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ABSTRACT OF DISSERTATION 

 

Quantitative Transcriptomics From Limiting Amounts Of mRNA 
 

by  

 

Vipul Bhargava 

 

Doctor of Philosophy in Bioinformatics and Systems Biology 

 

University of California, San Diego, 2013 

 

Professor Shankar Subramaniam, Chair 

 

 Quantification of global transcripts expression is a key step towards 

developing system-level understanding in biology. Probe independent RNA-seq 

provides digital estimation of transcript abundance with dynamic range large 

enough to accurately quantify the majority of complex mammalian 

transcriptomes.  However, a reliable quantification of low abundant transcripts 

from limited amounts of mRNA has remained a challenge for RNA-seq. The 

widely used RNA-seq protocol requires 1-10 ng of mRNA to generate robust 

sequencing libraries restricting its application in disciplines where obtaining such 

amounts of mRNA is challenging, such as in developmental biology, stem cell 

biology and forensics. To address this issue, we developed a novel RNA-seq 

methodology (DP-seq) that uses a defined set of 44 heptamer primers to amplify 
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majority of the mammalian transcripts from limiting amounts of mRNA, while 

preserving their relative abundance. DP-seq reproducibly yields high levels of 

amplification from as low as 50 pg of mRNA (50-100 mammalian cells) with a 

dynamic range of over five orders of magnitude in RNA concentrations. A novel 

two-step amplification step utilizing a combination of mesophilic and thermophilic 

polymerases was devised to achieve efficient amplification from the heptamer 

primers. Furthermore, we exploited PCR biases observed in our methodology to 

reduce the representation of highly expressed ribosomal transcripts by more than 

70% in our sequencing libraries.   

We validated DP-seq on lineage segregation model in early stem cell 

cultures achieved by modulating TGFβ pathway. DP-seq accurately quantified 

the majority of the low expressed transcripts and revealed novel lineage markers 

and putative TGFβ target genes. Similarly, by using DP-seq we functionally 

characterized dedifferentiated neurons and astrocytes and found the cell cycle, 

Wnt signaling and the focal adhesion pathways to be involved in the 

maintenance of their undifferentiated state. 

Finally, we compared DP-seq with other amplification-based strategies 

and found similar transcriptome coverage and overlapping technical noise. 

Interestingly, the technical noise increased significantly when ultra-low amount of 

mRNA (single cell level) was used, irrespectively of the methodology. In 

conclusion, this study provides an economical and efficient solution for 

sequencing library generation using low amounts of mRNA thereby increasing 

the applicability of RNA-seq to a wider spectrum of biological systems. 



	
   	
  

1 

Chapter 1  

Introduction 
 

Eukaryotic cells exhibit tremendous diversity in RNA expression and 

structure. It is the repertoire of RNA species expressed by a biological cell that 

differentiate it from other genetically identical cells sharing the same 

chromosomal DNA. Furthermore, most of the biological processes such as 

proliferation and differentiation involve systematic changes in expression levels 

of numerous RNA species. Hence, accurate quantification of whole RNA 

populations is necessary to define the cellular context and gain systems level 

understanding of the molecular mechanisms involved in the biological processes. 

A number of methodologies have emerged that can simultaneously analyze 

expression patterns of thousands of RNA species. Two of the most popular 

methods, microarrays and high-throughput RNA sequencing (RNA-seq) have 

greatly enhanced our understanding of transcription and post – transcriptional 

regulation of the mammalian genomes.  

1.1 Microarrays vs. RNA-seq 
Until recently, hybridization based microarray platforms used to be method 

of choice for simultaneous monitoring of expression levels of all annotated 

transcripts1, 2. However, the platform suffers with numerous drawbacks limiting its 

capability in deciphering the code of transcriptional machinery, especially for 
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complex mammalian genomes3. Microarray platforms require at least microgram 

amounts of mRNA, which is equivalent to RNA content obtained from more than 

100,000 mammalian cells) as opposed to 1-10 nanogram (ng) of mRNA required 

by the most popular RNA-seq method. Since, the microarray platform uses short 

oligos to capture mRNA expression, it requires a priori knowledge of transcripts 

expressed in a given cellular context and their sequences. Identification of 

differentially expressed transcripts under various biological conditions, are often 

marred by hybridization and cross hybridization bias introduced by variable GC 

content, length of the probes, dye bias etc. The limitations of microarray 

scanners in detecting low signal intensities restrict the accurate quantification of 

low abundant transcripts. The dynamic range of this platform is further 

undermined by saturation of the fluorescent intensities for the high expressed 

transcripts. In contrast, the sequencing based approach of transcriptome profiling 

does not require prior knowledge of transcripts and allows identification of novel 

transcripts and alternate splice site variants4-6. A typical deep sequencing based 

approach generates millions of sequencing reads, thus offering large dynamic 

range and subsequently better estimation of low abundant transcripts7-9. Higher 

dynamic range offered by sequencing based technologies implies identification of 

more number of transcripts (80 – 90%) as compared to those identified by 

microarrays (40 – 50%). Moreover, sequencing based protocols have digital 

output, as opposed to analog for hybridization based protocols obviating the 

need for complex algorithms for data normalization and summarization. 
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Comparison of expression profiles obtained from microarrays and deep 

sequencing based technologies like Illumina genome analyzer II revealed high 

correlation for transcripts expressed at moderate levels6. However, the 

correlations were poor for transcripts expressed at low or high levels. Finally, 

high reproducibility and sensitivity achieved by RNA-seq10 and ever decreasing 

cost of sequencing has further reinforced their position as preferred platforms for 

mRNA expression analysis. 

1.2 Protocols for RNA-seq 

During the early stages of RNA-seq method development, two protocols 

were suggested for sequencing library generation: 3’ tag digital gene expression6 

and full-length RNA sequencing10. 3’ tag digital gene expression uses oligodT 

primers to synthesize first strand cDNA from polyadenylated mRNA. The first 

strand cDNA is later converted to double stranded cDNA using random hexamer 

primers. Next, the double stranded DNA is digested with DpnII enzyme followed 

by MmeI to generate 20 – 21 base pair cDNA tags. Later, the library is ligated to 

platform dependent adapter molecules and processed for massive parallel 

sequencing. As expected, the sequencing reads generated from this protocol are 

enriched for 3’ ends of the cDNA and give little information about structure of 

transcripts including exon usage, splice site variants etc. 

Full-length RNA sequencing involves fragmentation of RNA (RNA 

hydrolysis or nebulization) into 100 – 300 bp fragments. This step is necessary to 

reduce the formation of stable RNA secondary structures, which hinders with the 



	
  

	
  

4	
  

full-length cDNA synthesis via reverse transcriptase. Moreover, the fragmentation 

of RNA makes the cDNA library compatible for sequencing in Illumina platforms. 

The fragmented RNA library is primed with random hexamer primers to generate 

double stranded cDNA library. The library is later ligated to the standard Illumina 

adapters and processed for sequencing. Since the sequencing reads are 

generated from whole length of the mRNA, it allows investigation of the structure 

of the mammalian transcriptomes at unprecedented levels. However, this 

protocol creates a different bias in the outcome. The number of sequencing 

reads generated from a transcript depends upon the length of the transcript 

implying that the transcripts with longer lengths and high expression are 

preferred over all the other transcripts11. This protocol also maintains the relative 

order of the transcripts expression. The transcripts expression in mammalian 

genomes follows a power law distribution. This implies that most of the 

sequencing effort is spent on sequencing high expressed transcripts. In the 

majority of the cases, these high expressed transcripts are involved in 

maintenance of structural integrity of cells or cell viability (metabolic pathways). 

Importantly, these transcripts do not change their expression pattern in most of 

the cellular context.  On the other hand, vast majority of the cell signaling 

molecules including transcription factors are expressed at low to moderate levels. 

These transcripts do not get enough representation in the sequencing libraries 

resulting in poor quantification even at high sequencing depths12, 13. The protocol 

also suffers with biases arising out of random hexamer priming and the random 

fragmentation of the mRNA14. This error is further propagated, as not all the 
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fragments generated from this method will map uniquely to the transcripts. 

Theoretical assessment of mammalian transcriptome revealed existence of 74% 

of uniquely mapped 32 base pair reads15. This implies that only 74% of the time 

the random fragments generated will map uniquely to the transcripts. This 

systematic error gets more pronounced in low abundant transcripts which 

possess less unique regions within their sequences. Finally, this protocol 

requires 1 – 10 ng of mRNA for successful generation of the sequencing library. 

This restricts the application of this method in fields such as developmental 

biology, stem cell biology, forensics and even for FACs sorted cell populations 

where obtaining such large amounts of mRNA is impractical.  

To address the issue of sequencing from limiting amounts of mRNA, a 

number of amplification-based methodologies were proposed. These 

methodologies generate large amount of amplified DNA, required for successful 

production of sequencing libraries, by performing either exponential or linear 

amplification of mRNA. Some of the initial work on the development of 

amplification-based approaches were demonstrated by ligation mediated PCR16, 

multiple displacement amplification17, single – primer isothermal amplification18, 

in – vitro transcription based linear amplification19. The performance of these 

methods in deep sequencing based platforms has not been assessed. Other 

amplification-based methods have utilized the hybridization and extension 

potential of random hexamer, heptamer and/or octamer primers to amplify the 

majority of expressed transcripts20-22. However, they often result in low yield of 

good quality reads arising out of mis-hybridization of primers and primer 
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dimerization. Also, the random priming methods do not discriminate regions of 

the transcriptome to amplify, specifically low abundance transcripts. This 

limitation is also seen in other uniform amplification strategies23-27. Another 

approach, involving targeted enrichment28-30 requires longer sample preparation 

steps, larger amounts of RNA and high costs.  

For our first RNA-seq experimentation, we used double random priming 

methodology that uses random octamer primers to amplify most of the mouse 

transcripts22. Our transcriptome data revealed a number of issues with library 

preparation protocol. Firstly, our sequencing libraries had high proportions of 

PCR spurious products and primer-dimerization. Consequently, only 64% of the 

sequencing reads mapped to the mouse genome. Moreover, the method 

generated sequencing reads that mapped to multiple mRNA species and only 

18% of the reads were uniquely mapped to the mRNA database. This resulted in 

poor dynamic range and reduction of statistical power of the experiment with the 

quantitation of low abundant transcripts severely affected. In this method, the first 

eight sequencing cycles were used to sequence random octamer primers and 

since majority of the octamer primers displayed mis-priming, we had to truncate 

the first eight base pairs from the sequencing reads. Finally we had no control on 

the regions of the transcriptome that were amplifying and the extent of 

amplification.   

1.3 Specific goals of the dissertation 
Chapter 2 describes a novel RNA-seq methodology (DP-seq; Designed 

Primers based RNA-seq) where we designed a set of 44 heptamer primers to 
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amplify the majority of the mouse transcriptome from as low as 50 pg of mRNA 

while maintaining the relative abundance of the transcripts31. Intensive 

computational analysis was performed to identify 44 heptamer primers that 

amplified >80% of the expressed transcripts. The primers were also designed to 

hybridize preferentially to the unique regions of the mouse transcriptome. Owing 

to low melting temperatures of the heptamer primers, a novel two-step 

amplification protocol was devised where a combination of mesophilic and 

thermophilic polymerases were used. The protocol was further optimized to 

reduce mis-hybridization of primers and primer dimerization. We further explored 

the potential of our primer design strategy to selectively suppress the 

amplification of the highly expressing transcripts such as ribosome encoding 

transcripts. Our sequencing data demonstrated a significant reduction in the 

representation of the ribosomal transcripts with multiple choices of primer sets 

thus demonstrating the potential of our methodology to perform “targeted 

amplification”. We later compared our methodology with a full-length cDNA 

amplification strategy (Smart-seq)25 and observed comparable transcriptome 

coverage and similar technical noise. We validated our methodology on an in-

vitro cell culture based model of early mouse embryogenesis to study lineage 

segregation achieved by modulating TGFβ signaling pathway. Our transcriptome 

data showed early expression of numerous lineage markers then previously 

anticipated, thus highlighting the sensitivity of our protocol. 

Chapter 3 describes a comparative analysis of RNA sequencing libraries 

prepared from low amounts of mRNA using three different methodologies, 
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namely Smart-seq25, CEL-seq23 and DP-seq. Two of these methodologies, 

Smart-seq and CEL-seq, have been utilized for single cell transcriptomics 

analysis. Our analysis of the sequencing libraries prepared from serial dilutions of 

mRNA revealed inefficient amplification of the majority of the low to moderately 

expressed transcripts. Enhanced stochasticity in primer hybridization and/or 

enzyme incorporation resulted in high technical noise particularly in the low 

expression regime. In the sequencing libraries prepared from 25 pg of mRNA, 

vast majority of the low expressed transcripts exhibited stochastic loss. 

Additionally, significant distortions in fold changes of the differentially expressed 

transcripts, irrespective of their average expression or level of differential 

regulation, were observed as the amount of mRNA was reduced. Our study 

demonstrated that the technical variations observed in these methodologies are 

profound which can mask subtle biological differences.  

Chapter 4 discusses another implementation of our methodology where 

we performed transcriptome profiling of the dedifferentiated neurons and 

astrocytes to define their undifferentiated state. A recent study showed glioma 

formation in mouse brain when mature neurons and astrocytes were transduced 

with lentiviral vector containing shRNA targeting NF1 and p53 genes32. Our 

transcriptomics data revealed that these transduced neurons and astrocytes left 

their original state and dedifferentiated to undifferentiated neural stem cell like 

state. Our pathway enrichment analysis demonstrated the role of Wnt signaling, 

cell cycle and focal adhesion pathways in maintaining the undifferentiated states 

of these cells. Using cytoscape toolbox, we further identified a gene interaction 
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network that was conserved between the two dedifferentiated cell-types. Finally, 

our analysis revealed the role of Spp1 gene in cell proliferation and migration, 

which needs further investigation.    
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Chapter 2 

Quantitative Transcriptomics using Designed Primer-
based Amplification 

 

2.1 Abstract 
 We developed a novel Designed Primer-based RNA-sequencing strategy 

(DP-seq) that uses a defined set of heptamer primers to amplify the majority of 

expressed transcripts from limiting amounts of mRNA, while preserving their 

relative abundance. Our strategy reproducibly yields high levels of amplification 

from at least 50 picograms of mRNA while offering a dynamic range of over five 

orders of magnitude in RNA concentrations. We also demonstrated the potential 

of DP-seq to selectively suppress the amplification of the highly expressing 

ribosomal transcripts by more than 70% in our sequencing library. Using lineage 

segregation in embryonic stem cell cultures as a model of early mammalian 

embryogenesis, DP-seq revealed novel sets of low abundant transcripts, some 

corresponding to the identity of cellular progeny before they arise, reflecting the 

specification of cell fate prior to actual germ layer segregation.  

2.2 Introduction 
Next Generation Sequencing-based approaches for whole transcriptome 

analysis produce millions of sequencing reads, which represent the vast majority 

of the expressed transcripts. The high number of reads allows a digital estimation 
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of transcript abundance, resulting in a large dynamic range and high sensitivity5-8. 

This is in contrast to microarray platforms, which rely on the hybridization 

efficiencies of transcript specific probes to their corresponding targets, and thus 

result in analog expression profiles and a low dynamic range. With the recent 

dramatic increase in sequencing depth and the decrease in cost per base 

sequenced, high throughput sequencing technologies have emerged as 

preferred platforms for mRNA expression analysis of the complex mammalian 

transcriptome9, 33.  

A major limitation of current gold standard RNA sequencing approach10 is 

the large amount of starting material (10 – 100 ng of mRNA) required to generate 

a sequencing library. This limits the potential of this protocol when it is difficult to 

obtain such large amounts of RNA such as in the fields of developmental biology 

or forensics or even for FACS sorted cell populations. Also, the standard RNA-

seq protocol10 maintains the relative order of transcript expression with a few 

highly expressed transcripts occupying majority of the sequencing space. This 

results in a poor coverage of low abundant transcripts at current sequencing 

depths12, 13. Reliable quantitation of the low abundant transcripts within large 

mammalian transcriptomes is further hampered by multireads and biases 

introduced by the transcript length11 and the random hexamer primer 

hybridization14. A number of amplification-based protocols have been developed 

to address these issues such as “random priming” strategies20-22, which utilize 

the hybridization and extension potential of hexamer/heptamer primers to amplify 

the starting material (mRNA or cDNA). However, the random priming methods 
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often result in a low yield of good quality reads, due to mis-hybridization of 

primers or primer dimerization. Furthermore, these methods do not discriminate 

the regions of the transcriptome to amplify, a feature also shared by other 

uniform amplification based strategies23-26, 34.  

Here we describe a novel quantitative cDNA expression profiling strategy, 

involving the amplification of a majority of the mouse transcriptome using a 

defined set of 44 heptamer primers. The amplification protocol allows an efficient 

amplification of the majority of the expressed transcripts from as low as 50 pg of 

mRNA and was optimized to reduce mis-hybridization of primers and primer 

dimerization. We further explored the potential of our primer design strategy to 

selectively suppress the amplification of the highly expressing transcripts such as 

ribosome encoding transcripts. Our sequencing data demonstrated a significant 

reduction in the representation of the ribosomal transcripts with multiple choices 

of primer sets. We compared our methodology with a full-length cDNA 

amplification strategy (Smart-seq)25 and observed comparable transcriptome 

coverage and similar technical noise. We implemented DP-seq on a model of 

embryological lineage segregation, achieved by graded activation of Activin 

A/TGFβ signaling in mouse embryonic stem cells (mESCs). The fold changes in 

transcript expression were in excellent agreement with quantitative RT-PCR and 

we observed a dynamic range spanning more than five orders of magnitude in 

RNA concentration with a reliable estimation of low abundance transcripts. Our 

transcriptome data identified key lineage markers, while the high sensitivity 
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indicated that novel lineage specific transcripts anticipate the differentiation of 

specific cell types.  

2.3 Results  

2.3.1 Sequencing-library generation using heptamer primers based 
amplification 

A novel cDNA sequencing-library generation methodology was developed 

to reliably represent the relative abundance of transcripts using limited amounts 

of mRNA. DP-seq consisted of three distinct phases (Figure 2.1a). In the first 

phase, we developed a primer design strategy that identified a defined set of 44 

heptamer primers amplifying >80% of the mouse transcriptome (Figure 2.1a, 

green panel). This strategy incorporated known biases in PCR, namely the 

secondary structure of primer-binding sites in single stranded cDNA, GC content 

and the proximity to the 3’ end of the transcript to identify potential primer-binding 

sites. Of the 16384 input sequences of heptamer primers, we selected primers 

with annealing temperatures between 16 - 25°C. To minimize mis-priming, 

heptamer primers starting with adenines at the 5’ end and/or purine rich primers 

were filtered out. Next, an iterative randomized algorithm was implemented to 

identify 44 heptamer primers, which preferentially amplified unique regions of 

mouse transcripts (Supplementary Fig. S2.1). The primers were split into 

multiple sets ensuring no two primers had a mutual interaction energy (Gibbs 

free energy) greater than -5 kcal/mol in order to reduce primer dimerization. Of 

the 26566 known transcripts in the mouse NCBI RefSeq mRNA database, our 

heptamer primers covered 15072 (56.7%) transcripts uniquely. 
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Figure 2.1: Schematic representation of sequencing library preparation using heptamer 
primers based amplification, DP-seq. (a) Step 1: Primer selection was based on identifying 
potential primer-binding sites that were less likely to form secondary structures and resided 
upstream to the unique regions on the mouse transcriptome. Step 2: targeted cDNA 
amplification. A Standard cDNA library was prepared and the primers selected from Step 1 
were annealed to the single stranded cDNA library and were extended and amplified as 
indicated. Step 3: Library preparation. Illumina paired end adaptors were ligated to the ends of 
the amplicon library and the correct orientation of adaptors were selected. The library was 
further amplified using Illumina’s paired end adaptor primers and were size selected for 
synthesis-based sequencing (b) Expression profiles of genes responding to graded activation 
of the Activin A/TGFβ signaling pathway in mouse embryoid bodies at day 4. Quantitative RT-
PCR data was normalized with respect to untreated serum-free media controls. (c) The fidelity 
of amplification of the cDNA library using heptamer primers. Fold changes observed in 11 
genes (from part (b), Afp and Cer1) across different dosages of Activin A showed perfect 
agreement with quantitative RT-PCR performed on cDNA (R2=0.94; n=45). (d) Distribution of 
reads on the mouse genome. 
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In the second phase of the methodology, we performed a targeted 

amplification of the mouse transcriptome using the defined set of heptamer 

primers (Figure 2.1a, pink panel). This phase consisted of two components; (i) 

determination of the minimum length of the primer required to achieve efficient 

amplification and (ii) optimization of the amplification protocol to extend and 

amplify partially hybridized primers. We determined 14 bp (Tm~45-50°C) as the 

optimal length of the primers required to efficiently amplify regions of interest in 

the mouse transcriptome. As such the heptamer primers were extended by 

addition of a universal 7 bp sequence (5’-CCGAATA’-3’) at the 5’ end of 

heptamer primers. Standard PCR protocols failed to amplify partially hybridized 

primers because of low annealing temperatures of the last 7 bp, resulting in 

significant distortions in the expression level of low abundance transcripts. We 

therefore developed a novel protocol that uses a combination of mesophilic 

(Klenow polymerase) and thermophilic polymerases (Taq polymerase) to 

efficiently amplify regions of interest on cDNA. Klenow polymerase, which retains 

its optimal extension activity at 37°C, extends our partially hybridized primers 

(last 7 bp) at this temperature. The extended primers withstand the high 

temperature required for a Taq polymerase extension at 72°C, resulting in the 

formation of a double stranded amplicon library. These amplicons possess 

complementary sequences of the entire 14 bp of our primers at its ends. Since 

our 14 bp primers have a high Tm (45-50°C), they efficiently hybridize to the 

template and allow amplification of these amplicons during the subsequent 

cycles of Taq polymerase PCR. 
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In the last phase of the sequencing library generation, the amplicon library 

was 5’ end phosphorylated and ligated to Illumina’s adaptors (Figure 2.1a, blue 

panel). Since only distinct adaptor orientation fragments can be sequenced in 

Illumina’s platform, we used a biotin-streptavidin chemistry to select the correct 

orientations of the adaptors. The fragments were later PCR amplified using 

Illumina’s adaptor specific PCR primers and size selected for synthesis-based 

sequencing. The selection of fragments with a correct orientation of the adaptors 

can be skipped by ligating standard Illumina Y-adaptors to the amplicon library 

and using a custom sequencing primer that contains the universal tail sequence 

(5’-CCGAATA’-3’) at its 3’ end.  

2.3.2 Evaluation of heptamer amplification-based transcriptomics 
We implemented DP-seq on an in vitro cell culture based model of 

primitive streak (PS) induction in mESCs35, 36. Signaling by the TGFβ-family 

member Nodal through Activin receptor like kinase-4 is essential for mesoderm37-

39 and endoderm40, 41 formation, and the dose-dependent induction of these 

tissues can be mimicked by treatment with Activin A.  Various dosages of Activin 

A (3 ng/mL, AA3; 15 ng/mL, AA15; and 100 ng/mL, AA100) were therefore used 

to induce mesoderm and definitive endoderm while its inhibition by a small 

molecule inhibitor, SB-431542 (SB)42, was used to induce neuro-ectoderm43.  

