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ABSTRACT OF THE DISSERTATION

Financial Volatility and the Macroeconomy

by

Sung Je Byun

Doctor of Philosophy in Economics

University of California, San Diego, 2015

Professor James D. Hamilton, Chair

This dissertation studies the effect of financial asset volatility on the macroe-

conomy. As an important source of information, I use cross-sectional dispersion

for improving volatility forecasts along with time-variation in financial assets.

The first chapter, “Speculation in Commodity Futures Market, Inventories

and the Price of Crude Oil”, investigates the effects of financial investors activities

in commodity markets on crude oil price. While earlier researchers addressed this

question based on proxies representing financial investors activities, I develop a

model of the convenience yield arising from holding crude oil inventories in spite

of anticipated falling prices. Although some have argued that a breakdown of the

relationship between crude oil inventories and prices following increased partici-

pation by financial investors after 2003 was evidence of an effect of speculation,

I find that a correctly specified relation is stable over time. In light of this new

evidence, I conclude that the contribution of financial investors activities is weak

in the crude oil market.

In the second chapter, “The Usefulness of Cross-sectional Dispersion for

xii



Forecasting Aggregate Stock Price Volatility”, I develop a model of stock returns

where dispersion in returns across different stocks is modeled jointly with aggre-

gate volatility. Although specifications that allow for feedback from cross-sectional

dispersion to aggregate volatility have a better fit in sample, I find that such im-

provements are not robust for purposes of out-of-sample forecasting. Using a full

cross-section of stock returns jointly, however, I find that use of cross-sectional

dispersion can help improve estimates of the parameters of a GARCH process for

aggregate volatility, providing better forecasts both in sample and out of sam-

ple. Given this evidence, I conclude that cross-sectional information helps predict

market volatility indirectly rather than directly entering in the data-generating

process.

My final dissertation chapter, “Heterogeneity in the Dynamic Effects of

Uncertainty on Investment”, studies the effects of profit uncertainty on manufac-

turing firms investment decisions. We measure aggregate profit uncertainty from

quarterly industry-level sales revenues by using a Panel-ARCH model, which is

a special case of the bivariate aggregate volatility model developed in the second

chapter. Using estimated profit uncertainty, we find that higher profit uncertainty

induces firms to lower future capital expenditure on average, yet to a different

degree depending on each firms characteristics, such as size, liability ratio, and

sub-industry classification. This finding points to significant and substantial het-

erogeneity in the uncertainty transmission mechanism, a feature not highlighted

in recent studies of uncertainty at the aggregate level.
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Chapter 1

Speculation in Commodity

Futures Markets, Inventories and

the Price of Crude Oil

Abstract. Refiners have a motive to hold inventories even if they antici-

pate falling crude oil prices. This paper develops a model of the convenience yield

arising from holding inventories. Although some have argued that a breakdown of

the relationship between crude oil inventories and prices following increased par-

ticipation by financial investors after 2003 was evidence of an effect of speculation,

we find that a correctly specified relationship is stable over time. In light of this

evidence, we conclude that the contribution of financial investors’ activities is weak

in the crude oil market.

1
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1.1 Introduction

The recent volatility of crude oil prices has renewed interest in the behavior

of crude oil inventories. This paper examines the role of inventories in refiners’

gasoline production, and develops a structural model of the relation between crude

oil prices and inventories.

In a competitive commodity market, a producer makes the optimal storage

decision by equating his expected benefit with the relevant cost of holding inven-

tories. The positive benefit could motivate a producer to hold inventories even

if he anticipates falling prices in the future. Given this motivation, the impor-

tance of inventories for storable commodities has been widely recognized in the

theory of storage literature. Among earlier researchers, [17] defined this benefit

as the convenience yield, which is the flow of services that accrues to an owner of

the physical commodity, but not to an owner of a contract for future delivery of

the commodity. Most earlier literature focused on the inventories’ role of reduc-

ing future production cost and empirically tested the convenience yield in various

storable commodities.

In this paper, we propose an equilibrium storage model of the global crude

oil market to study the role of inventories in refiners’ gasoline production and to

explain fluctuations of crude oil prices in terms of refiners’ benefits to hold inven-

tories. First, we model determinants of crude oil inventories, building upon earlier

research by [39] and [30]. Specifically, we model the role of crude oil inventories

directly as enhancing refiners’ gasoline production by treating inventories as an

essential factor of production following Kydland and Prescott [76, 1988] and [90].

Second, we show the convenience yield is inversely related to crude oil invento-

ries, yet positively related to crude oil prices. This finding is consistent with the

earlier conjecture in the theory of storage. Furthermore, our model estimates in-

dicate that the convenience yield is higher for the summer and for the fall than for

other seasons, which is consistent with observed seasonality in crude oil inventories.
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Third, we identify the structural change in crude oil market fundamentals since

2004 from a rising permanent component of crude oil prices. It is also evidenced in

changing model parameter estimates for before/after 2004, and is consistent with

earlier literature (Tang and Xiong 2012; Büyükşahin and Robe 2014; Hamilton

and Wu 2014).

We illustrate one use of our framework by re-examining the possible con-

tribution of financial investors using a proposed storage model. Given volatile

commodity prices and rapidly increasing financial investors’ activities since 2004,

it has been a controversial issue whether the increasing financial investors’ par-

ticipation has influenced commodity prices in recent years. However, empirical

evidence among researchers is inconsistent. For example, some studies find evi-

dence that financial investors’ activities have impacted commodity futures prices

(See, e.g., Büyüksahin et al. 2008; Einloth 2009; Gilbert 2010; Tang and Xiong

2012; Singleton 2013; Büyükşahin and Robe 2014). On the other hand, others find

little evidence of a relationship between financial investors’ activities and move-

ments in commodity futures prices (See, e.g., Büyüksahin et al. 2008; Stoll and

Whaley 2010; Irwin and Sanders 2010; Sanders and Irwin 2010; Aulerich et al.

2010; Büyüksahin and Harris 2011; Fattouh and Mahadeva 2012; Kilian and Mur-

phy 2014).

One piece of evidence that financial investors have influenced crude oil prices

was provided by [80]. They noted that traditional models of the relation between

crude oil prices and inventories, such as that developed by [105], broke down after

financial investor participation in crude oil markets increased. Merino and Ortiz

extended these models to include a contribution of the long positions of non-

commercial traders, and found that such a specification could better explain the

relation between prices and inventories over 2001-2004. In this paper, we reproduce

the good in-sample fit of the Ye specification, its breakdown after 2001, and the

improvement provided by non-commercial positions over 2001-2004. However, we

also find that even the latter relation falls apart after 2004. We show that although
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the traditional model seemed to do well over the period 1992-2001, it was in fact

misspecified even over that period, and simply appeared to do well because there

was relatively little change in the permanent component of crude oil prices over

that period. We show that the model of the inventory-price relation proposed here

is stable over time and furthermore can account for both the apparent success of

the [105] specification on earlier data as well as its breakdown on subsequent data.

The remainder of the paper proceeds as follows: In section 1.2, we introduce

the theoretical model where the convenience yield arises from the representative

producer’s expected future productivity gain from holding crude oil inventories.

After introducing ways to deal with three issues such as the crude oil spot price, the

aggregation and the seasonality, the equilibrium prediction is provided at the end of

section 1.2. In section 1.3, we begin with documenting estimation results together

with explanations for MLE estimates of structural model parameters. Next, we

show the strong forecasting relationship of inventories and prices, indicating the

weak contribution of financial investors’ activities in the crude oil market. After

providing robustness checks, we explore the recent episode in the crude oil market

based on the stable inventory-price relationship in section 1.4. Lastly, we conclude

with some remarks.
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1.2 Theoretical Model

In this section, we begin by introducing the accounting identity of inven-

tories and the cost function of the representative producer. Next, we provide the

role of inventories as facilitating production schedule and avoiding stockouts by

treating inventories as factors of production. Combining the cost and the produc-

tion functions, a theoretical model is provided in the context of the representative

producer’s decision problem. Lastly, after dealing with issues related to the for-

mulation of the crude oil spot price process, the aggregation and the seasonality,

we yield the equilibrium prediction at the aggregated global economy level.

1.2.1 Cost Function

Consider a representative producer who purchases a quantity qPt of crude oil

at price St per barrel, of which qUt is used up in current production of consumption

good such as gasoline and the remainder goes to increase inventories1 (it):

it = it−1 + qPt − qUt , (1.1)

where qPt − qUt corresponds to net additional crude oil inventories during the time

period t. If the quantity of oil consumed by the representative producer (qUt ) is

smaller than the quantity purchased (qPt ), inventories accumulate and vice versa.

The cost function summarizes both the production and storage technology

for the representative producer. Given the current crude oil spot price (St), the

firm’s costs come from two components: costs for purchasing resources and those

for storing inventories over one period. The former is the product of crude oil spot

price and amounts purchased (qPt ), and the latter is assumed to be proportional to

the current crude oil spot price2. For reflecting the idea of limited storage facilities

1Most earlier literature focused on finished good inventories in order to explain roles such as
production smoothing and production cost smoothing. In what follows, we focus on raw material
inventories and explain the benefit from holding raw material inventories.

2We define the cost for storage in a broad sense: it includes the cost for insurance and
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in the short-run, storage costs are further assumed to take the form of a convex

quadratic function. Given the current crude oil spot price (St) and previous level

of inventories (it−1), the representative producer’s cost function becomes,

c
(
qUt , it; it−1, St

)
= St

{
qUt + (it − it−1)

}
+ St ·

(
c0 +

c1
2
i2t

)
,

where we plug in the accounting identity of inventories following (1.1) after rear-

ranging it for a quantity purchased (qPt ) and c0, c1 > 0.

1.2.2 Production Function

The importance of inventories has been widely recognized in the theory

of storage developed by [72], [104] and [17]. In particular, [17] defined the the

convenience yield as the flow of services that accrues to an owner of the physical

commodity but not to an owner of a contract for future delivery of the commodity.

These services can arise from reducing the probability of a stock-out of inventories,

from inventories’ role in production smoothing, and from future production cost

saving. For example, [84] described the role of inventories in production is “to

reduce costs of adjusting production and to reduce marketing costs by facilitating

schedule and avoiding stockouts”. With his proposed measure for the intangible

convenience yield using available futures contract prices, he found evidence for

such roles for copper, heating oil, and lumber. Further empricial tests for the

convenience yield in commodities include Fama and French [46, 1988], [32], [81],

[91], [19], [59], [3], [87].

The role of inventories as a factor of production has been widely adopted

in earlier literature. For example, Kydland and Prescott [76, 1988] and [90] treat

inventories as essential factors of production for studies of aggregate fluctuations in

the U.S. economy. Focusing on the petroleum refining industry, [30] examines de-

terminants of inventory investment under joint production by treating inventories

transportation beside that for using storage facilities. In general, these costs are determined as
being proportional to the value that is stored.
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as quasi-fixed factors of production. In this paper, we model crude oil inventories

as directly increasing the refinery’s production capabilities. In order to motivate

this role of inventories further, consider the refinery’s decision problem for a peri-

odic production schedule under resource constraints. Compared to firms in other

industries, the refinery’s production heavily depends on the raw material, in this

case, crude oil. It generally takes more than a few weeks to receive additional

crude oil delivery after placing an order in the spot market or making transac-

tion in the derivative market. For its current gasoline production, the refinery

can use at most crude oil resources that are either carried over from the previous

period or are delivered currently from the past transaction. In response to un-

certainties in the aggregate gasoline demand and petroleum prices, the available

inventories in the refinery’s storage determine the attainable level of production

and can improve production efficiency without needing to make costly production

adjustments. Hence, the refinery has a motivation for holding inventories despite

an anticipated falling crude oil prices in the future. Given the realized technology

process (zt), we propose a production function of the form,

f
(
qUt ; it−1, zt

)
=
(
eztqUt

)α {1− exp (−θt · it−1)} ,

where α ∈ (0, 1) is the output share of the crude oil resource and θt > 0 is

the utilization parameter governing the production function’s dependence on the

previous level of inventory. The subscript t on utilization parameter (θt) is used

to allow the possiblity for taking different values depending on the season of the

year, for example, taking a smaller value when the refinery tries to produce more

gasoline for the summer driving season. The term in curly brackets is bounded

between 0 and 1, approaching 1 for sufficiently large it−1 and approaching 0 for

it−1 being close to 0. The resource-augmenting technology process (zt) follows the

random walk process, that is, zt+1 = zt + ε1,t+1 with ε1,t+1 ∼ N (0, σ2
1).
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1.2.3 Theoretical Model

With the cost function and the production function as introduced earlier,

the representative producer faces a dynamic programming problem. At the begin-

ning of each period t, the representative producer faces the crude oil spot price of

St, the realized technology process zt and the exogenously determined real inter-

est rate rt. Given previous inventory (it−1), he makes decisions on the resource

demand (qUt ) and inventories (it) jointly in order to maximize his lifetime profits.

Suppose he is a price taker in the crude oil market and he is risk averse with dis-

count factor (Λt),
3 which governs his risk-aversion. Suppressing the superscript in

the resource demand (qt), the representative producer’s objective is thus to choose

{qt, it}∞t=1 so as to maximize

Π = max
{qt,it}

E0

[
∞∑
t=1

t∏
τ=1

Λτe
−rτ {f (qt; it−1, zt)− c (qt, it; it−1, St)}

]
,

where i−1 is given. Note we pose this as the representative agent’s problem of

producing consumption goods rather than gasoline, for the purposes of studying the

role of inventories in a broad perspective facing global phenomena of acculmulating

crude oil inventories, or petroleum as a whole. In spite of this subtle difference,

we use the term “refinery” interchangeably for the facile understanding of our

theoretical model and its implication.

The optimality conditions for the representative producer are summarized

as,4

αezt (eztqt)
α−1 {1− exp (−θt · it−1)} = St, (1.2)

Et
[
Λt+1e

−rt+1θt+1 exp (−θt+1 · it) (ezt+1qt+1)
α] = St {1 + c1it}−Et

[
Λt+1e

−rt+1St+1

]
.

(1.3)

3In a standard macro model, we have Λτ = β·U ′(cτ+1)
U ′(cτ )

erτ , where U (·) represents the agent’s

utility function and rτ is the interest rate.
4Specifically, the values of

{
qUt , it

}∞
t=1

are determined as functions of {St, zt,Λt}∞t=1 from the

optimality conditions following (1.2) and (1.3).
{
qPt
}∞
t=1

is determined by the accounting identity
in (1.1) and optimal decisions following (1.2) and (1.3).
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Equation (1.2) is the optimality condition associated with the refinery buy-

ing one more barrel of crude oil, and using the crude oil immediately for its current

production. The resource demand is determined where the marginal product equals

the marginal cost. Equation (1.3) is the optimality condition for the storage deci-

sion, in which the refinery equates expected marginal benefits with marginal costs

of holding additional barrel of crude oil inventory. A positive value of the expected

marginal benefits, left hand side in (1.3), introduces the convenience yield as di-

rectly increasing the refinery’s future production capabilities. The representative

producer has an incentive of holding positive level of inventory despite an expected

capital loss in the future.

1.2.4 The Crude Oil Spot Price, Aggregation and Season-

ality

In order to solve the proposed equilibrium model, it is necessary to deal with

three issues: the crude oil spot price, aggregation and seasonality. This section

provides explanations for approaches adopted in this paper.

We model the crude oil spot price process following the long-term/short-

term model of [94] because of the model’s flexibility to capture observed behaviors

in the crude oil prices (e.g., momentum and mean-reversion). In this empirical

application, we adapted their model to a discrete time stochastic process in order

to obtain the closed-form forecasts for the future crude oil spot price.

Suppose that the logarithm of crude oil spot price (logSt) consists of the

long-term trend (ξt) and the short-term deviation (χt). The long-term trend fol-

lows the random walk process, reflecting the idea that oil prices themselves behave

like a random walk at each time period. On the other hand, the short-term devi-

ation from the long-term trend follows the mean-reverting AR(1) process. More
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specifically,

lnSt+1 ≡ ξt+1 + χt+1,

ξt+1 = ξt + ε2,t+1,

χt+1 = k · χt + ε3,t+1,

where k ∈ (−1, 1) is the mean-reversion parameter. ε2,t+1 and ε3,t+1 are innovation

processes with E [ε2,t+1] = E [ε3,t+1] = 0, V ar [ε2,t+1] = σ2
2, V ar [ε3,t+1] = σ2

3 for

∀t. Though not serially uncorrelated with their own processes, innovations are

correlated to each other only at the same time period, i.e. corr [ε2,t+1, ε3,s+1] = ρ

for ∀t = s.

Given the crude oil spot price process, we adopt the risk-neutral valua-

tion framework5 and solve the representative producer’s forecasting problem in

the storage decision (1.3) as if he is risk-neutral. For stochastic processes of state

variables (zt, ξt, χt) associated with the risk-averse producer’s optimal decisions,

we specify risk-neutral processes by subtracting risk-premiums from underlying

stochastic processes. Risk-premiums are equilibrium prices for risks that the pro-

ducer pays for his hedging activities in the crude oil market. This form of risk

adjustment is frequently adopted in the literature. (See, e.g., Schwartz and Smith

2000; Hamilton and Wu 2014). Denoting by Υ ≡
[
λ̃z, λ̃ξ,λ̃χ

]′
risk-premiums, we

assume zero, constant, and a linear state-dependent risk premiums on the technol-

ogy (zt), long-term trend (ξt) and short-term deviation processes (χt) respectively,

that is, λ̃z ≡ 0, λ̃ξ = λξ, λ̃χ ≡ λχ+$χt with λξ > 0, λχ > 0 and $ being constants.

5Implicit assumptions are the deterministic interest rate and the redundancy of the futures
contract. The former guarantees the price equivalance between futures and forward contracts.
More importantly, the latter validates the proposed approach of specifying risk-neutral processes
by subtracting the risk-premiums from underlying processes. See more details for the application
of the risk-neutral valuation framework in Duffie [Dynamic Asset Pricing Theory, 37, pp. 167-174]
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Hence, risk-neutral stochastic processes are of the form:
zt+1

ξt+1

χt+1

 =


0

−λξ
−λχ

+
[

1 1 kQ
]

zt

ξt

χt

+


εQ1,t+1

εQ2,t+1

εQ3,t+1


where kQ ≡ k −$ ∈ (−1, 1) 6. Assuming that εQ1,t+1 is independent of both εQ2,t+1

and εQ3,t+1, innovations for risk-neutral stochastic processes (εQ1,t+1, ε
Q
2,t+1, ε

Q
3,t+1) have

identical properties as explained earlier. We provide detailed explanations for

forecasting properties of the above risk-neutral processes, and for the closed-form

crude oil spot price forecasts in Appendix 1.A.1.

The theory presented so far applies to one representative producer, however,

available observations are aggregated at the global level. Given the trend growth

observed from the global crude oil production, consumption and inventories, we

assume that the number of representative producers increases over time at a fixed

rate. Let Nt be the number of representative producers at period t and g be

the exogenously determined average growth rate of the representative producer,

i.e. Nt = (1 + g)Nt−1. The aggregate resource demands (Qt) and inventories (It)

become,

Qt = Nt · qt

It = Nt · it

where Qt and It will be associated with globally observed aggregate quantities of

the crude oil consumed and inventories. We also have the aggregate production

function F (·) = Nt · f (·) and the aggregate cost function C (·) = Nt · c (·) where

the representative producer’s production f (·) and the cost function c (·) are as

defined earlier7.

6In the proposed model, $ cannot be identified separately from k. Hence, we provide the
explanation based on kQ rather than k henceforth.

7This approach implicitly assumes competitiveness in the global refinery industry following
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Lastly, we introduce seasonally varying utilization parameters in order to

deal with the strong seasonality observed both in the crude oil consumption and

inventories. Specifically, we conjecture that there exist seasonal variations in the

representative producer’s benefit, accordingly seasonally varying convenience yield.

In the northern hemisphere, for example, the aggregate demands for gasoline in-

crease during the summer for traveling and the winter for heating purpose. In

most cases, refiners are able to predict these seasonally varying aggregate demands

and tend to accumulate inventories in advance when it is profitable to meet in-

creasing demands for gasoline by utilizing their production facilities efficiently. In

other words, it is reasonable to impose seasonal variations in the representative

producer’s benefits from holding inventories for the future purpose. We propose

seasonal variations of the respective utilization parameters as follows,8

θt =



θ1 if t is March, April, May

θ2 if t is June, July, August

θ3 if t is September, October, November

θ4 if t is December, January, February

1.2.5 Equilibrium Prediction

With approaches introduced in the previous section, we can yield the equi-

librium prediction for the aggregate resource demands and inventories. Providing

the detailed derivations in Appendix 1.A.2, the optimality conditions for the rep-

resentative producer in (1.2) and (1.3) become,

αezt (eztQt)
α−1 (Nt)

1−α
(

1− exp

(
−θt

It−1
Nt−1

))
= St, (1.4)

[39] and [85].
8In Section 5.3, we consider alternative approaches for capturing apparent seasonality in crude

oil inventories.
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αφ1θt+1 (1 + g)

(
1− exp

(
−θt+1

It
Nt

))φ1
exp

(
−θt+1

It
Nt

)
(1.5)

× exp

{
−rt+1 + φ1

(
zt − ξt − kQχt + λξ + λχ

)
+

1

2
φ2
1

(
sQ1 + σ2

1

)}
= exp (ξt + χt)

[
1 + c1

It
Nt

− e−rt+1 exp

{
−
(
1− kQ

)
χt − λξ − λχ +

1

2
sQ1

}]
,

where θt, θt+1 > 0 are utilization parameters associated with the production in

the current period and the storage decision for the next period respectively9.

φ1 ≡ α
1−α > 0 and sQ1 ≡ σ2

2 + σ2
3 + 2ρσ2σ3 is the conditional variance for the

one-period-ahead forecast of the crude oil spot price under the risk-neutral pro-

cesses. In the aggregate resource demand equation (1.4), the number of the rep-

resentative producers at previous period (Nt−1) works as “positive externality”,

yet the number at current period (Nt) works as “negative externality”. This con-

firms our intuition under the limited storage facilities; an increasing competition

tends to raise marginal storage costs in the short-run due to congestion, but it also

motivates growths in storage.technologies in the long-run.

We propose to measure the equilibrium convenience yield, CY (ξt, χt, zt, It),

from the left hand side of the equation (1.5). After rearranging this, we have,

CY (ξt, χt, zt, It) = Π0 · θt+1

(
1− exp

(
−θt+1

It
Nt

))φ1
(1.6)

× exp

{
−rt+1 − θt+1

It
Nt

+ φ1

(
zt − ξt − kQχt

)}
,

where Π0 ≡ αφ1 (1 + g) exp
{
φ1 (λξ + λχ) + 1

2
φ2
1

(
sQ1 + σ2

1

)}
is a constant as a

function of model parameters. Note that the proposed convenience yield is time-

varying (Gibson and Schwartz 1990), and is inversely related to the current in-

ventories (Pindyck 199410), indicating that inventory holders have larger benefits

9For example, θ1 are used for both θt and θt+1 when the period t corresponds to March.
However, we use θ2 in place of θt+1 when the period t corresponds to May. It is because it
becomes summer in the next period while it is currently spring.

10[84] proposed a net convenience yield measure from a producer’s marginal costs in the storage
market. Leaving out costs for storage facilities, the net convenience yield is calculated as the
price difference between two adjacent futures contracts. Despite simple, such a net convenience
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when inventories are relatively low. Moreover, the proposed convenience yield ex-

hibits asymmetric responses to the long- and short-term components within the

crude oil spot process.

Before concluding this section, we provide three sets of observation equa-

tions as linear functions of state variables (zt, ξt, χt) as our approach of implement-

ing the proposed theoretical model empirically. Detailed derivations are provided

in Appendix 1.A.1 (prices for the crude oil futures contracts) and in Appendix

1.A.2 (the aggregate resource and inventory demands).

The first two observation equations are readily available from equilibrium

decisions for the aggregate resource demands and inventory demands. Consider

the aggregate resource demands from (1.4). Taking the log and subtracting the

previous aggregate resource demands (logQt−1) from the resulting equation yields,

log (Qt/Qt−1) =
α

1− α
zt −

1

1− α
ξt −

1

1− α
χt (1.7)

+
1

1− α
logα

(
1− exp

(
−θt

It−1
Nt−1

))
+ logNt − logQt−1,

where a change in the aggregate resource demands is represented as a linear func-

tion of the state variables (zt, ξt, χt).

