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(Manuscript received 30 November 2010, in final form 24 July 2011)

ABSTRACT

A data-constrained ocean circulation model is used to characterize the distribution of water masses and

their ages in the global ocean. The model is constrained by the time-averaged temperature, salinity, and

radiocarbon distributions in the ocean, as well as independent estimates of the mean sea surface height and

sea surface heat and freshwater fluxes. The data-constrained model suggests that the interior ocean is ven-

tilated primarily by water masses forming in the Southern Ocean. Southern Ocean waters, including those

waters forming in the Antarctic and subantarctic regions, make up about 55% of the interior ocean volume

and an even larger percentage of the deep-ocean volume. In the deep North Pacific, the ratio of Southern

Ocean to North Atlantic waters is almost 3:1. Approximately 65% of interior ocean waters make first contact

with the atmosphere in the Southern Ocean, further emphasizing the central role played by the Southern

Ocean in the regulation of the earth’s climate. Results of the age analysis suggest that the mean ventilation age

of deep waters is greater than 1000 yr throughout most of the Indian and Pacific Oceans, reaching a maximum

of about 1400–1500 yr in the middepth North Pacific. The mean time for deep waters to be reexposed at the

surface also reaches a maximum of about 1400–1500 yr in the deep North Pacific. Together these findings

suggest that the deep North Pacific can be characterized as a ‘‘holding pen’’ of stagnant and recirculating

waters.

1. Introduction

This work aims to provide quantitative answers to two

related questions: 1) What regions of the surface ocean

are the most important in terms of ventilating the interior

ocean? 2) What are the ventilation time scales of the in-

terior ocean? A useful framework with which to answer

these questions is to partition each Eulerian water parcel

according to where and when its fluid elements were last

in contact with the sea surface. The partitioning produces

a normalized distribution function, P(rs, tjr), in which

(rs, t) is the time and place of last contact with the sea

surface and in which the conditioning argument r denotes

the location of the fluid parcel in the interior of the ocean

(e.g., Holzer and Primeau 2010, and references therein).

Many useful diagnostics of ocean ventilation can be ob-

tained by computing the generalized moments of P,

hg(r)iP 5

ð
V

drs

ð‘

0
dt g(t, rs)P(rs, tjr), (1)

where V denotes the sea surface (e.g., Haine and Hall

2002; Primeau 2005; Primeau and Holzer 2006; Holzer

and Primeau 2010). In particular, setting g(t, rs) [ t yields

the mean age of the water parcel, and setting g(t, rs) 5 1 if

rs is in a particular surface patch or outcrop Vi and zero

otherwise yields the fraction of the water mass that last

ventilated from the Vi patch.

Viewed from the perspective of the above framework,

many studies of ocean ventilation can be interpreted as

attempts to provide quantitative answers to questions

1 or 2 by computing or estimating particular moments of

P. Such studies fall into two distinct groups: those that

have used ocean general circulation models (OGCMs)
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to simulate P or some of its moments (e.g., Thiele and

Sarmiento 1990; England 1995; Deleersnijder et al. 2001;

Khatiwala et al. 2001; Haine and Hall 2002; Primeau

2005; Peacock and Maltrud 2006; Primeau and Holzer

2006; Bryan et al. 2006) and those that have used tracer

data to directly estimate moments of P (e.g., Broecker

et al. 1998; Matsumoto 2007; Johnson 2008; Holzer et al.

2010; Gebbie and Huybers 2010; Holzer and Primeau 2010;

Gebbie and Huybers 2012, hereafter GH12; Khatiwala

et al. 2011, manuscript submitted to Earth Planet. Sci.

Lett., hereafter KPH). Studies in the first group have

made use of dynamical constraints encoded in the cir-

culation model forced by climatological surface wind

stress and buoyancy forcing but have ignored information

provided by hydrographic tracer observations. In con-

trast, studies in the second group have used the hydro-

graphic tracer data but have largely ignored important

dynamical constraints provided by, for example, geos-

trophy and wind-driven Ekman transports. The goal of

the present study is to combine a dynamical model with

tracer data to obtain estimates of the moments of P that

are mutually consistent with dynamical and observational

constraints and thereby better quantify the surface ven-

tilation patterns and time scales that renew the ocean’s

deep water masses.

There is a large body of work focused on combining

dynamical models with data to investigate various as-

pects of the global ocean circulation, but to the best of

our knowledge none has focused on providing quanti-

tative answers to the questions posed in the first para-

graph. For example, box-inverse models (Wunsch 1996)

have been used to combine hydrographic observations

with the dynamical information provided by geostrophic

balance and wind-driven Ekman transports to infer the

diapycnal mixing and circulation patterns that maintain

the observed structure of water masses on global scales

(e.g., Ganachaud and Wunsch 2000, 2003). However,

because box-inverse models do not resolve the regions

separating the hydrographic sections used in the model,

it is difficult to use them to simulate P or its moments.

The studies performed as part of the Estimating the

Climate and Circulation of the Ocean (ECCO) project

(e.g., Stammer et al. 2002, 2004; Menemenlis et al. 2008;

Mazloff et al. 2010) do provide a gridded estimate of

the circulation, which can then be used to compute the

ventilation diagnostics provided by the moments of P.

(Khatiwala (2007) describes an efficient computational

framework with which to compute ventilation diagnostics

in the context of an ECCO-derived advection–diffusion

transport operator and gives an illustrative example for

a patch situated in the southeastern subtropical Pacific.)

However, the ECCO data-assimilation effort, which is

focused on climate variability on interannual to decadal

time scales, is not necessarily appropriate for examining

questions related to the ventilation of the deep ocean. The

assimilation runs, which include the initial state of the

model as part of the control variables, are not long enough

for the deep ocean to reach equilibrium with the surface

forcing. Information provided by natural radiocarbon,

which integrates transport rates over thousands of years, is

therefore not used as a constraint.

In contrast to the above model–data synthesis efforts,

the adjoint methodology developed by Schlitzer (1993,

2007) combines simplified dynamical constraints and

tracer observations in the context of a steady-state cir-

culation model assumed to represent the climatologically

averaged circulation. Because the model’s water masses

are in equilibrium with the surface forcing, Schlitzer

(2007) was able to make use of radiocarbon observations

together with other tracers to constrain deep and bottom

water transports. The model of Schlitzer (2007) would

therefore be well suited to estimate various moments of

P in the deep ocean, but this has not yet been done.

In this paper, we adapt the adjoint methodology de-

veloped by Schlitzer (1993, 2007) to constrain an ocean

circulation model using salinity, temperature, and ra-

diocarbon tracer data and then use the resulting model

to infer the moments of P. In section 2, we outline our

approach and highlight briefly what we believe are the

main similarities and differences in the formulation of

our model and the one developed by Schlitzer (1993,

2007). The heat, freshwater, and mass transports in our

optimal solution are presented briefly in section 3. The

main results of the paper are found in sections 4 and 5

where we quantify, in terms of the moments of P and its

adjoint Py, the time scales and regions with which the

deep ocean communicates with the atmosphere (P par-

titions the water parcels according to the time and place

of last contact with the atmosphere, whereasPy partitions

the water parcels according to the time and place of

their next, or first, contact with the atmosphere). The

results for ventilation volume fractions and mean ages

(i.e., mean last-passage times) should improve on existing

data-based estimates that ignored dynamical constraints

(e.g., Broecker et al. 1998; Matsumoto 2007; Johnson

2008; Holzer et al. 2010; Holzer and Primeau 2010;

Gebbie and Huybers 2010; GH12; KPH). The results

quantifying the regions where water masses are first ex-

posed to the atmosphere as well as the mean time to make

first contact with the atmosphere (i.e., mean first-passage

times) should improve on the results of Primeau (2005)

that were based on a simulation using an ocean general

circulation model without taking advantage of constraints

from actual temperature, salinity, and radiocarbon data.

