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Transitioning from global to local 
computational strategies during 
brain-machine interface learning
Nathaniel R. Bridges 1, Matthew Stickle 2 and Karen A. Moxon 2*
1 Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States, 
2 Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States

When learning to use a brain-machine interface (BMI), the brain modulates 
neuronal activity patterns, exploring and exploiting the state space defined 
by their neural manifold. Neurons directly involved in BMI control (i.e., direct 
neurons) can display marked changes in their firing patterns during BMI 
learning. However, the extent of firing pattern changes in neurons not directly 
involved in BMI control (i.e., indirect neurons) remains unclear. To clarify this 
issue, we  localized direct and indirect neurons to separate hemispheres in a 
task designed to bilaterally engage these hemispheres while animals learned to 
control the position of a platform with their neural signals. Animals that learned 
to control the platform and improve their performance in the task shifted from 
a global strategy, where both direct and indirect neurons modified their firing 
patterns, to a local strategy, where only direct neurons modified their firing rate, 
as animals became expert in the task. Animals that did not learn the BMI task 
did not shift from utilizing a global to a local strategy. These results provide 
important insights into what differentiates successful and unsuccessful BMI 
learning and the computational mechanisms adopted by the neurons.

KEYWORDS

posture control, brain computer interface, neuroprosthetic, learning, brain machine 
interface (BMI)

Introduction

Since the first brain-machine interface (BMI) study in rodents (Chapin et al., 1999), it has 
been evident that animals can learn to modulate their neural activity to improve BMI control. 
To better understand this learning, researchers took advantage of high-density recording 
arrays, used a subset of neurons to control the BMI (direct neurons) and observed a separate 
population not used by the BMI (indirect neurons) (Ganguly et  al., 2011) in order to 
understand the strategies used by the brain to acquire new learning. It has been proposed that 
there are two potential strategies the brain could use to learn new motor tasks. The first is a 
global strategy that suggests learning broadly engages the motor cortex and would be evidenced 
by both direct and indirect neurons engaging in the task (Jarosiewicz et al., 2008; Chase et al., 
2012). The second is a local strategy wherein only the subset of neurons required to gain 
reward would be engaged in the task and other neurons would not engage (Zhou et al., 2019).

However, data from these experiments are mixed. In some cases, researchers did not find 
any changes in neural firing patterns of indirect neurons (Law et al., 2014), while others 
demonstrated changes largely restricted to direct neurons (Arduin et al., 2013, 2014; Clancy 
et al., 2014), especially after the animals learned the task well (Clancy et al., 2014). In studies 
that showed changes in neural firing patterns of indirect neurons, a broad array of changes 
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were reported including changes in overall firing rate (Fetz and Baker, 
1973; Ganguly et  al., 2011; Gulati et  al., 2014), which could 
be dependent on reward-timing (Hira et al., 2014), preferred direction 
(Ganguly et al., 2011; Hwang et al., 2013), latency or even coherency 
with slow-wave activity (Gulati et al., 2014).

One possibility is that the changes in neuronal firing patterns in 
response to learning is dependent on when, during the learning 
process, the neuronal activity was assessed. Most BMI tasks require 
the animal to undergo some operant conditioning even before 
electrode arrays are implanted and this pre-training could impact BMI 
training. It is possible that prior conditioning alters the likelihood of 
observing changes in indirect neurons. Moreover, prior conditioning 
pre-selects animals that could learn the task, eliminating the ability to 
compare changes between animals that learned to those that did not, 
an important control group.

To overcome these limitations of pre-training, we developed a tilt 
BMI task (Figure 1A) that randomly applies different types of tilts to 
a platform while the animal works to maintain control its center of 
mass (Bridges et al., 2018). Neuronal activity is recorded and if the tilt 
type is correctly decoded by our classifier (Foffani and Moxon, 2004; 
Knudsen et al., 2014) the platform is returned to the neutral position, 
a natural reward. If the decoder incorrectly classifies the tilt type, the 
platform continues to tilt to an extreme position, a natural 
punishment. The task is relatively natural and does not require 
pre-training, making it possible to study BMI control in naïve animals. 
We used this task to study changes in performance of the BMI, which 
was determined by the ability of our classifier to discriminate between 
four different tilt types on a trial-by-trial basis. We studied the impact 
of learning (i.e., increases in performance) on the underlying cellular 
and network properties of direct and indirect neurons.

We hypothesized that animals would use a global strategy when 
learning to control the platform and, therefore, the learning 
mechanisms for direct and indirect neurons would be the same. While 
this was not what we observed, important differences between learners 
and nonlearners and direct and indirect neurons suggest that the brain 
uses a global strategy early to initiate learning but then switches to a 
local strategy, releasing indirect neurons from participation in 
conveying information about the task.

Materials and methods

Experimental model and subject details

Twelve 250–275 g female Long Evans rats, which were singly-
housed under 12 h light/dark cycle conditions, were used for this 
study. All animals were stereotaxically implanted bilaterally in the 
hindlimb sensorimotor cortex (Leergaard et  al., 2004) within the 
infragranular layer (1.3–1.5 mm) using 4 × 4 50 μm Teflon-insulated 
stainless steel microwires (MicroProbes for Life Sciences, 
United States). All surgical procedures were performed under general 
anesthesia (2–3% isoflurane in O2) via orotracheal intubation and pain 
was managed using Buprenorphine SR™ LAB (0.5 mg/kg; Wildlife 
Pharmaceuticals Inc., United States). To target the infragranular layer, 
we using the firing rate an amplitude of the action potentials. Animals 
were allowed a week to recover from surgery before additional 
experimental manipulations. All animal procedures were conducted 
in accordance with the Drexel University and UC Davis Institutional 

Animal Care Committee-approved protocols and followed established 
National Institutes of Health guidelines.