Next, consider the log of the aggregate inventory demands (1.5) and linear

approximations of non-linear terms in the resulting equation. Linear approxima-

tions are taken for log (It) being around log (It−1), and for χt being close to −λχ
1−kQ

since χt is mean-reverting around −λχ
1−kQ . Rearranging this, we obtain a linear rela-

tionship between a change in the aggregate demands for inventories (It) and state

variables (zt, ξt, χt) as,

log (It/It−1) = Φ1 (xt) · zt + Φ2 (xt) · ξt + Φ3 (xt) · χt + Φ4 (xt) , (1.8)

yield is heavily influenced by the price movement of the nearest maturity futures contracts, rather
than representing inventory holders’ marginal benefit. Inferred net convenience yield in generally
smaller in magnitude compared to the equilibrium convenience yield presented in this paper.
Based on the similar approach, [40] estimates the net marginal convenience yield using crude oil
futures prices.
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where xt ≡ (rt+1, It−1) denotes a vector of observations that are either exogenous

or predetermined at period t. Coefficients (Φ1 (xt) , Φ2 (xt) , Φ3 (xt) , Φ4 (xt)) are

functions of xt and parameters as follows:

Φ0(xt) =
It−1
Nt

φ1θt+1 exp
(
− θt+1

Nt
It−1

)
1− exp

(
− θt+1

Nt
It−1

) − c1

1 + c1
It−1

Nt
− exp

(
−λξ + 1

2
sQ1 − rt+1

)


−θt+1
It−1
Nt

Φ1(xt) = Φ0(xt)
−1 × (−φ1)

Φ2(xt) = Φ0(xt)
−1 × (1 + φ1)

Φ3(xt) = Φ0(xt)
−1 ×

1 + φ1k
Q +

(
1− kQ

)
exp

(
−λξ + 1

2
sQ1 − rt+1

)
1 + c1

It−1

Nt
− exp

(
−λξ + 1

2
sQ1 − rt+1

)


Φ4(xt) = Φ0(xt)
−1 ×

[
θt+1It−1
Nt

− φ1 ln

{
1− exp

(
−θt+1

Nt

It−1

)}
+ rt+1

+ ln

{
1 + c1

It−1
Nt

− exp

(
−λξ +

1

2
sQ1 − rt+1

)}
− φ1 (λξ + λχ)

+
λχ exp

(
−λξ + 1

2
sQ1 − rt+1

)
1 + c1

It−1

Nt
− exp

(
−λξ + 1

2
sQ1 − rt+1

) − ln
{
αφ1θt+1 (1 + g)

}
−1

2
φ2
1

(
sQ1 + σ2

1

)]

Lastly, we use closed-form spot price forecasts for evaluating prices of crude

oil futures contracts with various maturities. To see this, consider the risk-neutral

stochastic processes in section 1.2.4. Under the risk-neutral valuation paradigm,

the “no arbitrage” price of the contingent claims coincides with the expected future

cash flows under the risk-neutral stochastic process. Note that no cash payment is

made at the time when a futures contract is traded. Hence, the price of the crude

oil futures contract with 1 month to maturity (Ft,1) coincides with the 1-period
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ahead spot price forecast under the risk neutral measure as,

Ft,1 = EQ
t [St+1]

= exp

{
ξt + kQ · χt − λξ − λχ +

1

2
sQ1

}
,

where kQ, λξ, λχ, s
Q
1 are as defined earlier. Taking log on this yields,

logFt,1 = ξt + kQ · χt − λξ − λχ +
1

2
sQ1

Similarily, the price of the crude oil futures contract with τ periods to

maturity (Fτ,t) is obtained recursively as,

logFt,τ = ξt +
(
kQ
)τ · χt − τ · λξ − λχ · 1−

(
kQ
)τ

1− kQ
+

1

2
sQτ ,

where sQτ ≡ τ · σ2
2 +

1−(kQ)
2τ

1−(kQ)2
· σ2

3 + 2ρσ2σ3 ·
1−(kQ)

τ

1−kQ is the conditional variance

associated with τ -periods ahead forecast of the crude oil spot price. Subtracting the

log of the same crude oil futures contract price in the previous period (logFt−1,τ+1),

we obtain a linear relationship between a periodic return of the crude oil futures

contracts with τ periods to maturity and state variables (ξt, χt) as,

log (Ft,τ/Ft−1,τ+1) = ξt+
(
kQ
)τ ·χt−τ ·λξ−λχ·1− (kQ)τ

1− kQ
+

1

2
sQτ −logFt−1,τ+1 (1.9)

From the representative producer’s optimality conditions, we have three

sets of observation equations for estimation, namely, (1.7), (1.8), and (1.9). In

the following section, we estimate model parameters by using crude oil inventories,

consumptions and futures contract prices for 1, · · · , 12 months to maturity11.

11With τ = {1, . . . , 12}, we expect the set of equations following (1.9) captures the term
structure in the crude oil futures prices, contributing to precise parameter estimates in the
representative producer’s production and cost functions.
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1.3 Empirical Results

Given the set of observations that are linear functions of state variables, we

can estimate associated model parameters by maximum likelihood using Kalman

filter12. Five datasets are used for estimation; OECD total petroleum stocks

(OECD inventory), world crude oil production, U.S. CPI all items, U.S. LIBOR,

and light sweet crude oil (a.k.a WTI crude oil) futures contract prices. The monthly

historical data for OECD inventory is provided by International Energy Agency

and it contains total petroleum stock data for the member countries of the OECD.

In order to obtain the monthly crude oil consumption, world crude oil production

estimates from U.S. Energy Information Administration is used together with the

monthly changes in OECD inventory. Historical daily prices for the light sweet

crude oil futures contracts13 are obtained through datastream. In order to avoid

the potential liquidity issue,14 prices for the first calendar date of each month are

used for the construction of monthly price series. The monthly U.S. LIBOR is used

for representing the effective historical riskfree interest rate. Lastly, the U.S.CPI,

provided by OECD, is used for deflating nominal prices of the crude oil futures

contracts into real prices as well as adjusting nominal interest rates for realized

inflation. The time period of the analysis is from March 1989 to November 2014,

where the beginning period of the analysis is determined from the availability of

prices for 1 year crude oil futures contract and the ending period is determined

from the availability of the OECD Inventory.

12Details regarding the state-space representation and the Kalman filter for maximum like-
lihood estimation can be found in Appendix 1.A.3. See more detail in Hamilton [Time Series
Analysis, 62].

13They are traded in New York Mercantile Exchange (NYMEX) and physical delivery is re-
quired as it matures during the delivery month.

14Trading in the current delivery month shall cease on the third business day prior to the
twenty-fifth calendar day of the month preceeding the delivery month.
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1.3.1 Results

Table 1.1 reports maximum likelihood estimates. Estimates of the model

parameters are consistent with the theoretical restrictions and historical observa-

tions. As for the estimates themselves, several points stand out. First, recall that

we model the representative producer’s problem of producing consumption goods.

The output share (α) estimate indicates that crude oil resources account for ap-

proximately 31% of the consumption good production globally. Second, when the

real price of crude oil was $99.21 per barrel and the inventory level was 4,138.71

million barrels per day in January 2008, estimates for storage costs functions in-

dicate that the marginal storage cost necessary for increasing an additional barrel

of crude oil inventory is approximately $0.51 per barrel holding other things be-

ing equal. Third, all seasonal utilization parameters (θ1, θ2, θ3, θ4) are statistically

significant. The smallest difference among utilization parameters is 0.0011 be-

tween summer (θ2) and fall (θ3). Wald statistic for testing the null hypothesis of

H0 : θ2 = θ3, is 5.73 with the corresponding p-value being 0.0167. All seasonal

utilization parameters are different from each other, and test results are provided

for all pairs and jointly in Table 2. While the smallest difference is about 0.001,

it is shown that holding other things being equal, 0.001 decrease in θ yields $0.16

per barrel increase in the convenience yield during July 2003 when the inventory

level of 3,935.06 millions barrels per day corresponds to the median level15. These

estimates indicate that utilizations for summer and fall are higher than those for

spring and winter since the smaller θ implies production technologies’ higher depen-

dence on available inventories. Fourth, the positive mean reversion (kQ) indicates

that the short-term deviation of the crude oil spot price is highly persistent un-

der the risk-neutral measure. Given the slowly moving long-term trend and the

positive correlation (ρQ) between two underlying processes, this further implies

the highly persistent crude oil spot process under the risk-neutral measure. Fifth,

150.001 decrease in θ yield $0.13 per barrel increase in the convenience yield during March 1989
and $0.30 per barrel increase during August 2010, where those months correspond to the period
with the minimum (former) and the maximum (latter) inventory.
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the long-term risk premium (λξ) is positive and statistically significant, indicat-

ing risky long-term trend component in the crude oil price movement. Given the

highly persistent oil price, producers need to provide counterparties with sufficient

compensations for hedging their price risks, especially being associated with the

long-term risk factor. On the other hand, the short-term risk premium (λχ) is neg-

ative, yet statistically insignificant. Accordingly, arbitrageurs do not necessarily

require high risk premium when providing liquidities for hedgers when facing the

short-term risk factor.

Figure 1.1 plots the historical decomposition of the crude oil spot price

with the long-term trend process (Panel 1) and the short-term deviation process

(Panel 2). The model fitness is shown in Panel 3 by overlaying the model forecasts

with the real price for the nearest maturity crude oil futures contract (henceforth,

crude oil price) on a log scale. In the historical decomposition, previous episodes

in the crude oil market is shown through the lens of the long-term and short-term

processes; the long-term trend represents the slowly moving trend while the short-

term deviation is a mean-reverting process around the long-run average ( −λ̂χ
1−k̂Q

=

0.07). Interestingly, the long-term trend has been increasing from the beginning of

2004 to the first half of 2008, reaching at the higher equilibrium level compared to

the previous period16. Observations are generally consistent with previous episodes

documented in the earlier literature (See Hamilton 2009; Kilian 2009; Kilian and

Murphy 2014).

Panel 1 in Figure 1.2 plots the equilibrium convenience yield ratio, calcu-

lated from dividing the equilibrium convenience yield by the crude oil spot price

(CYt/St, %). The equilibrium convenience yield ratio fluctuates considerably along

the business cycle, repeating the same patterns around the past recession and re-

covery periods. When the global economy began recovering from the early 2000’s

recession, for example, the equilibrium convenience yield ratio sharply increases

from 14.51% in February 2002 to 19.41% in February 2003. On the other hand,

16In section 1.4.2, we revisit the potential effect of the structural change in the crude oil market
from the subsample analysis.
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it declines from 15.39% to 13.04% between December 2007 and June 2009 (Great

Recession). Moreover, we find that the equilibrium convenience yield ratio is pos-

itively related to the crude oil price, yet is negatively related to the crude oil

inventories. After the early 2000’s recession, the crude oil price had increased

by 59.67% and crude oil inventories had declined by 5.67%. In contrast, the oil

price had decreased by 24.72% and inventories had increased by 5.57% during the

Great Recession. Panel 2 plots the percentage deviation of the observed crude

oil inventories from the equilibrium inventory level (Relative inventory17). Here,

we confirm the negative relationship between equilibrium convenience yield ratios

and relative inventories in general. For the two time periods considered above, the

relative inventory has declined from −0.75% to −4.00% between February 2002

and February 2003, and it has increased from −0.33% to 2.92% during the Great

Recession associated with decreasing equilibrium convenience yield ratios. We also

find a lagged response from the relative inventory,18 however, it is beyond the scope

of this paper.

1.3.2 The Effect of Financial Investors in the Crude Oil

Market

Traditionally, traders would react to releases of inventory data in a pre-

dictable way. Unexpectedly high inventories were taken as a view of weak demand

and strong supplies, and the price would decline. Unexpectedly low inventories

would predict an increase in the price. The fact that this relation seemed less

reliable in the period of heavy financial participation led some to conclude that

17[105] introduced the relative inventory as a measure for crude oil market tightness, by cal-
culating a desired inventory level as a fitted crude oil inventory using monthly dummy variables
and a linear time trend. [80] also used this for forecasting crude oil spot prices. In the following
section, we address their forecasting models in detail.

18For relative inventory in Panel 2, local peak and trough around early 2002-2003 occurs at
April 2002 and May 2003, that are 2- and 3-months lagged compared to those appeared in
equilibrium convenience yield ratios respectively.
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financial investors were changing the fundamental behavior of crude oil prices19.

One description of the traditional relation between prices and inventories

was developed by [105], who defined the normal inventory, NIt as the fitted value

from a regression of the observed OECD inventory OIt on a constant, deterministic

time trend, and monthly dummies:

OIt = β0 + β1 · t+
12∑
p=2

βp ·Dp (1.10)

where (Dp, p = 2, . . . , 12) are monthly dummies, i.e. Dp = 1 if the period t

corresponds to the month p, Dp = 0 otherwise, and they further defined RIt ≡

OIt − NIt as the residual from this regression. Allowing for the possibility that

positive and negative residuals had different effects as well as an effect of the

year-over-year change AIt = OIt − OIt−12, [105] proposed a forecasting model as

follows,

F1,t = a+
5∑
i=0

bi ·RIt−i +
5∑
i=0

ci · LIt−i + d · AIt + e · F1,t−1 + εt (1.11)

where F1,t is the nearest maturity crude oil futures price at period t and εt is a

regression error.

Figure 1.3 plots in-sample and out-of-sample forecasts following the tradi-

tional forecasting model. The period for in-sample forecasts coincides with the

earlier literature from January 1992 to February 2001. Using estimated coeffi-

cients from in-sample forecasting period, we calculate out-of-sample forecasts from

March 2001 to June 2004. The solid line in March 2001 denotes the beginning

of out-of-sample forecasts. Figure 1.3 confirms the strong in-sample forecasting

ability documented in the earlier literature. However, its strong forecasting ability

disappears over the out-of-sample forecasting period.

Given the poor performance of the traditional forecasting model after 2003,

19[48] provide a detailed review of the empirical literature investigating the role of speculation
in driving the oil price after 2003.
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[80] proposed the extended forecasting model by building upon the former model.

After expressing RIt in a percentage of total level (RI%t) and including CFTC

non-commercial long position (Xt), the extended forecasting model is provided as

follows:

F1,t = β0 + β1 · t+ β2 ·∆RI%t + β3 ·RI%t−1 + β4 ·∆Xt + β5 ·Xt−1 + ηt (1.12)

where ∆RI%t = RI%t − RI%t−1, ∆Xt = Xt −Xt−1 and ηt is a regression error.

One thing to note is that [80] included the deterministic time trend (t) in the fore-

casting equation as opposed to the lagged price (F1,t−1) considered in [105]. Figure

1.4 plots in-sample and out-of-sample forecasts following the extended forecasting

model. The period for in-sample forecasts coincides with [80] from January 1992

to June 2004. Using estimated coefficients from in-sample forecasting period, we

calculate out-of-sample forecasts from July 2004 to November 2014. The solid line

in July 2004 denotes the beginning of the out-of-sample forecasts. Along with

the extended model forecasts, we also calculate the basic model forecasts from

the literature, where the latter model excludes Xt in the former forecasting equa-

tion (1.12). Figure 1.4 confirms the improved in-sample forecasting ability of the

extended model as documented in [80]: the extended model exhibits the better

in-sample forecasts than the basic model from 2001 to 2004 while both generated

similar in-sample forecasts from 1992 to 2001.

However, when we extend the sample to include data since publication of

Merino and Ortiz’s study, even their model with non-commercial traders does quite

badly.

On the other hand, the optimizing model developed in section 1.2 suggests

that both equations (1.11) and (1.12) are misspecified. To see whether our model

exhibits any of the instabilties of either (1.11) and (1.12), we performed an anal-

ogous out-of-sample evaluation. Specifically, we divide the total sample into two

sub-samples: the period for in-sample forecasting covers from March 1989 to June
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2004 and that for out-of-sample forecasting spans from July 2004 to November

2014. After calculating in-sample forecasts, we iterate following three steps recur-

sively starting at June 2004 for calculating out-of-sample forecasts using parameter

estimates from the first sample20. First, given available observations, we update

the state vector and the variance matrix using the formula for updating a linear

projection. Second, given updated vectors and matrices, we calculate one-period

ahead forecasts with linear projections. Third, given one-period ahead forecasts,

we calculate one-period ahead out-of-sample forecasts. Figure 1.5 displays fore-

casts of the nearest maturity crude oil futures contract price. The solid vertical

line in July 2004 denotes the beginning of the out-of-sample forecasts. We find the

stable crude oil price forecasting relationship both in-sample and out-of-sample.

It is worth noting that out-of-sample forecasts are based on information that are

either known in advance or predetermined at each forecasting period. In other

words, current information is sufficient to produce a reliable forecast of the next

period crude oil futures price given the stable forecasting relationship following the

proposed storage model.

If equation (1.11) was misspecified, why did it seem to have such a good fit

prior to 2001? To answer this question, suppose that inventories had been exactly

as predicted by our model, that is, replace OIt on the left-side of (1.10) with

ÔI t the predicted equilibrium level of inventories from equation (1.8). We then

reproduce the Ye, et al. exercise on this generated data, the results of which are

shown in Figure 6. Even though equation (1.8) is the correct relation that exactly

describes these generated data, and even though (1.10) and (1.11) are misspecified,

they appear to do a reasonable job until 2004 after which they completely break

down.

The explanation for the apparent success of the misspecified model in the

earlier period can be found from the fact that the permanent component of crude oil

prices, ξt, was relatively stable up until 2003, but then began to increase substan-

20MLE estimates for the first sample period is displayed in Table 1.4.
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tially (see the top panel of Figure 1.1). During the period when ξt was relatively

stable, simple relations like (1.10) did not do a bad job of fitting the data, even

though they fundamentally mischaracterize the true relation between inventories

and crude oil prices. On the other hand, with the large changes in ξt observed since

2004, the need for a better model of the relation between oil prices and inventories,

such as that proposed in this paper, becomes quite evident.

1.4 Robustness Checks

In this section, we provide robustness checks in terms of concerns about

endogeniety and the effect of the structural change in crude oil markets. First, we

test necessary orthogonality conditions of forecasting errors in demand equations

and the exogenous innovation affecting the crude oil supply. Using the lagged crude

oil supply shock constructed following [73], we show that forecasting errors are not

correlated with the past crude oil supply shock. This validates our maintained

orthogonality assumptions. Second, after splitting the sample at June 2004, we

estimate model parameters under two separate periods. While some parameter

estimates indicate a potential structural change, our main estimation results are

qualitatively robust across the two periods.

1.4.1 Simultaneity Issue

While estimating parameters along demand curves in (1.7) and (1.8), one

concern is the endogenous nature of forecasting errors arising from simultaneous

equation biases. However, given the consensus of the short-term inelastic supply of

crude oil and historical episodes of the crude oil price determination, we conjecture

that the primary driver of historical changes in the price of oil has been supply

shocks rather than demand shocks. Specifically, what we observed historically is

that 1) the crude oil price has been determined by changes in the short-term supply

components by shifting the supply curve temporarily, 2) the relative size of shifts
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has been larger for the supply compared to the demand curve. Details for the

crude oil market structure can be found in [61] and [103].

In order to motivate our robustness check for the simultaneity issue, recall

the equilibrium resource demand equation (1.7), where the representative producer

forms his prediction on resource demands. Adding the forecast error (u1,t) to

”ex-ante” forecasts on resource demands, we rewrite the observation equation for

resource demands as follows,

log (Qt/Qt−1) =

[
α

1− α
zt −

1

1− α
ξt −

1

1− α
χt

+
1

1− α
logα

(
1− exp

(
−θt

It−1
Nt−1

))
+ logNt − logQt−1

]
+ u1,t,

where terms in the square bracket correspond to the representative producer’s

forecasts on resource demands. If the representative producer forms his forecasts

optimally given available information, then the forecasting error (u1,t) should be

uncorrelated with its own lagged values and with ”ex-ante” forecasts on crude

oil resource demands. From this perspective, the forecasting error (u1,t) should

be uncorrelated with innovations affecting optimal forecasts on resource demands.

Using the historical crude oil supply shock (ht) constructed following [73],21 we

test the simultaneity issue from the following implied orthogonality condition,

E [∆u1,t · ht−2] = 0, (1.13)

where ∆u1,t ≡ u1,t − u1,t−1 is the change in the forecasting error and ht−2 is the

crude oil supply shock lagged by 2 periods. As noted in [73], this measure of

the crude oil supply shock corresponds to an exogenous source of variation that

21[73] proposed a structural VAR model of the global crude oil market and provided the
evidence that oil price increases may have very different effects on the real price of oil, depending
on the underlying cause of the price increase. Given the endogenous nature of the oil price,
he proposed a methodology for decomposing unpredictable changes in the real price of oil into
mutually orthogonal components such as crude oil supply shocks, aggregate demand shocks and
oil specific demand shocks. We construct historical crude oil supply shocks using the real economic
activity index provided in his website (http://www-personal.umich.edu/∼lkilian/reaupdate.txt).
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affects the crude oil price, but not innovations in crude oil demand. From this

perspective, this provides a natural way of testing the endogeneity issue provided

by the exogenous nature of the crude oil supply shock, i.e., the lagged crude oil

supply shock (ht−2) provides no information about future forecasting errors (∆u1,s

for s ≥ t) beyond that contained in current optimal forecasts on resource demands.

Similarily, we test the simultaneity issue in the inventory demand equation

from the orthogonality condition implied by the exogenous crude oil supply shock

(ht−2). Denoting by u2,t the forecasting error of the representative producer’s

”ex-ante” inventory forecasts, we rewrite the observation equation for inventory

demands by adding the forecast error (u2,t) to ”ex-ante” forecasts on inventory

demands as follows,

log (It/It−1) = [Φ1 (xt) · zt + Φ2 (xt) · ξt + Φ3 (xt) · χt + Φ4 (xt)] + u2,t,

where xt ≡ (rt+1, It−1) denotes a vector of observations that are either exogenous

or predetermined at period t and coefficients (Φ1 (xt) , Φ2 (xt) , Φ3 (xt) , Φ4 (xt))

are same as before. The simultaneity issue in the inventory demand equation is

tested from,

E [∆u2,t · ht−2] = 0, (1.14)

where ∆u2,t = u2,t − u2,t−1 is the change in the inventory forecasting error.

Provided by two orthogonality conditions derived as in (1.13) and (1.14),

we provide the robustness check of simultaneity issues as follows. First, using

estimated parameters and observations, we calculate {∆û1,t,∆û2,t}309t=2 by replac-

ing unobservables with corresponding forecasted values of
{
ẑt, ξ̂t, χ̂t

}309

t=2
. Simple

correlation coefficient estimates with the lagged crude oil supply shock (ht−2) are

−0.0932 (∆û1,t) and −0.1233 (∆û2,t) respectively. Second, we regress ∆û1,t (and

∆û2,t) on a constant and the lagged crude oil supply shock (ht−2). In our regres-

sion specification, we also include lagged dependent variables (∆û1,t−1 and ∆û1,t−1

respectively) and the lagged explanatory variable (ht−3) for correcting effects from
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serial correlations.

Table 1.3 reports estimated coefficients with p-values in paranthesis as well

as the joint hypothesis test results for testing the null hypothesis of all coeffcient

estimators being zero. Here, we find that both the crude oil supply shock (ht−2)

and its lag (ht−3) do not provide statistically significant explanatory power for fore-

casting errors in the resource and inventory demand equations. Although we reject

the null hypotheses for the joint hypothesis tests, we find that these arise from the

explanatory power provided by the lagged forecasting errors in both the resource

and inventory demand equations. This seems to indicate unexplained variations

of forecasting errors in the demand equations, yet, these are not correlated with

the exogenous variables that only affect crude oil prices. To sum up, we find that

forecasting errors are not correlated with the exogenous oil supply shock, which

validates our maintained orthogonality assumption.

1.4.2 Structural Change

Given the increased financial investors’ participation after 2004, it has been

a controversial issue whether these new participants has changed the crude oil

market structure. Facing the potential structural change, we provide robustness

checks by estimating structural model parameters under two sub-sample periods.

The first sub-period spans from March 1989 to June 2004 (184 observations) and

the second sub-period spans from July 2004 to November 2014 (125 observations).

Table 1.4 reports estimates and asymptotic standard errors for two sub-periods.

In general, estimates are similar to those appeared in Table 1.1. It is interesting

that we find the increased autocorrelation (kQ), correlation (ρQ), long-term risk-

premium (λξ) and the decreased short-term risk premium (λχ) since 2004. This

seemingly reflects fundamental changes in the crude oil market as is frequently

documented in the earlier literature (See, e.g., Tang and Xiong 2012; Büyükşahin

and Robe 2014; Hamilton and Wu 2014). However, the stable price-inventory

relationship and the cointegrated convenience yield implied from the storage model
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indicate that effects from those fundamental changes are insignificant overall.

1.4.3 Inventory-Price Relation and the Recent Oil Price

Plunge

After the peak of the Great Recession, the real price of crude oil revisited $90

per barrel during February 2011. Since then the volatility had reduced gradually

with prices oscillating between $76.32 and $110.01 per barrel until November 2014.

When the Organization of Petroleum Exporting Countries (OPEC) decided not

to cut petroleum productions in the near future, the oil price started to plunge,

falling by 38% in a very short period of time until March 2015. In this section, we

explore the recent episode in the crude oil market by examining publicly available

production and consumption forecasts based on the stable crude oil inventory-price

relationship.

To begin with, consider global petroleum production and consumption fore-

casts measured in million barrels per day (mbpd) between August 2014 and July

2015, provided by U.S. Energy Information Administration (EIA) Short-Term En-

ergy Outlook. Table 1.5 displays forecasts for global petroleum production (col-

umn 2) and consumption (column 3), reported at July 2014. Column 4 reports

expected changes in global petroleum inventories following the accounting identity

introduced in section 2.1. When the real crude oil price was $96.47 per barrel

on July 2014, the global crude oil market were expected to balance over 1-year

time horizon: inventories were expected to decrease at a rate of 0.52 mbpd. Next

two columns report changes in production (column 5) and consumption forecasts

(column 6) from each month’s forecasting revision relative to those reported on

July 2014. For example, the revised production forecast on August 2014 was 92.51

mbpd, reflecting a slower rate of production by 0.07 mbpd than what was fore-

casted on July 2014. Similarly, the revised consumption forecast on September

2014 was 92.85 mbpd, faster by 0.06 mbpd than the July 2014 forecast. The last
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column reports cumulative changes in global petroleum inventories after reflecting

monthly revisions in production and consumption. Note that global petroleum

production forecast had been revised upward from October 2014 to April 2015,

and consumption forecast for early 2015 had been revised downward. If global

economies were behaving as expected on July 2014, inventories were expected to

decrease at a mild rate22 of 0.67 mbpd between January 2015 and April 2015.