The results for exposure volumes and first-passage times

are to our knowledge the first data-constrained estimates.
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2. Methods

a. Overview of the model formulation
and inference approach

We use a linearized dynamical ocean circulation

model in which the baroclinic pressure terms are com-

puted from observed climatological temperature and

salinity data and to which we have added adjustable

forcing terms to the horizontal momentum equations to

correct for model errors (section 2b). The velocity field

computed by the dynamical model is used in a tracer

transport model (section 2c) to simulate the tempera-

ture, salinity, and radiocarbon distributions. All quanti-

ties simulated by our model are implicit functions of the

adjustable parameters in the horizontal momentum bal-

ance. The temperature and salinity fields are also implicit

functions of additional adjustable parameters used to

control the air–sea exchange of heat and moisture. These

adjustable parameters are determined by minimizing an

objective function (section 2d) that measures the differ-

ence between (i) observed and simulated tracer fields, (ii)

simulated air–sea fluxes of heat and moisture and in-

dependent data-constrained estimates of the same quan-

tities, and (iii) the simulated mean dynamic topography

and an independent data-constrained estimate of the

same quantity.

Like Schlitzer (1993, 2007), our model satisfies the

discretized steady-state tracer budget equations exactly

and imposes only approximate dynamical constraints.

However, our approaches differ in the way the dynam-

ical constraints are imposed. Schlitzer’s model includes

the horizontal components of the velocity as control

parameters and imposes dynamical constraints by in-

cluding separate terms in the objective function that

penalize deviations from the initial geostrophic shear

computed from hydrographic data and from the linear

vorticity balance. Schlitzer’s model also includes sepa-

rate penalty terms for lack of smoothness in the three

components of the velocity fields. Apart from the already

mentioned constraint on the mean dynamic topography,

dynamical constraints in our model are imposed by add-

ing to the objective function a term that penalizes large

deviations from the model’s horizontal momentum bal-

ance. Because our dynamical model encodes in a con-

sistent way wind-driven Ekman dynamics, geostrophy,

large-scale linear vorticity balances, and explicit eddy-

viscosity terms, we can capture with a single term the

constraints that are enforced with separate terms in

Schlitzer’s model. Another difference between our model

and the one developed by Schlitzer is that his model is

constrained using nutrient, oxygen, dissolved inorganic

carbon, and chlorofluorocarbon (CFC) data in addition

to temperature, salinity, and natural radiocarbon data.

Although it is technically possible to include the addi-

tional tracers in our model, we have not included them in

the present study.

Once we have obtained our optimized dynamical

model, we use the resulting tracer transport model to

compute the moments of P and Py to make inferences

about ocean ventilation. Uncertainties in our infer-

ences are quantified by propagating the uncertainty in

the tracer data into our estimates of the moments of P
and Py using a Monte Carlo approach and by varying

the relative weight in the objective function of model–

data misfits and deviations from the dynamical model’s

explicit momentum balance (section 2f).

b. Dynamical model formulation

The dynamical model governing the advective veloc-

ity field used for the tracer transport equations is based

on the linearized Navier–Stokes equations with the hy-

drostatic and Boussinesq approximations. The continu-

ous model equations are given in appendix A. The grid

for the discretized model is horizontally uniform with

a 48 resolution and with 24 vertical levels ranging in

thickness from 30 m at the surface to 650 m in the

deepest layer. Friction due to subgrid-scale processes

is parameterized with Laplacian viscous terms. The

horizontal viscosity Ah is set by the constraint that

the width of viscous western boundary layers exceed the

grid spacing (Large et al. 2001), which in our 48 resolu-

tion is satisfied by Ah 5 400 3 103 m2 s21. The vertical

viscosity is set to Ay 5 1023 m2 s21, which is typical of

coarse-resolution models (e.g., Stammer et al. 2002).

The bottom topography was determined using the

2-minute gridded elevations/bathymetry for the world

(ETOPO2v2) relief dataset by horizontal smoothing

with a 28 averaging filter and interpolating to the model

grid. Modifications were made to the topography after

interpolation to deepen the Drake Passage to a depth

of 3600 m and the Greenland–Norwegian overflow to

a depth of 1200 m. The model grid does not include the

Mediterranean or other marginal seas.

Using finite differences to discretize the model equa-

tions and appropriate boundary conditions at the basin

boundaries leads to a matrix representation of the dy-

namical model

ds

dt
1 Ms 5 d, (2)

where M is a sparse square matrix and s [ [uTvTwThT]T is

the dynamical model’s discretized state vector including

the zonal (u), meridional (v), and vertical (w) velocities

and the mean dynamic topography (h). The right-hand

side d is a forcing vector that contains the baroclinic
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pressure forces plus the wind stress applied as a body

force in the top layer of the model. The wind stress is

obtained from the European Centre for Medium-Range

Weather Forecasts (ECMWF) climatological wind stress

fields (Trenberth et al. 1989), and the baroclinic pressure

forces are computed directly from data using the World

Ocean Atlas 2009 (WOA09) objectively analyzed tem-

perature (Locarnini et al. 2010) and salinity (Antonov

et al. 2010) and the United Nations Educational, Sci-

entific and Cultural Organization (UNESCO) sea-

water equation of state (Fofonoff and Millard 1983).

We solve Eq. (2) under the assumption that the cir-

culation is in a climatological steady state. Because of

errors in Eq. (2) due to the steady-state assumption, the

neglected nonlinear inertial terms, subgrid-scale pro-

cesses, errors in the data, and because of discretization

errors, we add an error term e to the equation so that the

steady-state dynamical balance can be written in matrix

form,

Ms 5 d 1 e, (3)

where e 5 [eT
u eT

y 0T0T]T. The error terms appear as forces

in the horizontal momentum equations; the continuity

and depth-integrated continuity conditions are satisfied

exactly. The values of the additional forcing variables

are determined by minimizing an objective function, as

described in section 2d.

c. Tracer budget equations

Equilibrium tracer distributions are found by solving

the discretized steady-state tracer transport equation

(Schlitzer 2007)

Tc 5 q(c), (4)

where T is an advection–diffusion transport operator; c is

either potential temperature Q, salinity S, or radiocarbon

D14C; and q(c) is a linear function of c that describes

the sources and sinks of tracer due to air–sea fluxes and

due to radioactive decay in the case of radiocarbon. The

advection–diffusion operator is based on the dynamical

model’s velocity field using second-order centered finite

differences, along with Laplacian diffusive fluxes with

a horizontal diffusivity of 103 m2 s21 and a vertical dif-

fusivity of 1025 m2 s21, which are typical values for

coarse-resolution models (e.g., Stammer et al. 2002).