Electrophysiology

Voltage waveforms were acquired at 40 kHz using a Multichannel 
Acquisition Processor (MAP, Plexon Inc., United  States) and 
discriminated into single neuron units using principle component 
cluster analysis and visual identification (Sort Client, Plexon Inc., 
United States).

Behavioral task

At the start of the experiment, animals were subjected to four tilt 
types using a custom-built tilt platform coupled to a high-performance 
brushless AC servo motor (J0400-301-4-000, Applied Motion 
Products, United  States). LabVIEW (2015, National Instruments, 
United States) was used to initiate these tilts with a randomized order 
and 2–3 s intertrial interval for a total of 400 trials (i.e., 100 each tilt 
type). These trials were used to determine the baseline neural response 
state to each tilt type before rats received BMI training and is depicted 
as “day 0” in the results section. Importantly, neural responses to tilt 
perturbations did not influence outcomes of the tilt platform during 
baseline tilt sessions. In contrast, neural responses influenced the 
probability of tilt platform rewards and punishments during BMI 
training (see Bridges et  al., 2018), which immediately proceeded 
baseline tilt sessions for a total of 25 consecutive days (excluding 
Saturdays). Animals were split between the BMI (n = 8) and control 
(n  = 4) animal groups. The neuronal activity recorded from BMI 
animals influenced task punishment/reward outcomes while neuronal 
activity recorded from control animals did not. In BMI animals, one 
hemisphere was used for direct neurons while the other was used for 
indirect. The hemisphere was randomly selected. In contrast, neither 
hemisphere of control animals influenced task outcomes and the 
number and order of reward and non-reward tilts were matched to the 
BMI group.

Performance

Performance of the animal in the BMI task was determined by the 
percentage of correctly classified tilts using our PSTH-based classifier. 
Starting performance (Day 0) varied across animals so performance 
was normalized to Day 0 performance. Rat neural responses were 
used to discriminate between the four tilt types on a trial-by-trial basis 
using the PSTH-based classifier (Foffani and Moxon, 2004; Knudsen 
et al., 2014). Single-neuron average peri-event responses were created 
with a 20 ms bin size and a time window spanning ±200 ms from the 
start of tilt from the previous day’s recording and used as templates for 
classifying tilt types. During BMI testing, the single trial response of 
the neurons was compared to the average neural response (i.e., 
templates) for each tilt type. The single trial was classified as belonging 
to the tilt type with the smallest Euclidean distance between template 
and single trial. As described in Bridges et al., care was taken to keep 
neuron definitions as similar as possible across recording days to 
minimize changes to the overall neuronal ensemble serving as an 
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FIGURE 1

The BMI tilt task requires animals to learn to control a tilting platform. The task relies on the animal’s natural instincts and, therefore, does not require 
training to learn the task before the animal is expected to perform the BMI control task. (A) Animals stood on a platform that was tilted at a random 
speed in a random direction (clockwise or counterclockwise). (B) The PSTH-based classifier was used to decode the type of tilt from the neural activity 
and, if the tilt type was correctly classified, the platform was restored to the neutral position, a natural reward for the animal. If the tilt was incorrectly 
classified, the tilt continued to an extreme position, a natural punishment for the animal. (C) Performance of the animal in the BMI task was determined 
by the percentage of correctly classified tilts. Starting performance (Day 0) varied across animals so performance was normalized to Day 0 
performance. Based on changes in their on-line performance over the 5  week period, animals were divided into learners, those that improved 
performance, and nonlearners, those that did not. At the conclusion of each recording session, off-line decoding was done using a leave-one out 
cross-validation on the recorded data to confirm the division into learners and nonlearners. (D) To assess the role of the decoder on learning, the 
difference in the PSTHs to different tilts was assessed and compared between early, when animals were naïve to the task and late when animals were 
expected to be expert at the task (upper left panel). For each animal (colors) for each tilt type (symbols: RFS, LFS, FRL, SRL) the difference in the PSTH 
during late (Expert) was plotted against the different early (Naïve). Points on the line demonstrate no differences between the PSTHs of experts 
compared to that of naive. Point above the line demonstrate differences greater difference between the PSTHs of experts compared to that of naïve. 
Greater differences between the PSTHs would improve decoder performance and indicate learning. To specifically test effects of tilts to the right or 
tilts to the left, we group both fast and slow tilts to the right (RFS) and fast and slow tilts to the left (LFS). To test effects of fast and slow tilts, 
we separately grouped tilts to the left and right that were fast (FRL) with tilts to the left and right that were slow (SRL).
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input to the decoder (Ganguly and Carmena, 2009). Neurons that 
stopped firing (relative to the previous day’s recording), however, were 
not used in the decoder for that day. Similarly, newly firing neurons 
not present in the previous day’s recording were recorded and saved 
but not used by the decoder for that day. If the new neuron was still 
present the following day it was used. Real-time decoding was 
implemented using Matlab (version 2012b, The MathWorks, Inc.).

Data analysis

For analyses, rats in the BMI group were split into “learning” 
animals (n = 4), defined as animals with 5 consecutive days of 
increased task performance relative to first day performance and 
“non-learning” animals (n = 4), which are those that did not meet this 
criteria (Bridges et  al., 2018). Since both hemispheres in control 
animals were indirect, they were combined and treated as a single 
hemisphere for the following analyses. Additionally, only the first 300 
trials were used for all analyses to minimize task-related fatigue 
effects. “Offline performance” was calculated using leave-one-out 
cross validation and normalized as a change in accuracy from the first 
day of BMI training. All other normalized measures were reflected as 
z-scores changes from the most recent baseline tilt session.