After reflecting monthly revisions on production and consumption, however, in-

ventories were expected to increase rapidly at a rate of 3.79 mbpd during the first

4 months in 2015. This corresponds to 113.7 million barrels increase in inventories

cumulatively 23.

In order to see whether recently revised global oil market forecasts are con-

sistent with the recent oil price plunge, we perform an out-of-sample evaluation

following the same procedure described in section 1.3.2. We use parameter esti-

mates from the second sample in Table 1.4, and generate out-of-sample forecasts

of the nearest maturity crude oil futures contract price between December 2014

and March 2015. Since world crude oil production and OECD inventory are not

available for the out-of-sample evaluation period,24 we extrapolate estimates in

November 2014 by using forecasts reported in Table 1.5. Specifically, for crude

oil production and consumption estimates, we apply the corresponding expected

growth rate in global petroleum production and consumption during this period.

Given these, monthly inventories are estimated by using the accounting identity.

Figure 1.7 displays the observed OECD inventories (solid line), their in-

sample and out-of-sample forecasts (dotted line) based on U.S. EIA Short-Term

22This corresponds to a monthly average rate of 5.02 million barrels. For 309 monthly OECD
petroleum inventories in our data, there are 286 observations whose monthly inventories changes
(in absolute term) are greater than 5.02 million barrels. Furthermore, the average absolute
monthly inventory changes is 29.57 million barrels.

23Over the longer time periods during previous recessions, the OECD petroleum inventories
had increased by 130.52 million barrels during the early 2000 recession from March 2001 and
November 2011, and by 227.52 million barrels during the Great Recession from December 2007
to June 2009. The real crude oil price had decreased by 26.67% (former), and by 24.72% (latter).

24The U.S. EIA reports monthly international petroleum statistics, that are generally lagged
by 6 months. As of April 2014, the latest available observation is from December 2014 for crude
oil production, and November 2014 for OECD inventory.
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Energy Outlook. While out-of-sample forecasting period begins at December 2014,

the triangle node represents inventory forecasts constructed from recursively re-

vised global oil production and consumption forecasts. Here, we confirm that

inventories are expected to increase rapidly after December 2014 when using re-

cursively revised forecasts. For comparison, the circle node represents inventory

forecasts following the July 2014 report, increasing at a slower rate than the for-

mer. Figure 1.8 displays associated crude-oil price forecasts. Though lagged, we

see that the recent oil price plunge can be explained by the stable price-inventory

relationship provided by our model. When only using the information available

until July 2014,25 we find that the real crude oil price is expected to be about $75

per barrel over the same horizon, that is consisistent with the real price of crude oil

futures contracts maturing 1-, 2-, 3- and 4-months afterwards on November 2014.

25While using production and consumption forecasts from July 2014 report for estimating
world crude oil production and OECD inventory, we replace each month’s observed crude oil
price by one-period-ahead out-of-sample forecast made in the previous month.
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1.5 Conclusion

A recurring question in empirical work is the potential contribution of fi-

nancial investors to the recent volatility of crude oil prices. This is a momentous

issue for policy implications. However, empirical evidence among researchers is

inconsistent and yet to indicate causal relationships. While most answers from the

earlier empirical work rely on incomplete measures for representing activities of

financial investors and Granger-causality tests for the analysis, we build an equi-

librium storage model of the global crude oil market with crude oil inventories

being treated as a separate factor of the gasoline production.

Using a newly developed structural model of the global crude oil market, we

explore the role of crude oil inventories and the convenience yield arising from hold-

ing inventories. We model crude oil inventories as directly increasing the refinery’s

production capabilities, and show time-varying convenience yields as is consistent

with the theory of storage. Our model indicates the stable forecasting relationship

of prices and inventories in contrast to the typical argument of a breakdown of

the forecasting relationship following increased participation by financial investors

after 2004. Given this new evidence, we conclude that the potential contribution

from financial investors is weaker than the magnitude public acknowledged in the

crude oil market.

While the particiapation of financial investors has provided traditional play-

ers in the crude market with necessary liquidities for hedging against uncertainties,

it also has been a controversial issue whether these new participants has affected

significantly the crude oil market. [23] documented the increased co-movement be-

tween crude oil prices, financial assets and other commodity prices, yet this finding

is inconsistent with the common knowledge about the commodity market (See Erb

and Harvey 2006; Gorton and Rouwenhorst 2006; Hamilton 2009). Whether or

not this increased co-movement results in the spillover effects claimed in [100], the

most necessary work seems to be the welfare analysis by addressing whether or
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not the participation of financial investors involves enhancing the welfare of the

economy when evaluating the potential contribution of their activities in the crude

oil market. Lastly, it would be interesting to investigate the effect of price uncer-

tainties on the crude oil inventory holder’s benefit. Given the existence of the role

of crude oil inventories, the convenience yield is expected to be a mechanism to

capure uncertainties in fundamentals as well as a mechanism to deliever these into

the economy.
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Figure 1.1: Historical Decomposition of the Crude Oil Spot Price

Figure 1.1 plots the historical decomposition of the crude oil spot price with the long-
term trend process (Panel 1) and the short-term deviation process (Panel 2). Panel 3
plots the crude oil spot price (dotted line) together with the price for nearest maturity
crude oil futures contract (solid line) on a log scale.
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Figure 1.2: Equilibrium Convenience Yield

Figure 1.2 plots the equilibrium convenience yield in proportion to the crude oil spot price
(Panel 1) and the relative crude oil inventory (Panel 2). Relative inventory is calculated
as the percentage deviation of observed crude oil inventory from the equilibrium inventory
inferred from the model.
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Figure 1.3: Forecasts following Ye et al. (2001)

Figure 1.3 plots in-sample and out-of-sample forecasts of the real crude oil futures price
following Ye et al. (2001). While in-sample forecasts are calculated based on the period
from January 1992 to February 2001, out-of-sample forecasts from March 2001 to June
2004 are calculated by using estimated coefficients from in-sample forecasting period.
The solid line denotes the beginning of out-of-sample forecasts in March 2001. For
comparison, observed crude oil futures prices are plotted by using the solid line.
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Figure 1.4: Forecasts of the Merino and Ortiz (2005) Model

Figure 1.4 plots in-sample and out-of-sample forecasts of the real crude oil futures price
following Merino and Ortiz (2005). The extended (long dotted line) and the basic (short
dotted line) models refer to the forecasting models with and without a role for non-
commercial traders. The solid line in July 2004 denotes the beginning of the out-of-
sample forecasts.
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Figure 1.5: Forecasts from the Proposed Storage Model

Figure 1.5 plots in-sample and out-of-sample forecasts of the real crude oil futures price
from the proposed storage model. In-sample forecasts are calculated from the proposed
storage model by using observations from March 1989 to June 2004, and out-of-sample
forecasts are calculated recursively from forecasts for state variables by using parameter
estimates from the in-sample estimation period.
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Figure 1.6: Forecasts following Ye et al. (2001) with Equilibrium Model Forecasts

Figure 1.6 plots forecasts following Ye et al. (2001) with observed crude oil inventories
being replaced by the equilibrium model forecasts.
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Figure 1.7: Inventory Forecasts based on EIA Short-Term Energy Outlook

Figure 1.7 plots forecasts for crude-oil inventories based on U.S. Energy Information
Administration Short-term energy outlook. The solid blue line represents observed crude
oil inventories and the dotted red line represents forecasts under two scenarios. While
out-of-sample forecasting begins at December 2014, red circle represents out-of-sample
forecasts based on July 2014 forecasts. In contrast, red triangle represents out-of-sample
forecasts where monthly forecasts for petroleum production and consumption are revised
over time. The vertical axis represents month-end OECD petroleum inventories in million
barrel.
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Figure 1.8: Price Forecasts based on EIA Short-Term Energy Outlook

Figure 1.8 plots forecasts for crude-oil futures contract prices based on U.S. Energy
Information Administration Short-term energy outlook. The solid blue line represents
observed crude oil prices and the dotted red line represents price forecasts under two
scenarios. While out-of-sample forecasting begins at December 2014, red circle rep-
resents out-of-sample forecasts based on July 2014 forecasts. In contrast, red triangle
represents out-of-sample forecasts where monthly forecasts for petroleum production and
consumption are revised over time.
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Table 1.1: MLE Estimates

Parameters MLE (s.e) Parameters MLE (s.e)

α 0.3078 (0.0089) σI 0.0176 (0.0007)

θ1 0.0935 (0.0026) σQ 0.0000 (0.0060)

θ2 0.0896 (0.0025) σF,1 0.0278 (0.0011)

θ3 0.0885 (0.0025) σF,2 0.0148 (0.0006)

θ4 0.0917 (0.0025) σF,3 0.0076 (0.0004)

c1 0.0051 (0.0003) σF,4 0.0035 (0.0002)

g 0.0003 (0.0000) σF,5 0.0017 (0.0001)

kQ 0.9061 (0.0019) σF,6 0.0023 (0.0001)

ρQ 0.0969 (0.0601) σF,7 0.0023 (0.0001)

λξ 0.0024 (0.0002) σF,8 0.0023 (0.0001)

λχ −0.0067 (0.0664) σF,9 0.0021 (0.0001)

σ1 0.3095 (0.0154) σF,10 0.0010 (0.0001)

σ2 0.0512 (0.0021) σF,11 0.0024 (0.0001)

σ3 0.0777 (0.0033) σF,12 0.0044 (0.0002)

Likelihood 14, 403.08

Note: The likelihood function is reparametrized while preserving restrictions on param-
eters. The reported MLE are re-calculated from the estimated MLE and asymptotic
standard errors are calculated based on initial parametric specifications. The last row
reports the maximum value achieved for the log of the likelihood function.
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Table 1.2: Hypothesis Tests

H0 W p− value

(1) θ1 = θ2 72.31 0.0000

(2) θ1 = θ3 115.84 0.0000

(3) θ1 = θ4 14.33 0.0002

(4) θ2 = θ3 5.73 0.0167

(5) θ2 = θ4 22.11 0.0000

(6) θ3 = θ4 48.59 0.0000

(7) θ1 = θ2 = θ3 = θ4 46.35 0.0000

Note: Table 1.2 reports wald test statistics and corresponding p-values for testing the
null hypothesis of seasonally varying convenience yields. Specifications from (1) through
(5) reports results for pairwise tests while (6) reports the result for joint test.
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Table 1.3: Robustness Check - Simultaneity

(1) Resource (2) Inventory

Regressor Coeff. p-value Regressor Coeff. p-value

Constant −0.0002 0.9359 Constant −0.0001 0.9262

ht−2 −0.3398 0.7034 ht−2 0.3355 0.2715

ht−3 1.2692 0.1550 ht−3 −0.3347 0.2750

ν1,t−1 −0.0401 0.0036 ν2,t−1 −0.0477 0.0166

F 2.5824 0.0373 F 2.3543 0.0539

Note: Table 1.3 reports regression results for testing implied orthogonal conditions.
Given the exogenous crude oil supply shock, the first three columns correspond to the
orthogonal condition of forecasting errors in the aggregate resource demands while the
following three columns corresponds to those in the aggregate inventory demands. We
include both lagged explanatory and dependent variables for taking into account poten-
tial effects from serial correlations. Lastly, we provide the joint hypothesis test result for
the null hypothesis of all coefficient estimators are zero with corresponding p-values.
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Table 1.4: MLE Estimates for Sub-Sample Periods

Period 1 Period 2

Parameters MLE (s.e) MLE (s.e)

α 0.3289 (0.0106) 0.1104 (0.0012)

θ1 0.0843 (0.0035) 0.1295 (0.0038)

θ2 0.0798 (0.0035) 0.1263 (0.0036)

θ3 0.0785 (0.0034) 0.1257 (0.0035)

θ4 0.0820 (0.0034) 0.1286 (0.0037)

c1 0.0061 (0.0005) 0.0034 (0.0004)

g 0.0002 (0.0000) 0.0003 (0.0000)

kQ 0.9072 (0.0028) 0.9310 (0.0021)

ρQ −0.0126 (0.0843) 0.1246 (0.0966)

λξ 0.0001 (0.0004) 0.0063 (0.0004)

λχ −0.0031 (0.0657) −0.0471 (0.0488)

σ1 0.2960 (0.0183) 0.8223 (0.0530)

σ2 0.0377 (0.0020) 0.0652 (0.0042)

σ3 0.0909 (0.0050) 0.0622 (0.0045)

Likelihood 8, 255.93 6, 921.95

Note: Table 1.4 reports MLE estimates for the baseline model under two sub-sample
periods.The first sub-period (Period 1) spans from March 1989 to June 2004 (184 obser-
vations) and the second sub-period (Period 2) spans from July 2004 to November 2014
(125 observations). Although not reported, coefficient estimates for measurement errors
are quantitatively similar to those in Table 1.1. The last row reports the maximum value
achieved for the log of the likelihood function.
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Table 1.5: Global Production and Consumption Forecasts

Forecasts (July 2014) Revision

Dates Prod. Cons. Inventory Prod. Cons. Inventory

Aug 2014 92.58 92.18 (+0.40) (−0.07) (+0.00) (+0.33)

Sep 2014 92.60 92.78 (−0.19) (−0.23) (+0.06) (−0.48)

Oct 2014 92.10 92.28 (−0.18) (+0.29) (+0.11) (+0.00)

Nov 2014 92.45 92.40 (+0.05) (+0.11) (+0.03) (+0.13)

Dec 2014 92.11 92.24 (−0.13) (+0.15) (+0.03) (−0.01)

Jan 2015 91.84 91.69 (+0.15) (+0.16) (−0.57) (+0.87)

Feb 2015 92.09 92.78 (−0.68) (+0.76) (−0.03) (+0.11)

Mar 2015 92.19 92.27 (−0.07) (+1.12) (−0.15) (+1.20)

Apr 2015 92.51 92.58 (−0.07) (+1.55) (−0.13) (+1.61)

May 2015 92.82 92.03 (+0.79) N/A N/A N/A

June 2015 92.86 93.32 (−0.46) N/A N/A N/A

July 2015 93.35 93.46 (−0.11) N/A N/A N/A

Cumulative (−0.52) (+3.76)

Note: Table 1.5 displays global petroleum production and consumption forecasts from
U.S. Energy Information Administration Short-term energy outlook, and reports the
expected changes in petroleum inventories under the baseline forecasts in July 2014,
and under monthly revisions. Columns 2 and 3 report global petroleum production
and consumption forecasts (million barrel per day) from August 2014 to July 2015,
provided in July 2014. Column 4 reports the expected average daily change in petroleum
inventories as a difference between production and consumption. Column 5 and 6 report
effects from monthly revisions of petroleum production and consumption relative to
baseline forecasts in July 2014. The last row computes the cumulative average change in
petroleum inventories, million barrel per day, under the baseline forecasts in July 2014
(column 4), and under the revised forecasts (column 7).
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Appendix 1.A: Detailed Explanations

In this section, we provide detailed explanations for approaches used in the lit-

erature: the forecasting of the crude oil spot price under the risk-neutral measure, the

derivation of the equilibrium prediction, and the estimation procedure with state-space

representation and Kalman filter.

1.A.1 Forecasting of the Crude Oil Spot Price

Following [94], we define the logarithm of the crude oil spot price (logSt) as the

sum of the long-term trend (ξt) and short-term deviation processes (χt). Assuming risk-

neutral innovation processes (εQ2,t+1, ε
Q
3,t+1) being normally distributed, the conditional

expectation and the variance of logSt+1 under the risk-neutral processes are given by,

EQt [logSt+1] = ξt + kQχt − λξ − λχ,

V arQt [logSt+1] = σ22 + σ23 + 2ρσ2σ3.

where the superscript Q indicates the calculation under the risk-neutral processes as

opposed to those under the physical measure such as Et [·] and V art [·].

Since the future crude oil spot price is conditionally log-normally distributed, the

closed-form forecasting for the one-period-ahead crude oil spot price is provided as,

EQt [St+1] = exp

{
EQt [logSt+1] +

1

2
V arQt [logSt+1]

}
= exp

{
ξt + kQχt − λξ − λχ +

1

2
sQ1

}

where sQ1 ≡ V ar
Q
t [logSt+1] = σ22 +σ23 + 2ρσ2σ3. Similarly, it is straightforward to derive

EQt

[
(St+1)

−φ
]

= exp
{
−φ ·

(
ξt + kQ · χt − λξ − δ

)
+ 1

2φ
2sQ1

}
.

Next, the forecasting for the τ -periods ahead crude oil spot price is inferred
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recursively by,

EQt [St+τ ] = exp

{
EQt [logSt+τ ] +

1

2
V arQt [logSt+τ ]

}
= exp

{
ξt +

(
kQ
)τ · χt − τ · λξ − λχ (1 + kQ + · · ·+

(
kQ
)τ−1)

+
1

2
sQτ

}

where sQτ ≡ τ ·σ22 +
1−(kQ)

2τ

1−(kQ)2
·σ23 + 2ρσ2σ3 ·

1−(kQ)
τ

1−kQ is the conditional variance associated

with τ -periods-ahead forecast of the crude oil spot price.

1.A.2 Equilibrium Prediction and Aggregate Inventory Demands

The equilibrium prediction for the aggregate inventory demands is obtained by

combining the representative producer’s optimal decisions with his forecasts for future

crude oil spot price. Recall the optimality conditions from the model,

eztQt =

(
αezt

(
1− exp

(
−θt

It−1
Nt−1

))) 1
1−α

(St)
− 1

1−α ·Nt,

e−rt+1EQt

[
(ezt+1Qt+1)

α (Nt+1)
1−α θt+1

Nt
exp

(
−θt+1

It
Nt

)]
= St

(
1 + c1

It
Nt

)
− e−rt+1EQt [St+1] ,

where we rearrange the equation for aggregate resource demands in (1.4).

After moving time subscript one-period forward for the rearranged aggregate

resource demands, we plug the resulting equation into aggregate inventory demands

whose left hand side becomes,

L (It, Nt, rt+1) · EQt
[
(ezt+1)

α
1−α (St+1)

− α
1−α
]

= St

(
1 + c1

It
Nt

)
− e−rt+1EQt [St+1]

where L (It, Nt, rt+1) ≡ e−rt+1α
α

1−α θt+1 (1 + g)
(

1− exp
(
−θt+1

It
Nt

)) α
1−α

exp
(
−θt+1

It
Nt

)
does not depend on the representative producer’s forecasts on the future technology pro-

cess zt+1, and the future spot price St+1. Assuming the independence of the technology

process and the log-normal property such as EQt [(ezt+1)ϕ] = exp
(
ϕzt + 1

2ϕ
2σ21
)

for any
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ϕ under the risk-neutral measure, the equilibrium storage equation is further reduced

to,

L (It, Nt, rt+1) · exp

{
−φ1

(
−zt + ξt + kQχt − λξ − λχ

)
+

1

2
φ21

(
σ21 + sQ1

)
− rt+1

}
= St

[
1 + c1

It
Nt
− exp

{
−
(
1− kQ

)
χt − λξ − λχ +

1

2
sQ1 − rt+1

}]

where φ1 ≡ α
1−α .

After taking the log of both sides, the measurement equation of the aggregate

inventory demands is obtained by approximating non-linear terms in the resulting equa-

tion. Linear approximations are taken where χt and It being close to
−λχ
1−kQ and It−1

respectively since χt is mean-reverting around
−λχ
1−kQ and It is close to It−1 for most of

sample. Denoting by xt ≡ (rt+1, It−1) a vector of obervations that are either exogenous

or predetermined at period t, we have,

log (It/It−1) = Φ1 (xt) · zt + Φ2 (xt) · ξt + Φ3 (xt) · χt + Φ4 (xt) ,

where Φ1(xt), Φ2(xt), Φ3(xt) and Φ4(xt) are as specified in Section 3.2.

1.A.3 State-space Representation and Kalman Filter

Given the set of observations that are linear functions of state variables, we

estimate associated parameters by maximum likelihood using the Kalman filter. First,

we represent the system of equations in the state-space form. Let ζt = [zt, ξt, χt]
′ denote a

(3× 1) vector of unobservable state variables and yt denote a (14× 1) vector of observed

variables at each period t, i.e. yt =(It, lnQt, lnFt,1, lnFt,2, . . . , lnFt,12)
′. Then yt can

be described in terms of a linear function of unobservable state vector ζt. Denoting by

xt a vector of observations that are either exogenous or predetermined, the state-space

representation is given by the following system of equations,

ξt+1 = C +Gξt + vt+1, (1.15)

yt = a (xt) +H (xt)
′ ξt + wt. (1.16)



49

where a (xt) and H (xt) in the observation equation denote (14× 1) vector valued func-

tion, and (14× 2) matrix valued function, those are specified below. In the transition

equation, C and G denote respectively a (3× 1) coefficient vector and a (3× 3) coefficient

matrix as,

C =


0

−λξ
−λχ

 G =


1 0 0

0 1 0

0 0 kQ



Let yt−1 ≡
(
y′t−1, y

′
t−2, . . . , y

′
1, x
′
t−1, . . . , x

′
1

)′
denote data observed through date

t − 1. Assuming that conditional on xt and yt−1, the vector
(
v′t+1, w

′
t

)′
has the normal

distribution,  vt+1

wt
| xt,yt−1

 ∼ N
 0

0

 ,
 Q 0

0 R

 (1.17)

where restrictions on the unknown matrix Q and the observation error matrix R are

given as

Q =


σ21 0 0

0 σ22 ρQσ2σ3

0 ρQσ2σ3 σ23

 R =



σ2I 0 0 · · · 0

0 σ2Q 0 · · · 0

0 0 σ2F,1 · · ·
...

...
...

...
. . .

...

0 0 0 · · · σ2F,12


where parameters σ1, σ2, σ3 > 0 and ρQ ∈ (−1, 1) are unknown parameters in state

variables as described earlier. σ2I , σ
2
Q > 0 are measurement errors for aggregate demands

for inventories and resource respectively, and σ2F,τ is the measurement error for the price

of the crude oil futures contract with the τ -periods until maturity for τ = 1, . . . , 12.

Lastly, we are left with specifying one unknown matrix H (xt) and one unknown

vector a (xt), yet restrictions are obtained from three sets of observation equations de-
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rived earlier. Recall these observation equations;

log (It/It−1) = Φ1 (xt) · zt + Φ2 (xt) · ξt + Φ3 (xt) · χt + Φ4 (xt)

log (Qt/Qt−1) = Ψ1 · zt + Ψ2 · ξt + Ψ2 · χt + Ψ3 (xt)

log (Ft,τ/Ft−1,τ+1) = ξt + Ω1,τ (xt) · χt + Ω2,τ (xt)

where Ψ1 ≡ α
1−α , Ψ2 ≡ − 1

1−α , Ψ3 (xt) ≡ 1
1−α

{
logα

(
1− exp

(
−θt It−1

Nt−1

))}
+ logNt −

logQt−1, Ω1,τ (xt) ≡
(
kQ
)τ

and Ω2,τ (xt) ≡ −τλξ −
1−(kQ)

τ

1−kQ λχ + 1
2s
Q
τ − logFt−1,τ+1.

Lastly, Φ1 (xt) , Φ2 (xt) , Φ3 (xt) , Φ4 (xt) are defined as earlier.

With these, we can specify H (xt) and a (xt) following

H (xt)
′ =



Φ1 (xt) Φ2 (xt) Φ3 (xt)

Ψ1 Ψ2 Ψ2

0 1 Ω1,1 (xt)
...

...
...

0 1 Ω1,12 (xt)


a (xt) =



Φ4 (xt)

Ψ3 (xt)

Ω2,1 (xt)
...

Ω2,12 (xt)


which completes the state-space representation.

Next, consider the calculation of the conditional likelihood using Kalman filter

for the maximum likelihood estimation. Suppose ξt|yt−1 ∼ N
(
ξ̂t|t−1, Pt|t−1

)
. Since xt

contains only strictly exogenous variables or lagged values of y, we also have

ξt|yt−1, xt ∼ N
(
ξ̂t|t−1, Pt|t−1

)
With (1.15),(1.16) and (1.17), it can be shown that

 ξt

yt
| yt−1, xt


∼ N

 ξ̂t|t−1

a (xt) + [H (xt)]
′ ξ̂t|t−1

 ,
 Pt|t−1 Pt|t−1H (xt)

H (xt)
′ Pt|t−1 H (xt)

′ Pt|t−1H (xt) +R


where a (xt) and H (xt) are treated as deterministic conditional on xt. Since they are
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jointly normally distributed, the conditional distribution of ξt given yt−1, xt, yt becomes,

ξt | yt−1, xt, yt ∼ N
(
ξ̂t|t, Pt|t

)
where we used the formula for updating a linear projection;

ξ̂t|t = ξ̂t|t−1 + Pt|t−1H (xt)
[
H (xt)

′ Pt|t−1H (xt) +R
]−1 × [yt − a (xt)− [H (xt)]

′ ξ̂t|t−1

]
Pt|t = Pt|t−1 − Pt|t−1H (xt)

[
H (xt)

′ Pt|t−1H (xt) +R
]−1

H (xt)
′ Pt|t−1

It then follows,

ξt+1|yt ∼ N
(
ξ̂t+1|t, Pt+1|t

)
where ξ̂t+1|t = C +Gξ̂t|t and Pt+1|t = GPt|tG

′ +Q.