To simulate surface heat fluxes QH and freshwater

fluxes QF, we restore to an effective temperature Te and

salinity Se at the air–sea interface with a time scale tas 5

30 days. Here, Te and Se are included as control param-

eters in the minimization of the objective function. For

radiocarbon, we simulate the effect of air–sea fluxes by

restoring to the background radiocarbon estimates from

the Global Ocean Data Analysis Project (GLODAP)

(Key et al. 2004), which represent radiocarbon concen-

trations in the surface ocean prior to 1955, when nuclear

bomb tests introduced elevated levels of radiocarbon into

the atmosphere. We use a restoring time scale of tas 5 30

days in order to force surface concentrations to closely

match the GLODAP estimates, although we take into

account uncertainty in these estimates as described in

section 2f.

d. Objective function

To determine the value for the adjustable control

parameters, p 5 [eT
u eT

y TT
e ST

e ]T, we minimize an objective

function,

J(p) 5 [y(p) 2 yobs]TG21
yy [y(p) 2 yobs]

1
1

v2
(p 2 p0)TG21

pp (p 2 p0), (5)

where y(p) 5 [uTvTwThTQTSTD14CTQT
HQT

F ]T is the model

state vector and yobs is a corresponding vector of ob-

servations; Gyy is the covariance matrix for the obser-

vations; Gpp is the prior covariance matrix for the control

parameters; and v is a hyperparameter that controls the

relative strengths of the data constraints and the pa-

rameter constraints. For the elements of yobs for which

we do not include any observations (i.e., u, y, and w), we

use a prior mean of 0 m s21 and choose large variances

for the corresponding entries of Gyy (1 m s21)2 for u and

y and (1025 m s21)2 for w. These uncertainties are de-

liberately chosen to be about an order of magnitude

larger than typical large-scale mean currents in the

ocean, so as not to bias the model toward unnecessarily

low velocities. Nevertheless, the variances are small

enough to maintain the invertibility of Gyy, which is

useful for the numerical implementation of some mini-

mization algorithms.

We assume a simple covariance structure that allows

us to write the objective function as a summation of the

contributions due to each state variable and control

parameter

J 5 Ju 1 J
y

1 Jw 1 J
h

1 J
Q

1 JS 1 J
D

14C 1 JQ
H

1 JQ
F

1
1

v2
(Je

u
1 Je

y

1 JT
e
1 JS

e
), (6)

where, for example, J
S

5 (S 2 Sobs)TG21
SS (S 2 Sobs) and

analogously for the other terms in Eq. (6). We also

appended a nonlinear constraint to JQ that prevents

temperatures lower than the freezing point of seawater:
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Jice 5 f(Q)TGice
21f(Q), where the step function f(Q) [

0.5 3 f1 2 tanh[(Q 1 2.2)/0.1]g imposes a large penalty

to values of Q below 22.28C.

The data constraints for our model are based on

the WOA09 objectively analyzed annual-mean potential

temperature (Locarnini et al. 2010) and salinity (Antonov

et al. 2010); the GLODAP background D14C estimates

(Key et al. 2004), which are derived from an empirical

relationship between D14C and potential alkalinity; the

Archiving, Validation, and Interpretation of Satellite

Oceanographic data (AVISO) mean dynamic topography

(release MDT-CNES_CLS09), which estimates the mean

of the sea surface height above the geoid for the period

1993–99 from satellite altimetry and gravity measure-

ments and in situ (drifter and hydrographic) data; and the

National Centers for Environmental Prediction (NCEP)

30-yr reanalysis data for air–sea heat and salt fluxes

(Behringer and Xue 2004), which are averaged over the

period 1980–2009. Construction of the covariance ma-

trices for the observations is discussed in appendix B.

The prior expected values for eu and ey are set to

0 m s22 and the prior expected values for Te and Se are

set to the annually averaged values in the top layer of the

WOA09 dataset. For Gpp, we assigned a diagonal covari-

ance matrix with a variance of (0.2 m s22)2 for eu and ey,

of (58C)2 for Te, and of (2 psu)2 for Se. The variance for eu

and ey corresponds to 1% of the spatial variance of the

baroclinic pressure forces diagnosed from the climato-

logical density field. The large prior variances for Te and Se

allow the surface temperature and salinity to deviate from

the annual-mean values, because surface temperature and

salinity are more likely to represent end-of-winter condi-

tions when mixed layers are deepest and when the bulk of

surface waters enter the interior ocean.

e. Optimal solution

We define an optimal solution as the value of p that

minimizes the objective function (5) and that satisfies the

observational constraints within their uncertainty. The

process of finding an optimal solution therefore involves

finding a minimum of the objective function and finding

the value of v that allows the model to fit the observations

within their uncertainty, without overfitting the data.

For a given value of v, we use a limited-memory quasi-

Newton algorithm to find the set of control parameters p

that minimizes the objective function. The quasi-Newton

algorithm computes an approximate Hessian matrix us-

ing successive gradient calculations and at each iteration

uses that information to compute a descent direction in

parameter space. Gradient calculations are performed

using the adjoint model, similar to the approach taken

by Schlitzer (1993, 2000, 2002, 2004, 2007) and in the

ECCO data-assimilation effort (e.g., Stammer et al.

2002, 2004). The minimization algorithm used here is

publicly available (http://www.caam.rice.edu/heinken/

software/matlab_impl_constr), and a discussion of its

application in nonlinear implicitly constrained optimal

control problems is given by Heinkenschloss (2008).

Using this method, as well as starting with an initial guess

of eu 5 ey 5 0 and Te and Se set to annual-mean WOA09

values, we find a minimum of the objective function

typically in about 1500 iterations.

To find the optimal value of v, we repeated the opti-

mization for a range of v values starting with v 5 1 and

gradually increasing its value until the observations were

well fit, as judged by the J values for each of the obser-

vational constraints in the objective function (6). Using

this process, we determined that the optimal value of v is

about
ffiffiffi
5
p

. At v 5
ffiffiffi
5
p

, the value of the objective function

at its minimum is 11.4, with JQ 5 (1.2)2, JS 5 (1.2)2,

J
D14C

5 (0:7)2, Jh 5 (1.6)2, JQH
5 (0:5)2, and JQF

5 (0:4)2.

We tolerate J values above 1 (i.e., beyond the data un-

certainty) for temperature and salinity because there is

likely to be some model–data misfit due to the fact that

the model does not resolve the seasonal cycle, and the

errors of the annual-mean gridded datasets do not include

this variability. As shown in Fig. 1, most of the excess

model–data misfit for potential temperature and salinity,

beyond the expected data errors, occurs in the upper

1000 m, where the seasonal cycle is influential. On the

other hand, for radiocarbon, which is not appreciably

affected by the seasonal cycle, the model–data misfit is

generally of the same order of magnitude as the data

uncertainty throughout the water column.

The spatial pattern of tracer model–data misfit shows

that the largest errors in temperature and salinity occur

in the upper ocean and mostly in the Southern Ocean,

along the Antarctic Polar Front (APF), and in the region

of the western boundary currents (Figs. 2a,b). These are

all regions where the data uncertainty is large due to

either undersampling (in the Southern Ocean) or large

eddy variability (in the APF and along the western

boundaries). The misfit between modeled and observed

temperature and salinity in the deep ocean is very small

and generally confined to the Southern Ocean region

(Figs. 2d,e). For radiocarbon, the largest model–data

difference in the upper ocean occurs in the North Pacific

and north Indian Oceans, where modeled radiocarbon

concentrations are higher than the GLODAP estimates

(Fig. 2c). In the subtropical South Pacific, modeled ra-

diocarbon concentrations are significantly lower than the

GLODAP estimates. In the deep ocean, the largest

model–data misfit occurs in the Pacific and Indian sectors

of the Southern Ocean where the GLODAP background

D14C estimates suggest waters more depleted in radio-

carbon than in the model (Fig. 2f).
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The modeled sea surface height field clearly captures

the main features of the sea surface topography, including

the subtropical high pressure zones, the large pressure

gradients along western boundaries, and the eastward-

sloping topography across the Atlantic and Pacific basins

(Fig. 3a). The relatively large J value for sea surface

height (Jh 5 1.6) is likely due to the fact that our coarse-

resolution model is inadequate to fit all of the finescale

features of the mean dynamic topography, particularly

where the gradients are very steep such as at the APF and

along the western boundaries of ocean basins (Fig. 3b).