Mutual information measures
Mutual information was calculated and is formally defined 

(Wallisch et al., 2014) in Eq. 1 as:
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where P[r], P[s], and P[r, s] correspond to the probability of the tilt-
perturbation response r, the tilt perturbation stimulus s and their joint 
probability, respectively. I(r;s), which is measured in units of bits, was 
calculated for each neuron across the 25 days of the experiment using 
the actual and predicted tilt type confusion matrix generated when 
applying the classifier (Foffani et al., 2004). Residual bias for I(r;s) was 
then estimated using a bootstrapping procedure by pairing the trial 
responses and tilt types in a randomized order—effectively eliminating 
the association between the two (Magri et al., 2009). This procedure was 
performed 50 times, which provided an asymptotically stable estimate 
of random information within 0.001 bits, and the calculated bias was 
subtracted from I(r;s). Only neurons with bias-corrected mutual 
information above 0 were used for information analyses. All information 
analyses were calculated using a 200 ms window from the start of the 
tilt. Spike timing information was calculated using 20 ms bins, while 
spike count information was calculated using one 200 ms bin.

Redundancy was calculated and is formally defined as:

 
P I Iensemble hemisphere ensemble hemisphere

N
neuron hemis, , ,= −∑

1

pphere

where Iensemble hemisphere,  corresponds to the mutual information 
calculated using all recorded neurons and Ineuron hemisphere,  
corresponds to the mutual information of a single neuron. This 
analysis was performed separately for the direct and indirect neuron 

hemispheres. For plotting and conceptual purposes P measures were 
inverted such that increases in value corresponded to increases in 
redundancy. Pearson’s correlations were made between the average 
mutual information across neurons and redundancy z-score for each 
BMI training day per animal.

Neural response property measures
As previously described (Bridges et al., 2018), the following neural 

response measures were calculated: (a) Peak Response (PR): the PSTH 
bin with the maximum number of spikes divided by the total number 
of trials after subtracting the background firing rate. (b) Peak latency 
(PL): the time (i.e., bin) relative to tilt start the PR occurs. Only 
“responsive” neurons, defined as a neuron having at least 5 consecutive 
2 ms above threshold PSTH bins and a response window significantly 
greater than the average background activity (one-sided paired t-test, 
p > 0.001), were used in this analysis. If a neuron was responsive to 
multiple tilt types, the most responsive case was used such that each 
neuron only contributed one observation to the analysis.

Euclidian distance
The Euclidian distances were calculated between tilt types in order 

to compare how an animal changed its performance and classification 
(Figure  1D). The direct hemisphere from the learning and 
non-learning group were used while both indirect hemispheres from 
control were used as a reference. The Euclidian distance was found by 
taking each neuron’s PSTH for each tilt type from the naïve day, day 
0, and the expert day, determined by performance. Each neuron’s 
PSTH was lined up bin-wise for two given tilts and the Euclidian 
distance was found according to the formula:
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where T1 and T2 are the two PSTH tilt responses being compared and 
B represents the total bins. A bin size of 20 ms from −200 ms to 200 ms 
was used to create each PSTH. The Euclidian distance was then 
averaged across neurons to find the population Euclidian distance and 
then plotted, where the x value was the naïve day distance and the y 
value was the expert day distance.

Normalized variance
The normalized variance was calculated (Churchland et al., 2006) 

and then z-scored for each of the four tilts. After determining that the 
z-scored normalized variance was not different between tilts, the 
z-scored normalized variance was averaged together to give a single 
value for each hemisphere for each day. The data was not smoothed as 
suggested, but the background spikes were binned in a single 200 ms 
bin and was scaled by a 200 ms constant and offset by an epsilon of 
0.01 (Churchland et al., 2006).

Intertrial analysis
An intertrial analysis was conducted for each hemisphere for all 

animals to examine how the animal adapted to the new decoder each 
day. To do so, the cumulative sum was taken across trials, where a 
correct trial resulted with a + 1 and an incorrect trial resulted with 
a + 0. The cumulative sum data was then plotted and a linear line of 
best fit was found, along with a r2 value for each plot.
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Experimental design and statistical analysis

Statistical comparisons were made between the first (early phase) 
and last 5 days (late phase) of the experiment. A hierarchal linear 
modeling (HLM) approach was used for these comparisons to account 
for the fact that multiple neurons were recorded from the same animal 
(see Bridges et al., 2018). This approach was used for all early to late 
phase comparisons except for spike timing and count differences 
(Figure 2), which used Mann Whitney U tests. We opted to use Mann 
Whitney U tests in this case because the HLM approach resulted in 
Hessian matrix issues, which was likely the result of redundant 
covariance parameters/overcomplicated model parameters. In all 
cases, Bonferroni-corrections were applied when appropriate. All 
error bars are in the form of standard error of the mean.

Results

Animals improve performance by 
increasing differences between neural 
responses

The task involves postural control and bilaterally engages the 
cortex (Jacobs and Horak, 2007; Deliagina et al., 2014; Bridges et al., 
2018). This allowed us to use one hemisphere for the direct neurons 
and the other hemisphere for the indirect neurons. Direct neurons 
were used to control the platform as part of the BMI. The tilt was 
initiated and the neural activity within the first 200 ms was used to 
decode the type of tilt (out of four possible tilts, see Figure 1A). If the 
type of tilt was correctly classified, the animal was rewarded by having 
the platform return to its neutral position; incorrectly classified tilts 
resulted in a punishment and the platform continued to tilt to an 
extreme position. Indirect neurons were simultaneously recorded but 
not used in the decoder. Using separate hemispheres minimized 
interactions that might occur when using neurons from the same 
hemisphere, which are more likely to be anatomically or functionally 
linked and could potentially confound results. We examined changes 
in neuronal firing patterns as a function of performance in the task, as 
measured by the percentage of correctly classified tilts.