Next, we can calculate sample likelihood using Kalman filter as derived ear-

lier. Assume that the initial state ξ1 is distributed as N
(
ξ̂1|0, P1|0

)
. Given observations

{yt, xt} for t = 1, . . . , T , the distribution of yt conditional on (yt−1, . . . , y1, xt, xt−1, . . . , x1)

is normal with mean
(
a (xt) +H (xt)

′ ξ̂t|t−1

)
and variance

(
H (xt)

′ Pt|t−1H (xt) +R
)
,

that is, for t = 1, 2, . . . , T , we have the conditional likelihood following

fYt|Xt,Yt−1

(
yt|xt,yt−1

)
= (2π)−n/2

∣∣H (xt)
′ Pt|t−1H (xt) +R

∣∣−1/2
× exp

[
−1

2

(
yt − a (xt)−H (xt)

′ ξ̂t|t−1

)′
×
(
H (xt)

′ Pt|t−1H (xt) +R
)−1 (

yt − a (xt)−H (xt)
′ ξ̂t|t−1

)]

With this, the sample log likelihood becomes,

l (Θ) =
T∑
t=1

log fYt|Xt,Y t−1

(
yt|xt,yt−1

)
,

where Θ =
(
α, θ1, θ2, θ3, θ4, k

Q, c1, ρ
Q, λξ, λχ, σ1, σ2, σ3, σI , σQ, σF,1, . . . , σF,12

)
are param-

eters to be estimated numerically.
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Appendix 1.B: Further results

Table 1.B.1 reports maximum likelihood estimates under three cases: us-

ing the US imported gasoline from Gulf, using the price of the gasoline futures

contracts traded in the New York Mercantile Exchange, and without considering

seasonally varying utilization parameter in the model. Compared to the main re-

sult in Table 1.1, most estimates are similar both in magnitudes and signs, yet

attaining at lower likelihoods.
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Table 1.B.1 : MLE Estimates Under the Alternative Approach

(1) Gulf (2) New York (3) No seasonality

Parameters MLE (s.e.) MLE (s.e.) MLE (s.e.)

α 0.1805 (0.0054) 0.1812 (0.0054) 0.3071 (0.0088)

θ 0.1196 (0.0032) 0.1179 (0.0032) 0.0900 (0.0028)

c1 0.0038 (0.0004) 0.0040 (0.0004) 0.0053 (0.0004)

g 0.0004 (0.0000) 0.0004 (0.0000) 0.0003 (0.0000)

kQ 0.9057 (0.0019) 0.9060 (0.0019) 0.9061 (0.0019)

ρQ 0.0969 (0.0600) 0.0949 (0.0600) 0.0964 (0.0601)

λξ 0.0024 (0.0002) 0.0024 (0.0002) 0.0024 (0.0002)

λχ 0.0000 (0.0666) −0.0068 (0.0665) −0.0067 (0.0664)

σ1 0.3031 (0.0286) 0.2564 (0.0264) 0.3098 (0.0154)

σ2 0.0511 (0.0021) 0.0511 (0.0021) 0.0512 (0.0021)

σ3 0.0778 (0.0033) 0.0778 (0.0033) 0.0778 (0.0033)

Likelihood 14, 219.79 14, 275.11 14, 343.85

Note: Table 1.B.1 reports MLE estimates under alternative approaches. The first two
specifications consider gasoline prices for capturing the seasonality in crude oil inventories
by using US gasoline price imported from Gulf and by using prices for gasoline futures
contracts traded in the New York Mercantile Exchange. For comparison, the last column
reports MLE estimates from the proposed storage model with time-invariant utilization
parameter (θ). Although not reported, coefficient estimates for measurement errors are
quantitatively similar to those in Table 1.1. The last row reports the maximum value
achieved for the log of the likelihood function.



Chapter 2

The Usefulness of Cross-sectional

Dispersion for Forecasting

Aggregate Stock Price Volatility

Abstract. Does cross-sectional dispersion in the returns of different stocks

help forecast volatility of the S&P 500 index? This paper develops a model of stock

returns where dispersion in returns across different stocks is modeled jointly with

aggregate volatility. Although specifications that allow for feedback from cross-

sectional dispersion to aggregate volatility have a better fit in sample, they prove

not to be robust for purposes of out-of-sample forecasting. Using a full cross-section

of stock returns jointly, however, I find that use of cross-sectional dispersion can

help improve parameter estimates of a GARCH process for aggregate volatility to

generate better forecasts both in sample and out of sample. Given this evidence, I

conclude that cross-sectional information helps predict market volatility indirectly

rather than directly entering in the data-generating process.

54
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2.1 Introduction

Modeling and forecasting volatility is an important task and a popular re-

search agenda in financial markets. Volatility models play key roles in the academic

literature for testing the fundamental tradeoff between risk and return of financial

assets and for investigating the causes and consequences of the volatility dynam-

ics in the economy. Volatility forecasts have many practical applications as well.

For example, volatility forecasts are used for market timing decisions, portfolio

selection, risk management and pricing of financial derivatives such as options and

forward contracts since risks are measured by the volatility of the financial asset

returns.

Given its importance, there is a growing number of models and approaches

for forecasting volatility in financial assets. Since [43] and [13], Autoregressive

Conditional Heteroskedasticity (ARCH) models are the most popular, formulating

the volatility forecasts of a return as a function of known variables. Adopting

the specific functional form and/or alternative explanatory variables in the volatil-

ity forecasts, there have been numerous extensions of ARCH models focusing on

highlighted characteristics such as volatility persistence, asymmetry, long mem-

ory properties and a leptokurtic distribution of financial asset returns. While

earlier researchers use variation over time in variables of interests, cross-sectional

information began to be recognized as an important source for improving volatil-

ity forecasts. [26] and [29] suggested cross-sectional dispersion across individuals

as an important source of individual stock volatility1. In a similar context, [69]

tested whether cross-sectional dispersion helps forecast volatility of individual stock

returns using GARCH-X models, where X refers to “cross-sectional dispersion”.

Although better specified, they found a trivial improvement from GARCH-X for

out-of-sample volatility forecasts, concluding that GARCH-X models do not nec-

essarily outperform than GARCH models in forecasting individual stock volatility.

1The contribution of cross-sectional dispersion is referred to as firm-specific (idiosyncratic)
volatility in [26] and common heteroscedasticity in asset specific returns in [29].
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In this paper, I investigate potential channels by which cross-sectional in-

formation might help predict aggregate volatility. I develop a model of individual

returns that could be applied to the study of volatility in any financial assets,

though the interest in this paper is in volatility of the stock market index such

as the S&P 500 Composite Index (henceforce, S&P 500 Index). The approach

includes a GARCH-X model as a special case in which measures of cross-sectional

dispersion appear in the equation for predicting aggregate volatility, an approach

previously investigated by [69]. I find that although such GARCH-X specifica-

tions can improve in-sample forecasting accuracy, cross-sectional dispersion does

not appear to be useful for out-of-sample forecasting.

Next, I investigate another channel in which cross-sectional information

helps predict aggregate volatility by providing accurate parameter estimates. Af-

ter jointly modeling the full cross-section of individual stock returns, I estimate

population parameters in the bivariate GARCH process for aggregate volatility and

cross-sectional dispersion. While sharing the same GARCH process with univari-

ate GARCH, I find improved forecasting accuracies that are statistically significant

both in sample and out of sample for Mean Squared Error (MSE) and Mean Ab-

solute Error (MAE) loss criteria. Using [54]’s conditional predictive ability tests,

I show that by jointly utilizing cross-sectional information, it also provides more

accurate out-of-sample volatility forecasts in times of recessions as well as during

bear markets. I conclude that cross-sectional information helps predict market

volatility indirectly insofar as it helps to obtain accurate parameter estimates for

volatility forecasts.

This paper is organized as follows. The following section describes a model

of stock returns and clarifies the relation between models of aggregate stock volatil-

ity and the volatility of individual returns. In section 2.3, I investigate two potential

channels whereby cross-sectional information could improve volatility forecasts of

the S&P 500 Index return: 1) cross-sectional dispersion as an additional explana-

tory variable as in GARCH-X, 2) cross-sectional dispersion as an aid in parameter
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estimation when individual stock returns are jointly modeled. Section 2.4 provides

robustness checks by using an alternative volatility proxy, alternative measures for

cross-sectional dispersion including [69]’s cross-sectional market volatility. I also

consider the potential effects from ordinary cash dividends of individual stocks

and those from previously observed extreme stock market events when predicting

the volatility of the S&P 500 index return. All robustness checks confirm results

provided in section 2.3. Lastly, Section 2.5 concludes.

2.2 Model

Let ri,t denote the monthly return on individual stock i measured in percent.

For example, ri,t = −1.5 means that stock i fell 1.5% from month t − 1 to t.

My interest is in characterizing aggregate market volatility as measured by some

weighted average of individual returns,2

rt =

Nt−1∑
i=1

wi,t−1ri,t (2.1)

where wi,t−1 is a predetermined weight of a stock i′s return in the evolution of the

stock index return in period t. For example, wi,t−1 = N−1t−1 for an equal-weighted

index and wi,t−1 = pi,t−1si,t−1/
Nt−1∑
j=1

pj,t−1sj,t−1 for a value weighted index where

pi,t−1 is stock i’s price and si,t−1 is its number of outstanding shares at time t− 1.

One approach would be to fit a univariate GARCH-X(1,1) model to the

aggregate return:

rt = φ0 + φ1rt−1 + ut, (2.2)

ut = σt · εt, (2.3)

εt ∼ i.i.d. (0,1),

2When a stock i is newly added in the stock index in period t, there is no contribution of a
stock i’s return ri,t to the stock index return rt.
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σ2
t = $ + αu2t−1 + βσ2

t−1 + πxt−1. (2.4)

Here xt−1 is a measure of the cross-sectional dispersion of stocks at time

t− 1. Note that equation (2.4) includes the standard univariate GARCH(1,1) as a

special case when π = 0.

One question is what measure of dispersion to use for xt−1 and what kind of

model for individual stock returns would be consistent with a process like (2.4) for

aggregate returns. Having an explicit answer to the latter question will also clarify

the way in which data on individual stock returns might be helpful for estimating

the parameters of equation (2.4). Consider an AR(1) forecasting model of stock

i’s return of the form,

ri,t = φ0
i + φ1

i ri,t−1 + ui,t. (2.5)

Let vt be an aggregate shock affecting all stock returns, distributed as

N (0, σ2
t ) conditional on available observations. Letting κt denote a separate shock

governing the cross-section dispersion of stock returns,3 the forecasting error of

stock i’s return (ui,t) is modeled as

ui,t = δi,t−1 [λivt + κtηi,t] , (2.6)

where δi,t−1 denotes a predetermined loading of stock i on the two shocks vt and

κt, λi captures the degree to which a stock i responds to vt, and ηi,t is stock i’s

idiosyncratic forecasting error presumed to follow a martingale difference sequence

with unit variance

E
(
η2i,t|Ft−1

)
= 1,

where Ft−1 denotes all observed variables through t− 1.

One special case of interest comes from the idea that small stocks tend to

3[29] and [71] suggested a strong commonality in asset specific volatilities, so that the average
squared asset-specific return across a large number of stocks varies over time.
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be more risky, for which we could specify δi,t−1 as,

δi,t−1 =
1

Nt−1wi,t−1
(2.7)

where a stock with below-average weight (wi,t−1 < 1/Nt−1) is treated in (2.7) as

being more exposed to the aggregate shock as well as having a higher weight on

the dispersion shock κt. Support for such a specification can be found for example

in the results of [95] and [5].

Since time variation in the cross-sectional dispersion in this model is driven

by the value of κt, we could use κ2t−1 in place of xt−1 in (2.4) if we had direct

observations available on κt−1.

Note that the aggregate forecasting error ut is related to the errors in fore-

casting individual returns ui,t through the identity

ut =

Nt−1∑
i=1

wi,t−1ui,t (2.8)

= vt ·
1

Nt−1

Nt−1∑
i=1

λi + κt ·
1

Nt−1

Nt−1∑
i=1

ηi,t

For Nt large, it is reasonable to assume that 1
Nt−1

Nt−1∑
i=1

λi → 1. For exam-

ple, with a constant-sized sample of equal-weighted stocks, wi,t = 1/N, in which

case N−1
N∑
i=1

λi = 1 would always exactly equal 1 by construction4. Likewise

for Nt−1 large, it would typically be the case that 1
Nt−1

Nt−1∑
i=1

ηi,t → 0, implying

κt · 1
Nt−1

Nt−1∑
i=1

ηi,t
p→ 0. Thus when Nt−1 is large the aggregate return ut gives a

4Consider the simple case for the equal-weighted index return (wi,t = N−1 for ∀i and ∀t).
Then, a consistent estimate of λi for each i can be obtained by a univariate regression of stock
i on the equal-weighted index;, ui,t = λi · ut + ei,t estimated by OLS for t = 1, . . . , T . It is clear

that λ̂OLSi =
(∑T

t=1 u
2
t

)−1 (∑T
t=1 ui,tut

)
, satisfying N−1

∑N
i=1 λ̂

OLS
i = 1.
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direct observation on the common shock vt :

p lim
Nt→∞

ut = vt (2.9)

Note further from (2.6) that

Nt−1∑
i=1

wi,t−1 (ui,t − δi,t−1λivt)2 = κ2t

Nt−1∑
i=1

wi,t−1 (δi,t−1ηi,t)
2

→
p
κ2t · δ

2

provided
Nt−1∑
i=1

wi,t−1δ
2
i,t−1 → δ

2
. Hence under these conditions, I could use the mag-

nitude

c2t−1 =

Nt−2∑
i=1

wi,t−2

(
ui,t−1 −

λi
Nt−2wi,t−2

ut−1

)2

(2.10)

directly for xt−1 in (2.4) to explore whether cross-sectional dispersion at time t− 1

as summarized by the value of κ2t−1 contributes to aggregate market volatility σ2
t .

Note that the above cross-sectional dispersion differs from cross-sectional

market volatility of [69] in two ways5. First, I use individual forecasting errors

instead of individual stock returns. More importantly, this formulation allows

heterogeneous responses of individual stocks to the common market shock through

the term λi and the lagged weight wi,t−2.

One can fit a GARCH-X model to the aggregate return with the measure of

cross-sectional dispersion given in (2.10). This provides a natural test of whether

cross-sectional dispersion directly enters into the data-generating process for ag-

gregate volatility.

5Two minor differences are 1) time-varying Nt−2, 2) predetermined individual weigths wi,t−2
as opposed to wi,t−1 in [69]. Section 2.4.2. provides robustness checks using cross-sectional
market volatility of [69].
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2.3 Results

In this section, I provide empirical evidence for the role of cross-sectional

dispersion in predicting volatility of the S&P 500 Index. After describing the sam-

ple, I provide empirical evidence of improved specifications in GARCH-X models

by allowing for feedback from cross-sectional dispersion to aggregate volatility,

showing better in-sample forecasting performance. While GARCH-X with cross-

sectional dispersion proves not to be robust for purposes of out-of-sample forecasts,

I show that use of cross-sectional dispersion can help improve parameter estimates

of a GARCH process for aggregate volatility by using individual stock returns

jointly, generating better forecasts both in sample and out of sample.

2.3.1 Additional explanatory variable in GARCH

The dataset contains individual stocks comprising of S&P 500 Index from

March 31, 1964 to December 31, 2014. The components of the S&P 500 Index have

been updated periodically in response to corporate actions and index maintenance

purposes for keeping the index up to date. The historical S&P 500 Index con-

stituents are obtained from Compustat North America, and prices, cash dividends

and the number of outstanding shares of individuals stocks are obtained from the

Center for Research in Security Prices (CRSP) Security Files. There are total

1, 545 individual stocks that appear in the S&P 500 Index at least once during the

sample period. Using individual stocks, I construct S&P 500 Index return from

April 30, 1964 to December 31, 2014 both at a daily and a monthly frequency.

While the S&P 500 Index adopted a free-float market capitalization methodology

in 2005,6 the S&P 500 Index return in this paper does not reflect such changes as it

requires an additional adjustment in the number of shares used for calculating the

index. Despite a minor deviation, the constructed index return is highly correlated

6S&P Dow Jones Indices gathers all public share ownership information and review each
stock’s Investable Weight Factor (IWF) that reflects only those shares available in the public
markets on an annual basis. See more details about Investable Weight Factors and Float Ad-
justment Methodology from ”S&P Dow Jones Indices: Index Methodology, January 2015”.
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with the quoted S&P 500 Index return; the correlation is 0.9968 prior to March

2005 and 0.9993 from April 2005 to December 2014. Furthermore, I also construct

the S&P 500 Index return with dividends for studying the effects of ordinary cash

dividends, which is used for robustness checks in section 2.4.3. The time period for

the volatility forecasting exercises ranges from June 1964 (t = 4) to December 2014

(t = 610)7 and the aggregate volatility of interest is equivalent to the volatility in

monthly S&P 500 Index, that does not account for dividends.

To begin with, I describe the empirical procedure for constructing cross-

sectional dispersion using individual stocks. First, for each individual stock i, I

calculate a monthly return ri,t for t = 2, . . . , 610, and estimate an individual fore-

casting error ui,t by regressing a stock i’s return (ri,t) on a constant and its lagged

return (ri,t−1) for t = 3, . . . , 610. Second, a stock i’s weight in period t, wi,t is

calculated as wi,t = Ii,tpi,tsi,t/
∑Nt

j=1 Ii,tpj,tsj,t, where pi,t is a price and si,t is the

number of outstanding shares of a stock i in period t for t = 1, . . . , 609. Here Ii,t

is an indicator variable for the index constituents in period t, that is, Ii,t ≡ 1 if a

stock i belongs to the S&P 500 index in period t and Ii,t ≡ 0 otherwise. Third,

an aggregate forecasting error ut is calculated from (2.8) given ui,t and wi,t−1 for

t = 2, . . . , 610 and for all i. Next, I accommodate time-varying λi,t in (2.6), al-

lowing a stock i to respond to the aggregate market shock differently across time.

This is intended to capture the nature of changes in the historical S&P 500 index

constituents, of which periodic changes are mostly associated with corporate ac-

tions such as mergers, acquisitions and spin-offs, that are likely to change, changing

firms’ characteristics after such corporate actions. Time variation in firm-specific

characteristics is also widely recognized in the empirical asset pricing literature.

To do so, I repeat the first three steps using daily individual stocks, and obtain

individual weights and forecasting errors as well as aggregate forecasting errors at a

7Monthly returns of individual stocks and accordingly constructed S&P 500 index are calcu-
lated from April 1964 to December 2014. Therefore, a monthly cross-sectional dispersion measure
is constructed from May 1964 to November 2014, that is used for forecasting volatility of S&P
500 index from June 1964 to December 2014.
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daily frequency. Then, for each stock i and month t, λi,t is estimated by regressing

Nt−1wi,t−1ui,t on ut using daily individual weights, forecasting errors and aggre-

gate forecasting errors within each month t8. Lastly, a measure for cross-sectional

dispersion is provided by (2.10).

Figure 2.1 plots historical cross-sectional volatility, that is the square root

of c2t in (2.10). Notice that cross-sectional volatility measures average percent-

age deviation of individual forecasting errors from their aggregates, and reflects

individual stocks’ heterogeneity in two ways. First, it takes into account differ-

ent degrees by which individual stocks respond to the aggregate shock provided

through the term λi,t. Second, each stock’s squared deviation contributes to the

evolution of cross-sectional volatility proportional to its relative share in the S&P

500 Index given by wi,t−1. The shaded areas represent seven NBER recession peri-

ods in the sample. Three points are worth noting. First, cross-sectional dispersion

itself is time-varying and also exhibits high persistence with some clustering, as

documented in [69] and [29]. Second, I find increasing cross-sectional dispersion

during recession periods, indicating its potential role in helping to predict mar-

ket volatility during recession periods. Lastly, cross-sectional dispersion is usually

larger in magnitude than time-series market volatility (See Figure 2.2 for realized

volatility), confirming the observation in [69]. The contemporaneous correlation

between cross-sectional volatility and realized volatility is 0.4683, providing a ra-

tionale for considering the GARCH-X model with cross-sectional dispersion.

Given cross-sectional dispersion, I fit a GARCH-X model to the S&P 500

Index return as described by (2.2), (2.3) and (2.4). The second column of Ta-

8Specifically, let dt ∈ [1,mt] be the day of the month t, where maxmt = 23 in the dataset.
For each stock i and each month t, λi,t is estimated by regressing Nt,dt−1wi,t,dt−1ui,t,dt on ut,dt ,
where Nt,dt , wi,t,dt , ui,t,dt are number of stocks in the S&P 500 Index, stock i’s weight and
forecasting error at day dt in month t. When a stock is newly added in the S&P 500 Index at
the end of the month, λi,t is replaced by its cross-sectional mean (λi,t = 1) within each month

t. In general, the cross-sectional average of λ̂i,t is close to 1 with N−1t
∑Nt
i=1 λ̂i,t ∈ [0.98, 1.04] .

In order to guarantee the internal consistency, I normalize the cross-sectional average of λ̂i,t at

each month t with λ̃i,t = λ̂i,t/
(
N−1t

∑Nt
i=1 λ̂i,t

)
.
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ble 2.1 displays maximum likelihood estimates and asymptotic standard errors9

for model parameters. For comparison, the third column reports those from a

univariate GARCH(1,1) model with π = 0 in (2.4). In the numerical estimation

procedure, the first observations (r1 and c21) are given and the initial value for ag-

gregate volatility (σ2
1) is jointly estimated with other model parameters although

not reported.

While all parameter estimates for GARCH-X except ω and φ1 are statis-

tically significant at any conventional size, I find that the statistical significance

for the coefficient estimate of cross-sectional dispersion (π) is inconclusive; given

H0 : π = 0, p-values from the Wald and the likelihood ratio tests10 are respectively

0.15 and 0.05.

Using in-sample volatility forecasts implied by parameter estimates in Ta-

ble 2.1, I evaluate forecasting performance by comparing forecasting accuracies of

volatility forecasts from GARCH-X and GARCH models. I adopt realized vari-

ance as a proxy for latent volatility following [16], [64] and [83]. Denoting by σ2
RV,t

realized variance in period t, it is measured by aggregating squared daily index

returns within month t as,11

σ2
RV,t =

mt∑
d=1

r2d,t (2.11)

where rd,t is a daily S&P 500 Index return at day d of month t and mt is the

number of trading days in month t.

Figure 2.2 plots realized volatility, which is a square root of realized variance

in (2.11). Notice two periods with large observations; realized volatility in Octo-

ber 1987 is 26.63 and 23.94 in October 2008 while the historical average without

these two observations is 3.9. The former is known as Black Monday when stock

9Asymptotic standard errors are estimated by approximating the second derivative of the log-
likelihood functions at maximum likelihood estimates. See details for numerical MLE estimation
and calculation of asymptotic standard errors in Hamilton [Time Series Analysis, 62, pp. 133-148].

10The Wald test statistic is 0.0306/0.0214 = 1.43, and the 1 degree of freedom log-likelihood
ratio test statistic is 2× {−1, 803.87− (−1, 805.81)} = 3.8765.

11For calculating realized variance, I splice the quoted daily S&P 500 Index return (prior to
Feb 28, 2005) with the constructed daily S&P 500 Index return.
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markets around the world crashed within a very short time and the latter is the

peak of the recent Financial Crisis triggered by the U.S. housing bubble. These

are widely recognized as outliers originating from a different distribution from the

historical monthly realized volatility. Given their big impacts on volatility fore-

casting, I exclude volatility forecasts for October 1987 and those for four months

from September 2008 to December 2008 when evaluating out-of-sample volatility

forecasts later in this section.12 Since observations for historical realized variance

(or volatility) are widely used in the earlier literature,13 I suppress further explana-

tions and proceed to the evaluation of volatility forecasts using realized variance.

Table 2.2 reports average losses under three loss criteria; Mean Squared Er-

ror (MSE), Quasi-Likelihood (QLIKE) and Mean Absolute Error (MAE). Among

various loss criteria, I consider MSE and QLIKE given their robustness to the

presence of noise in the volatility proxy suggested by [83], and I also consider

MAE given its robustness to a few influential forecasts. I provide definitions for

each loss criteria in the second column. Columns 3 and 4 report average losses of

in-sample volatility forecasts from GARCH and GARCH-X models. The adjacent

row (in parenthesis) reports the percentage differences in forecasting accuracies of

GARCH-X relative to GARCH, where for each loss function, the nagative differ-

ence implies that GARCH-X has smaller average losses than GARCH on average.

I find that GARCH-X yields lower average losses under all loss criteria, and the

largest improvement in forecasting accuracies is found under MAE loss fuction:

GARCH-X yields 4.29% smaller average losses compared to the univariate GARCH

model.