As expected, small doses of Activin A substantially induced mesodermal 

markers (e.g., Kdr, Mesp1) while higher doses of Activin A were required for the 

induction of anterior lineages including definitive endoderm (e.g., Gsc, Foxa2) 

(Figure 2.1b). On the other hand, complete inhibition of Activin A/TGFβ signaling 
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caused an up-regulation of neuro-ectoderm markers (e.g., Sox1)44.  Moreover, 

direct target genes (e.g., Lefty1, Lefty2 and T also known as Brachyury)45, 46 of 

the Activin A/TGFβ signaling pathway were regulated dose dependently. The 

differential expression of these low abundant genes DP-seq showed excellent 

concordance with quantitative RT-PCR (R2=0.94, Figure 2.1c) validating the DP-

seq approach. 

For a typical transcriptome measurement, we obtained ~30 million reads 

per lane of Illumina’s flowcell (Table 2.1). About 59% (18 million) reads uniquely 

mapped to more than 11000 transcripts with ≥10 reads. About 19% of the reads 

were non-uniquely mapped with a vast majority of them mapping to isoform 

groups. Another 18% of the reads (71% uniquely) mapped to genomic locations 

(excluding the open reading frames of known transcripts) and mitochondria 

transcripts (Figure 2.1d). Of these genomic reads, 72% mapped to intronic 

regions of transcripts while another 20% mapped within 5 Kb of the known 

transcripts. These reads most likely represent non-coding RNA, since we did not 

see a strong correlation between the fold changes in intronic reads with those 

from proximal exons. 

The experimental data indicated expression of more than 100,000 

different primer-binding sites representing ~ 18,000 known transcripts. This 

demonstrates the scale of massive multiplexing achieved by DP-seq. On 

average, we obtained expression of 10 different primer-binding sites for each 

expressed transcript. Notably, each site provided an independent measurement 
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of relative abundance serving as technical replicates for the experiment 

(Supplementary Fig. S2.2). 

 

Table 2.1: Mapping Summary of the sequencing experiment. Reads were first aligned to the 
NCBI mRNA RefSeq database allowing up to 2 mismatches. Unmapped reads were later aligned 
to the mouse genome including mitochondria. Multireads refer to reads that mapped to more than 
one transcript/genomic locations. TR refers to technical replicates. 

 Lane 1 
Serum 
Free 
Media 

Lane 2 
SB-
431542 

Lane 3 
Activin A 
(3 
ng/mL) 

Lane 4 
Activin A 
(15 
ng/mL) 
 TR1 

Lane 6 
Activin A 
(15 
ng/mL) 
TR2 

Lane 7 
Activin A 
(100 
ng/mL) 

Total reads 33.4M 35.2M 32.8M 29.4M 25.1M 30.0M 
Unique reads 
(mRNA Refseq) 

58.20% 56.80% 59.20% 59.10% 59.50% 58.20% 

Multireads 
(Isoform group only, 
mRNA Refseq) 

13.52% 13.37% 13.45% 13.20% 13.19% 13.05% 

Multireads 
(mRNA refseq) 

5.47% 5.63% 5.45% 6.20% 5.71% 5.45% 

Genomic (Unique) 12.16% 13.33% 10.63% 10.76% 11.01% 12.16% 
Genomic 
(Multireads) 2.10% 2.12% 1.98% 1.98% 2.03% 2.09% 

Genomic and 
Mitochondria 2.49% 3.51% 4.52% 4.41% 3.92% 4.52% 

Mitochondria 
(Unique) 0.59% 0.64% 1.06% 0.74% 0.75% 0.84% 

Unmappable 5.38% 4.44% 3.61% 3.47% 3.73% 3.59% 
Transcripts 
(Unique reads>=10) 11792 11565 11508 11409 11097 11401 

Transcripts 
(Multireads >=10) 6401 6293 6329 6265 6167 6215 

Binding Sites 
(Unique reads>=10) 126844 125775 117587 110069 96060 109109 

	
  

More than 50% of the uniquely mapped reads came from perfectly 

matched primer-binding sites while the rest were the product of mis–priming or 

single nucleotide polymorphisms (SNPs) in the primer-binding sites. Fold 

changes observed in predicted and mis-primed binding sites were highly 

correlated (R2=0.88) suggesting that mis-primed PCR products were able to 
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conserve the relative abundance of transcripts (Supplementary Fig. S2.2). Mis-

primed products were mainly stabilized by a favorable interaction between the 

last three bases of the universal tail of the heptamer primers (5’-ATA-3’) and the 

upstream regions of the primer-binding sites (Supplementary Fig. S2.3). Finally, 

we observed no indication of primer – dimerization. 

Analysis of the technical replicates revealed a strong correlation in 

quantitative transcript expression (R2=0.96, Figure 2.2a). To assess the dynamic 

range, we spiked the untreated control (serum free media, SFM) with six artificial 

transcripts of the yeast POT1 promoter (~ 180 bp). The transcripts were flanked 

with different heptamer primer-binding sites and mixed in different dilutions, 

spanning six orders of magnitude in RNA concentration.  The second most 

abundant transcript was similar in expression with the β-actin abundance in our 

biological samples. Our primers were able to effectively amplify all the six 

transcripts and maintained their relative abundance (R2=0.99, Figure 2.2b). The 

distributions of fold changes (Supplementary Fig. S2.2) observed in all possible 

pairwise comparisons of the samples was broad (2-8 – 210) suggesting a much 

higher dynamic range in comparison to microarray platforms (few hundred 

folds)8.  

We next prepared serial dilutions of mRNA from 10 ng to 1 pg (10000 fold 

depth) of mRNA and constructed sequencing libraries to determine the lowest 

amount of mRNA required to prepare reliable sequencing library. The number of 

amplification cycles was increased for lower dilutions to achieve appropriate 

amounts of DNA for the library construction. The transcript measurements from 
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the technical replicates consistently showed high correlations for the libraries 

prepared from 10 ng – 50 pg of mRNA (Figure 2.2c). The transcriptome 

coverage remained high even for libraries prepared from 1 pg of mRNA (~ 6000 

transcripts; Supplementary Table S2.1), although the noise in the quantification 

of the transcripts increased substantially (Supplementary Fig. S2.4). We further 

investigated whether the transcript measurements were conserved within the 

dilution series of mRNA. Global transcript measurements of libraries constructed 

from at least 50 pg of mRNA showed high correlation with the libraries 

constructed from 10 ng of mRNA (Supplementary Fig. S2.5). Sequencing 

libraries constructed from 1 pg of mRNA showed significant deviations in 

measurements of low copy number transcripts from 10 ng of libraries and a 

considerable amount of spurious PCR artifacts were observed.  

Our methodology exhibited few biases arising out of each stage of cDNA 

amplification (Supplementary Fig. S2.3). The most dominant bias came from 

local secondary structures of the single stranded cDNA. Regions with stable 

secondary structures prevented the heptamer primer-binding sites from 

hybridizing with their corresponding heptamer primers, resulting in their poor 

representation in the sequencing library. There was also an inherent bias 

towards preferential amplification of fragments with shorter lengths and lower GC 

content, which are known to be associated with Taq Polymerase amplification 

and have been reported in other multiplexed PCR strategies47. Finally, we 

observed that the majority of the experimental heptamer primer-binding sites 
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resided in proximity to the 3’ end of the transcripts mainly because of the inability 

of the reverse transcriptase to produce full-length cDNA.  

 	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
 

Figure 2.2: Performance of DP-seq. (a) Comparison of two Activin A 15 ng/ml dosage 
replicates (R2=0.96). (b) Six in vitro synthesized transcripts derived from the yeast POT1 
promoter with a length of 180 bp were added to untreated control cDNA at varying 
concentrations with six orders of magnitude. The reads obtained from the transcripts 
revealed a fold change of up to 105 (R2=0.99) in comparison to the lowest abundant 
transcript. (c) Sequencing libraries constructed from serial dilutions of mRNA exhibited 
high correlations within the technical replicates. Libraries constructed from at least 50 pg 
of mRNA showed high correlations (R2) in global expression measurements with the 
libraries made from 10 ng of mRNA. (d) Suppression of the ribosomal transcripts 
representation in the sequencing library generated from three different primer sets. The 
global transcriptome coverage remained high for all primer sets. 
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To determine whether DP-seq is capturing the majority of the expressed 

transcripts, we performed standard RNA-seq (Std. RNA-seq) on the AA3 sample 

using the protocol adopted from Mortazavi et al., 200810. We observed 

comparable transcriptome coverage with DP-seq libraries, representing > 80% of 

the expressed transcripts. Analysis of the technical replicates obtained from DP-

seq and Std. RNA-seq revealed a similar noise structure (Supplementary Fig. 

S2.6). The PCR biases observed in our methodology distorted the order of 

transcript expression within a biological sample (Supplementary Fig. S2.6) 

resulting in a similar or enriched representation of the majority of low expressed 

transcripts (Reads Per Kilobase per Million mapped reads (RPKM) <=10 in the 

Std. RNA-seq library). However, the relative abundance of the transcripts across 

different biological samples was not affected (shown in Figure 2.1c) as these 

biases are expected to be similar for a given transcript across different biological 

samples. Furthermore, we observed an overlapping distribution of unique reads 

for the transcripts encoding transcription factors 

(http://genome.gsc.riken.jp/TFdb/) between the two protocols (Supplementary 

Fig. S2.7).  

We then investigated a novel aspect of our primer design strategy where 

we incorporated the PCR biases observed in our protocol to suppress the 

representation of highly expressed ribosomal transcripts, while maintaining the 

overall transcriptome coverage. Transcripts encoding 81 ribosomal proteins 

occupied about 9% of the sequencing space in the Std. RNA-seq library 

prepared from the AA3 sample. Detailed analysis of the PCR biases led us to 
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propose heuristics on favorable amplification by our heptamer primers. 

Amplicons with heptamer primer-binding sites in open configuration (<-4 

Kcal/mol); significant tail interaction (>=2 bp interaction between the last four 

bases of the universal tail and the cDNA template); low GC content (<0.55) and 

short fragment lengths (<300 bp) were heavily penalized for the ribosomal 

transcripts. We designed three different primer sets and generated sequencing 

libraries from the AA3 sample. Our sequencing data revealed up to 70% 

reduction in the representation of the ribosomal transcripts while the global 

transcriptome coverage remained high for all primer sets (Figure 2.2d). 

Furthermore, the overall distribution of the reads coming from the transcription 

factor family also exhibited similar distribution for a representative primer set 

(Supplementary Fig. S2.7). This data demonstrates the potential of our 

designed primer based strategy to preferential suppress the representation of the 

transcripts of interest (e.g. highly expressed transcripts) and distinguishes it from 

other uniform amplification based strategies.   

2.3.3 Comparison with a different PCR-based RNA-Seq method 
We performed a thorough comparison of our methodology with Smart-

seq25, which performs full-length cDNA amplification from limiting amounts of 

mRNA. Sequencing libraries were generated from 50 picograms of mRNA 

derived from Activin A (3 ng/mL and 100 ng/mL) treated samples using DP-seq 

and Smart-seq. The same samples were also used to generate Std. RNA-seq 

libraries from 10 ng of mRNA. The libraries prepared from both methods were 

highly reproducible and displayed strong correlations in the expression 
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measurements of the transcripts in the technical replicates (Supplementary Fig. 

S2.8). Both DP-seq and Smart-seq exhibited similar transcriptome coverage 

(Supplementary Table S2.1) and overlapping noise in the quantification of the 

transcripts (Figure 2.3a). However, the transcriptome coverage obtained in either 

method was significantly lower than that of Std. RNA-seq libraries with the 

majority of low expressed transcripts (average RPKM<3 in the Std. RNA-seq 

library) showing stochastic loss. Consequently, the distribution of unique reads 

for the low expressed transcripts was shifted towards a low read number (Figure 

2.3b). A similar observation was made for moderately expressed transcripts 

(average RPKM between 3 and 300 in the Std. RNA-seq library) with DP-seq and 

Smart-seq libraries displaying an overlapping distribution of unique reads 

(Supplementary Fig. S2.9). Our mapping analysis revealed a significant length 

bias in Smart-seq sequencing libraries resulting from poor amplification of long 

cDNA species (>4 Kb).  This was not observed with DP-seq as it performs 

amplification of selected regions of cDNA irrespective of its length, thus resulting 

in higher representation of a vast majority of the long transcripts (>77%; Figure 

2.3c). Expression measurements of differentiating mESCs treated with a higher 

dose of Activin A (100 ng/mL) showed comparable up-regulation of 

mesendoderm markers (Cer1, Lefty1, Lefty2, Foxa2, Gsc etc.) and down-

regulation of mesoderm and ectoderm genes, implying the conservation of the 

biological context in the sequencing libraries prepared from 50 pg of mRNA with 

either method (Figure 2.3d). 
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Figure 2.3: Comparison of DP-seq with Smart-seq on Activin A treated samples (AA3 
and AA100). (a) MA plot of technical replicates obtained from AA100 sample showed similar 
technical noise in the two methods.  (b) Distribution of unique reads for the low expressed 
transcripts (RPKM<3 in Std. RNA-seq library prepared from AA100 sample) obtained in the 
three methods. The majority of the low expressed transcripts did not show expression in the 
libraries constructed from 50 pg of mRNA in DP-seq and Smart-seq. (c) A length bias in 
Smart-seq resulted in higher reads for the long cDNA species (>4 Kb) in the DP-seq libraries. 
(d) Comparable fold changes were observed for the known lineage markers in the three 
methods between AA100 and AA3 samples. The amount of mRNA used for sequencing 
library generation is shown in parentheses. 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
  

	
  

26	
  

We next sought to compare the differential gene expression observed in 

DP-seq, Smart-seq and Std. RNA-seq for the two Activin A dosages. 

Differentially expressed transcripts were identified by generating the null 

distribution from the technical replicates. The null distribution for Std. RNA-seq 

libraries showed little technical variation; as such a large proportion of 

differentially expressed transcripts were identified. The majority of these 

transcripts were expressed at low copy number. Smart-seq and DP-seq identified 

a comparable number of differentially regulated transcripts (1414 and 1297 

respectively), however only a small proportion of them were common between 

the two methods (Supplementary Fig. S2.9). Pairwise comparison of these 

methods with Std. RNA-seq revealed 56% overlap of the differentially expressed 

transcripts. Only 191 differentially regulated transcripts (common set) were 

common in all three methods. We found however that the differentially regulated 

transcripts that were method-specific are low expressed and were prone to large 

noise as these transcripts showed lower RPKM distributions as compared to the 

common set (Supplementary Fig. S2.9). Further analysis of the fold changes 

observed for the common set in DP-seq and Smart-seq libraries showed strong 

correlations; however, they were poorly correlated with the fold changes 

observed in Std. RNA-seq libraries (R2=0.6456 for DP-seq and R2=0.5740 for 

Smart-seq). This highlights the issues caused by the increased noise in the 

quantification of low copy number transcript measurements, which is further 

amplified when using low amounts of input material. 
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2.3.4 Graded activation of the Activin A/TGFβ signaling pathway in mESCs 
Mouse ESCs were differentiated in serum-free conditions in the presence 

of varying doses of Activin A and SB and the mRNA was profiled at day 4 

(equivalent to 6.5 – 7.5 dpc) using DP-seq (Figure 2.4a). The differential gene 

expression analysis revealed a stepwise increase in the number of transcripts 

differentially regulated as mESCs responded to the gradient of Activin A. The 

most transcriptional diversity was observed between SB and AA100 samples 

corresponding to the two extreme states of pathway activation. By mapping those 

transcripts to known Activin A/TGFβ pathway components using Ingenuity 

pathway analysis (Ingenuity® Systems, www.ingenuity.com), we observed a 

substantial down-regulation of many of these genes in response to pathway 

inhibition via SB (Figure 2.4b) whereas Activin A up-regulated these genes.  

Graded activation of Activin A/TGFβ signaling pathway allowed us to 

identify putative TGFβ regulated genes during early differentiation of mESCs 

(Figure 2.4c). Potential TGFβ target genes were predicted based on (i) the 

opposing modulations in SB and AA3 conditions (in comparison to untreated 

control) and (ii) the subsequent up/down regulation with higher dosages of 

Activin A. We identified many of the expected TGFβ target genes, including 

Cer148, Lefty146, Lefty246, Foxa249 and T45 (Figure 2.4c, bold). Not all expected 

genes were found because they either did not meet our stringent classification 

criteria (e.g. Nodal45, Nanog50) or they were not expressed in this cellular context. 

More importantly, we have identified transcripts that respond similarly to the 

graded Activin A/TGFβ pathway modulation, which have not been linked 
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previously to the pathway. Promoter analysis of these transcripts revealed the 

presence of multiple FoxH1 binding sites51-53 (Asymmetric Elements, ASE) within 

10 Kb upstream and downstream of the transcription start site supporting our 

hypothesis that the Activin A/TGFβ signaling pathway regulates the expression of 

these transcripts. 

2.3.5 Lineage segregation is achieved by regulation of Activin A/TGFβ 
signaling 

Our preliminary experiments with T-GFP mESCs (GFP driven by 

Brachyury/T promoter) showed negligible induction of GFP+ cells at day 4 of 

differentiation upon treatment with SB. The untreated control condition (SFM) 

naturally drives mESCs to neuro-ectoderm lineage with only 5-10% GFP+ cells. 

However, in presence of mesoderm inducing factors such as Activin A (3 ng/mL), 

> 60% of the cells were GFP+ demonstrating efficient induction of mesoderm 

(Supplementary Fig. S2.10). Neuro-ectoderm associated transcripts were 

classified as transcripts significantly up-regulated in SB and SFM in comparison 

to AA15 and comprised of known neuro-ectoderm markers (Sox1, Sox2 and 

Pax6, Figure 2.5a). We then performed GO term (biological process annotation) 

enrichment and KEGG pathway enrichment to validate our classification 

(http://david.abcc.ncifcrf.gov/). Biological processes associated with neuron 

differentiation and morphogenesis (Supplementary Table S2.2) were enriched 

in the transcript list with the Wnt and Activin A/TGFβ pathway significantly 

represented (Supplementary Table S2.3).   
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Figure 2.4: Graded expression of putative target genes of the Activin A/TGFβ signaling 
pathway in day 4 mESCs. (a) Schematic representation of the experimental setup. Mouse 
ESCs were differentiated in serum free conditions and different dosages of Activin A and SB-
431542 were introduced to create a graded activation of the Activin A/TGFβ signaling 
pathway. Cells were harvested at day 4 for sequencing library generation. Differential gene 
expression analysis identified ~15 – 20% of expressed transcripts as differentially regulated in 
each sample in comparison with untreated controls (see Supplementary Methods online). (b) 
Regulation of Activin A pathway components in response to SB-431542 and Activin A. (c) 
Putative TGFβ target genes in differentiating mESCs at day 4. The heat map corresponds to 
fold changes observed for transcripts in comparison to untreated control. Putative target 
genes were classified as transcripts that followed opposite trends of regulation upon treatment 
with Activin A and SB. Fifty transcripts were successively up-regulated while 23 transcripts 
followed graded down-regulation with increasing dosages of Activin A. The majority of the 
TGFβ target genes (marked with *) had FoxH1 transcription factor binding sites separated by 
30 – 200 bp (also called ASE) in 10 Kb upstream and downstream of the transcription start 
site. Known TGFβ target genes are highlighted in bold. Low copy number transcripts 
(RPKM<3 in AA3 sample) are displayed in red font. 
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To correlate some of the novel neuro-ectodermal transcripts with 

embryology, we searched the MGI gene expression database for the expression 

patterns of the identified transcripts throughout all stages of mouse embryonic 

development. Expression of the vast majority of the neuro-ectoderm associated 

transcripts were not reported in embryonic day 6.5 – 7.5 embryos, the stages that 

correspond to the studied mESC derived samples. A number of these transcripts, 

however, were expressed in neuro-ectoderm derivatives at later stages of 

development. To validate the early expression of these transcripts in the neuro-

ectoderm lineage, we used Wnt pathway inhibition (IWR-1)54 as an alternative to 

induce neuro-ectoderm and confirmed the up-regulation of a number of these 

neuro-ectoderm associated transcripts (Figure 2.5b and Supplementary Fig. 

S2.11). On the other hand, transcripts significantly up-regulated in AA15 in 

comparison to SB and SFM were designated as PS associated transcripts. The 

list included a number of known mesoderm and endoderm markers (T, Mesp1, 

Foxa2 and Sox17). GO enrichment analysis (http://david.abcc.ncifcrf.gov/) 

revealed biological processes associated with gastrulation, tissue morphogenesis 

and tube development (Supplementary Table S2.2 and S2.3). 
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Figure 2.5: Lineage segregation between neuro-ectoderm and PS (mesoderm and 
definitive endoderm) achieved by modulation of Activin A/TGFβ signaling pathway. (a) 
Schematic of the mouse embryo at embryonic day 6.5-7.5 with the gradient of Nodal 
expression (yellow) with the maximum expression observed in the anterior tissue. Through 
inhibition of TGFβ signaling pathway cells commit to the neuro-ectoderm lineage (blue). A 
heat map of the neuro-ectoderm associated genes is depicted (left of the embryo) with their 
fold changes in different samples in comparison to untreated control. The heat map on the 
right of the embryo depicts successive fold changes of the PS markers with varying dosages 
of the Activin A. The transcripts with the highest fold change in AA100 in comparison with 
AA15 are enriched for definitive endoderm and other anterior tissue markers. Other PS 
transcripts are expected to have diffused expression pattern all throughout the streak. Genes 
with known expression in Theiler Stage 9-11 of mouse embryo are highlighted in bold (MGI 
database). Low copy number transcripts (RPKM<3 in the AA3 sample) are displayed in red 
font. (b) Small molecule inhibition of Wnt signaling pathway (IWR-1) induced the neuro-
ectoderm lineage. The fold changes are normalized to the AA3 sample. (c) BMP4 enhanced 
expression of posterior and extraembryonic mesoderm markers at the expense of anterior 
markers. Quantitative RT-PCR fold changes for two BMP4 dosages are normalized with 
respect to Activin A alone induction. Error bars represent the standard deviation in biological 
replicates (n=3). Asterisks indicate p>0.05 (Student’s t test) compared to controls. 
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Graded Activin A/TGFβ signaling has been shown to induce different 

mesoderm and endoderm tissues, correlating with the anteroposterior position of 

progenitors within the PS, with the highest levels of signaling corresponding to 

anterior most located progenitors55-57. Transcripts with a maximum fold change 

between AA100 and AA15 in comparison to other two fold changes (AA3/SFM 

and AA15/AA3) should mark anterior PS derivatives, and in our experiments 

indeed comprised definitive endoderm markers. Conversely, the majority of the 

transcripts with maximum fold changes in AA3/SFM and AA15/AA3 were 

expected to have a diffused expression pattern throughout the PS (Figure 2.5a), 

which was confirmed by reported in-situ hybridizations for some of these 

transcripts58. To further validate our classification, we studied some of these new 

transcripts by posteriorizing Activin A induced-mesoderm with BMP459-61. 

Transcripts known to be expressed in the extra-embryonic mesoderm and the 

extreme posterior PS were indeed enriched and anterior PS transcripts were 

significantly down-regulated (Figure 2.5c).  Pan-PS transcripts also exhibited 

down-regulation by BMP4 suggesting a dominant posteriorization effect of BMP4 

signaling (Supplementary Fig. S2.11).  