Importantly, in this task, there was no behavioral training before 
the animal was expected to perform the BMI control task (i.e., 
improve performance or the ability of the classifier to discriminate the 
correct tilt). Therefore, similar to the first experiments on operant 
conditioning of cortical unit activity (Fetz and Baker, 1973), this task 
did not require operant conditioning to train the animals in a behavior 
before they were placed into the BMI experiment. We  compared 
performance of animals undergoing BMI training to a group of 
control animals subjected to the same tilts but without the ability for 
BMI control of the platform (control group). The task was difficult for 
the animals to learn with only about 50% learning BMI control 
creating two groups for comparison, learners and nonlearners. In 
addition, even for those animals that learned BMI control, the task 
took several days to achieve maximal performance creating two 
distinct learning phases: an early phase characterized by rapid, large 
performance improvements and a late phase characterized by long-
term smaller performance improvements. We minimized decoder 
parameter changes across days of the experiment in an effort to 
maintain a stable cortical mapping to task outcomes (Ganguly and 

Carmena, 2009). The task also did not include any visual feedback 
and, therefore allowed a large state space within which the neuron 
could explore to determine how to improve their performance 
(Knudsen et al., 2012).

Because animals were learning to control the platform during each 
session, to examine what was learned, we  examined changes in 
performance after building a decoder based on that day’s recording 
session, using a leave-one-out approach (off-line decoding). The 
decoder used the PSTH-based classifier (Foffani and Moxon, 2004) and 
classified the single trial neural responses (Figure 1B). Performance was 
defined as the proportion of correctly classified trials, normalized to 
Day 0 (first day on the tilt platform to collect data for decoder on Day 
1). Off-line decoding performance supported the division into two 
groups, learner and nonlearners [F(12,2)  = 7.1, p  < 0.01] but 
performance changed over time differently for the two groups [effect of 
phase: F(145,1) = 0.2, p = 0.69, interaction F(145,2) = 10.3, p < 0.001]. 
Examining the learning curves (Figure 1C) there was a noticeable early 
phase of learning, within the first 5–7 days, such that learners improved 
performance compared to their first, naive, day of BMI control (Day 1). 
There was also a late phase of learning. Learners became experts at 
controlling the platform characterized by an asymptotic leveling off of 
improvement in performance after day 15. The timing of these phases 
are similar to the early and late phase of learning demonstrated in 
humans (Wu et al., 2014) and BMI learning in non-human primates 
(NHPs) (Koralek et al., 2012).

Comparing group effects, as expected, only learning animals 
showed a greater change in performance in the late compared to the 
early phase (learning p < 0.001; nonlearning p = 0.08; control p = 0.30). 
Within the early phase, there were no differences between groups, 
suggesting neurons recorded from nonlearners made attempts to 
improve performance but there was variability across animals. 
However, within the late phase, learners showed greater improvement 
in their performance compared to nonlearners (p < 0.001) and control 
animals (p < 0.01), while no differences existed between nonlearners 
and control animals (p = 0.19). These data demonstrate that when 
animals learn to control the BMI, they continue to increase 
performance through the late phase (Zhou et al., 2019).

To understand why some animals were learners and some 
non-learners, we examined how neurons responded to the decoder 
and found that the neural activity of learners changed to enhance the 
performance of the decoder (Figure 1D). The on-line decoder used 
the PSTH-based classifier (Foffani and Moxon, 2004). This classifier 
uses the single neuron’s natural response to the tilt to drive the 
decoder. In practice, if the individual neuronal PSTHs to different tilts 
became more different from each other, then classifier performance 
would improve. For animals that learned, the difference between 
PSTHs for different tilt types was greater after they became experts at 
controlling the platform compared to their naïve performance before 
BMI learning began. This was less true for control animals and there 
was little to no change for non-learners (Figure 1D). Therefore, the 
choice of decoder will dictate, at least in part, the response of neurons 
to learning BMI control.

Furthermore, within a recording session, the distribution of 
incorrect trials was uniform across trials such that the cumulative sum 
of correct trials was linear (r2 > 0.99). Therefore, it is not as though 
improvement happens early or late within the recording session. This 
is different from improvements made by NHPs that are working in 
BMI tasks for which there was previous operant conditioning (Athalye 
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et al., 2017). Here, improvement can be observed by the changes in 
slope of the cumulative performance improvement curves across 
weeks (Supplementary Figure S1). The slope increased from early to 

late [F(1.76) = 3.142, p = 0.080] and was greater for learners compared 
to non-learners (F(1,76) = 5.729, p  = 0.019) with a significant 
interaction [F(1,76) = 11.884, p = 0.001]. In fact, for learners, the slope 

FIGURE 2

Effect of learning on network mechanisms. (A) Changes in the timing and count information for direct and indirect neurons across recording days. 
(B) Statistical comparison of changes in spike count and spike timing for during and indirect neurons during the early (left panel) and late (right panel) 
phases. (C) Redundancy between population of direct and indirect neurons across recording days (left panel) and statistical comparisons for early and 
late (right panel). (D) Correlation between single neuron information and redundancy. (E) Changes in redundancy across recording days for direct and 
indirect neurons.
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of this line increased as the animals learned the task, closely following 
performance (p < 0.001; Supplementary Figure S1) but the slope of the 
line did not change for non-learners (p = 0.21). Therefore, for learners, 
changes in firing patterns that matched the needs of the decoder 
occurred over the course of days to support learning.

