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ABSTRACT 

 

Emergency Medical Service Ambulance System Planning: History and Models    

 

by 

 

Carlos Alain Baez Tapia 

Integer linear programming models that incorporate probabilistic and stochastic 

components represent one approach for capturing the stochastic nature of emergency 

medical service ambulance systems. This includes modeling non-deterministic call arrival 

and servicing rates and congestion in the ambulance network (i.e., ambulance 

unavailability). These models focus on maximizing the total population that can find an 

available ambulance within a set service time standard (s) with a probability of at least α%. 

In MALP the concept of local vehicle busyness estimates is introduced to estimate the 

availability of service in a neighborhood given the neighborhood’s level of demand and the 

number of ambulance vehicles located in the neighborhood. QMALP is an extension of 

MALP where queue-theory derived parameters are implemented in the MALP model 

framework in order to relax the assumption that the probability of different ambulances 

being busy are independent. Despite this considerable development, several concerns 

remained about MALP and QMALP, namely the districting assumption where its assumed 

that a neighborhood’s calls for service are served only by an ambulance in the area, that 

ambulances in a neighborhood only serve calls for service originating within the 

neighborhood, or that at least the flow of ambulance service to and from external 
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neighborhoods was roughly equal. Questions have been raised about the validity of MALP 

and QMALP’s reliability estimates, that is, whether a neighborhood actually received α-

reliable service. 

To address these issues, we developed the Resource-Constrained Queue-based Maximum 

Availability Location Problem (RC-QMALP). This model is based on a location-allocation 

framework that (1) assigns workload from neighborhoods to ambulances located within s 

and ambulance idle capacity to neighborhoods and (2) includes additional constraints 

designed to help ensure the validity of the original MALP and QMALP constraints used to 

establish whether a neighborhood can find an available ambulance with α-reliability. We 

also implemented a secondary minsum objective that minimizes the average travel distance 

between ambulances and the neighborhoods they service while maintaining the priority of 

the MALP and QMALP coverage objective. 

In this thesis, we validated RC-QMALP by comparing the reliable coverage levels 

predicted by the RC-QMALP to the ambulance system simulations that used the locational 

configurations suggested by the RC-QMALP. We found that MALP 2 and QMALP 

provided higher levels of reliable coverage and that RC-QMALP’s secondary objective has 

a negligible impact on system performance. However, RC-QMALP-based models provide 

more accurate estimates of reliable coverage and location solutions whose simulated 

reliable coverage performance was always within 5% of the optimal solution with the same 

system parameters (we tested 1,080 different model configurations). Our work suggests 

that (1) more work is needed on developing simulation models that can accommodate the 

modeling assumptions that underlie location optimization models and that (2) service 
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reliability location models should consider additional factors such as ambulance workloads 

(and their distribution).  
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1. INTRODUCTION 

Emergency medical service (EMS) involves the organized provision of pre-hospital care 

to sick or injured individuals with the ultimate goal of reducing patient mortality and morbidity. 

An EMS system encompasses three general activities - response, treatment to stabilize the 

patient, and transport. This service entails, respectively, (1) responding to calls for urgent 

medical assistance, (2) providing medical treatment on-scene, and, if necessary, (3) 

transporting the sick or injured from the scene to a hospital for care. As such, the objective of 

an EMS system planner is to develop procedures, policies, and a resource allocation plan that 

effectively address each of the three outlined tasks.  

Ideally, an EMSS (emergency medical service system) responds to calls for service 

immediately after a request for service is made, always assists patients with the most effective 

equipment and treatment, and delivers patients promptly and efficiently to the appropriate 

medical treatment facilities. The reality is, however, that EMSSs are hampered by a variety of 

issues. For instance, in some EMSSs ambulances located closest to a medical emergency are 

often not dispatched to that emergency, thus resulting in slower system response times (Dean, 

2008;  Williams, 2007).1,2 In terms of the provision of pre-hospital care, Wang et al. (2005) 

raised concerns about advanced EMS responders losing proficiency in certain types of medical 

                                                      
1 Interestingly enough, Carter et al. (1972) developed an ambulance response model that showed how a 

nearest-ambulance dispatching strategy could be suboptimal with respect to minimizing the average system 

response time. However, the EMS system surveys of Williams (2007) and Dean (2008) do not suggest that this 

is the case. 

2  Williams (2007) cites a variety of operational practices (e.g., jurisdictional issues, agency protocols, 

technological difficulties) as the primary explanation for this dispatching strategy, while Dean (2008) identifies 

the combination of a lack of ambulance location information and fixed-deployment models, as well as, ambulance 

crew shift change procedures in impacting response times. 
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treatment due to a lack of opportunities to practice or use such treatment protocols. Lastly, 

patient care after transport is often complicated with delayed hospital treatment due to 

emergency room overcrowding. In response to over congested emergency departments, some 

hospitals actually close their emergency department during periods of high demand and refuse 

treatment to new patients which results in ambulances having to transport patients to a 

different, often further away, hospital (Hoot & Aronsky, 2008).3 

EMS agencies and providers of all sizes face complex challenges of every size and type 

that concern both internal and external factors. Economic challenges are one of the most 

common issues whereby EMS agencies are required to justify their operations/financial 

decisions, improve their efficiency, or adapt to budget cuts or downsizing. For example, in 

2005 the South Ogden Fire Department measured the cost-efficiency of its operations in 

response to lower than expected ambulance revenues (Powers, 2005). Likewise, the County 

Commissioners of Pinellas County, Florida expressed concerns about the fiscal sustainability 

of the County’s EMSS and fire response operations and commissioned a report to examine the 

current state of these systems and to analyze several models and proposals (Fitch & Associates, 

2013). Other economic factors include the high cost of ambulance equipment (McIntire, 2003) 

and emergency care and transport (Rosenthal, 2013). 

At the organizational level, two ongoing debates in EMSS management include the 

privatization and insourcing/outsourcing of EMS response and transport responsibilities. 

Privatizing public services is not new (Greene, 1996) but it remains a controversial matter in 

many communities where it is being considered (Balskovitz, 2011; Laverty, 2013). Another 

                                                      
3 The emergency medicine literature typically refers to this as an ambulance diversion problem.  
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equally controversial proposal involves shifting EMS responsibilities to fire departments in 

what proponents see as a cost saving move while opponents claim that these changes could 

endanger lives (O’Toole, 2011; Welsh, Linthicum, & Lopez, 2013). 

Another highly controversial issue (and the focus of this thesis) is the performance of 

EMSS, namely in terms of response times. A quick internet search reveals that in the last six 

years citizens have complained about slow service in San Francisco (T. Goldberg, 2016); 

Akron (Molnar, 2011); Los Angeles (Linthicum & Lopez, 2012); Sacramento (Chabria, 2016); 

San Jose (Colgan, 2014); and New York City (Short, 2015).  

The case of Los Angeles Fire Department (LAFD) is rather notable in that numerous issues 

plagued the organization which ultimately led to the Los Angeles Mayor Eric Garcetti to ask 

for the resignation of then LAFD Chief Brian L. Cummings (Welsh et. al, 2014). In 2012, the 

Los Angeles Times reported on several issues with the LAFD’s performance including 

response times of over 45 minutes for some incidents and delays in dispatch due to 

malfunctioning equipment (Linthicum & Lopez, 2012). LAFD firefighters expressed concerns 

with the organization’s abilities, however, both Chief Cummings and then Mayor Antonio 

Villaraigosa assured the public that the city was safe. Nonetheless, a series of LAFD’s system 

failures prompted the Mayor to call for a review of LAFD operations. In addition, issues about 

misleading LAFD statistics (an issue raised by the LA Times) prompted several LA City 

Council members to call for an audit of the LAFD.4  

                                                      
4 The validity of these figures was particularly important as they were used to make decisions about deep 

cuts to EMS spending in the previous year 
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In late 2012, the LA Times released two additional reports about the response times in Los 

Angeles. The first report covered delays in response resulting from geographic and 

jurisdictional issues between LAFD and Los Angeles County Fire Department (LACFD) 

(Lopez, Welsh, & Linthicum, 2012). In this investigation, the LA Times analyzed of over 1 

million LAFD responses over the previous five years and LACFD dispatch records. Their 

analysis revealed that LAFD rarely reached out to LACFD and that LAFD dispatchers 

contacted LACFD dispatchers less than 10% of the time in cases where the nearest County 

facility was closer to the caller than nearest City facility. They add that 70,000 of these calls 

were medical calls and that 1,300 of these calls concerned cases of cardiac arrest where fast 

response times can reduce morbidity and mortality. Also, they reported that callers located 

within a quarter mile from city boarders were 50% more likely to wait more than 10 minutes 

for first-responders to arrive. Finally, the report notes that the two agencies worked on a 

mutual-aid agreement in 1979 to assist LAFD with calls originating near the boundary of the 

City of Los Angeles and the two agencies eventually signed a formal automatic-aid agreement. 

This included provisions to connect their dispatching systems, however, this was never 

implemented and without that the process in moving a call to the LACFD takes too much time 

(as LAFD dispatchers have to contact LACFD dispatchers via telephone).  Other major fire 

agencies in California are involved in mutual-aid agreements and have "automatic aid" 

dispatching systems including agencies from Orange County, San Diego and San Jose. 

Notably, eight agencies in San Diego County entered into an automatic-aid agreement as a 

cost-saving measure. 

In the second report, the LA Times analyzed EMS response times at the block level for the 

City of Los Angeles (Linthicum, Welsh, & Lopez, 2012). Here they reported the LAFD 
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regularly failed to respond to many affluent communities within six minutes (the national time 

standard adopted by LAFD). The LAFD reportedly failed to respond to calls from the “affluent 

hillside communities stretching from Griffith Park to Pacific Palisades” within six minutes 

nearly 85% of the time and nearly 90% of the time to calls from the Bel-Air neighborhood. 

They also report that the average response time to cardiac arrest calls from Bel-Air were twice 

as long as the average response times of nearby communities (11 ½ minutes). Moreover, the 

LA Times reported that system congestion contributed to longer response times as the nearest 

stations could not respond to about 15% of all calls. They added that areas with a high 

concentration of fire stations were less prone to this issue while areas with fewer fire stations 

were more prone to this problem including “east San Fernando Valley, the southern edge of 

Playa del Rey and some neighborhoods in the Santa Monica Mountains as well as Bel-Air.  

LAFD officials cited difficult driving conditions in mountainous areas. LAFD Chief Brian 

Cummings argued that his department would need to almost double the number of fire stations 

to meet the six-minute respond standard. However, the LA Times notes that the LAFD’s 

budget reduction resulted in the closing of 20% of the city’s fire stations. 

1.1 Thesis Scope and Motivation 

In this thesis, the main focus is on the response component of EMSSs associated with 

congested EMS ambulance systems, i.e. EMSSs that frequently exhibit significantly low levels 

of ambulance availability. The overall goal is to improve the performance of an EMSS in terms 

of the availability of ambulances via the strategic management of ambulance posting/dispatch 

locations. To support this goal the main objective of this thesis is to develop an ambulance 

location planning model that prescribes effective station location/posting configurations. Here, 

the effectiveness of the configuration is determined by the ability of ambulances positioned in 
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such configurations to respond to emergency calls within some time standard a relatively high 

percentage of the time.  

The main motivating factor in this work is that for many patients, significant delays in the 

provision of medical care can increase patient morbidity or reduce patient survival (Wilde, 

2013). In cases of cardiac arrest, the benefits of early intervention have been consistently 

documented (e.g. De Maio, Stiell, Wells, & Spaite, 2003; Eisenberg, Bergner, & Hallstrom, 

1980; Wik et al., 2003; Vukmir, 2006). Weaver et al. (1986) estimated the impact of a minute 

delay in the application of a defibrillator to as 4% decrease in chances of survival while Larsen 

et al. (1993) found a 3.2% decrease in chances of survival. Moreover, addressing issues of 

congestion is important in order to avoid a suboptimal or inequitable provision of service as 

with the case of the LAFD.  

A secondary focus of this thesis is the development of a historical account and general 

overview of EMSSs planning, management, and analysis from a location science perspective. 

This review is mostly centered on EMSSs in the United States beginning with the early EMSSs 

of the 1800s before moving to early efforts from the mid-1900s to systematically plan, manage, 

and analyze EMSSs. Finally, we present an overview of early EMSS location models as well 

as the theoretical foundations of such models as public facility location models. 

While researching the literature for this thesis, it soon became apparent that overviews of 

the technical/operational aspects of EMSSs mostly focus on location models and their 

technical properties. This is problematic because the highly selective nature of these reviews 

(namely with respect to covering a specific modeling paradigm) results in discussions that 

preclude the context or environment in which the EMSS models were developed. Of course, 

one cannot reasonably expect even reviews to cover everything but the lack of a comprehensive 
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account (as a single document or a collection of them) for a subfield that is over 50 years old 

is terribly concerning and not simply because of the absence of such account. The concern here 

is that this is indicative of a hyper-focus on EMSS subcomponents at the expense of more 

comprehensive EMSS research. This is not to say that there isn’t a need for specialized work 

or that it shouldn’t be a high priority, but rather that more work is needed that improves our 

understanding of EMSSs as a whole, rather than solely in terms of their parts.5 

1.2 Thesis Organization 

This thesis consists of three parts. Chapters 2 and 3 comprise the first section which covers 

the development of EMSSs in the United States. Chapter 2 begins with a historical overview 

of EMSS planning in the United States starting with early EMSSs from the mid-to-late 1800s 

and ending with the EMS revolution of the 1960s and 1970s. A discussion of the theoretical, 

methodological, organizational, technologic, and scientific advances related to EMSSs is also 

included.  

The second section, comprised of Chapters 4 through 6, presents a new ambulance location 

problem, the Resource Constrained Queueing Maximal Availability Location Problem (RC-

QMALP). Chapter 4 provides the background relating to the ambulance location models used 

to develop RC-QMALP. RC-QMALP is formally presented and discussed in Chapter 5 while 

Chapter 6 discusses computational results in solving RC-QMALP along with a comparison to 

its predecessor, QMALP. We conclude with an overview of this thesis, a discussion of future 

                                                      
5  Spaite et al. (1995) raise this concern about EMS research while comparing systems research and 

component research. The essence of the former approach is that it addresses complex and interrelated problems 

that usually require complex models and high-levels of collaboration between different types of experts to address 

them. 
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work and the state of ambulance location modeling, and a reflection about EMSSs in the United 

States.  

2. History of Emergency Medical Service System Planning 

2.1 Early EMS Systems in the United States 

Prior to the mid-1800s, there was a general sense of neglect and apathy towards emergency 

medical transport and treatment in the United States (Haller, 1990). The provision of any pre-

hospital emergency care relied on volunteered efforts from nearby individuals or 

establishments and until the introduction of the ambulance, patients were required to walk to 

and from their destination or had to find some type of vehicle or apparatus that could 

accommodate them (Hart, 1978). With the industrialization of the United States however, came 

the increasing need for more suitable ways of transporting the injured (Willard, 1883).  

In 1865, the first civilian EMS system appeared in the United States when the Commercial 

Hospital of Cincinnati began the first civilian-run and hospital based ambulance service 

(Pozner, et al., 2004). Shortly thereafter, another municipal based EMS system formed in New 

York City under the direction of Bellevue Hospital with guidance from the New York City 

Metropolitan Board of Health (Barkley, 1974) and by the 1880s, the number of EMS systems 

increased dramatically (although they were mostly confined to large urban centers). 

Philadelphia began the development of an EMS system (based on the New York City system) 

in the early 1880s (Willard, 1883) as did the District of Columbia (Barkley, 1974), the City of 

Cleveland (Metzenbaum, 1908), and New Orleans (Barkley, 1978).  

While EMS systems proliferated throughout the United States, the quality of EMS systems 

also increased overall due to the work of various organizations and individuals. Advances in 



9 

 

medical transportation and communication technology helped EMS systems become more 

responsive and allowed responders to be better equipped. In terms of prehospital medical 

treatment, however, emergency medicine remained relatively unchanged between the 

American Civil War and World War 1 (Robbins, 2005; Trunkey, 2000). Moreover, in the 19th 

century emergency medicine educational resources or references were very limited or non-

existent (Haller, 1990). Surgical textbooks of the time described how to perform various 

treatments but rarely discussed topics important to emergency responders such how to move 

patients or how to stabilize their condition or injury.6 As for the rare emergency medical text 

books that existed, their intended audience were military surgeons. As such, the texts were not 

ideal for urban emergency responders, but did cover many topics relevant to the challenges 

faced by them. 

In the area of transportation, by 1868, the Bellevue Hospital in New York City, via the 

efforts of Dr. Edward Dalton, developed the prototypical civilian ambulance by altering 

military ambulances (Barkley, 1974). These ambulances would prove to be more comfortable 

for patients, easier for drivers to manage in urban environments given their tighter turning 

radius, faster due to their lighter construction, and better equipped as the ambulances were 

reconfigured to carry less individuals in exchange for being able to carry more medical supplies 

(Leonard, 1885). The commercial production of civilian ambulances began in 1890 (Robbins, 

2005) and in 1894, St. Louis adopted electric streetcar ambulances (Haller, 1990). The first 

motorized ambulance appeared in 1899 when five Chicago businessmen donated a battery-

                                                      
6 Haller (1990) notes one exception- an article in Wood’s Medical and Surgical Monograph (1890) that 

describes how to move sick or injured individuals.   
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driven ambulance wagon to the Michael Reese Hospital in Chicago (Haller, 1990; Robbins, 

2005).  

As for the impact of new communication technologies, one example includes New York 

City’s early ambulance system that utilized telegraph and telephone services in order to notify 

more quickly hospitals of medical emergencies (Schroeder, 1902; Leonard, 1989). In this 

system, police officers communicated requests for emergency medical treatment to police 

headquarters that would then forward the message to the nearest hospital. Alternatively (and 

less common), phone calls for medical service were placed from signal boxes dispersed 

throughout the city that would notify hospitals about a request for service with an alarm.7 A 

similar system was developed in Philadelphia, known as the “Gamerel System”, whereby every 

city square would have a telephone connection between it and police headquarters (Willard, 

1883; Evatt, 1886). It differed from New York City’s EMS system, however, in that in 

Philadelphia the police department maintained some medical response equipment at its stations 

and would often respond to emergencies themselves rather than always forwarding calls to a 

hospital. 

Following the 19th century, the provision of emergency medical services would become 

increasingly prevalent as a result of the many individual efforts by local governments, 

hospitals, and non-hospital civilian organizations throughout the United States to create or 

develop their own EMS systems (Robbins, 2005). Most notable are the efforts of the American 

Red Cross (ARC). Beginning in 1910, the ARC began providing standard courses about basic 

                                                      
7 Each signal box was connected to a specific fire station and hospitals were connected to the systems of 

certain fire stations. Thus, when a call was placed at a signal box, it would notify the corresponding fire station 

and in turn, all the hospitals connected to that fire station (Haller, 1990). 
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first aid (Robbins, 2005). In addition, in response to the increasing number of automobile 

accidents, the ARC worked on increasing access to EMS along highways in the United States. 

Beginning in 1936, the American Red Cross established hundreds of “Emergency First Aid 

Stations” at various locations including fire stations, stores, inns, and gas stations. Other 

important institutions included various military organizations that created or advanced various 

medically related technologies that improved the treatment of sick or injured patients. During 

World War I, this included the further development of motorized ambulances, techniques for 

treating contaminated wounds and the practice of blood banking (Trunkey, 2000). As for 

World War II, the Vietnam War, and the Korean Conflict, the state of trauma care medicine 

advanced, as did some aspects of EMS organization and operations due to research efforts and 

experience gained by EMS practitioners involved in these conflicts (Robbins, 2005; Trunkey, 

2000). Many of these advances were adopted by civilian EMS systems,8 although some notable 

developments pertaining to pre-hospital medicine were not such as advanced on-scene medical 

treatment (e.g., the application of intravenous fluids to a patient by a non-physician) (Robbins, 

2005).     

2.2 Prelude to the Quantitative Revolution in EMS System Planning and 

Management 

Despite the technological progress in the decades following the development of civilian 

EMS systems and the overall rise in the number of EMS systems across the United States, by 

                                                      
8 According to Pozner et al. (2004), military EMS advances from the first and second world wars were not 

readily replicated in a civilian setting until the 1950s when two civilian physicians, JD “Deke” Farrington and 

Sam Banks, developed a first-aid training program that incorporated many of those EMS advances. This program, 

which was developed for the Chicago Fire Department, is considered the prototype of the first basic emergency 

medical technician (EMT) program in the United States. 
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the late 1960s, most EMS systems were inadequate by modern standards (Rockwood, et al., 

1976). Beyond the efforts of the Red Cross and the developments in motorized ambulance 

transport from World War I, the provision of EMS remained largely unchanged (Robbins, 

2005). With respect to the lack of progress in the area of EMS transport, Briggs and Palmer 

(1963), Pozner et al. (2004), Rockwood et al., (1976), and Bass (2015) highlight the lack of 

the adequate vehicles and personnel for transporting the injured. Pozner et al. (2004), citing 

Blackwell (1993), notes how in the first half of the 20th century, the majority of vehicles used 

to transport patients to the hospital were hearses that belonged to local funeral homes. 

Similarly, to underscore the lack of progress in terms of providing adequate vehicles for 

emergency medical transport, Briggs and Palmer (1963) cited the survey results presented in 

Hampton (1960). This survey of EMS systems9 in the United States, conducted in 1958, 

revealed that, among other things, only 54% of all the vehicles that used as an ambulance were 

adequate for transporting the injured.  

With respect to the training of personnel,  Rockwood et al. (1976) and Bass (2015) both 

discussed the lack of training among ambulance attendants during the era. Rockwood et al. 