The model–data misfit is also large in the Arctic Ocean

and along the Antarctic margin, but the data coverage in

those particular areas is patchy so that large errors in

these regions are not surprising.

It is also important to examine the model error terms eu

and ey from the optimal solution to see if their magnitudes

and spatial patterns are reasonable. The global-mean

magnitude of the error terms in the optimal solution is

6.3 3 1027 m s22. Much of this can be attributed to un-

certainty in the density field used to compute the baroclinic

pressure force. Propagating uncertainty in temperature

and salinity through the seawater equation of state and the

hydrostatic equation yields a global-mean uncertainty in

the pressure force of about 3.7 3 1027 m s22, over half of

the mean model error. Inspection of the error fields shows

that the largest errors are found in regions of large eddy

variability and strong density gradients, such as along the

APF and along the western boundaries of ocean basins

(Fig. 4), where the baroclinic pressure forces are highly

variable.

Another factor that may cause model errors is the ne-

glect of nonlinear inertial terms in the momentum equa-

tions. The model produces strong, narrow currents on the

order of 40 cm s21 near the surface in the regions of the

western boundary currents and the Antarctic Circumpolar

Current (ACC). Given that the width of these currents is

as small as 200–400 km, the magnitude of the nonlinear

terms u � $u could be as large as 4–8 3 1027 m s22, which

could explain some of the large model errors in these re-

gions (Fig. 4). Also, adjustments to the momentum bal-

ance may be required where the model is unable to resolve

narrow currents flowing along steep topographical gradi-

ents. Model errors in the subarctic eastern Pacific and

western tropical Pacific could be due to the steep topog-

raphy there (Fig. 4). On the other hand, in the center of the

ocean basins, away from regions with steep topography,

fast currents, or strong eddy variability, the required ad-

justments to the momentum balance are negligible (Fig. 4).

f. Uncertainty

The previous section presented what we consider the

optimal solution to our data-assimilated model, but we

also wish to compute the uncertainty in this solution so

that we might propagate the uncertainty to the model-

calculated water-mass distributions and ages. We con-

sider two sources of uncertainty, uncertainty due to errors

in the data and uncertainty due to prior assumptions

FIG. 1. Horizontally averaged root-mean-square deviation of modeled and observed tracer distributions (solid lines) compared to the

estimated uncertainty in the observations (dashed lines).
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about the model parameters (i.e., model error). To ac-

count for observational error, we replace yobs in the ob-

jective function (5) with a random sample from a

probability density function with mean yobs and covari-

ance Gyy. To account for model error, we use a range of

values for v in the objective function. Larger values of v

correspond to smaller objective function values and

a better fit to the observations. The range
ffiffiffi
4
p

# v #
ffiffiffi
6
p

produces a 20% range in the value of the objective

function at its minimum, which accounts for a reasonable

range of uncertainty in the magnitude of the model error

terms eu and ey. (The final values of Te and Se are not

affected by the chosen value of v, because their prior

uncertainty is already quite large). Note that this does not

account for all model errors, such as those incurred by

possible misspecification of diffusive parameters or by

aspects of the coarse resolution that cannot be fixed by

adjustment of the horizontal momentum balance, and the

influence of errors in these variables should be explored

in future applications. In all, we obtain 93 different op-

timized solutions with different combinations of yobs and

v. In the following analysis, all model-calculated di-

agnostics represent the mean of each quantity calculated

with the 93 different model circulations, and uncertainties

are one standard deviation of each quantity.

3. Heat, freshwater, and mass transports

Here we briefly describe the large-scale heat, freshwa-

ter, and mass transports of the model. We then proceed to

FIG. 2. Depth-averaged model–data differences for tracer fields from the optimal solution with v 5
ffiffiffi
5
p

. Differ-

ences are shown for the middepth thermocline for (a) potential temperature, (b) salinity, and (c) D14C and for the

deep ocean for (d) potential temperature, (e) salinity, and (f) D14C. Note difference in the color schemes and contour

intervals in each plot.
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the main focus of the paper, a discussion of our estimates

of the moments of P and Py used to characterize where

water masses communicate with the atmosphere at the

sea surface (section 4) and the associated time scales for

transport to and from the sea surface (section 5).

Figure 5 shows the spatial distribution of the modeled

heat and salt fluxes, as well as the net northward transports

of heat and freshwater. The most significant differences

between the modeled and NCEP mean annual air–sea

heat fluxes occur in the Southern Ocean region, and this

can be seen in comparing the northward heat trans-

port, which shows a stronger poleward transport in our

data-assimilated model (Fig. 5a). However, our data-

assimilated model is in better agreement with the es-

timates from the box-inverse model of Ganachaud and

Wunsch (2003), and the discrepancy between our model

and the NCEP climatology is not necessarily a short-

coming, given the large uncertainties in the Southern

Ocean (e.g., Bromwich et al. 2007). Peak northward heat

transport occurs at about 208N in both our model and the

NCEP climatology, although the NCEP northward heat

transport is slightly stronger and both the data-assimilated

model and the NCEP climatology predict weaker north-

ward heat transport than does the box-inverse model of

Ganachaud and Wunsch (2003). The implied air–sea

freshwater fluxes from the data-assimilated model show a

pattern of net evaporation in the subtropical gyre regions,

as well as net precipitation in the intertropical conver-

gence zone and the midlatitude storm tracks (Fig. 5d).

The implied northward freshwater transport of our model

and the NCEP climatology are qualitatively similar, al-

though our model better matches the data-based estimates

of Wijffels (2001) in the far Northern Hemisphere (Fig. 5b).

A general sense of the large-scale global ocean circula-

tion is given by the meridional overturning circulation

(MOC) for the four major ocean basins (Fig. 6). The At-

lantic MOC is dominated by a large clockwise-rotating cell,

with waters originating in the North Atlantic penetrating to

a depth of about 3500 m. This cell has a maximum flow

of about 22 Sv (1 Sv [ 106 m3 s21) near 408N at about

1500-m depth and transports about 16 Sv of North Atlantic

water southward across the equator. In the deep Atlantic

FIG. 3. (a) Model-estimated sea surface height and (b) difference between modeled sea surface

height and the AVISO mean dynamic topography field.
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below about 3500 m, there is a weak northward flow of

waters originating in the Southern Ocean. In the Pacific

Ocean, the overturning circulation is much more sluggish

than that in the Atlantic, with a broad counterclockwise-

rotating cell ventilating the deep ocean and upwelling

deep waters along the equator and in the North Pacific.

Circulation in the deep Indian Ocean is similarly sluggish,

with a maximum transport of 4 Sv below 1000 m and with

deep waters upwelling along the APF. Some small-scale

noise is visible in the Pacific and Indian MOCs, because of

the low viscosity and weak overturning circulation in those

basins. The Southern Ocean MOC is dominated by two

vigorous overturning cells, one associated with waters

sinking along the Antarctic margin and flowing northward

at depth and the other associated with deep and in-

termediate waters upwelling in the Southern Ocean and

flowing northward at the surface. The separation between

the two cells, which is an important biogeochemical divide

(Marinov et al. 2006), occurs at about 658S in our model.