Brain strategies to learn BMI control

To understand the cellular computational mechanisms 
underlying learning, we examined how learning affected neuronal 

response patterns for the two types of neurons (i.e., direct or 
indirect) within learning groups for the early and late phases of 
learning (Figure 3). We first examined the effect of BMI learning 
on the change in information carried by individual neurons from 
the learning group [neuron type: F(7.7, 1) = 12.46, p < 0.01; phase: 
F(2491,1) = 0.73, p = 0.39; interactions: F(2493,2) = 6.5, p < 0.005]. 
In the early phase, information increased more for both direct 
(p < 0.05) and indirect (p < 0.05) neurons compared to control, but 
they were not different from each other (p = 0.833). Alternatively, 
in the late phase, the information for both direct (p < 0.001) and 
indirect (p < 0.05) neurons remained different from control but the 

FIGURE 3

Differences in the cellular mechanisms underlying changes in the representation of information about the task. (A) For animals that underwent BMI, 
neurons from one hemisphere were used to drive the BMI (direct neurons) while neurons from the opposite hemisphere were recorded but not used 
in the BM (indirect). Electrodes were placed into the hindlimb sensorimotor cortex. (B) a group of control animals had activity recorded from both 
hemispheres and their tilt types, rewards and punishments were yoked to one of the BMI animals but these animals did not undergo any BMI training. 
(C) Responses of single neurons compared between groups for animals that learned the task and (D) those that did not.

https://doi.org/10.3389/fnins.2024.1371107
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bridges et al. 10.3389/fnins.2024.1371107

Frontiers in Neuroscience 08 frontiersin.org

change in direct was greater than that of indirect (p < 0.1). In fact, 
only direct neurons increased information from early to late phase 
(p < 0.001). Indirect neurons maintained their moderate increase 
in information in the late phase that they gained in the early phase 
with no additional increase (p = 0.65). For non-learners, there was 
also an effect of neuron type [F(25.3,2) = 3.46, p < 0.05], with no 
effect of phase [F(2367,1) = 1.7, p  = 0.19] and no interaction 
[F(2366,2) = 0.004, p = 1.0], suggesting that even if animals do not 
improve performance in the task, direct and indirect neurons are 
differentially affected by BMI training, albeit with smaller 
differences than that identified for learners. Therefore, early on, the 
brain adopts a global strategy to improve BMI control but, 
overtime, transitions to using a local strategy such that only direct 
neurons continue to improve their encoding of the BMI control 
signal. This ability to transition from using a global to local strategy 
appears to be a property only found in learning animals.

To understand this change in single neuron information, 
we examined changes in neural firing patterns. We first examined 
whether learning altered the neural variance (Churchland et al., 
2006). Neural variance prior to the onset of movement has been 
shown to decrease—a measure of the preparedness of neurons to 
perform the task (Churchland et al., 2010). In animals that learned 
the BMI task, there was a significant effect of neuron type [F(2, 
12,928) = 229.30, p < 0.001], phase [F(1, 12,928) = 17.2, p < 0.001] 
and a significant interaction [F(2, 12,928) = 11.29, p < 0.001]. Only 
direct neurons decreased their neural variance, continuing to 
reduce neural variance into the late phase compared to the early 
phase (p  < 0.001). In contrast, indirect neurons increased their 
neural variance early and with no additional increase late (p = 0.38) 
but in a manner less than that of control animals who were tilted 
but had no ability to control the platform (p  < 0.001 for all 
comparisons between neuron type). For non-learners, there was an 
effect of neuron type [F(2, 1,264) =451.46, p < 0.001] and phase 
[F(1, 1,264) = 66.18, p  < 0.001] with no interaction [F(2, 
1,264) = 2.21, p = 0.11]. All neuron types increased their neural 
variance with less change from the early to late phase (p < 0.01 for 
all comparisons). Again, neurons recorded from control animals 
had the largest increase, but this was followed by direct and then 
indirect. These data support previous studies that a reduction in 
neural variance is required for successful BMI control, further 
demonstrating that reducing neural variance is associated with 
learning the BMI task and is primarily reserved for direct neurons.

These differences in single neuron learning and neural 
variance between direct and indirect neuron types in the early 
phase of learning suggested that the brain was able to differentiate 
between direct and indirect neurons early on. To assess the 
underlying neuronal mechanisms that may contribute to this, 
we examined the effect of learning on the magnitude and latency 
of the neuronal response to platform tilts. For learners, changes in 
firing rate contributed to learning in the BMI task as there was an 
effect of neuron type [F(14.7,2) = 24.3, p  < 0.001], phase 
[F(1912,1) = 5.7, p  < 0.05] and a significant interaction 
[F(1913,2) = 4.6, p < 0.01]. In the early phase, while neither group 
was different from control, direct neurons increased their firing 
rate while indirect neurons decreased their firing rate and the 
difference between direct and indirect was significant (p < 0.005; 
Figure 3C). As the animals transitioned from the early to the late 
phase, direct neurons did not continue to increase their firing rate 

(early-late post hoc p = 0.27) but indirect neurons continued to 
decrease their firing rate (p < 0.01), similar to control (p < 0.05). 
This effect on firing rate is intriguing and did not match changes 
in performance.

Learners also showed an effect of latency, but it was different 
from what was observed for firing rate. Overall, there was an effect 
of neuron type [F(13.5,2) = 38.4, p < 0.001] and an effect of phase 
[F(1911,1) = 11.3, p = 0.001] with no interaction [F(1911, 2) = 2.49, 
p = 0.08]. This effect of phase was predominantly due to a larger 
increase in latency for indirect (p  < 0.0001). The effect was 
attenuated in the late phase with the difference in latency between 
direct and indirect becoming less pronounced (Figure 3C).