(1976) noted that prior to the passage of the Highway Safety Act of 1966, only 46% of the 

estimated 200,000 ambulance and rescue personnel received training that was comparable to 

the advanced level training offered by the Red Cross and that often personnel had no training 

whatsoever. Likewise, Bass (2015) refers to the work of Barkley (1974) which claimed that in 

                                                      
9 The survey only considered cities with a population over 10,000.  
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the post-war era, half of all ambulances were operated by mortuary attendants and that most of 

these attendants lacked basic first aid training.10    

Many suggestions have been provided to explain the lack of progress in the development 

of EMS services. These include: the lack of innovation in the field of emergency medicine 

(Waller, 1965; Shah, 2006); the lack of knowledge about patients (Mitchell, 1965; Waller, 

1965); financial issues related to the collection of payments from patients using EMS 

(Mitchell, 1965; Stevenson, 1971; Waller, 1965); the lack of adequately equipped ambulances 

(Briggs & Palmer, 1963); the lack of qualified EMS staff (Mitchell, 1965; Stevenson, 1971; 

Waller, 1965); the lack of adequate facilities to provide emergency treatment (Skudder & 

Wade, 1964); the disorganized nature of EMS operations (Stevenson, 1971); and the lack of 

regulations governing EMS operations (Briggs & Palmer, 1963). In addition, prior to the mid-

1960s, the EMS system planning literature was limited in both quantity and in its scope 

(Stevenson, 1971; Waller, 1965). Regarding the lack of journal articles, Waller (1965) 

observed that the literature on medical care was expanding, but that it was “uniformly silent 

on the subject of ambulance services.” Taubenhaus and Kirkpatrick (1967) echoed similar 

claims about a lack of studies about hospital ambulance services and added that when EMS 

articles did exist, they focused mostly on the issues of equipment and training of EMS 

personnel. Likewise, Stevenson (1971) noted that prior to 1966, the scope of the EMS literature 

was very narrow as it was primarily limited to private research conducted by concerned doctors 

                                                      
10 Bass (2015) also provides a partial explanation for the lack of adequately trained ambulance personnel. 

According to Bass, when America entered World War II, the military’s demand for physicians resulted in many 

ambulance interns being pulled from their positions. These interns did not return and thus, after the war, 

ambulance systems were left with poorly trained staff. 
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or focused on the operations of individual cities. One example of the latter is the work of 

Lehman and Hollingsworth (1960).11  

Concerns about the state of the EMS literature would remain through at least the mid-

1970s. Gibson (1974) reached the conclusion that “with few but notable exceptions, presently 

available EMS research papers are not in fact research products and do not satisfy even 

minimal standards for health services research.”12 Some specific aspects or types of EMS 

articles/presentations that Gibson found troublesome were “uncritical advocacy descriptions 

of some intended or completed EMS activity.” In this respect, Gibson took issue with (1) the 

gross exaggeration of claims related to the lives that were lost because of inadequate EMS and 

the number of lives that could be saved with improved EMS and (2) the “reaction of 

isolationism [of EMS research] in response to a hostile or apathetic environment.” Focusing 

on the latter issue, according to Gibson, one consequence of this overreaction 13  was the 

                                                      
11 In Lehman and Hollingsworth (1960) analyzed the results of a nationwide survey of EMS systems in other 

US cities to compare the ambulance service of Seattle to that of other cities. The analysis was both brief and 

simple – it was predominantly a collection of descriptive statistics (about the other EMS systems) although it 

included an attempt to establish a relationship between the cost of ambulance service and other variables 

including: population, number of vehicles, calls per year, and type of service used. Alongside this analysis, various 

descriptions and an analysis about Seattle’s EMS system were presented. This included statistics about the 

emergency calls that were made in Seattle, a rudimentary financial assessment of the cost of the ambulance service 

(in terms of costs per call), and a description of the Seattle’s EMS system operations regulations.   

12 Within the publication, Gibson cites the generally “low technical quality” of the EMS papers presented at 

the 1974 American Public Health Association’s (APHA) meeting in New Orleans as his motivation for writing 

the article. However, the greater importance of these comments (and why this work is notable within the context 

of the development of EMS in the United States) was the question of whether EMS research should be approached 

within the context of general health services research or as a separate research area. As noted by Gibson, the 

Emergency Medical Services Act of 1973 required the establishment of an EMS research program and the agency 

assigned the responsibility to manage the program, the Bureau of Health Services Research, had to decide which 

approach to adopt. As such, for Gibson the poor quality of the research presented at the 1974 APHA meeting and 

that of EMS research in general really indicated, among other things, the need to integrate EMS research with 

general health services research. 

13 To describe the nature of this overreaction we quote Gibson (1974a) directly:  

“In EMS it is embodied as a general proposition, uncritically advanced as the revealed truth, that 

programming and research in EMS are qualitatively different from programming and research in other health 
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tendency for research questions to be developed based on pre-selecting a potential EMS 

intervention and then only considering the problems that such intervention can address. The 

drawback of this approach, Gibson added, was that “with this method of problem selection is 

that the problem selected is restated to fit the available solution” and that “[i]n addition, the 

available solution is not compared with other potential solutions (internal or external to EMS) 

in terms of relative effectiveness.” Combining this with a tendency of EMS research to 

exaggerate results, Gibson argued that this resulted in a situation where for limited one-case 

studies, such studies reveal nothing about their generalizability of their results, or rather, the 

applicability of the EMS intervention being considered in general.14 

Nonetheless, efforts to develop systematic guidelines for planning and managing EMS 

systems began to appear and develop in the 1960s. At first, journal articles contained general 

guidelines that consisted of rather simple and descriptive recommendations. However, as time 

progressed, EMS researchers would develop more specific and sophisticated guidelines.  

2.2.1 Early EMS System Management and Planning Efforts 

The first guidelines for planning or managing civilian EMS systems are have existed for 

almost as long as EMS systems have. For military systems, Larrey’s memoirs (Larrey, 1814), 

                                                      
service sectors, that these (EMS) activities are based upon a unique set of knowledge and skills not otherwise 

available, and that categorically unique strategies are necessary for funding, manpower, research, health planning, 

etc. This proposition, if pragmatically argued, is not inherently unreasonable; indeed, it parallels the 

professionalizing strategies so successful in the emergence of the medical profession and its subspecialties. Within 

EMS, however, the difficulty is that this proposition is not pragmatically argued but ideologically asserted: it is 

used not so much to derive solutions to problems within EMS as to justify the existence of an EMS "social 

movement." 

14 Gibson also questioned the validity of the reports themselves.  
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as noted and cited by Robbins (2005), describe many of the principles that were developed and 

used to create one of the first, if not the very first, EMS system.15 A little over a century later, 

Watt (1916) also published a set of guidelines concerning the organization of field 

ambulances.16 For civilian EMS systems, Edward Dalton prepared a set of guidelines for the 

Bellevue Hospital (Haller, 1990). Dalton’s rules addressed issues related to the governance of 

the ambulance services, ambulance dispatching policies, ambulance staffing requirements, the 

command structure of the ambulance crew, a protocol for hiring ambulances, the financing of 

the ambulance system, and the duties of the medical attendant (including when patients were 

to be treated) (Haller, 1990).17 

Dalton’s pragmatic and experienced-based approach for managing EMS systems 

represented the dominant approach for developing general EMS operational policies and rules 

until the late 1950s.18 For instance, Benjamin Howard’s evaluation of the New York ambulance 

system (Howard, 1881) describes much of the system’s operations and focuses on the aspects 

of the ambulance system that seem to greatly support or improve the provision of EMS or the 

                                                      
15 Larrey’s system did not constitute the first attempt to provide prehospital services (for examples of the 

provision of some emergency medical services pre-dating Larrey’s efforts see Robbins, 2005), however, his 

system was exceptional due to its comprehensive, planned, and integrated nature. To support this assertion we 

quote Robbins (2005):  

“[Larrey] conceptualized and implemented a cogent, comprehensive pre-hospital care system that, for the 

first time, triaged the injured, provided immediate, temporary medical care and transported the injured from the 

battle field to strategically placed medical aid stations in a formal, regulated way using special apparatus.”  

16 Given that a large portion of the plans of Larrey’s, and later those of Watt (1916), are applicable primarily 

to military EMS, for the purpose of brevity we forgo outlining/describing their plans here.   

17 This summary of the guidelines presented in Haller (1990) concern guidelines appearing in Miles (1885) 

that were used to govern an ambulance service in New Orleans. As such, this summary is not immediately about 

Dalton’s guidelines per se. However, according to Haller (1990), the differences between these Miles's (1885) 

and Dalton’s guidelines “not measurably different.”   

18 Granted, the number of publications that contain or develop guidelines between the 1860s and 1960s were 

very few.   
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system’s efficiency. Similarly, the recommendations of Watt (1916) were based on his 

personal and his staff’s experiences working in a military field ambulance unit.  

Beginning in the mid-to-late 1950s however, EMS operational guidelines would evolve in 

three important ways. First, guidelines began addressing increasingly specific facets of EMS 

operations via thorough discussions, simple investigations, or detailed descriptions. For 

instance, Magelaner and McElroy (1955) discussed the role and impact of ambulance sirens, 

Curry (1956) discussed the issue of providing medical training to ambulance attendants, and 

Curry and Lyttle (1958) began an investigation regarding the impact of speeding ambulances. 

Likewise, early trauma care research was mostly descriptive although some insights and 

concerns arose from these investigations (Cales & Trunkey, 1985). Zollinger (1955) examined 

the quality of trauma care afforded to motor vehicle accident victims and suggested that “[t]he 

problem of trauma deserves the consideration commensurate with its frequency of 

occurrence”. Root & Christensen (1957) examined traffic accident victims that received 

surgical care and suggested that quality of care may influence mortality. Similarly, Perry & 

McClellan (1964) studied traffic accident fatalities and suggested a relationship between 

patient mortality and the patient’s arrival condition.  

As for medical training for EMS, regular courses for both physicians and ambulance 

attendants began appearing in the 1950s (Hampton, 1972) while in the literature, several 

publications, like those of Carl Young (Young, 1954, 1958), began addressing the issue of 

providing first aid training to ambulance attendants and other emergency response 

professionals. Young’s first book was written for a wide audience that included law 

enforcement officials and hospital workers while his second book ‘Transportation of the 

Injured’ (Young, 1958) focused more on training ambulance attendants and discussed other 
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aspects of ambulance operations such as the duties of ambulance dispatchers (i.e., beyond 

simply dispatching calls) and the proper use of sirens. With respect to proper ambulance 

equipment, both Young (1958) and Curry and Lyttle (1959) provided early, yet partial, lists of 

proper equipment for modern ambulances.  

Second, as information about EMSSs became easier to collect, statistical descriptions of 

EMSS operations were increasingly being used to evaluate EMSSs and, in some respects, to 

develop EMS operational policies. In particular, EMS research began placing an emphasis on 

statistics about EMSS operational costs, the characteristics of EMS providers, EMSS resources 

(e.g. the number and type of ambulances), and the characteristics of demand (including 

potential demand). The value and need for statistics and analyses concerning EMSSs and 

operations was clear by the mid-1960s (Mitchell, 1965), however, according to Waller, et al. 

(1966), by early 1966, only a few papers had investigated patterns of ambulance care (i.e., 

ambulance service and patients) and the problems associated with EMS.  

Initially, the use of statistics in EMS research was mainly in studies about the safe operation 

of ambulances and/or in surveys about EMS systems. One early EMS survey included a study 

commissioned by Kansas City, Missouri (Bureau of Municipal Research, 1955) that examined 

laws and ordinances regarding speed limits, siren use, and right-of-way privileges in 54 US 

cities in 29 states. Other early survey studies included the works of Krieger (1958) and 

Hampton (1960) that, respectively, examined the ownership and some operational 

characteristics of EMS systems throughout the United States. Lehman and Hollingsworth 

(1960) also presented results from a 1958 survey prepared by the Seattle-King County Health 

Department that was developed to allow the EMS service in Seattle to be compared with EMS 

service in other cities. With respect to the operation of ambulances, Magelaner and McElroy 
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(1955) studied the relationship between the use of ambulance sirens, ambulance right-of-way 

privileges, and ambulance accidents during various periods between 1949 and 1954. 

Another area of EMS research where the use of statistics began to emerge was in analyzing 

the demand for ambulance service. Lehman and Hollingsworth (1960) presented numerous 

statistics pertaining to the volume of calls for service they received (as well as who received 

the call), the outcomes associated with each call for service, the frequency of calls for 

ambulance service in 3-hour intervals, the age of the patients that received ambulance service, 

and the cause/reason behind the call for service. It is also worth noting that the work of Lehman 

and Hollingsworth (1960) was in part motivated by the frequency at which ambulance service 

had to be provided to individuals injured in traffic accidents and the number of casualties that 

resulted from traffic accidents. In Seattle, Lehman and Hollingsworth (1960) reported that 

traffic accidents were the most common cause given for ambulance service and noted that a 

statistical analysis performed by Anderson (1957) revealed that traffic casualties comprised 

more than two-fifths of the total accidental deaths in the US - a far greater amount than any 

other type of accident. The study by Waller et al. (1966) focused on the demand for ambulance 

use in rural communities and reported ambulance use statistics similar to those presented by 

Lehman and Hollingsworth (1960). However, Waller et al. (1966) also included statistics 

concerning the type of ambulance services that were provided (e.g., simple transports, 

emergency transports, etc.), the fatality rates associated with different patient diagnoses, and 

the ambulance utilization rates of individuals with and without prepaid ambulance service. 

With respect to how EMS system statistics were reported, most of the studies listed above 

simply described EMS systems although some when beyond a simple description. Some of 

this earlier work has served as a starting point for analyses presented in later publications. For 
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instance, Waller (1965) and Briggs and Palmer (1963) used the works of Krieger (1958) and 

Hampton (1960), respectively, to highlight the poor quality of ambulance transport throughout 

the United States. The more advanced work at this time began including quasi-experimental 

research or analyzed the implications of their statistical findings more thoroughly. Despite this 

progress however, most work of this era focused on only a few issues, namely the significance 

of faster ambulance response or total travel times and the economics of ambulance service.19 

In the first category, Magelaner and McElroy (1955) examined the ratio of ambulance 

accidents to the number of emergency calls that were serviced under various conditions (i.e., 

periods when ambulances had different sets of rights-of-way and siren use privileges) and 

concluded that this ratio was most favorable when ambulances were denied the right-of-way. 

They also found that the recommended policy did not reduce the efficiency of the ambulance 

system. Curry and Lyttle (1958) examined 2,500 ambulance runs and estimated that speeding 

was unnecessary in 98.2% of the cases as there was only a single case where it was decided 

that faster travel-times would have made a difference. As such, Curry and Lyttle (1958) 

concluded that ambulances should operate within the speed limit and that they could use sirens. 

However, unlike Magelaner and McElroy (1955), Curry and Lyttle (1958) recommended that 

ambulances have the right-of-way. These conclusions about the relationship between the 

efficiency of an ambulance system and ambulance response or travel times, however, would 

be indirectly challenged by Waller et al. (1964). In their study that compared urban and rural 

fatalities resulting from traffic accidents, they observed that in comparison to their individuals 

that were injured in urban traffic accidents, individuals that died in rural accidents tended to 

                                                      
19 Other topics included calls for increasing ambulance personnel training in order to better handle certain 

medical cases and complication (Waller et al., 1966; West et al., 1964). 
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die more frequently at the scene of the accident, sooner after injury, and from less serious 

injuries. After ruling out some extraneous factors (such as road or driving conditions, the role 

of urban and out-of-state drivers, and injuries) they hypothesized that longer response times 

and longer travel-times to medical care facilities contributed to higher traffic-related fatality 

rates (in comparison to urban rates).20 Waller, et al. (1966) would later challenge the second 

hypothesis however, as their study did not find any substantial relationship between longer 

travel times and increased patient mortality except for patients with cardio-vascular-respiratory 

problems.21     

In the second category, statistics were used in various topics related to the economics of 

ambulance systems. As previously mentioned, Lehman and Hollingsworth (1960) used 

statistics to evaluate their EMS system and one part of this analysis used survey data that they 

collected to investigate the relationship between ambulance service costs and various factors 

including population, number of ambulances, total yearly call volume, and the type of 

organization that managed the EMS system. They reported finding no significant correlations. 

Caldwell (1961) analyzed the payment of ambulance service bills and found a negative 

relationship between bill repayment and the distance that a patient was transported, as well as 

(separately), instances where accident care was provided (in comparison to non-accident care). 

Waller, et al. (1966) made similar observations with respect to rural EMS systems in the United 

                                                      
 20 To support this, Waller et al. (1964) noted, respectively, that rural traffic accidents occurred at times when 

they were less likely to be discovered (early hours in the morning) and that individuals in rural traffic accidents 

died from less severe injuries than those involved in urban accidents. 

21 Despite this conclusion, Waller, et al. (1966) expressed caution over its significance noting that several 

potentially important factors were unaccounted or not well understood. This included concerns over data sample 

sizes, the geography of roads, and the possibility that certain emergencies were dealt with and responded to in 

different ways (thereby making it difficult to evaluate the role of travel-times to medical care facilities).    
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States and concluded that the resulting financial uncertainty was likely to hinder the 

development of EMS systems in terms of producing and retaining qualified ambulance 

personnel. Moreover, some accidents involving non-residents of rural communities further 

complicated the financial health of rural EMS systems. Waller, et al.  (1964) observed that a 

significant amount of service was provided to non-residents of rural communities. They did 

not consider the financial impact of this trend, however, as Waller, et al. (1966) argued that 

this represented a substantial economic burden on rural EMS systems considering that a larger 

proportion of ambulance calls in rural areas were accident cases, that accident cases required 

longer trips, and that these two factors were related to lower rates of repayment.  

In all, during this time the view that statistics was a necessary tool to understand and 

improve EMS began taking prominence and eventually became accepted by the end of the 

1960s. The beginning of this shift can be seen in the works of Lehman & Hollingsworth (1960), 

Howard (1965), and Waller (1965). Lehman & Hollingsworth (1960) noted that “[n]o 

statistically accurate or valid appraisal of traffic laws regulating emergency ambulance service 

is possible from an evaluation of only 30 local ordinances.” In an study about emergency care 

and medical transportation in the Eastern United States, Howard (1965) pondered that “there 

might be some field of investigation that could dispel this fog of specialized subjective 

opinions by collecting statistical objective facts on the subject of emergency care.” Likewise 

(although more assertively), Waller (1965) challenged “[t]he assumption that the usual 

procedures for providing emergency care in an accident or illness are known” adding that 

“[a]ctually, little has been documented about patient characteristics and who does what at the 

scene of an accident or en route to the hospital.” Finally, King & Sox (1967) captures the 

transition to a complete acceptance of the necessity of EMS statistics in the introduction of 
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their analysis of the San Francisco EMS system: “[k]nowledge of the population, nature and 

distribution of emergencies, and geography and is a basic requirement for setting up an 

emergency medical system and can be used to evaluate existing or proposed systems and 

facilities. But there have been no such data with which to work. The San Francisco study was 

undertaken to accumulate samples of these data.”   

During this time-period EMS researchers suggested or developed increasingly more 

general and structured EMS operational guidelines. That is, these guidelines began including 

new issues that had been previously overlooked and they became more generic or 

nonrepresentational so that their applicability was broad and not limited to a single or limited 

number of EMS systems. Moreover, despite the broad and comprehensive nature of these 

guidelines they did not amount to an unstructured collection of related facts or suggestions. 

Rather, EMS researchers began deliberately developing these guidelines in a cohesive manner 

that acknowledged the relationships between different components of EMS operations. In other 

words, they began looking at EMS as a system rather than as collection of tasks and obligations.  

Again, the notion of EMS as a system is indeed at least as old as the first modern 

ambulances (see Jean Dominique Larrey’s “ambulance volantes”). Larrey did not just invent 

the first modern ambulance but also devised a system that jointly considered how and where 

to transport and treat injured soldiers (Bass, 2015). Nonetheless, it was not until the late 1950s 

that a significantly general and comprehensive set of EMS guidelines appeared. As previously 

discussed, by the mid- to late-1950s courses and textbooks regarding the proper transportation 

of injured people and the provision of emergency medical treatment were available yet little 

was said about EMS as a system. 
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In this investigation, the earliest work that was found that alludes to EMS as a system is an 

article by Curry & Lyttle (1959) where a model statute is proposed for the purpose of 

“[improving] the quality of transportation of the sick and injured.” This article begins with a 

criticism of the state of EMS transportation services, specifically with the claim that patients 

were not being transported properly despite the availability of instructional materials regarding 

the proper transport of injured individuals. Then, it describes a potential solution involving the 

city of Flint, Michigan and its ordinance for regulating ambulance systems22 as well as the 

successful “mutual cooperation between the morticians, independent ambulance companies, 

the city health officer and the local Committee on Trauma of the American College of 

Surgeons.” Consequently, Curry & Lyttle (1959) proposed a model statue that addressed: (1) 

what qualified as ambulance services, (2) qualification and training requirements for 

ambulance attendants, (3)  ambulance equipment, (4) regulating ambulance maintenance, (5) 

the proper operation of ambulances (e.g., with respect to traffic laws and patient welfare),  and 

(6) punishments violating this statue. Their proposal contained complete legal statements (i.e., 

an operational ordinances) addressing each issue but notably, Curry & Lyttle (1959) included 

a concise discussion of most issues but also very specific guidelines regarding ambulance 

operator training and qualifications as well as ambulance inventory requirements (for 

ambulance companies in Flint, Michigan). Thus, although Curry & Lyttle (1959) don’t use the 

word “system” in their article, they effectively discussed the management of an EMS system 

by deliberately detailing a sufficiently broad and cohesive set of EMS guidelines.  

                                                      
22 Curry & Lyttle (1959) noted the existence of ambulance ordinances in Louisiana and Massachusetts but 

emphasized that the ordinances did not really regulate the transport of patients or set qualification requirements 

for ambulance operators.  
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 After Curry & Lyttle (1959), a cluster of four journal articles appeared between 1963 and 

1965 that suggested a move towards analyzing and managing EMS as a system. These 

publications were primarily motivated by automobile accidents and the needed response to 

them, but they all recommended a complete reevaluation and modernization of EMS 

operations. 

First, Briggs & Palmer (1963), like Curry & Lyttle (1959), expressed concerns about the 

quality and the lack of regulation of emergency transportation. Specifically, they highlighted 

the dismal results of Hampton's (1960) survey of American EMS systems that reported that: 

(1) almost half of EMS transportation vehicles were inadequate for transporting injured 

individuals, (2) the uncertainty about the proportion of ambulance operators with some first 

aid training, and (3) the lack EMS regulations at the state and city level. In response, they 

outlined suggestions about the “basic elements of good service” This discussion included the 

nature of the EMS agency (public, private, volunteer, etc.), the dispatching system, equipment, 

and the training and selection of ambulance attendants. They also discussed the regulation, 

inspection, and licensure of EMS (and their staff) and encouraged collaboration among local 

organizations or agencies that were concerned with EMS. 

Skudder & Wade's (1964) brief set of emergency transport guidelines also focus on having 

properly trained ambulance attendants. However, their work is notable in two respects. First, 

their focus on EMS is from the standpoint of the hospital emergency room. In their overview 

of emergency care, they recognized the changing nature of emergency services including the 

higher demand for hospital facilities (and inadequate space, equipment and staff to handle this 

change), the necessity to operate 24 hours a day, and the lack of standards and guidance 

concerning the provision of emergency care. Subsequently, they discussed several topics in 
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great detail including the organization and staffing of hospital emergency facilities (including 

ambulance staff and service), the planning or modernization of emergency medical facilities 

(including the construction of emergency department facilities), and properly equipping and 

supplying a hospital EMS department. Second, Skudder & Wade (1964) also argue, albeit 

briefly, that emergency departments should assume responsibility over the treatment of 

patients before they arrive at the hospital and their transportation and went as far as clamming 

that these tasks were “an integral part of [the patients] over-all management and may have a 

direct relationship to morbidity and mortality after admission.” With this claim, Skudder & 

Wade (1964) effectively “elevated” the status of emergency transport from just a transportation 

service to a medical service. 