4. Global water-mass ventilation patterns

Figure 7a presents a regional breakdown of the vol-

ume fraction of global ocean waters in terms of where

they were last in contact with the sea surface. Figure 7b

shows a corresponding breakdown in terms of where

interior waters will make their first contact with the sea

surface. To obtain this decomposition, the ocean surface

is divided into seven broad zonal bands: the Antarctic,

the subantarctic, the southern subtropics, the tropics, the

northern subtropics, the subarctic, and the Arctic. Each

zonal band is further divided by ocean basin, resulting in

17 unique regions. These regions are similar to those

defined by Gebbie and Huybers (2010), to facilitate

comparison with their results, except that we also sep-

arate the tropics and subtropics along the 258C isotherm.

The separation between Antarctic and subantarctic

waters is defined by the 1027 kg m23 isopycnal, and the

separation between subantarctic and subtropical waters

is defined by the 34.8-psu isohaline. Separation between

the subtropics and subarctic regions is along the polar

front, which in the North Atlantic is marked by the

35.4-psu isohaline and in the North Pacific is marked by

the 34.0-psu isohaline. Separation of the Arctic and

subarctic regions is along geographical boundaries.

The results show that the Antarctic is the most im-

portant ventilation region, ventilating 40% 6 3% of the

interior ocean (Fig. 7a). This number agrees well with

FIG. 4. Depth-averaged model error terms from the optimal solution with v 5
ffiffiffi
5
p

. Model error terms for the zonal

momentum balance eu for (a) 500–1000-m depth and (b) 2500–4000-m depth and corresponding error terms for the

meridional momentum balance ey for (c) 500–1000-m depth and (d) 2500–4000-m depth.
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Gebbie and Huybers (2010), which found that 36% of

the interior ocean is ventilated from the Antarctic region

and with KPH, which found 39% for the same quantity.

However, we find that ventilation occurs throughout the

Antarctic, with roughly 11% in from the Atlantic, 9%

from the Pacific sector, and 20% from the Indian sector,

supporting the idea that there are multiple sources of

deep and bottom waters in the Southern Ocean (e.g.,

Hellmer and Beckman 2001). This is an interesting find-

ing, considering that deep waters are traditionally thought

to form mainly in the Weddell Sea and Ross Sea areas in

the Southern Ocean, and is quite different from the

studies of Gebbie and Huybers (2010) and KPH, which

found that very little ventilation occurs in the Indian

Ocean sector of the Antarctic. To what extent these dif-

ferences can be attributed to the neglect of dynamical

constraints in the studies of Gebbie and Huybers (2010)

and KPH or to the neglect of constraints from nutrient

and oxygen data in our model is unclear and will require

further study.

After the Antarctic, the most important ventilation

regions are the subarctic North Atlantic, which ventilates

26% 6 1% of the interior ocean, the subantarctic (16% 6

1%), the southern subtropics (10%), the northern sub-

tropics (5%), and the subarctic Pacific (2%). The tropics

and the Arctic regions combined ventilate only 1% of the

ocean (Fig. 7a). Note that this model does not resolve

water masses originating in the Mediterranean Sea, which

have been estimated to ventilate 2% of the ocean

(Gebbie and Huybers 2010).

The Antarctic is also the main region where interior

water masses are exposed at the surface (Fig. 7b). Over

half (52% 6 2%) of interior ocean waters make first

contact with the atmosphere in the Antarctic region, with

the bulk of these waters resurfacing in the Indian Ocean

sector (25% 6 2%). Most of the remainder of the interior

ocean waters is upwelled rather broadly across the Pacific

Ocean. These are the first such estimates from a data-

constrained model. Several studies have presented data-

constrained estimates of upwelling rates (e.g., Ganachaud

and Wunsch 2000; Lu and Stammer 2004; Lumpkin and

Speer 2007), but, in an advective–diffusive flow, the up-

welling rate does not account for the full exposure rate

nor does the upwelling rate scale in any general way with

FIG. 5. (a) Net northward heat transport by the ocean calculated with our data-constrained model, the NCEP

climatology, and the values estimated from the box-inverse model of Ganachaud and Wunsch (2003). (b) Net

northward freshwater transport by the ocean calculated with our data-constrained model, the NCEP climatology,

and the values from the data-based estimate of Wijffels (2001). Shading around the model estimates represents 1-s

uncertainty estimates. Also shown are the spatial patterns of (c) the air–sea heat flux and (d) the air–sea freshwater flux

from the data-constrained model.
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the total volume of waters exposed at the surface. The

only other estimate of where interior waters are first ex-

posed to the atmosphere is from the OGCM calculations

done by Primeau (2005), which found that about 40% of

interior ocean waters were first exposed to the atmo-

sphere in the Southern Ocean and another 30% were first

exposed in the equatorial and North Pacific. Compared to

these estimates, we find a much more significant fraction

of waters being exposed in the Southern Ocean (almost

70%, including waters being upwelled in both the Ant-

arctic and subantarctic regions) and less in the equatorial

and North Pacific. [That the circulation model of Primeau

(2005) produced too much equatorial upwelling in the

Pacific is also evident from its deficiencies when used for

biogeochemical studies (Kwon and Primeau 2006, 2008).]

Our result is also an important piece of evidence sup-

porting the argument that the Southern Ocean plays a key

role in the global carbon cycle, because it is the place

where much of the ocean’s carbon-rich old waters are

first exposed to the atmosphere (e.g., Toggweiler 1999;

Sigman et al. 2010; Skinner et al. 2010; Kwon et al. 2011).

Looking at the ventilation volume fractions in more

detail, the distribution of water masses in the interior

ocean clearly shows the dominant influence of Antarctic

waters and, secondarily, North Atlantic waters in both

the Atlantic (Fig. 8) and the Pacific (Fig. 9) basins. In

these plots, North Atlantic and North Pacific waters are

composed of water masses forming in the northern sub-

tropical and subarctic regions of their respective basins,

whereas subtropical waters represent waters forming in

the subtropics of the Southern Hemisphere. In the At-

lantic basin, North Atlantic waters flow southward at

depth and are gradually diluted by northward-flowing

Antarctic intermediate and bottom waters (Fig. 8). Sub-

antarctic waters penetrate northward at intermediate

depths, whereas subtropical mode waters are confined

mainly to the thermocline. Our results suggest that more

than 20% of the Atlantic water north of 308N in the depth

range between 250 and 1200 m originated in the Southern

Ocean. This result is significantly higher than the esti-

mates of Holzer et al. (2010), who found that only be-

tween 5% and 10% of the water north of 308N originated

FIG. 6. Meridional overturning circulations calculated from the data-constrained model for (a) the Atlantic Ocean,

(b) the Pacific Ocean, (c) the Indian Ocean, and (d) the Southern Ocean. Positive contours are solid and colored red,

whereas negative contours are dashed and colored blue. Contour interval for (a)–(c) is 2 Sv and for (d) is 4 Sv.
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in the Southern Ocean. The estimate of Holzer et al.

(2010) is based on a maximum entropy regularization of

the underdetermined water-mass analysis problem. Their

estimate was constrained using phosphate, oxygen, and

CFC data in addition to the same tracers we used, but

without taking any dynamical constraints into consider-

ation. To reconcile these differences it will be important

to add CFC data to our model in the future because CFCs

provided an important constraint in the study of Holzer

et al. (2010).