2.4 Discussion 
Sequencing library generation from low amounts of starting material has 

remained a challenge for most of the existing RNA – seq protocols. Random 

priming strategies amplify from low amount of RNA, however, reliable 

quantitation of low abundant transcripts is not regularly obtained. In our initial 

experiments with a random priming strategy22, primer-dimerization and 
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mismatches in the primer-binding sites resulted in majority of the reads mapping 

to multiple mRNA species. Only 18% of the reads mapped uniquely to the 

transcriptome and low abundant transcripts were significantly under-represented 

because of a poor dynamic range. The methodology presented in this work 

addresses these issues by facilitating generation of reliable sequencing libraries 

from as low as 50 pg of mRNA. The dynamic range of our protocol exceeded five 

orders of magnitude in RNA concentrations allowing a more reliable detection of 

the majority of the low expressed transcripts. 

Primer design was a critical component of DP-seq. The ubiquitous 

presence of heptamer primer-binding sites on the mouse transcriptome was 

utilized to amplify more than 80% of known transcripts (Supplementary Fig. 

S2.2) from a small set of 44 heptamer primers. We optimized PCR conditions for 

heptamer hybridization to achieve successful amplification of more than 50,000 

different fragments representing ~18,000 transcripts in the mouse Refseq mRNA 

database. A number of considerations were made while determining the base 

composition of primers to reduce mis-priming and primer dimerization. As a 

result, majority of the reads (55%) came from perfect binding of the primers while 

another 38% had one mismatch in primer-binding site. This enabled us to use the 

entire read length for alignment to the mouse transcriptome. 

Our transcriptome data demonstrated excellent reproducibility and 

sensitivity. We were able to reliably estimate up to a 216-fold change in transcript 

expression from limiting amounts of mRNA. Furthermore, fold changes observed 

in low abundant transcripts were in perfect agreement with quantitative RT-PCR. 
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Technical replicate data revealed comparable noise in the quantification of 

transcript expression with respect to standard RNA-seq protocols.  Furthermore, 

the global measurements of transcript expression of libraries constructed from at 

least 50 pg of mRNA showed high correlations with the library made from 10 ng 

of mRNA.  

A standard RNA-seq approach10 requires at least 10 – 100 ng of mRNA 

for reliable library generation. To address this issue, a number of protocols23-25 

were recently developed. DP-seq offers a cost effective way of generating 

reliable sequencing library from limiting amounts of mRNA. The cost of 

amplification only includes a one-time purchase of 44 primers (14 bp) that are 

sufficient to generate hundreds of sequencing libraries. Our protocol is 

compatible with regular first strand cDNA synthesis kits and the polymerases 

used in our protocol (Taq and Klenow polymerase) are cheap and readily 

available. The processing time required for the generation of a sequencing library 

is also short, as DP-seq library preparation does not require fragmentation of the 

cDNA library or poly-adenylation of the 3’ end of the amplicon library. A direct 

comparison of DP-seq with Smart-seq revealed comparable transcriptome 

coverage and similar technical noise in the quantification of the low expressed 

transcripts.  Furthermore, DP-seq does not suffer from length bias and provides 

higher representation; hence better quantification of the long cDNA species in the 

sequencing library. DP-seq primers amplify select regions of the known 

transcriptome as such the sequencing libraries are devoid of the information 

regarding RNA structure (exon usage, TSS, etc.) or uncharacterized transcripts. 



	
  

	
  

35	
  

Typical RNA-seq protocols do not discriminate against high abundant 

transcripts. Consequently, most of the sequencing effort is spent on a small 

number of highly abundant transcripts62. We exploited the PCR biases observed 

in our protocol to reduce the representation of ribosomal transcripts by designing 

primers that have less likelihood of hybridizing efficiently to these transcripts. 

Complete elimination of the ribosomal transcripts was not achieved because of 

the mis-priming of the heptamer primers. It would be desirable to reduce mis-

priming seen in our approach, and further refinements in the design strategy to 

address above issues are in progress. 

The increased sensitivity of our methodology allowed us to detect known 

transcripts that had only been associated with later stages of germ layer 

segregation. These findings are of interest since it supports the view that low-

level expression of lineage specific transcripts precedes overt manifestation of 

lineage phenotype, at least as traditionally assayed. This might not be surprising, 

since lineage commitment probably involves making chromatin of lineage specific 

transcripts accessible to transcriptional machinery, and might result in low-level 

transcription. Indeed, recent work on the analysis of activation marks in the 

promoters of differentiation specific transcripts has demonstrated that promoter 

activity is detected well before established landmarks of differentiation are 

achieved63, 64. It will be very interesting to explore this idea further, at the single 

cell level, to determine when and how this early transcriptional activation 

determines germ line specification. 
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2.5 Materials and Methods 

2.5.1 Primer Design 
Heptamer primer-binding sites are ubiquitously present in the mouse 

transcriptome enabling the selection of a small set of heptamer primers to cover 

more than 80% of the mouse transcriptome. Moreover, while hexamer primers 

have a low range of annealing temperatures, heptamer primers hybridize with 

greater efficiency to allow Klenow polymerase to extend these primers and 

perform efficient amplification. 

We first implemented a suffix array data structure to identify 32-mer 

unique regions in the mouse transcriptome. All suffixes in the suffix array were 

divided into disjoint segments using 32-mer sequences. For each segment, we 

then identified all related segments that possess up to 2 mismatches with the 32-

mer sequence. If the segment and all of its related segments contained suffixes 

mapping to only one transcript, then the segment was designated as unique. 

Next, we predicted the local secondary structures of the known transcripts as 

stable secondary structures were expected to shield heptamer primers from 

hybridizing to their primer-binding site. For each transcript in the Mouse NCBI 

RefSeq mRNA database, we ran a window of 47 bp along the transcript length 

and determined its propensity to form stable secondary structure using UNAfold 

software65. Gibbs free energy (ΔG) was estimated at 37°C for standard PCR 

buffer conditions (2 mM MgCl2 and 50 mM NaCl). Regions with a ΔG ≥ -4 

kcal/mol were considered to be available for heptamer primer hybridization (open 

configuration).  
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We combined the two datasets and identified all heptamer primer-binding 

sites, (i) flanking unique regions on mouse transcriptome and (ii) residing in open 

configuration. We then implemented an iterative randomized algorithm 

(Supplementary Fig. S2.1) to identify a defined set of heptamer primers forming 

valid amplicons for >80% of the mouse transcriptome. We defined a valid 

amplicon as follows: 

1. It has a length between 50 and 300 bp. 

2. Both, forward and reverse primer-binding sites are in open configuration. 

3. At least one of the primer-binding sites must have a ΔG ≥-2 Kcal/mol. 

4. A 32 bp unique region should follow one of the primer-binding sites.  

5. The GC content of the amplicon should not exceed 58%. 

6. The amplicon must be within 5 Kb of the 3’ end.  

Using this approach, we identified 44 unique primers, which were split into 

3 sets to reduce primer-dimerization (Supplementary Table S2.4). This 

configuration covered ~80% of transcripts with 57% of transcripts covered 

uniquely. More than 170000 valid amplicons were predicted from 201242 primer-

binding sites. The three primer sets used for suppressing the representation of 

the ribosomal transcripts are detailed in Supplementary Table S2.5. 

2.5.2 cDNA preparation 
Total RNA was extracted from harvested cells using Trizol (Invitrogen). 

About 1-5 ug of total RNA was later subjected to Oligo(dT) selection using 

Oligotex mRNA Mini Kit (Qiagen) according to the manufacturer's protocol. If the 

total RNA is less than 1 ug, we recommend using Dynabeads mRNA Purification 
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Kit (Invitrogen) for extraction of poly-adenylated RNA. Next, first strand cDNA 

was synthesized with oligo dT (20-mer) primers using QuantiTect Reverse 

Transcription Kit (Qiagen) according to manufacturer’s instructions. This kit 

allows synthesis of full-length cDNA (as long as 10 Kb). The reaction was later 

purified using Agencourt AMPure XP system (Beckman Coulter) according to 

manufacture’s protocol and eluted in 20 ul of elution buffer (EB). 

2.5.3 Primer hybridization and extension 
Heptamer primer hybridization and extension was achieved by using 

Klenow (exo-) polymerase, a mesophilic polymerase with strand displacement 

capability. Exo-nuclease deficient version of Klenow polymerase was used to 

avoid degradation of heptamer primers. Since the 44 heptamer primers were split 

into three different primer sets, a master mix was prepared comprising of 1 – 5 

ng of cDNA, Taq polymerase buffer (10X) supplemented with 2.5 mM MgCl2, 4% 

DMSO and 0.2 mM dNTP (10 mM stock). DNase free water was added to make 

the total reaction volume of 24 µl. The master mix was split equally into three 

PCR reaction tubes. Later 1 µl of heptamer primer mixes were added to their 

respective tubes. The reaction mix was incubated at 95°C for 5 mins to denature 

the cDNA template. Mis-hybridization of the heptamer primers was minimized by 

ramping down the temperature of reaction mix to 37°C at the rate of -0.2°C/sec. 

At this point, 1 unit of Klenow polymerase (exo-) was added to each reaction tube 

and incubated for 30 mins at 37°C and then 5 mins at 42°C. Klenow polymerase 

retained most of its activity in Taq polymerase buffer and its extension rate was 

not affected at 2.5 mM MgCl2 concentration, as reported earlier66. 
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2.5.4 Taq polymerase amplification 
Taq polymerase possesses optimal affinity for DNA (Km ~ 2 nM) allowing 

efficient amplification of the PCR products while avoiding primer dimerization. 

Moreover, Taq polymerase allowed the addition of tail dATP at the 3’ end of most 

of the amplicons thus eliminating this step from sequencing-library generation. A 

PCR master mix was prepared containing: 2 µl of Taq reaction buffer (10X), 1.25 

mM of MgCl2, Buffer Q (5X, Qiagen), 2 µl of primer mix (2 µM stock), 0.2 mM of 

dNTPs (10 mM stock) and 2 units of Taq polymerase. DNase free water was 

later added to top up the reaction mix to 20 µl. Similar reaction mixes were 

prepared for the other reaction tubes. Later, the reaction mix was added to the 

Klenow reaction (30 µl of total volume) and a 14-cycle amplification was 

performed consisting of denaturation (95°C for 30 s), annealing (46°C for 30 s) 

and elongation (72°C for 40 s). The amplified libraries obtained from the three 

tubes were pooled together and purified using Agencount AMPure XP system. 

The amplicon library was eluted in 44 µl of EB.  

2.5.5 End Repair 
The 5’ ends of the PCR products were phosphorylated using T4 

Polynucleotide Kinase (PNK) enzyme (NEB) in the presence of T4 DNA Ligase 

buffer containing ATP. The T4 PNK treatment was set up as follows: 

Amplicon library: 44 µl 

T4 DNA ligase buffer: 5 µl 

T4 PNK: 1 µl (10 units) 
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The reaction was incubated at 37°C for 30 mins. Later, the reaction was purified 

using Agencourt AMPure XP system and eluted in 15 µl of EB.  

 2.5.6 Ligation 
Custom adaptor oligos were ordered in 100 µM concentration (Valuegene 

Inc.) with following modifications: 

a) Adaptor_A_F 

5'- Biotin-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCT-S-T -3’  

(-S- represents Phosphorothioate Modification; 5’ end of the oligo is biotinylated) 

b) Adaptor_A_R 

5’- Phospho-AGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT -3’  

(5’ end of the oligo is phosphorylated) 

c) Adaptor_B_F 

5’- CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCT-S-T – 3’ 

d) Adaptor_B_R 

5’ – PhosphoAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCCGTCTTCTGCTTG 

-3’ 

Adaptor oligos referring to adaptor A (a, b) and adaptor B (c, d) were 

mixed in equi-molar concentrations and diluted to 2 µM final concentration. Both 

adaptors were later denatured at 95°C for 5 mins and then brought back to room 

temperature gradually at -0.2°C/s. This allowed hybridization of the two oligos of 

the adaptor with ‘T’ overhang. The adaptor mix was further diluted 1:10 to get a 

stock concentration of 200 nM. The Ligation reaction was set up as follows: 

T4 PNK treated PCR product: 6 µl 

Adapter A: 1 µl 
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Adapter B: 1 µl 

T4 DNA Ligase Buffer: 1 µl 

T4 DNA Ligase (NEB): 1 µl (400 units)  

The reaction was performed at room temperature for 1 hr or at 16 °C overnight.  

2.5.7 Selection of adaptor orientation 
Ligation reaction resulted in fragments with either two identical (A-A and 

B-B) or two distinct (A-B and B-A) adapter orientations. However, only distinct 

adapter orientation fragments can be sequenced in Illumina’s platform. We 

enriched desired ligation products by utilizing the biotin (adaptor A) – streptavidin 

chemistry. Streptavidin coated magnetic beads (Dynabeads MyOne Streptavidin 

C1, Invitrogen) were used to pull down A-A, A-B and B-A ligation products using 

manufacturer’s protocol. The supernatant, containing B–B, was discarded. Later, 

0.2 N NaOH was added to the beads. Incubation for 10 mins at room 

temperature denatured two strands of the ligation product. Only A’–B strand 

appeared in the supernatant while both strands of the A–A remained associated 

with the beads. The supernatant with distinct orientation was extracted and 

column purified using MinElute PCR Cleanup Kit (Qiagen). The pH of the 

supernatant was adjusted to allow maximal binding to the column. The single 

stranded DNA was eluted in 36 µl of EB.  

2.5.8 Final PCR and size selection 
The single stranded DNA obtained from previous step was amplified using 

adaptor specific primers. Following primers were ordered in 100 uM 

concentration: 
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a) Final_FP: 

5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAATA -3’ 

b) Final_RP: 

5’-

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATA-3’ 

A 50 µl PCR reaction was set up with 18 µl of single stranded template, 5 

µl of primers (2 µM stock), 4% DMSO, 5 µl Pfu Turbo reaction buffer (10X), 0.2 

mM dNTP (10 mM stock), 2.5 units of Pfu Turbo Polymerase. The amplification 

consisted of 14 cycles of denaturation (95°C – 30s), annealing (62°C – 30s) and 

extension (72°C – 40 s). The amplified product was run in 2% agarose gel at 80 

– 100 volts for 1 hr. Using 50 bp ladder (NEB) a band corresponding to size 

range of 150 – 500 bp was cut out. The DNA was retrieved from the gel using 

MinElute Gel Extraction Kit (Qiagen) with 15 µl of elution. 

2.5.9 Quantification of the sequencing library 
Quantitative real time PCR was used to determine the concentration of the 

sequencing libraries prepared by our protocol. The standard curve for various 

dilutions of phiX control library was generated using the adapter specific primers 

recommended by Illumina. We later used the standard curve to determine the 

molarity of our sequencing libraries. The concentration of sequencing library 

loaded into the flowcell was calibrated by the sequencing facility. We typically 

obtained good cluster density with 5 pM of library concentration on HiSeq v3 kit.   
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2.5.10 Oligonucleotides 
All of our heptamer primers were flanked by universal adapter sequence 

(5’-CCGAATA-heptamer-3’) and synthesized by Valuegene Inc. These primers 

were desalted and suspended in RNase/DNase free water to 100 µM 

concentration. Later, the primers were pooled together into three different tubes 

as described in Supplementary Table S2.4 at equi-molar concentration to 

prepare a stock solution containing 2 µM of each heptamer primer.  

2.5.11 Mouse embryonic stem cell culture and differentiation 
Mouse R1 or T-GFP embryonic stem cells were cultured on mouse 

embryonic fibroblast (MEF) on gelatin-coated dishes in high glucose DMEM 

(Hyclone, Logan, UT) supplemented with 10% fetal calf serum (FCS) (Hyclone, 

Logan, UT), 0.1 mM b-mercaptoethanol (GIBCO), 1% non-essential amino acids 

(GIBCO), 2 mM L-glutamine (Sigma, St. Louis, MO), sodium pyruvate (Sigma), 

antibiotics (Sigma), and 1,000 U/ml of LIF (Sigma) and passaged with 0.25% 

Trypsin (GIBCO). 

For embryoid body (EB) differentiation, MEF were stripped from the 

cultures by 15 minutes incubations on gelatin-coated dishes. mESCs were 

collected and washed in PBS to remove traces of serum. mESCs were 

differentiated in serum free media containing N2 and B27 supplements as 

described elsewhere35, 36. mESCs were aggregated at 50,000 cells/ml in non-

coated polystyrene plates. After 2 days, EBs were dissociated by trypsin 

treatment and re-aggregated in fresh media in presence of different growth 

factors and small molecules. Activin A and BMP4 were obtained from R&D 
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Systems while SB-431542 was obtained from Sigma. IWR-1 was synthesized in 

house as described previously54. EBs were harvested at day 4 for RNA extraction 

and processing.  

2.5.12 Library Generation for mRNA dilution series using DP-seq 
Serial dilutions (10 ng, 1 ng, 100 pg, 50 pg, 10 pg, and 1 pg) were 

prepared for the mRNA derived from Activin A (3 ng/mL) sample. First strand 

cDNA synthesis was performed for all mRNA dilutions in duplicates to get the 

technical replicates. Later, the purified cDNA prepared from each dilution, was 

split into three tubes to perform amplification using our heptamer primers. The 

numbers of PCR cycles were increased for lower dilutions to get appropriate 

amounts of DNA for the library construction. The numbers of PCR cycles used 

are as follows: 

10 ng and 1 ng – 13 cycles  

100 pg and 50 pg – 16 cycles 

10 pg – 19 cycles 

1 pg – 23 cycles 

The amplicon libraries thus constructed, were phosphorylated at the 5’ 

end as mentioned above. Later, the libraries were ligated with Illumina’s Y-

adaptors and amplified using adaptor specific primers consisting of a different 

Illumina’s Truseq barcode sequence for each library. The amplified libraries were 

run through the 2% agarose gel and size selected (150 – 500 bp) for sequencing. 

Similar methodology was used for the generation of sequencing libraries with 

ribosomal inhibition primers.  
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2.5.13 Library Generation using Std. RNA-seq protocol 
Std. RNA-seq10 libraries were constructed from about 10 ng of mRNA 

derived from Activin A (3 ng/mL) and Activin A (100 ng/mL) samples using 

Illumina’s TruSeq RNA Sample Prep Kit v2. 

2.5.14 Library Generation using Smart-seq 
Smart-Seq cDNA generation and amplification was performed on 50 

picograms of mRNA derived from Activin A (3 ng/mL and 100 ng/mL) treated 

samples using SMARTer Ultra Low RNA Kit for Illumina sequencing (Clontech). 

We performed 13 cycles of amplification to achieve about 1-10 ng of the 

amplified cDNA libraries. These libraries were later sheared using Covaris 

system to obtain 200-500 bp fragments. Later, standard Illumina library 

preparation protocol was followed to prepare the sequencing libraries using 

Illumina Paired-End DNA Sample Prep kit.   

2.5.15 Reverse Transcription and Quantitative RT-PCR (qPCR) 
Total RNA was extracted from cells using Trizol (Invitrogen) according to 

the manufacturer’s instructions. About 1 µg of total RNA was treated for DNA 

removal and converted into first strand cDNA using Quantitect Reverse 

Transcription kit (Qiagen).  SYBR Green qPCR was run on a LightCycler 480 

(Roche) using the LightCycler 480 SYBR Green Master Kit (Roche).  All primers 

were designed with a Tm of 60°C. Data was analyzed using the ΔΔCt method, 

using β-actin as normalization control, which was determined as a valid reference 

in mouse ESC differentiation. The primer sequences are listed in 

Supplementary Table S2.6.  
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2.5.16 Flow Cytometry 
Day 4 embryoid bodies from T-GFP mESC were dissociated 

with trypsin to single cell suspensions and analyzed on a FACSCanto (BD 

Biosciences).  Prior to analysis, cells were stained with propidium iodide to label 

dead cells.  Data analysis was performed using FlowJo (Treestar Inc.) where 

measured events were gated for PI negative populations (exclusion of dead 

cells) and forward/side scatter (exclusion of debris and aggregates) before 

generating dot plots. 

2.5.17 Mapping reads 
Our libraries were sequenced on Illumina’s GIIx Analyzer and HISEQ2000 

platforms. We performed single end 36 sequencing cycles on version 5.0 of 

flowcell (FC-104-5001 | TruSeq SBS Kit v5 – GA (36-cycle)). The raw reads were 

truncated as 32-mer with the first and last 2 base pairs of the reads removed. 

The 32-mer reads were aligned to the RefSeq mRNA database allowing up to 2 

mismatches using our in-house software which uses suffix array implementation. 

Reads that did not align to the mouse RefSeq mRNA database were later aligned 

to mouse genome using Bowtie67.   

Libraries constructed from serial dilutions of mRNA were sequenced in 

Illumina’s HiSeq2000 systems (TruSeq SR Cluster Kit v3-cBot-HS and TruSeq 

SBS Kit v3-HS). The libraries were sequenced as 100 bp single-end reads. The 

first 14 sequences came from our heptamer primers including the universal tail 

sequence (5’-CCGAATA-3’) as such the first 14 bps were truncated and next 32 

bp sequence was aligned to the mouse transcriptome allowing ≤ 2 mismatches. 
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2.5.18 Mapping of Smart-seq reads  
The number of reads obtained from Smart-seq was double the number of 

reads for DP-seq. Previous studies68, 69 have demonstrated that the 

transcriptome coverage and the technical noise in expression measurements 

vary with the sequencing depth and global normalization of the reads across 

different samples is heavily affected by few highly expressing transcripts. In order 

to perform an objective comparison between Smart-seq and DP-seq, we 

downsized the Smart-seq libraries by generating multiple random sets, consisting 

of a similar number of reads obtained from DP-seq. The reads in these datasets 

were mapped to the mouse transcriptome allowing ≤ 2 mismatches. The analysis 

of these random sets showed similar transcriptome coverage and technical 

noise. In this study, we present the comparison of DP-seq with one of the 

random sets generated from the Smart-seq library.  

2.5.19 Differential gene expression analysis 
We employed a local pooled variance test similar to LPE70 to identify 

differentially regulated transcripts. For each transcript, unique reads coming from 

predicted and non-predicted primer-binding sites were combined in all samples. 

Prior to identifying the differentially expressed transcripts, the fold changes 

between control and treatment conditions (including technical replicates) were 

lowess normalized to eliminate average read dependent variations in the fold 

changes. The noise in the technical replicates reflected variability arising out of 

sample preparation and the sequencing platform. As such we used the 
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expression measurements obtained from the technical replicates to determine 

the baseline (null) distribution where no differential expression of the transcripts 

was expected. The null distribution was determined by plotting M and A 

quantities for technical replicates, which are defined as: 

Mi,j=Log2(
!"#$%,!
!"#$%,!

) 

Ai,j=0.5×Log2(Reads,i ×Reads,j) 

where ‘i’ and ‘j’ represents any two samples. M corresponds to log ratio in unique 

reads for a transcript between samples ‘i’ and ‘j’ while A corresponds to average 

reads for the transcript in the two samples.  

To quantify the technical noise, we pooled the expression of ~200 

transcripts in the null distribution with similar reads and estimated the standard 

deviation in their fold change. We assumed that all transcripts with similar 

expression measurements possess similar noise. Also, the distribution of the fold 

changes was assumed to follow a Gaussian distribution. Next, a threshold for 

differentially expressed transcripts was determined as 1.96 times the standard 

deviation, corresponding to a less than 5% chance of the transcript being called 

differentially expressed by random chance. The experimental MA plot, which was 

defined as treatment/control, was overlaid on the technical replicate MA plot and 

any transcript representing a fold change above/below the threshold was 

designated as differentially expressed. Higher thresholds (blue curve) were used 

for the low expressing transcripts as demonstrated in Supplementary Fig. 