To understand the significance of this statement, it is important to understand some of the 

changes occurring in emergency medicine between the 1950s and 1960s. Before 1960, many 

emergency rooms (ERs) were mostly “accident rooms” staffed with nurses or physicians 

(staffed on an as-needed basis or as part of a rotation) that provided basic care to patients 

(Merritt, 2014). The first full-time ER physicians were not hired until 1961 when the 

Alexandria Hospital in Virginia hired several physicians dedicated to running its ER. Then in 

the 1960s, ERs expanded their duties to treating accident victims and patients with urgent 

medical needs. At the same time, patients also began relying more on ERs and less on their 

general practitioners (GPs) for both urgent and non-urgent medical issues (previously patients 

relied on general practitioners and established close relationships with them). Merritt (2014) 

attributes this change to four factors: (1) an increasingly mobile population, (2) an increase in 

physician use of ERs, (3) the emergence of group practices, and (4) a shift towards medical 

specialization. Merritt (2014) also notes that many of the first ER doctors were GPs. 
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Considering that ER medicine was beginning to establish itself in the 1960s, it’s no surprise 

that medical transportation was not equated with medical care. Despite the urging for increased 

training for ambulance attendants, Curry & Lyttle (1959) were primarily concerned with 

improper transportation further harming patients. 23  Briggs & Palmer (1963) went further 

suggesting that ambulance attendants should not be considered “laymen to be trained in the 

mere rudiments of first aid” and that they were “paramedical personnel with an important and 

often crucial role in patient care.” They also suggested advanced training to handle a variety 

of situations besides vehicle accidents but their focus remained on medical qualifications and 

regulations rather than further integrating emergency transport and medical care.   

  Eventually, Waller (1965) directly addressed the issue, concluding that “[a]mbulance 

service frequently is the first phase of the medical care sequence and therefore must be 

considered as a bona fide area of medical care” and called for ambulance services to be 

considered in comprehensive medical care planning. Moreover, in Waller's (1965) overview 

of ambulance care he explicitly identifies “several procedures and systems” related to 

ambulance care indicating a view of EMS as a system. These procedures and systems included: 

(1) the ownership and organization of ambulance service providers, (2) ambulance personnel, 

(3) ambulance equipment, (4) the finance and economics of ambulance operations, (5) the 

characteristics of patients (or the lack of knowledge about them), and (6) the regulation of 

ambulances. The fourth point is rather notable as previous works at most noted this aspect of 

EMS operations. For this issue, Waller (1965) discussed various approaches for financing EMS 

                                                      
23 This position in clearly stated in their text: “In many cases, poor transportation of the injured can do as 

much or more harm than the original accident. It can also influence the type and definitive management and the 

ultimate result of treatment of a specific injury. It, therefore, behooves the medical profession as well as the 

general public to insist that those engaged in transportation of the injured be properly qualified.” 
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systems as well as the work by Caldwell (1961) which documented the economic struggles of 

many EMS agencies (notably those in rural areas) and the non-payment for ambulance services 

by some patients. Lastly, Waller (1965) also expressed serious concerns about the lack of 

knowledge about medical emergencies and the assumption that EMS operations in rural and 

urban areas should be managed similarly. 

Mitchell (1965) presented an overview similar to Waller's (1965) in which he discussed: 

(1) the need to gather more information about the patients served by ambulances and the care 

being provided, (2) the different types of EMS organizations/providers, (3) evaluating 

ambulance staff and equipment, (4) the logistical problems faced by ambulance operations, (5) 

ambulance economics, and (6) the role of public health agencies. Mitchell (1965) notably 

highlighted situations where geography complicated or dictated response efforts such as, 

respectively, accidents in remote areas or extreme conditions (e.g., accidents in the desert) and 

the higher incidence of vehicle accident related deaths and incidents in rural areas than in urban 

areas.24     

2.3 Developments in Emergency Medical Service Policy  

As emergency medical care garnered an increasing amount of attention from medical 

professionals during the 1950s and 1960s, policy makers also became more interested in 

medical care (Shah, 2006). This included a great concern for the growing number of traffic 

accident fatalities, a problem that would attract the attention of several US presidents 

                                                      
24 They referenced  Waller et al.'s (1964) investigation of traffic fatalities for the latter issue.  
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(including Presidents Dwight E. Eisenhower, John F. Kennedy, and Lyndon B. Johnson) 

(Robbins, 2005).  

President Eisenhower responded to this crisis by establishing the President’s Committee 

on Traffic Safety through an executive order.25 The order required the committee to synthesize 

and develop plans to reduce deaths and injuries involving motor vehicle; work with 

government agencies (at all levels) and interested national organizations to “study traffic-safety 

needs, adopt uniform traffic laws and ordinances, and conduct balanced traffic-safety 

programs”. This order also called for the creation of advisory groups to “aid citizen leaders in 

developing effective support organizations, assist public officials in determining specific needs 

and applying remedial measures, plan and guide nationwide traffic safety educational efforts, 

and advance all areas of highway safety.”  

In 1960, President Kennedy confirmed the importance of this issue declaring that “[t]raffic 

accidents constitute one of the greatest, perhaps the greatest, of the nation's public health 

problems” (USDHEW, 1968). Despite President Kennedy’s assassination, President Johnson 

maintained his predecessor’s interest in traffic accidents (Shah, 2006) and in 1965, the 

President’s Commission of Highway Safety (established in 1946) published a report, Health, 

Medical Care and Transportation of the Injured (President’s Commission on Highway Safety, 

1965). Here the Commission recommended the establishment of a national highway safety 

program to reduce death and injuries and also, suggested a need for the adequate and timely 

care of injured patients (Bass, 2015; Rockwood et al., 1976).  In the following year, President 

Johnson discussed highway safety in his State of the Union speech (Shah, 2006).   

                                                      
25 Executive Order No. 10858 – The President’s Committee on Traffic Safety (January 13, 1960).  
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Besides traffic accidents, an interest in heart disease and strokes also fueled an interest in 

medical care that led to the advancement of EMSSs in the United States. This push was led by 

social and medical activist as well as President Johnson who announced his interest in heart 

disease, cancer, and strokes in a 1964 Health Message and later commissioned a report, Report 

to the President: A Program to Conquer Heart Disease, Cancer, and Stroke (President’s 

Commission on Heart Disease, Cancer, and Stroke, 1965), that outlined a plan and several 

recommendations to advance the state of medical science and emergency services in the United 

States (Shah, 2006). Notably, the report contributed to the establishment of Regional Medical 

Programs (RMP) through the Heart Disease, Cancer and Stroke Amendment26 (Sanazaro, 

1967). The purpose of RMPs was "to encourage and assist in the establishment of regional 

cooperative arrangements among medical schools, research institutions, and hospitals for 

research and training, including continuing education, and for related demonstration of patient 

care”. According to Shah (2006), RMPs were critical for the development of EMS in that they: 

(1) helped organize EMSSs and train EMTs, (2) served as a critical source of funding for 

EMSS, (3) impressed its medical priorities (heart disease, cancer and strokes) on EMS, and (4) 

promoted regionalized health care. Without RMPs, Shah (2006) argues that it was “unlikely 

that sufficient funds would have been available in an organized manner to advance EMS”.    

2.3.1 “Accidental Deaths: The Neglected Disease of Modern Society”, National 

Highway Safety Act of 1966, and Heartmobiles 

In 1966, the US National Academy of Science (NAS) and the National Research Council 

(NRC) marked the beginning of the modern era of pre-hospital care with the publication of 

                                                      
26 Public Law 89-239. 



31 

 

Accidental Deaths: The Neglected Disease of Modern Society (NAS-NRC, 1966). To quote 

Bass (2015), this seminal report “documented the enormous failure of the United States to 

provide even minimal care for emergency patient.” The problematic issues identified within 

ESSs in the United States included, among other things: (1) the lack of adequately trained 

personnel, (2) antiquated communications systems and equipment including a lack of 

emergency hotlines, (3) slow responses to medical emergencies, (4) the failure on the part of 

medical and health-oriented organizations to advance the treatment of trauma, (5) the condition 

of emergency departments in hospitals, (6) a lack emergency treatment protocols, (7) local 

political authorities failing to provide high quality emergency services, (8) lack of data 

regarding the impact of inadequate EMSs, (9) the lack of research about the potential of 

existing Federal programs to assist in the development of EMS; and (10) a lack of prehospital 

medical treatment (NAS-NRC, 1966). The report outlined a general plan to address these issues 

including specific recommendations such as improving ambulance communication systems 

and developing ambulance service standards at the state and local level, as well as, developing 

pilot programs to evaluate ambulance service in remote sparsely populated areas or in those 

areas that lack access to proper hospital facilities.  

The NAS-NRC’s recommendations were consistent with and complemented the 

President’s Commission of Highway Safety report and both repots were subsequently used to 

develop the National Highway Safety Act of 1966 27  (Shah, 2006). This act of Congress 

established the cabinet level Department of Transportation (DOT) and provided the agency 

with it broad legislative and financial authority to improve EMS. The Act focused on highway 

                                                      
27 US Public Law 89-564, 80 Stat. 731. 
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safety programs that included programs and standards for improving EMS planning, 

equipment, training, and staffing. Moreover, the Act allowed states to be punished for failing 

to fulfill mandates regarding EMS. Lastly, the Act established a crucial source of funding for 

EMS projects, studies, equipment, administrative, and personnel costs. In all, between 1968 

and 1979 the DOT contributed $142 million to the development of regional ESSs with $10 

million going to EMS research and $4.9 million going to EMS demonstration projects (Bass, 

2015).  

While the Act afforded the Federal government with considerable authority and resources, 

however, it assigned the tasks of developing EMSs to the states and regional agencies. For 

instance, the Act provided matching funds for EMS demonstrations and programs, and 

required states to develop highway safety programs that conformed to DOT regulations and 

adequate regional EMSSs (Bass, 2015). With this approach, the Act allowed different regions 

to experiment with different ESSs and policies and avoided expanding the federal government 

(Shah, 2006). 

Besides policy, advances in medical care and technology also brought about changes to 

EMSs during the 1960s. This included advances related to pharmaceuticals, defibrillation, and 

trauma care and most notably, mobile cardiac care units that demonstrated immediate and 

quantifiable benefits (Bass, 2015; Shah, 2006). The latter came about with the work of 

Pantridge and Geddes (1967) in Belfast, Ireland on the effectiveness of intensive pre-hospital 

treatment for myocardinal infarction (heart attack) patients using intensive-care ambulances. 

In the United States, a similar physician-based “Heartmobile” program was established in 

Columbus, Ohio and the Seattle Fire Department also established “Medic 1” (Shah, 2006). In 
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all, the success of these and other programs increased the interest in highly advanced and 

responsive EMSSs.  

2.3.2 Emergency Medical Services Act of 1973 

Despite the federal government’s financial and technical commitments into improving 

EMS, in 1972 a follow up report published by the NAS and NRC, Roles and Resources of 

Federal Agencies in Support of Comprehensive Emergency Systems (NAS-NRC, 1972), 

concluded that the federal the government failed to improve EMSs28 (or match the efforts by 

other organizations to do so29)  and that the lack of coordination and planning by federal 

agencies precluded the optimal use of federal resources.30 The NAS-NRC report listed several 

recommendations in the report that urged the Executive branch to develop administrative 

policies and improve interdepartmental coordination for the implementation of EMS programs. 

                                                      
28 “The Committee on Emergency Medical Services of the NAS-NRC found little evidence of concern for 

implementation of recommendations for upgrading emergency medical services by any agency within the 

Department of Health, Education, and Welfare above the level of the Division of Emergency Health Services. 

The Division of Medical Sciences of the NAS-NRC in its report, "Accidental Death and Disability: The Neglected 

Disease of Modern Society," of 1966, along with the American College of Surgeons and the American Academy 

of Orthopedic Surgeons, in the Airlie Conference report of 1969, recommended new initiatives in this field by 

the Executive Office of the President. The report of the Department of Health, Education, and Welfare Advisory 

Committee on Traffic Safety of 1968, under the chairmanship of Dr. Daniel P. Moynihan, recommended that the 

Department of HEW should assume primary responsibility to establish emergency medical services and 

consolidate the roles of agencies within the Department for this purpose” (NAS-NRC, 1972). 

29 “Federal agencies have not kept up pace with the efforts of professional and allied health organizations to 

upgrade emergency medical systems” (NAS-NRC, 1972). 

30 “In its analysis of the ways in which the resources of these agencies might be utilized, the NAS-NRC 

Committee on Emergency Medical Services finds that while most of the agencies have resources that could and 

should be used in development of a system of emergency medical services, the most efficient role that each agency 

may play in an overall program is reduced severely because there are no federal focal points of responsibility for 

delineation of the essential requirements for communication, transportation }or command and control, which are 

common to all emergencies, nor is there a federal focal point for overall planning, or for coordination of 

emergency medical services” (NAS-NRC, 1972). 
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In response to this report, President Richard Nixon voiced support for improving 

emergency care but opposed and fought against the passage the several EMS bills including 

one bill, the EMS Systems Development Act, which he vetoed (Shah, 2006). Many prominent 

national medical organizations and officials testified before Congress about the need for new 

EMS legislation to address the poor state of EMS in the United States (Shah, 2006),31 however, 

opposition to such legislation was based on the idea that EMS was a local, not federal matter 

and on opposition to non-EMS related clauses such as the continuation of Public Health 

Service Hospitals (Bass, 2015; Shah, 2006). 

Congressional leaders did not relent on reforming EMS and consequently, Congress held 

additional hearings over EMS which led to the introduction of a new bill in Congress that 

expanded the federal government’s involvement in EMS (Bass, 2015). With this new bill, 

supporters emphasized the tremendous challenges individual communities faced in 

establishing regional EMSSs without substantial assistance from the federal government and 

the bill also discontinued the controversial Public Health Service hospitals (Bass, 2015; Shah, 

2006). In November 1973, Congress easily passed this new bill and President Nixon signed 

into law the Emergency Services Development Act (ESDA) of 1973.32  

The ESDA of 1973 provided wide financial support for developing comprehensive EMSSs 

throughout the country. It addressed EMSS development, research, and contract grants as well 

                                                      
31 As noted in Shah (2006), Peter Safar, a key figure in emergency medicine, reiterated the findings of the 

1972 NAS-NRC report testifying that the state of EMS as a “. . . disgrace, primarily because of lack of 

organization, coordination, and clearly defined responsibilities and authorities . . . ,” and that “Implementation 

of national recommendations concerning ambulance services’ improvements are still being retarded because of 

incompetence, bigotry, indifference of the public and governments, and because the interest of providers rather 

than consumers prevail.” (United States Congress Senate Committee on Labor and Public Welfare, Subcommittee 

on Health, 1973). 

32 US Public Law 93-154. 
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as EMS training grants, respectively, through Title XII and a new section in Title VII of the 

Public Health Service Act (Bass, 2015). The grants covered feasibility studies and planning, 

initial operations, expansions and improvements, and research. The Act was amended and 

reauthorized to continue spending in 1976, 1978, and 1979 but the Act’s underlying 

expectation was that EMSSs would become financially self-sufficient and not require further 

federal assistance past 1982 (Shah, 2006). As with the NHSA of 1966, Congress explicitly 

sought to avoid expanding the federal government. Lastly, the Act emphasized regional ESSs, 

addressing trauma, and outlined 15 “essential components” of EMSSs to be addressed, 

including: (1) personnel, (2) training, (3) communications, (4) transportation, (5) emergency 

facilities, (6) critical-care units, (7) public safety agencies, (8) consumer participation, (9) 

access to care, (10) patient transfer, (11) standardized patient record-keeping, (12) public 

education, (13) system review and evaluation, (14) disaster planning, and (15) mutual aid. 

2.4 The Systems Approach for Planning and Managing Emergency Medical Services 

Beginning in the late 1960s and early 1970s researchers began investigating other facets of 

EMS with a more systematic approach. Descriptive studies and surveys about EMS systems 

continued to be published during this time (e.g., Holloway, 1972; West et al., 1972). 33 

However, within the broader context of EMS research, the application of a “systems approach” 

to planning and managing EMS systems, both conceptually and in practice, gained prominence 

amongst EMS professionals (Boyd & Cowley, 1983). This became a central tenant in US EMS 

policy. Underpinning this transition was: (1) the notion that EMS was not just a transportation 

                                                      
33 Examples of more modern surveys include the works of Pozner et al. (2004) and Williams (2007). 
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service, but also a medical service34;( 2) the challenges associated with implementing system 

improvement recommendations; and more generally, (3) a recognition of the need for a 

systematic way to evaluate proposed or existing EMS systems. 

West et al. (1972) captured this further shift arguing that advancements in emergency 

medical care that could reduce patient morbidity should be introduced into the paramedical 

field. He concluded that ambulance services should no longer be considered a transportation 

service but rather “an essential component of the emergency medical care system” since 

“[m]ost of its recommendations were directed toward bringing ambulance service into the 

medical care field”. Notably, two years earlier then California Governor Ronald Regan signed 

the Wedworth Townsend Act of 197035 which allowed paramedics to provide advance medical 

care under the supervision of a physician but without requiring the physician to be present to 

directly supervise the paramedic (Pozner et. al, 2004). Similarly, the American Society of 

Anesthesiologist’s (ASA) Committee on Acute Medicine (Committee on Acute Medicine of 

the American Society of Anesthesiologists, 1968) called for further integration between 

ambulance services and emergency medical care given that advancements in emergency 

medical care could improve overall patient care. 

EMS professionals and researchers observed that despite the existence of recommendations 

for improving emergency medical care that they were not being adequately implemented (as 

noted in the 1972 NAS-NRC report). Boyd & Cowley (1983) commented on Accidental 

                                                      
34 In support of the idea that EMS was viewed primarily as a transportation service Shah (2006) notes, among 

other things, that the NHSA of 1966 placed EMS under the jurisdiction of the DOT rather than the Department 

of Health, Education, and Welfare (DHEW). Robbins (2005) also notes that the terms “emergency medical 

services” or “EMS” did not appear in the act itself but rather (and sparingly) terms such as “emergency services,” 

“emergency service plans,” and “transportation of the injured.”  

35 California Health and Safety Code, Sections 1480–1485. 
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Deaths: The Neglected Disease of Modern Society (NAS-NRC, 1966) that although the report 

outlined “[t]he basic building blocks and blueprint for an improved trauma care program and 

most of the developments relevant to EMS and trauma care [at the time],” its major deficiency, 

in retrospect, was that it did not consider the “methods and approaches” necessary for 

implementing or effectively integrating the recommendations listed in the reports. Likewise, 

Hampton (1970) noted that the federal government, via the National Highway Safety Bureau, 

had already developed standards for the provision of emergency medical service through 

Standard No. 1136 and went as far to say that “[i]n urban areas particularly, those hospital 

emergency departments which cannot meet the standards for emergency departments of the 

American College of Surgeons or the Joint Commission on Accreditation of Hospitals should 

be closed as real emergency departments. They should not pretend to be capable of receiving 

and promptly treating the severely ill or injured. Such casualties should be resuscitated and 

transferred promptly to a fully equipped, staffed, and ready emergency department at a nearby 

hospital.”  

The EMS community was also heavily critical about the state of EMSS evaluations. King 

(1968) considers the existing system quality performance measures as “relatively insensitive” 

in terms of “survival, complications, impairments, and disabilities” but also called for 

“[establishing] objectives based upon the widely held assumption that the shorter the time 

between the occurrence of the injury and the administration of an adequate level of medical 

care, the better will be the outcome for the patient.” Likewise,  Gibson (1973) was critical of 

the federal standards from Standard No. 11 given their almost exclusive concern with “in-put 

                                                      
36 This standard was issued by the DOT secretary in accordance with the NHSA of 1966 (Gibson, 1973). 
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variables” rather than out-come measures of system performance. Likewise, he criticized data 

produced by state and local evaluations of EMSSs surveys claiming that “its relevance and 

usefulness is of dubious value, consisting as it does almost entirely of in-put variables” and 

also questioned the studies on various methodological grounds including ascertaining or 

verifying the veracity of data. 

2.4.1 Early EMS System Planning Models and Research 

Soon after EMS researchers first suggested discussing EMSs as systems, several 

publications appeared that completely embraced the concept. Among the earliest publications 

found in our literature review that discussed EMSs as such is an article by Richard F. Manegold 

and Michael Silver from the American Medical Association, The Emergency Medical Care 

System (Manegold& Silver, 1967). Here they presented their conception of an emergency 

medical care system replete with a schematic relating various EMS functions and factors. 

Moreover, they identified potential problems within EMSSs (such as delays in treatment) and 

the causes and impacts of these problems in relation to other system components and functions. 

Hampton (1970) and Nahum (1971) later authored similar articles about, respectively, a 

systematic approach to EMSs and emergency medical care systems. Nahum's (1971) article is 

notable in it outlines a “functional analysis” for EMSSs that relates an EMSS’s components 

(e.g., personnel, equipment), its operations (i.e., notable tasks and events in an EMSS), and the 

system evaluation. Furthermore, he highlights the potentially complex relationship between 

these factors and that improving a system along one dimension might require intervention 

along an adjacent system component or operation. 
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Despite this paradigm shift, the EMSS planning literature remained reminiscent of earlier 

EMS planning publications in that they were extensive, yet cohesive discussions about EMS. 

They notably differed with their emphasis on systems and with increasingly elaborate 

discussions or detailed guidelines, however, this varied largely by topic with some receiving 

more attention than others. Examples of these works include: Sigmond (1967), which 

discussed areawide planning and how to reduce the volume of patients using emergency 

services and manage EMS-related costs; an extensive set of EMS standard goals by the ASA’s 

Committee on Acute Medicine (ASA, 1968); Huntley's (1970) discussion of organizing 

community emergency medical care communities; an evaluation of the DOT EMS programs 

by Lewis (1972), and Hanlon's (1973) presentation on comprehensive emergency medical care 

systems. 

It would be wrong to say that this “transition” period ended given that general system-

oriented EMS overviews and surveys are continually published to report on the status of 

EMSSs in the US and from around the world (often in a highly accessible manner). 

Nonetheless, around 1973 there appears to be a significant uptick in conceptual and innovative 

EMSS planning articles. Examples of the first class of articles includes the works of 

Taubenhaus (1973), Sluyter (1976), Boyd (1976), and Boyd, et al. (1979) that present 

conceptual frameworks about, respectively, comprehensive EMSSs, EMS communication 

networks, national EMS systems and programs, and medical control and accountability. For 

the second class of articles, examples include Vogt's (1976) work with developing EMSS 

communication subsystems and the work of Boyd, et al. (1973) on the development of state-

wide emergency care systems. 
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2.5 Location Science and EMS Systems 

2.5.1 Theory of Public Facilities 

In the late 1960s, Teitz (1968) proposed an important theoretical development relating to 

the location of urban public facilities (which can include facilities such as EMS centers and 

ambulances). Teitz called for the establishment of a theory of urban public facility location 

noting that location decisions relating to such facilities lacked a sound theoretical basis and 

instead relied on “mechanical and inadequate” responses based on rules of thumb. He 

continued that if the government wished to use public facilities to shape urban growth, and 

social and economic behavior, that such efforts would require the development of evaluation 

procedures for public services and that many existing quantitative approaches could be used to 

potentially improve how resources in urban services were utilized in terms of effectiveness and 

efficiency. For these reasons alone Teitz argued, developing a theoretical structure “might be 

invaluable.” 