In the Pacific basin, Antarctic waters are dominant,

with secondary contributions from North Atlantic and

subantarctic waters (Fig. 9). The influence of subtropical

and North Pacific waters is mainly confined to the ther-

mocline and above. The large-scale distribution of water

masses presented here is mostly in agreement with the

decomposition of Gebbie and Huybers (2010), lending

confidence to the conclusions of both studies. The

agreement also suggests that, for the purpose of a water-

mass analysis, the dynamical constraints that we used for

our estimation but were not used in the study of Gebbie

and Huybers (2010) can act as a surrogate for the con-

straints provided by the nutrient and oxygen tracer data

that were used in the study of Gebbie and Huybers

(2010) but not in our study.

In the deep ocean, the dominant water masses are

Antarctic and North Atlantic waters, with subantarctic

waters also present in the deep Indian and Pacific

Oceans (Fig. 10). Globally, the ratio of Antarctic to

North Atlantic waters is about 1.5:1 in the deep ocean

and slightly more than 2:1 in the deep Indian and Pa-

cific Oceans. This is similar to the mixture determined

from the inverse model of Gebbie and Huybers (2010)

and from the water-mass decomposition of Johnson

(2008). However, it is significantly greater than the

50/50 mix of Antarctic and North Atlantic deep waters

inferred by Broecker et al. (1998) on the basis of the

distribution of oxygen and phosphate in the deep ocean.

Including subantarctic waters, the ratio of water masses

originating in the Southern Ocean to those originating

in the North Atlantic is nearly 3:1 in the deep Pacific

Ocean.

FIG. 7. (a) Fraction (in percent) of water in the interior ocean that last made contact with the

surface ocean in each of the regions defined by the solid lines, and (b) fraction of water in the

interior ocean that will make its next contact with the surface ocean in the same regions. Error

bars are one standard deviation.
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5. Global water-mass ages and first-passage times

As discussed in the introduction, a useful measure of

the ventilation time scale is the mean age. Note that the

mean age is also referred to as the mean ventilation age

(e.g., DeVries and Primeau 2010), the ideal age (e.g.,

Thiele and Sarmiento 1990), or the mean last-passage

time (Primeau 2005). Using our data-constrained cir-

culation model, we calculated the first moment of P
with respect to t using the method described in Primeau

(2005) to estimate the mean age. Zonally averaged mean

ages for the Atlantic, Pacific, and Indian basins are shown

in Figs. 11a–c, and a depth-averaged plot of the age for

waters below 2000 m is shown in Fig. 12a and summarized

in Table 1. The oldest waters are found between 2500 and

3000 m in the northeast Pacific basin, where the maximum

age is approximately 1450 yr.

Simulations of the mean age in numerical ocean models

also consistently produce the oldest waters in the north-

east Pacific basin, but the depth of this maximum is usually

shallower than our estimate, ranging from 1750 to 2500 m,

depending on the model (England 1995; Deleersnijder

et al. 2001; Primeau 2005; Peacock and Maltrud 2006).

The value of the maximum ages in these models also

varies considerably between models but is consistently

older than our estimate: ;1500 yr (England 1995), 16001

yr (Peacock and Maltrud 2006), ;2000 yr (Primeau

2005), and more than 2200 yr (Deleersnijder et al. 2001).

FIG. 8. Zonally integrated distribution of water

masses in the Atlantic Ocean showing the fraction

of water (in percent) in the Atlantic basin origi-

nating in each of five distinct surface regions: the

North Atlantic (subpolar and subtropical regions

combined), the Antarctic, the subantarctic, the

subtropics (Southern Hemisphere only), and the

tropics. Waters originating in the Arctic and North

Pacific regions contribute negligible amounts of

water to the Atlantic basin. Contour interval is 10%.
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Data-based estimates averaged over depths greater

than 1500 m are available from the studies of Matsumoto

(2007) and KPH. The study of Matsumoto (2007) finds

a maximum depth-averaged age of ;1100 yr, whereas

the study of KPH obtains a maximum depth-averaged

age of ;1250 yr. Over the same depth interval, we find

a maximum depth-averaged age of 1350 6 25 yr, about

250 yr older than the Matsumoto (2007) estimate and

100 yr older than the KPH estimate. The Pacific zonally

averaged age estimates of KPH obtained using the max-

imum entropy deconvolution method are broadly con-

sistent with our estimates in terms of the depth of the

maximum ages, but the ages of KPH are approximately

100 yr younger than our estimates. The deconvolution of

tracer data for a depth profile in the eastern North Pacific

of Holzer and Primeau (2010), also based on the maxi-

mum entropy deconvolution method, yielded a most

probable value of approximately 1350 yr with a half

probability uncertainty interval of (1250 yr, 1650 yr)

as the maximum age. Although this last result is also

100 yr younger than our estimate of the maximum age

(;1450 yr), the results are consistent given the large

error bars. Recently, GH12 used a decomposition of

ocean water masses based on the Total Matrix Inter-

comparison (TMI) method combined with radiocarbon

data to estimate the age. They show a maximum age of

FIG. 9. As in Fig. 8, but for the Pacific Ocean. The North Pacific (subpolar and subtropical regions combined) is also

shown here because it contributes significantly to ventilating the Pacific basin.
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;1500 yr in the North Pacific. For the 2500-m depth, we

obtain a maximum age of 1430 6 30 yr, which is only

slightly younger than the result of GH12.

In the Atlantic Ocean (Fig. 11a), mean ages reach a

maximum of about 800 yr in the deepest Atlantic south of

the equator, but the depth-averaged ages below 2000 m

are generally between 200 and 400 yr. These results are

consistent with the maximum entropy inversions of

Holzer and Primeau (2010). Again we see that the dy-

namical constraints can act as a surrogate for the addi-

tional tracer constraints provided by phosphate, oxygen,
39Ar, and CFC data that were used in Holzer and Primeau

(2010). In contrast, the model-based ages of Primeau

(2005) were in excess of 800 yr for all depths greater than

3000 m in the North Atlantic.

In the Indian basin, our age estimates reach a maxi-

mum of about 1100 yr in the deepest north Indian

Ocean, which is about twice as old as the model-based

calculations of Primeau (2005) but very close to the

model-calculated ages of Peacock and Maltrud (2006),

which were around 1200 yr.

Our age estimates for the Southern Ocean ranged

between 300 and 600 yr and were much more uniform

with depth compared with the other basins. Similar re-

sults were obtained in Holzer and Primeau (2010) and

KPH. As suggested in Holzer and Primeau (2010), the

uniformity of the ages in the Southern Ocean indicates

that it is an important region for the blending of different

water masses and, as shown in section 4, an important

region for the re-exposure of old waters to the surface.

In addition to the age, an important time scale for the

renewal of interior water masses is the first t moment of

the Py distribution, which yields the mean first-passage

time, or the mean time that will elapse before water

parcels in the interior ocean will be exposed at the sur-

face. We used the method described in Primeau (2005)

to compute this quantity with our data-constrained cir-

culation model. The results, summarized in Table 1, are

shown in Figs. 11d–f and 12b.

