
decision-making scenarios. Benchmark data using Chlorine-35 is also needed for validation
of predicted cross sections.

6.4 Other Individual Isotopes of Interest

These trained models can be used to generate data for any isotope of interest. For simplicity,
in this section, we predict cross section values for some of the most popular isotopes and
reaction channels. The trained models can be found and downloaded from the public Google
Storage Bucket. For more information please visit https://pedrojrv.github.io/nucml/.

Carbon

There are various great benchmarks making use of graphite. While the cross section for sev-
eral reactions of interest is small, the great amount of graphite used in some reactor concepts
is thought to be big enough to make a difference. It was the intention to test graphite cross
section in some graphite-containing benchmarks, however, similar to the Beryllium case,
erroneous datasets were found in EXFOR. Figure 6.11 shows the available experimental
points in EXFOR. Some low-energy values appear to be incorrect measurements or unpro-
cessed/raw data types. Unfortunately, the current database does not allow us to distinguish
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Figure 6.12: 35Cl(n,tot) Cross Section Values in EXFOR.

these efficiently for all reactions. As part of the modernization effort, these datasets were
manually tagged as outliers. New models should be trained on cleaner datasets.

Chlorine

Another reaction of interest is 35Chlorine(n,tot). Similar to the (n,p) reaction case, there is
very little data as shown by Figure 6.12. While these models are rather coarse and unstable,
it is interesting to see that some resonance rules are being taken across the epithermal/fast
energy regions. The predictions in the low energy are unreliable and not smooth. Still, for
the small amount of data it is promising to see the correct trend being predicted. More
powerful models should be able to deal with the unstable characteristics at low energies.

6.5 EXFOR-SQL

As part of the ongoing nuclear data modernization effort performed as part of this project.
EXFOR SQL, a modernized version of the EXFOR database hosted on Google BigQuery
for easy data analysis and extraction was designed, built, and publish. Google BigQuery is:

Serverless, highly scalable, and cost-effective multi-cloud data warehouse de-
signed for business agility. BigQuery is an in-memory analysis service built into
BigQuery that enables users to analyze large and complex datasets interactively
with sub-second query response time and high concurrency.
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This will allow researchers to quickly navigate and extract data from EXFOR in a
much faster and flexible manner compared to the current EXFOR database implementa-
tion. Google BigQuery has a variety of APIs for all the most popular algorithms making
it more accessible to a range of expertise. It is through this type of modernization that
ML can start to be applied successfully to the nuclear data field. Not only is EXFOR part
of EXFOR-SQL but also the Atomic Mass Evaluation and the Reference Input Parameter
Library.

One additional advantage of these types of deployments is the easy insertions and updates
to any data element or group of elements. The datasets identified as outliers in this work
including those of Beryllium and Iron are marked as ”outliers” in EXFOR SQL. These
types of tags are purely based on personal assessments but have had a positive impact on
model performance relative to using all raw data points. More information can be found at
https://pedrojrv.github.io/projects/.
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Chapter 7

Conclusion and Future Work

Nuclear data evaluations are important for every industry and technology that utilizes
nuclear-based technology. For example, the next generation of nuclear reactors including
Molten Chloride Fast Reactors needs accurate cross section data to be designed safely and
reliably. Organizations in charge of producing evaluated libraries have an important task at
hand and evaluators must therefore be given the right tools to aid this difficult process. Cur-
rent tools include physics-based reaction modeling codes (i.e EMPIRE and TALYS). These
are guided by experimental databases like EXFOR and are used to create an appropriate fit
that explains most of the experimental data points. However, some evaluations are inevitably
created with higher uncertainty and human bias, especially in reactions where experimen-
tal data is not available to constrain the model calculations. In this work, we attempt to
provide ML-based tools to aid the evaluator in these areas of uncertainty. To tackle this
challenge, data sources and pipelines need to be modernized as the existing infrastructure
is not compatible with state-of-the-art industry tools. For example, simple utilities or APIs
for access to ML-ready reaction data are not available. The lack of research in the area can
be attributed to many factors including the lack of specialized tools to navigate the current
and future proposed pipelines in a modular and modern way.

In this work, we have (1) propose and built a framework for expedited ML-augmented
nuclear evaluations and (2) trained various algorithms to infer neutron-induce cross sec-
tions. The proposed pipeline consists of data collection and processing, model training,
evaluation and compilation, and validation using criticality benchmark calculations. To
navigate seamlessly through these steps, NucML was created. NucML is the first and only
end-to-end python-based supervised machine learning pipeline for enhanced bias-free nuclear
data generation and evaluation. These tools are not meant to replace the evaluator or the
physics-guided tools but to enhance their analytical power, extract meaningful physics, and
modernize the current data pipelines for compatibility with current ML technologies. It offers
various capabilities including dataset parsing and compilation of reaction data functionali-
ties, exploratory data analysis tools, data manipulation and featuring engineering utilities,
model training and evaluation scripts, and automatic validation via criticality benchmark
frameworks.
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Using this framework, several ML algorithms were trained using data from EXFOR,
AME, and RIPL. Several sub-datasets were created to test feature importances. The results
obtained show the capability of ML algorithms to inform evaluations. K-Nearest-Neighbor,
Decision Tree, and XGBoost models performed adequately compared to the EXFOR data-
points and similar to the ENDF evaluation as shown by both the MSE and MAE performance
metrics in several reactions of interest. Several optimized models also produced satisfactory
results on all three tested criticality benchmarks. Some models even outperformed the cur-
rent release of the ENDF library by up to 170% in the 233U Jezebel Benchmark case, a
well-characterized assembly in literature. On average, the Decision Tree models outper-
formed the evaluation on all three tested criticality benchmarks. Furthermore, the (n,p)
cross section for 35Cl, a less studied but important nuclide for advanced nuclear reactors,
was investigated. Optimized models, reliant on learned patterns and behaviors of other
X(n,p)Y reactions, predicted the LBNL/UCB measurements more accurately than any of
the evaluated data libraries which overestimate experimental results by up to a factor of five.
These and other examples presented in this work demonstrate the potential for ML models
to aid traditional physics-guided models.