Teitz (1968) then established some differences between private and public facility location 

theory, attempted to describe some functions that characterize public facilities as compared to 

private facilities, outlined a decision-making process as it relates to public facility placement, 

and lastly, provided a rough example of the application of his proposed theory in various 

situations. Most, if not all, of the ideas developed by Teitz are applicable (to different degrees) 

to EMS systems, however, a few points particularly stand out. The first was involved with the 

structure of public facilities. Teitz noted that the locational nature of a public facility system is 

strongly influenced by the geometry of facilities (point or network facilities), the services they 

provide (collection/centralized or distributed services), and how services are provided in terms 
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location (i.e., the number of public facilities that citizens can use or be served by). In the 

context of an EMS system, this is exemplified by several ambulances serving a given locale 

while a single hospital serves people from many locales. As for the importance of these 

relationships, Teitz noted that the characteristics of the facility system might require that a 

region be divided for functional reasons but also that it is important to consider how facility 

systems interact with boundaries established by other systems or organizations. At one 

extreme, such boundaries are disregarded (e.g., the relationship between public libraries and a 

city’s neighborhood boundaries) and at the other end of the spectrum facilities must operate 

with strict consideration to such boundaries (e.g., post office delivery regions). Depending on 

the relationship between the public-sector services and the role of boundaries in the planning 

of public facilities, the overall effectiveness of a public facility system and/or the quality of the 

services provided by public facilities (or received by citizens) might be impacted dramatically.  

The second key point noted by Teitz about the structure of public facilities is the hierarchy 

of facilities. According to Teitz, this quality is almost universal in public facility systems and 

that for point facilities, for instance, hierarchical structures (and their extent, structure, or 

degree of hierarchy) result from the functions that these facilities perform and the requirements 

that are necessary to support such facilities. In the context of EMS systems, examples include 

the high costs of operating advanced ambulance service that limit the number and use of 

advance ambulances for response.   

Teitz also made several important observations related to the nature of public facility 

decision-making, where he outlined three general challenges that complicate the decision 

process. The first is that the government has a general resource availability that is established 

by society as a whole and that society is highly influential in determining how such resources 
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are allocated. Second, assuming that funds are allocated to “loosely defined” programs, Teitz 

noted that system location problems are placed under budget restrictions and as such, the 

budget dictates the provision of a given service rather than societal needs dictating the 

provision of that service, which Teitz argues, essentially amounts to an inefficient use of 

resources unless a socially optimal budget is somehow allocated.37 The third challenge put 

forth by Teitz involved the general absence of a social welfare function. This poses a major 

challenge as the lack of quantifiable benefits complicates analyses with respect to the impact 

of decisions across various places and groups of people. Teitz noted that the extent of this 

problem varies – decisions that have a clear, positive, and sufficiently large impact are unlikely 

to be unchallenged as are decisions that have specific or well-defined targets. However, Teitz 

countered that decisions are highly likely to be challenged when they are made at the local 

level or in the absence of clearly quantifiable (monetary) impacts. Moreover, concerns about 

the distribution of impacts arise in both cases, but Teitz argued that when decisions are made 

at the local level, there are additional challenges stemming from local politics. 

To address the problem quantifying benefits, Teitz (1968) argued that understanding the 

factors that influence a system’s cost and efficiency might assist the decision-making process, 

including issues of scale and location (dispersion). Furthermore, Teitz proposed considering 

the possibility of formulating a system whose performance is readily measurable. The benefit 

of this approach, beyond providing a measure of performance, is that the impact of budget 

changes can be better understood including that of complex systems. In the case of a budget 

increase, performance measures should improve or at least remain constant and in the case of 

                                                      
37 Clearly if a budget is below a socially optimal level, social returns could have been increased with a higher 

budget. If the budget was higher than the socially optimal amount however, Teitz notes that there is pressure to 

use the complete amount, which would result in inefficiencies in the system (see Parkinson, 1955).  
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a budget decrease, the decline in system performance (and its extent) can be determined if it 

occurs. In one of several examples, Teitz (1968) discusses fire stations and response time as a 

potential measure of system performance. More interestingly, he notes the role of standards 

and their potential to influence location decisions observing that insurance rates were mostly 

based on compliance with fire related standards rather than “empirical fire experience” such 

as response times to fires.  

ReVelle et al. (1970) conceptually expanded on the ideas about system performance 

measurements offered by Teitz (1968) by proposing: 1) identifying and measuring factors that 

affect social costs; and 2) developing methods of analysis that employ surrogate or substitute 

measures for social costs. The first option was proposed as an analogue to approaches 

employed by firms in the private sector - quantifying their interests in terms of monetary value 

and then developing an objective function that maximizes monetary benefits so as to capture 

both monetary and non-monetary benefits. According to ReVelle, et al. (1970), efforts in 

adopting this approach found it difficult to implement and exhibited limited success. As for 

the second option, the purpose of surrogate measures, ReVelle, et al. (1970) admit, is not 

necessarily to find a solution to a problem as much as to gain a further understanding of the of 

the system under study. For potential surrogate measures for a public facility location model, 

they provide three examples based on: the total average distance traveled by facilities or users 

in a system (subject to a constraint on the number of facilities to be located); 

maximizing/minimizing the creation of demand (which is determined as a function of the 

number, location, and size of facilities); and the maximum distance or time between any 

facility and a service area/point.  
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Given such surrogate measures (or possibly others), ReVelle et al. (1970) proposed a 

framework whereby: 

1) Facility location is optimized subject to constraints on investments. 

2) The sensitivity of solutions are evaluated with respect to the parameter values 

assumed in the optimization model.  

3) Tradeoffs between investment and utility are compared (when parameters are 

found to not significantly influence the solution) 

4) To make a decision among the various alternatives generated include those with 

different levels of investment. 

They noted that the nature of the surrogate measure be carefully considered, particularly 

with respect to the process of estimating demand and the length of the planning horizon. Failure 

to carefully consider both aspects when developing a model can result in solutions that involve 

sub-optimal locations in the present or near future. In the former, this can be the result of a 

biased surrogate measure(s) resulting from not correctly capturing the true level demand, while 

in the latter, this can result from a failure to consider potential changes in demand. ReVelle, et 

al. (1970) also asserted that the influence of public facilities on future growth should also be 

considered. 

These theories of public facility location would later be expanded (e.g. Smolensky, et al., 

1970; Austin, 1974; McAllister, 1976; Bigman & ReVelle, 1978; Greenhut & Mai, 1980) and 

later critiqued (e.g., Dear, 1974; Morrill & Symons, 1977). However, with respect to EMSSs, 

the works of Teitz (1968) and ReVelle, et al. (1970) proved to be highly influential in the 

development of many ambulance location models or at least, they presented various elements 

of a modeling framework that would be applied in many ambulance location models. In 
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addition to the theoretical contribution from a Location Theory perspective, ambulance 

systems research produced many theoretical developments as well. The expansion of systems-

based conceptualizations of EMS produced many of these advancements; however, numerous 

important developments also originated from a variety of quantitative EMS facility and system 

models. With the introduction of numerous mathematical tools and techniques to EMS 

research, as well as the increasing availability and processing capabilities of computers, 

ambulance system researchers were able to use models to observe and ask increasingly 

complicated questions about ambulance systems that were never before possible.   

2.5.2 Early EMS Facility & System Models: 1960s through the 1970s 

The use of mathematics and computers for the purposes of planning or analyzing 

ambulance systems can be traced to a series of reports, theses, and dissertations published in 

the late 1960s in both the United States and Europe. In the United States, two key early works 

include the reports of Dunlap and Associates (1968) and Gordon and Zelin (1968) as both 

reports developed modeling techniques and approaches that are at the core of various modern 

ambulance system models.38  

The contributions of Dunlap and Associates (1968) included the development of methods 

for determining where to locate ambulances, estimating the demand for ambulance service 

                                                      
38 Around this time, Hare & Wemple (1969) developed a report for the National Center for Urban and 

Industrial Health that presented a comprehensive simulation-based model to assist with the planning and 

development of community EMS systems. The model linked numerous aspects of an EMS system including the 

detection of emergencies, the process of dispatching, the emergency response, treatment, and the transportation 

of the patient. Historically, this work is notable as a review of the EMS modeling literature indicates that this 

work includes the first comprehensive EMS system model to be developed. However, the review also seems to 

indicate that the impact or further development of this model was extremely limited. 
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given a certain population size, and determining ambulance availability based on methods 

employing queue theory. The objective of the latter was to predict the availability of ambulance 

service as a function of the size of the ambulance fleet size and the demand for ambulance 

service. As for the work of Gordon and Zelin (1968), they took a different approach for 

analyzing emergency ambulance systems. They developed a computer-based simulation to 

study the value of satellite ambulance garages. The motivation here was determining whether 

a decentralized ambulance system could outperform a centralized ambulance system (that is, a 

system where ambulances are located at a single central location) in terms of response time, 

round-trip time, and ambulance utilization.  

The long-term impact of these two reports was that their developments and results would 

end up in two influential journal publications. Dunlap and Associate’s work on using queueing 

theory to determine the number of ambulances needed to provide a certain level of service 

would be published in Bell and Allen (1969) while Savas (1969) would expand on the work of 

Gordon and Zelin (1968) and become the first journal article to present a model for analyzing 

emergency ambulance systems.39 

Outside of the United States, researchers in Great Britain were also active in the 

development of the ambulance system models during this period (Gibson, 1973). A model for 

determining the minimum number of ambulances required to maintain a certain level of service 

(although for non-emergent cases) was developed by Black (1969) while Dale (1969) 

considered emergency cases and applied queuing theory in order to determine the appropriate 

ambulance fleet size. Davidson (1969) synthesized and expanded on the works of both Black 

                                                      
39 The work of Gordon and Zelin (1968) was published in the Transactions of the New York Academy of 

Sciences as Gordon & Zelin (1970). 
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(1969) and Dale (1969) using Markov chains. Other notable research was conducted by the 

Greater Council of London’s Research and Intelligence Unit (July 1967-Janurary 1969) and 

the Shields (November 1969) both for the London Ambulance Service. These works were 

similar to those in the Dunlap and Associates (1968) and Gordon and Zelin (1968) reports as 

they included studies involving the use of simulation, determining optimal fleet size and 

ambulance location, and predicting demand for ambulance service. Foster (November 1969) 

would also investigate ambulance demand, optimal fleet size, and changes to the location of 

ambulance stations although in relation to the development of a new motorway. 

After the publications of Savas (1969) and Bell & Allen (1969), the amount of interest and 

publications in the area of ambulance system modeling expanded dramatically. Within the next 

decade alone, many articles published within this period would not only significantly expand 

and develop the core methods and models used in ambulance system modeling, but they would 

also help transform the practice of analyzing and planning EMS systems from an obtuse, 

unstructured, and idiosyncratic process towards analyses that were more systematic in nature.  

Volz (1971) examined the two versions of the ambulance location problem in the context 

of a semi-rural area. The first problem considered the location of ambulances that minimized 

average response time as a function of the number of ambulances that were available. 

Ambulances were allowed to reposition themselves upon any ambulance becoming busy or 

available. The second problem was similar to the first except that it required that the average 

response time to any location served by the ambulance system not exceed some response 

standard. Such a constraint however would only be in effect when a sufficient number of 

ambulances were available. 



48 

 

Hall (1971) developed an ambulance location model for a ‘dual function’ police-ambulance 

system where select police vehicles would respond to both medical emergency and police calls. 

In this model, different combinations of ambulance allocation and police call dispatching 

policies were analyzed in terms of: 1) the probability that at least one ambulance was available 

in the system, and 2) the proportion of calls that were served by an ambulance located less than 

a mile from an emergency. The analysis was based on using Markov chains whereby the status 

and location of each ambulance characterized the system into a set of states. Then, a numerical 

analysis was used to determine the probability of the system being in any state. A mathematical 

analysis of this model was presented in Hall (1972). 

Fitzsimmons (1971) presented an EMS ambulance system simulation model to aid planners 

in evaluating existing or proposed EMS systems. Motivating Fitzsimmons’s selection of a 

simulation approach to model EMS systems was the methodological shortcomings of EMS 

systems being conceptualized as single queue, multi-server models. In particular, Fitzsimmons 

questioned the typical assumptions in such models about service times noting that service times 

were dependent on the time of day and that they also were not equal for each ambulance (unless 

they were located in the same station). Given the limitations of queue based analytical models 

and a desire to capture the complex nature of EMS systems, Fitzsimmons considered 

simulation to be the most appropriate tool for modeling EMS systems. The simulation 

developed in Fitzsimmons (1971) is based on two programs, one to generate incidents and their 

characteristics (e.g., each incident’s location and the type of injury associated with each 

incident) and the other to simulate the ambulance response process (i.e., the typical sequence 

of events beginning with EMS system operators receiving a request for service and ending 

with the ambulance’s return to its station). This simulation model was verified and validated 
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using an approach developed by Naylor & Finger (1967)40 and with data from various Fire 

Department Ambulance Companies located in the San Fernando Valley. The study collected 

information generated by the simulation model about all individual incidents (response time, 

waiting time, time to hospital) and analyzed such data at the system level. Ambulance system 

operation and performance statistics were also calculated concerning EMS demand (e.g., call 

volume and statistics about where these calls originated), ambulance system busyness (e.g., 

call volume, mean utilization), and ambulance system performance (e.g. response time, mean 

wait time, time to hospital). 

Chaiken (1971) considered the problem of calculating the expected travel times and 

workloads of emergency response units assigned to defined response areas. The motivation for 

this work was the problem posed by an imbalance in workloads among firehouses in New York 

City. Firehouses in some parts of the city responded to a high number of fire alarms which left 

firefighters working at these stations feeling overworked, while other fire stations in the city 

responded to far fewer alarms, including some located not too distant from the busy fire 

stations. One possible solution was to contract the areas that for which busy stations were 

responsible for (response areas) while expanding those areas of stations that were less busy so 

as to distribute workload more evenly among all stations. It was noted however that altering 

                                                      
40 Fitzsimmons (1971) described his entire model assessment process as a “model validation” procedure, 

however, considering concepts and terminology developed in the simulation literature, this appears to be a 

misnomer. Based on the terminology presented in Schlesinger et al. (1979), the first step in Naylor & Finger's 

(1967) “Multi-stage verification” approach coincides with “model verification” as it concerns considering or 

developing some conceptual model of EMS system and then assessing the EMS system model with respect to the 

conceptual model. The “Multi-stage verification” process’s second and third steps however, are arguably more 

akin to “model validation” given that they are concerned with the EMS system model’s consistency with respect 

to the intended application of the model. As such the “model validation” process in Fitzsimmons (1971) is 

arguably a combination of both model verification and model validation procedures. Lastly, the goals and 

methodology of Fitzsimmons (1971) indicate that the model validation procedure is designed with the intention 

to establish “model credibility,” or the “[concern] with developing in (potential) users the confidence they require 

in order to use a model and in the information derived from that model” (Sargent, 2005).  
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response areas of a unit could affect overall response travel-times. As such, Chaiken (1971) 

wished to calculate the expected travel-times and workloads of units as a function of its 

response area. To model the emergency response system, and determine these measurements, 

Chaiken (1971) employed a queue-theory based model to determine the steady-state 

probabilities of a two ambulance system whereby each ambulance is either busy or available. 

Then, Chaiken (1971) outlined a procedure to use these probabilities in order to calculate both 

the workload of each unit and the average response travel-time to each region. Finally, Chaiken 

(1971) also presented a linear programming model, developed by Edward Ignall, for 

minimizing the expected generalized travel-time in the special case where demand for service 

is concentrated at a finite set of points.      

Stevenson (1971) presented a very thorough report that discussed the state of EMS systems 

in the United States, provided a general framework for analyzing EMS systems, and developed 

a model to evaluate the performance of an EMS system. The model begins with two sub-

models that approximate the dispatching delay of an EMS system41 as a function of the number 

of the number of ambulances in the system and also, the delays that result from an ambulance’s 

travel from origin location (or station) to the location of the patient. Both models are then 

combined to develop a facility location model to optimize ambulance location configurations 

with respect to minimizing response time. The location model is solved with a heuristic based 

on dynamic programming. Lastly, Stevenson (1971) developed an additional model to 

determine the minimal number of ambulances that are required to meet a pre-specified level of 

service in terms of the immediate availability of an ambulance.     

                                                      
41 This involves determining the probability that a patient experiences a delay in response and the expected 

length of the delay. 
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Toregas and ReVelle (1972) expands on the public facility location model developed in 

Toregas et al. (1971) by applying it to emergency services such as fire response and EMS. In 

Toregas & ReVelle (1972) the location model involves the problem of locating the minimum 

number of emergency facilities/servers such that the located facilities can cover all demands 

for service within a time or distance constraint. The problem was formulated within a linear 

programming framework and solved using a combination of integer linear programming and 

optimal reduction rules. Within the context of EMS operations, Toregas and ReVelle (1972) is 

notable because, among other things, it seeks to address the concerns/suggestion of Huntley 

(1970) regarding providing emergency response within an acceptable amount of time. Church 

and ReVelle (1974)  extended the model of optimizing coverage with respect to a time or 

distance constraint although rather than trying to establish the minimum number of facilities 

required to cover all demand, the model in Church and ReVelle (1974) considered the problem 

of maximizing the amount of demand that could be covered within a time or distance standard 

with a fixed number of facilities or servers. Like in Toregas and ReVelle (1972), the problem 

was formulated within a integer linear programming framework, however, solutions were 

generated by both a heuristic procedure and by using linear programming (in conjunction with 

a branch-and-bound procedure).   

Carter et al. (1972) expanded on the work of Chaiken (1971) with respect to establishing 

response areas that minimized the average response-times although with a slightly different 

focus. Here, an emphasis was placed on determining shape of the response areas and the 

objective functions that correspond with response areas that minimize average response-time 

or that balance workloads. Two important findings are: (1) all ‘good’ (or undominated) 

response area candidates ‘lie’ in between the ‘minimum-response-time’ response area and the 
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‘equal-alarm-rate’ response area, and (2) if alarm rates vary significantly over small distances, 

a ‘closest-unit’ division approach to districting response areas does not necessarily produce 

‘good’ candidates.     

Keeney (1972) considered a procedure for determining the district boundaries for a naive 

response area-districting approach. This approach attempts to divide an area (A) into n areas 

such that each area is assigned to one of n facilities located at fixed points within A. To divide 

A, locations are assigned to the nearest facility. The cases that are considered are when a facility 

is added to the system and when a facility is removed from the system.  

Larson and Stevenson (1972) developed a series of analytical models to examine the nature 

of mean travel times of vehicle responses. This investigation was based on an area-districting 

approach whereby vehicles are positioned at a facility in a district and assigned to respond to 

calls for service that originate from locations within their districts. Using this framework, two 

types of models were developed for the analysis of mean travel times of vehicle response 

whereby vehicles either exclusively serve the district they are assigned to (that is all vehicles 

operate independently of vehicles outside their assigned district) or are allowed to “cooperate” 

with other districts by serving some calls for service that originate from outside their assigned 

district. The former type of model involved a system where multiple vehicles can be located 

in a district and where no inter-district cooperation is allowed while the latter model type, 

considered a system where a single vehicle is located in its own district but can respond to calls 

originating from adjacently located districts. Larson and Stevenson (1972) first analyzed the 

upper and lower bounds of mean travel time in a system with no inter-district cooperation, 

when N facilities are located throughout the region. Assumptions about the geography of the 

region included the use of the Manhattan distance metric and that the demand in the region 
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was spatially homogeneous. They expanded on this analysis considering the case of an 

arbitrary distribution of demand, when only two facilities. Larson and Stevenson (1972) also 

examined a system with inter-district cooperation. This model was based upon dividing a 

region into two districts, with each district served by a single vehicle, that (they admitted) was 

“effectively” equivalent to the model developed by Carter et al.  (1972). However, Larson and 

Stevenson (1972) extended that work by fixing one of the two vehicles and repositioning the 

other. When the vehicle is relocated, new district boundary lines are established and the 

system’s mean travel time is recalculated. This process continues until the system’s mean 

travel time is minimized. The procedures used to find district boundaries and the vehicle 

locations are based on gradient-search. 

The ambulance location model proposed in Fitzsimmons (1973),  referred to as CALL 

(Computerized Ambulance Location Logic), combined a stochastic analytical model with a 

pattern search routine developed by Hooke & Jeeves (1961). The latter routine is used to 

determine the ambulance locations that would minimize the mean response time for the system 

- the model’s main objective. The CALL model is used by Fitzsimmons (1973) to address the 

challenges associated with accurately modeling the process of assigning an ambulance to call 

for service. This is a crucial consideration in EMS systems that experience congestion. In 

congested systems a specific ambulance may be unavailable (due to having that ambulance 

respond to or service a different incident) which might require dispatching a more distant 

ambulance to serve an emergency. Fitzsimmons considered it essential to accurately estimate 

the probability that a particular number of ambulances are available  because mean response 

time calculations were based on the number of available ambulances in the system.  

Fitzsimmons (1973) used both a queuing model (based on an M/G/K queue) and a Monte Carlo 
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simulation procedure to estimate, for each given ambulance location configuration: (1) the 

mean response time for each possible system state (with each state corresponding to a unique 

total number of busy ambulances), and (2) the system state probabilities. A M/G/∞ queue based 

model is used to approximate ambulance availability when the system has 0 or 1 busy 

ambulances while the Monte Carlo simulation approach is used when 2 or more ambulances 

are busy. After calculating such quantities, the unconditioned mean service time is estimated 

iteratively until the difference between the two sequential estimates converge. Then, the pattern 

search routine is used to nominate a new locational configuration and the process is repeated 

until a better performing ambulance location configuration cannot be found.   

Swoveland et al. (1973b) developed a probabilistic ambulance location model that used an 

enumerative solution procedure (branch-and-bound). The main consideration of the model was 

to locate ambulance depots so as to minimize the ambulance system’s mean response time, 

where response time is defined as the time between when a call for ambulance service is made 

and the arrival time of an ambulance at the scene of the accident. This objective is captured in 

the form of an analytic formula that considers the locations of the k-closest ambulances and 

the proportion of the total number of calls that are served by the kth closest ambulance at each 

demand point. Most notably, in this paper, a method is developed to approximate the latter in 

response to the observation that requests for ambulance service are not always fulfilled by the 

closest ambulance. The method is based on sampling the results of various ambulance response 

simulations whereby each simulation instance involved a different ambulance location 

configuration. To support this approach, a “stability hypotheses” conjecture was developed. 