The mean first-passage time is relevant for a particular

class of geoengineering solutions to the problem of ris-

ing anthropogenic CO2, which seek to sequester carbon

in the deep ocean by either direct injection (e.g., Herzog

et al. 2003) or fertilization of marine biota (e.g., Strong

et al. 2009). Once the carbon is dissolved in the deep

ocean, it will be returned to the surface ocean (and re-

leased to the atmosphere) with a time scale determined

by the first-passage time distribution. In an Intergovern-

mental Panel on Climate Change (IPCC) special report

on carbon sequestration, Metz et al. (2005) cited a venti-

lation age of 700–1000 yr for the age of deep North Pa-

cific waters, but our calculation of the mean first-passage

time shows that the relevant time scale for carbon se-

questration is over 1000 yr everywhere below about

2000 m in the North Pacific, reaching a maximum of

about 1500 yr in the bottom waters (Fig. 11d). It is also

interesting to note that the mean first-passage times in

the North Atlantic are much older than the mean last-

passage times there (Figs. 11a,d). This shows that the

waters in the deep North Atlantic are recently venti-

lated but will not resurface for another 500–1000 yr. As

discussed in section 4, most of these waters will re-

surface in the Southern Ocean or much later in the

Pacific Ocean.

These calculations represent the first data-constrained

estimates of mean first-passage times. Calculating these

FIG. 10. Maps of the global distribution of deep and bottom

waters (defined as the volume-weighted average of waters below

2000-m depth) showing the fraction of water (in percent) origi-

nating from three distinct surface regions: the North Atlantic

(subpolar and subtropical regions combined), the Antarctic, and

the subantarctic region. Contributions from Arctic, North Pacific,

tropical, and subtropical regions are negligible and are not shown.

Color scheme as in Fig. 8. Contour interval is 10%.
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directly from data is difficult because most age tracers

(e.g., radiocarbon, CFCs) better constrain the surface-

to-interior transport time scale rather than the return

interior-to-surface flow. Here, the addition of dynamical

constraints allows us to infer the absolute velocity and

direction of ocean currents, from which the first-passage

times are calculated. These data-constrained mean first-

passage times show some significant difference from the

model-based calculations of Primeau (2005). Significant

differences occur in the Atlantic Ocean, where mean

first-passage times in deep waters are about 400–500 yr

younger in our data-constrained model compared to the

results of Primeau (2005). Presumably, this is because our

model has more waters upwelling in the Southern Ocean

and less in the equatorial and North Pacific, compared

to the model of Primeau (2005). The data-constrained

model also shows mean first-passage times of around

400–800 yr in the deep Southern Ocean, which is much

younger than the 1000–1600 yr calculated by Primeau

(2005). Our calculations suggest a vigorous upwelling in

the deep Southern Ocean and rapid transport of these

deep waters to the surface.

FIG. 11. Zonally averaged mean last-passage time (i.e., mean age) of waters in (a) the Atlantic Ocean, (b) the

Pacific Ocean, and (c) the Indian Ocean. (d)–(f) Corresponding zonal averages of the mean first-passage time (the

time for waters in the interior ocean to reach the sea surface). Contour interval is 100 yr.
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The global distribution of mean last-passage times in the

deep ocean shows the gradual aging of deep waters, which

flow from the Atlantic basin eastward into the Indian and

Pacific Oceans (Fig. 12a). It is interesting to note that both

the oldest last-passage times and oldest first-passage times

are found in the deep North Pacific. The fact that first-

passage times are so large in the North Pacific runs counter

to the concept of the ‘‘great ocean conveyor’’ (GOC)

(Broecker 1991) with a terminus in the deep North Pacific,

which would suggest large last-passage times but short

first-passage times. Rather, the deep North Pacific is more

aptly characterized as a ‘‘holding pen’’ of old waters,

which have not only taken a long time to reach the North

Pacific but will also recirculate in the interior ocean for

over 1000 yr before being returned to the surface. This

result is qualitatively consistent with the deep North Pa-

cific pattern of the ‘‘diffusive ocean conveyor’’ described

in the modeling studies of Holzer and Primeau (2006a,b).

Table 1 presents a summary of the age analysis for

deep-ocean waters grouped by ocean basin. Although

uncertainties in water-mass ages at the grid scale can be

significant (.100 yr), we find that uncertainties on large-

scale integrated quantities are quite small, between 20 and

30 yr. It is interesting to compare the mean last-passage

times in Table 1 for the various ocean basins with the

radiocarbon ‘‘circulation age’’ calculated by Matsumoto

(2007) from the distributions of radiocarbon, phosphate,

and oxygen in the deep ocean. Both methods yield

a qualitatively similar picture of the distribution of venti-

lation ages, but the ages from our model are generally

older than the ages computed by Matsumoto (2007). Re-

sults from our data-assimilated model suggest that the

basin-wide average ventilation age of waters in the deep

Pacific Ocean (omitting the Southern Ocean) is in the

range 1250–1300 yr, compared to the 916-yr radiocarbon

circulation age calculated by Matsumoto (2007) for the

deep Pacific Ocean. For the Indian Ocean basin, mean age

from our data-assimilated model is about 950–1000 yr,

compared to 769 yr calculated by Matsumoto (2007). In

the Atlantic Ocean basin, we estimate a mean ventilation

age in the range of 310–380 yr, slightly greater than the

274 yr calculated by Matsumoto (2007). The last column in

Table 1 gives the total surface-to-surface residence time of

waters in the interior ocean, which represents the sum

of the first- and last-passage times. The total residence time

of waters in the deep ocean is more than 2000 yr

throughout most of the Indian and Pacific Oceans. The

general picture of the deep-ocean circulation outlined

here clearly shows that communication between the sur-

face and interior ocean occurs on millennial time scales.

6. Summary and conclusions

This study used a global data-constrained ocean cir-

culation model to characterize transport between the

ocean’s surface and interior. Unlike other studies,

which have used tracer data to obtain global water-mass

decompositions (Broecker et al. 1998; Johnson 2008;

Gebbie and Huybers 2010; KPH) or ventilation ages

(Matsumoto 2007; KPH; GH12), this study used not only

tracer data but also dynamical constraints to obtain a

complete water-mass decomposition and age analysis of

the global ocean. This is also the first study to use a data-

constrained model to characterize the ocean’s interior-to-

surface transport, providing estimates of where interior

FIG. 12. (a) The mean last-passage time of deep and bottom waters

(defined as the volume average of waters below 2000-m depth) and

(b) the mean first-passage time of deep and bottom waters. Contour

interval in both plots is 100 yr (solid lines are 200-yr contours).

TABLE 1. Mean last-passage times, mean first-passage times, and

mean total residence times for deep waters (.2000-m depth) in the

Atlantic, Pacific, and Indian Oceans. Tropical regions are between

308S and 308N, whereas north and south are poleward of these

latitudes. The Arctic Ocean is omitted.

Region

Mean last

passage

time (yr)

Mean first

passage

time (yr)

Tot

residence

time (yr)

Atlantic Ocean 410 6 20 690 6 20 1100 6 50

North Atlantic 260 6 30 760 6 30 1020 6 50

Tropical Atlantic 430 6 30 750 6 30 1180 6 50

South Atlantic 460 6 20 560 6 20 1020 6 30

Pacific Ocean 1060 6 20 1090 6 20 2150 6 30

North Pacific 1350 6 20 1330 6 20 2680 6 40

Tropical Pacific 1180 6 20 1190 6 20 2370 6 40

South Pacific 650 6 20 740 6 20 1390 6 30

Indian Ocean 760 6 20 870 6 20 1630 6 30

Tropical Indian 970 6 20 1050 6 20 2010 6 40

South Indian 510 6 20 660 6 20 1170 6 30
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waters are first exposed to the atmosphere and the time

for deep waters to be transported back to the surface.