For nonlearning animals, there were smaller changes in the 
firing rate and latency of the response. For firing rate, there was an 
overall reduction in the change during the late phase compared to 
the early [F(1604,1) = 4.8, p < 0.05] (Figure 3D). There was however, 
no difference between neuron types [F(15,2) = 2.7, p = 0.101] nor 
any interaction [F(1605,2) = 0.342, p  = 0.710], suggesting that 
non-learning animals are unable to differentially modulate firing 
rate of direct or indirect neurons. For the latency of the response 
in nonlearning animals, there was an effect of phase 
[F(1603,1) = 7.3, p  < 0.01] and an effect of group [F(14,2) = 6.1, 
p < 0.05] with no interaction [F(1604,2) = 0.47, p = 0.63]. In fact, it 
is the direct neurons that are different from both indirect 
(p  < 0.005) and control (p  < 0.05) with no difference between 
indirect and control (p = 0.24), suggesting that the direct neurons 
of nonlearners are working to improve performance but are unable 
to achieve an effect on the representation of information 
(Figure  3D). Therefore, as for learners, direct neurons of 
nonlearners were most affected by training in the BMI.

These data provide cellular computational mechanisms that 
support our informational results and suggest that learners initially 
use a global strategy with direct neurons changing their firing rate 
and indirect neurons changing their latency to learn to control the 
BMI. However, eventually the indirect neurons stop participating 
and, in the late phase, only the direct neurons contribute to 
learning BMI control. This is dependent on a continued reduction 
in neural variance with maintenance of firing rate increases and 
latency decreases while indirect neurons become less involved in 
the task. To understand the impact of these changes in firing rate 
and latency, we examined changes in information measures.

Network mechanism that support BMI 
learning

The differences in the neuronal responses of learners between 
direct and indirect neurons suggested network mechanisms 
underlying learning (Figures 2A,B). Specifically, the effects of firing 
rate on direct neurons and latency on indirect neurons suggested 
a differential role of temporal information. Temporal information 
is the information gained by considering the relative timing of 
spikes, or spike timing information, compared to the information 
conveyed by the overall number of spikes or spike count 
information (Foffani et al., 2004). The firing rate changes for direct 
neurons and latency changes for indirect neurons suggested a role 
for temporal information to be used by indirect neurons in the 
early phase of learning while indirect neurons relied on spike count 
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information. In fact, the increase in information for indirect 
neurons relied on an increase in temporal information in the early 
phase (difference between spike count information and spiking 
timing information, p < 0.05) and, as expected, this increase did 
not extend into the late phase (Figures 2A,B). For direct neurons, 
as expected, there was no added temporal information (p = 0.13) 
in the early phase. However, in the late phase, the increase in 
information for direct neurons was through an increase in 
temporal information (p < 0.05). Given that there was no further 
increase in firing rate nor change in latency, this increase in 
temporal information is most likely due to a reduction in jitter 
(Foffani et al., 2004, 2007; Scaglione et al., 2011, 2014). Therefore, 
indirect neurons relied on increases in temporal information to 
increase information during the rapid, early improvement in 
performance while direct neurons improved temporal precision to 
gain further improvement in the late phase.

To gain a deeper understanding we examined the redundancy 
between neurons within the direct and indirect neurons 
(Figures  2C–E). As previously shown (So et  al., 2012), single 
neuron information was well correlated to redundancy with the 
correlation increasing for direct neurons from early to late but 
decreasing for indirect neurons. In fact, the redundancy for direct 
neurons was greater than that of indirect neurons in both the early 
(p < 0.01) and late (p < 0.01) phase. Therefore, the transition from 
a global to a local strategy was accompanied by direct neurons 
transitioning from relying on spike count to relying on spiking 
timing information. This serves to increase the redundancy of the 
representation while indirect neurons are released from 
participating in the encoding of information about controlling the 
tilt platform.

Discussion

The work here clarifies how populations of neurons change their 
firing patterns to enhance learning a BMI task. Specifically, during the 
transition from the early to the late phase of learning, the brain 
changes from a global strategy—employing populations of neurons 
that directly influence BMI control and populations that do not 
influence BMI control—to a local strategy—optimizing for 
populations that directly influence BMI control while reducing 
irrelevant population activity. In the early phase, direct neurons 
reduced their neural variance and increased their firing rate to convey 
information through spike-count while the indirect neurons increased 
their latency to convey information through spike timing. As the brain 
shifted from a global to a local strategy, the direct neurons relied less 
on spike count and more on spiking timing, increasing the redundancy 
of the information representation. The indirect neurons decreased 
their latency and continued decreasing their firing rate, which further 
reduced their participation in conveying information about the tilt. 
The time course of local and global strategies and the reliance of 
different cellular computational mechanisms may explain the 
variability in research findings associated with indirect neuron 
investigations. In some cases, animals may rapidly transition from 
using a global to local strategy while in others the transition may not 
occur during the recording period (Chase et al., 2012). The nature of 
these changes is likely dependent on the parameters of the experiment 
and should be explored in future investigations.

Previous studies examining learning in a center-out reaching 
task recognized that a more global type of strategy was engaged 
early in learning (Chase et al., 2012; Zhou et al., 2019). In that case, 
the preferred direction of a subset of neurons used in the decoder 
were perturbed and the monkey had to relearn the mapping. In the 
early stage, both perturbed and unperturbed neurons as well as 
indirect neurons modulated their preferred direction, 
demonstrating a global strategy. It was suggested that the animal 
does this by re-aiming in the early phase of learning (Chase et al., 
2012). In this study, we  eliminated this type of approach 
(re-aiming) because the animal did not have continuous feedback 
during the trial regarding the successfulness of its attempt to 
control the platform. Further, because, in the reaching task, 
animals received operant training in the task prior to BMI control, 
learning peaked within the first recording session. In this study, 
learning was more difficult, allowing for a control group of 
nonleaners that demonstrate a role for single neuron learning and 
neural variance between neuron types. Specifically, the rapid 
changes in the early phase suggest that the brain has some 
understanding of direct neurons and indirect neurons in the early 
phase of learning.