This basically assumed that, for each demand point, the estimated proportion of the total 

number of calls that are served by the kth closest ambulance would not differ significantly from 
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the proportions produced by any other assignment. The details concerning the ambulance 

system simulation are discussed in Swoveland et al. (1973a). 

Among the EMS system models presented in this section the one developed by Hamilton 

(1974) is rather unique. Although it contains a transportation component, transportation was 

largely an external factor/consideration as the focus of the model was primarily on the potential 

impact of phasing out certain hospital emergency rooms in terms of how emergency system 

workloads (e.g., emergency room visits, hospital admissions, inpatient load) would be 

redistributed amongst the surviving hospitals. The model is based on a simulation that 

sequentially: generates an emergency occurrence, assigns this emergency to a geographical 

area, establishes the severity of the emergency, determines the mode of transport for the 

patient, directs the patient to a specified emergency room, generates a travel time for the trip, 

computes the arrival time at the hospital, and the patient disposition. The nature of the 

assignments or decisions at each step are mostly based on historical data or on the nature of an 

assignment made at a previous state (e.g., the location to which an emergency occurrence is 

assigned is based on historical data while the patient disposition is based on the severity of the 

emergency). With respect to the transportation components of the model, travel mode and 

transit times were mostly exogenous within the simulation as these assignments would be 

based solely on historical data. Moreover, they were mostly ignored within the development 

of the projected simulation outcomes of the various proposed scenarios. A potential alternative 

mode of transportation for serious emergency cases was briefly discussed as a possibility but 

not seriously considered beyond a remark that the travel times associated with such alternatives 

would be “within acceptable limits (as defined by physician consultants to the Task Force).” 

In contrast, one facet of transportation that was highly considered was emergency room 
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assignments for medical emergencies.  In determining the patients’ destination, the location of 

the emergency and travel times were considered but in evaluating simulation outcomes, the 

relationship between workload distributions and emergency room assignments were carefully 

considered. Despite the minor role of transportation, the author recognized that in later 

applications of the proposed model, there should be a greater focus on the EMS transportation 

system. Some suggestions included explicitly accounting for the size, type, location, and 

schedule of emergency vehicles in order to ensure an adequate level of service.  

In Berlin and Liebman (1974), the ambulance location model developed by Toregas and 

ReVelle (1972) is combined with an ambulance system simulation model to produce a two-

stage ambulance location-allocation model. Within this two-stage model, the model proposed 

in Toregas and ReVelle (1972) helps address the question of where to establish ambulance 

depots (which included the task of generating a set of alternative ambulance location 

configurations) and then the simulation model helps determine the utilization rate of 

ambulances located at each depot. Motivating the development of this model was the inability 

of locational models alone (such as that of Toregas and ReVelle, 1972) to consider or describe 

the impacts of system congestion. In particular, Berlin and Liebman (1974) noted that due to 

system congestion, the closest ambulance might not respond to an emergency and that response 

from a more distant ambulance might be necessary. As such, within the modeling framework 

of Toregas & ReVelle (1972), this would prove problematic if the response time exceeded the 

maximum response time standard used in the model. Nonetheless, Berlin and Liebman (1974) 

also noted that static optimization location models were especially suited for systematically 

determining optimal location configurations. Hence, by combining both models, their two-



57 

 

stage model was able to generate relatively effective potential solutions and to describe the 

performance of the system in a more accurate and detailed way. 

To assist urban emergency service system administrators in evaluating the performance of 

emergency response systems, Larson (1973, 1974) developed the “hypercube queuing location 

model” that attempted to address many of the perceived shortcomings of existing emergency 

service location and/or districting models.42 These deficiencies included a lack of consideration 

for 1) interdisctrict response and the issues associated with it (or resulting from its absence), 

2) estimating various system performance measures beyond just mean region-wide response 

times or other closely related measures, and 3) accounting for the probabilistic nature of EMS 

systems, namely the stochastic nature of the arrival of calls and the variability in service times. 

The model is based on the generation of a state transition matrix associated with a finite-state 

continuous-time Markov process. In this model, the status of each ambulance is tracked and 

the two possible states, the server is either idle or busy, is represented, respectively, with a 0 

and 1. Then, each state in the state transition matrix corresponds to a unique combination of 

the status of every ambulance in the system, hence the name “hypercube.”43 Server locations 

(for N servers) are fixed in this model (servers cannot be co-located), and it is assumed that at 

any moment at most one ambulance can change its state (in either direction). In addition, it is 

assumed that service times have a negative exponential distribution, are not dependent upon 

                                                      
42 Here, Larson defines location problems as problems closely related to the question of “how should the N 

response units be located or positioned while not responding to calls for service?” In contrast, Larson defines 

districting problems as those problems closely related to the question of “How should the region be partitioned 

into areas of primary responsibility (districts) so as to best achieve some level or combination of levels of 

service?”.    

43 Since all ambulances are either idle or busy, in a system with N ambulances, the total number of state 

spaces is 2N
. To conceptualize the total state-space, each state (a sequence of 0s and 1s) is thought of a vertex in 

an N-dimensional cube (hence the inclusion of hypercube in the model’s name). 
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location, and that travel times constitute only a small portion of total service time. With respect 

to demand, the study region is partitioned into individual “atoms of demand” that are each 

associated with a call arrival rate (which is assumed to have a Poisson distribution). In addition, 

each demand atom is associated with an immutable ordered server priority list that specifies 

which ambulance is to respond given the state of the system, that is, if a response unit is 

requested, the most preferred unit that is available is dispatched to respond.44 With this, the 

steady state probabilities of the state transition matrix are calculated by solving a set of 2N 

balance equations45 from which it is possible to calculate performance measures at various 

levels such as the mean travel time, the workload imbalance, and the fraction of inter-district 

responses at the regional level; fraction of time spent serving calls (workload), mean travel 

time, and the fraction of inter-district responses for each response unit; the fraction of responses 

into each district that are inter-district at the district level; the mean travel time; and the fraction 

of calls handled by each response unit at the demand atom level.  

One significant advantage of the hypercube model proposed by Larson (1973, 1974) is that 

it does not require an assumption of server independence as all inter-server interactions are 

captured in the model as each server status is fully tracked. Such tracking however, is 

computationally expensive as the amount of information that must be maintained grows 

                                                      
44 In the case that all units are busy, the model can be set up so that that calls are handled by an auxiliary 

response unit (the system is treated as one with zero capacity) or so that the response is delayed until a response 

unit becomes available.   

45 Briefly, these equations require that for any state i, the sum of the transition rates from all states (except 

for state i) into state i is equal to the sum of the transition rates from state i to all other states (except for state i). 

The transition rate between two states, say state i and state j, is strictly positive only, but not necessarily, when 

such transition is possible, that is, when the system is in state i, there is a strictly positive probability that the 

system changes from state i to state j. These equations can only be solved if the Markov chain has an equilibrium 

distribution.        
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exponentially with the number of servers as the number of balance equations that need to be 

solved is equal to the total number of state spaces (recall that with N servers the total number 

of state spaces is 2N).46 Consequently, the hypercube queuing model can only consider systems 

with few servers47 before the problem becomes computationally intractable. In response to this 

issue, Larson (1975) developed an approximate version of the hypercube queuing model that 

reduces the number of balance equations that are needed to be solved from 2N to N in a system 

with N servers by not explicitly tracking the status of each server but rather estimating the 

probability that a given server will respond to a call for service. This probability is estimated 

by assuming that the probability that a server j will respond to a call, Pj, is the product of the 

probability that server j is available and the product that includes the probability that each 

server preferred to server j is busy. Moreover, Larson (1975) completes this calculation by 

multiplying it with a correction factor, Q, in order to relax the server independence assumption 

when calculating Pj. Q is a function of a series of queuing factors (called “Q-factors”) that are 

used with an M/M/n queuing model to derive the value of Q. The Q-factors used in Larson 

(1975) include the number of servers in the system, the response server priority lists, and the 

system utilization.   

Groom (1977) developed a coverage-based stochastic ambulance location model to 

evaluate the performance of an ambulance system under various scenarios. The prime 

consideration in the model is service coverage, which is based on the expected proportion of 

                                                      
46 In turn, an N server system requires a state transition matrix with 22N elements  

47 At the time, Larson reported it was computationally feasible to model systems with up to 12 units although 

attempts were made to model up to 15 units. Goldberg (2004) reported computational tractability issues with 20 

units.  
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calls that have a response time below a time standard t48, although equity of service was also 

considered in evaluating system performance. To measure coverage, two factors, range and 

availability, were considered whereby range corresponded to the proportion of emergencies 

that can be responded to by an ambulance within time t given that r ambulances are available 

and availability corresponded to the proportion of time that r ambulances are available to 

respond to emergencies. Then, the range when r ambulances were available was calculated by 

summing the proportion of emergencies that was accessible by at least one of r vehicles within 

time t while availability was calculated using queue theory based formulas to determine the 

probability that r ambulances were available to respond. Two separate scenarios were 

considered in calculating availability, a single-tier model and a double tier operation model.  

In the single-tier model, ambulances were assigned to respond to emergency calls or to 

complete non-emergency tasks. An ambulance’s task assignment was allowed to vary and was 

based on the level of standby vehicles available to respond to emergency calls. Also, within 

this scenario, ambulances were relocated upon the dispatch of an ambulance to an emergency 

or as an ambulance became available for responding to an emergency (a process assumed to 

occur instantaneously). In contrast, within the double tier operation model ambulances were 

only assigned to respond to emergency calls. Moreover, no ambulance relocations occurred. 

Finally, with respect to the equity of service, the level of service provided to each of the various 

health districts, or sub-regions, in the study area was assessed to ensure that there were no 

significant disparities in the provision of service.  

                                                      
48 The response time standards considered by Groom (1977) include a response time of 8 minutes or less for 

50% of calls and 20 minutes or less for 95% of calls (with standards of 7 and 15 minutes, respectively, for 

metropolitan areas).  
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The model proposed in Achabal (1978) concerns the location of EMS facilities within a 

multicounty EMS system. Forming the basis of this model is a location-allocation model that 

is formulated as a mathematical program. The model’s objective function is based on 

minimizing the total costs of the EMS system subject to a number of service constraints. In 

this model, two types of costs are considered, spatial costs and resource costs. The latter is 

concerned with the costs associated with providing emergency medical services, but only those 

that are due to different regionalization plans.49 Spatial costs are a function of both the direct 

costs of transporting patients, the cost of operating an ambulance on a per-mile basis (using 

estimates developed by Gibson, 1971), and indirect costs of transporting patients, the cost on 

a per-mile basis associated with the increasing probability of death as it relates to increasing 

the distance a patient has to be transported to an EMS center. To determine value of the indirect 

spatial costs, Achabal (1978) relied on the work of Achabal (1975). Here, the implicit social 

costs from increased travel times were based on a Bernoullian monetary function (Bernoulli, 

1954) and the present value of an individual’s limetime earnings (a figure that was obtained 

from Rice, 1966). Then, in consulation with data provided by physicians, Achabal (1975) 

derived a probability of death function that depended on a patient’s travel-time to the EMS 

center. After accounting for travel time and speed, and substituting the relevant figures into the 

utility function an estimate for indirect spatial costs was derived. In all, the model’s objective 

included both spatial and resource costs and included constraints that requried that the capacity 

of the system exceed the demand, that all counties were assigned a single facility (from a 

                                                      
49 Spatial inelastic demand is assumed in this model and as such, the costs associated with treating patients 

are considered to be constant. In addition, the costs of operating and staffing an ambulance service are not 

considered as ambulance service operations are assumed to have no influence on the decision of where to locate 

regional emergency medical service facilities.  
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selection of different sizes), and that the level-of-service provided to each county operate at or 

above a service standard based on the minimum proability of survival. The level-of-service 

parameter used in the latter constraint was selected abritrarily by Achabal (1978) noting that 

this value was a policy decision while the proability of survival associated with travel between 

the location of demand and the EMS center was determined with a function developed by 

Achabal (1978) in consultation with physicians.  

Meredith & Shershin (1978) adapted a model developed by the U.S. National Bureau of 

Standards (Colner, 1973) 50  for determining the optimal locations for fire stations. For 

establishing the optimal placement of facilities, the National Bureau of Standards (NBS) model 

used an “exposure index” calculated for each zone in a region that is a function of the response 

time, desired response time, and alarm frequency (call arrival rate) that was known or 

determined that corresponds to each zone. Mathematically, the objective value (the Total 

regional exposure) equaled the sum, over all zones, of the “exposure index” for each zone 

times the alarm frequency of each zone. Behind this approach was a philosophy that stations 

should be located such that the total county-wide “delay” in response time51 was minimized 

(although desired response times could be normalized by zone to coincide with the priorities 

of decision makers). This measure was deemed superior to other measures or objectives such 

as: minimizing average response time, minimizing “delay”, balanced workloads among 

                                                      
50 The reason for this model’s adoption was that in 1973, the Dade County Fire Department in Florida was 

assigned administrative duties for EMS in the Dade County area. Lacking both guidance for managing the system 

and a dedicated information system for EMS, the department decided to use the existing Fire Departments 

information system (this was also partly because the system had many attractive data-processing, modeling, and 

reporting capabilities).  

51 The “delay” in a zone is equal the difference between response time for that zone and desired response 

time for that zone divided by the desired response time for that zone. 
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stations, and equal average response times (or “delay”) although it is not explained how. One 

acknowledged disadvantage of the regional “exposure” index approach is that (for 

management purposes) the measure lacks a physical interpretation. The model’s solution 

procedure relies on an iterative heuristic that locates facilities and allocates zones to the nearest 

located facilities thereby forming a partition for each facility. Then, facilities are moved to 

different sites and if the new locations improve the overall total regional exposure, the 

relocations are made. Otherwise, other relocations were proposed. This process continues until 

no proposed relocations improve the overall total regional exposure.  

Two additional models worth noting due to their novel approach for determining where to 

position ambulances are the works of Schneider (1971) and Schneider & Symons (1971). Both 

approached the problem by having people use an interactive computer program (viewed on a 

CRT monitor) that allowed such participants to locate ambulance dispatch centers from which 

response districts were created. A network representation was used in these programs - all 

edges were associated with a travel-time while the set of potential ambulance locations 

consisted of nodes on a network. Moreover, districts were created by automatically assigning 

all points to the closest located facility (the modeling framework did not consider/allow for the 

possibility of ambulances assisting districts besides their own). The model objective was to 

minimize the mean travel time with the added constraint that the travel-time between every 

point and its assigned center could not exceed a set maximum travel-time. To assess the 

performance of the human analyst, the same problems were solved with various heuristics and 

the quality of each party’s solutions were compared. The results of these experiments were that 

the districts developed by the human analysts outperformed those developed through the 

heuristic methods all within a limited number of iterations. 
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2.6 Discussion  

The late 1960s and 1970s saw the rise of modeling paradigms and methods such as 

simulation, mixed-integer programming, heuristic solution procedures, mixed optimization-

simulation models, queue-theory based models, and conceptual or theoretical developments in 

systems modeling. However, research of this era was fraught with many challenges that 

included limited computational resources, lack of data of about patients, limited technologies, 

and the budding field of emergency medicine.  

In any case, most EMSS location models of today are based on the development of this 

era. These models have become more sophisticated in many theoretical and technical respects; 

however, it is not too difficult to connect today’s work with projects or ideas from this time. 

Perhaps the most influential and enduring idea from this era is the use of surrogate performance 

measures for analyzing public facilities including EMSSs.  ReVelle et al. (1970) explored this 

concept in the context of location models for the public sector while Gibson (1973) explored 

performance measures for EMSSs. More recently, advances in EMS research have prompted 

location models that use more direct performance measures (e.g., Zaffar, Rajagopalan, 

Saydam, Mayorga, & Sharer, 2016), however, their use is still being justified (van Buuren, van 

der Mei, & Bhulai, 2017). 

As for the future of EMSS modeling,  Aringhieri, Bruni, Khodaparasti, & van Essen (2017) 

provide and excellent, extensive overview of the state of EMSS modeling and management. 

They note how EMSSs have developed in just about every respect but data 

collection/management issues and the organization of EMSSs are two persistent challenges. 

Granted, data issues are more complex today as they include developing more sophisticated 

information and communication systems or collecting new forms of patient data to better 
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understand outcomes as a function of service metrics (e.g.  the time taken to respond to an 

emergency call). However, organizational issues that include financing, managing, and 

planning EMSSs remain a challenge because of economic, political, and geographical issues 

(Pozner et al., 2004). 

3. Model Formulation Background 

In this section, we present the models considered to be fundamental precursors in the 

development of the new model presented in this thesis. The first two models, the Location Set 

Covering Problem (LSCP) of Toregas et al. (1971) and Maximal Covering Location Problem 

(MCLP) of Church & ReVelle (1974), form the fundamental aspects of our model. A third 

model is the p-Median Problem (PMP), originally defined by Hakimi (1964 & 1965) and 

formulated as a programming model by ReVelle & Swain (1970). Key elements of the PMP 

are present in the new model construct as well, however, these components serve as model 

extensions rather than as core components. Although all three models employ a common 

mathematical programming modeling framework (explained below), the PMP is based on a 

different but related class of location models (Church & ReVelle, 1976).   

After introducing these models, we discuss the key issues of capacity and congestion when 

addressing EMSS operations. Both deterministic and non-deterministic location models that 

attempt to address these issues are briefly presented and discussed. Then, we present several 

important non-deterministic models such as the Maximum Expected Covering Location 

Problem (MEXCLP) of Daskin (1982, 1983), the Maximum Availability Location Problems 

(MALP 1 and 2) of ReVelle & Hogan (1989), and the Queuing Maximum Availability 

Location Problem (QMALP) of Marianov & ReVelle (1996) which serves as  the base model 
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for our location model – the Resource Constrained Queuing Maximum Availability Location 

Problem (RC-QMALP). We also present (to different extents) an assortment of location 

models that contain or develop features present in RC-QMALP. 

3.1 Fundamental Models 

3.1.1 The Location Set Covering Problem 

At the core of RC-QMALP (as well as that of MCLP, MEXCLP, and MALP) is the LSCP 

of Toregas et al. (1971). Like the LSCP, RC-QMALP and the other models retain two 

fundamental modeling constructs concerning how an ambulance system is modeled and 

analyzed. First, the LSCP is based on a mathematical programming model framework. A 

mathematical program consists of: 1) a set of decisions to be made; 2) a set of constraints that 

the decisions must be meet; and 3) an objective function that measures the fitness of any 

decision. Thus, within this framework, the various goals, constraints, and decisions concerning 

the ambulance system planning process are translated into one of these components and 

incorporated into a single decision-based mathematical program. Second, to guide the 

ambulance system planning process the LSCP utilizes a coverage-oriented modeling 

paradigm.52 Here the focus is centered on determining: 1) when a facility covers a customer or 

demand node; and 2) what level of coverage is to be provided. Coverage-oriented modeling 

involves the use of a distance or time standard (or some other metric) and involves serving as 

many demands as possible or all of the demands within that service standard, although other 

                                                      
52 For an introduction to alternative paradigms for analyzing ambulance location models see ReVelle et al. 

(1970), Morrill & Symons (1977), and Savas (1978). ReVelle et al. (1970) discuss the difficulty of developing 

performance measures for the public sector and proposes some measures, although they are mostly based on 

efficiency. Morrill & Symons (1977) and Savas (1978) focus on equity-based measures although the concepts of 

efficiency and effectiveness are also discussed in detail. 
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factors, such as a facility’s capacity or availability, can be considered concurrently. There are 

two general approaches: requirement-based models, where coverage requirements or 

restrictions are stipulated with constraints, and goal-based models, where the objective 

function promotes or discourages certain forms of coverage or allocations. We note that these 

two approaches are not mutually exclusive. All models discussed in this section are coverage-

oriented except for the PMP. 

The classic form of the LSCP is defined on a network of nodes and arcs. Nodes represent 

places of demand as well as potential facility sites. In the LSCP, the objective is to minimize 

the number of facilities needed (and locate them) in order to cover each demand node at least 

once by a facility. Facilities cover a demand node only if they are located within the prescribed 

distance/time standard, s. To capture the decision to locate a facility in the LSCP, for each 

potential facility location j there is a decision variable Xj that takes the value of 1 when a facility 

is located at site j and is 0 otherwise. Thus, the objection function simply involves minimizing 

the sum of all Xj variables. The coverage requirements are incorporated into an inequality based 

constraint that stipulates that the sum of the Xj decision variables, corresponding to the set of 

facilities that can cover node i, must be greater than one. 

The formulation of the LSCP is as follows: 

Model: 
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Notation: 
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The objective of the LSCP (LS-O) is to minimize the number of facilities that are located 

such that all demand nodes are covered at least once. This goal is formulated as minimizing 

the sum of the decision variables, Xj as this sum is equivalent to the number of facilities that 

are needed to provide complete coverage 

For every demand node i , there is a corresponding constraint (LS-C1) that specifies that 

the node must be covered. The left-hand side of (LS-C1) consists of the sum of  Xj decision 

variables are within the coverage standard of i . The right-hand side of the constraint specifies 

that at least one of these facilities must be selected. Thus, for a solution to be feasible, facilities 

must be arranged in a way that each demand will have at least one facility in its coverage set, 

iN . Constraint (LS-C2) simply stipulates that all Xj location decision variables are 0-1 binary 
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decision variables. This model is an integer-linear programming problem and is often solved 

through the use of general purpose optimization software. 

3.1.2 The Maximal Covering Location Problem 

In terms of planning an ambulance system, the solutions produced by the LSCP are 

appealing as all demands are covered by at least one facility/ambulance. However, public 

agencies might not possess the financial resources to provide such a level of coverage. 

Consequently, an ambulance system planner must inevitably decide how to allocate service 

when faced with financial constraints 

As previously mentioned, to address this issue, Church & ReVelle (1974) developed the 

MCLP where the goal is to maximize the amount of demand that is covered by a set of facilities 

given that only a fixed number of facilities can be located.53 By limiting the number of facilities 

that are located, the MCLP incorporates the financial constraints of the ambulance service 

providers into the location model while attempting to achieve the total coverage requirement 

of the LSCP. 

Although the LSCP and MCLP are based on a similar modeling paradigm, there are 

significant differences between the two models present in all three components of the location 

model. Even though the MCLP retains the Xj decision variable without any modifications, it is 

also based upon an additional set of binary 0-1 decision variables, Yi, which are used to indicate 

whether specific demand nodes have been covered. The coverage constraints are adapted to 

allow the model to determine the level of coverage provided to each demand node 

                                                      
53 White & Case (1974) also defined a similar problem called “the partial cover problem” although it only 

considered maximizing the total number of demand points covered within some standard, that is, the objective 

function is unweighted. In addition, they did not define this as an integer programming model, w a key feature to 

the use of the MCLP and its variants.  
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endogenously (via decision variable Yi) and a new constraint is added to restrict the number of 

facilities that can be located to fit within the ambulance system operator’s budget. Finally, the 

objective is changed so that coverage is maximized.  