Results from our model indicate that the interior ocean is

composed mainly of waters originating in the Antarctic

region of the Southern Ocean south of the APF (which

ventilates about 40% of the interior ocean), the North

Atlantic (;25%), and the subantarctic region of the

Southern Ocean (;15%). The ratio of Antarctic to North

Atlantic waters in the deep Pacific Ocean is about 2.5:1.

Interior ocean waters are first exposed to the atmosphere

mainly in the Southern Ocean (primarily the Antarctic

region), where about 60% of the interior ocean waters are

first exposed to the atmosphere, and more broadly in the

Pacific Ocean north of about 408S, where about 25% of

interior ocean waters are exposed at the sea surface. Re-

sults of the age analysis suggest that the oldest waters in the

ocean are found in the middepth North Pacific, where

mean last-passage times (i.e., mean ventilation ages) are on

the order of 1400–1500 yr. Mean first-passage times (the

time for deep waters to be reexposed at the surface) also

reach a maximum of about 1500 yr in the deep North Pa-

cific, suggesting that the North Pacific can be characterized

as a ‘‘holding pen’’ of old and stagnant water masses.

We expect that the main results of this study are robust

and will hold up to further refinements of the model and

to the addition of new data constraints, provided that the

assumption that the ocean can be interpreted as being in

a climatological steady state holds true. We propagated

uncertainty in the data through our model and found that

the associated uncertainty in the large-scale integrated

quantities considered here was very small, mostly less

than 10%. Furthermore, the magnitudes and spatial

patterns of the model error terms were found to be rea-

sonable and in accord with prior expectations. Based

on these observations, we have no reason to suspect large

inaccuracies in the water-mass distributions and ages

presented here. One important point to make is that,

where direct comparisons were possible, we found that

our results were in good agreement with other data-based

estimates that used more observational constraints than

us but that did not use the dynamical constraints used in

this study (e.g., Gebbie and Huybers 2010; KPH;

GH12). This suggests that the dynamical constraints used

here can effectively serve as a surrogate for the missing

data. This further suggests that the additional information

provided by nutrient and oxygen data could in our model

be used to constrain uncertain biogeochemical fluxes and

parameters (Schlitzer 2000, 2002, 2004).

In addition to incorporating more observational con-

straints, some refinements of the dynamical model are

likely to be helpful if a finer-scale water-mass census or

age analysis is desired. In particular, resolution of the

seasonal cycle is likely to be important in order to obtain

a more accurate representation of the distribution of water

masses in the upper ocean and thermocline. Refining the

grid size should also help to obtain more realistic flows in

areas of steep topography and to resolve water masses

originating from marginal seas such as the Mediterranean

Sea. We plan to address these issues in future work.
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APPENDIX A

Dynamical Model Equations

The horizontal momentum equations are

ut 2 f y 1
1

a cosf
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2 Ah$hu 2 A

y
uzz 5 2

1

a cosf

p
l

r0
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1 e
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,

p 5 g

ð0

z
r(z9) dz9, (A1)

where u, y, and h are the horizontal velocity compo-

nents and the sea surface height (or mean dynamic

topography), respectively; p is the baroclinic pressure

computed using the hydrostatic balance; r is the density
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and r0 is a constant reference density; (tl, tf) is the

wind stress vector applied as a body force on the top

layer of the model (the d
1k

operator); Dz1 is the depth of

the top layer of the model; f is the Coriolis parameter; g

is gravitational acceleration; a is the radius of the earth;

AH and AV are the horizontal and vertical eddy-viscosity

coefficients; $h is a horizontal Laplacian operator; l is

longitude and f is latitude; and eu and ey are adjustable

parameters to account for data and model errors.

Additional constraints for the model are obtained

from the continuity equation,

1

a cosf
[(y cosf)

f
1 u

l
] 1 wz 5 0 (A2)

together with the kinematic surface boundary condition

ht 5 w at z 5 0, which given the rigid-lid approximation

w 5 0 can be enforced in terms of a condition on the

depth-integrated continuity equation,

ht 1

ð0

z
bot

(l,f)

�
1

a cosf
[(y cosf)

f
1 u

l
]

�
dz 5 0. (A3)

One final constraint is necessary to remove a null space

of the dynamical equations, and this is provided by the

constraint that the area integral of h be 0, so that the

total volume of the ocean is conserved. The condition

(A3) eliminates a dynamical-free mode that was pres-

ent in the equations of Schlitzer (1993) and that ne-

cessitated computing a depth-independent velocity at

each model grid point as part of the solution to the

inverse model (Schlitzer 1993). In comparison to the

data-assimilation method of Schlitzer (1993), a further

advantage of applying condition (A3) is that it allows

application of mean dynamic topography estimates as

additional constraints on the model solution (see sec-

tions 2b and 2e).

APPENDIX B

Error Covariance of Observations

To obtain the diagonal elements in the error co-

variance matrix Gyy for the objective function (5), we

used a Monte Carlo procedure in which synthetic data-

sets were produced by adding spatially correlated noise

to the original data. To produce spatially correlated

noise, we solved a diffusion equation on the original

data grid,

r2=2 2 1
� �

z 1 n 5 0, (B1)

where =2 is the Laplacian operator with no-flux bound-

ary conditions at lateral boundaries, r is the correlation

length scale, and n is a random draw from a Gaussian

distribution with zero mean and variance estimated

from the original dataset (see below). The smoothed

error field z was then returned to the original variance

by multiplying by an appropriate scale factor and then

interpolated to the model grid. We repeated this pro-

cedure 100 different times to yield 100 synthetic data-

sets. The variance of the observations on the model

grid was then determined by taking the variance of the

resulting 100 synthetic datasets. The full covariance

matrix was then calculated using Eq. (B1) on the model

grid to determine the off-diagonal elements of the co-

variance matrix, and the resulting matrix for each da-

taset was factored and stored to facilitate calculations

with G21
yy .

For temperature and salinity, the data variance was

estimated as the sum of a contribution from the raw

data and from the objective mapping procedure (e.g.,

Schmittner et al. 2009). The variance due to the objec-

tive mapping was estimated by calculating the deviation

between the objectively analyzed and mean temperature

(or salinity) fields, squaring the result, and averaging over

each depth level. This depth-dependent error was added

to the spatially variable squared standard error to pro-

duce the total variance for each field. We assumed an

error correlation length scale of 450 km for the gridded

datasets, as was done by Gebbie and Huybers (2010). For

background D14C, we used the error estimate supplied

with the GLODAP dataset, which includes both sam-

pling and mapping error. However, we multiplied the

quoted errors by a factor of 2, to take into account the fact

that the GLODAP errors are most likely underestimates

of the true error (Key et al. 2004). We assumed an error

correlation length scale of 1550 km in the zonal direction

and 740 km in the meridional direction, following the

correlation length scales used in the objective mapping

procedure used to create the GLODAP gridded datasets

(Key et al. 2004).

No formal error estimates were provided with the

NCEP reanalysis data, but for the air–sea heat and

freshwater fluxes we estimated the variance by calculat-

ing the interannual variability of the NCEP reanalysis

data for the 30-yr period 1980–2009. Inspection of the

patterns of interannual variability revealed that the in-

terannual variability is highly correlated over large length

scales, and so we chose 450 km as a reasonable estimate

of the correlation length scale of the errors in heat and

freshwater fluxes. For sea surface height, we used the

variance estimate supplied by AVISO with the MDT-

CNES_CLS09 release. No error correlation length scale

was provided with the AVISO dataset, but we used an
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estimate of 100 km based on the results of Knudsen and

Tscherning (2005).
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