S2.12. 
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2.5.20 Identification of Activin A/TGFβ target genes 
 Putative Activin A/TGFβ target genes were determined as genes 

exhibiting opposite mode of regulation in AA3 and SB samples as compared to 

serum free media control. The target genes were further classified into three 

categories of expression as shown in Figure 6. A p-value cutoff of 0.05 was used 

to determine differentially expressed transcripts. 

 

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

                

 

Figure 2.6: Identification of TGFβ target genes. 
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2.6 Supplementary Figures 

 

Figure S2.1: Flowchart of heptamer primer generation using an iterative randomized 
algorithm. 
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Figure S2.2: Performance of heptamer primers based amplification. (a) Multiple heptamer 
primer-binding sites on a transcript provided independent measurements of relative 
abundance of the transcript. The average fold change obtained from multiple primer-binding 
sites for a transcript was in concordance with quantitative RT-PCR (n=24). (b) Mis-primed 
PCR products maintained relative abundance of gene expression. Fold changes observed in 
predicted vs. mis-primed binding sites for differentially expressed transcripts (in SB-431542 
vs. AA100) showed strong correlation. (c) Distribution of fold changes observed in unique 
reads of the transcripts across all of the samples. The majority of the trancripts were not 
differentially regulated. Our methodology captured fold changes in range of 2-8 – 210 
demonstrating broad dynamic range. (d) Distribution of heptamer primer-binding sites on the 
mouse transcriptome. 
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Figure S2.3: PCR biases observed in our methodology. (a) PCR bias caused by the 
secondary structure of the cDNA. The distribution is shifted towards high Gibbs free energy 
(ΔG) implying that the primer-binding sites forming stable secondary structure shielded 
heptamer primers from annealing to their target sequences. (b) Bias towards shorter PCR 
fragments. The black curve represents the distribution estimated for all theoretically possible 
amplicons from the 44 heptamer primers in the mouse transcriptome. The experimental curve 
dropped sharply around 100bp because of the size selection step performed at the last stage 
of the sequencing library generation. (c) Tail Interaction. Heptamer primer binding sites with ‘1’ 
mismatch had significantly higher tail interaction as compared to perfectly matched primer-
binding sites. (d) GC bias. The amplicons with lower GC content are preferentially amplified.  
(e) PCR bias caused by reverse transcriptase. Majority of the primer-binding sites came from 
3’ end of the genes mainly because of the inability of the reverse transcriptase to produce full-
length first strand cDNA. 
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Figure S2.4: Techincal Replicates for sequencing libraries prepared from various 
amounts of starting material (mRNA). The transcriptome coverage dropped with lower 
amounts of mRNA. Significant technical noise was observed for the sequencing libraries 
prepared from 1 pg of mRNA. 
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Figure S2.5: Transcript representation is conserved with serial dilutions of the starting 
material (mRNA). Transcripts abundance obtained from dilutions (1 ng, 100 pg, 50 pg, 10 pg) 
were compared with respect to highest concentration of 10 ng. 
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Figure S2.6: DP-seq vs. Std. RNA-seq. (a) Std. RNA-seq exhibited similar technical noise in 
the technical replicates as DP-seq. (b) PCR biases observed in our protocol distorted the 
order of transcript expression resulting in poor Rank Correlation with respect to the Std. RNA-
seq. (c) Distribution of the ratio of unique reads obtained for the low expressed transcripts 
(RPKM<=10) in DP-seq and Std. RNA-seq. 
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Figure S2.7: Distribution of reads. Sequencing libraries prepared from Std. RNA-seq and 
DP-seq (44 primer set and a primer set used for suppression of the ribosomal transcripts) 
displayed overlapping distributions of reads mapping to the mouse transcription factors 
(n=1148; AA3 sample). 
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Figure S2.8: Technical Replicates for DP-seq and Smart-seq. Technical replicates 
prepared from 50 picograms of mRNA derived from Activin A 100ng/mL dosage exhibited high 
correlation in expression measurements for DP-seq and Smart-seq. 
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Figure S2.9: Comparison of the sequencing libraries prepared from DP-seq, Smart-seq 
and Std. RNA-seq methods. (a) Histogram of unique reads obtained for the moderately 
expressed transcripts (3<RPKM<300) in the three methods. The amounts of mRNA used for 
the sequencing library generation are mentioned in the parentheses. (b) Venn diagram 
depicting the overlap of the differentially expressed transcripts between Activin A 100ng/mL 
and 3ng/mL dosages identified in the three methods. (c) The expression profile of the common 
set (green) is shifted towards higher RPKM as compared to the method specific differentially 
expressed transcripts. (d) Correlation in fold changes for the common set between DP-seq 
and Smart-seq. The RPKM measurements were made from Std. RNA-seq experiment 
performed on AA100 sample. 
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Figure S2.10: Flow Cytometry. Flow cytometry on T-GFP mESCs at day 4 of differentiation 
upon treatment with SB and Activin A. Graded activation of Activin A/TGFβ signaling pathway 
led to increased expression of mesoderm marker, T. 
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Figure S2.11: qPCR Validation. (a) Validation of neuro-ectoderm specific genes by using 
small molecule inhibitor of Wnt Signaling pathway, IWR-1 to efficiently induce neuro-ectoderm 
in an in-vitro differentiation model. The quantitative RT-PCR fold changes were normalized to 
Activin A (3 ng/mL) dosage.  Error bars represent standard deviation in biological replicates 
(n=3). Asterisks indicates p>0.05 (Student’s t-test) compared with controls. (b) Expression 
profiles of Primitive Streak markers in response to BMP4 signaling. Quantitative RT-PCR fold 
changes for two BMP4 dosages (3.5 and 12 ng/mL) were normalized with respect to Activin A 
alone induction. Error bars represent standard deviation in biological replicates (n=3). 
Asterisks indicate p>0.05 (Student’s t-test) compared with controls. 
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Figure S2.12: Identification of the differentially expressed transcripts. Baseline 
distribution was determined from MA plot of the technical replicates. Experimental MA plot of 
untreated control vs. Activin A (15 ng/mL) was overlaid on top of the baseline distribution. The 
blue curve represents p-value threshold of 0.05 and experimental ratios above/below the 
curve were designated as differentially regulated. 
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2.7 Supplementary Tables 
Table S2.1A: Comparison of sequencing libraries made from various dilutions of mRNA 
derived from Activin A (3ng/mL; AA3) sample using DP-seq. 

Amount of 
mRNA 

Total 
Reads 

% Of reads 
aligned to 

Refseq 
Transcripts 

% Of 
unmapped 

reads 
aligned to 
genomic 
locations 

Number of 
Transcripts 
>=1 unique 

reads 

R2 for 
Technical 
Replicates 

R2 with 
10ng 

Library 

10 ng, TR1 6251585 67.79 18.46 13547 0.9508  10 ng, TR2 20404270 68.70 18.01 15236 
1 ng, TR1 19807355 55.78 18.43 15151 0.9643 0.9615 1 ng,TR2 25119387 55.75 18.20 15306 
100 pg,TR1 13913778 59.35 17.92 12955 0.9016 0.8794 100 pg,TR2 13522446 61.24 17.99 12648 
50 pg, TR1 13378971 59.03 18.22 11986 0.8640 0.8565 50 pg, TR2 15297046 60.06 17.87 12002 
10 pg, TR1 14189544 27.46 16.88 9603 0.6102 0.7239 10 pg, TR2 13971891 31.03 12.62 9589 
1 pg, TR1 16038243 4.45 11.51 6531 0.1901 0.1002 1 pg, TR2 14281289 5.22 9.81 6465 

 

Table S2.1B: Mapping Summary. Mapping summary of sequencing libraries made from 
different protocols using two different dosages of Activin A 3ng/mL (AA3) and 100ng/mL (AA100). 
Smart-seq mapping summary is given for one of the random sets obtained from all of the reads. 
Ribosome inhibition libraries were made from Activin A (3ng/mL; AA3) sample using DP-seq. 

Amount of mRNA Total 
Reads 

% Of reads 
aligned to 

Refseq 
Transcripts 

% Of 
unmapped 

reads aligned 
to genomic 
locations 

Number of 
Transcripts 
>=1 unique 

reads 

R2 for 
Technical 
Replicates 

Std. RNA-seq 
AA3; 10ng, TR1 18196250 81.21 15.82 17455 0.9755 AA3; 10ng, TR2 17638530 81.18 15.74 17380 
AA100; 10ng 17905346 79.50 16.77 17026  

DP-seq 
AA3; 50pg 24633672 58.59 17.65 13138  
AA100; 50pg, TR1 26108501 58.56 13.10 12910 0.8326 AA100; 50pg, TR2 27486701 65.27 14.53 13271 

Smart-seq 
AA3; 50pg, TR1 24272863 87.24 7.53 13798 0.8640 AA3; 50pg, TR2 26014738 86.89 7.30 13715 
AA100; 50pg, TR1 22298719 86.35 7.71 13400 0.8478 AA100; 50pg, TR2 24284435 87.25 7.43 13568 

Ribosome Inhibition (DP-seq) 
Primer Set 1; 500pg 21816975 67.93 21.90 14616  
Primer Set 2; 500pg 19668914 71.03 25.61 13246  
Primer Set 3; 500pg 10267103 68.49 27.05 11654  
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Table S2.2: GO (Biological Process) Enrichment for genes differentially regulated in 
SB/AA15. Genes up-regulated in SB are enriched for ectoderm related terms while genes up-
regulated in AA15 are enriched for mesoderm and endoderm related terms. P-values were 
determined from background set of genes that showed expression in SB/AA15 samples. 
 

Up-regulated in SB in comparison to AA15 
Term PValue Bonferroni Benjamini 
Neuron differentiation 1.79E-23 4.76E-20 4.76E-20 
Neuron development 2.48E-17 6.59E-14 3.30E-14 
Neuron projection development 5.72E-17 2.95E-13 9.81E-14 
Forebrain development 4.04E-16 1.18E-12 2.95E-13 
Axonogenesis 1.05E-13 2.79E-10 5.58E-11 
Cell projection organization 4.54E-13 1.20E-09 2.01E-10 
Neuron projection morphogenesis 1.53E-12 4.06E-09 5.80E-10 
Axon guidance 1.71E-12 4.55E-09 5.68E-10 
Cell motion 2.02E-12 5.35E-09 5.94E-10 
Cell projection morphogenesis 2.36E-12 6.25E-09 6.25E-10 
Neuron migration 4.17E-12 1.11E-08 1.01E-09 
Cell morphogenesis involved in neuron 
differentiation 

4.78E-12 1.27E-08 1.06E-09 

Cell morphogenesis involved in differentiation 1.29E-11 3.42E-08 2.63E-09 
Cell part morphogenesis 1.29E-11 3.42E-08 2.63E-09 
Sensory organ development 6.41E-11 1.70E-07 1.21E-08 
Cell morphogenesis 1.49E-10 3.96E-07 2.64E-08 
Embryonic morphogenesis 5.74E-10 1.52E-06 9.52E-08 
Pattern specification process 6.64E-10 1.76E-06 1.04E-07 
Cell migration 2.70E-09 7.17E-06 3.98E-07 

Up-regulated in AA15 in comparison to SB 
Tissue morphogenesis 5.66E-10 1.86E-06 1.86E-06 
Tube morphogenesis 1.43E-08 4.68E-05 2.34E-05 
Tube development 1.75E-08 5.74E-05 1.91E-05 
Regulation of cell proliferation 4.47E-08 1.47E-04 3.67E-05 
Muscle organ development 1.02E-07 3.34E-04 6.68E-05 
Epithelium development 1.09E-07 3.59E-04 5.99E-05 
Morphogenesis of a branching structure 7.34E-07 0.002407 3.44E-04 
Embryonic development in birth or egg 
hatching 

7.95E-07 0.002606 3.26E-04 

Gastrulation 8.05E-07 0.002639 2.94E-04 
Chordate embryonic development 1.27E-06 0.004150 4.16E-04 
Muscle tissue morphogenesis 1.37E-06 0.004472 4.07E-04 
Cardiac muscle tissue morphogenesis 1.37E-06 0.004472 4.07E-04 
Cardiac muscle tissue development 1.64E-06 0.005377 4.49E-04 
Blood vessel morphogenesis 1.79E-06 0.005852 4.51E-04 
Epithelial cell differentiation 1.87E-06 0.006115 4.38E-04 
Embryonic morphogenesis 2.26E-06 0.007406 4.95E-04 
Formation of primary germ layer 2.54E-06 0.008290 5.20E-04 
Endoderm development 2.68E-06 0.008762 5.18E-04 
Striated muscle tissue development 3.44E-06 0.011238 6.28E-04 
Heart morphogenesis 3.63E-06 0.011851 6.27E-04 
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Table S2.3: Kegg Pathways enriched in SB/AA15 samples. P-values were determined from 
background set of genes that showed expression in SB/AA15 samples. 
	
  

Up-regulated in SB in comparison to AA15 
Term PValue Fold Enrichment 
Axon guidance 1.57E-08 3.70 
Pathways in cancer 1.51E-05 2.14 
Focal adhesion 1.18E-04 2.35 
Wnt signaling pathway 3.19E-04 2.50 
Basal cell carcinoma 5.50E-04 3.73 
Colorectal cancer 5.60E-04 3.04 
Pancreatic cancer 0.001349 3.11 
Notch signaling pathway 0.004505 3.36 
TGF-beta signaling pathway 0.006142 2.57 
ErbB signaling pathway 0.006142 2.57 
Melanogenesis 0.006550 2.42 
Adherens junction 0.006669 2.70 
Chronic myeloid leukemia 0.006669 2.70 
Hedgehog signaling pathway 0.007261 3.11 
Non-small cell lung cancer 0.007261 3.11 
Biosynthesis of unsaturated fatty acids 0.012782 4.15 
Small cell lung cancer 0.014350 2.41 
Endometrial cancer 0.019416 2.87 
Prostate cancer 0.020781 2.28 
Regulation of actin cytoskeleton 0.021865 1.72 
Chondroitin sulfate biosynthesis 0.027081 4.24 
ABC transporters 0.030854 2.90 
Renal cell carcinoma 0.031684 2.40 
MAPK signaling pathway 0.043071 1.55 
VEGF signaling pathway 0.048220 2.21 

Up-regulated in AA15 in comparison to SB 
Glioma 0.001299 2.74 
Pathways in cancer 0.002808 1.59 
Melanoma 0.003446 2.47 
Alanine, aspartate and glutamate 
metabolism 

0.007788 3.34 

Arginine and proline metabolism 0.007922 2.60 
Cysteine and methionine metabolism 0.013292 3.04 
p53 signaling pathway 0.019104 2.18 
Amino sugar and nucleotide sugar 
metabolism 

0.020808 2.56 

ABC transporters 0.023613 2.51 
Fatty acid metabolism 0.023613 2.51 
Non-small cell lung cancer 0.024969 2.32 
MAPK signaling pathway 0.029124 1.46 
Endocytosis 0.029288 1.55 
Nitrogen metabolism 0.031517 3.27 
Tight junction 0.037866 1.67 
Focal adhesion 0.040549 1.52 
Glycolysis / Gluconeogenesis 0.040867 2.03 
Bladder cancer 0.045432 2.39 
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Table S2.4: List of heptamer primers used for our sequencing-library generation. 44 unique 
primers were split into three tubes with some primers repeated in different tubes to get coverage 
≥80% mouse transcriptome. 
	
  

1. cccagtg 
2. ccccaga 
3. cccccaa 
4. ctcccca 
5. cttcacg 
6. gcaacag 
7. tgacagc 
8. tggctct 
9. tggcttc 
10. tccctcc 
11. ccttccc 
12. cagaccc 
13. gcaaacc 
14. ccaggac 
15. cacacac 
16. tctccga 
17. cctccca 
18. tgaccca 

1. caaagcc 
2. caacccc 
3. cccagca 
4. cccccaa 
5. ctcgtcc 
6. cttcccc 
7. gcctctc 
8. gcctctg 
9. gcgaact 
10. tcagccc 
11. tctccga 
12. tgccatc 
13. tgccttg 
14. tgagcct 
15. tcctcgt 
16. tctgcct 
17. ctgccct 
18. tgccact 
19. cttcacg 
20. gcaacag 
21. cctctgc 
22. gcaaacc 
23. ccccaga 
24. ctcagca 
25. tgacagc 

1. cacacac 
2. cagcagc 
3. ccaccag 
4. cccagca 
5. cccccaa 
6. ccttccc 
7. cttcccc 
8. gcaacag 
9. gcctcag 
10. tccctcc 
11. tgaccca 
12. tgagcct 
13. cagcact 
14. gcgaact 
15. ctcccag 
16. gccaaag 
17. ccccaga 
18. tcagcca 
19. gaagcca 
20. tgacagc 
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Table S2.5: Primer Sets for Ribosomal Inhibition. 

Primer Set 1 Primer Set 2  Primer Set 3 
CCTCCTG GGACAGC GAAAGCC 
GCAGCCT CACACAC CACACAC 
TCCCACA GCAACAA CCACACA 
CACACTG GCATGTG TGCTGTG 
CTTCCCC GTGACCT GACAACC 
CCACCAC CATCAGC GTCACAC 
CCTCCCC CTTGAGC GACACAC 
CTTGCAG TACAGCC GCGTTTT 
CCCACAC GTTCTCG GAGCCTC 
CCTTCCC CAAGCAC GTGATGC 
CACCCCA TCAGCAC CCGTCTT 
CTCTCCC TCGTTCC TCCCTCA 
CAGAGCC GCGTCTG GTTTCCG 
CCCCAAA CAAACCG TCCAACC 
CTCCCCA CCGTGAC CGAATGG 
CAAGAGC TGTCTCG CCGTGTA 
CCCTGGA GCGTCAG CAAACCG 
CCCCCTC CCCCTAC CGAGTGT 
CCCCTCA CCGTGTA GACTCCG 
CTGAGCT CCGTTGA GCGAATT 
CCCCCAG GATCCCG GGTGCCC 

 
CCGACTT CGAGAGC 

 
GCGACAC GATGCGT 

 
CTGAGCG CGACTCA 

  
GCGTTAG 

  
CAGTACG 

  
GAATGCG 

  
CCGTGCT 

  
CAACCGA 

  
TGCTACG 

  
GTAACCG 

  
TGCCGAT 

  
CCCGTTA 

  
TAGAGCG 

  
CAAGCGT 

  
CGATAGC 

  
GACCGAC 

  
CGATCCC 

  
CGAGTGC 

  
CGATTGC 
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Table S2.6: List of quantitative RT-PCR primers used in the study. 
 

Gene Forward Primer Reverse Primer 
Lefty1 CGCTGAATCTGGGCTGAGTCCC GCCTAGGTTGGACATGTTTGCCCA 
Lefty2 TGCAAGTAGCCGACTTCGGAGC CCTATTCCCAGGCCTCTGGCCA 
Gsc GGGGGTCGAGAAAGCAACGAGG ACGAGGCTCACGCAGGCAGC 
Flk-1 AGAGGAAGTGTGCGACCCCAA CACTGGCCGGCTCTTTCGCTT 
Oct4 TGAAGTGCCCGAAGCCCTCCCTA GCCCTTCTGGCGCCGGTTACA 

Mesp1 TCTAGAAACCTGGACGCCGCC TCCGTTGCATTGTCCCCTCCAC 
T CTCCGATGTATGAAGGGGCTGCT GCTATGAGGAGGCTTTGGGCCG 

Foxa2 CCCCATGCCAGGCAGCTTGG AAGTGTCTGCAGCCAGGGGC 
Sox1 TTCCCCAGGACTCCGAGGCG GTTCAGTCTAAGAGGCCAGTCTGGT 
Arx AAGCATAGCCGCGCTGAGGC TTCGGGGAACGCCCTAGGGG 

Lnsm1 TACAGCTCCCCGGGCCTGAC ACTCTAGCAGGCCGGACGCA 
Pax6 ACCTCCTCATACTCGTG ACTGATACCGTGCCTT 
Dbx1 GACGTGCAGCGGAAAGCCCT CGCTAGACAGGAGCTCGCGC 
Dmrt3 AACCGGCCACCCCTGGAAGT GTCGCCCCCGCAACCTTTCA 
Hes5 TCCGACCCCGTGGGGTTGTT TCTACGGGCTGGGGTGAGCC 

Neurog2 ACACGAGACTCGGGCGAGCT CCGGAACCGAGCACGGTGTC 
Lhx2 TGGGCTCAGCCGGGGCTAAT ACAGCTAAGCGCGGCGTTGT 
Pax5 ACACTGTGCCCAGCGTCAGC GCACTGGGGGACGTGATGCC 
Lhx5 GAGCTCAACGAAGCGGCCGT CCGAGAAATTGCGCAGGCGC 
Sox2 GCACATGAAGGAGCACCCGGA  GGTTCACGCCCGCACCCAG 
Asb5 GGGACACGCCACTGCATGCT GCCAAGTCGACAGGCCGCAA 

Lmx1a TGACGTCATGCCCGGGACCA GCCCCCTACACCCGCCTCAT 
Pax3 CCCCCACCTATAGCACCGCAGG ACATGCCTCCAGTTCCCCGTTCT 

Hoxa5 AGGGAACCGAGTACATGTCCCAGT TGCAACTGGTAGTCCGGGCCA 
Triml2 TGCGCAGCCTCCAGACGATG TCTGGAGCAGTGCAACGGCA 

Afp TTCCTCCCAGTGCGTGACGGA TCCTCGGTGGCTTCCGGAACA 
Dppa3 CCGGCGCAGTCTACGGAACC ACCGACAACAAAGTGCGGACCC 
Fgf8 GCGAAGCTCATTGTGGAGAC CACGATCTCTGTGAATACGCA 

Nodal ACCAACCATGCCTACATCCAGAG CCCTGCCATTGTCCACATAAAGC 
Epha1 TACGCCTGCCCAGCCTGAGT GGTGTCCAGCCCAGCCGAAC 
Rab25 TCAGCCAGGCCCGAGAGGTC GATGGCACTGGTCCGGGTGC 
Evx1 GAGTGGCGTCACCAGCGGTACT TCACCTTGTGATGCGAGCGC 
Lrrc6 GGGAAATCCTGCCTGCCGGTC CTGTGATTCGGCCCATGGTGCTT 

Pou6f1 CGCCTTTCCTGCCTGGTGGG GCTAGCAGTGGGCAGTGGCC 
Pgr CGCCATCTACCAGCCGCTCG ACTGTGGGCTCTGGCTGGCT 

Foxa3 TTTGGGGGCTACGGGGCTGA TGCAGCCCACGCCCATCATG 
Ell2 TGCAGGCCTCCTACCACCCC TCCCCAGGCCTTCTGGAGTGC 
Lbh ACGTTGGGGCAAGAGCGTGG GAGACGGGGGAGGGGGTGAC 
Etv4 GAAGGTGGCTGGCGAACGCT GCGGGGCCAGTGAGTTCTGG 
Klf9 CCGCGTACTCGGCTGATGCC CACACGTGGCGGTCGCAAGT 

Wnt3a ACCAAGACCTAACAAACCC CATGGACATCACGGACC 
Prdm1 GCCGAGGTGCGCGTCAGTAC GGGGCAGCCAAGGTCGTACC 
Ankrd1 ACGCAGACGGGAACGGAAGC TGCGGCACTCCTGACGTTGC 
Per2 GGTGGCCTCTGCAAGCCAGG CCTCCGTGCTCAGTGGCTGC 
Hes1 CCCTGCAAGTTGGGCAGCCA CGAAGGCCCCGTTGGGGATG 
Bnc1 GCTGGAGCACCTGGGTGAGC CCTCCACTGTGCACGCGTGT 
Foxc2 AGGGACTTTGCTTCTTTTTCCGGGC CCCGCAGCGTCAGCGAGCTA 
Prdm6 CCGGCCTTTCAAGTGCGGCT GGCATGCGCTGGTGTCGACT 
Armc4 GCATCCCCTTGCTGGCTCGG GGCCATGGCACAGTGCTCCT 
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Table S2.6: List of quantitative RT-PCR primers used in the study. (Continued) 
	
  

Gene Forward Primer Reverse Primer 
Cxcr4 TACCCCGATAGCCTGT GCACGATGCTCTCGAA 
Tbx3 CCAAGCGATCACGCAACGTGG CTCTGACGATGTGGAACCGCGG 
Arg1 GCGAGACGTAGACCCTGGGG GGTCGCCGGGGTGAATGCTG 

Foxq1 GGAGCCGCCGCAGGGTTATATTG TGGCGCACCCGCTACTTTTGAG 
Asb4 TCACCTCCGTGCGTCCTGCT TTCGGGCAAGAGTGGCAAGCC 
Six2 ACTCGTCGTCCAGTCCCGCTC CAAGGTTGGCCGACATGGGGT 
Lhx1 ACTAGGGACCGAGGGACGCG CAGTTTGGCGCGGATTGCCG 

Sox17 GAGCCAAAGCGGAGTCTC TGCCAAGGTCAACGCCTTC 
Cer1 AGAGGTTCTGGCATCGGTTCA TCTCCCAGTGTACTTCGTGGC 

Creb3l1 ACAGGACGGACACCCTGGCA GGTCAGCCCAGGGGAGCAGT 
Bcl6 AAGCACGGCGCCATCACCAA TTTGGGGAGCTCCGGAGGCA 
Hey1 AATGGCCACGGGAACGCTGG CACCACGGGAAGCACCGGTC 
Basp1 AGGGGGCGGGGAGAATCCAAA GGAGCCTAGGGGACAGCGGTT 
β-Actin GCTGTATTCCCCTCCATCGTG CACGGTTGGCCTTAGGGTTCAG 
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Chapter 3 

Technical Variations in Low Input RNA-seq 
Methodologies 

3.1 Abstract 
Amplification-based strategies are essential to generate RNA-sequencing 

libraries from ultra-low amounts of mRNA, such as sequencing from a single or a 

few cells. However, the transcriptomics data obtained from single or a few cell 

RNA is often noisy resulting in poor quantification of the majority of low 

expressed transcripts. Here, we generated sequencing libraries from serial 

dilutions of mRNA using three such methods, viz., Smart-seq, CEL-seq and DP-

Seq, to perform whole transcriptome comparative analysis and characterize 

technical variations intrinsic to each method. Regardless of the method used, 

reduction in mRNA levels resulted in inefficient amplification of a majority of low 

to moderately expressed transcripts. Stochasticity in primer hybridization and/or 

enzyme incorporation was further enhanced by an amplification step resulting in 

greater uncertainty in transcript quantification. Additionally upon comparison with 

standard RNA-seq and real time quantitative PCR; we noted significant 

distortions in fold changes of the transcripts as the amount of mRNA was 

reduced. Consequently, the majority of the differentially expressed transcripts 

were high expressed and/or exhibited high fold changes. Our analysis 

demonstrates that technical noise is substantially increased particularly at limiting 
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amounts of mRNA that could mask subtle biological differences mandating 

development of improved amplification-based strategies for single cell 

transcriptomics. 