The MCLP is formulated as follows: 

Model 
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Notation 
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The objective of the MCLP (MC-O) is to maximize the amount of demand that is covered 

by at least one located facility within some time/distance standard, s. Here the objective value 

maximizes the sum-product of the demand at location i, di, and a corresponding decision 

variable, Yi. The role of constraint (MC-C1) is to determine whether each demand node i is 

covered at least once. It is similar to constraint (LS-C1) of the LSCP in that the sum on LHS 

side is equal to the number of located facilities that cover demand node i and that demand node 

i is considered to be covered only when the LHS sum is greater than 0. Where (MC-C1) differs 

from (LS-C1) is that it does not require that at least one facility be established near demand i. 

Instead, (MC-C1) has a 0-1 decision variable Yi on its RHS that allows for the possibility that 

no facilities are located within a maximal time/distance s of location i. To allow for this 

possibility, Yi must take on the values 0 as Yi must take a value less than or equal to the number 

of located facilities that cover demand node i.  Constraint (MC-C2) simply requires that exactly 

p facilities are located. The LHS of (MC-C2) is equal to the total number of facilities that are 

located as this quantity is determined by summing all the Xj decision variables. Then to satisfy 

constraint (MC-C2), this sum must be equal to p. Constraints (MC-C3) and (MC-C4) simply 

stipulate that the location and coverage decision variables, respectively, Xj and Yi are binary 0-

1 decision variables. When solving the integer restrictions on the 
iy  variables can be dropped 

as long as they are restricted to be no greater than 1 in value. This model, like that of the LSCP 

is an integer-linear programming problem. Reasonable sized problem instances can be solved 

with general purpose software.   

3.1.3 The p-Median Problem 

The objective in the PMP is to minimize the total weighted travel times/costs, where each 

demand is assigned to its closest located facility, while locating exactly p facilities (Hakimi, 



72 

 

1964, 1965). The problem was first formulated as an integer programming model by Vinod, 

(1969) and independently by ReVelle & Swain, 1970). The p-median problem does not employ 

a coverage-oriented paradigm but rather a minsum distance/time paradigm where the emphasis 

is on minimizing the average service distance faced by demands (Eiselt & Marianov, 2011). 

While the model objective is to minimize the sum of travel times/costs between demands and 

located facilities, the classic PMP does impose restrictions or limits on travel times/costs. 54 In 

terms of EMS planning, the PMP is naturally appealing because of its focus on reducing the 

average travel time. Furthermore, it shares some of the appeal of the MCLP as there is a 

constraint on the maximum number of facilities to be located. 

The classic formulation for the PMP relies on a set of assignment or allocation variables. 

Assignments are captured by Xij binary 0-1 decision variables that take the value 1 when 

demand node i is assigned to a facility at j. As such, location decisions are implicitly declared 

through the Xjj decision variables,55 where self-assignment, 1jjx , represents the fact that 

demand at j  is assigned to itself for service, indicating that site j  has been selected a facility.  

 

 

 

                                                      
54 Church & ReVelle (1976) investigated the theoretical links between the PMP and MCLP and found that 

the MCLP can be considered a special case of the PMP. To implement a coverage-oriented paradigm into the 

PMP, they proposed replacing travel times/costs that exceed the standard with the value of 1, and setting all other 

travel times/costs to zero. This creates an objective of minimizing the amount of demand that is not covered, 

which is equivalent to maximizing what is covered.     

55 The assumption here is that every demand node is a potential facility site, however, this assumption is 

easily relaxed.    



73 

 

The formulation is as follows: 
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The objective of the PMP (PM-O) is to minimize the sum of the weighted travel times/costs 

between all demand nodes i and their assigned located facility (j). The travel times/costs are weighted 

according to the demand for each node, thus objective function consists of the double sum-product of 

the demand at node i (di), the travel time/costs between demand node i and a facility location j (tij), and 

the assignment decision variables Xij. The role of constraint (PM-C1) requires each demand node to 

assign to a facility. The role of constraint set (PM-C2) is to ensure that demand nodes are assigned only 

to located facilities, as for any i , Xij can only equal 1 when a facility has been located at that j  (i.e. Xjj 
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= 1). Constraint (PM-C3) simply requires that exactly p facilities are located. The only difference is 

that the LHS is the sum of decision variables Xjj which implicitly represent the facility location decisions 

in the PMP. Constraint (PM-C4) simply stipulates that the assignment decision variables Xij are binary 

0-1 decision variables. 

3.2 Modeling Capacity and Congestion in Location Models 

One shortcoming of the LSCP and similar location models (including the MCLP and PMP) 

as originally formulated is that they do not consider issues of capacity or congestion (Current 

& Storbeck, 1988; Dearing & Jarvis, 1978). With these models, it’s implicitly assumed that 

the located facility network can handle all demand covered or assigned. In other words, 

capacity constraints or the possibility of unavailable facilities (due to congestion) are not 

considered in these models.56 As previously mentioned, several types of models and strategies 

have been developed to address these issues. Focusing on developments concerning the three 

models outlined above, we begin this discussion with models that use deterministic approaches 

to solve these problems of capacity and congestion before moving to models that use non-

deterministic approaches that are generally more complex. 

One additional note is that we distinguish capacity-based and redundancy-based models 

in that the former directly specifies some properties about the capacity of the individual 

                                                      
56 It is important to note that if an EMS system rarely experiences congestion (locally and globally) the 

assumption that ambulances are always available is likely to be valid as, by definition, it is unlikely for the system 

to receive an additional call for service from any part of the system (that is covered) while a local ambulance is 

busy serving another call. Thus, in such systems, using simple, uncapacitated models such as the MCLP can be 

appropriate. Nonetheless, in EMS systems that experience a significant amount of congestion, it is often the case 

that the closest ambulance is unable to respond to a call for service as it is busy attending an earlier call for service. 

Therefore, under such conditions the use of uncapacitated models such as the MCLP would not be an appropriate 

as they would overestimate the availability of ambulance service. 
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facilities/servers while the latter are formulated to implicitly capture system congestion by 

encouraging redundant coverage of demand. These properties are not mutually exclusive or 

limited to deterministic or non-deterministic modeling approaches but it is important to keep 

this distinction in mind.  

3.2.1 Deterministic Location Models 

One of the earliest works to consider the problem of both locating facilities and dealing 

with facility capacity issues in the work of Kuehn & Hamburger (1963). The problem here 

represented a form of a capacitated warehouse location problem (CWLP) which is similar to 

the PMP but differs in that the CFLP generally considers a variety of fixed and variable costs 

(such as costs associated with building and operating a facility) in addition to travel 

distance/time costs. Moreover, unlike the p-median problem, the CWLP does not set a fixed 

number of facilities to be located. Gough & McCarthy (1975) considered Kuehn & 

Hamburger’s model but it was neither recommended or applied in their investigation. 

Two significant developments with capacitated PMPs came with the works of Ross & 

Soland (1977) and Neebe (1978). Both models retain the PMP’s minsum approach (that is, the 

objective function minimizes transportation costs) and share key features but they are based 

on two different models. Ross & Soland (1977) adapt the generalized assignment problem 

(GAP) of Ross & Soland (1975) to form the Constrained Capacity PMP (CCPMP) that 

implements an additional constraint that effectively limits the amount of demand that a located 

facility can serve. It should be noted that Holmes, Williams, & Brown (1972) formulated an 

earlier version of the capacitated PMP but they did not attempt to solve it. 
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Like the PMP, the CCMP of Ross and Soland employs binary 0-1 decision variables 

(Xij∈{0,1}) although it uses twice as many decision variables in order to conform to a GAP 

structure (in addition to needing a second additional constraint).57 If we let bj equal the capacity 

of location j the resulting capacity and decision variable constraints58 are, respectively, as 

follows: 
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In constraint (CPM-CC), the LHS represents the demand allocation from nodes i to facility j 

which is limited to the capacity of a facility j (bj) as noted on the RHS.59 

Compared to the CCPMP, Neebe (1978) takes a simpler approach that combines the PMP 

with the CWLP to form the p-Median Transportation Problem (PMTP).60 Here each facility 

location carries a limited amount of supplies that must be transported to meet the demand of 

various locations. Consequently, the PMTP decision variables concern the amount of 

assignment of supplies from facilities to demand points (Xij ≥ 0). With bj as defined for the 

CCMP and Yj as defined in the MCLP, the resulting capacity, demand, and decision variable 

constraints for the PMTP are, respectively, as follows: 

                                                      
57 In terms of the GAP, the additional “task” variables (Xij) are used to designate located facilities and an 

extra “agent” (or constraint) is required to keep track of the total number of located facilities.  

58 For clarity, we exclude from the formulation the additional “task” variables used to designate located 

facilities. 

59 Other parts of the model require that demands are allocated to facilities.   

60 Heller, Cohon, & ReVelle (1989) develop a model similar to that of Neebe (1978) in the context of EMS. 
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In constraint (PMT-CC), the LHS represents the demand allocations from nodes i to a facility 

j while the RHS represents the capacity of facility j. The key to this constraint is that allocations 

cannot be made to facility j unless a facility is located at j (i.e. Yj = 1). If no facility is allocated 

to j then the RHS will be zero as Yj = 0. This will then prevent any assignments to that location. 

The role of constraint (PMT-DC) is to ensure that that all demand from node i are assigned 

across the set of located facilities. Constraint (PMT-DV1) is notable in that the assignment 

decision variables represent a non-negative flow from a node i to a facility j. This effectively 

makes the PMTP more flexible than the CCMP by allowing assignments of a demand to be 

split among several facilities. In the CCMP, if node i is assigned to a facility j, all of node i’s 

demand is assigned to that facility j, which is quite restrictive when compared to the flexibility 

of the PMTP.  

As with the PMP, there are also capacitated versions of the MCLP and the LSCP. Early 

formulations of the capacitated MCLP are presented Chung, Schilling, & Carbone (1983), 

Church & Somogyi (1985), Current & Storbeck (1988), Pirkul & Schilling (1988), and Pirkul 

& Schilling (1991). With the exception of the models in Current & Storbeck (1988), these 

capacitated MCLP formulations are based on the original MCLP formulation (with an 

objective of maximizing covered demand) that is supplemented with a capacity constraints. 

Furthermore, instead of Xi decision variables there are Xij decision variables that establish the 

service assignment between nodes (i) and facilities (j). Chung, Schilling, & Carbone (1983) 
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use binary 0-1 Xij decision variables to indicate the assignment of node i to facility j. As such, 

their capacity constraints resemble the CCMP’s capacity constraint (CPM-CC) although the 

term on the RHS is multiplied by a Yj (as defined above) so that the facility j’s capacity is 

available only when the facility has been established (i.e., Yj=1). The relevant capacity 

constraints are as follows: 
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Church & Somogyi (1985) opted instead for the use of continuous Xij variables to allow 

for the possibility of a demand being partially covered and/or served by one facility as well as 

being totally served by several facilities. But, a decidedly different element was that they 

allowed for more than one server or facility to be located at a given site. For our purposes, this 

would mean that it would be possible for several ambulances to be co-located. To add this 

capability, they expanded the definition of the jY  to be nonnegative and integer in value, 

representing the number of servers that are located at node j. Thus, Yj∈{0∪ℕ+}). The relevant 

capacity constraints are the following: 
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Current & Storbeck (1988) present models with both approaches although they’re 

formulated around a version of the MCLP where the objective is to minimize uncovered 

demand. Pirkul & Schilling (1988) exapnd on the MCLP by considering the workloads for two 

classes of facilities, a primary service facility (associated with a reponse standard sp) and a 

secondary service facility (associated with a reponse standard sb). Demand from nodes can be 
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assigned to facilities as primary or secondary service with the only difference being that 

facilities provide secondary service to more distance nodes (presumably sp<sb). Likewise, 

primary and secondary service are treated equally and are added together to determine a 

facilities total workload. Finally, Pirkul & Schilling (1991) propose a multiobjective model 

that combines the objective of a capacitated MCLP (with non-binary decision variables) and 

the PMP. The PMP is included in this model as all demand is required to be covered and so 

the PMP objective serves to minimize the average travel distance while all demands are 

covered.  

Current & Storbeck (1988) also present formulations for the capacitated LSCP based on 

the original LSCP with a capacity constraint (similar to CMC1-CC), although here their 

variables, ijx  represent the fraction of demand from node i that is assigned to facility j. For 

their first model, the Constrained Set Cover Location Problem 1 (CSCLP1), we have the 

following constraints: 
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Constraints (CLC-DV) can be modified to have “all-or-nothing” assignment by placing the 

restriction Xij∈{0,1} for all i∈I and j∈J. Current & Storbeck (1988) also develop a second 

model (CSCLP2) based on the Capacitated Plant Location Problem (CPLP). However, the 

relevant capacity constraints remain unchanged with respect to CSCLP1. Finally, Current & 

Storbeck (1988) note that a CSCLP2 can be remodeled as a GAP by modifying the GAP 

version of the CPLP presented in Ross & Soland (1977) . 

 



80 

 

REDUNDANCY-BASED MODELS 

As previously discussed, redundancy-based models attempt to implicitly account for 

congestion. For coverage-based models, the most common modeling approach is a multi-

objective approach that accounts for the number of times that a demand node is covered. These 

models are generally classified as Hierarchical Objective Location (HOL) models. 

Daskin & Stern (1981) developed the Hierarchical Objective Location Set Covering 

Problem (HOLSCP) that has a primary objective of covering every demand node at least once 

and a secondary objective of maximizing the sum of the extra number of times demand nodes 

are covered beyond the initial coverage. In this model, all redundant coverage is considered 

equally – all nodes are weighted evenly and there are no decreasing returns for every level of 

additional coverage of a node.61 Berlin (1972) developed a functionally similar model but his 

model used a different formulation based on a maximizing objective function rather than a 

minimizing one as in Daskin & Stern's model (1981). Moreover, Berlin (1972) did not report 

any computational results for this model (Daskin, Hogan, & ReVelle, 1988). Benedict (1983) 

further developed Daskin & Stern's (1981) model by allowing non-uniform node weights 

(equal to the demand at each node) although additional levels of coverage were all counted the 

same. Thus, both models did not consider a decreasing return or value as the number of times 

a demand is covered. Hogan & ReVelle (1986) expanded on Benedict (1983) to address some 

of the problems with the earlier work. This included the use of a relaxed time standard in 

                                                      
61 For instance, a situation where two nodes are covered redundantly, respectively, 7 and 3 times is equivalent 

to when two nodes are covered redundantly, respectively, 2 and 8 times. 
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providing redundant coverage as well as limiting redundant coverage to counted at most once 

as a second or “backup” facility. 

Benedict (1983) and Hogan & ReVelle (1986)62 also formulate models for the maximal 

cover version of the HOL problem, the Hierarchical Objective Maximal Covering Location 

Problem (HOMCLP). The model by Benedict (1983) uses the same formulation as the MCLP 

with the exception of the objective function, which has two terms. The first term takes the 

single term in the MCLP’s objective function and multiplies it by a large nonnegative weight 

(W’) while the second term counts the number of time redundant coverage is provided for each 

demand. The counts are weighted according to the amount of demand at each node. As with 

the HOLSCP, constant returns for additional levels of coverage remain in this model. While 

Benedict (1983) addressed the HOMCLP alone, Hogan & ReVelle (1986) address a 

combination of the HOMCLP in addition to the HOLSCP through the introduction of 

mandatory coverage constraints that correspond to a relaxed time standard (the facilities 

parameter, p, is set such that these mandatory coverage constraints can be satisfied). 63 

Moreover, they only allow redundant coverage to be counted at most once for each demand64. 

Benedict (1983) also presents a third model with two coverage standards. The objective is to 

maximize coverage under either standard and there is a mandatory coverage constraint for the 

relaxed standard. As with the other models formulated by Benedict (1983), there are no 

                                                      
62 These models are presented and discussed in Daskin et al. (1988). 

63 This requirement would seem to make this a LSCP-type problem but I defer to the authors as they have 

chosen what the terms they use mean (the reported motivation for this constraint is that “[it] is often desirable to 

provide some minimal level of service to all nodes”).   

64 Hogan & ReVelle (1986) present an extension to this model that allows for a second level of back up 

coverage. 
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decreasing returns for extra levels of coverage under either coverage standard. Lastly, Daskin 

et al. (1988) present a model with three coverage standard levels where the objective is to 

maximize the coverage at the most restrictive and relaxed standard. Mandatory coverage at the 

mid-level standard is required and only an additional level of redundant coverage is counted 

in their model.  

Deterministic coverage-based models that consider congestion are relatively easy to 

conceptualize given their emphasis on standards. As for deterministic, non-standard focused 

minsum models, one approach considers “restrictions” on the demand nodes (rather than on 

the facilities themselves) where there are constraints on how demand from a node can be 

allocated. This approach appears as early as in the work of Swoveland et al. (1973b) with their 

stability hypotheses conjecture where its assumed that demand points are served by the kth 

closest ambulance according to some stable distribution.  

Later, Weaver (1979) further developed this approach by formulating the first 

deterministic, minsum-type mathematical program where response by non-closest ambulances 

was considered - the Vector Assignment p-Median Problem (VAPMP). The PMP and the 

VAPMP share the same fundamental structure but in the latter, it is assumed that each demand 

will be served a fraction of the time by their kth closest facility. Consequently, every demand 

node is assigned to multiple facilities in terms of the distance between the demand node and 

each facility. In a subsequent publication, Weaver & Church (1981) extended this model to 

consider minimum workload, maximum workload, and workload range (the difference 

between the busiest and most idle facility) constraints as secondary objectives. Trade-off 

curves were used to analyze the relationship between the primary and secondary objectives. 

Soon thereafter, Weaver & Church (1985) formally presented the VAPMP formulation along 
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with a mathematical proof that an optimal solution exists for any VAPMP (this had only been 

suggested in Weaver & Church, 1981). This proof however only applied for instances with 

non-increasing assignment vectors, that is, situations where the kth closest assignment fraction 

is at least as large as the  kth +1 assignment fraction. Lei & Church (2014) relax this restriction 

with their formulation of the Vector Assignment Ordered Median Problem, however, that 

model only considers all nodal solutions. 

3.2.2 Stochastic and Probabilistic Location Models with Congestion 

As noted in our review of EMS response models, the majority of early EMS response 

models were based on a stochastic or probabilistic modeling approach. Bell & Allen (1969) 

and Chaiken (1971) employed queueing theory in their models; Swoveland et al. (1973b) 

developed a probabilistic ambulance model; Davidson (1969), Hall (1971), and Larson (1973, 

1974) used Markov chains in their models with the latter employing finite-state continuous-

time Markov processes; and Savas (1969), Fitzsimmons (1970, 1973), and Siler (1977) used 

simulation to model system congestion. 

Despite these developments, stochastic and probabilistic models were the exception until 

the 1980s. Many important models were proposed in the late 1980s and throughout the 1990s 

although the use of such models remained computationally challenging. Location models were 

often paired with simulation models to model congestion (e.g., Berlin & Liebman, 1974). As 

Berman & Krass (2015) note, by 2006 the number of publications have been substantially 

increasing ever since.65  

                                                      
65 Berman & Krass (2015) use rather strict criteria in defining a stochastic location model with congestion 

and include many models with complex mathematical programs (i.e., highly non-linear programs). Nonetheless, 

the it remains true that the number of publications in this area has substantially increased.  
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According to Berman & Krass (2015), stochastic location models that consider congestion 

are based upon several assumptions: (1) a stochastic stream of demand, (2) facilities with 

servers that are capacitated or have stochastic service times, and (3) congestion that might 

result in the formation of queues or lost customers. They also focus on immobile facilities or 

models where the customers visit the facilities in their review. For this thesis, we expand the 

scope to include: (1) models with probabilistic measurements (such as server or system 

busyness fractions) or constraints with probabilistic elements, (2) reliability models that 

consider when service in unavailable to a demand node, and (3) mobile servers.   

 All models in this section consider capacity explicitly or implicitly and thus require a 

different classification scheme. To organize this section, we have divided these models into 

three categories: (1) reliability-based models, (2) districting models (with and without inter-

district cooperation), and (3) other stochastic location models. 

RELIABILITY-BASED MODELS 

Chapman & White (1974) developed one of the first probabilistic location models, the 

probabilistic LSCP (PLSCP). In this model, the objective is to minimize the number of located 

facilities such that all demand nodes can be serviced under some time/distance standard with 

a minimum level of reliability α, α∈[0,1]. Each facility is assumed to be unavailable with a 

probability qij which is equal to 1 - pij where pij equals the probability that customer i is covered 

by facility j and pij = aijdj where dj is the probability that facility j is available and aij = 1 if 

customer i is accessible by a facility j within some distance.     
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The key aspect of this model was the use of probabilistic “chance-constraints”. The LSCP 

and this PLSCP almost share the exact formulation apart from the mandatory coverage 

constraint. The LSCP’s mandatory coverage constraint (LS-C1) is modified as follows: 

{ | 1}

( 1 ) 1 ;  
i j

ij i

Nj X

PLS IA q iC 


       

The RHS is the required level of service reliability for demand node i while the LHS is 

effectively Prob[Located facilities in the neighborhood of demand node i are available]. A key 

assumption here is that the facilities’ availabilities are independent of each other. 

One challenge with this formulation is the non-linear multiplicative term on the LHS of 

(PLS-C1A). To work around this issue, Chapman & White (1974) replace (PLS-C1A) with the 

equivalent constraint: 

( 1 ) ;  
i

ij j

Nj

ibPL B iS C X Ie


     

where eij = - log qij and bi = - log(1-αi).66 The equivalence between the two constraints is due 

to the monotonic and logarithmic nature of the transformations. 

Ball & Lin (1993) also developed a Probabilistic Reliability Location Set Covering 

Problem (PRLSCP) but their model centered around located facilities rather than demand 

nodes. In Chapman & White (1974), the unavailability of a located server (j) is related only to 

the demand at the location of the facility (dj) and consequently, there is no consideration for 

the demand from other nodes in the neighborhood of such a facility (that is D(j) =
j

iNi
d

 ). 

                                                      
66 If qij = 0, Chapman & White (1974) recommend setting eij to an “arbitrarily large positive value.” If ∝i = 

1, they recommend assigning bi “the same arbitrarily large positive value”.   
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Ball & Lin (1993) take a different approach by estimating the probability that a facility j has 

no servers and is not available, P[D(j) ≥ x(j)], where x(j) is the number of servers at facility j. 

The underlying assumptions here are that (1) service times are constant (T ), (2) call arrivals 

are Markovian, and (3) D(j) is a Poisson random variable representing the total call volume of 

facility j’s neighborhood (Nj) during a time-period (t, t+T ). As such, the mandatory coverage 

constraint in Ball & Lin (1993) is as follows:   

 
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where Cj is the capacity of facility j (Cj ≥ 0) and Xjk is 1 if facility j has k servers (otherwise Xjk 

= 0). The LHS of Constraint (PRLS-C1A) is the product of the probabilities that a server is not 

available to demand node i and the RHS is the desired level of reliability. 