For investigating whether cross-sectional dispersion is useful for purposes

of volatility forecasting in practice, I proceed to the evaluation of out-of-sample

volatility forecasts. This is intended to address the potential over-fitting issue inso-

12In the presence of thorny outlier issues, [88] note that volatility models are generally ill-
designed for predicting unforeseen and unprecedented extreme events.

13For example, [89] provide explanations for market volatility including definition, measure-
ment and stylized facts about financial market volatility.
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far as improved forecasting accuracy in GARCH-X may be provided by introducing

an additional parameter in the data-generating process. I adopt a rolling fixed es-

timation period method14 following [18]. With 5 years of estimation window, I fit

models to a sample of 5 years, generate one-step ahead volatility forecasts and drop

the oldest observation from the sample when adding the new data. I repeat this

process and evaluate the performance of 542 monthly out-of-sample forecasts from

June 1969 to December 201415. Similarily, I also generate out-of-sample forecasts

using 10 years of estimation window, evaluating 482 monthly forecasts from June

1974 to December 2014.

Table 2.3 compares out-of-sample forecasting accuracies of GARCH and

GARCH-X models under 5 and 10 years of estimation window size. I provide

definitions for each loss criteria in the second column. Columns 3 and 4 report

average losses for out-of-sample volatility forecasts from GARCH and GARCH-X

when one–step-ahead out-of-sample forecasts are obtained from parameter esti-

mates using 5 years (Panel 1) and 10 years observations (Panel 2). As before,

the adjacent row (in parenthesis) reports the percentage differences in forecasting

accuracies of GARCH-X relative to univariate GARCH. Here, GARCH-X yields

smaller average losses for all loss functions with 5 years of estimation window size,

yet MSE from GARCH-X is slightly larger than univariate GARCH model when

using 10 years of observations.

For statistical inference for average loss differentials, I perform tests for

equal forecasting accuracy suggested by [34] and [101] (henceforth, DMW). De-

14Many researchers documented the merits of using a rolling fixed estimation period method
among alternatives in addition to the ease of statistical inference. For example, [38], [54] and [18]
noted that a rolling estimation period method is robust in the presence of nonstationarity. [102]
showed that its forecasting accuracy is no worse than an expanding sample window method.

15For periods in October 1987 and those from September 2008 through December 2008, all mod-
els considered cannot forecast volatility accurately and generate extremely large losses across all
loss functions. These in turn generate outliers in the empirical distribution of average loss differ-
entials in DMW test statistic. For accurate statistical inference, I exclude five months’ volatil-
ity forecasts among 547 monthly out-of-sample volatility forecasts from consideration. Though
weakly statistically significant, results without excluding those volatility forecasts are gener-
ally consistent with those presented here. Table 2.10 compares forecasts with all out-of-sample
volatility forecasts in parallel with Table 2.3.
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noting by losst the loss differential among competing forecasts in period t, an

asymptotic pairwise test statistic for testing the null hypothesis of no difference in

the forecasting accuracy is given by,

DMW =
loss

avar
(
loss

)
where loss = T−1

T∑
t=1

losst is the sample mean loss differentials and avar
(
loss

)
is asymptotic variance of loss differentials. Following standard practice, I obtain

a consistent estimate for avar
(
loss

)
by taking a weighted sum of the sample

autocovariances using a Bartlett kernel.

For each loss function, the statistical significance of DMW test statistics

is denoted by using an asterisk on the percentage differences in Table 2.3. In

general, the statistical significance is inconclusive for GARCH-X. With 5 years

of estimation window size, I find that average losses of GARCH-X are smaller

than univariate GARCH for all loss functions and average loss differentials for

QLIKE and MAE are statistically significant at 5%. With 10 years of estimation

window size, however, none are statistically significant at any significance level

while GARCH-X yields larger average MSE loss than univariate GARCH.

So far, I investigate one potential channel by which cross-sectional informa-

tion might help predict volatility in the S&P 500 Index return. As an additional

explanatory variable in GARCH process, cross-sectional dispersion helps predict

volatility in sample across all loss criteria, and the statistically significant coeffi-

cient estimate of cross-sectional dispersion (π) based on the likelihood ratio test.

Though improved out-of-sample forecasting accuracy in general, I find that the

statistical significance of such improvements depends on the estimation window

size, indicating the weak contribution of cross-sectional dispersion to the aggre-

gate volatility generating process.
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2.3.2 Aid in parameter estimation

Next, I investigate an alternative means by which cross-sectional dispersion

might improve volatility forecasts. A convenient model for incorporating cross-

sectional information is the factor-ARCH model developed in [44]. Although this

model has been used in hundreds of studies, it has not been successfully applied

to a cross-section of thousands of stocks due to computational difficulties16. In

this section, I model a bivariate GARCH process for the aggregate volatility (σ2
t )

and the cross-sectional dispersion (κ2t ), and estimate model parameters by jointly

using a full cross-section of stock returns.

Using the same dataset containing prices and outstanding shares of stocks

in monthly S&P 500 Index, I estimate parameters in the following model:

ri,t = φ0
i + φ1

i ri,t−1 + ui,t, (2.12)

ui,t =
λi

Nt−1wi,t−1
σtεt +

κt
Nt−1wi,t−1

ηi,t, (2.13)

εt, ηi,t ∼ i.i.d. (0,1),

 σ2
t

κ2t

 =

 $1

$2

+

 α11 α12

α21 α22

 u2t−1

c2t−1

+

 β11 0

0 β22

 σ2
t−1

κ2t−1

 (2.14)

where $1, $2 > 0 and α11, α12, α21, α22, β11, β22 ≥ 0 are model parameters. c2t−1 is

a lagged cross-sectional dispersion measure provided in (2.10).

The aggregate volatility process in (2.14) is same as the GARCH-X model

in (2.4) with $1 = $, α11 = α, α12 = π, β11 = β. Hence this suggests a statistical

test for the direct role of cross-sectional dispersion in predicting aggregate volatil-

16To my knowlegde, the largest number of cross-sectional observations used within the factor-
ARCH model is 50 in [42], where authors evaluate the performance of the class of covariance
models including factor GARCH, restricted vector GARCH, dynamic conditional correlation
GARCH models and extensions of these models.
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ity by testing H0 : α12 = 0. Furthermore, the cross-sectional dispersion process

is estimated along with the aggregate volatility process, where α12 and α21 cap-

ture the dynamic dependence between two volatility processes. Lastly, the above

bivariate GARCH model includes Panel-ARCH provided by [25] as a special case:

with λi = 1 for ∀i and κt = τ for ∀t in (2.13), Panel-ARCH estimates a univariate

ARCH process for the aggregate volatility with α12 = β11 = 0 in (2.14). In such a

case, τ captures the time-series average of cross-sectional dispersion across a large

number of cross-sectional observations. See also [25] for the estimation of quarterly

profit uncertainty using industry-level sales revenues. Appendix 2.A describes the

empirical procedure for estimating parameters in the above model.

Table 2.4 displays maximum likelihood estimates and asymptotic standard

errors for model parameters. Parameter estimates from the bivariate GARCH pro-

cess (2.14) are reported in the second column (Full Model). For comparison, the

subsequent columns report parameter estimates from restricted models such as

α21 = 0 (Model 1) and α12 = α21 = 0 (Model 2). Parameter estimates for individ-

ual stocks such as φ0
i and φ1

i , are not reported as they are obtained separately by

a univariate regression for each i. All parameter estimates except $1 and α21 are

statistically significant at any conventional size. Three points are worth noting.

First, one-sided dynamic dependence is observed between the aggregate volatility

and the cross-sectional dispersion processes. While confirming the direct contribu-

tion of cross-sectional dispersion in predicting market volatility from statistically

significant α12,
17 the coefficient estimate for α21 is statistically insignificant. This

indicates the weak dynamic dependence between two volatility processes. Second,

the cross-sectional volatility process is shown to be non-stationary in sample: the

persistence of the process implied from coefficient estimates for α22 and β22 is

1.5981, which is greater than 1. This further contributes to the non-stationarity of

the aggregate volatility process through α12, yielding the coefficient estimate for $1

17P-value is 0.0087 from two-sided hypothesis test, and it is 0 from log-likelihood ratio test.
The 1 degree of freedom test statistic is computed by comparing maximized log-likelihood values
between Model 1 and Model 2, that is, 2× {−1, 328, 838.98− (−1, 328, 847.51)} = 17.06.
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to be statistically insignificant. Lastly, the aggregate volatility process becomes to

be stationary when shutting out the dynamic dependence from the cross-sectional

volatility process. The aggregate volatility process in Model 2 is stationary with

the persistence being 0.9606 which is close to the persistence of univariate GARCH

model in Table 2.1, and with the long-run average being 14.68.

Next, I evaluate forecasting performance by comparing forecasting accura-

cies of volatility forecasts from univariate GARCH and the above bivariate GARCH

models. More specifically, I compare forecasting accuracies of volatility forecasts

from Model 1 and Model 2 with those from univariate GARCH. Though non-

stationary in sample, I include Model 1 in the comparison of the forecasting per-

formance in order to capture the possibility that cross-sectional dispersion could

improve volatility forecasts out of sample when cross-sectional stock returns are

jointly used for parameter estimation, which differs from the previous exercise us-

ing GARCH-X. Furthermore, it also enables us to infer the relative size of the

direct contribution from the cross-sectional dispersion in Model 1 by comparing

the forecasting performance of Model 1 with Model 2. It is because the improved

forecasting accuracies of Model 2 relative to univariate GARCH can be viewed as

being obtained indirectly by using cross-sectional stock returns jointly.

Results are provided at the last two columns in Table 2.2. There are two

lines of empirical evidence supporting the improved in-sample forecasting accu-

racies by utilizing cross-sectional information. First, I find improved forecasting

accuracies from both Model 1 and Model 2 across all loss criteria. In particular,

the improved forecasting accuracies from Model 2 provides the evidence on the

indirect contribution of cross-sectional information when cross-sectional stock re-

turns are jointly used for estimating model parameters. Second, I find that Model

1 provides larger improvements in forecasting accuracies than Model 2, confirm-

ing the enhanced in-sample forecasting accuracies by directly using cross-sectional

dispersion as an additional explanatory variable in the aggregate volatility pro-

cess. Note that Model 1 provides smaller average losses across all loss criteria
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compared to GARCH-X model. Under MAE loss criteria of which GARCH-X

provides the largest improvement in forecasting accuracies by 4.29%, Model 1 has

30.22% smaller average losses than univariate GARCH, that is larger in magitude

compared to GARCH-X.

Table 2.3 provides the evaluation of one-step-ahead out-of-sample forecast-

ing accuracies from above two models when using 5 and 10 years of estimation win-

dows. Again, I report the percentage differences relative to forecasts from GARCH

as well as the statistical significance of DMW equal predictability test statistics us-

ing asterisks. Recall the inconclusive results from GARCH-X by failing to provide

statistically significant improvements for out-of-sample volatility forecasts when

using 10 years of estimation window. Here, I find the improved forecasting accu-

racies from the bivariate GARCH models. Model 2 has statistically significantly

smaller average losses than GARCH under MSE and MAE loss functions at 5% sig-

nificance level. When extending Model 2 by including cross-sectional dispersion in

the aggregate volatility process, Model 1 has statistically significant improvements

under MSE and MAE loss functions with 5 years of estimation window, and under

all three loss functions with 10 years of estimation window. This contrasts with

the failure of GARCH-X in predicting accurate volatility forecasts out of sample.

I further explore the improved forecasting abilities of the bivariate GARCH

models by testing whether they also provides more accurate volatility forecasts

in particular periods when accurate volatility forecasts are of great interest. More

specifically, I test whether two models outperform univariate GARCH more during

recessions when accurate volatility forecasts are of great interest. Let dt be the

loss differential between Model 1 and GARCH for predicting one-step-ahead out-

of-sample volatility forecasts in period t. Using an indicator variable for NBER

recession periods IRt , I perform tests for conditional predictive ability developed in

[54] for testing H0 : E [dt|Ft−1] = 0, which contrasts to H0 : E [dt] = 0 in DMW

equal (unconditional) predictability tests.

Let ht be a vector of variables that are thought to be important for relative
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forecast performance; hRt ≡
(
1, dt, I

R
t

)′
in this case. Given the conditional moment

restriction, 3 degrees of freedom Wald-type test statistic (GW) is provided by,

GW = (T − 1)Z
′
Ω̂−1Z

where Z ≡ (T − 1)−1
∑T−1

t=1 h
R
t dt+1 and Ω̂ ≡ (T − 1)−1

∑T−1
t=1

(
hRt dt+1

)
×
(
hRt dt+1

)′
is a 3× 3 matrix that consistently estimates the variance of

(
hRt dt+1

)
. Under the

null hypothesis, the test statistic is asymptotically chi-squared distributed with 3

degrees of freedom.

Panel 1 in Table 2.5 reports GW statistics using hRt with 5 years (columns

2-3) and 10 years of estimation windows (columns 4-5) respectively. During NBER

recession periods, I find that two bivariate GARCH models provide more accurate

out-of-sample volatility forecasts with 5 years of estimation window, that are sta-

tistically significant under all loss criteria (Model 1) and under two loss criteria

except QLIKE (Model 2). With a larger estimation window such as 10 years, both

models provide statistically significantly improved forecasts under all loss criteria.

Panel 2 reports GW statistics for testing whether these models outperform uni-

variate GARCH more during bear markets. I use another indicator variable INt for

periods with negative S&P 500 Index returns, and calculate GW statistics with

hNt ≡
(
1, dt, I

N
t

)
. Results are similar to those using NBER recession periods. I find

that above models yield more accurate forecasts during periods of negative stock

returns, providing conditionally accurate volatility forecasts that are statistically

significant under most loss criteria.

Although the forecasting equation is the same as univariate GARCH, I find

the improved forecasting performance by jointly using cross-sectional information:

volatility forecasts from Model 2 are more accurate than those from univariate

GARCH both in sample and out of sample. Furthermore, I find additional im-

provements from Model 1 in predicting aggregate volatility when extending Model

2 by including cross-sectional dispersion in the aggregate volatility process.
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The potential explanation for such improvement comes from the basic in-

sight in [98] that when the number of cross-sectional observations is large, any

aggregate factors can be uncovered essentially perfectly using the cross section. By

jointly using the full cross section of stock returns, one can come up with better

estimates of the population parameters. In other words, cross-sectional dispersion

might help to estimate parameters in the aggregate volatility process.

To see this, consider the log-likelihood function of bivariate GARCH de-

scribed by (2.12), (2.13) and (2.14). For expositional simplicity, I define alter-

native measures of the aggregate forecasting error and cross-sectional dispersion.

Let wλi,t−1 ≡ wi,t−1λi with wi,t−1 being a stock i’s weight in (2.1) and λi being a

stock i’s firm-characteristic parameter in (2.6). The aggregate forecasting error in

parallel with (2.8) becomes,

ũt =

Nt−1∑
i=1

wλi,t−1ui,t (2.15)

where ũt directly reflects firm-specific characteristics through different λis.

Denoting by wwi,t−1 ≡ Nt−1w
2
i,t−1 another relevant weight of a stock i, the

cross-sectional dispersion in parallel with (2.8) becomes,

c̃2t =

Nt−1∑
i=1

wwi,t−1

(
ui,t −

λi
Nt−1wi,t−1

ut

)2

(2.16)

where c̃2t assigns a higher weight to idiosyncratic forecasting errors of a stock with

above-average weight (wi,t−1 > 1/Nt−1) compared to the cross-sectional dispersion

in (2.8).

Using (2.15) and (2.16), the closed-form log-likelihood of bivariate GARCH
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is given by,

L =
T∑
t=1

[
−Nt−1

2
log 2π − 1

2
log Jt (2.17)

− Nt−1

2

(
1

κ2t
× c̃2t −

λ̃

κ2t
×
(
ut −

ũt

λ̃

)2

+
λ̃

κ2t + σ2
t ·Nt−1λ̃

× ũ2t

λ̃2

)]

where Jt ≡
(
κ2t + σ2

t

Nt−1∑
i=1

λ2i

)
× (κ2t )

Nt−1−1 ×
∏Nt−1

i=1 (wi,t−1Nt−1)
−2 is a determi-

nant of a Nt−1 × Nt−1 variance matrix of individual forecasting errors, and λ̃ ≡

N−1t−1

Nt−1∑
i=1

λ2i .

The above log-likelihood function (2.17) shows that cross-sectional infor-

mation enters in the log-likelihood function through two channels. Cross-sectional

dispersion (c̃2t ), weighted by 1/κ2t , helps squared errors (u2t ) to estimate model

parameters. Furthermore, heterogeneous characteristics of stock market index

constituents (λis) feed further cross-sectional information into the estimation pro-

cedure through ũt and λ̃, where distances between ut and ũt/λ̃ become to be

momentous. These provide the rationale behind the improved forecasting accura-

cies of Model 2 relative to univariate GARCH although not using cross-sectional

dispersion directly for predicting aggregate volatility.

Next, I separate heterogeneous λis’ contribution from the improved fore-

casting abilities observed in bivariate GARCH models. To do so, I consider the

simple case when all stocks have same magnitudes in responding to the aggregate

market shock (λi = 1 for ∀i), resulting in λ̃ = 1 and ũt = ut. Then, the closed-form

log-likelihood function reduces to,

L =
T∑
t=1

[
−Nt−1

2
log 2π − 1

2
log J t −

Nt−1

2

(
1

κ2t
× c2t +

1

κ2t + σ2
t ·Nt−1

× u2t
)]
(2.18)

where c2t is calculated by imposing λi = 1 for ∀i in (2.16) and J t is a determinant

associated with individual forecasting errors in (2.6) with λi = 1 for ∀i.

Table 2.6 compares forecasting accuracies of in-sample volatility forecasts



75

from GARCH-X and two bivariate GARCH models when λi = 1 for ∀i. For

comparison, the first column repeat the average losses from univariate GARCH

displayed in Table 2.2. The preceeding columns report the percentage differences

in forecasting accuracies of GARCH-X, Model 1 and Model 2 relative to univariate

GARCH. When excluding heterogeneous λis from the volatility forecasting models,

I find from Panel 1 that in-sample volatility forecasts, in general, are less accurate

than those reported in Table 2.2. Strikingly, GARCH-X become to lose its im-

provements in forecasting accuracies across all loss functions, that is mostly due to

the missing information previously provided by λis. In contrast, Model 1 remains

to have improved volatility forecasts relative to univariate GARCH although ex-

hibiting smaller improvements across all loss criteria when comparing with Table

2.2. I further compare forecasting accuracies of out-of-sample volatility forecasts

when using 5 years (Panel 2) and 10 years (Panel 3) of estimation window, yet

again confirming the enhanced forecasting accuracies from two bivariate GARCH

models by jointly using a full cross-section of stock returns.

Lastly, I provide the log-likelihood of univariate GARCH, which is a special

case of (2.17). Assuming λi = 1 for ∀i and κ2t = κ2, c2t = c2 for ∀t, the maximization

of the above log-likelihood is equivalent to,

L =
T∑
t=1

[
−1

2
log 2π − 1

2
log σ2

t −
1

2
× u2t
σ2
t

]
(2.19)

where only squared forecasting errors are used for parameter estimation.

2.4 Robustness checks

In this section, I provide robustness checks for the empirical analysis pro-

vided in Table 2.2 and Table 2.3. First, I consider squared return as a proxy

for unobservable volatility. Second, I address concerns for highly dispersed cross-

sectional returns and corresponding cross-sectional kurtosis by considering alter-
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native cross-sectional dispersion measures. Third, I take ordinary cash dividends

into account and evaluate the forecasting performance across models in predict-

ing volatility of the S&P 500 Index return with dividends. Lastly, I present the

volatility forecasting performance when outliers are included for the evaluation

of forecasting accuracies. Thoughout this section, I provide the comparison of

volatility forecasting accuracies across models, where Panel 1 compares in-sample

forecasting accuracies and Panel 2 (Panel 3) compares out-of-sample forecasting

accuracies when using 5 years (10 years) estimation window. For each panel in

the tables, the second column reports average losses from GARCH while the pre-

ceeding three columns report the percentage differences in forecasting accuracies

relative to univariate GARCH.

2.4.1 Alternative volatility proxy

As a proxy for latent volatility, squared returns have been widely adopted

in the earlier literature (See, for example, [82], [31] and [51]). As an alternative

volatility proxy, I construct a monthly squared return proxy by squaring residuals18

from the AR(1) forecasting model in (2.2). Table 2.7 provides results for volatility

forecasting performance when squared returns are used for comparing forecasting

accuracies across models. Results are consistent with those reported in Table 2.2

and Table 2.3.

2.4.2 Alternative measures

In this subsection, I provide robustness checks by using alternative cross-

sectional dispersion measures within the GARCH-X model. This comes from the

recognition in [69] that cross-sectional returns are highly dispersed, especially for a

large number of stocks considered. For investigating whether empirical results are

18Denoting by σ2
SR,t squared return in period t, it is calculated by σ2

SR,t =
(
rt − φ̂0 − φ̂1rt−1

)2
where φ̂0 and φ̂1 are OLS estimates obtained by regressing a monthly return on a constant and
its lag.
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affected by cross-sectional kurtosis, I consider three alternative measures: 1) 5%

trimmed estimator, 2) squared interquartile range and 3) cross-sectional market

volatility suggested in [69]. Let yi,t−1 ≡ w
1/2
i,t−2 (ui,t−1 − λi,t−1ut−1) for t = 2, . . . , T .

Rewriting the equation for cross-sectional dispersion in (2.10) as,

c2t−1 =

Nt−1∑
i=1

y2i,t−1

Then, the 5% trimmed estimator is obtained from the above equation by

discarding 5% extreme yi,t−1 from both tails at each period t − 1. Similarily, the

squared interquartile range estimator is calculated by squaring interquartile range

of yi,t−1 at each period t− 1.

The cross-sectional market volatility is constructed as19,

σ2
C,mt−1 =

Nt−1∑
i=1

wi,t−2 (ri,t−1 − rt−1)2

Figure 2.3 plots cross-sectional volatility from three alternative measures,

displayed as a square root of cross-sectional dispersion. Note that magnitudes

of the first two alternative measures are smaller than Figure 2.1, and the cross-

sectional market volatility exhibits similar patterns to the baseline measure in

Figure 2.120.

I estimate a GARCH-X model again, this time replacing c2t−1 in (2.10) by the

above three alternatives. Table 2.8 compares forecasting accuracies of GARCH-X

using three alternative measures both in sample and out of sample. In general,

results are consistent with those reported in Table 2.2 and Table 2.3. All three

alternative measures provide more accurate in-sample volatility forecasts than uni-

19From the cross-sectional market volatility in [69], I made two adjustments for reflecting
the time-varying number of stocks (Nt−1), and for making weights of individual stocks to be
predetermined (wi,t−2) in period t− 1. While the former adjustment is crucial in the analysis, I
find that the effect from the latter adjustment is trivial.

20One exception is found during the stock market crash in October 1987, where the cross-
sectional market volatility fails to capture the hightened idiosyncratic volatility documented in
[29].
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variate GARCH model21, however, the improved forecasting accuracies are not

statistically significant out of sample in general22.

Before concluding this section, it is worth noting that the cross-sectional

market volatility provides more accurate out-of-sample volatility forecasts than

a univariate GARCH model. This finding contrasts to [69] of which volatility

forecasts of individual stocks are shown to be marginally improved out of sample23.

However, such improvements in forecasting accuracies within the GARCH-X model

are smaller than from the cross-sectional dispersion in this paper both in sample

and out of sample (See Table 2.2, 2.3 and 2.8). This is mainly due to the implicit

assumption in [69]’s measure; all individual stocks are treated as if they respond

to the aggregate and idiosyncratic shocks in a same manner. However, it is less

likely to be a valid assumption when considering individual stocks’ heterogeneities

originated from disparities in market capitalizations as well as differences in firm-

specific characteristics.

2.4.3 Ordinary cash dividends

While ordinary cash dividends account for significant variations in daily

individual stock returns, the S&P 500 Index return is generally quoted without

dividends, capturing the changes in the index constituents’ prices only. In this

subsection, I evaluate the forecasting performance across models in predicting the

volatility of the S&P 500 Index return with dividends. In other words, the aggre-

gate volatility of interest is changed to the volatility in monthly S&P 500 Index

21The coefficient estimate of cross-sectional dispersion (π) is statistically significant at 5%
(10%) when using 5% trimmed estimator and cross-sectional market volatility measure.

22Two exceptions are under MAE loss criteria when using the trimmed cross-sectional disper-
sion measure, and under QLIKE loss criteria when using [69]’s cross-sectional market volatility
measure. Both are statistically significant at the 10% level.

23Potential explanations for this are associated with 1) an easiness of forecasting volatility of
the aggregate market index rather than of an individual stock, and 2) an exhaustive consideration
of the index constituents rather than excluding some stocks during the sample period . I also
consider [69]’s GARCH-cross-sectional (GARCH-XC) model by excluding the constant coefficient
from GARCH-X in (2.4) as σ2

t = αu2t−1 + βσ2
t−1 + πxt−1. Though not reported, GARCH-XC

does not provide statistically significant improvements in forecasting accuracies out of sample.
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return with cash dividends. To do so, I construct a fictional S&P 500 Index re-

turn with dividends where ordinary cash dividends are treated as if they are rein-

vested, and estimate GARCH, GARCH-X and two bivariate GARCH models using

monthly S&P 500 Index return with dividends. Table 2.9 compares forecasting ac-

curacies across models both in sample and out of sample. Results are consistent

with those reported in Table 2.2 and Table 2.3. This confirms the improved fore-

casting accuracies of bivariate GARCH models provided by using cross-sectional

information, which is also applicable for predicting the aggregate volatility in the

stock index return with dividends.