3.2 Introduction 
Complex Mammalian transcriptomes display a power-law distribution in 

transcripts abundance with transcript expression ranging over six orders of 

magnitude in RNA concentrations71, 72. RNA-seq with its large dynamic range and 

high sensitivity has facilitated accurate quantification of vast majority of these 

transcripts8, 10, 73. The most widely used RNA-seq protocol relies on 

fragmentation of mRNA into short 100 – 200 bp fragments which are later 

converted to double stranded cDNA and processed to prepare a sequencing 

library10. Since, there is no pre-amplification step involved, this method requires 

at least 1 – 10 ng amounts of mRNA making it difficult to apply the method to 

instances such as stem cell and cancer biology where it is difficult to obtain large 

quantities of mRNA.  

To address this issue of sequencing from limiting amounts of mRNA, a 

number of amplification-based methodologies23-25, 31, 34, 74-76 were recently 

proposed. These methodologies generate large amount of amplified cDNA, 

required for successful production of sequencing libraries, by performing either 

exponential or linear amplification of mRNA. In Smart-seq25, exponential 

amplification of the mRNA is achieved by associating universal primer sequences 

to either ends of the cDNA library followed by global amplification of all the 

transcripts using complementary sequences of the universal primers. In another 
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instance of exponential amplification, DP-seq31, the hybridization and extension 

potential of heptamer and octamer primers are utilized to amplify majority of the 

transcripts. These strategies generate large amounts of amplified DNA within few 

hours although with high proportions of primer dimerization and/or PCR spurious 

products77. Linear amplification of the mRNA, in CEL-seq23 method, requires 

incorporation of T7 promotor sequence to the cDNA template followed by in-vitro 

transcription (IVT) by T7 RNA polymerase that performs over 1000-fold 

amplification of the DNA in one round of amplification. Owing to stringent binding 

of the T7 RNA polymerase to its promotor region, IVT strategy results in reduced 

accumulation of PCR spurious products and fewer PCR biases. However, it 

requires at least 400 pg of total RNA for successful linear amplification, which is 

obtained by associating unique barcodes to individual RNA samples and pooling 

them together before the IVT step23.   

Sequencing library generation from these methodologies involve multiple 

steps that are susceptible to technical variations. During the amplification step, 

these variations get further amplified, often non-linearly, resulting in an increased 

uncertainty in quantifying low expressed transcripts25, 78. In this study, we 

investigated technical variations arising out of library preparation protocols and 

the sequencing platform as the amount of mRNA is reduced. We generated 

sequencing libraries in replicates from serial dilutions of mRNA ranging from 50 

ng to 25 pg using three amplification-based methods; Smart-seq25, DP-seq31 and 

CEL-seq23. Two of these methods, Smart-seq and CEL-seq, have demonstrated 

generation of robust sequencing libraries from ultra low amounts of mRNA 
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obtained from single cells. Our whole transcriptome analysis of these methods 

revealed increased technical noise particularly in the low expression regime 

along with stochastic loss of vast majority of low expressed transcripts as the 

amount of mRNA was reduced to 25 pg (25 – 50 mammalian cells). Significant 

distortions in fold changes of the differentially expressed transcripts, irrespective 

of their average expression or level of differential regulation, were observed as 

the amount of mRNA was reduced. Our study demonstrates that technical 

variations observed in these methodologies are profound which can mask subtle 

biological differences with only highly expressed and/or highly differentially 

regulated transcripts reliably estimated at reduced mRNA levels.  

3.3 Results 

3.3.1 Experimental Design 
Smart-seq performs full-length cDNA amplification by utilizing universal 

primers attached to either ends of the cDNA library and a thermophilic 

polymerase capable of performing long distance amplifications. DP-seq uses a 

defined set of 44 heptamer primers to amplify >80% of the mouse transcripts by 

using a combination of mesophilic and thermophilic polymerases in two stages. 

CEL-seq, on the other hand, generates amplified RNA via in-vitro transcription by 

T7 RNA polymerase. These methodologies represent both exponential and linear 

mode of amplification of the cDNA libraries derived from low amounts of mRNA. 

To directly compare these methods, we generated sequencing libraries for 

each method using the same mRNA source (Figure 3.1). The mRNA was 

derived from an in vitro cell culture based model of primitive streak (PS) induction 
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in mouse embryonic stem cells (mESCs)35, 36. Activation of Activin A/TGFβ 

pathway is necessary for successful induction of mesoderm tissue37-39 and 

endoderm tissue40, 41. This is achieved by introducing high dosage of Activin A 

(100 ng/mL; AA100) during the early stages of mESCs differentiation. Omission 

of Activin A, however, results in negligible activation of Activin A/TGFβ pathway 

leading to neuro-ectoderm induction43. Mouse ESCs were differentiated in 

serum-free conditions and the mRNA was collected at day 4 (equivalent to 6.5 – 

7.5 days per coitum) from embroid bodies maintained in control serum free 

media (SFM) and those subjected to Activin A treatment. Next, serial dilutions of 

mRNA ranging from 50 ng – 25 pg were prepared. Standard RNA-seq libraries 

(Std. RNA-seq)10 were prepared from 50 ng of mRNA while for rest of the 

dilutions (1 ng, 100 pg, 50 pg and 25 pg) sequencing libraries were prepared 

from the amplification-based methods. For all methods, technical replicates were 

prepared for each dilution to access technical variations in the library preparation 

protocol.  

Libraries obtained from Std. RNA-seq, Smart-seq and DP-seq were 

subjected to single-end 100 bp sequencing in Illumina platform. Paired-end 

sequencing was performed for CEL-seq libraries where read 1 was used to 

determine the barcodes of the pooled samples while read 2 was mapped to the 

mouse transcriptome (Supplementary Table S3.1).  
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Figure 3.1: Schematic representation of the experimental design. Mouse ESCs were 
differentiated in serum free conditions for four days. At day 2 of differentiation, embroid bodies 
were dispersed and Activin A was added to the culture media to stimulate Activin A/TGFβ 
signaling pathway. Cells were harvested at day 4 from control (SFM) and Activin A containing 
well (AA100) and mRNA was isolated. The mRNA was later subjected to serial dilutions 
ranging from 50 ng – 25 pg.  Std. RNA-seq libraries were prepared from 50 ng of mRNA 
derived from control and AA100 samples. Sequencing libraries were prepared from serial 
dilutions (1 ng, 100 pg, 50 pg and 25 pg) of mRNA using Smart-seq, DP-seq and CEL-seq. All 
sequencing libraries were prepared with two technical replicates where same mRNA source 
was used and the library preparation steps were replicated. Salient details of all the methods 
are shown. 
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3.3.2 Comparative transcriptomics analysis of the three amplification-based 
methods 

Since, sequencing libraries were sequenced at different depths, we 

randomly selected 16 million reads from each library to perform comparative 

analysis. Transcriptome coverage obtained from all amplification-based methods 

was high for libraries prepared from 1 ng of mRNA. However, the transcriptome 

coverage dropped as the amount of mRNA was successively reduced (Figure 

3.2A). Smart-seq libraries exhibited the highest transcriptome coverage at all 

amounts of mRNA explored. DP-seq was designed to amplify >80% of the 

transcripts and as such it exhibited marginally less transcriptome coverage as 

compared to Smart-seq. CEL-seq’s transcriptome coverage showed the greatest 

reduction in coverage as the amount of mRNA was reduced. We further 

determined that the transcripts that lost their representation in the sequencing 

libraries prepared from 25 pg of mRNA by all methods were low expressed 

(Supplementary Fig. S3.1A).  

Exponential amplification of mRNA has previously been shown to 

accumulate primer-dimers and PCR spurious products as the number of 

amplification cycles are increased77. Mapping statistics of the libraries revealed 

high proportions of PCR spurious products in DP-seq libraries specifically at low 

amounts of mRNA (Figure 3.2B). On the other hand, Smart-seq libraries 

possessed the smallest proportions of unmapped reads. CEL-seq libraries 

demonstrated about 20% unmapped read for all dilutions of mRNA although a 
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slightly higher proportion of reads mapped to genomic (excluding NCBI Refseq 

database) locations in comparison to the other methods.  

 	
  

	
  
 

Figure 3.2: Comparative transcriptomics analysis between all methods. (A) 
Transcriptome Coverage. Transcriptome coverage obtained by amplification-based 
methods was normalized to the coverage obtained in std. RNA-seq libraries. (B) Mapping 
Statistics. DP-seq exhibited higher proportions of primer dimerization and PCR spurious 
products at low amounts of mRNA. (C) Length Bias. Smart-seq failed to efficiently amplify 
transcripts with length > 4Kb. (D) Distribution of mapped reads along the transcript length. 
Majority of the CEL-seq reads mapped to the last exon of the transcripts. (E) Robustness 
of unique reads measurements as a function of transcript expression levels and depth of 
sequencing. 16 million reads were taken from AA100 sequencing libraries to ascertain the 
expression of the transcripts. These reads were successively reduced by factor of two and 
number of transcripts falling within ± 5% of the final expression was determined. (F) 
Coefficient of determination (R2) was estimated in global expression measurements in 
sequencing libraries constructed from lower dilutions of mRNA (100 pg, 50 pg, 25 pg) with 
the libraries made from 1 ng of mRNA. 
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In our previous study31, we demonstrated the limitation of Smart-seq to 

efficiently amplify long transcripts (>4 Kb). DP-seq performs targeted 

amplification of selected regions of the transcripts; as such it does not suffer with 

the transcript length bias. Expectedly, the majority of the long transcripts in 

Smart-seq libraries possessed lower read counts in comparison to DP-seq and 

Std. RNA-seq (Figure 3.2C). Interestingly, CEL-seq also demonstrated low read 

counts for long transcripts. Next, we investigated the distribution of mapped 

reads across the length of the mRNA. Smart-seq and Std. RNA-seq libraries 

displayed overlapping distribution of reads across the length of the mRNA 

(Figure 3.2D). DP-seq libraries showed bias towards 3’ end of the transcripts 

presumably because of inability of reverase transcriptase to generate full-length 

cDNA libraries. CEL-seq libraries, on the other hand, preferentially amplified last 

exons of the transcripts with vast majority of the reads mapping close to the 3’ 

end of the transcripts.  

Amplification-based methods possess variety of PCR biases. 

Consequently, a subset of transcripts is preferentially amplified resulting in 

reduced representation of the rest of the transcripts. We examined the % of 

unique reads occupied by top 100 highly expressed/amplified transcripts in the 

sequencing libraries prepared from all methods. Std. RNA-seq protocol does not 

involve any pre-amplification step before the library PCR amplification and as 

such the top 100 highly expressed transcripts occupied only 20% of the mapped 

reads. Amplification-based methods, on the other hand, occupied high 

proportions of mapped reads with CEL-seq and Smart-seq libraries showing 
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significant enrichment of few transcripts (Supplementary Fig. S3.1B). The top 

100 transcripts occupied 39% and 51% of the mapped reads in Smart-seq and 

CEL-seq libraries respectively while DP-seq occupied only 29% of the mapped 

reads. We further investigated the robustness in measurements of transcript 

expression for all methods as a function of sequencing depth. We estimated the 

number of transcripts within ±5% of the final expression as the sequencing reads 

were reduced by a factor of 2 (Figure 3.2E). Std. RNA-seq libraries 

demonstrated robust quantification for the highest number of transcripts followed 

by DP-seq. This observation remained unchanged for sequencing libraries 

prepared from varying amounts of mRNA. Finally, global transcript 

measurements of libraries constructed from at least 50 pg of mRNA showed high 

correlation with the libraries constructed from 1 ng of mRNA for all methods. 

However, the coefficient of determination (R2) dropped significantly as the 

amount of mRNA was further reduced to 25 pg, with CEL-seq libraries showing 

the highest distortions in transcript expression measurements.  

3.3.3 Technical variations 
For all methods, we generated technical replicates to access the 

variations arising out of the library preparation protocols and the sequencing 

platform. Std. RNA-seq libraries prepared from 50 ng of mRNA showed little 

technical variations. For the amplification-based methods, libraries prepared from 

1 ng of mRNA were highly reproducible (Figure 3.3A). However, the technical 

variations increase substantially as the amount of mRNA was reduced 

(Supplementary Fig. S3.2). DP-seq libraries prepared from 25 pg mRNA 
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exhibited high technical variations presumably because of accumulation of PCR 

spurious products (Supplementary Fig. S3.3). CEL-seq libraries displayed 

significant technical variations/noise in the libraries prepared from 50 pg or less 

amounts of mRNA (Supplementary Fig. S3.4). 

We hypothesized that with reduction of the starting material (mRNA), the 

amplification step involved in all methods becomes highly inefficient resulting in 

stochastic loss of a vast majority of the low expressed transcripts (RPKM<10, in 

Std. RNA-seq library). Expectedly, the distributions of low expressed transcripts 

were successively shifted towards low read counts with a majority of the 

transcripts losing their representation in the sequencing libraries, as the amount 

of mRNA was reduced (Figure 3.3B). Similar observations were made for DP-

seq and CEL-seq. We also observed similar trends even for moderately 

expressed transcripts (200>RPKM>10, in std. RNA-seq library) with a majority of 

these transcripts failing to amplify efficiently (Supplementary Fig. S3.5). 

Next, we estimated the technical variations in the replicate libraries by 

measuring the standard deviations in fold changes of the transcripts as a function 

of average read counts. Transcripts are not expected to be differentially 

regulated between the technical replicates implying that the fold changes should 

be close to zero. All amplification-based methods showed characteristic profiles 

of variations/noise as a function of average read counts with high variations 

reported for transcripts with low expression. Regardless of the method used, we 

noticed significant increase in technical variations in the libraries prepared from 

low amounts of mRNA (Figure 3.3D,E and F). This resulted in a poor 
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quantification of the vast majority of moderate to low expressed transcripts 

including the transcription factor family of genes (Figure 3.3C).   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
 

Figure 3.3: Technical Variations as a function of amount of starting material (mRNA). 
(A) Coefficient of determination (R2) observed between the technical replicates in global 
transcriptome measurements. (B) Distribution of unique reads obtained for low expressed 
transcripts in Smart-seq libraries generated from different amounts of mRNA (average RPKM 
<10 in std. RNA-seq libraries prepared from control and AA100 samples). Similar distributions 
were observed for libraries prepared from DP-seq and CEL-seq. (C) Distribution of unique 
reads mapping to known mouse transcription factors (n=1596) for AA100 sample. The black 
curve represents standard deviation in fold changes observed in technical replicates of std. 
RNA-seq libraries as a function of average reads. Standard deviations in fold changes 
observed in technical replicates as a function of average reads in libraries prepared from 
different amounts of mRNA using (D) Smart-seq (E) DP-seq (F) CEL-seq. 
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3.3.4 Differential gene expression analysis 
The biological system considered in our study was highly divergent (meso-

endoderm vs. ectoderm) allowing us to perform detailed analysis of differential 

gene expression and fold changes in the sequencing libraries prepared from all 

methods. We used DEseq79 to normalize the sequencing libraries and perform 

differential gene expression analysis. In libraries prepared from 50 ng of mRNA 

using Std. RNA-seq method, we identified more than 8400 differentially 

expressed genes (DEG). The pathway and GO term (Biological Processes) 

enrichments for genes up-regulated in AA100 samples contained terms specific 

to mesoderm/endoderm formation (Supplementary Table S3.2, 3.3). On the 

contrary, down-regulated genes were enriched for pathways and GO terms 

specific for ectoderm lineage. The amplification-based methods, with the 

exception of CEL-seq, identified a large set of DEGs for libraries prepared from 1 

ng of mRNA with vast majority of them shared with those identified by Std. RNA-

seq. DEGs that were not common to Std. RNA-seq were low-expressed and 

consequently were prone to large noise (Supplmentary Fig. S3.6). Additionally, 

the number of DEGs drastically reduced for all methods as the amount of mRNA 

was reduced (Figure 3.4A). On the other hand, CEL-seq libraries consistently 

identified low numbers of DEGs with only 26 differentially regulated transcripts 

identified for libraries prepared from 25 pg of mRNA.  

PCR biases associated with Smart-seq resulted in preferential 

amplification of highly expressed and short transcripts. Owing to high technical 

variations in the low read counts, DEGs identified in the Smart-seq libraries 
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generated from low amounts of mRNA, were highly expressed and shorter in 

length (Supplementary Fig. S3.7). DP-seq, on the other hand, performed 

targeted amplification of selected regions of the mouse transcriptome and hence 

did not suffer from the transcript length bias.  

 

	
  
 

 

Figure 3.4: Differential gene expression analysis. (A) Differentially expressed genes 
identified from the sequencing libraries prepared from different amounts of mRNA. (B) R2 
between the fold changes of differentially expressed genes observed between amplification-
based method and std. RNA-seq. (C) Differentially expressed genes identified from std. RNA-
seq libraries were classified into three categories of differential expression: High (fold 
change>4, log2 scale), Moderate (4>fold change>2, log2 scale) and Low (fold change<2, log2 
scale). Proportions of these genes identified by amplification-based methods as a function of 
the amount of mRNA used for library preparation, are plotted. (D) Differentially expressed 
genes identified from std. RNA-seq libraries were classified into three categories of transcript 
expression: High (RPKM>200), Moderate (200>RPKM>10) and Low (RPKM<10). Proportions 
of these genes identified by amplification-based methods as a function of the amount of 
mRNA used for library preparation, are plotted. 
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The fold change distributions observed for DEGs in libraries prepared from 

high amounts of mRNA revealed high proportion of transcripts with small fold 

changes. However, as the amount of mRNA was reduced, more transcripts with 

high fold changes were identified as differentially regulated and transcripts with 

low fold changes were lost because of high technical variations (Supplementary 

Fig. S3.8). We next sought to compare the fold changes of the DEGs identified 

for each amplification-based method to the fold changes obtained in Std. RNA-

seq libraries. DP-seq demonstrated higher correlations in the fold changes in 

comparison to Smart-seq (Figure 3.4B). CEL-seq libraries showed significant 

distortions in the fold changes. Interestingly, these correlations dropped 

significantly for all methods as the amount of mRNA was reduced 

(Supplementary Fig. S3.9, 3.10 and 3.11).  

Identification of DEGs was severely affected for amplification-based 

methods owing to high technical variations and significant fold change 

distortions. We next investigated which characteristics are necessary for a DEG 

to be identified by the amplication-based methods. DEGs identified by the 

standard RNA-seq method were classified into different categories based on their 

fold changes. We noted that the category consisting of highly differentially 

regulated genes (>16 fold change) were consistently identified by all the 

methods. However, the identification for moderate (16>fold change>4) and low 

(fold change<4) DEGs was poor. Importantly, all three categories of DEGs 

suffered heavy loss as the amount of mRNA was reduced, irrespective of the 

method used (Figure 3.4C).  A similar analysis was performed where DEGs 
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identified in std. RNA-seq were classified into different categories based on their 

average expression. Smart-seq identified larger proportions of highly expressed 

(RPKM>200) DEGs as compared to moderate (200>RPKM>10) and low 

(RPKM<10) expressed genes (Figure 3.4D). Since DP-seq distorts the relative 

order of gene expression, it did not discriminate based on the gene expression 

and identified similar proportions of DEGs for the three categories of expression. 

CEL-seq, because of high technical noise even at high expression, failed to 

identify a vast majority of highly expressed DEGs. We again noticed that the 

proportions of DEGs identified by all methods dropped significantly as the 

amount of mRNA was reduced. This analysis demonstrates that with low 

amounts of starting material (mRNA), only highly expressed and/or highly 

differentially regulated transcripts are expected to be identified by these methods.  