Future work includes using more powerful algorithms that can generalize better. The
models presented here present instabilities that can be fixed by (1) developing custom loss
functions and (2) implementing physics constraints on several elements of the model develop-
ment pipeline. With the correct data processing schemes, more complex algorithms including
RNN, LSTM, and even Transformer may be trainable if Energy is treated as a sequential
(time-series type) feature. The current state of EXFOR also needs to be improved to allow
multi-output models to accurately propagate uncertainties. Other potential development
efforts include:

• Full implementation of the theoretical-ML hybrid modeling system. This includes the
incorporation of physics-guided tools like TALYS and EMPIRE into the cross section
library generation suite.

• Monte-Carlo-based loss function for Criticality Benchmark guided training. Custom
loss functions can initiate external processes including criticality benchmark calcula-
tions. The loss can then be calculated based on the determined multiplication factor.
While this is computationally expensive, results will be physics-guided and constrained.

• Dataset quality-aware training and assessment. Many outliers exist on the EXFOR
database. ML-based outlier detection can aid models to score better validation perfor-
mance metrics.

• Support for processing codes like NJOY into the ML-NDE pipeline.

• Future ML-guided proposals. Optimized models can help future efforts locate areas of
interest and need that can in turn benefit the ML-NDE pipeline.
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• Data Augmentation for high energy reaction. Knowing that (n,2n), (n,4n) are high
energy reactions, augmented the data with cross section values of 0 for low energies
can provide stability to the training process. It is a valid and easy way of constraining
the model to learn these physics.

• Incorporate proton-induced reactions.

By having a role in the nuclear data evaluation pipeline, Machine Learning based solutions
can help take human-bias-free informed decisions in areas of uncertainty. These tools aim to
augment and enhance our learning capabilities, not to replace existing methods and pipelines.
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Appendix A

K-Nearest Neighbors Models

A.1 Performance Metric Plots

Dataset B

Figure A.1: Performance Metrics as a Function of the k Hyperparameter for KNN Models
Trained on Dataset B.
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Dataset C

Figure A.2: Performance Metrics as a Function of the k Hyperparameter for KNN Models
Trained on Dataset C.

Dataset D

Figure A.3: Performance Metrics as a Function of the k Hyperparameter for KNN Models
Trained on Dataset D.
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Dataset E

Figure A.4: Performance Metrics as a Function of the k Hyperparameter for KNN Models
Trained on Dataset E.
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Appendix B

Decision Tree Models

B.1 Gini Importance Plots

Dataset B

Figure B.1: Feature Gini Importance for Decision Tree model trained on Dataset B.
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Dataset C

Figure B.2: Feature Gini Importance for Decision Tree model trained on Dataset C.
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Dataset D

Figure B.3: Feature Gini Importance for Decision Tree model trained on Dataset D.
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Appendix C

XGBoost Models

C.1 Other Hyperparameter Optimization Figures

Figure C.1: Training and Validation MAE as a function of the Max Depth on XGBoost Mod-
els trained on EXFOR data. Better performance is achieved as the Max Depth is increased.
Higher-memory GPUs should be used to train models with more predicting capabilities.
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Figure C.2: Training and Validation MAE as a function of the Max Bin on XGBoost Models
trained on EXFOR data. The Max Bin is an important hyperparameter to increase for
optimal Training and Validation performance.

Figure C.3: Training and Validation MAE as a function of the L2 Regularization Strength
on XGBoost Models trained on EXFOR data. L2 values of 2 and 3 shown slightly better
overall performance.
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C.2 ’Gain’- and ’Weight’-based Importance Plots

Dataset B

Figure C.4: Gain-based Feature Importances for the XGBoost model trained on Dataset B.
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Figure C.5: Weight-based Feature Importances for the XGBoost model trained on Dataset
B.
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Dataset C

Figure C.6: Gain-based Feature Importances for the XGBoost model trained on Dataset C.
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Figure C.7: Weight-based Feature Importances for the XGBoost model trained on Dataset
C.
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Dataset D

Figure C.8: Gain-based Feature Importances for the XGBoost model trained on Dataset D.
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Figure C.9: Weight-based Feature Importances for the XGBoost model trained on Dataset
D.
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Appendix D

Incorrect/Outlier EXFOR Datasets

Figure D.1: 9Be(n,tot) Cross Section Data from EXFOR.
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Figure D.2: 12C(n,tot) Cross Section Data from EXFOR.