As with PLSCP, the PRLSCP’s mandatory coverage constraints are also transformed into 

a linear form: 

1

( 1 ) ;  
i j

jk jk i

N k Cj

PRLS C B a X b i I
  

        

where ajk = -log[P(D(j) ≥ k)] and bi = - log(1-∝i). Also, we have that ajk, bi > 0. 

Two important properties or considerations regarding the PRLSCP worth expanding on 

include how coverage is determined or accounted for and the role of the fixed service time 

assumption. Regarding coverage in the PRLSCP, every facility in a demand node’s 

neighborhood (j ∈Ni) is assumed to serve all the demand nodes within its own neighborhood 

(i∈Nj) without regard to whether other facilities (and their servers) outside neighborhood Ni 
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can serve demand nodes accessible by facilities within neighborhoods Ni (that is, demand 

nodes
ij

j

N

i N


 ). This assumption can result in overestimating the number of required 

facilities and servers as relevant facilities outside a demand node’s neighborhood are ignored 

but also because demand within a demand node’s neighborhood can be double counted (or 

more). As for the fixed service time assumption, Baron, Berman, Kim, & Krass (2009) note 

that assuming fixed service times is rather unrealistic given the high variability in actual service 

times. More importantly, they demonstrate that it’s possible to generate optimal solutions with 

an unreasonably high number of servers even if the service time parameter serves as an upper 

bound. Moreover, they also show that using “aggressive” service times (in this case the service 

times at the 50th percentile)67 can lead to infeasible solutions where the reliability requirements 

are not satisfied. 

DISTRICTING-BASED MODELS 

The primary focus of EMS based districting models is to determine how a region can be 

divided into smaller districts or subregions that are each served by a facility.68 There are two 

general types of districting models, uncooperative districting models where facilities cannot 

provide service across districts and cooperative districting models where facilities primarily 

provide service to their host district but can also provide inter-district service. In this sense, the 

model of Carter, et al. (1972) is an early stochastic uncooperative districting model. They 

modeled demand as a collection of Poisson process and servers as queues. The queuing 

                                                      
67 They assumed an exponential distribution for service times.  

68 Districting models are similar to location-allocation models but they emphasize the boundaries between 

regions.  
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elements in their model were essential for estimating the steady-state probabilities of their two-

server system (the joint probabilities that each server was busy and/or idle) and for determining 

workloads. 

Berman & Larson (1985) considered a similar two-server uncooperative districting model 

but in this model: (1) queuing and delays resulting from system congestion were considered, 

(2) the objective function considered both minimizing travel time and queuing delays, and (3) 

the facility locations were fixed. Furthermore, servers were modeled as a M/G/1/∞ queue, that 

is, demand arrival is Markovian (specifically a Poisson process), the service time distribution 

is General, there is [1] server, and there is an infinite queuing capacity. To solve this problem 

a “parametric classification” of optimal policies was undertaken for four regions with different 

demand intensity rates, each representing a continuous interval between 0 and λ (the total 

demand intensity of the system). Then two heuristics were developed to solve the districting 

problem and the optimal policies for all λ values.  

Berman, Larson, & Chiu (1985) also developed two stochastic districting models, the 

Stochastic Loss Median Problem (SLMP) on a network where M/G/1/0 queues are used to 

model servers and the Stochastic Queue Median Problem (SQMP) where M/G/1/∞ queues are 

used instead. 69 Unlike Berman & Larson (1985)’s model, however, server locations were not 

fixed in these models and they only located a single server. A location-allocation algorithm 

was devised to solve the two problems.  

Ultimately, Berman & Mandowsky (1986) extended these stochastic districting models to 

m facilities by developing a heuristic that combined the algorithm from the single facility 

                                                      
69 Batta (1989) considered the SQMP with a finite discrete set of potential facility locations.    
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location model of Berman, Larson, & Chiu (1985) and the heuristic from the 2-facility model 

of Berman & Larson (1985). Some interesting observations reported by Berman & Mandowsky 

(1986) include that: (1) response times are not sensitive to changes in location-allocation 

policies in situations where there is low demand, (2) slight changes in location or allocation 

policies in situations where there is high demand can produce substantial (and potentially 

“disastrous”)  changes, and (3) when there is high demand, optimal locations are not intuitive 

(even in simple networks) and “popular median-proximity” location-allocation policies “can 

cause the system to explode.” 

As for cooperative districting models, their modeling approach is primarily based on 

Larson (1974)’s Hypercube model where servers are modeled as a M/M/N system with 

distinguishable servers. The model is rather powerful as it is possible to calculate the 

proportion of demand served by each server and the steady-state behavior of the system. Two 

issues with the Hypercube problem are that approximated travel times are used70 (unlike the 

uncooperative models described above) and that it is very computationally expensive. For a 

system with m servers, the Hypercube model involves solving 2m simultaneous equations. To 

reduce the problem size, Larson (1975) developed an approximation for the Hypercube 

problem that requires solving m simultaneous nonlinear equations for problems  with m servers. 

However, this approximate method requires assuming that service times are identical for all 

servers, independent of how customers are allocated. Jarvis (1985) later generalized Larson’s 

approximation to allow general service time distributions that may vary by customers and/or 

servers. Jarvis’s approximation only applies to systems with no queues, however. 

                                                      
70 Using a “Mean Calibration Time” procedure. 
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Berman & Larson (1982) considered the p-Median Problem with Congestion (PMPC), a 

median problem with the objective of minimizing expected response times and delays due to 

congestion for random service requests. In this network model, demand originates strictly from 

demand nodes and occurs as a homogeneous Poisson process. Moreover, customers are 

serviced by their most preferred available server whereby preferences are fixed, determined 

beforehand, and can consider factors other than travel times (i.e., specific server or customer 

characteristics). Customers also enter a queue only when all servers are busy and are served in 

a first-in, first-out (FIFO) manner. Also, any facility can house multiple servers. To solve this 

problem, Berman & Larson (1982) extended Berman & Larson's (1985) 1-server model into a 

multi-server and multi-facility problem based on M/G/n/∞ queues. However, due to the 

analytical intractability of M/G/n/∞ queues, in Berman & Larson's (1982) model travel times 

are only implicitly considered in that although their distribution is general, their distribution is 

not dependent on server location, server location and identity, or the history of the system. 

Effectively, the assumption is that on-scene travel times are significantly larger than travel 

times such that the system state probabilities in this model only depend on the intensity of 

demand at each node, the on-scene service times, and the server preference rankings. Lastly, 

they prove that there is an all nodal solution for the PMPC given any set of fixed server 

preferences and that the Hypercube model and Jarvis’s algorithm can be used to solve the all 

nodal PMPC without a loss of generality. Berman, Larson, & Odoni (1981) consider a similar 

model with some simplifications. In this model, there is no queueing capacity - it is assumed 

that a back-up system (with a fixed average response time) provides service if all servers are 

busy. Also, each facility can only house a single server. 
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Berman, et al. (1987) developed two heuristics based on the Hypercube model to solve the 

Stochastic Queue p-Median Problem (SQPMP). In this model, p servers respond to calls for 

service from the network nodes. Each node is modeled as an independent Poisson generator. 

Customers are placed in a queue if all servers are busy. Otherwise, they are serviced by the 

nearest available server on a FIFO basis. Moreover, there is a general service time distribution 

and thus, the system is modeled as a M/G/p/∞ queue with distinguishable servers. As with the 

PMPC, the SQPMP objective is to locate p servers to minimize expected response times to 

random calls and waiting times. However, because of the lack of a closed form for the 

expressions or approximations for waiting times in M/G/p/∞ queues an alternative 

approximation of the objective function is suggested. Notably, the waiting component is the 

defined as product of the probability that j calls are queued times the expected response time 

when j calls are queued (summed over j = 0 to j = ∞). To solve the SQPMP, Berman, Larson, 

& Parkan (1987) developed a modified version of a heuristic proposed by Jarvis (1976) 

(Heuristic 1) and a heuristic based on the location-allocation algorithm used in the SQMP 

(Heuristic 2). Both heuristics performed similarly except for “intermediate” call arrival rates 

where Heuristic 2 performed better. Nonetheless, the authors “strongly recommend” Heuristic 

1 due to its simplicity and lower computational requirements. 

MULTIOBJECTIVE AND LOCATION-ALLOCATION MODELS 

The models discussed above have objective functions that consider waiting times, travel 

times, and waiting costs. Other considerations can include the costs associated with locating 

servers at a facility and costs associated with rejecting a call. Also, these models include some 

forms of constraints on the number of facilities and servers as well as coverage constraints. 

Berman & Krass (2001) presents a generalized framework for Location Problems with 



92 

 

Stochastic Demand and Congestion (GLPSDC) that considers all these factors in a generic 

form where TCNC, TCRC, TCWC, and TCLC are, respectively, the total costs associated with not 

providing coverage to a customer, rejecting calls from customers that are covered by a facility, 

waiting times due to travel time and congestion, and locating servers. 

Using the notation described above, the formulation provided is: 
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The objective function (LSDC-O) minimizes the costs associated with the four factors 

described above, constraint (LSDC-C1) limits the server capacity of the facilities, constraint 

(LSDC-C2) restricts the maximum number of servers that can be located to be less than or 

equal to p, constraint (LSDC-C3) requires that a each demand node is covered by a minimum 

number of facilities, and constraints (LSDC-C4) constraint (LSDC-C5) define the decision 

variables for, respectively, the number of facilities at the facility in location j and whether a 

given demand node i is covered (Yi=1) or not (Yi=0). As this is a generic model, the various 

factors in the objective function can be weighted (or excluded) accordingly. Likewise, 

constraints (LSDC-C1) to (LSDC-C4) can also be adjusted accordingly (or excluded). 

Numerous models fitting this general framework exist and listing them here is beyond the 

scope of this work. However, two novel examples with multiple objectives (with respect to the 
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models discussed above) and the location-allocation elements include the models of 

Melachrinoudis (1994) and Aboolian, Berman, & Drezner (2008).  

Melachrinoudis (1994) developed two versions of the Discrete Location Assignment 

Problem with Congestion (DLAPC) where the objective is to provide service to all customers 

(located in a discrete set of locations) so as to minimize total costs. Demand is stochastic (with 

a general distribution and served on a FIFO basis), service times are distributed exponentially 

(both types of random variables are independent and identically distributed), and only one 

facility can be located at most on each site (thus servers are modeled as G/M/1/∞ queues). In 

their first model (for a “Problem-P”), the objective function includes TCWC and TCLC terms 

while their second model’s objective function (for a “Problem-U”), also includes TCWC and 

TCLC terms but the TCWC term excludes waiting costs due to congestion. Both models use 0-1 

binary decision variables for assignment of customers (i) to facilities (j) (Xij) and for location 

decisions at every site j (Xj). 

Aboolian, Berman, & Drezner (2008) formulated the problem of locating facilities and 

allocating servers on a congested network (LASCN) where the objective is also to provide 

service to all customers (located in a discrete set of locations) while minimizing total costs. In  

LASCN demand is stochastic with a Markovian distribution and multiple servers can be sited 

at the same facility – servers are thus modeled as M/M/kj/∞ queues (where kj is the total number 

of servers at location j). As for the objective function, the LASCN includes a TCWC term that 

includes both travel- and congestion-related cost and a TCLC term that includes the fixed costs 

related to locating a facility at site j and the variable costs associated with number of servers 

at each facility (servers have a fixed price). The LASCN model also includes a closest-

assignment constraint to ensure that customers visit the nearest located facility. 
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3.3 Essential Probabilistic and Stochastic Location Models 

The formulation of RC-QMALP (and its variations) borrow concepts and components from 

various models. Again, RC-QMALP is an extension of QMALP and its predecessors MALP 1 

and 2. These models in turn borrow a key concept from the MEXCLP. Moreover, although 

RC-QMALP is not strictly a location-allocation problem it borrows elements from and builds 

on non-deterministic location-allocation models, namely the models presented in Dearing & 

Jarvis (1978) and Marianov & Serra (1998). Finally, we present and discuss the two-stage 

modeling framework used by Shariat-Mohaymany, Babaei, Moadi, & Amiripour (2012). 

3.3.1 The Queueing p-Median Problem 

By the late 1960s many research groups were looking into using queues to model 

ambulance systems, particularly with the intention of capturing congestion. One significant 

shortcoming for many of these models however, was that they did not consider the location of 

ambulances (e.g., Bell & Allen, 1969). To address the issue of location and congestion various 

modeling approaches were adopted including simulation (e.g., Savas, 1969), non-optimizing 

analytic models (e.g., Larson, 1974), optimizing analytical models (e.g., Carter et al., 1972), 

mathematical programs with simulation (e.g., Berlin & Liebman, 1974), and analytic models 

with heuristics (e.g., Fitzsimmons, 1973). The problem with these approaches was that they, 

respectively, considered a limited set of alternatives, were mostly descriptive (rather than 

prescriptive), were computationally intractable for reasonably sized problems, produced 

solutions with models that did not capture the system behavior very well, and produced 

solutions that might not be optimal. Chapman & White (1974) devised a prescriptive 

optimization model that captured congestion but it was not implemented due to mathematical 
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challenges. In this context, the work of Dearing & Jarvis (1978) is notable and rather significant 

(despite its lack of presence in the literature71) in that it implements queues into a mathematical 

program along and includes an algorithm to find optimal solutions to the Queuing p-Median 

Problem (QPMP). 

The QPMP is a network model where calls originate from a finite number of demand points 

i (i∈I, |I|=n). Calls for service from each demand node are modeled as independent Poisson 

processes with at a rate λi. At most a single server (and a total of p servers, p < n) can be located 

at any facility site j (j∈J, |J|=m) and there is a travel time tij between each demand node i and 

facility j. Moreover, servers in this system travel to demand points requesting service, provide 

service, and return to the same facility. Service time is a random variable with an expected on-

site service time of τij (thus, the total service time between demand node i and facility j is Tij = 

2tij + τij). Each server is modeled as an independent M/G/1/∞ queue. 

The QPMP’s objective is to minimize the average expected travel times such that the 

expected waiting times at every located facility j is no more than Wj. If the set of demand points 

(I) is equal to the set of facility sites (J) then QPMP is equivalent to the PMP with an added 

congestion constraint (and without the added constraint it is exactly equivalent to the PMP). 

Because the congestion constraint serves as a capacity constraint, the QPMP is a capacitated 

minsum location problem. 

 

                                                      
71 A Google Scholar search in August 2017 for works citing Dearing & Jarvis (1978) returned 6 references – 

3 journal articles, 2 chapters in a handbook and a book, and 1 PhD dissertation. This article appeared most recently 

in the latter (published in 2000) and was last citied in a journal article by Melachrinoudis (1994). 
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The formulation is as follows: 
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The objective of the QPMP (QPM-O) is to minimize the sum of the weighted travel 

times/costs between all demand nodes i and their assigned server located at facility (j). The 

travel times/costs are weighted according to the demand for each node, thus the objective 

function consists of the double sum-product of the demand intensity at node i (𝜆i), the travel 

time/costs between demand node i and a facility location j (tij), and the assignment decision 

variables Xij. The role of constraint (QPM-C1) is like (PM-C1) in that it forces coverage of all 

demand nodes by requiring the assignment of all demand nodes to a server at a located facility. 
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Likewise, (QPM-C1) requires that demand nodes be assigned to at most one facility while 

facilities can be assigned to serve to multiple demand nodes. The role of constraint set (QPM-

C2) is similar to that of constraint set (PM-C2) in that they ensure that demand nodes are 

assigned only to servers at located facilities as for any j, Xij can only equal 1 when a facility is 

located (Xj = 1).  

As with constraint (PM-C3), constraint (QPM-C3) simply requires that exactly p facilities 

are located. They are both formulated with the LHS representing the sum of location decision 

variables but in the QPMP explicit location decision variables Xi are used. Constraint (QPM-

C4A.1) stipulates that the waiting times for a facility j cannot exceed a time standard Wj (on 

the RHS). The LHS is the expected waiting time formula for a M/G/1/∞ adjusted for the QPM 

with respect to system utilization rates (ρj), the arrival rate of the queue (λi), and the second 

moment of service time ( 2

ijT ). Constraint (QPM-C4A.2) serves as a server capacity constraint 

as the LHS represents the server’s utilization rate. If a server’s utilization rate was equal to or 

greater than 1, the server queue would exhibit unstable behaviors including an ever-increasing 

queue. Constraint (QPM-C4B) simplifies the model as it is a linear constraint (unlike the QPM-

C4A.1 constraint) and it implies both (QPM-C4A.1) and (QPM-C4A.2). Constraint sets 

(QPM-C5) and (QPM-C6) simply stipulate that the assignment and location decision variables, 

respectively, Xij and Xj are 0-1 binary decisions variables. 

The main difference between the QPMP and RC-QMALP is that there are no waiting 

related constraints in RC-QMALP. As for similarities, first, the QPMP’s objective function 

(QPM-O) is used in RC-QMALP but as a second-stage objective function. RC-QMALP is 

solved in two stages whereby in the first stage the RC-QMALP objective function is used 

subject to the RC-QMALP’s constraints. Then, for the second-stage, the QPMP objective 
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function (QPM-O) becomes RC-QMALP’s objective function while RC-QMALP’s first-stage 

objective function is transformed into a constraint that is bounded from below by the optimal 

value associated with the optimal solution of RC-QMALP’s first-stage objective. This new 

constraint is added to the other RC-QMALP constraints. Thus, in the second stage, the RC-

QMALP objective minimizes response times subject to a coverage performance constraint and 

the original RC-QMALP constraints.72 

The second contribution is the use of continuous, fractional Xij assignment variables (0 ≤ 

Xij ≤ 1) and their interpretation. Dearing & Jarvis (1978) do not test this approach but suggested 

that Xij could be assumed to be continuous.73 As for meaning, continuous Xij values, can be 

interpreted in two ways: (1) Xij values represent the proportion of demand that is assigned from 

demand node i to the server at facility j and (2) Xij values represent the probability that demand 

node i will be served by a server in facility j.  

3.3.2 The Maximum Expected Covering Location Problem 

The MEXCLP of Daskin (1982, 1983) is a derivative of the MCLP that adopts a 

probabilistic coverage-oriented and goal-based modeling approach. It is structurally similar to 

the redundancy-based models however, its probabilistic coefficients in the objective function 

make this a non-deterministic model - the objective function estimates the amount of demand 

that is expected to be covered (in a probabilistic sense). 

                                                      
72 We present an extensive discussion of this modeling approach in Section 4.3.7.  

73 They note that Stidham (1971) discussed several models that used continuous, fractional Xij assignment 

variables and M/M/1 queues to model servers. 
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The MEXCLP’s key contribution is that of server busy fractions and their use in a mixed-

integer linear program. Prior works such as Volz (1971) included some form of a busy fraction 

or utilization measure but these modeling approaches/formulations were not compatible with 

mathematical programming. 

The MEXCLP’s approach to modeling coverage is implemented through its objective 

function by using coverage decision variables Yik. Much like the Yi coverage decision variables 

in the MCLP, Yik variables are used to indicate that demand node i is covered. However, in the 

MEXCLP the coverage decision variables are extended so that they also indicate the level of 

coverage provided to a demand node. That is, for each potential level of coverage k={1,…,p},74 

Yik takes the value 1 if k facilities cover demand node i and 0 otherwise. The mechanism for 

determining the level of coverage provided is implemented via a coverage constraint for each 

demand node. 

Returning to the issue of determining the amount of demand that is covered in the presence 

of congestion, the MEXCLP objective function sums the product of the amount of demand 

(di), the decision variable Yik, and a weight (wk) over every level of coverage k and each demand 

node i. The weight wk is strictly decreasing concave over k to indicate the “diminishing returns” 

of each additional level of coverage. Moreover, it is calculated so that the sum of the product 

of wk, di, and Yik over k is equivalent to the expected amount of demand from node i that can 

be covered. Hence, the objective function of the MEXCLP determines the overall expected 

coverage of demand.       

                                                      
74 The maximum level of coverage a demand node can attain is equal to the number of facilities that are to 

be located. The total number of facilities to be located is also limited to p in the MEXCLP. 
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With respect to how wk is calculated, Daskin (1982) based his calculations on a model 

parameter q that represents the probability that a randomly selected facility/server is busy. To 

derive q, first the system-wide workload is estimated with the product-sum of the amount of 

demand at each node, di, and a parameter μ that is equal to the average length of time a server 

spends servicing a call. Then, this is divided by p and T, which are, respectively, the number 

of facilities that are to be deployed and the length of the study period75 while the product of p 

and T represent the amount of capacity in terms of time. Overall, the entire calculation 

estimates a system-wide busy fraction.  

Once the value of q is known, wk is set to equal the marginal increase in the expected 

coverage for a demand node i that results from increasing the number of facilities that cover 

demand node i from k-1 to k for kϵK. Consequently, by using these wk weights in the objective 

function the objective value is equal to the overall expected coverage of demand. Note that this 

calculation (provided below) is based upon the assumption that the number of available 

facilities follows a binomial distribution (and thus that the probability of one server being busy 

is independent of the state of other servers). 

 

 

 

 

                                                      
75 Each facility is presumed in either an idle state or in a busy state serving a call during the entire period. 

Also, parameters di and μ are scaled according to the length and measurement unit of T. 
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The formulation is as follows: 
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The objective of the MEXCLP (MX-O) is to maximize the expected amount of demand 

covered within a time/distance standard (s). This is accomplished by maximizing the sum of 

the product of a weight (wk) representing the marginal increase in coverage resulting from 

moving from coverage by k-1 facilities to coverage by k facilities, the demand from node i (di), 

and the binary decision variable Yki over all demand nodes (i∈I) and all levels of coverage 

(k∈K).   

Constraints (MX-C1) operate in a similar fashion to the coverage definition constraints of 

the MCLP (MC-C1) in that the LHS of the constraint counts the number of located facilities 

that are accessible to a demand node while the RHS determines whether there is a sufficient 

number of located facilities to consider the demand node to be covered at a given level k. The 

difference between (MX-C1) and (MC-C1) however, is that (MX-C1) tracks the number of 

facilities that cover a node rather than only determining whether one or more facilities cover a 

demand node. To account for multiple levels of coverage, the RHS of (MX-C1) contains a sum 

of decision variables Yik. The structure of (MX-C1) requires that the sum of the Yik decision 

variables (on the LHS) not exceed the total number of located facilities that cover the demand 

node i (the RHS sum). Constraint (MX-C1) does not provide any explicit order as to how the 

Yik variables are selected.76 Nonetheless, all (MX-C1) constraints hold to equality (its LHS 

equals the RHS) and for all demand nodes, their corresponding Yik variables are equal to 1 for 

all coverage levels (k) that are less than or equal to the number of located facilities covering a 

demand node i.77 This is due to the concave nature of the objective function of the MEXCLP 

                                                      
76 The here is not explicit requirement, for any i, that Yik decision variables with higher k value be equal to 0 

if there is a Yik decision variables with lower k value that is equal to 0. 