3.3.5 Distortion in Fold Changes 
Activation of Activin A/TGFβ pathway by introduction of Activin A in 

differentiating mESCs is well documented35, 36. Our sequencing libraries showed 

differential regulation of a majority of TGFβ target genes31. Overall, Smart-seq 

and DP-seq displayed similar profiles for both up and down-regulated TGFβ 

target genes. CEL-seq, on the other hand, displayed similar trends although with 

suppressed fold changes. Moreover, heterogeneity in the fold changes of the 

TGFβ target genes was apparent for the libraries prepared from low amounts of 

mRNA (Figure 3.5A). 
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Figure 3.5: Expression of Activin A/TGFβ pathway target genes in day 4 mouse 
embryoid bodies. (A) Heatmap displaying up/down regulation of Activin A/TGFβ pathway 
target genes upon introduction of Activin A in the culture media in comparison to the 
control. (B) Number of Activin A/TGFβ pathway genes identified as differentially regulated. 
(C) R2 between the fold changes observed in the sequencing libraries and quantitative 
real time PCR for 40 transcripts including the TGFβ target genes and lineage markers. 
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We next compared fold changes in transcripts expression observed in our 

sequencing libraries to the gold standard measurements obtained from real time 

quantitative PCR (qPCR). For this analysis, we selected 40 transcripts 

representing TGFβ target genes and known lineage markers (ectoderm and 

mesendoderm). Majority of these genes have moderate to low expression in the 

Std. RNA-seq libraries. Libraries prepared from Std. RNA-seq method conserved 

the relative abundance of these transcripts. However, Smart-seq libraries 

displayed significantly lower R2 as the amount of mRNA was reduced. 

Interestingly, DP-seq showed strong correlations for all amounts of mRNA used 

(Figure 3.5B). Fold changes obtained from CEL-seq libraries showed significant 

distortions resulting in a poor correlation with the qPCR fold changes.  

Finally, we investigated whether or not increased technical noise and 

distortions in fold changes result in loss of subtle biological differences as the 

amount of mRNA is reduced. Out of the 181 Activin A/TGFβ pathway associated 

genes, 74 genes were differentially regulated in mESCs treated with a high 

dosage of Activin A in Std. RNA-seq libraries. Regardless of the method used, 

the number of DEGs associated with the Activin A/TGFβ pathway reduced 

significantly as the amount of mRNA was reduced (Figure 3.5C). This highlights 

the issue of increased technical variations in the sequencing libraries prepared 

from limiting amounts of mRNA that could potentially result in loss of biological 

context.   
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3.4 Discussion 
Current sequencing technologies require nanogram quantities of RNA 

before it could be processed and made compatible for high-throughput 

sequencing. This motivated the development of amplification-based strategies to 

generate whole transcriptome profiles from limited number of cells. The 

transcriptomics data obtained from these strategies have shown expression of 

thousands of transcripts, although accurate quantification of these transcripts has 

been marred by high technical variations. In this study we compared the 

performance of three amplification-based strategies in generating robust 

sequencing libraries from limiting amounts of mRNA. Two of these 

methodologies, Smart-seq and CEL-seq, amplify mRNA using two different 

modes of amplification - exponential and linear respectively. Moreover, both of 

them have been demonstrated to generate libraries from mRNA derived from a 

single cell.  DP-seq, on the other hand, performs exponential amplification of the 

transcripts from as low as 50 pg of mRNA by utilizing a defined set of 44 

heptamer primers. Serial dilutions of mRNA were prepared ranging from 1 ng – 

25 pg to characterize technical variations arising out of library preparation 

protocols and access the consequences of these variations on fold change 

estimations of the transcripts and biological interpretation of the datasets.   

Comparative analysis revealed that Smart-seq and DP-seq exhibited 

similar transcriptome coverage and comparable technical variations in the 

libraries prepared from up to 50 pg of mRNA. Smart-seq preferentially amplified 

highly expressed and/or short transcripts resulting in a larger proportion of such 
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transcripts being identified as differentially regulated. DP-seq showed high 

technical variations and accumulation of PCR spurious products at 25 pg 

libraries.  One of the challenges with DP-seq is that the 44 heptamer primers are 

split into three tubes which implies that only 8.33 pg of mRNA was amplified by 

each tube. A better primer design where more primers can be accommodated 

into a single tube to get similar transcriptome coverage while ensuring that no 

two primers have ΔG <-4 Kcal/mol, is expected to reduce the technical noise. 

DP-seq libraries were more consistent in maintaining relative abundance of the 

transcripts in comparison to Smart-seq and provided better quantification of the 

transcripts as a function of sequencing depth. In terms of cost, both Smart-seq 

and CEL-seq had higher cost for library generation than DP-seq with CEL-seq 

requiring paired-end sequencing. The first read obtained from CEL-seq libraries 

was used only for barcode identification while read 2 was used for mapping 

purposes. Additionally, CEL-seq required longer time to construct sequencing 

libraries and more time was spent handling less stable RNA. 

CEL-seq has been shown to produce highly reproducible libraries from 

limiting amounts of mRNA23, however, in our hands the libraries exhibited high 

technical variations and significant fold change distortions in comparison to the 

other methods. Even though the CEL-seq libraries showed expression of 

thousands of transcripts, the transcriptome coverage was considerably lower 

than that of Smart-seq and DP-seq. CEL-seq requires at least 400 pg of total 

RNA for successful IVT reaction. In our library preparation, we associated 

different barcodes to cDNA libraries prepared from same amounts of mRNA and 
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pooled them for IVT reaction. For instance in the case of lowest dilution, the 

pooled cDNA was prepared from 100 pg of mRNA (25 pg x 2 biological samples 

x 2 technical replicates) which is substantially higher than 400 pg of total RNA 

requirement. We also noted a high proportions of reads (>80%) mapping to the 

mouse genome thus ruling out contamination. The authors of CEL-seq protocol 

noted that transcripts expressed at low levels were not efficiently amplified during 

the IVT step and we suspect that the incorporation of T7 RNA polymerase to its 

promotor region is subjected to high noise resulting in substantial technical 

variations.  

Previous analysis of variations in RNA-seq libraries revealed little 

technical variations in libraries prepared from large amounts of mRNA7, 10, 68, 69. 

However, in amplification-based methods technical variations intrinsic to the 

library preparation steps prior to the amplification step get significantly amplified 

resulting in high variations especially in low read counts. These variations are 

expected to remain high even at high sequencing depths. Regardless of the 

method used, technical variations substantially increased as the amount of 

mRNA was reduced. It was accompanied by poor amplification of majority of low 

to moderately expressed transcripts with the distributions of the transcripts 

shifted towards low read counts. High proportions of low expressed transcripts 

were consequently lost as the amount of mRNA was reduced.   

We compared fold changes in transcript expression obtained in all 

amplification-based methods to those in Std. RNA-seq libraries. This facilitated 

the transcriptome-wide analysis of fold changes of the transcripts, spanning the 
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entire dynamic range of transcript expression. We further selected 40 transcripts, 

which included TGFβ target genes or lineage makers, and performed qPCR to 

determine precise measurements of their relative abundance. Majority of these 

transcripts exhibited moderate to low expression. This analysis was sufficient to 

draw conclusions on dynamic range and sensitivity of the amplification-based 

methods and as such we decided not to use spike-in controls including ERCC 

libraries80. 

Expectedly, Std. RNA-seq libraries prepared from 50 ng of mRNA 

conserved relative abundance of the transcripts with high correspondence to the 

qPCR readouts. As the amount of mRNA was reduced, distortions in fold change 

estimations of the transcripts became evident for all the methods. Smart-seq 

libraries prepared from lower amounts of mRNA (<= 50pg) showed considerable 

drop in correlations to std. RNA-seq and qPCR. DP-seq libraries performed 

significantly better than Smart-seq in conserving the fold changes of the 

transcripts expression. Fold change distortions were significant for libraries 

generated from CEL-seq with a vast majority of differentially regulated transcripts 

displaying suppressed fold change estimations.  

As a consequence of the increased technical noise, loss of low abundant 

transcripts and significant distortions in the fold change estimations, the number 

of transcripts identified as differentially regulated dropped significantly in the 

libraries constructed from low amounts of mRNA. Our analysis of DEGs further 

demonstrated that transcripts, which were highly expressed and/or differentially 

regulated with high fold changes, were identified in low input libraries. Subtle fold 
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changes (<4 fold) in transcript abundance increasingly fell into noisy regime and 

accurate quantification of transcripts expression was severely undermined. Our 

transcriptome data showed that at low amounts of mRNA, TGFβ target genes 

expression31 followed expected trend, although with high fold change variations. 

More importantly, the number of differentially regulated TGFβ pathway-

associated transcripts dropped considerably in these libraries. This implies that 

subtle biological differences between the experimental conditions are likely to be 

lost or diluted as the amount of mRNA is reduced. We expect biological 

interpretation of the transcriptome data to suffer further as the amounts of mRNA 

are reduced to single cell levels and biological variations81-83 are incorporated.  

Based on our analysis, we recommend implementing these methods on 

biological samples where transcriptomics data is expected to be highly divergent. 

Finally, development of new amplification-based methodologies that perform 

amplification with high fidelity is warranted. Quatz-seq74 has shown potential to 

generate robust sequencing libraries from low amounts of mRNA by performing 

suppression PCR to eliminate PCR spurious products and reducing the loss of 

material by performing multiple enzymatic reactions in the same tube. Similar 

improvements in designing new enzymes that work at low temperatures with 

greater fidelity, reducing volume of the reactions and minimizing the loss of 

mRNA at different steps leading up to the amplification step will substantially 

reduce the technical variations in the low-input libraries.  
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3.5 Materials and Methods 

3.5.1 Mouse embryonic stem cell culture and differentiation 
Mouse R1 embryonic stem cells were cultured on mouse embryonic 

fibroblast (MEF) on gelatin-coated dishes in high glucose DMEM (Hyclone, 

Logan, UT) supplemented with 10% fetal calf serum (FCS) (Hyclone, Logan, UT), 

0.1 mM b-mercaptoethanol (GIBCO), 1% non-essential amino acids (GIBCO), 2 

mM L-glutamine (Sigma, St. Louis, MO), sodium pyruvate (Sigma), antibiotics 

(Sigma), and 1,000 U/ml of LIF (Sigma) and passaged with 0.25% Trypsin 

(GIBCO). 

For embryoid body (EB) differentiation, MEF were stripped from the 

cultures by 15 minutes incubations on gelatin-coated dishes. mESCs were 

collected and washed in PBS to remove traces of serum. mESCs were 

differentiated in serum free media containing N2 and B27 supplements as 

described elsewhere35, 36. mESCs were aggregated at 50,000 cells/ml in non-

coated polystyrene plates. After 2 days, EBs were dissociated by trypsin 

treatment and re-aggregated in fresh media in presence of Activin A at a dosage 

of 100 ng/mL (AA100). Activin A was obtained from R&D. EBs were harvested at 

day 4 for RNA extraction and processing.  

3.5.2 mRNA purification and dilution series  
Total RNA was extracted from the harvested cells using Trizol (Invitrogen). 

Total RNA was later subjected to Oligo(dT) selection using Dynabeads mRNA 

Purification Kit (Invitrogen) for extraction of poly-adenylated RNA. The enriched 
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mRNA was later quantified using Nanodrop 2000 and serial dilutions were made 

ranging from 50 ng – 25 pg of mRNA.  

3.5.3 Library Generation using Std. RNA-seq protocol 
Std. RNA-seq10 libraries were constructed from about 50 ng of mRNA 

derived from the serum free media control and Activin A (100 ng/mL) samples 

using Illumina’s TruSeq RNA Sample Prep Kit v2. 

3.5.4 Library Generation using Smart-seq 
Smart-Seq cDNA library generation and amplification was performed on 

mRNA dilutions (1 ng, 100 pg, 50 pg and 25 pg) derived from serum free media 

control and Activin A (100 ng/mL) in duplicates using SMARTer Ultra Low RNA 

Kit for Illumina sequencing (Clontech). Following PCR cycles were used for 

amplification: 

1 ng – 12 cycles 

100 pg – 14 cycles 

50 pg – 14 cycles 

25 pg – 15 cycles 

These libraries were later sheared using Covaris system to obtain 200-500 bp 

fragments. Later, standard Illumina library preparation protocol was followed to 

prepare the sequencing libraries using Illumina Paired-End DNA Sample Prep kit.   

3.5.5 Library Generation using CEL-seq 
CEL-seq libraries were constructed using the protocol described earlier. 

We used CEL-seq primers # 37, 38, 39 and 40 to generate double stranded 
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cDNA libraries from same amount of mRNA (including the technical replicates). 

The libraries were later pooled together for in-vitro transcription reaction. Similar 

strategy was implemented for all mRNA dilutions. The PCR cycles used for 

varying amounts of mRNA are: 

1 ng – 13 cycles 

100 pg – 15 cycles 

50 pg – 15 cycles 

25 pg – 15 cycles 

To avoid loss of the material, we replaced the column purification steps involved 

in the protocols with Agencourt RNAClean XP purification system.   

3.5.6 Library Generation using DP-seq 
mRNA dilutions (1 ng, 100 pg, 50 pg and 25 pg) prepared from the serum 

free media control and Activin A (100 ng/mL) were subjected to DP-seq library 

preparation as described. First strand cDNA synthesis was performed for all 

mRNA dilutions in duplicates to get the technical replicates. Later, the purified 

cDNA prepared from each dilution, was split into three tubes to perform 

amplification using our heptamer primers. The numbers of PCR cycles were 

increased for lower dilutions to get appropriate amounts of DNA for the library 

construction. The numbers of PCR cycles used are as follows: 

1 ng – 14 cycles  

100 pg – 17 cycles 

50 pg – 17 cycles 

25 pg – 18 cycles 



	
  

	
  

96	
  

The amplicon libraries thus constructed, were phosphorylated and ligated 

with Illumina’s Y-adaptors and amplified using adaptor specific primers consisting 

of a different Illumina’s Truseq barcode sequence for each library. The amplified 

libraries were run through the 2% agarose gel and size selected (150 – 500 bp) 

for sequencing. 

3.5.7 Quantification of the sequencing library 
Quantitative real time PCR was used to determine the concentration of the 

sequencing libraries prepared from DP-seq method. The standard curve for 

various dilutions of phiX control library was generated using the adapter specific 

primers recommended by Illumina. We later used the standard curve to 

determine the molarity of our sequencing libraries. Libraries prepared from std. 

RNA-seq, Smart-seq and CEL-seq were quantified using Qubit Flurometer 

(Invitrogen) according to the manufacturer’s protocol.  

The concentration of sequencing library loaded into the flowcell was 

calibrated by the sequencing facility. We typically obtained good cluster density 

with 5 pM of library concentration on HiSeq v3 kit.   

3.5.8 Reverse Transcription and Quantitative RT-PCR (qPCR) 
Total RNA was extracted from cells using Trizol (Invitrogen) according to 

the manufacturer’s instructions. About 1 µg of total RNA was treated for DNA 

removal and converted into first strand cDNA using Quantitect Reverse 

Transcription kit (Qiagen).  SYBR Green qPCR was run on a LightCycler 480 

(Roche) using the LightCycler 480 SYBR Green Master Kit (Roche).  All primers 

were designed with a Tm of 60°C. Data was analyzed using the ΔΔCt method, 
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using Gapdh as normalization control, which was determined as a valid reference 

in mouse ESC differentiation. The primer sequences are listed in 

Supplementary Table S3.6.  

3.5.9 Mapping reads 
Our libraries were sequenced on HISEQ2000 platforms ((TruSeq SR 

Cluster Kit v3-cBot-HS and TruSeq SBS Kit v3-HS). The libraries obtained from 

std. RNA-seq, Smart-seq and DP-seq were sequenced as 100 bp single-end 

reads. For CEL-seq libraries paired-end 100 bp sequencing libraries were 

generated. For all the reads obtained from the methods (Read 2 for CEL-seq 

sequencing library), the first 7 bp were truncated and next 32 bp sequences were 

first aligned to the mouse NCBI Refseq database allowing upto 2 mismatches. 

The reads that did not map to the database were further aligned to mouse 

genomic locations (Build 37) using Bowtie while allowing ≤ 2 mismatches. 

3.5.10 Differential gene expression analysis 
DEseq method was used for sequencing library normalization and 

identification of differentially expressed genes. To estimate dispersions, we used 

“pooled-CR” method with “fit-only” sharing mode.  
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3.6 Supplementary Figures 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  
	
  
Figure S3.1: Comparative Analysis. (A) The vast majority of the transcripts that underwent 
stochastic loss were low expressed. (B) Percentage of unique reads represented by the top 
100 highly expressed/amplified transcripts in each method. Higher % reflects more PCR bias 
resulting in high representation of few transcripts. 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
  

	
  

99	
  

 

 
 

	
  
	
  
Figure S3.2: Smart-seq Technical Replicate. Coefficient of Determination (R2) between the 
technical replicate libraries prepared by Smart-seq from (A) 1 ng (B) 100 pg (C) 50 pg and (D) 
25 pg of mRNA. 
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Figure S3.3: DP-seq Technical Replicates. Coefficient of Determination (R2) between the 
technical replicates libraries prepared by DP-seq from (A) 1 ng (B) 100 pg (C) 50 pg and (D) 
25 pg of mRNA. 
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Figure S3.4: CEL-seq technical replicates. Coefficient of Determination (R2) between the 
technical replicates libraries prepared by CEL-seq from (A) 1 ng (B) 100 pg (C) 50 pg and (D) 
25 pg of mRNA. 
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Figure S3.5: Distribution of the moderately expressed transcripts (200>RPKM>10 in Std. 
RNA-seq library prepared from AA100 sample) as a function of amount of mRNA used 
for the library preparation using Smart-seq. 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
  

	
  

103	
  

 
 
 
 

	
  
	
  
	
  
Figure S3.6: Differential gene expression analysis. Differentially expressed genes 
identified in the amplification-based methods (1 ng sequencing libraries) that were not shared 
with Std. RNA-seq method, exhibited lower RPKMs. This demonstrates noise in the 
quantification of the low expressed genes. 
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Figure S3.7: Characteristics of differentially expressed genes (DEG) identified in Smart-
seq and DP-seq. (A) RPKM (obtained from std. RNA-seq) distribution of DEGs in the Smart-
seq libraries. Genes with higher RPKMs were identified as differentially regulated when the 
amount of mRNA is reduced. (B) RPKM (obtained from std. RNA-seq) distribution of DEGs in 
the DP-seq libraries. (C) Transcript length distribution of DEGs in the Smart-seq libraries. 
Genes with shorter length are preferentially identified as differentially regulated. (D) Transcript 
length distribution of DEGs in the DP-seq libraries. 
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Figure S3.8: Distribution of the fold changes observed for differentially expressed 
transcripts in the sequencing libraries prepared from varying amounts of mRNA. 
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Figure S3.9: Smart-seq fold change comparison with Std. RNA-seq. Comparison of the 
fold changes of differentially expressed genes identified in the Smart-seq libraries prepared 
from (A) 1 ng (B) 100 pg (C) 50 pg and (D) 25 pg of mRNA.	
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Figure S3.10: DP-seq fold change comparison with Std. RNA-seq. Comparison of the 
fold changes of differentially expressed genes identified in the DP-seq libraries prepared 
from (A) 1 ng (B) 100 pg (C) 50 pg and (D) 25 pg of mRNA. 
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Figure S3.11: CEL-seq fold change comparison with Std. RNA-seq. Comparison of the 
fold changes of differentially expressed genes identified in the CEL-seq libraries prepared 
from (A) 1 ng (B) 100 pg (C) 50 pg and (D) 25 pg of mRNA. 
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3.7 Supplementary Tables 
Table S3.1: Mapping Summary. For both samples, SFM and AA100, technical replicate libraries 
were prepared. Refseq represents the percentage of reads that mapped to NCBI Refseq 
database. Genomic refers to percentage of reads that were unmapped to the NCBI refseq 
database but mapped to the genomic locations of mouse. Unmapped refers to percentage of 
reads that did not map to either of the databases. Transcriptome coverage represents the number 
of transcripts with at least 1 uniquely mapped read.  

Std. RNA-seq 
Sample Total 

Reads 
Refseq Genomic Unmapped Coverage>=1 

SFM_1 24453925 68.01 28.13 3.60 18870 
SFM_2 23697503 67.90 27.89 3.93 18791 

AA100_1 21129136 79.74 16.53 3.64 17332 
AA100_2 14681557 79.74 16.54 3.64 16750 

Smart-seq 
Sample Total 

Reads 
Refseq Genomic Unmapped Coverage>=1 

SFM_11 24349951 70.92 16.06 12.76 17124 
SFM_12 23428763 70.70 16.55 12.49 17107 

AA100_11 25118762 84.02 4.85 10.87 15856 
AA100_12 23978377 83.67 5.20 10.87 16064 
SFM_1001 21367303 69.79 17.69 12.25 14865 
SFM_1002 21453069 70.34 17.61 11.79 14781 

AA100_1001 26945482 84.40 4.76 10.57 13887 
AA100_1002 25212172 83.25 4.58 11.89 13873 

SFM_501 22094248 67.06 18.61 14.05 13785 
SFM_502 20943831 67.31 18.63 13.79 13451 

AA100_501 22298719 86.35 7.71 5.86 13400 
AA100_502 24284435 87.25 7.43 5.24 13568 
SFM_251 24257173 68.84 17.32 13.57 12924 
SFM_252 21923234 68.21 17.28 14.23 12770 

AA100_251 22655528 83.21 4.43 12.08 12291 
AA100_252 23410644 83.67 4.40 11.66 12059 

DP-seq 
Sample Total 

Reads 
Refseq Genomic Unmapped Coverage>=1 

SFM_11 28474965 67.92 20.65 11.17 15207 
SFM_12 18244022 70.52 19.83 9.38 14481 

AA100_11 21291454 76.29 14.97 8.48 15169 
AA100_12 20993366 76.03 14.97 8.73 15178 
SFM_1001 25718262 48.53 15.71 35.49 12660 
SFM_1002 14793596 47.11 15.72 36.91 11798 
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Table S3.1: Mapping Summary. For both samples, SFM and AA100, technical replicate libraries 
were prepared. Refseq represents the percentage of reads that mapped to NCBI Refseq 
database. Genomic refers to percentage of reads that were unmapped to the NCBI refseq 
database but mapped to the genomic locations of mouse. Unmapped refers to percentage of 
reads that did not map to either of the databases. Transcriptome coverage represents the number 
of transcripts with at least 1 uniquely mapped read. (Continued) 

Sample Total 
Reads 

Refseq Genomic Unmapped Coverage>=1 

AA100_1001 23378520 60.51 13.11 26.11 12744 
AA100_1002 18366027 60.17 12.88 26.72 12933 

SFM_501 29346385 40.36 14.57 44.83 11871 
SFM_502 19512341 41.78 14.62 43.37 11377 

AA100_501 26108501 58.72 13.01 28.18 12983 
AA100_502 27486701 65.44 14.42 20.04 13302 
SFM_251 22923417 24.86 9.51 65.40 9949 
SFM_252 24601138 25.63 10.09 64.05 10021 

AA100_251 27740980 40.20 9.72 49.85 10935 
AA100_252 22478624 45.33 10.97 43.46 10516 

CEL-seq 
Sample Total 

Reads 
Refseq Genomic Unmapped Coverage>=1 

SFM_11 30275877 51.23 27.35 20.83 13653 
SFM_12 16195257 44.08 20.45 34.93 13035 

AA100_11 13946599 59.96 19.30 20.16 12284 
AA100_12 13570701 53.32 18.40 27.76 12497 
SFM_1001 16171294 52.21 28.46 18.74 10735 
SFM_1002 15621913 49.50 22.07 27.88 11453 

AA100_1001 23773752 65.63 16.61 17.17 10893 
AA100_1002 18074154 60.18 16.98 22.29 11443 

SFM_501 33161547 54.08 28.91 16.44 9904 
SFM_502 15037880 50.72 26.81 21.93 10117 

AA100_501 13033759 67.04 17.56 14.83 8524 
AA100_502 12209593 61.00 18.98 19.49 9787 
SFM_251 9975315 44.38 36.77 18.28 7196 
SFM_252 8843522 50.50 24.53 24.47 8096 

AA100_251 25480845 67.41 17.15 14.87 8056 
AA100_252 13152956 61.90 18.75 18.88 8192 
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Table S3.2: Kegg pathways enriched in AA100/SFM samples. This list represents a subset of 
pathways that were enriched in the two samples. P-value was determined from background set of 
mouse genes. 