In this study, we specifically defined a global strategy where 
both direct and indirect neurons participate in representing 
information about the task, rather than a behavioral response 
(re-aiming) that likely engages all neurons. A local strategy 
represented only direct neurons contributing to information about 
the task. Nevertheless, the reliance on cellular mechanisms early in 
learning suggest that cellular mechanisms are a universal property 
that is used to enhance performance regardless of whether the 
animal was previously trained via operant conditioning or whether 
the animal had continuous feedback regarding progress in the task. 
This may simplify the transition of BMI learning for restoration 
function although reexamining this after neurological injury or 
disease will be necessary.

Local versus global strategy

The ability to transition to a local strategy may be  a key 
property of animals that successfully learn to use BMIs with 
training. This is supported by the fact that only learning animals 
were able to differentially modulate direct neuron information 
compared to indirect neurons when transitioning from the early to 
the late phase of learning. Non-learning animals continued to use 
a global strategy with changes in direct and indirect neuronal firing 
patterns correlated as training progressed. Therefore, a global 
strategy may be  an exploratory step during which the brain 
attempts to identify the necessary neural transformation to gain 
reward. Since this is not necessarily the most efficient approach 
(Chase et al., 2012), once the transformation is identified, the brain 
adopts a local strategy such that cells not necessary for the 
transformation stop participating. These differences between 
learning and non-learning animal strategies may help explain why 
some animals learn and other do not, a well-known challenge in 
human BMI research known as the “BCI Illiteracy” problem.

Once the necessary transformation is identified, it would make 
sense to lock in the necessary local changes with structural 
neuroplastic changes, which take time to develop, in part because the 
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brain must first identify the necessary local changes. Kleim and 
colleagues for example found that cortical synaptogenesis and motor 
map reorganization only occurred in the late phase of a motor-skill 
learning task in rats (Kleim et al., 2004). Global changes in contrast, 
may rely on more short-term functional neuromodulations. Since the 
learning in this task was solely dependent on reward rate, the animal 
could not adopt a behavioral strategy and the global strategy neurons 
adopted was an internal brain strategy.

In the earliest BMI studies in non-human primates (NHP), it was 
suggested that the animals internalize the robot arm (Carmena, 
2013), consistent with early reports in human studies (Kennedy and 
Bakay, 1998). More recently, with the advent of improved technologies 
and more advanced software tools, BMI training has been used to 
gain insight into fundamental principles underlying learning. For 
example, changing the transfer function of the decoder such that it 
expects a different tuning curve of the cells (Jarosiewicz et al., 2008) 
showed that neurons will modify their tuning curve to gain rewards 
and that this process is reversible (Ganguly et  al., 2009). More 
recently, the state space of the neural trajectories were assessed to 
determine if neurons would travel outside of their ‘natural’ state 
space, or manifold, if the decoder required it (Sadtler et al., 2014). It 
was difficult for neurons to do this and it has been suggested that 
there are intrinsic variables that limit the extent of change one could 
require of neurons (Hwang et al., 2013).

It has been suggested that learning takes place within existing 
motor repertoires underlying neural circuitry because learning is 
constrained to a low dimensional subspace of activity patterns or 
an intrinsic manifold (Sadtler et  al., 2014). However, as shown 
here, learning takes place to solve the transformation of neural 
activity that gains reward (restoring the platform in this study). In 
many studies (Hwang et al., 2013; Sadtler et al., 2014; Golub et al., 
2018), including the study presented here, the decoder defines how 
the neurons are required to change. The neurons simply work to 
improve the outcome of the classifier, which, in this study, did not 
require the neurons to move far from their more natural activity 
patterns. However, even when the required mapping was very 
different, for example, cells in the motor cortex working to control 
the tone of an auditory signal (Koralek et al., 2012), the change in 
neural firing patterns again matched the decoder. Therefore, it is 
unlikely that M1 uses a fixed repertoire of activity patterns but, 
rather, M1 learns a new mapping to acquire a new skill and this 
process creates a new low dimensional subspace of activity. The 
time it takes to learn a new mapping is dependent on the difference 
between the current mapping and the new mapping.

This study supports the idea that the brain undergoes an 
exploratory period, engaging a large number of neurons in the 
brain and trying different cellular and network strategies to gain 
reward. The direct neurons immediately identified changes in 
firing rate that allowed the PSTHs to different tilt types to move 
away from each, solving the transformation set by the decoder. 
Changing firing rate does not allow the indirect neurons to 
participate in the transformation and a different strategy is 
attempted, changes in latency, leading to increased temporal 
information, but, again, the neurons do not participate in the 
transformation and eventually stop participating. This is made 
clear by the nonlearning control group. While it has been further 
suggested that learning on longer time scales (i.e., late phase) may 
involve adaptations outside of the manifold (Sadtler et al., 2014), 

our data do not support this prediction. Direct neurons simply lock 
in the transformation known to result in reward and do not change 
their relationship to the decoder. However, they do take advantage 
of additional mechanisms, including increasing temporal 
information that works to reduce the need for additional increases 
in firing rate while continuing to allow for increases in information.