2.4.4 Outlier issues

So far, I exclude out-of-sample volatility forecasts for two periods (Octo-

ber 1987 and Septermber-December 2008) when comparing forecasting accuracies

across models. Since stock market volatility during these periods is unforeseen and

unprecedented, all forecasting models based on historical price information under-

forecast volatility of the S&P 500 Index return, commonly resulting in large losses

across all loss criteria regardless a proxy for unobserved volatility. In this subsec-

tion, I evaluate forecasting models’ performance again when previously excluded

forecasts are included for calculating out-of-sample forecasting accuracies.

Table 2.10 reports the comparison of out-of-sample forecasting accuracies

of univariate GARCH, GARCH-X and two bivariate GARCH models when using

5 years (Panel 1) and 10 years of estimation window (Panel 2). While results,

in general, are consistent with those presented in Table 2.3, I find the effects of

thorny outliers on forecasting accuracies in two ways. First, all forecasting models

generate severely under-predicted volatility forecasts during two influential peri-

ods. GARCH-X and two bivariate GARCH models have smaller improvements in

forecasting accuracies (relative to univariate GARCH) compared to those in Table

2.3. In particular, they become to have larger average QLIKE losses than univari-

ate GARCH (See Panel 1), where QLIKE loss function imposes heavier penalty
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on under-prediction. Second, severely under-forecasted volatilities during these

periods also affect the statistical significance of DMW test statistics. When using

MSE loss function, Model 1’s forecasting accuracies are not different from uni-

variate GARCH’s in statistical sense. Weakened statistical significance associated

with MSE loss function is mainly due to incorrect asymptotic variance estimates,

that are heavily affected by outliers. On the other hand, Model 1 and Model 2

remain to have statistically smaller average MAE losses than univariate GARCH,

indicating smaller influences from outliers when using MAE loss function.

2.5 Conclusion

This paper investigates the role of cross-sectional information in predicting

aggregate volatility. Given a large number of individual stocks, I develop a model

of stock returns by reflecting a natural idea that individual stocks respond to

the common aggregate shock at different degrees. The model is simple, but it

also provides a natural measure for cross-sectional dispersion whose effects on the

stock market volatility and cyclical variations in macroeconomic variables have

been popular research topics.

Using individual stocks in the S&P 500 Index from March 1964 to December

2014, I test the direct contribution of cross-sectional dispersion in predicting stock

market volatility. Although helpful for in-sample volatility forecasts, GARCH-X

with cross-sectional dispersion fails to provide more accurate out-of-sample volatil-

ity forecasts than GARCH. In other words, I provide empirical evidence that

cross-sectional dispersion does not enter the data-generating process for market

volatility.

I further explore another possibility for cross-sectional dispersion contribut-

ing to accurate estimates for model parameters. Using full cross-section of indi-

vidual stocks jointly, I estimate parameters in the bivariate GARCH model of

aggregate volatility and cross-sectional dispersion. I find that the cross-sectional
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dispersion improves the accuracies of aggregate volatility forecasts both in sample

and out of sample. Furthermore, out-of-sample volatility forecasts from the bivari-

ate GARCH model are shown to be more accurate than those from GARCH in

times of NBER recessions as well as during the periods with negative S&P Index

returns.

Given improved forecasting accuracies when using cross-sectional stock re-

turns jointly, I conclude that cross-sectional dispersion does help predict volatility

forecasts indirectly by helping to estimate parameters. On the other hand, empiri-

cal evidence from GARCH-X indicates that it does not enter in the data-generating

process directly.
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Figure 2.1: Cross-sectional dispersion

Figure 2.1 plots historical cross-sectional volatility which is a square root of cross-
sectional dispersion across individual stocks following (2.10). Shaded areas represent
NBER recession periods. The cross-sectional dispersion is shown to be time-varying and
highly persistent. The cross-sectional dispersion spiked up during the stock market crash
in October 1987, a feature commonly observed from alternative measures considered in
earlier literature.
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Figure 2.2: Realized volatility

Figure 2.2 plots historical realized volatility which is a square root of realized variance
calculated by aggregating daily S&P 500 Index returns following (2.11). Given a free-float
market capitalization methodology adopted in 2005, the daily S&P 500 Index returns
are calculated using individual stock returns and their weights, and I splice the quoted
daily S&P 500 Index return (prior to Feb 28, 2005) with the constructed daily S&P 500
Index return for calculating realized variance. Shaded areas represent NBER recession
periods.
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Figure 2.3: Alternative cross-sectional dispersion measure

Figure 2.3 plots alternative cross-sectional dispersion measures. Top panel displays cross-
sectional volatility after removing 5% extreme observations from both tails. Middle panel
displays interquartile range in (2.10). Bottom panel plots cross-sectional market volatility
proposed by Hwang and Satchell (2005). The plotted are the square root of alternative
cross-sectional dispersion measures.
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Table 2.1: Parameter estimates

GARCH-X GARCH

Parameters MLE (s.e.) MLE (s.e.)

$ 0.4303 (0.5174) 0.9713 (0.3503)

α 0.1032 (0.0289) 0.1176 (0.0285)

β 0.8295 (0.0354) 0.8510 (0.0266)

π 0.0306 (0.0214)

φ0 0.8712 (0.1755) 0.8724 (0.1735)

φ1 0.0085 (0.0442) 0.0106 (0.0441)

Likelihood −1, 803.87 −1, 805.81

Table 2.1 reports MLE estimates (asymptotic standard errors) of model parameters in
GARCH-X and GARCH models. Asymptotic standard errors are estimated by approxi-
mating the second derivative of the log-likelihood functions at MLE estimates. The last
row reports the maximized log-likelihood values under two volatility forecasting models.
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Table 2.2: Comparison of in-sample forecasting accuracy

Criteria L (σ2
RV , σ

2) GARCH GARCH-X Model 1 Model 2

MSE (σ2
RV − σ2)

2
1, 916.32 1, 860.34 1, 826.23 1, 871.44

(−2.92) (−4.70) (−2.34)

QLIKE
σ2
RV

σ2 + log σ2 3.96 3.94 3.92 3.95

(−0.54) (−1.16) (−0.33)

MAE |σ2
RV − σ2| 17.43 16.68 12.16 13.23

(−4.29) (−30.22) (−24.09)

Table 2.2 provides the comparison of in-sample volatility forecasts from univariate
GARCH, GARCH-X and two bivariate GARCH models provided in Section 3.2.. As
a proxy for an unobservable volatility, historical realized variance is calculated from
the daily S&P 500 index return. Column 2 provides definitions of loss functions for
measuring volatility forecasting accuracies. Next three columns report average losses of
in-sample volatility forecasts from univariate GARCH, GARCH-X models and two bi-
variate GARCH models. Adjacent rows report the percentage differences in forecasting
accuracies of GARCH-X, bivariate GARCH models relative to GARCH, where the neg-
ative difference implies that corresponding forecasting model has smaller average losses
than univariate GARCH.
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Table 2.3: Comparison of out-of-sample forecasting accuracy

Panel 1 : 5 years of estimation window

Criteria L (σ2
RV , σ

2) GARCH GARCH-X Model 1 Model 2

MSE (σ2
RV − σ2)

2
711.17 593.45 428.26 436.82

(−16.55) (−39.78∗∗) (−38.58∗∗)

QLIKE
σ2
RV

σ2 + log σ2 4.15 4.09 4.14 4.18

(−1.25∗∗) (−0.19) (0.72)

MAE |σ2
RV − σ2| 17.91 16.34 11.61 12.57

(−8.74∗∗) (−35.16∗∗∗) (−29.83∗∗∗)

Panel 2 : 10 years of estimation window

Criteria L (σ2
RV , σ

2) GARCH GARCH-X Model 1 Model 2

MSE (σ2
RV − σ2)

2
567.18 567.25 419.68 398.19

(0.10) (−26.01∗∗) (−29.79∗∗∗)

QLIKE
σ2
RV

σ2 + log σ2 4.18 4.13 4.11 4.14

(−1.06) (−1.67∗∗) (−0.99)

MAE |σ2
RV − σ2| 17.33 16.36 11.52 11.97

(−5.54) (−33.50∗∗∗) (−30.92∗∗∗)

Table 2.3 provides the comparison of out-of-sample volatility forecasts from univariate
GARCH, GARCH-X and two bivariate GARCH models provided in Section 3.2.. A
rolling fixed estimation period method was used for calculating out-of-sample volatility
forecasts with 5 years (Panel 1) and 10 years of the estimation window (Panel 2). Column
2 provides definitions of loss functions for measuring volatility forecasting accuracies.
Next three columns report average losses of in-sample volatility forecasts from univariate
GARCH, GARCH-X models and two bivariate GARCH models. Adjacent rows report
the percentage differences in forecasting accuracies of GARCH-X, bivariate GARCH
models relative to GARCH. While the negative difference implies that corresponding
forecasting model has smaller average losses than univariate GARCH, asterisk represents
the statistical significance of DMW equal predictability test suggested by [34] and [101].
Given critical values being 1.28 (90%), 1.65 (95%) and 2.33 (99%) respectively, */**/***
represent the statistical significance at 90%, 95% and 99% respectively.
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Table 2.4: Parameter estimates

Full Model Model 1 Model 2

Parameters MLE (s.e.) MLE (s.e.) MLE (s.e.)

$1 0.0000 (0.4505) 0.0000 (0.4505) 0.5785 (0.2552)

$2 12.7429 (0.4640) 12.7430 (0.4640) 12.7429 (0.4640)

α11 0.0819 (0.0269) 0.0819 (0.0269) 0.1163 (0.0262)

α12 0.0428 (0.0180) 0.0428 (0.0180) − −

α21 0.0000 (0.0111) − − − −

α22 0.9893 (0.0194) 0.9893 (0.0189) 0.9893 (0.0189)

β11 0.7922 (0.0534) 0.7922 (0.0534) 0.8443 (0.0285)

β22 0.6088 (0.0075) 0.6088 (0.0075) 0.6088 (0.0075)

Likelihood −1, 328, 838.98 −1, 328, 838.98 −1, 328, 847.51

Table 2.4 reports MLE estimates (asymptotic standard errors) of the bivariate GARCH
model. Asymptotic standard errors are estimated by approximating the second deriva-
tive of the log-likelihood functions at MLE estimates. For comparison, it also reports
estimation results under two restricted models: α21 = 0 (Model 1) and α12 = α21 = 0
(Model 2). The last row reports the maximized log-likelihood values under three models.
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Table 2.5: Tests for conditional predictive ability

Panel 1 : Recession

5 years 10 years

Criteria Model 1 Model 2 Model 1 Model 2

MSE 39.02∗∗∗ 34.25∗∗∗ 34.85∗∗∗ 58.29∗∗∗

QLIKE 26.56∗∗∗ − 46.50∗∗∗ 43.67∗∗∗

MAE 96.35∗∗∗ 76.77∗∗∗ 104.27∗∗∗ 123.25∗∗∗

Panel 2 : Bear markets

5 years 10 years

Criteria Model 1 Model 2 Model 1 Model 2

MSE 36.31∗∗∗ 26.77∗∗∗ 41.57∗∗∗ 59.92∗∗∗

QLIKE 26.78∗∗∗ − 47.13∗∗∗ 43.54∗∗∗

MAE 107.00∗∗∗ 85.53∗∗∗ 119.29∗∗∗ 137.19∗∗∗

Table 2.5 reports test statistics for conditional predictive ability proposed by [54]. Under
the null hypothesis of no conditional loss differentials, the test statistic is asymptotically
chi-squared distributed with 3 degrees of freedom. Panel A report results for testing
whether two bivariate models outperform univariate GARCH during recession with using
5 years and 10 years estimation windows. Panel B reports results for testing whether
those models outperform univariate GARCH during periods with negative S&P 500
Index return. Given critical values with 3 degrees of freedom being 6.25 (90%), 7.81
(95%) and 11.34 (99%) respectively, */**/*** represent the statistical significance at
90%, 95% and 99% respectively.
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Table 2.6: Comparison of forecasting accuracies with all λi = 1

Panel 1 : In-sample

Criteria GARCH GARCH-X Model 1 Model 2

MSE 1, 916.32 6.70 −0.34 −2.58

QLIKE 3.96 0.47 −0.11 −0.61

MAE 17.43 3.93 −20.02 −21.64

Panel 2 : Out-of-sample (5 years of the estimation window)

Criteria GARCH GARCH-X Model 1 Model 2

MSE 711.17 54.55 −38.11∗∗∗ −38.41∗∗

QLIKE 4.15 −0.68 −0.60 −0.32

MAE 17.91 0.45 −30.30∗∗∗ −26.76∗∗∗

Panel 3 : Out-of-sample (10 years of the estimation window)

Criteria GARCH GARCH-X Model 1 Model 2

MSE 567.18 60.87 −25.72∗∗∗ −26.94∗∗∗

QLIKE 4.18 0.31 −0.28 −0.60

MAE 17.33 0.40 −29.18∗∗∗ −26.96∗∗∗

Table 2.6 highlights the indirect contribution of the cross-sectional dispersion for volatil-
ity forecasts. Compared to previous forecasting exercises, univariate GARCH-X and two
bivariate models are estimated with strict restrictions on firm-characteristics: all λi = 1.
Panel 1 compares in-sample forecasts from univariate GARCH, GARCH-X and two bi-
variate GARCH models, and Panel 2 (Panel 3) compare their out-of-sample volatility
forecasts with 5 years (10 years) of the estimation window. While column 2 reports aver-
age losses of volatility forecasts from GARCH, the preceeding three columns report the
percentage differences in forecasting accuracies of GARCH-X and two bivariate GARCH
models relative to univariate GARCH model. The negative difference implies that cor-
responding forecasting model has smaller average losses than univariate GARCH, and
asterisk represents the statistical significance of DMW equal predictability test suggested
by [34] and [101].
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Table 2.7: Rubustness checks - Squared return

Panel 1 : In-sample

Criteria GARCH GARCH-X Model 1 Model 2

MSE 1, 461.98 −1.58 −8.22 −6.74

QLIKE 3.89 −0.26 −0.82 −0.43

MAE 22.95 −1.70 −21.18 −18.42

Panel 2 : Out-of-sample (5 years of the estimation window)

Criteria GARCH GARCH-X Model 1 Model 2

MSE 1, 299.22 −11.18 −31.33∗∗ −28.92∗∗

QLIKE 4.03 −1.12∗∗ −1.03 −0.27

MAE 24.79 −4.57∗ −25.38∗∗∗ −21.90∗∗∗

Panel 3 : Out-of-sample (10 years of the estimation window)

Criteria GARCH GARCH-X Model 1 Model 2

MSE 1, 105.39 −3.67 −17.32∗∗∗ −17.47∗∗∗

QLIKE 4.01 −1.09∗ −1.99∗∗ −1.39∗

MAE 23.78 −3.11 −21.48∗∗∗ −20.89∗∗∗

Table 2.7 provides the comparison of forecasting accuracies across models when using
squared return as a proxy for volatility forecasts. Monthly squared returns are con-
structed by squaring residuals from the AR(1) forecasting model for the S&P 500 Index
return. For comparison, column 2 reports average losses of volatility forecasts from
GARCH and the preceeding three columns report the percentage differences in forecast-
ing accuracies of GARCH-X and two bivariate GARCH models relative to univariate
GARCH model. The negative difference implies that corresponding forecasting model
has smaller average losses than univariate GARCH, and asterisk represents the statistical
significance of DMW equal predictability test suggested by [34] and [101].
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Table 2.8: Robustness checks - Alternative measures

Panel 1 : In-sample

Criteria GARCH 5 % IQR HS

MSE 1, 916.32 −3.09 −2.73 −2.39

QLIKE 3.96 −0.55 −0.44 −0.47

MAE 17.43 −4.47 −3.54 −3.47

Panel 2 : Out-of-sample (5 years of the estimation window)

Criteria GARCH 5 % IQR HS

MSE 711.17 −3.48 16.56 −8.82

QLIKE 4.14 −0.58 0.13 −0.78∗

MAE 17.90 −6.26∗ 0.16 −5.39

Panel 3 : Out-of-sample (10 years of the estimation window)

Criteria GARCH 5 % IQR HS

MSE 567.18 −2.38 −1.76 3.84

QLIKE 4.18 −0.44 −0.61 −1.00

MAE 17.33 −3.69 −4.58 −4.09

Table 2.8 reports robustness checks using three alternative cross-sectional dispersion mea-
sures. Given concerns for a noisy cross-sectional dispersion measure when using all indi-
vidual stock returns, I consider two alternative measures as a covariate in the GARCH-X
model; in (2.10), I calculate 1) the trimmed cross-sectional dispersion (5%) where 5%
extreme observations are removed from both tails at each t, 2) squared interquartile
range (IQR). Lastly, the cross-sectional market volatility is calculated following Hwang
and Satchell (2005). For comparison, column 2 reports average losses of volatility fore-
casts from GARCH and the preceeding three columns report the percentage differences
in forecasting accuracies of GARCH-X using three alternative measures relative to uni-
variate GARCH model. The negative difference implies that corresponding forecasting
model has smaller average losses than univariate GARCH, and asterisk represents the
statistical significance of DMW equal predictability test suggested by [34] and [101].
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Table 2.9: Robustness checks - Dividends

Panel 1 : In-sample

Criteria GARCH GARCH-X Model 1 Model 2

MSE 1, 795.00 −2.76 −5.64 −2.51

QLIKE 3.97 −0.47 −1.28 −0.46

MAE 17.33 −3.75 −29.47 −23.10

Panel 2 : Out-of-sample (5 years of the estimation window)

Criteria GARCH GARCH-X Model 1 Model 2

MSE 710.09 −13.83 −43.62∗∗∗ −41.80∗∗∗

QLIKE 4.16 −0.86∗ −0.33 0.58

MAE 18.07 −6.95∗ −35.33∗∗∗ −30.36∗∗∗

Panel 3 : Out-of-sample (10 years of the estimation window)

Criteria GARCH GARCH-X Model 1 Model 2

MSE 559.98 1.04 −24.39∗∗ −24.74∗∗∗

QLIKE 4.19 −0.85 −1.35∗∗ −0.54

MAE 17.02 −3.38 −27.62∗∗∗ −24.60∗∗∗

Table 2.9 provides the comparison of volatility forecasts from univariate GARCH,
GARCH-X and two bivariate GARCH models provided in Section 3.2.. For taking
into account the effects of ordinary cash dividends on volatility forecasting accuracy, I
constructed S&P 500 index with dividends and compare volatility forecasting accuracies
across models. As a proxy for an unobservable volatility, historical realized variance is
calculated from daily returns for the constructed S&P 500 index with dividends. For
comparison, column 2 reports average losses of volatility forecasts from GARCH and
the preceeding three columns report the percentage differences in forecasting accuracies
of GARCH-X and two bivariate GARCH models relative to univariate GARCH model.
The negative difference implies that corresponding forecasting model has smaller aver-
age losses than univariate GARCH, and asterisk represents the statistical significance of
DMW equal predictability test suggested by [34] and [101].
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Table 2.10: Robustness checks - Outliers

Panel 1 : Out-of-sample (5 years of the estimation window)

Criteria GARCH GARCH-X Model 1 Model 2

MSE 2, 284.72 −2.56 −6.21 −5.34

QLIKE 4.22 0.11 0.74 1.98

MAE 20.96 −7.23∗∗ −28.43∗∗∗ −23.85∗∗∗

Panel 2 : Out-of-sample (10 years of the estimation window)

Criteria GARCH GARCH-X Model 1 Model 2

MSE 2, 333.14 3.48 −1.18 −5.39∗∗

QLIKE 4.23 −0.22 −0.52 −0.26

MAE 20.76 −3.95 −26.53∗∗∗ −25.24∗∗∗

Table 2.10 provides the comparison of out-of-sample volatility forecasts from univari-
ate GARCH, GARCH-X and two bivariate GARCH models provided in Section 3.2.
without excluding out-of-sample forecasts from two influential periods. Panel 1 (Panel
2) compares out-of-sample volatility forecasts from univariate GARCH, GARCH-X and
two bivariate GARCH models with 5 years (10 years) of the estimation window. While
column 2 reports average losses of volatility forecasts from GARCH, the preceeding three
columns report the percentage differences in forecasting accuracies of GARCH-X and two
bivariate GARCH models relative to univariate GARCH model. The negative difference
implies that corresponding forecasting model has smaller average losses than univariate
GARCH, and asterisk represents the statistical significance of DMW equal predictability
test suggested by [34] and [101].
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Appendix 2.A: Empirical Procedure

In this section, I describe the parameter estimation procedure of the pro-

posed model which is skipped in Section 2.3.2. For clarifying dimensions associated

with vectors and matrices, I use one underline below a variable for representing a

vector and two underlines for representing a matrix.

To begin with, consider individual forecasting errors obtained from AR(1)

forecasting model of returns (2.12): for each stock i, an individual forecasting

error ui,t is obtained by regressing ri,t on a constant and its lagged return ri,t−1

for t = 2, . . . , T . Let ut ≡ [u1,t, . . . , uNt,t]
′ be a collection of individual forecasting

errors at period t. Denoting by Ω
t
≡ E [utu

′
t|Ft−1] a Nt × Nt variance-covariance

matrix of individual forecasting errors in period t, the joint log-likelihood function

of individual stock returns becomes,

L =
T∑
t=1

[
−Nt−1

2
log 2π − 1

2
log
∣∣∣Ω

t

∣∣∣− 1

2
u′tΩ

−1
t
ut

]

In general, the numerical maximization of above log-likelihood by itera-

tive methods can be quite costly since it requires an inversion and a determinant

calculation of Nt ×Nt matrix Ω
t

for each period t.

Here I overcome this empirical intractability issue by modeling an individual

forecasting error using a factor structure provided by equation (2.13). Since Ω
t

is

a symmetric matrix that is factored by a vector of individual weights, analytical

forms of inversion and determinant are given by,

∣∣∣Ω
t

∣∣∣ =
(
κ2t
)(Nt−1−1) ·

(
κ2t + σ2

t

Nt−1∑
i=1

λ2i

)
·

(
Nt−1∏
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N2
t−1w

2
i,t−1

)

Ω−1
t

(i, j) =


N2
t−1w

2
i,t−1
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·
(

1− σ2
t λ

2
i

κ2t+σ
2
t

∑Nt−1
i=1 λ2i

)
for j = i

−N2
t−1wi,t−1wj,t−1

κ2t
· σ2

t λiλj

κ2t+σ
2
t

∑Nt−1
i=1 λ2i

for j 6= i
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where Ω−1
t

(i, j) is an (i, j)th element in the inverse matrix Ω−1
t
.

Then, the closed-form log-likelihood function is given by,

L =
T∑
t=1

[
−Nt−1

2
log 2π − 1

2
log Jt

−
N2
t−1

2κ2t


Nt∑
i=1

(wi,t−1ui,t)
2 − σ2

t

κ2t + σ2
t

∑Nt−1

i=1 λ2i

(
Nt∑
i=1

wi,t−1λiui,t

)2



where Jt ≡
(
κ2t + σ2

t

∑Nt−1

i=1 λ2i

)
× (κ2t )

(Nt−1−1)×
∏Nt−1

i=1 (wi,t−1Nt−1)
−2 is a determi-

nant of a Nt−1×Nt−1 variance matrix of individual forecasting errors. This can be

numerically evaluated along with the bivariate GARCH process, providing MLE

estimates for parameters.



Chapter 3

Heterogeneity in the Dynamic

Effects of Uncertainty on

Investment

Abstract. We examine how aggregate profit uncertainty influences capital

investment activities, focusing on heterogeneous responses of firms. We model ag-

gregate profit uncertainty as the conditional standard deviation of a common factor

across unforecasted fluctuations in the sales growth of different industries, and ex-

ploit cross-sectional variations for its estimation. From an investment forecasting

model that coherently analyzes firm- or group-specific effects of uncertainty, we

find that the direction and the size of investment adjustment vary considerably

across firms, with a significant but small negative average impact. Our results

highlight the importance of accounting for heterogeneity in the transmission of

uncertainty, allowing us to reconcile different views on the effect of uncertainty in

the existing literature.

97
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3.1 Introduction

In the seminal work of Dixit and Pindyck [36], uncertainty is a key factor

influencing investment decisions of firms, and a large body of literature has been

subsequently devoted to study this topic. Nonetheless, earlier discussions arrive at

divergent conclusions about the uncertainty-investment relationship. For example,

Hartman [65] and Abel [1] find that a mean-preserving increase in uncertainty raises

capital investments under convex adjustment costs. In a single-project partial

equilibrium model, Sarkar [93] shows the positive impact of an uncertainty increase

below a threshold. More recently, Slade [97] finds empirical evidence of a positive

relation, using data for the US mining sector. On the contrary, [9] and Bloom

[11] points out the irreversibility of capital, which causes firms to wait under high

uncertainty. Baum et al. [8]’s empirical analysis supports this view. Our goal

in this paper is to emphasize the importance of accounting for the heterogeneous

responses of firms to changes in aggregate profit uncertainty, to better understand

the opposing views in the previous literature.