Pathways P-value 
Up-regulated  in AA100 in comparison to SFM 

mmu03010:Ribosome 5.92E-21 
mmu00190:Oxidative phosphorylation 7.34E-18 
mmu05016:Huntington's disease 4.54E-14 
mmu04530:Tight junction 0.001179122 
mmu04114:Oocyte meiosis 0.008939401 
mmu04150:mTOR signaling pathway 0.014273056 
mmu04350:TGF-beta signaling pathway 0.032027106 

Down-regulated in AA100 in comparison to SFM 
mmu04360:Axon guidance 3.47E-14 
mmu04310:Wnt signaling pathway 7.27E-13 
mmu04510:Focal adhesion 1.37E-08 
mmu04722:Neurotrophin signaling pathway 2.32E-07 
mmu04110:Cell cycle 3.82E-07 
mmu04012:ErbB signaling pathway 4.45E-07 
mmu04340:Hedgehog signaling pathway 9.03E-07 
mmu04330:Notch signaling pathway 4.25E-05 
mmu04910:Insulin signaling pathway 5.63E-05 
mmu04660:T cell receptor signaling pathway 7.57E-04 
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Table S3.3: GO (Biological Process) enrichments for genes differentially regulated in 
AA100 sample in comparison to SFM. P-value was determined from background set of mouse 
genes. 

Biological Processes P-value 
Up-regulated in AA100 in comparison to SFM 

GO:0006412~translation 1.57E-27 
GO:0006091~generation of precursor metabolites and energy 3.37E-22 
GO:0042254~ribosome biogenesis 3.14E-18 
GO:0007369~gastrulation 3.34E-04 
GO:0042074~cell migration involved in gastrulation 4.67E-04 
GO:0007005~mitochondrion organization 5.50E-04 
GO:0051301~cell division 6.05E-04 
GO:0048332~mesoderm morphogenesis 9.94E-04 
GO:0001701~in utero embryonic development 0.001228 
GO:0001824~blastocyst development 0.002370 
GO:0007492~endoderm development 0.003770 
GO:0001892~embryonic placenta development 0.011984 

Down-regulated in AA100 in comparison to SFM 
GO:0045449~regulation of transcription 4.30E-38 
GO:0030182~neuron differentiation 5.41E-21 
GO:0051252~regulation of RNA metabolic process 1.53E-19 
GO:0007389~pattern specification process 1.71E-18 
GO:0048666~neuron development 8.52E-16 
GO:0003002~regionalization 2.07E-14 
GO:0031175~neuron projection development 2.59E-14 
GO:0048598~embryonic morphogenesis 3.27E-14 
GO:0032990~cell part morphogenesis 2.96E-13 
GO:0048858~cell projection morphogenesis 3.04E-13 
GO:0007409~axonogenesis 3.50E-13 
GO:0048667~cell morphogenesis involved in neuron differentiation 9.25E-13 
GO:0030030~cell projection organization 1.17E-12 
GO:0006357~regulation of transcription from RNA polymerase II 
promoter 

1.52E-12 

GO:0043009~chordate embryonic development 1.59E-12 
GO:0009792~embryonic development ending in birth or egg hatching 1.65E-12 
GO:0000902~cell morphogenesis 3.56E-12 
GO:0048812~neuron projection morphogenesis 3.57E-12 
GO:0000904~cell morphogenesis involved in differentiation 7.05E-12 
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Table S3.4: List of quantitative RT-PCR primers used in the study. 
	
  

	
  
	
  
	
  

Gene Forward Primer Reverse Primer 
Lefty1 CGCTGAATCTGGGCTGAGTCCC GCCTAGGTTGGACATGTTTGCCCA 
Lefty2 TGCAAGTAGCCGACTTCGGAGC CCTATTCCCAGGCCTCTGGCCA 
Gsc GGGGGTCGAGAAAGCAACGAGG ACGAGGCTCACGCAGGCAGC 
Oct4 TGAAGTGCCCGAAGCCCTCCCTA GCCCTTCTGGCGCCGGTTACA 
T CTCCGATGTATGAAGGGGCTGCT GCTATGAGGAGGCTTTGGGCCG 
Sox1 TTCCCCAGGACTCCGAGGCG GTTCAGTCTAAGAGGCCAGTCTGGT 
Pax6 ACCTCCTCATACTCGTG ACTGATACCGTGCCTT 
Dmrt3 AACCGGCCACCCCTGGAAGT GTCGCCCCCGCAACCTTTCA 
Sox2 GCACATGAAGGAGCACCCGGA  GGTTCACGCCCGCACCCAG 
Fgf8 GCGAAGCTCATTGTGGAGAC CACGATCTCTGTGAATACGCA 
Nodal ACCAACCATGCCTACATCCAGAG CCCTGCCATTGTCCACATAAAGC 
Epha1 TACGCCTGCCCAGCCTGAGT GGTGTCCAGCCCAGCCGAAC 
Rab25 TCAGCCAGGCCCGAGAGGTC GATGGCACTGGTCCGGGTGC 
Pgr CGCCATCTACCAGCCGCTCG ACTGTGGGCTCTGGCTGGCT 
Foxa3 TTTGGGGGCTACGGGGCTGA TGCAGCCCACGCCCATCATG 
Ell2 TGCAGGCCTCCTACCACCCC TCCCCAGGCCTTCTGGAGTGC 
Lbh ACGTTGGGGCAAGAGCGTGG GAGACGGGGGAGGGGGTGAC 
Etv4 GAAGGTGGCTGGCGAACGCT GCGGGGCCAGTGAGTTCTGG 
Klf9 CCGCGTACTCGGCTGATGCC CACACGTGGCGGTCGCAAGT 
Wnt3a ACCAAGACCTAACAAACCC CATGGACATCACGGACC 
Per2 GGTGGCCTCTGCAAGCCAGG CCTCCGTGCTCAGTGGCTGC 
Hes1 CCCTGCAAGTTGGGCAGCCA CGAAGGCCCCGTTGGGGATG 
Foxc2 AGGGACTTTGCTTCTTTTTCCGGGC CCCGCAGCGTCAGCGAGCTA 
Prdm6 CCGGCCTTTCAAGTGCGGCT GGCATGCGCTGGTGTCGACT 
Cxcr4 TACCCCGATAGCCTGT GCACGATGCTCTCGAA 
Asb4 TCACCTCCGTGCGTCCTGCT TTCGGGCAAGAGTGGCAAGCC 
Lhx1 ACTAGGGACCGAGGGACGCG CAGTTTGGCGCGGATTGCCG 
Sox17 GAGCCAAAGCGGAGTCTC TGCCAAGGTCAACGCCTTC 
Creb3l1 ACAGGACGGACACCCTGGCA GGTCAGCCCAGGGGAGCAGT 
Basp1 AGGGGGCGGGGAGAATCCAAA GGAGCCTAGGGGACAGCGGTT 
β-Actin GCTGTATTCCCCTCCATCGTG CACGGTTGGCCTTAGGGTTCAG 
Lhx2 TGGGCTCAGCCGGGGCTAAT ACAGCTAAGCGCGGCGTTGT 
Gapdh AATGGATACGGCTACAGC GTGCAGCGAACTTTATTG 
Nanog AGGACAGGTTTCAGAAGCAGA CCATTGCTAGTCTTCAACCACTG 
Flt1 CTCAGACAAGTCAAACCTGGAG GGGAACTTCATCTGGGTCCATAA 
Foxh1 ACTTGCCCATCTATACGCCC GATTCAGTGCCTACGCTCCA 
Fst CTGAGAAAGGCCACCTGCTT GCCGCCACACTGGATATCTT 
Id1 TGGGAAAGACACTACCGCAG CTCTGGAGGCTGAAAGGTGG 
En1 CTACCACCACGGTTCAGGAC ATAGCGATCGTCTCTGCGTG 
Fzd3 GTACCCGTTGCACTCTTGGA CACTGAGGGGCATCACTGAG 
Sox3 CCCTGAGCACCACTCCGAC CACGGGGTTCTTGAGTTCAGT 
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Chapter 4 

Functional Characterization of dedifferentiated Neurons 
and Astrocytes using DP-seq 

4.1 Abstract 
Dedifferentiation of mature neurons and astrocytes was recently 

demonstrated as a mechanism for glioma formation in mice. Expression analysis 

of the known markers (of the differentiated cell-types) showed diminished 

expression while the expression of the undifferentiated state markers were 

significantly up-regulated in the dedifferentiated neurons and astrocytes. Here, 

we performed whole transcriptome analysis of these cells along with mouse 

pluripotent embryonic stem cells (mESC), neural stem cells (NSC), neurons and 

astrocytes to characterize the undifferentiated state of these cells. Our analysis 

revealed that dedifferentiated cell-types shared traits with neurons and NSCs at 

global transcriptome level suggesting that they have not completely regressed to 

an undifferentiated state of NSCs. Functional analysis of the transcriptomics data 

revealed involvement of the Wnt signaling, cell cycle and the focal adhesion 

pathways in defining the state of the dedifferentiated cell-types. Our analysis 

further revealed conservation of a gene interaction network in both 

dedifferentiated cell-types. This network exhibited modular architecture; 

connecting components of the cell cycle pathway to Wnt signaling and the focal 

adhesion pathway. Genetic perturbations of the interacting partners and/or the 
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abolishment of the interactions will elucidate the regulatory mechanism of this 

network in maintaining the dedifferentiated state of the neurons and the 

astrocytes.  

4.2 Introduction 
Dedifferentiation of terminally differentiated cells to a less differentiated 

state within its own lineage has generated a lot of interest in the field of 

regenerative medicine. Expansion of the pool of rapidly dividing progenitor stem 

cells and their subsequent re-differentiation could replace the tissue lost as a 

result of injury. In fact, some vertebrate species have demonstrated remarkable 

regenerative capacity resulting in a complete limb replacement84 to full 

regeneration of their heart85, 86. In contrast, mammals have exhibited a limited 

capacity to regenerate and maintain their tissues and organs. However, recently 

some evidence of dedifferentiation in mammals has emerged. Schwann cells 

have been reported to dedifferentiate and proliferate upon injury to a nerve87, 88. It 

has been demonstrated that upon loss of contact with the axon that they are 

myelinating, schwann cells begin expressing markers of precursor stem cells, 

proliferate and differentiate to give rise to mature myelinating or non-myelinating 

schwann cells. Similarly, upon brain injury, astrocytes have shown the ability to 

re-enter the cell cycle and undergo long – term self – renewal and multipotency 

by forming neurospheres89-91. Skeletal muscle cells in an injured mouse model 

have also demonstrated their dedifferentiation capacity resulting in cell 

proliferation and myogenesis92. Additionally, dedifferentiation has been achieved 

by experimental induction wherein extract isolated from regenerative newt limbs 
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reduced the expression of myoblast genes MyoD and myogenin in the mouse 

myotubes and subsequently led to their proliferation93. Introduction of chemical 

compounds has also resulted in dedifferentiation of lineage-committed myoblasts 

to multipotent mesenchymal progenitor cells94. Finally, in the extreme form of 

dedifferentiation, researchers have shown that overexpression of specific 

transcription factors in any differentiated cell type could result in complete 

reprogramming of the cells to a pluripotent state95-97. 

Regression of cells to a less differentiated state has also been 

demonstrated in progression of cancer. Recent studies have suggested that 

dedifferentiation of non-stem cells in the cancer mass results in the generation of 

cancer stem cells that greatly enhances the pool of rapidly proliferating cells32, 98, 

99. Epithelial to mesenchymal transition , which correlates with β-catenin 

expression, has been associated with dedifferentiation of invading cells100. 

Moreover, TGFβ has been demonstrated to promote dedifferentiation during the 

squamous-cell carcinoma resulting in most aggressive form of skin cancer101. In 

another study, human mammary epithelial cells have been shown to 

spontaneously dedifferentiate to cancer stem cells like state in-vitro102.  Genetic 

models of tumor initiation by dedifferentiating non-stem cell population in 

intestinal epithelial cells have implicated the role of NF-κB in enhancing Wnt-

signaling leading to the dedifferentiation and proliferation of epithelial cells into 

tumor-initiating cells98. A recent study showed transduction by oncogenic 

lentiviral vectors containing short hairpin RNA (shRNA) targeting NF1 and p53 

genes of mature neurons, astrocytes and neural stem cells gave rise to 
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malignant tumors32. All the tumors hence generated, showed high expression of 

progenitor markers and low expression of differentiation markers. Even though a 

number of signaling pathways have been identified to play a role in the 

dedifferentiation process, the exact molecular mechanism remains elusive103.  

Here, we investigated dedifferentiation achieved by mature neurons and 

astrocytes in mouse hippocampus upon transduction with lentiviral vector 

containing shRNA targeting NF1 and p5332. Both of these genes have shown 

high % of mutations, 18% and 35% respectively, in glioblastoma multiforme 

(GBM). Previous studies have indicated that the loss of NF1 results in high cell 

proliferation while loss of p53 results in genomic instability, some of the hallmarks 

of cancer progression. Stereotaxic injection of the lentivirus in different sites of 

the mouse brain resulted in gliomas formation. While, glial cells104, 

oligodendrocyte precursor cells105 and NSCs106 have been suggested as 

possible candidates of cell of origin, this study showed that cortical neurons also 

exhibited dedifferentiation and generated malignant gliomas. The gliomas were 

heterogeneous and matched the histo-pathological traits of the gliomas obtained 

from other cell types. To further validate their hypothesis, the authors isolated 

neurons that were Map2-positive, GFAP (Glial Fibrillary Acidic Protein) and 

doublecortin negative, and Ki67 negative and transduced them with the lentiviral 

vector in-vitro. The transduced neurons where transplanted into NOD-SCID mice 

and the resulting tumors were analyzed. The tumors showed similar 

characteristics to in-vivo transduced tumors. These tumors further showed high 

levels of Sox2 and Nestin (NSC markers) expression. Similar observations were 
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made for cortical astrocytes that showed no expression of NSC markers but 

exhibited elevated expression of progenitor markers upon transduction with the 

same lentiviral vector.  

We performed whole genome transcriptome analysis of the 

dedifferentiated neurons (Tr. Neuron) and astrocytes (Tr. Astrocyte) along with 

the enriched populations of mESCs, NSCs, neurons and astrocytes to 

characterize the point of regression of these dedifferentiated cells on the 

differentiation axis.  Our transcriptome data revealed that the dedifferentiated 

cells have significantly lower expression of known markers of their parental cell-

types. They also exhibited increased expression of progenitor NSC markers. 

However, at whole transcriptome level, dedifferentiated cells retained high 

expression of some of the neuronal markers, suggesting that these cells have not 

completely dedifferentiated to the NSC like state. Enrichment analysis of the 

differentially regulated genes in the dedifferentiated cell-types revealed up-

regulation of the cell cycle, Wnt signaling and the focal adhesion pathways in 

comparison to the differentiated cell-types. Furthermore, we identified a gene 

interaction network that was conserved in the dedifferentiated neurons and 

astrocytes thus revealing significant interactions between the genes responsible 

for the phenotype observed in the dedifferentiated cell-types. 

4.3 Results 

4.3.1 Experimental design and transcriptome analysis 
To understand the molecular mechanism involved in the dedifferentiation 

of mature neurons and astrocytes upon transduction with the lentiviral vector, we 
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made use of an in-vitro culture system. Cortical neurons and astrocytes were 

derived from postnatal day 11 mice. They were maintained in in-vitro conditions 

in the presence of serum to maintain their identity. These cells were later 

transduced with the lentiviral vector with the transduction efficiency of >90%. The 

transduced neurons and astrocytes were later transferred in a stem cell media 

that was devoid of serum and was supplemented with FGF-2. Within one week, 

these cells became proliferative and aggregated to form free-floating 

neurospheres. These cells were later harvested and mRNA was collected for 

sequencing library generation using DP-seq31. To access the regression of these 

cells to an undifferentiated state along the differentiation axis, enriched 

populations of mESCs and NSCs were also grown in in-vitro system and mRNA 

obtained from these cells were subjected to library preparation (Figure 4.1).  

Sequencing libraries prepared from these samples exhibited high 

transcriptome coverage with a vast majority of the reads mapping to the NCBI 

Refseq database (Supplementary Table 4.1). Analysis of the biological 

replicates showed little biological variations, except for the neurons 

(Supplementary Fig. S4.1). To validate our sequencing libraries, we 

investigated the expression of known markers of different cell-types. Mouse ESC 

markers107, which were significantly enriched in mESCs libraries, showed low 

expression in other cell types. Similarly, expression of NSC markers, Sox2, Dll3 

and Meis1, were significantly up-regulated in the NSC populations. Known 

markers of neurons and astrocytes108 also showed high expression in their 

respective sequencing libraries thus validating the sequencing libraries. In case 
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of dedifferentiated neurons and astrocytes, majority of the mESCs markers had 

low expression. Additionally, these cells exhibited diminished expression of their 

parental cell-types while the expression of known NSC markers, Nestin and Sox2 

was significantly high in these cells. This demonstrated that the dedifferentiated 

cells partially abandoned the expression pattern of their parental cell-types and 

acquired an undifferentiated progenitor stem cell state (Figure 4.2). 

	
  
 

Figure 4.1: Schema of experimental design. mRNA was collected from enriched 
populations of mESCs, NSCs, primary culture of neurons, primary culture of astrocytes and 
dedifferentiated neurons and astrocytes. Dedifferentiation of neurons and astrocytes was 
achieved by transducing the primary cultures of neuron and astrocytes by lentiviral vector 
comprising of shRNA targeting NF1 and p53. The transduced neurons and astrocytes were 
maintained in stem cell media devoid of serum and supplemented with FGF-2 for three weeks. 
The mRNA was also derived from transduced neurons that were maintained in DMEM media.   
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Figure 4.2: Expression analysis of the known markers. Heatmap displaying expression of 
the known markers of different cell-types. (A) mESC markers (B) NSC markers (C) Neuron 
markers (D) Astrocyte markers.	
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4.3.2 Differential gene expression analysis 
The biological cell-types considered in this study were highly divergent 

with many housekeeping genes exhibiting differential expression. Therefore, we 

normalized the sequencing libraries using quantile normalization. Differential 

expression analysis identified 463 genes up-regulated in Tr. Neurons in 

comparison to mature neurons. Tr. Astrocyte samples showed higher differential 

expression (1966 genes up-regulated in comparison to astrocytes) owning to 

high biological variations in the neuron samples. Majority of the 463 genes up-

regulated in Tr. Neurons were also up-regulated in Tr. Astrocytes (Figure 4.3) 

highlighting that the genetic alterations introduced by the lentiviral vector affected 

same set of genes in the differentiated cell-types. Similar observations were 

made for the down-regulated genes in the dedifferentiated neurons and 

astrocytes (Figure 4.4). 

We next performed pathway enrichment analysis on the differentially 

regulated genes identified in the dedifferentiated cell-types. In both cell-types, 

canonical Wnt signaling, cell cycle and the focal adhesion pathways were 

significantly up-regulated. Aberrant regulation of Wnt signaling has been 

implicated in progression of many cancers109 and many of its components have 

been associated with maintenance of cancer stem cells110. Expectedly, cell cycle 

related genes were up-regulated in dedifferentiated cell-types as these cells were 

highly proliferative as opposed to their parental cell-types. The dedifferentiated 

cell-types underwent drastic transformation where they left their flattened 

morphology and acquired an aggregated free-floating neurosphere like structure. 
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This transformation resulted in differential expression of many focal adhesion 

genes. Interestingly, focal adhesion genes exhibited bifurcated expression 

pattern where a unique set of genes were enriched in the dedifferentiated cell-

types while some genes lost their expression (Figure 4.5). Both, neurons and 

astrocytes, displayed conserved regulation of many of the focal adhesion 

associated genes.  

	
  

	
  
 

Figure 4.3: Differentially expressed genes (Up-regulated) identified in the 
dedifferentiated neurons and astrocytes (Tr. Neurons and Tr. Astrocytes) in 
comparison to their parental cell-type. Majority of the up-regulated genes identified in the 
Tr. Neurons were also differentially regulated in Tr. Astrocytes. Astrocytes samples displayed 
more differential regulation of the transcripts owing to less biological variability in their 
biological replicates. Enriched KEGG signaling pathways represented by differentially 
expressed genes are also depicted. 
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Figure 4.4: Differentially expressed genes (Down-regulated) identified in 
dedifferentiated neurons and astrocytes (Tr. Neurons and Tr. Astrocytes) in 
comparison to their parental cell-type. Enriched KEGG signaling pathways represented by 
differentially expressed genes are also depicted. 
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Figure 4.5: Heatmap displaying expression of focal adhesion related genes 
differentially regulated in Tr. Neurons in comparison to neurons. (A) Up-regulated focal 
adhesion related genes (B) Down-regulated focal adhesion related genes. 
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Pathways down-regulated in dedifferentiated cell-types were necessary for 

maintenance of terminally differentiated cell-types (neurons and astrocytes). This 

further highlights that the dedifferentiated cell-types have distanced themselves 

from the differentiated state and acquired a progenitor stem cell like state.   

4.3.3 Gene set enrichment analysis 
We performed single sample gene set enrichment analysis (ssGSEA)32, 111 

to access the path adopted by mature neurons and astrocytes to dedifferentiate 

to a less differentiated state. For this analysis, we first compiled a list of known 

markers of the enriched populations, viz., mESC, NSC, neurons and astrocytes. 

This list was short and the enrichment analysis was prone to high noise. As such, 

we constructed gene-list specific to each population by using our transcriptomics 

datasets. We identified genes that were significantly up-regulated in one 

population as opposed to all other enriched populations and designated them as 

“putative” markers of that population.  

Expectedly, the ssGSEA analysis performed on the enriched populations 

showed strong enrichment scores for their “putative” markers. The enrichment 

was also significant for the known markers of the enriched populations. In case of 

dedifferentiated neurons, positive enrichment was observed for known neuronal 

markers. The “putative” markers of neurons also showed positive enrichment 

although the significance was poor. Surprisingly, similar observations were made 

for dedifferentiated astrocytes where positive enrichment was observed for 

known neuronal markers. The known astrocyte markers also displayed positive 

enrichment in the dedifferentiated astrocytes, however, the enrichment was not 
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statistically significant (Table 4.1). A number of known neuronal markers showed 

high expression in both dedifferentiated neurons and astrocytes and the GO term 

enrichment analysis of those genes showed biological processes associated with 

neuronal function (Table 4.2).  On the other hand, the known neuronal markers 

that showed low expression in dedifferentiated neurons and astrocytes were 

mostly associated with ion transport and ligand interaction (Table 4.3). The 

enrichment scores for the mESC markers in the dedifferentiated cell-types were 

negative with the majority of the mESC-associated genes exhibiting low 

expression in these cells. Additionally, dedifferentiated cell-types showed low 

enrichment score for “putative” NSC markers. This suggests that at whole 

transcriptome level, dedifferentiated cell-types have not completed regressed to 

NSC like state and they still possess similarities in gene expression to their 

parental cell-types.  

Table 4.1: Single sample gene set enrichment analysis. Dedifferentiated neurons and 
astrocytes showed similar expression of neuronal markers as opposed to NSC markers. 