It has been suggested that a local strategy requires the brain to 
solve the credit-assignment problem (Richards and Lillicrap, 2018) 
by identifying select neurons that contribute to desirable task 
outcomes. Solving the credit-assignment problem in BMI 
experiments is particularly challenging because the brain must 
parse out a relatively small subset of direct neurons. However, since 
we find differences between direct and indirect neuron types early, 
consistent with other studies (Zhou et al., 2019), the brain may 
have a built in mechanisms to solve the credit-assignment problem. 
Therefore, the early global strategy identified here is more than just 
simply identifying neurons that contribute to the desirable task 
outcome; this is known very early. Rather, neurons that can never 
contribute to the desired outcome continue to search for 
appropriate ways to contribute, for days in this case.

Indirect/direct neurons roles

It was initially suggested that a functional relationship exists 
between direct and indirect neurons, when neighboring direct and 
indirect neurons experienced similar modulation depths and response 
time changes (Gulati et al., 2014). However, in this experiment, direct 
and indirect neurons were separated across hemispheres, removing 
the likelihood of confounding factor of the close proximity of the cells. 
The differences noted here in firing rate and latency between direct 
and indirect neurons suggest that indirect neurons may contribute 
relevant information using independent mechanisms.

Latency differences seen in the direct neurons of this study are 
consistent with others. Manohar et al. found that direct neurons not 
only increased information but did so faster compared to neurons used 
in a manual control version of the task (Manohar et al., 2012). Further, 
Arduin et al. found that direct neurons respond faster than indirect 
neurons with BMI practice (Arduin et al., 2013), suggesting they act as 
“master” neurons by leading activation changes in cortical networks. 
Our firing rate differences parallel research showing that indirect 
neurons have smaller modulation depths compared to direct neurons 
(Law et al., 2014), which can decrease with time compared to manual 
control experimental conditions (Ganguly et al., 2009). Decreased firing 
rate might involve similar processes as those seen in neuroimaging 
studies where researchers identify decreased activation in experts 
compared to novices and/or as an individual learns (Babiloni et al., 
2010; Guo et al., 2017; Yu and Yu, 2017) akin to the “neural efficiency” 
hypothesis. This may reflect a strategy employed by the brain to reduce 
the number of neurons involved in the task. BMI studies help to 
elucidate why this occurs; the brain starts by involving a large number 
of neurons and then down-selects those neurons that are not necessary 
to gain a desired outcome (i.e., righting of the platform).

Only learning animals showed a decrease in direct neuron neural 
variance as the animal transitioned from the early to late phase. This 
provides two important insights into skilled learning. First, neural 
variance may be  used as a tool to probe the role of neuronal 
participation in a task. In the early phase, neural variance of direct 
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neurons does not change much. In contrast, indirect neurons remain 
the same during the first few recording sessions but then begin to 
increase, reduce again and then increase, remaining relatively high 
during the late phase while that of direct neurons reduce. The 
reduction in neural variance before movement onset has been shown 
to be important for accurate task performance (Churchland et al., 
2006, 2010). The brain may use changes in neural variance to identify 
cells that are necessary for the task. Second, the reduction in neural 
variance, identified in well-trained animals, takes time to develop. 
These insights extend our understanding of the exploration of the 
neural state space while learning a task to include preparatory time 
before the onset of movement and that active modulation of indirect 
neurons in the early phase is important for learning.

Redundancy and neural encoding

Interestingly, we  found that redundancy increased for direct 
neurons yet decreased for indirect neurons as the animal transitioned 
from the early to late phase of BMI learning. Neuron ensembles most 
associated with BMI control display the highest information and 
redundancy. In one study, neurons from the hemisphere contralateral 
to the arm used to manually perform the task were used to train the 
decoder (direct neurons), while neurons in the ipsilateral hemisphere 
were recorded (indirect neurons) (So et al., 2012). In this case, direct 
neurons had more information and redundancy than indirect neurons 
as one might expect. Interestingly, when BMI control was switched 
such that the neurons from the ipsilateral hemisphere were used as 
direct neurons and the contralateral hemisphere for indirect, direct 
neurons (now in the ipsilateral cortex) still showed higher information 
and redundancy levels. Those data suggested that BMI related 
increases in information and redundancy are a property of BMI 
control. Our data confirm this result as only direct neurons increased 
redundancy with learning, even in the early phase when indirect 
neurons are increasing their representation about the task through 
latency changes but not contributing to BMI performance.

Additionally, computational work suggests that neural redundancy 
maximizes learning speed in motor cortical neurons (Takiyama and 
Okada, 2012). Our results are consistent with this idea in that direct 
neurons not only displayed more redundancy than indirect neurons 
but the redundancy was correlated with direct neural information. 
Interestingly, we  found the degree of correlation between indirect 
neuron information and redundancy decreases as animals progress 
from early to late phase of BMI learning, while direct neuron 
correlational strength increases. This suggests that the brain takes an 
active role in increasing redundancy in neurons that contribute to task 
performance and reducing redundancy in those that do not as it 
transitions from using global to more local strategies. Various 
functions for neuronal redundancy have been suggested in rats 
(Narayanan et al., 2005) and primates (Reich et al., 2001) including 
that redundant neurons serve to safeguard against neural noise, which 
can be  in the form of neurons misfiring (Puchalla et al., 2005) or 
unstable neural representations associated with motor learning (Rokni 
et al., 2007). Puchalla et al. (2005) proposed that redundancy allows 
for simpler high-order feature extraction via combinatorial codes in 
redundant systems. These theories of increased redundancy with BMI 
learning are consistent with Hebb’s hypothesis on cell assemblies 
(Hebb, 1949) that simply states while many neurons are part of the 

neuronal ensemble, on any given trial, only a subset need to fire in 
order to convey sufficient information about the task.
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