Considering heterogeneity by exploring the firm-level data essentially opens

up the possibility of clearly understanding various features at work that different

theoretical models focus on. To this end, we present an investment forecasting

model where both the sign and the magnitude of investment adjustment are co-

herently examined at the firm level. This model differs from the approach widely

employed in previous studies on the differential effects of uncertainty (e.g., Leahy

and Whited 79 and Ghosal and Loungani 53). These studies first select a cer-

tain firm feature as a potential cause of the heterogeneity and split the sample

accordingly into two groups for analysis. This may not explicitly capture the dif-

ferences in the uncertainty transmission mechanism across sub-samples, as other

explanatory variables can also have varying effects simultaneously on investment.

In our framework, however, only profit uncertainty is interacted with firm-specific

slope coefficients, allowing for a straightforward investigation of the transmission
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channel. We first let the data speak with regard to firm-level heterogeneity, and

examine ex-post how various firm characteristics contribute to the heterogeneity.

Furthermore, our framework can be easily modified to accommodate a number of

firm features and grouping criteria to examine potential causes of heterogeneity. It

is also widely applicable to a number of other contexts, for instance, to investigate

how asset holdings or loan growth of financial intermediaries change at the firm

level when aggregate economic uncertainty rises.

The second contribution of the paper is to propose a volatility process

called Panel-autoregressive conditional heteroskedasticity (Panel-ARCH) to effi-

ciently estimate aggregate profit uncertainty from a large panel of industries. We

model aggregate profit uncertainty as the conditional standard deviation of a com-

mon factor that simultaneously drives unforecasted fluctuations in sales growth

across different industries. In this setting, we postulate factor loadings as well as

idiosyncratic volatilities to be inversely proportional to the previous quarter’s sales

share of each industry. This enables the derivation of a closed-form log-likelihood

function that not only expedites the estimation process but also provides more pre-

cise parameter estimates for the aggregate volatility process. Thus, Panel-ARCH

builds on the factor-ARCH models developed in Diebold and Nerlove [35] and [44],

as it jointly models individual entities using a factor structure. Yet our approach

further simplifies the computational process, making the model easily applicable

for an aggregate volatility estimation from a panel with a large cross-sectional

dimension.

We find that profit uncertainty on average has a significant but small neg-

ative effect on investment. However, when we look at the firm-level responses,

substantial heterogeneity is observed across firms: about 28% of firms in the sam-

ple are expected to increase capital investment when uncertainty is high, and the

magnitude of investment adjustment varies considerably across firms. Thus, our

finding allows reconciling the different results in the previous literature, and high-

lights the importance of accounting for heterogeneity to better understand the
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transmission of uncertainty. Further, when we link the observed heterogeneity to

firm size, we find that the size and the degree of uncertainty effects have an inverse

U-shape relationship. That is, both small and large firms are expected to reduce in-

vestment more than medium-sized firms. This non-linear effect of uncertainty with

respect to the firm size has not been documented in the previous literature such

as Ghosal and Loungani [53] where the relationship is demonstrated to be rather

linear based on a two-group analysis. On the contrary, our findings corroborate

the theoretical result illustrated in Bolton et al. [14] that the relation between a

firm’s available internal funds and investment timing is highly non-monotonic and

non-linear, assuming that the size represents the firm’s financial condition. We

further evaluate several firm characteristics that are relevant to the heterogeneity,

such as the total-liabilities-to-asset ratio, and the sub-industry classification.

The remainder of the paper is as follows. The next section presents the

Panel-ARCH process for aggregate profit uncertainty. Section 3.3 introduces an

investment capital decision forecasting model capturing heterogeneous effects of

uncertainty, and briefly describes the data. The estimation results are presented

in section 3.4 including a detailed discussion of different firm characteristics and

heterogeneity in the uncertainty transmission mechanism. Section 3.5 concludes.

3.2 Measuring Profit Uncertainty

3.2.1 Profit Uncertainty

A firm’s profitability is determined by several unobservable factors such as

consumers’ taste, wealth, production technology, and prices of inputs and out-

puts. Nonetheless, we use a firm’s sales revenue as a proxy of profitability since

it is a fundamental source of the firm’s periodic profit. Sales revenue (henceforth

sales) is also less likely to be affected by the firm’s non-operating activities such
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as profits/losses from its subsidiary as well as its financial investment activities.1

We define aggregate profit uncertainty as the conditional standard deviation

of a factor which simultaneously drives unexpected changes in the sales growth

rates across different industries.2 Support for such a common driver is reported

in Herskovic et al. [67], documenting a strong factor structure in volatilities of

firms’ sales growth. Another link between aggregate and industry-level sales can

be found from the following accounting identity. For a total of J industries’ sales

(Sjt for j = {1, ..., J}) in the economy, an aggregate sales index (St) is defined as

St ≡
J∑
j=1

Sjt , (3.1)

and its growth rate from t to t+ 1 can be calculated as

gt+1 ≡
St+1 − St

St
=

J∑
j=1

wj,t · gjt+1. (3.2)

where wj,t ≡ Sjt /
∑J

j=1 S
j
t is the sales share of an industry j in period t and gjt+1 is

the growth rate of the industry j′s sales from t to t+ 1. Hence, the aggregate sales

growth rate is the weighted average of the industries’ sales growth rates, where the

weights are time-varying and pre-determined as the t period’s sales share.3 It is

worthwhile to note that the weights have a further implication regarding how much

variations in each industry contribute to the aggregate-level volatility. Therefore,

we model aggregate profit uncertainty as the variability of a common factor across

the sales forecast errors of different industries.

We use the sales series of all firms in the combined quarterly Compustat

1Ghosal and Loungani [53] also constructed an annual measure of profit uncertainty from
the residual of a sales forecasting equation of large and small firms, defined as 5-year standard
deviations of the residuals.

2Our classification of industries in this paper is based on the first 2-digit Standard Industrial
Classification (SIC) code. The same classification is used in [57] when estimating the marginal
profitability of capital using a sales-revenue-to-capital ratio.

3Appendix 3.A.2 provides plots of the quarterly aggregate sales revenue index following (3.1)
as well as the quarterly aggregate sales growth rate following (3.2).



102

North America industrial files from 1981Q1 to 2012Q4. We construct a panel

of 67 2-digit standard-industry-classification (SIC) industries by aggregating sales

within the same industry, and calculate quarterly sales growth rates as well as sales

shares.4 For estimating unforeseen changes of industries, we consider a one-period-

ahead sales growth forecasting model for an industry j, controlling for observable

macroeconomic conditions Zt (i.e., the quarterly real GDP growth rate and effective

federal funds rate) and seasonality Dt as

gjt+1 = δjgjt + φj′Zt + ψj′Dt + uj,t+1, (3.3)

where coefficients δj, φj and ψj are allowed to vary across different industries.

Then, based on a set of cross-sectional forecasting errors uj,t+1, we propose a

Panel-ARCH model for aggregate profit uncertainty in the following section.

3.2.2 Panel-ARCH Model

We exploit a factor model framework to capture aggregate profit uncertainty

as the conditional standard deviation of a common factor driving cross-sectional

sales forecasting errors of industries. More specifically, with ft+1 denoting the

factor, we conjecture that industry j′s forecasting error (ujt+1) has the following

factor structure:

uj,t+1 = λj,t · (ft+1 + ηj,t+1) , (3.4)

where ηj,t+1 is industry j′s idiosyncratic forecasting error following a martingale

difference sequence with E
(
η2j,t+1|Ft

)
= τ 2, with an information set Ft containing

all information available through t. We define aggregate profit uncertainty, σt+1,

4There are 74 industries based on 2-digit SIC code. In our analysis, we exclude 7 in-
dustries whose sales revenues are infinitesimal or do not exist on a continuation basis over
the sample period. Those are Agricultural Product-Livestock & Animal Specialties (SIC2=2),
Forestry (SIC2=8), Fishing, Hunting and Trapping (SIC2=9), and other miscellaneous services
(SIC2=81,84,86,89). Their sales revenues range from 0.00001% to 0.00308%, and account for
0.0063% as a whole from 1981Q1 to 2012Q4.
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as the conditional standard deviation of ft+1, i.e.:

E
[
f 2
t+1|Ft

]
= σ2

t+1, (3.5)

provided that E [ft+1|Ft] = 0.

The factor structure in (3.4) is similar in spirit to the factor-ARCH models

proposed in Diebold and Nerlove [35] and Engle et al. [44] in jointly modeling

individual entities. However, the flexible multivariate specification of common and

idiosyncratic volatilities in their framework made the application of their model to

a large panel difficult, as the number of parameters to estimate increases rapidly

along with the size of a cross-sectional dimension. Hence, we propose a Panel-

ARCH model which improves on this feature by imposing a structure on λj,t as

following:

λj,t =
1

J · wj,t
. (3.6)

This restriction implies that the volatility of each industry differs from others de-

pending on its sales share in the previous period (wj,t). More specifically, industry

j with a below-average share (i.e., wj,t < 1/J) tends to have large unpredicted

variations, since the small industry is likely (i) affected heavily by the common

uncertainty and (ii) under large idiosyncratic fluctuations. Figure 3.1 shows that

the correlation coefficients between the absolute value of forecasting errors (|uj,t+1|)

and sales shares (wj,t) across industries in each quarter are indeed negative for most

periods in the sample, i.e., 113 out of 123 quarters, supporting the above specifi-

cation. Furthermore, it ensures that the conditional variance of the weighted sum

of forecasting errors across industries is equal to the conditional variance of the

common factor as

E

( J∑
j=1

wj,t · uj,t+1

)2

|Ft

 = σ2
t+1. (3.7)

Therefore, aggregate profit uncertainty can be estimated from a recursive
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formulation as follows:

σ2
t+1 = a0 +

q∑
k=1

ak · u2t−k+1

= a0 +

q∑
k=1

ak ·

(
J∑
j=1

wj,t−kuj,t−k+1

)2

, (3.8)

where ut−k+1 ≡
∑J

j=1wj,t−kuj,t−k+1 is the weighted sum of forecasting errors across

industries.

In Appendix 3.A.1, we demonstrate that a simple closed-form expression

for the likelihood function can be derived under condition (3.6), in addition to

the recursive formulation of σ2
t+1. Thus, the parsimonious specifications of the

Panel-ARCH provides tractability for the estimation of aggregate profit uncer-

tainty, overcoming empirical difficulties due to a large cross-section. In addition,

[24] documents the improved accuracy in aggregate volatility forecasting in a sim-

ilar context: he shows that the cross-sectional information of stock index compo-

nents results in more accurate parameter estimates and further leads to the more

precise estimation of stock index volatility.

Here we fit a Panel-ARCH(1) for aggregate profit uncertainty from 1982Q1

to 2012Q4 (124 quarters).5 Figure 3.2 plots the estimated profit uncertainty pro-

cess with four shaded NBER recession periods. The uncertainty series shows fre-

quent fluctuations over time, even though we first remove seasonality from the

sales series by including seasonal dummy variables for each industry, when esti-

mating the sales forecasting model (3.3).6 The profit uncertainty was high during

5We select the Panel-ARCH(1) after comparing it to a few other specifications. The parameter
estimates of the model imply that the profit uncertainty has persistence (α1) of 0.2085 and the
long-run average (E

[
σ2
t

]
) of 12.24. Estimated τ indicates that average cross-sectional dispersion

is approximately 33.67%. For model parameter estimation, we condition on the first 4 quarter
observations (i.e., 1981Q1 - 1981Q4). More details of the comparison results as well as the
parameter estimates are in Appendix 3.A.3.

6When we regress the estimated profit uncertainty series on four seasonal dummies, we reject
the F-test that all seasonal dummies are jointly zero. However, to show that the results of this
paper are not driven by the potential seasonality of the uncertainty series, we estimate all models
again using a de-seasonalized profit uncertainty series, and the results do not change.
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the 1981 and 2001 recessions, and then surged to an unprecedented level during

the Great Recession. We also see jumps corresponding to the Mexican peso crisis

in the mid-1990s as well as the Asian and Russian financial Crisis in the late-1990s.

Although the size of an increase is relatively small, it also picked up during the

episode of Black Wednesday in 1992 when Britain left the European Exchange

Rate Mechanism.

3.3 An Investment Forecasting Model

In this section, we first describe our firm-level data with control variables

for explaining the investment activity of individual firms. Next, we propose an

investment forecasting model where firms’ heterogeneous adjustment of investment

under uncertainty is examined with estimated one-quarter-ahead aggregate profit

uncertainty (denoted as σt+1|t).

We use the manufacturing firms (SIC codes 2000-3999) in the combined

quarterly Compustat North America industrial files from 1989Q1 to 2012Q4.7

Since only a few firms span the entire sample period while most emerge (or disap-

pear) in the midst of this period, we construct an unbalanced panel after deleting

observations that are missing, highly distressed or likely to be of mergers. The

final sample contains 219,538 firm-quarter observations for 96 quarters and 5,197

firms.

Our main variable of interest is the future investment-to-capital-stock ratio

of a manufacturing firm yi,t+1. In the investment forecasting model, we control for

the firm’s investment opportunity, internal funding ability and life-cycle behavior,

using sales revenue (sales), cash and cash-equivalent stocks (cash), and the loga-

rithm of total book-valued assets (size).8 These controls are expected to explain

7We focus on the manufacturing industry among others, since the capital expenditures of
manufacturing firms take the largest share of total capital expenditure, and thus understanding
their variations is critical. According to the US Census Bureau’s data, the manufacturing industry
in the U.S. comprised about 19.7% of total capital expenditures in 2000. The share fell to 15.4% in
2009; however, manufacturing still remains the largest contributor to total capital expenditures.

8While the average Tobin’s Q had been a popular proxy since [66] for a firm’s investment
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the firm’s future profitability as well as its capital investment decision. We follow

the standard approach in the literature of transforming trends in variables (i.e.,

capital expenditure, sales and cash) into ratios relative to the beginning-period

capital stocks. Lastly, we adjust the total book-valued assets to 2005Q3 US dol-

lars. Table 3.1 reports the summary statistics along with the definitions of the

selected variables for the analysis. For instance, the quarterly investment rate

(yit+1) has a mean of 6.3% with an inter-quantile range of 4.7%. In general, all

variables exhibit a high degree of kurtosis, with the exception of size. More details

on the data is provided in Appendix 3.B.

Next, we describe our investment forecasting model, where the profit uncer-

tainty is interacted with firm-specific slope coefficients. Let yi,t+1 be the investment-

to-capital-stock ratio of a manufacturing firm i for i = 1, ..., n. Let Xi,t be a 5× 1

vector of firm-specific determinants of the future investment: following the invest-

ment literature (e.g., Gilchrist and Himmelberg 57), we include sales, cash hold-

ings, size, a constant and lagged investment in Xi,t. We assume a linear forecasting

model:

yi,t+1 = X ′i,t · β + γi · σt+1|t + δ · Zt + hi,t+1, (3.9)

where β is a 5× 1 vector of coefficients that are common across all firms and hi,t+1

is an i.i.d. idiosyncratic forecasting error with variance ζ2. To make sure that

our results are not driven by the business cycle property of uncertainty, we also

include the real GDP growth rate (Zt) to control for cyclical variations in the first

moment.

The coefficient of our main interest is γi, which is unique for each firm i:

it quantifies the heterogeneous effects of profit uncertainty on the next period’s

investment activity. When γi is set to be the same across firms, it simply examines

the average effect of uncertainty, with the proposed model devolving to a standard

opportunity, we use the sales revenue instead, following [57]. Since there has been a long-standing
consensus regarding the inappropriateness of the average Tobin’s Q, earlier Q-based investment
regressions were often augmented by various measures of cash flows. See, for example, the
literature reviews in [28] and [68].
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forecasting model. Hence, the proposed framework can provide a detailed picture

of changes at the firm level in a coherent manner, with γi varying alone for each

firm. Furthermore, we can easily modify the model to accommodate pre-selected

grouping criteria with group-specific slope coefficients.

We use three different model specifications to understand the uncertainty

transmission mechanism. First, we estimate the above investment forecasting

model ignoring heterogeneity, assuming identical γ across all i’s (i.e., γi = γ̄ ∀ i).

In what follows, we call this the baseline analysis. Second, we estimate the model

with complete firm-level heterogeneity (i.e., γi 6= γj ∀ i 6= j). Every firm in

the sample has its own γi, implying that each can respond differently to aggre-

gate profit uncertainty. In this specification, we estimate the model by iterating

between a linear projection of γi’s and the numerical maximum likelihood esti-

mation (MLE) of other parameters recursively, until convergence. This handles

an empirical difficulty arising from the large dimension of γi, adding more than

5,000 firm-specific parameters to the estimation. Finally, we group firms based on

their common characteristics such as firm size, total liability ratio, and the 2-digit

SIC classification, and illustrate differences in responses by including group-specific

slope coefficients (i.e., γi = γ̄J ∀ i ∈ J). In this way, characteristics potentially

related to the heterogeneity are highlighted, linking results closely to economic

fundamentals.

3.4 Results

3.4.1 Findings from the Baseline Model

Profit Uncertainty (γ)

Column (1) of Table 3.2 reports coefficient estimates and asymptotic stan-

dard errors of the baseline model without incorporating heterogeneity.9 In the

9We estimate the asymptotic standard errors by numerically approximating second derivatives
of the Hessian matrix at the estimated MLE. See pp.133-148 in [62] for more details.
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baseline model, firms’ future capital investments are, on average, slightly nega-

tively related to our measure of aggregate profit uncertainty: a one-unit increase

in uncertainty will decrease firms’ investment-to-capital ratios by 0.139 pp across

all firms, i.e., about 2.21% of the average quarterly investment growth rate (6.3%).

When the profit uncertainty peaked in 2008Q4, our result implies that firms’ in-

vestment decreased by 0.99 pp due to a one-time surge in the uncertainty from

4.98% (2008Q3) to 8.87% (2008Q4). This result of the average negative effect of

uncertainty is consistent with the findings in Bloom [11]. Yet the size of the un-

certainty effect is relatively small, which emphasizes the importance of examining

the underlying transmission channel more closely at the firm level.

Other Firm-Specific Controls

Sales (β1)

Sales have been used as a proxy of investment opportunities in the existing

literature, with the advantage of being available for both private and public firms

(see Acharya et al. 2, for example). We find that sales positively affect capital

investment, in line with previous studies such as [6]: assuming that sales represent

a firm’s marginal productivity of capital and profit opportunity, it is more likely for

a firm with high sales to make capital investment. More specifically, when the sales-

to-capital ratio rises by one standard deviation (219.9%), investment increases by

1.34 pp, about 20% of both the size of its mean and standard deviation.

Cash (β2)

Cash holdings are an internal source of funding, which can be particularly

helpful when a firm is financially constrained, as noted in [50], [86] and [33]. Con-

firming the previous findings, the model estimates that the cash holdings of a firm

are positively related to the investment forecast: firms with high cash holdings

have large internal funds supporting future investments. Additionally, if the cash

holdings of a firm reflect profitability, firms with more cash are more profitable,

and hence invest more.
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Size (β3)

Our baseline specification result shows that the coefficient of size is positive,

but not significant. This may arise due to complex dynamics underlying size. First,

from the perspective of a firm’s life-cycle behavior, young and thus smaller firms

are expected to be more profitable and invest more. However, size represents many

other characteristics than just a firm’s life cycle. For example, [57] consider it to

be informative of a firm’s financial condition, since it may represent the stability of

its on-going business activity and/or the degree of public information available for

investors. Larger firms are also likely to have easier access to external financing.10

What we find is likely to be the result based on the mixture of various driving

forces.

3.4.2 Heterogeneity at the Firm Level

Given the average significant but small negative effect of profit uncertainty,

we now examine heterogeneity across firms in the uncertainty transmission mech-

anism by estimating the most flexible version of the model, where all firms are

allowed to react differently to uncertainty. Since firm-specific slope coefficients

(γi’s) may vary across individual firms, this gives heterogeneity the best chance to

be influential. Coefficient estimates for other control variables are similar to those

in the baseline case (see Column (2) in Table 3.2) except for that of size which

became significantly positive, implying that larger firms are likely to invest more.

The estimated firm-specific slope coefficients indicates significant hetero-

geneity in the transmission channel of profit uncertainty. In order to highlight the

firm-level heterogeneity, Figure 3.3 plots a histogram of γi estimates across 5,197

firms. The histogram shows substantial heterogeneity, although the average of the

γi’s is negative.11 About 28% of firms in our sample would respond positively to

10Firm size is hence frequently used to split samples, to distinguish between financially con-
strained and unconstrained firms (see Gertler and Gilchrist 52 and Carpenter et al. 27, among
others).

11The average of the point estimates of γi’s is −0.323 and the median is −0.256, consistent
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profit uncertainty by increasing their capital expenditures. Moreover, among firms

that are expected to decrease their future capital expenditure, some are much more

severely affected by the uncertainty than others.

To better illustrate the observed heterogeneity, the frequency of γi’s in each

bin is stacked by firm-size quintiles in different colors in Figure 3.3. It is clear that

the profit uncertainty is transmitted into firms’ capital investment decisions by

different magnitudes, conditional on their sizes. For instance, a large proportion

of firms in the third and fourth quintiles (Medium and Large groups) expand

capital expenditures under high profit uncertainty. More importantly, the observed

relationship between the effect of uncertainty and firm size is not monotonic. Many

firms in the largest as well as smallest size groups are also hit harshly and contract

investment activities, which has not been observed in the previous literature such as

Ghosal and Loungani [53], who show that the negative impact of profit uncertainty

is substantially greater in industries dominated by small firms, implying a linear

monotonic relationship between the two.

Next, we stack the bins by quintiles based on firms’ total-liability-to-asset

ratios in Figure 3.4. As anticipated, we see that the effect of profit uncertainty is

more severe for firms with higher liability ratios. At the same time, a fare share

of firms in the first and second quintiles are still expected to increase investment.

Related to this point, [15] show that it can be beneficial for a firm with low future

liquidity to make an early investment if it considers waiting too risky, as the delayed

investment also pertains to elevated uncertainty in future funding availability.

In sum, our analysis highlights that firms differ considerably in the way

they adjust investment activity when aggregate uncertainty fluctuates. The result

indicates that various features of the firms studied in previous theoretical literature

on the transmission of uncertainty, such as the irreversibility of capital and capital

with time to build, are simultaneously at work by different degrees, emphasizing

the importance of examining disaggregated level data to better understand the

with the baseline estimate of γ (−0.139) presented in section 3.4.1.
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transmission mechanism.

3.4.3 Firm Characteristics and Uncertainty

Here we first group firms based on size, liability ratio, and 2-digit SIC

sub-industry classification, and include corresponding group-specific coefficients

of uncertainty in the investment forecasting model. While this specification lets

heterogeneity be manifested to a lesser degree, it presents results in a concise way.

Plus, the estimation is done by MLE alone in this case, affording a chance to

evaluate the model formally using likelihood ratio test statistics.

The last three columns in Table 3.2 report the coefficient estimates for firm-

specific controls, which are similar to the preceding two columns. Hence we next

discuss in detail how different firm characteristics are related to the heterogeneity,

abstaining from other firm-level controls. Table 3.3 reports estimated parame-

ters for group-level heterogeneity together with brief descriptions of the grouping

criteria.

Size

We first divide firms by size, allocating them into five groups based on their

average total assets during the sample period.12 Panel 1 of Table 3.3 reports the

number of firms, and the average size in each group. It also presents the estimates

for group-specific coefficients of uncertainty, illustrated again in Figure 3.5.

Our main finding here is that the relationship between the size and the

magnitude of response is not linear, but has an inverse U-shape: in fact, firms of the

largest size group respond as negatively as those of the smallest size group to profit

uncertainty, simplifying the result shown in Figure 3.3. It is worth noting, again,

that the inverse U relationship between the size and the magnitude of response has

not previously been found in previous studies, mainly because of a framework that

12The grouping is based on the firms’ average total assets, which are book-valued, denominated
in 2005Q3 U.S. dollars and averaged within their presence during the sample periods.
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admits a small number of groups. For example, [41] documents that small firms’

timings of investments are more sensitive to profits compared to those of large

firms, and Ghosal and Loungani [53] find that smaller firms are affected more

negatively by profit uncertainty. Compared to the earlier approaches, our analysis

can accommodate a larger number of groups, easily visualizing any underlying

non-linearity in the relationship. The inverse U relationship is still robust when

we increase the number of the size groups.

As noted earlier, size has often been thought of as a proxy for financial

constraints. In that regards, we find evidence corroborating the theoretical result

illustrated recently in Bolton et al. [14] where the relation between the level of

internal funds and investment timing of a firm is rather non-monotonic and non-

linear. In addition, larger firms are likely to have higher capital adjustment costs,

and thus have higher option values of waiting. Together, these features can result

in firms in the largest group being less resilient to uncertainty changes.

Liability Ratio

The leverage ratio (total-assets-to-liabilities ratio) of firms has been exten-

sively used to identify firms with external funding abilities (see Bernanke et al.

10 for an extensive literature review). For example, [78] note that high leverage

reduces a firm’s financing ability to pursue a profitable investment opportunity

through a liquidity effect. Using a total-liabilities-to-assets ratio (hereafter, lia-

bility ratio) as a proxy for a firm’s financial condition, we re-estimate the group-

specific slope coefficients of uncertainty.