Tr. Neurons 
Gene List # of genes PValue 

Focal Adhesion in Tr. Neurons 22 0.005 
Known Neuron Markers 64 0.034 
Neuron Specific 373 0.277 
Known Astrocyte Markers 78 0.402 
NSC Specific 232 0.498 

Tr. Astrocytes 
Focal Adhesion in Tr. Neurons 22 0.021 
Known Neuron Markers 64 0.081 
Known Astrocyte Markers 78 0.224 
Neuron Specific 373 0.275 
Astrocyte Specific 416 0.502 
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Table 4.2: GO Enrichment (Biological Process) of neuron markers that exhibited high 
expression in the Tr. Neurons and Tr. Astrocytes.  

Tr. Neurons (16 genes) 
Term (Biological Process) PValue 
GO:0031175~neuron projection development 0.0006 
GO:0048666~neuron development 0.0014 
GO:0030030~cell projection organization 0.0018 
GO:0031133~regulation of axon diameter 0.0024 
GO:0032536~regulation of cell projection size 0.0024 
GO:0045664~regulation of neuron differentiation 0.0029 
GO:0045110~intermediate filament bundle assembly 0.0032 
GO:0030182~neuron differentiation 0.0034 
GO:0050767~regulation of neurogenesis 0.0048 

Tr. Astrocytes (11 genes) 
GO:0031133~regulation of axon diameter 0.0013 
GO:0032536~regulation of cell projection size 0.0013 
GO:0045110~intermediate filament bundle assembly 0.0017 
GO:0060052~neurofilament cytoskeleton organization 0.0039 
GO:0045109~intermediate filament organization 0.0057 
GO:0045104~intermediate filament cytoskeleton organization 0.0096 
GO:0031099~regeneration 0.0101 
GO:0045103~intermediate filament-based process 0.0109 
GO:0050770~regulation of axonogenesis 0.0171 
GO:0010975~regulation of neuron projection development 0.0205 

	
  
We performed similar analysis on an in-vivo cancer tissue obtained from 

the stereotaxic injection of the lentiviral vector in the hippocampus of the mice. 

Positive enrichments for both neuronal markers and focal adhesion molecules 

up-regulated in the dedifferentiated neurons, were observed. This implies that 

even the cancer formed by dedifferentiation of neurons and astrocytes, share 

neuronal traits and exhibit similar expression of focal adhesion molecules as 

observed in the dedifferentiated cell-types.  
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Table 4.3: GO Enrichment (Biological Process) of neuron markers that exhibited low 
expression in the Tr. Neurons and Tr. Astrocytes. 

Tr. Neurons 
Term PValue 
GO:0006836~neurotransmitter transport 0.00005 
GO:0006811~ion transport 0.00894 
GO:0007268~synaptic transmission 0.01063 
GO:0006821~chloride transport 0.01072 
GO:0001505~regulation of neurotransmitter levels 0.01106 
GO:0032940~secretion by cell 0.01197 
GO:0046903~secretion 0.01899 
GO:0015698~inorganic anion transport 0.01925 
GO:0019226~transmission of nerve impulse 0.02009 
GO:0007267~cell-cell signaling 0.03810 
GO:0006814~sodium ion transport 0.04100 
GO:0006820~anion transport 0.04401 
GO:0007214~gamma-aminobutyric acid signaling pathway 0.04539 

Tr. Astrocytes 
GO:0006836~neurotransmitter transport 0.000003 
GO:0007268~synaptic transmission 0.00014 
GO:0019226~transmission of nerve impulse 0.00044 
GO:0006821~chloride transport 0.00070 
GO:0001505~regulation of neurotransmitter levels 0.00073 
GO:0006811~ion transport 0.00079 
GO:0007267~cell-cell signaling 0.00135 
GO:0015698~inorganic anion transport 0.00171 
GO:0032940~secretion by cell 0.00192 
GO:0046903~secretion 0.00358 
GO:0006928~cell motion 0.00378 
GO:0007269~neurotransmitter secretion 0.00475 
GO:0006814~sodium ion transport 0.00545 
GO:0006820~anion transport 0.00608 
GO:0030001~metal ion transport 0.00824 
GO:0006813~potassium ion transport 0.01073 
GO:0015672~monovalent inorganic cation transport 0.01079 
GO:0006812~cation transport 0.01525 
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4.3.4 Identification of functional network 
We next sought to identify functional connectivity between genes that 

were differentially regulated in the dedifferentiated cell-types. We compiled a 

database of known as well as predicted direct and functional gene and protein 

interactions from three different sources including TRANFAC112, STRINGS 

(Search Tool for the Retrieval of Interacting Genes/Proteins 8.3; http://string-

db.org/) and HPRD (Human Protein Reference Database, http://www.hprd.org).  

The resulting network consisted of more than 8000 nodes/genes that were 

connected by > 40000 edges/interactions. We projected the up-regulated genes 

in dedifferentiated neurons (in comparison to neurons) on this network and 

identified a functional connectivity between 38 nodes that were connected by 

more than 53 edges (Figure 4.6). The network further demonstrated sub-

networks representing the genes associated with the three signaling pathways, 

viz., Wnt signaling, cell cycle, and the focal adhesion pathway. These pathways 

were also identified as significantly enriched in dedifferentiated neurons.  

Since, neurons and astrocytes were infected with same lentiviral vector 

and the dedifferentiated cell-types were phenotypically similar, we postulated that 

the functional network of the up-regulated genes should also be conserved 

between the dedifferentiated neurons and astrocytes. Indeed, the core functional 

connectivity was maintained in these cells (Figure 4.7). The network comprised 

of 17 nodes and 20 edges and genes associated with the Wnt signaling, cell 

cycle and focal adhesion pathways were represented. 
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Figure 4.6: Gene interaction network of differentially expressed genes in Tr. Neurons in 
comparison to neurons. The module shows association of genes related to the focal 
adhesion, cell cycle and the Wnt signaling pathways. 
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Figure 4.7: Interaction network conserved in both dedifferentiated neurons and 
astrocytes in comparison to their parental cell-types. The network shows connectivity 
between the focal adhesion and cell cycle related genes. 

	
  



	
  

	
  

134	
  

4.4 Discussion 
Genetic alterations of mature neurons and astrocytes have been 

implicated in gliomagenesis32. High expressions of NSC markers in these tumors 

and the transformation of the primary cultures of neurons and astrocytes to a 

proliferative state leading to formation of neurospheres upon transduction with 

lentiviral vector, gave strong evidence of dedifferentiation of these cells to an 

undifferentiated stem cell like state. Dedifferentiated neurons and astrocytes also 

exhibited high expressions of known markers of pluripotent mESCs including 

SSEA1, c-myc and Nanog. They also possessed open and more relaxed 

chromatin structure.  This raised the possibility that these cells may have 

regressed to an undifferentiated state that shares the characteristics of both 

ESCs and NSCs. To further characterize the undifferentiated state of these cells, 

we performed whole transcriptome analysis of the dedifferentiated cell-types 

along with the enriched populations of mESCs, NSCs and terminally 

differentiated neurons and astrocytes.  

ssGSEA analysis of the gene-lists specific to the enriched populations of 

ESC, NSC, neurons and astrocytes revealed that dedifferentiated neurons 

retained the expression of some of the known neuronal markers (Table 3). 

Majority of the ESC markers had low expression in these cells. Our transcriptome 

data revealed high expression for some of the NSC markers (Nestin, Sox2, 

Wnt5a, Notch1, Msi1). However, a number of NSC specific genes showed 

reduced expression in these cells and consequently the enrichment scores for 

NSC specific gene-list was poor. While dedifferentiated neurons were far apart 
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from ESCs at whole transcriptome level, they bore similarities to NSC and 

neurons suggesting that these cells did not regress completely to NSC like state. 

In case of dedifferentiated astrocytes, the known markers of astrocyte exhibited 

low expression with 311 out of 423 “putative” astrocyte markers showing down-

regulation in the dedifferentiated astrocytes. On the contrary, dedifferentiated 

astrocytes showed positive enrichment scores for known neuron markers. GO 

term enrichment of these genes showed biological processes related to neuron 

function. This implies that these cells have left their astrocyte state and acquired 

a state similar to dedifferentiated neurons where they share traits similar to NSC 

and neurons. Interestingly, when the dedifferentiated astrocytes were placed 

back in the NOD SCID mice; the resulting tumors exhibited expression of some 

neuronal markers (Tuj1)32. Recent study further corroborates the cell fate 

plasticity observed between astrocytes and neurons113. We reckoned that the 

genetic alterations introduced by lentiviral vector containing shRNA against NF1 

and p53, predisposes these cells to an undifferentiated state that lies between 

NSC and neurons hence the dedifferentiated cells seemed to have followed path 

2 (Figure 4.1).  

Our functional analysis of the transcriptome profiles revealed signaling 

pathways that were necessary for neurons and astrocytes to maintain their 

dedifferentiated state. Many components of cell cycle and Wnt signaling 

pathways were up-regulated in dedifferentiated neurons and astrocytes. This was 

expected, as these cells were highly proliferative in the in-vitro cultures. Focal 

adhesion pathway was also differentially regulated in these cell-types. The 
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transformation in morphology from flattened profiles to free-floating three-

dimensional neurospheres resulted in loss of expression of a set of focal 

adhesion molecules in the dedifferentiated cell-types. On the other hand, these 

cells acquired expression of a distinct set of focal adhesion molecules that had 

conserved expression profiles in the two dedifferentiated cell-types. Interestingly, 

these focal adhesion molecules are not highly expressed in NSCs but have high 

expressions in in-vivo cancer tissue, suggesting their unique role in cancer 

progression. SSGSEA analysis of the focal adhesion molecules up-regulated in 

Tr. Neurons showed significant positive enrichment score in Tr. Astrocytes 

(Table 4.1). Additionally, a number of focal adhesion molecules that lost their 

expression in these cells, were also down-regulated in NSCs in comparison to 

neurons.  

We next projected genes up-regulated in dedifferentiated neurons on 

protein – protein interaction network to access their functional connectivity. The 

resulting network revealed distinct modules representing the three differentially 

regulated pathways, viz. cell cycle, Wnt signaling and focal adhesion pathway. 

Interestingly, many components of this network were also observed in the 

dedifferentiated astrocytes network, implying that the core network of genes 

responsible for the maintaining the dedifferentiated state are conserved in the 

two cell-types.  

This network analysis revealed several known interactions (Figure 4.7). 

E2F1, a transcription factor, has recently been shown to support NSC 

proliferation and its down-regulation is required for differentiation of NSCs to 
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neurons114. Spp1 is a secretory protein that has been associated with cell 

migration and proliferation via interaction with its receptor, α5β3 integrin115. 

Recent studies have revealed high expression of Spp1 in glioblastoma and its 

role in cell adhesion and invasiveness of the cancer cell116, 117. In our network, 

this protein connects cell cycle module to the focal adhesion pathway. To 

validate our network connectivity and elucidate possible role of focal adhesion 

pathway in maintenance of the dedifferentiated state of neurons and astrocytes, 

it will be desirable to inhibit the expression of this gene or neutralize the protein 

expression via antibody. Furthermore, our analysis revealed up-regulation of a 

number of transcription factors (Figure 4.8) in the dedifferentiated cell-types, 

many of whom are well known cell cycle related transcription factors. Some of 

these transcription factors (Jun and Prrx1) are known to regulate expression of 

focal adhesion molecules up-regulated in the dedifferentiated neurons. Genetic 

perturbation of these transcription factors will facilitate identification of gene 

regulatory networks responsible for maintenance of the undifferentiated state of 

the neurons and astrocytes. Finally, comparative analysis of these gene 

regulatory networks across other dedifferentiation models will elucidate molecular 

mechanisms responsible for cell-fate plasticity.  
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Figure 4.8: Heatmap of the transcription factors that were significantly up-regulated in 
dedifferentiated neurons and astrocytes in comparison to their respective parental cell-
types.   
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4.5 Materials and Methods 

4.5.1 Cell Culture 
Primary astrocytes and neurons were obtained from 11 days postnatal 

pups from GFAP-Cre and SynapsinI-Cre transgenic mice respectively, and 

prepared according to published methods118, 119. 

Astrocytes were maintained in DMEM containing 10% FBS and neurons 

were cultured in Neurobasal™-A Medium (Gibco) containing Glutamax™ (Gibco) 

and B-27 supplement (Gibco). Following transduction of either primary astrocytes 

or neurons with the lentivirus, at the early passages, cells were either cultured in 

the medium described above or in parallel cultured in NSCs medium containing 

FGF-2. NSCs media was prepared using the following reagents: DMEM/F-12 

(Gibco), NaHCO3, Insulin (Sigma), apo-Transferrin (Sigma), Putrescin (Sigma, 

Sodium Selenite (Sigma), Progesterone (Sigma), and supplemented with 20 

ng/ml fibroblast growth factor-2 (Prepotech). 

NSCs were isolated from E14.5 mouse embryos, the brains were 

microdissected to harvest the ganglionic eminences, dissociated to harvest the 

tissue in NSC media to gain a single cell suspension for plating in coated poly-

ornithin and laminin tissue culture plates120. Neurospheres were passaged by 

dissociation of the spheres into single cells using TripLE™ Express (Gibco). 

4.5.2 RNA Extraction 
Total RNA was isolated using Trizol (Ambion). For extraction of poly-

adenylated mRNA Dynabeads mRNA Purification Kit (Invitrogen) was used.  
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4.5.3 Sequencing library preparation 
All mRNA samples were subjected to sequencing library preparation using 

DP-seq31. 

4.5.4 Quantification of the sequencing library 
Quantitative real time PCR was used to determine the concentration of the 

sequencing libraries prepared by our protocol. The standard curve for various 

dilutions of phiX control library was generated using the adapter specific primers 

recommended by Illumina. We later used the standard curve to determine the 

molarity of our sequencing libraries. The concentration of sequencing library 

loaded into the flowcell was calibrated by the sequencing facility. We typically 

obtained good cluster density with 5 pM of library concentration on HiSeq v3 kit.   

4.5.5 Mapping reads 
All libraries were sequenced by Illumina’s HiSeq2000 systems (TruSeq 

SR Cluster Kit v3-cBot-HS and TruSeq SBS Kit v3-HS). The libraries were 

sequenced as 50 bp single-end reads, except for astrocytes samples, which 

were sequenced as 100 bp single-end reads. The first 7 sequencing cycles were 

truncated as they came from our heptamer primers and the following 32 bp reads 

were mapped to the mouse NCBI refseq database allowing up to 2 mismatches, 

using our in house mapping software which implements suffix array data 

structure. The reads that did not align to the NCBI Refseq database were later 

aligned to the mouse genomic locations using bowtie software67 (≤ 2 

mismatches).  
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4.5.6 Differential gene expression analysis 
Unique reads obtained from different samples were quantile normalized. 

This method normalizes the sequencing libraries assuming that the distribution of 

reads for all the transcripts come from the same underlying distribution, 

regardless of the cell-type. Differentially expressed genes were identified using 

local pooled error test (LPE)70. A p-value cut-off of 0.05 was used to assign 

significance to the differentially expressed genes.  

4.5.7 Single Sample Gene Set Enrichment Analysis 
The sequencing data was arranged into matrix, where rows and column 

represented the number of genes and different cells lines respectively. The 

sequencing measurement of biological replicates were averaged and assigned to 

each column. There were four primary cell lines, three transformed cell lines and 

one cancer cell line.  Gene counts for each gene (row) were normalized to get 

the gene rank order among the cell lines. The normalization parameters, mean, 

standard deviation and mean absolute deviation, were calculated based on four 

primary cell lines and whole row was normalized as: 

!! =
(!! − !)
!!

∗
!!"#
!  

Where, !, !!"# and !! are mean, standard deviation and mean absolute 

deviation, respectively, calculated based on four primary cell lines. An arbitrary 

MAD cutoff of >= 20 was applied to eliminate the genes with low expression and 

low variation from the analysis. The rescaled gene rankings for each cell line 

(column) were used for single sample gene set analysis (SSGSEA) 



	
  

	
  

142	
  

	
  

4.6 Supplementary Figures 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
  
Figure S4.1: Biological Replicates. The variations between the biological replicates reflect 
the biological variability as well as technical variations arising from the sequencing library 
generation and the sequencing platform. The neuron biological replicates possessed high 
variations. 
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4.7 Supplementary Tables 
Table S4.1: Mapping statistics. Tr. refers to dedifferentiated Neurons and Astrocytes. BR refers 
to biological replicates. 

Samples Total Reads Uniquely 
Mapped 

Non 
Uniquely 
mapped 

Transcripts 
>=1 unique 

reads 
mESC 19895309 60.08 22.54 14721 
NSC BR1 18729943 45.44 19.31 14553 
NSC BR2 31350382 43.69 18.69 15149 
Neuron BR1 17932355 51.21 19.28 15370 
Neuron BR2 19564005 47.50 19.53 15964 
Astrocyte BR1 23744582 41.85 14.09 15214 
Astrocyte BR2 18369803 42.46 14.43 14789 
Tr. Neuron BR1 18838348 53.19 19.13 14748 
Tr. Neuron BR2 25653027 56.95 19.46 14822 
Tr. Neuron DMEM BR1 26149612 49.29 18.13 15129 
Tr. Neuron DMEM BR2 19120915 50.16 18.07 14762 
Tr. Astrocyte BR1 17524415 47.60 15.86 13802 
Tr. Astrocyte BR2 29102865 49.08 15.58 14800 
In-vivo Cancer 14247457 54.27 18.49 15226 
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Chapter 5 

Future Directions 
In this thesis, I described a novel amplification-based strategy that uses a 

defined set of heptamer primers to amplify the majority of the mouse transcripts 

from as low as 50 pg of mRNA. Some of the useful features of our methodology 

are:  

1. The library construction requires a very small amount of purified poly “A” 

mRNA (~ 25 - 50 pg). 

2.  The amplification of genes ensures better representation of low abundant 

genes. 

3. Since the heptamer-primer binding sites and their corresponding amplicon 

lengths are already known, we do not expect transcript length bias as 

observed in other RNA-seq strategies.  

4. In our method, multiple amplicons are generated from each mRNA; 

thereby providing technical replicates to access statistically relevant gene 

expression. 

5. Our methodology can be adapted to provide strand - specific gene 

expression profiles.  

6. Our strategy has potential for “targeted amplification” to perform 

preferential amplification of genes involved in a given pathway (eg. Wnt 

signaling pathway) or a phenotype (eg. pluripotency related genes). 
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7. Designing primers specific for known “hotspots” in the mammalian 

chromosomes could detect chromosomal abnormalities and structural 

variations.   

8. The strategy could be extended to sequence promoter sites of all genes to 

study epigenetic mark up by subjecting the mammalian genomes to bi-

sulphite treatment. 

9. Another application of this strategy would be to design minimal set of 

primers to specifically sequence regions of the genome mutated in genetic 

diseases. These primers set could act as a diagnostic kit for assessing the 

susceptibility of individuals towards certain diseases.   

These applications would require further improvements in our primer 

generation pipeline and optimization of the targeted cDNA amplification protocol. 

Some of the natural directions for future research are listed below: 

A) Quantitative Prediction Model: Heptamer primers are highly promiscuous 

with thousands of primer binding sites on the mouse transcriptome. However, 

only a small proportion of these primer-binding sites are experimentally 

observed. The PCR biases associated with our protocol causes preferential 

amplification of these sites. Quantification of these PCR biases will help 

formulate a quantitative prediction model that would access amplification 

efficiency of all possible amplicons given a set of heptamer primers and the 

transcriptome sequence. This model will further facilitate designing heptamer 

primers that selectively/preferentially amplify “genes of interest” while minimizing 

the representation of unwanted transcripts. One of such instances was 
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demonstrated in Chapter 2 where we constructively exploited PCR biases and 

designed multiple primer sets that reduced the representation of highly 

expressing ribosomal transcripts by more than 70% while maintaining the overall 

transcriptome coverage. This methodology could also be used to design primers 

specific to a particular phenotype (cancer related genes) or a biological process 

(stem cell differentiation). Since, only subsets of the transcripts are amplified, 

multiple samples can be combined, thus bringing cost effectiveness.  

B) Primers for Human Transcriptomes: The prediction model can also be 

utilized to design primers specific to splice junctions residing within the isoform 

groups of the human transcriptome. About 90% of human genes exhibit some 

form of alternative splicing. Of these genes, 50-80% show tissue-specific 

splicing. This supports the hypothesis that alternative splicing plays an important 

role in the development of phenotypic complexity in mammals121. Reliable 

quantitation of isoform transcripts has remained a challenge because of high 

sequence identity between the isoforms. Using 30bp reads with one mismatch, 

approximately 70% of the human transcriptome was found to be unique15. 

However, within an isoform groups, only 13% of the sequences are unique 

implying that the vast majority of the sequencing reads prepared from the most 

popular RNA-seq method will map non-uniquely to these transcripts. Our 

methodology will perform targeted amplification of the splice junctions that 

distinguishes the isoforms within an isoform group, thus providing quantitative 

information while occupying less sequencing space. Moreover, our method will 

provide sequence information of the splice junctions in the human transcriptome. 
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This will facilitate identification of disease associated mutations/single nucleotide 

polymorphisms in and around the splice junctions. A number of point mutations 

have been identified in the vicinity of mRNA splice junctions that alter the 

efficiency of mRNA splicing resulting in various disease phenotypes122. We 

believe our dataset could be used to accurately predict these mutations and 

provide a basis for designing a diagnostic kit. 

C) SNPs/Disease causing mutation detection: The need for personalized 

drugs has been steadily gaining momentum over last decade. The observation 

that two individuals respond differently to a given treatment implies inherent 

genetic heterogeneity between them. The genetic heterogeneity is often 

manifested in form of single nucleotide polymorphisms (SNPs) and copy number 

variations introduced by genomic rearrangements. Most of the SNPs are located 

in the translated regions of the transcriptome and affect the gene expression by 

manipulating the mechanisms by which cis-regulatory elements interact with 

transcription factors/activators. Similarly, numerous cancer-related mutations 

were identified in diseased human tissues using whole 

genome/exome/transcriptome sequencing123-127. More than 100x sequencing 

depth is typically required to achieve high confidence in calling mutations/SNPs. 

Since, present protocols of sequencing library generation do not discriminate the 

regions to sequence, a vast majority of sequencing cost is wasted while 

achieving such a depth. Moreover, the requirement for large amount of starting 

material further restricts the applicability of the existing strategies in accurate 

detection of mutations/SNPs in human tissues. Here we propose, designing 
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heptamer primers that preferentially amplify regions carrying disease related 

SNPs/mutations in the human genome.  We will use known databases on cancer 

and other genetic disorder related SNPs/mutations to design primers that 

hybridize upstream to these regions thus providing us with high quality 

sequencing reads and high coverage to accurately call SNPs/mutations. Similar 

strategy could be utilized to study DNA methylation patterns to identify pattern of 

cytosine residue methylation upon bisulphite treatment of CpG islands located in 

the mammalian genomes.   

D) Single cell transcriptomics - DP-seq showed high technical variations and 

accumulation of PCR spurious products at 25 pg libraries.  One of the challenges 

with DP-seq is that the 44 heptamer primers are split into three tubes which 

implies that only 8.33 pg of mRNA was amplified by each tube. A better primer 

design where more primers can be accommodated in a single tube to get similar 

transcriptome coverage while ensuring that no two primers have ΔG <-4 

Kcal/mol, is expected to reduce the technical noise and make our strategy 

compatible with single cell transcriptomics.  
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