Panel 2 of Table 3.3 reports the number of firms and the average liability

ratio in each group, followed by γi’s estimates; the results are plotted in Figure

3.6. The results show that the profit uncertainty is more detrimental to firms with

higher liability ratios, and that the estimated size of the uncertainty effect (in an

absolute value) increases monotonically. Assuming that the liability ratio reflects

marginal costs for external fundings, this suggests that the profit uncertainty is
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expected to contribute more strongly to a firm’s investment for a firm with higher

external funding costs.

Industry

Lastly, we consider the firms’ sub-industry classification within the manu-

facturing industry, which is a frequently used grouping criterion in previous studies.

Assuming that firms within the same sub-industry share common characteristics

such as the price elasticity of demand and production technology, we divide the

sample into 20 groups based on the first 2-digit SIC code, following [57]. For in-

stance, the SIC code for Texaco Inc. is 2911, with the first two digits (29) indicating

that its core business is related to “petroleum and coal products.”. The first three

columns in Panel 3 of Table 3.3 provide the 2-digit SIC code, the description of

the core businesses and the number of firms within each group.

Sub-industry level estimates of γi’s are shown in the last column in Panel

3 of Table 3.3 as well as in Figure 3.7. They are again substantially different from

each other. For instance, the point estimate of “furniture and fixture (SIC2=25)”

is −0.4258, indicating that investment of this industry is expected to decline fac-

ing high profit uncertainty. On the contrary, firms in the “electronic and other

electric equipment (SIC2=36)” industry rather increase capital expenditure when

uncertainty is high (γ = 0.0778).

Regarding the sub-industry classification, Leahy and Whited [79] compare

the labor-to-capital ratios of sub-industries. Theoretically, a higher or more volatile

labor-to-capital ratio means a lower capital intensity and thus a higher substi-

tutability of capital by labor. From this perspective, investment activities of firms

facing such flexible production technologies would be less affected by profit uncer-

tainty.13 However, Leahy and Whited found evidence contradicting the theoretical

implication that firms with a higher (and/or more volatile) labor-to-capital ratio

13The assumption that a higher labor-to-capital ratio (or higher volatility of the ratio) can be
attributed to an easier substitutability of capital holds when a firm faces a convex return, as
noted in [1].
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would reduce capital investment more, using a two-group (high/low substitutabil-

ity) approach.

Following Leahy and Whited [79], we calculate the labor-to-capital ratio

of sub-industries in the year 2000, as well as the historical standard deviation of

yearly changes in Panel 3 of Table 3.3.14 Further, Figures 3.8 and 3.9 show the

coefficients plotted against the labor-to-capital ratios and their historical standard

deviations, respectively. Both figures show overall negative correlations between

γi’s and the labor-to-capital ratios (or standard deviations), in line with the find-

ings of Leahy and Whited. However, our approach provides a more detailed picture

of the relation, ase it examines 20 sub-industry groups.

Therefore, we infer that the labor-to-capital ratio or its historical variabil-

ity is not a direct indicator of the labor-capital substitutability and, further, the

convexity of the production function. Related to this point, it is possible for an

industry to be capital-intensive, although the substitutability between labor and

capital is still high. For example, a firm within the industry with a high labor-

to-capital ratio, such as “transportation equipment (SIC2=37),” would still have

relatively high fixed costs of capital, making it difficult to cope with high profit

uncertainty.

3.4.4 Low-Frequency Movements of Uncertainty

Our analysis so far was based on a one-quarter-ahead profit uncertainty

measure. One remaining concern is whether the result is driven by the frequent

volatile fluctuations of our estimated profit uncertainty. Therefore, we investigate

whether the result still holds when low-frequency dynamics in the aggregate profit

14The historical labor and capital productivity indexes are obtained from the Bureau of La-
bor Statistics, “Superseded historical SIC measures for manufacturing sectors and 2-digit SIC
manufacturing industries, 1949-2001.” The labor-to-capital ratio in the year 2000 is used as a
representative level, and the historical standard deviation, calculated from yearly log changes, is
used as a proxy for a variation for each sub-industry.
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uncertainty measure is used.15

We extract low-frequency dynamics of our profit uncertainty measure (σ̄2
t+1|t)

by taking moving averages with five-quarter rolling windows:

σ̄2
t+1|t ≡

σ2
t−1|t−2 + σ2

t|t−1 + σ2
t+1|t + σ2

t+2|t+1 + σ2
t+3|t+2

5
. (3.10)

In Figure 3.10, σ̄2
t+1|t shows much smoother dynamics, with most short-

run fluctuations having disappeared. Table ?? reports estimation results of our

baseline model under the alternative measure. Here we also include the result

using recursive four-quarter-ahead forecasts of profit uncertainty for comparison.16

We find that baseline result is robust under both alternative measures of

the profit uncertainty. If anything, the size of coefficient estimates increases in

absolute terms. Related to this, Alquist et al. [4] and Kilian and Vigfusson [75]

point out that investment, particularly the one incurring large-scale expenditures,

is affected much more by uncertainty at a longer forecast horizons rather than its

short-lived quarterly fluctuations. Hence, assuming that the alternative measures

of the low-frequency movement in uncertainty reflect changes in longer horizon

than a quarter, the more destructive result we find is in line with this argument.17

3.5 Conclusion

This paper investigates how aggregate profit uncertainty affects manufac-

turing firms’ investment activities, accounting for heterogeneous investment ad-

15We appreciate John Campbell’s suggestion regarding the importance of the low-frequency
movement in future profit uncertainty in firm investment activity.

16Conditional on information at time t, recursively m-period-ahead uncertainty forecasts

(σ2
t+m|t) are generated, as σ2

t+m|t = E

[(
J∑
i=1

wjt+m−1 · u
j
t+m

)2

|zt

]
= α0 + α1 · σ2

t+m−1|t. In

particular, we use a four-quarter-ahead forecast of the profit uncertainty, σ2
t+4|t.

17The more negative coefficient estimates is also related to the lower long-run average of those
measures. In particular, the four-quarter-ahead uncertainty series generated recursively has a
level and magnitude smaller than one-quarter-ahead uncertainty, due to the fact that in an
ARCH model the volatility converges to a long-run mean, but the overall dynamics remain the
same as before.
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justments across firms. A large body of literature have examined the effect of

uncertainty, but their findings so far differ greatly. Therefore, by highlighting the

firm-level heterogeneity, this paper attempts to provide a consolidating ground in

understanding the various channels of uncertainty transmission explored in the

previous literature.

We propose an investment forecasting model that coherently assesses the

heterogeneous adjustments of firms’ business investment in responding to changes

in profit uncertainty: the model includes profit uncertainty interacted with firm-

specific slope coefficients. As a consequence, the model can flexibly investigate

potential heterogeneity at the firm level, without having to divide samples in a

certain way a priori, contrary to previous studies. Moreover, framework easily

detects any non-linear or non-monotonic relationship between a certain firm char-

acteristic and the size of uncertainty effects.

Another methodological contribution of this paper is to introduce a Panel-

ARCH model for aggregate uncertainty. We model aggregate profit uncertainty to

be the conditional standard deviation of the common factor that simultaneously

drives unpredicted variations in a large panel of the industry-level sales growth.

We further postulate that factor loadings and idiosyncratic volatilities are inversely

proportional to an industry’s sales share, which enables the derivation of closed-

form log-likelihood function as well as the aggregate volatility process. Thus, the

Panel-ARCH model makes it simple to utilize information in a large cross-section

for the volatility estimation. The proposed model can be further applied for an

estimation of another aggregate volatility series; in particular, when the series of

interest is only available at a low frequency with a short history, the estimation of

its volatility may not be very simple. In this case, if its subcomponents are still

attainable, one can apply the Panel-ARCH model and make use of cross-sectional

variations for the estimation of aggregate uncertainty through a factor-structure.

Using the Compustat data from 1989Q1 to 2012Q4, we find that aggregate

profit uncertainty affects firms’ investment activity slightly negatively on average,
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consistent with the views in [9] and [12], among others. However, we find that firms

differ substantially in the way they adjust capital investment in response to changes

in aggregate profit uncertainty. We further investigate several firm characteristics

attributable to the heterogeneity. In particular, we observe an inverse U-shape in

the magnitude of uncertainty effects in relation to firm size which has not been

documented in previous literature such as Ghosal and Loungani [53]. Therefore,

it will be interesting for future studies to examine the non-linear relation found

in our paper further, linking it to the model shown in Bolton et al. [14], which

demonstrates that a firm’s internal funds and investment timing has a highly non-

linear and non-monotonic relationship.
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Figures and Tables

Figure 3.1: Correlation between Size of Forecasting Errors and Sales Shares

Note: This figure shows the correlation coefficients between the absolute values of fore-
casting errors from the sales growth forecasting equation (3) and the previous quarter’s
sales shares in each quarter t. Each period, we have forecasting errors of 67 industries
(uj,t+1) and their sales series from the previous quarter (wj,t), with which we compute
correlation coefficients. This implies that an industry with a smaller sales share tens to
have a larger unpredicted variation, supporting our specification in (6).
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Figure 3.2: Aggregate Profit Uncertainty Estimated from a Panel-ARCH(1)

Note: Plotted above is the estimated aggregate profit uncertainty series from the Panel-
ARCH(1) model from 1982Q1 to 2012Q4. The dotted lines represent lower and upper
bounds for the 95% confidence band, constructed by simulating the Panel-ARCH(1)
model 1,000 times using MLE estimates and the Hessian matrix. Shaded are the NBER
recession dates.
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Figure 3.3: Responses to Uncertainty Grouped by Firm Size

Note: This is a histogram of the firm-specific slope coefficient estimates (γ̂is) across 5, 197
firms, from the model with complete firm-level heterogeneity: each firm is allowed to
respond differently to aggregate profit uncertainty. The bars are color-coded to represent
the size quintile to which a firm belongs.
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Figure 3.4: Responses to Uncertainty Grouped by Liability Ratio

Note: This is a histogram of the firm-specific slope coefficient estimates (γ̂i’s) across
5,197 firms, from the model with complete firm-level heterogeneity: each firm is allowed
to respond differently to aggregate profit uncertainty. It is the same histogram as Figure
3.3, but the bars are color-coded to represent the quintiles of the total-liabilities-to-asset
ratio to which a firm belongs.
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Figure 3.5: By Firm Size: Responses to Uncertainty

Note: This figure plots the estimates of group-specific slope coefficients. Firms are first
divided into quintiles according to size; then firms of the same group are assumed to
share the same slope, which differs from that of other groups.
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Figure 3.6: By Liability Ratio: Responses to Uncertainty

Note: This figure plots the estimates of group-specific slope coefficients. Firms are first
divided into quintiles based on their liabilities-to-asset ratio; then firms of the same group
are assumed to share the same slope, which differs from that of other groups.
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Figure 3.7: By Sub-Industry: Responses to Uncertainty

Note: This figure plots the estimates of group-specific slope coefficients. Firms are first
divided into groups based on their 2-digit SIC code; firms of the same group are assumed
to share the same slope, which differs from that of other groups.



125

0 0.1 0.2 0.3 0.4 0.5 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

L/K ratio (2000)

γ

slope: −0.9238

Figure 3.8: Responses to Uncertainty by Labor-to-Capital Ratios

Note: This is a scatter plot of 2-digit sub-industry-specific slope coefficient estimates
versus labor-to-capital ratios of sub-industries. The labor-to-capital ratios are measured
in the year 2000. For demonstration purposes, we plot the fitted line from regressing sub-
industry-specific slope coefficient estimates on a constant and labor-to-capital ratios.
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Figure 3.9: Responses to Uncertainty by Standard Deviations of Labor-to-Capital
Ratios

Note: This is a scatter plot of 2-digit sub-industry-specific slope coefficient estimates
versus standard deviations of labor-to-capital ratios of sub-industries. The standard
deviations of the labor-to-capital ratios are calculated from changes in the logarithm of
the ratio over time. For demonstration purposes, we plot the fitted line from regressing
sub-industry-specific slope coefficient estimates on a constant and standard deviations
of labor-to-capital ratios of sub-industries.



127

1990
3

4

5

6

7

8

9

10

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
3

4

5

6

7

8

9

10

 

 
Profit Uncertainty
Moving Average

Figure 3.10: Five-Quarter Moving Average of Profit Uncertainty

Note: Plotted above is the low-frequency dynamics of profit uncertainty calculated as
moving averages of a five-quarter rolling window (in blue), along with the baseline profit
uncertainty series (in red).
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Table 3.3: Group Characteristics and Slope Coefficient Estimates

Panel 1: Size group description γ

Description No. Size MLE (s.e.)

1 Smallest 1039 1.90 −0.2681∗∗∗ (0.0177)

2 1040 3.58 −0.1087∗∗∗ (0.0156)

3 1039 4.68 0.0011 (0.0149)

4 1040 5.88 −0.0699∗∗∗ (0.0149)

5 Largest 1039 8.03 −0.2402∗∗∗ (0.0166)

Panel 2: Liability ratio group description γ

Description No. Liability Ratio MLE (s.e.)

1 Smallest 1039 0.20 0.0817∗∗∗ (0.0147)

2 1040 0.35 0.0025 (0.0146)

3 1039 0.49 −0.1843∗∗∗ (0.0145)

4 1040 0.62 −0.2994∗∗∗ (0.0148)

5 Largest 1039 0.94 −0.4037∗∗∗ (0.0151)

Note: Table 3.3 describes sample-split criteria, their main characteristics (Description)
as well as the number of firms in each group (No.). Panels 1 and 2 report historical
averages of book-valued assets (in logarithm), and total-liabilities-to-total-assets ratio,
respectively. Panel 3 reports the labor-to-capital ratio (L/K) in year 2000, as well as
its historical volatility (Vol) from 1980 to 2001. The last column reports estimated
group-specific coefficients (γi’s) and their asymptotic standard errors of each group.
The asterisks, */**/***, represent the statistical significance at 90%, 95% and 99%,
respectively.
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Table 3.3 : Group Characteristics and Slope Coefficient Estimates, continued

Panel 3: SIC2 group description γ

Description No. L/K Vol MLE (s.e.)

20 Food and kindred 264 0.38 0.02 −0.3494∗∗∗ (0.0186)

21 Tobacco 10 0.24 0.06 −0.6190∗∗∗ (0.0677)

22 Textile mill 72 0.35 0.05 −0.4616∗∗∗ (0.0315)

23 Apparel and other textile 99 0.14 0.05 −0.2095∗∗∗ (0.0256)

24 Lumber and wood 70 0.56 0.06 −0.5341∗∗∗ (0.0282)

25 Furniture and fixtures 60 0.35 0.05 −0.4258∗∗∗ (0.0292)

26 Paper 126 0.28 0.02 −0.5349∗∗∗ (0.0234)

27 Printing and publishing 142 0.31 0.02 −0.2611∗∗∗ (0.0231)

28 Chemicals 1020 0.26 0.02 −0.2122∗∗∗ (0.0148)

29 Petroleum and coal 82 0.27 0.03 −0.3745∗∗∗ (0.0274)

30 Rubber and plastic 147 0.37 0.05 −0.2914∗∗∗ (0.0229)

31 Leather 26 0.22 0.08 −0.2939∗∗∗ (0.0397)

32 Stone, clay and glass 64 0.44 0.05 −0.2623∗∗∗ (0.0300)

33 Primary metal industries 190 0.42 0.07 −0.4406∗∗∗ (0.0207)

34 Fabricated metal 172 0.36 0.04 −0.3437∗∗∗ (0.0214)

35 Industrial machinery 682 0.15 0.06 −0.0085 (0.0157)

36 Electronic and other electric 889 0.10 0.04 0.0778∗∗∗ (0.0148)

37 Transportation equipment 240 0.36 0.04 −0.2449∗∗∗ (0.0187)

38 Instruments 720 0.16 0.03 0.0393∗∗∗ (0.0155)

39 Miscellaneous 122 0.36 0.04 0.0069 (0.0248)
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Table 3.4: Baseline Model Estimation Results with Low-Frequency Movement of
Uncertainty

(1) moving average (σ̄2t+1|t) (2) 1-year ahead (σ2t+4|t)

MLE (s.e.) MLE (s.e.)

Uncertainty (γ) -0.7178∗∗∗ (0.0288) -12.1756∗∗∗ (1.0985)

Constant (β0) 6.8848∗∗∗ (0.1246) 48.5089∗∗∗ (4.0203)

Sales (β1) 0.0061∗∗∗ (0.0001) 0.0061∗∗∗ (0.0001)

Cash (β2) 0.0011∗∗∗ (0.0000) 0.0011∗∗∗ (0.0000)

Size (β3) 0.0039 (0.0060) 0.0056 (0.0060)

Lag (β4) 0.0609∗∗∗ (0.0007) 0.0612∗∗∗ (0.0007)

GDP (δ) 0.6135∗∗∗ (0.0210) 0.5762∗∗∗ (0.0225)

ζ 6.1202∗∗∗ (0.0094) 6.1273∗∗∗ (0.0094)

Likelihood -495,920.17 -496,168.70

Note: Table 3.4 reports estimation results of our baseline model with low-frequency
variation of profit uncertainty. Column (1) is the result using moving averages of a
five-quarter rolling window, as in Equation (3.10). For comparison, we also present
the results using a four-quarter-ahead profit uncertainty forecast generated recursively.
The statistical significance of the MLE estimates is indicated by asterisks, */**/***,
representing the statistical significance at 90%, 95% and 99%, respectively.
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Appendix 3.A: Panel-ARCH for Aggregate Profit

Uncertainty

3.A.1 The log likelihood function of Panel-ARCH

Let Θ ≡ [a0, a1, · · · , aq, τ ] be the collection of parameters to estimate. With

ut+1 denoting a J×1 vector of forecasting errors, the log-likelihood function jointly

modeling forecasting errors of J industries for t = 1, ..., T is

L (Θ) = −T
2

log 2π − 1

2

T∑
t=1

log |Ωt+1| −
1

2

T∑
t=1

u′t+1Ω
−1
t+1ut+1, (3.11)

where Ωt+1 = E
[
ut+1u

′
t+1|Ft

]
is a J × J variance-covariance matrix of forecasting

errors.

The evaluation of the above log-likelihood function with a large J is gener-

ally burdensome, as it requires the determinant calculation and inversion of J × J

matrix Ωt+1 in each point t. However, since Ωt+1 is symmetric with all elements

known under condition (3.6) for all t, its determinants and inverses are analytically

derived. More specifically, the matrix Ωt+1 has a form as

Ωt+1 =



σ2
t+1+τ

2

J2·w2
1,t

σ2
t+1

J2w1,tw2,t
· · · σ2

t+1

J2w1,twJ,t

σ2
t+1

J2w2,tw1,t

σ2
t+1+τ

2

J2·w2
2,t

· · · σ2
t+1

J2w2,twJ,t
...

...
...

σ2
t+1

J2wJ,tw1,t

σ2
t+1

J2wJ,tw2,t
· · · σ2

t+1+τ
2

J2·w2
J,t


.

Thus, the determinant of Ωt+1 can be analytically calculated as

|Ωt+1| = τ 2(J−1) ·
(
τ 2 + Jσ2

t+1

)
·

(
J∏
j=1

1

J2w2
j,t

)
.
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In addition, its inverse matrix is summarized by

Ω−1t+1 (i, j) =


J2w2

i,t·(τ2+(J−1)·σ2
t+1)

τ2·(τ2+J ·σ2
t+1)

for j = i

− J2wi,twj,t·σ2
t+1

τ2·(τ2+J ·σ2
t+1)

for j 6= i

where Ω−1t+1 (i, j) an (i, j)th element in Ω−1t+1.

As a result, the closed-form log-likelihood function can be derived by plug-

ging the above analytic formula into the general log-likelihood function (3.11) as

follows:

L (Θ) = −T
2

log 2π − T (J − 1) log (τ) + 2T log (J)

−1

2

T∑
t=1

log
(
τ 2 + Jσ2

t+1

)
+

T∑
t=1

J∑
j=1

logwj,t (3.12)

− J2

2τ 2

T∑
t=1


J∑
j=1

(wj,tuj,t+1)
2 −

σ2
t+1(

τ 2 + J · σ2
t+1

) ·( J∑
i=1

wj,tuj,t+1

)2
 .

Evaluating the above function hence becomes as simple as that of a univariate

series. Therefore, the parsimonious specifications of the Panel-ARCH provides

tractability, overcoming empirical difficulties due to a large J .

3.A.2 Aggregate sales revenue index and its growth rate

Figure 3.A.1 plots the quarterly sales revenue index calculated as (3.1) after

setting the index level in 1981Q1=100; the gross sales revenue (St) increases over

time with strong seasonality. After controlling for the observed seasonality in St

through seasonal dummies, we calculate the quarterly sales growth rate as plotted

in Figure 2.A.2. The sales growth is relatively low during recessions, but overall

very volatile, with volatility clustered similar to the behavior of the stock return.
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Figure 3.A.1: Aggregate Sales Index

Note: This figure plots the aggregate sales revenue index from 1981Q1 to 2012Q4. The
series is normalized by setting the initial level equal to 100.
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Figure 3.A.2: Quarterly Sales Growth Rate

Note: This figure plots the de-seasonalized quarterly growth rate of the aggregate sales
index. De-seasonalization is done by regressing the growth rate on seasonal dummies.
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3.A.3 Panel-ARCH model specification

When estimating aggregate profit uncertainty from a panel of the industry-

level sales growth forecasting errors from 1982Q1 to 2012Q4 (124 quarters), we

consider three different specifications of the Panel-ARCH model: Panel-ARCH(1),

Panel-ARCH(2) and Panel-GARCH(1,1) as an extension to our general framework.

For model parameter estimation, we condition on the first 4 quarter observations.

Table 3.A.1 reports maximum likelihood estimates, their asymptotic stan-

dard errors, and maximized log-likelihoods under the three specifications. When

comparing maximized log-likelihoods, we find that the Panel-ARCH(1) is parsimo-

nious yet sufficient to describe the dynamics of profit uncertainty: the p-values for

log-likelihood ratio tests are 0.47 for the Panel-ARCH(2) and 0.43 for the Panel-

GARCH(1,1). Hence, we use the estimated profit uncertainty from the Panel-

ARCH(1) model in the paper.
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Table 3.A.1: Order Determination of Panel-ARCH Model

(1) Panel-ARCH(1) (2) Panel-ARCH(2) (3) Panel-GARCH(1,1)

MLE (s.e.) MLE (s.e.) MLE (s.e.)

α0 10.5412∗∗∗ (4.7540) 9.4208∗∗ (4.9186) 4.7165 (8.9977)

α1 0.2085∗∗ (0.1210) 0.1816∗ (0.1297) 0.1658 (0.1312)

α2 0.0506 (0.0819)

β1 0.3981 (0.6628)

τ 33.6701∗∗∗ (0.2632) 33.6701∗∗∗ (0.2632) 33.6701∗∗∗ (0.2632)

Likelihood -43,284.60 -43,284.34 (0.47) -43,284.29 (0.43)

Note: We report MLE estimates and maximized log-likelihoods under various order
specifications. Column (3) shows the results under the Panel-GARCH(1,1) model, where
β1 is the coefficient for lagged uncertainty. The asymptotic standard errors are obtained
by approximating the second derivative of the Hessian matrix. Statistical significance
of MLE estimates is indicated by using asterisks */**/***, representing the statistical
significance at 90%, 95% and 99%, respectively. The numbers in parentheses next to
log-likelihoods are the p-values for a likelihood ratio test of one model against the Panel-
ARCH(1) model, where the test statistic is twice the difference in log-likelihoods and is
distributed chi-squared with degrees of freedom equal to the difference in the number of
parameters.
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Appendix 3.B: Data for Investment Forecasting Model

The manufacturing firm panel are taken from the combined quarterly Com-

pustat North America industrial file, from which we obtain capital expenditure

(investment, it), net property plant and equipment (capital, kt), total book-valued

assets (size, at), sales/turnover (sales, st), cash and cash equivalents (cash, cet),

and total liabilities (liability, lt). All variables except the capital expenditure are

reported on a quarterly basis; for example, capital is the book value of capital

stocks for the reported quarter, and sales refers to the gross revenue from goods

sold during the quarter. The capital expenditure, however, is reported as a year-to-

date item, which we transform to be a quarterly value by subtracting the previous

period’s (year-to-date) amount from that of the current period.

Given the unbalanced panel data spanning from 1989Q4 to 2012Q4, we first

delete observations with missing variables, non-positive capital and size, negative

sales and/or cash, and with liabilities likely to indicate highly distressed firms. We

also delete observations with capital expenditures greater than 15% of book value

assets, following Leahy and Whited [79], and observations either below 2.5% or

above 97.5% in each quarter for selected variables: it+1/kt, st/kt−1, cet/kt−1 and

lt/at. Lastly, we remove 1,981 firms with less than 12 quarterly observations during

the sample periods, corresponding to 11,384 firm-quarter observations.

Due to different fiscal-year conventions across firms, we create quarterly

observations based on their reporting dates. To normalize units, we divide the

capital expenditure (it+1), sales (st), and cash (cet) by the beginning-period capital

stocks. Lastly, we adjust the total book value assets (at) in 2005Q3 US dollars.
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