77 That is if the number of located facilities covering demand node i is equal to n (n≥1), then Yik =1 ∀k: 1≤k≤n. 
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(MX-O).78 As with constraints (MC-C2) in the MCLP, constraints (MX-C2) simply set the 

amount of facilities to be located at exactly p. The role of constraints sets (MX-C3) and (MX-

C4) are to, respectively, define location and coverage decision variables Xj and Yik as binary 0-

1 decision variables. 

After the development of MEXCLP, ReVelle & Hogan (1988) attempted to relax the 

assumption of uniform systemwide server busyness factions as part of an effort to develop a 

probabilistic MCLP with service reliability constraints (MRCLP). To do so, they created a 

method to calculate a “local” estimate of server busy fractions. This method (described in more 

detail in the next section) is local as it involves estimating a busy fraction for each demand 

node i according to the total level of demand in the demand node’s neighborhood (the demand 

in Ni). Sorensen & Church (2010) eventually extended MEXCLP to include local busy fraction 

calculations in the Maximum Expected Covering Location Problem with local reliability (LR-

MEXCLP). 

3.3.3 The Maximum Availability Location Problems 

Like the MEXCLP, MALP 1 and 2 are probabilistic coverage-based models that utilize 

busy fractions to determine the availability of servers. More fundamentally, they both adopt a 

goal-based coverage approach as they do not involve set coverage requirements for each 

demand node and are based on a redundancy-based framework as they include decision 

variables that track the level of coverage provided to each demand node. 

                                                      
78 See Daskin (1983). 



105 

 

The MALP models differ from the MEXCLP in the structure of the objective function and 

in how coverage is determined. First, whereas the MEXCLP seeks to maximize the expected 

amount of demand covered within some time/distance standard, the MALP models seek to 

maximize the amount of demand covered within some time/distance standard such that a 

minimum level of service reliability is provided to the demand node. To meet this service 

reliability requirement, a demand node must be served by a minimum number of facilities. 

MALP 1 (like the MEXCLP) use systemwide server busyness fraction to establish this number 

while MALP 2 uses the local server busyness fraction calculations developed by ReVelle & 

Hogan (1988) and implemented by ReVelle & Hogan (1989). The latter method estimates the 

facility requirement by accounting for the total demand in the demand node’s neighborhood Ni 

(rather than the system’s total demand). 

As such, MALP 1 and 2 are based on a hybrid reliability- and redundancy-based coverage 

modeling framework. However, in contrast to the MEXCLP, redundancy is not emphasized in 

MALP 1 and 2 as the coverage-level decision variables only consider the provision of coverage 

at a single level (i.e. a node is alpha reliable covered or not). Consequently, maximizing the 

coverage on a local basis is prioritized in MALP 1 and 2 while maximizing the coverage across 

the entire system is emphasized in the MEXCLPs.  

To understand the difference between MALP and MEXCLP, it is useful to consider MALP 

alongside MEXCLP’s formulation. With the MEXCLP, excess coverage is captured with the 

Yik decision variables and the wk parameter represents, respectively, a coverage-level of k 

facilities for a demand node i and the marginal improvement resulting from an additional 

facility’s coverage (moving from k-1 to k level coverage). In contrast, MALP also adopts Yik 

decision variables, however, rather than considering all Yik variables in the objective function 
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like MEXCLP, in MALP only one level of coverage is considered, specifically some coverage-

level k that ensures that a demand node is served with a minimum level of service reliability 

(α). In MALP 1, this reliable coverage parameter is b and it is the same for all demand nodes; 

thus, we have the decision variable Yib. In MALP 2, the reliable coverage parameter can vary 

across demand nodes; in that case we use bi instead and the decision variable becomes 
iibY . 

Consequently, in MALP the objective is to maximize the sum of the product of Yib (or 
iibY ) and 

di or the proportion of demand that is covered with a α-level reliability.  

Reliability requirements are determined for the MALP 1 model by first calculating the 

system-wide busyness (q), just as in MEXCLP. Then q is used to develop chance-constraints 

similar those used by Chapman & White (1974). However, in MALP 1 α-reliable service is 

not required coverage, whereas in Chapman and White coverage is required. MALP 2 employs 

the approach developed by ReVelle & Hogan (1988) that modifies MEXCLP’s system-wide 

busy fraction calculations to consider busyness at a more local level where local-region busy 

fractions qi are used instead of system-wide busy fraction q. The key difference here is that 

rather than considering the total demand in a system with q, in calculating qi only the total 

demand in demand node i’s neighborhood (Mi) is considered. Then the needed bi coverage 

levels are calculated from the corresponding qi values. 

The formulations for MALP1 and MALP 2 are as follows: 
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The objective of MALP 1 (MA1-O) and 2 (MA2-O) is to maximize the demand that is 

covered within a time/distance standard (s) and α-level reliability. This is accomplished by 

maximizing the sum over all demand nodes (i∈I) of the products of the demand at node i (di) 

and the binary 0-1 decision variable Yib in MALP 1 and 
iibY  in MALP 2. We note that that the 

second subscripts in Yib and 
iibY  are equal to the number of facilities that are needed to be 

located in the neighborhood of demand node i  in order to meet the requirements for α-level 

reliable service. These constraints operate in a similar fashion to the coverage indicator 

constraints of the MEXCLP (MX-C1) in that the LHS of the constraint counts the number of 
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located facilities that are accessible to a demand node i while the RHS determines whether 

there is a sufficient number of located facilities to consider that the demand node has been 

covered at the α-level. The difference between (MX-C1) and the MALP constraints is that the 

latter only account for coverage up to a certain level – k = b for MALP 1 and k = bi for MALP 

2. This is reflected in the index of the RHS sums, respectively, in (MA1-C1) and (MA2-C1).   

These constraints ensure that the decision variables Yik “behave” properly such that Yik can only 

equal 1 if Yik-1 is 1 as well (for k≥2). The only difference between (MA1-C2) and (MA2-C2) is 

that for each demand node (MA1-C2) considers the k values from 2 up to b while (MA2-C2) 

considers values from 2 up to bi. As with constraints (MC-C2) in the MCLP, constraints (MA1-

C3) and (MA2-C3) simply set the amount of facilities to be located at exactly p. The role of 

constraints sets (MA1-C4) and (MA2-C4), is to limit decision variables Xj values to 0 and 1 

while the role of constraints sets (MA1-C5) and (MA2-C5) is to limit decision variables Yik 

values to 0 and 1. 

In MALP 1, there are two assumptions from the MEXCLP that carry over. This includes 

the assumption that: (1) all servers being equally busy, (2) the probability of a server being 

available is independent of the state of other servers, and (3) a fixed average service time for 

all calls. In MALP 2, the first assumption is relaxed with the use of average busy fractions for 

servers in the region of each demand node i (j∈Ni). However, By relaxing assumption (1) 

ReVelle & Hogan (1989) introduce two additional assumptions (the Districting Assumption79), 

(1) that the servers located in a demand node i’s neighborhood (j∈Ni) only serve demand nodes 

in the neighborhood (i∈Mi) and (2) that all calls originating in Mi are served by facilities in Ni. 

                                                      
79 We refer to this as the Districting Assumption following the terminology of Berman & Krass (2001). 
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In making this assumption, ReVelle & Hogan (1989) acknowledge a potential issue resulting 

from some facilities in Ni might serve demand nodes outside Ni and also facilities outside of Ni 

might serve demand nodes in Mi. The idea is that they assume the net service (from outside to 

inside and from inside to outside) across the neighborhoods is zero. 

In a subsequent publication on a similar model, Marianov & ReVelle (1996) address this 

issue with a different explanation. Here they claimed that an implicit assumption in MALP is 

that the call rates in a demand node i’s neighborhood do not “differ to a significant extent from 

the call rate in the neighborhoods that border i. They suggested that this established “a rough 

equivalence between 1) the number of calls originating outside of Ni and requiring servers 

stationed inside Ni, and 2) the number of calls inside Ni which require servers to come from 

stations in adjacent, or nearby, neighborhoods.” 80  Moreover, they presented an additional 

assumption - that there was a minimal difference between the response times of servers located 

outside Ni serving calls in Mi and of servers located inside Ni serving calls outside Mi. With 

these two assumptions, Marianov & ReVelle (1996) argued that the flows of server in and out 

of Ni were “not too different” and “approximately cancel each other”. This they argued justified 

their Districting Assumption, that is, treating “each neighborhood as an isolated, independent 

unit whose demands and servers interact solely with each other.” 

To test the districting assumption, Murray & Church (1992) assessed MALP-derived 

locational configurations by comparing their theoretical and simulated MALP objective 

function values, respectively, ZMALP2 and SIM(ZMALP2). This experiment involved two data sets 

(55 and 33 node data sets) with various p and α values. A simple analysis of ZMALP2 and 

                                                      
80 This is also suggested by Marianov & ReVelle (1992) although without the second assumption. 
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SIM(ZMALP2) revealed that for both data sets and all p and α values, ZMALP2 >> SIM(ZMALP2) 

apart from six cases. In two instances ZMALP2 = SIM(ZMALP2) and in four ZMALP2 < SIM(ZMALP2). 

The next step investigated consistency in the differences between ZMALP2 and SIM(ZMALP2) 

as consistent differences between the two models would support the robustness of MALP. In 

this experiment, Murray & Church (1992) generated 100 location configurations and evaluated 

them using MALP and a simulation for the 55 node data set with six p values (number of 

servers) with an α value of 0.90. They used a nonparametric statistical test (Sign test) to 

compare the fitness rankings of the locational configurations produced by evaluating the 

configurations with MALP and with the simulation model. The null hypothesis was that for 

any configuration MALP did not consistently produce better solution values than the 

simulation model (and vice versa). The null hypothesis was rejected for all six p values at a 

0.01 significance level. However, an analysis of the variation in objective values differences 

(as a percentage of demand) for each level of p revealed large standard deviations. Thus, 

despite MALP and the simulation producing consistent ordering, Murray & Church (1992) 

concluded that there was a lack of agreement between the objective values produced by MALP 

and the simulation model. 

Given these results, Murray & Church (1992) then investigated potential sources of the 

large standard deviation in objective values differences. For this analysis, they plotted the 

MALP and simulation models for each solution (at two p levels) and visually examined the 

resulting graph. Murray & Church (1992) suggested a tendency for MALP to produce 

conservative estimates of demand covered with c-reliability particularly for location 

configurations with mid-level MALP objective values. As a final step, Murray & Church 

(1992) considered the possibility that these discrepancies were due to the simulation model. 
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For this, they investigated at a more granular level and examined a single location 

configuration’s results, specifically the reliability levels attained at each demand node. First, 

they examined the role of α and noted a wide discrepancy in model objective values at α = 0.90 

but very similar model objectives values with α values of 0.85 and 0.95. Then, they examined 

an area with two located servers where a large discrepancy in objective values existed. In this 

instance, they observed a significant difference in demand located in non-overlapping areas 

(i.e., the set of demand nodes covered exclusively by one of the servers). To test the 

significance of this difference, they reran both models with an altered data set where the 

demand in both non-overlapping zones were balanced by increasing/decreasing demand in the 

set with lower/higher demand. This change reduced the discrepancy in objective values for the 

server that covered the non-overlapping zone with high demand by increasing the MALP 

objective value estimate. Murray & Church (1992) suggest the local-busyness estimate is 

problematic because the calculations factor in all demand in a demand node’s neighborhood 

but do not account for the extent to which this demand is served. 

Baron et al. (2009) also raised similar concerns using an example problem. They used 

simulations to test the validity of availability measures generated by various location models. 

With respect to MALP, they generated optimal MALP solutions that are both feasible and 

infeasible with respect to the α-reliability requirements. These multiple optima concerned the 

authors because it showed that MALP lacked a mechanism that favored feasible solutions over 

non-feasible solutions. But more critically, they claimed that “it is not hard to construct a larger 

problem where all solutions are infeasible” for MALP (and another model). 
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3.3.4 The Queuing Location Set Covering Problem 

Before discussing QMALP, its useful to briefly discuss ReVelle & Hogan's (1989) 

Probabilistic Location Set Covering Problem (PLSCP-RH)81 as it represented a significant 

breakthrough in coverage-based location models that employed a mixed-integer linear 

programming framework. The 1980s marked the arrival of probabilistic based models with the 

development of MEXCLP, MALP, and ReVelle & Hogan's (1989) PLSCP-RH, α-Reliability 

p-Center Problem, and Maximum Reliability Location Problem (MRLP). 82  These models 

represented significant advancement in location modeling by operationalizing the probabilistic 

optimization modeling paradigm and introducing new concepts that were incompatible or 

could not be readily implemented with a deterministic modeling framework. 

However, despite this significant advancement, coverage-based location modeling 

remained behind other location modeling approaches when it came to capturing congestion. 

Coverage-based location models excelled in finding optimal or at least high-quality solutions 

due to their mixed-integer linear programming framework. However, as these probabilistic 

coverage-based location models were being developed, models using other modeling 

frameworks (e.g., Hypercube-based models) and even mixed-integer linear programming-

based minsum location models were already incorporating far more sophisticated modeling 

elements such as queues. Other models even expanded on probabilistic coverage-based 

location models although at the expense a mixed-integer linear programming friendly 

framework. For instance, Batta, Dolan, & Krishnamurthy (1989) introduced the Adjusted 

                                                      
81 The RH is used to distinguish ReVelle & Hogan's (1989) and Chapman & White's (1974) models. 

82 These models applied the local server busyness calculations and chance constraints used in the MRCLP 

and MALP. 
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MEXCLP (AMEXCLP) that incorporated elements from Larson’s Hypercube model (Larson, 

1974,1975) to relax some of assumptions in the MEXCLP, namely the server independence 

assumption, a particularly important assumption.  

The server independence assumption represented a disadvantage to probabilistic mixed-

integer linear programming-based location models. This assumption was not just unrealistic 

for most cases but it results in an overestimate of server availability at the local level.83 

Nonetheless, models that relaxed this assumption also remained at a disadvantage because their 

of their computationally intensive solution procedures and because they did not always 

produce better solutions. Saydam, et al. (1994) came to this conclusion for MEXCLP in 

comparison to the AMEXCLP (and other models) and added that no model was consistently 

more accurate in estimating expected coverage. In this context, Marianov & ReVelle's (1994) 

Queueing Location Set Covering Problem (QLSCP) represented a huge breakthrough because 

it relaxed the server independence assumption in a coverage-based model that maintained a 

mixed-integer linear programming framework.84 

The QLSCP and the PLSCP-RH share the same model formulation with the exception of 

how the α-reliability facility parameter (bi) is calculated. Unlike in MALP and the PLSCP-RH, 

                                                      
83 Assume P(A) and P(B) are, respectively, the probability of two ambulances A and B being available. We 

know that P(AB) = P(A)P(B|A) = P(B)P(A|B). It’s reasonable to assume that an ambulance is more likely to be 

busy when the other ambulance is busy. As such, we have P(B|A) < P(B) and P(A|B) < P(A) which implies that 

P(A)P(B) > P(AB) = P(A)P(B|A) = P(B)P(A|B) or that the independence assumption over estimates ambulance 

availability. A more general proof can be easily derived with Bonferroni inequality. We note that it’s also possible 

to underestimate the availability of service by underestimating server availability (i.e., upward biased P(A) and/or 

P(B) estimates). 

84 We note that Saydam & Aytuǧ (2003) later developed a far less computationally intensive model that 

produced solutions with improved estimates and were often of better quality than the MEXCLP solutions. 

However, the optimality of their solutions remained in question as they employed a genetic algorithm heuristic. 
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in the QLSCP facilities are modeled as M/M/K/K-loss queues and demand nodes as Poisson 

processes with “demand intensities” (i.e. call arrival rates). As such, bi’s are calculated using 

steady-state equations: 
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In formulating this model, some important considerations include that: 



116 

 

• If s servers are busy, any calls additional calls are assumed to be lost (hence the s-loss 

designation). Marianov & ReVelle (1994) explain that this loss is from the “point of 

view of that neighborhood” and that servers located outside the neighborhood fulfill 

these calls “in practice”. 

• The system transition rates (λi in this case) never change regardless of the state or 

busyness of a system and does not affect transition rates. 

• ρi must be less that or equal to 1, otherwise system equilibrium is not possible. 

• It can be shown that 1k

i

k

iPP  which implies that there is always a bi such that 

1
i

i

bP   . 

Insofar as modeling assumptions, Marianov & ReVelle (1994) also adopt the districting 

assumptions previously put forth by ReVelle & Hogan (1988), ReVelle & Hogan (1989), and 

ReVelle & Hogan (1989b). Moreover, they further justify their use of M/M/s/s-loss queues 

along with the districting assumption as this avoids the need to keep track of the state of each 

server in the system, in accordance with queue theory-based models (Larson, 1974). They 

further justify their approach with the claim that α values close to one should be used in order 

to “obtain useful results”. Why useful results require high α values is not explained but they 

explain that with higher α values, servers in a demand node’s neighborhood are more likely to 

respond and that consequently: (1) “it will only occasionally be necessary for servers outside 

to cross the boundary and attend calls (unless there is an extreme situation) and (2) “the flow 

of servers across boundaries should be small”. It’s also assumed that travel times are 

significantly smaller than service times as with other models that assume exponentially 

distributed service rates.  
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To assess the QLSCP’s performance, Marianov & ReVelle (1994) compared the QLSCP 

and PLSCP-RH’s solutions using a 55 node data set (Swain, 1971) and one scenario. They 

reported that higher bi values for the PLSCP-RH with low α-reliability values (α = 0.80) and 

lower bi values for the PLSCP-RH with higher α-reliability values (α = 0.95,0.99). They 

interpreted this as the PLSCP-RH overestimating and underestimating congestion, 

respectively, with low and higher α-reliability values. They also observed more evenly 

distributed facilities in some cases with high α-reliability values. Computationally, the PLSCP-

RH solved faster in every instance (α = 0.80, 0.90, 0.95, 0.99) but the QLSCP times were 

similar in most cases. 

Two important issues concerning QLSCP involve the problem of estimating the parameters 

for the model and the validity of the QLSCP availability estimates. Beginning with the first 

issue, Marianov & ReVelle (1994) parameterized the QLSCP with arbitrarily adjusted demand 

intensity values85 and developed a mean service rate value that averaged the service times for 

three possible scenarios.86 To address this, they briefly discussed some approaches that could 

estimate these model parameters by observing the system’s behavior. Their first suggestion 

was modeling λi and μi as doubly stochastic processes, but they disregarded this approach 

noting that it was unjustifiably complicated unless each random parameter had a simple 

probabilistic distribution function. As an alternative, they proposed a method for both 

parameters that establishes confidence intervals using inequalities based on standard formulas 

                                                      
85 They took the population values associated with each demand node in Swain (1971) and multiplied them 

by a constant factor (0.7). 

86 They considered the cases where (1) the ambulance arrives, stays on site, and returns to its ambulance 

depot; (2) the ambulance arrives, transports the patient to the hospital, and returns to the ambulance depot; and 

(3) the ambulance arrives and returns immediately to its ambulance depot (a false alarm scenario). 
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about stochastic processes. Then, they used the minimum parameter values that satisfy these 

inequalities and meet a given confidence coefficient value. 

For the second issue, three articles raised the same concern of the validity of the availability 

estimates used in MALP. Alminana, Borras, & Pastor (1996) first raised this concern reporting 

that the specified α-reliability was achieved in less than 20% of 36 problems.87 Next, Borrás & 

Pastor (2002) conducted an ex-post evaluation of several models (including the QLSCP) with 

two minimum local reliability level (MLR) measures. One measure assumed server 

independence (MLRI) and the other did not (MLRD). The test included: two different data sets 

- a modified version of Swain's (1971) 55-node network and Serra's (1989) 79-node network; 

four call demand configurations (i.e., different times of day); two distance standards; one 

average service time standard; and nine α-reliability levels (α = 0.8, 0.825, 0.85, 0.875, 0.9, 

0.925, 0.95, 0.975, 0.99). With respect to the QLSCP MLRI and MLRD measures, Borrás & 

Pastor (2002) reported that the stated α-reliability was achieved in, respectively, 63.89% and 

47.22% of cases. Moreover, QLSCP solutions meet the stated α-reliability and required the 

fewest number of vehicles (with respect to the other two models in this test) in 50.00% and 

38.19% of cases under the MLRI and MLRD measures, respectively. Lastly, Baron et al. (2009) 

used their example problem to analyze the QLSCP and extended its conclusions about the 

validity of the MALP’s availability measures to the QLSCP. In their analysis of the QLSCP 

(on a M/M/K framework88) they also produced both reliability feasible and infeasible solutions 

for the QLSCP, noted the lack of a guidance mechanism to produce reliability feasible 

                                                      
87 This experiment was in its preliminary stage and the authors did not report any other statistics regarding 

such an experiment.  

88 They note that Borrás & Pastor (2002) did not remove this modeling assumption but reached a similar 

result.  
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solutions, and that it was possible to generate larger examples where all QLSCP solutions were 

reliability infeasible.   

3.3.5 The Queuing Maximum Availability Location Problem 

As with the QLSCP, the QMALP of Marianov & ReVelle (1996) represented a significant 

breakthrough in location modeling as a coverage- and goal-based model that incorporated 

queue theory and retained a mixed-integer linear programming friendly structure. Again, we 

stress the latter property as various models predating QMALP met the first three criteria, 

including Batta et al. (1989) and Goldberg et al. (1990), but these models relied on heuristic 

approaches that could produce optimal solutions but not guarantee their production.     

Although QMALP and MALP share the same model structure (apart from a few subtle 

changes and the introduction of additional optional constraints), QMALP is conceptually and 

technically different as it is based on the queue-theory framework developed by Marianov & 

ReVelle (1994) for the QLSCP. The most significant difference concerns the calculation of bi 

as QMALP is based on the same approach developed in the QLSCP. QMALP also is based on 

all of the QLSCP assumptions (including the districting assumptions) with a couple of 

exceptions related to the service times. In the QLSCP, exponentially distributed service times 

are assumed but this assumption is relaxed to generally distributed service times in QMALP. 

Nonetheless, the move to M/G/s/s-loss queues is of minimal operational significance as service 

times are assumed to include travel times and where both demand node state probabilities (
k

iP

) and bi calculations remain unchanged.89 

                                                      
89 As noted in Berman & Larson (1982), moving to a general distribution service time that includes travel 

times assumes that service times are not dependent on server location, server location and identity, or the history 
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Three additional modifications in QMALP include allowing server co-location, the 

definition of a demand node’s neighborhood (Ni), and a workload constraint. Of the three, only 

the first change is not optional (with the given formulation). Marianov & ReVelle (1996) 

implement with two changes. They set a server capacity for each location j (Cj) and change the 

decision variable Xj to Xkj. This new decision variable which is still a 0-1 binary decision 

variable accounts for location (j) and whether it is one of the kth servers at location j (with k ≤ 

Cj). The change regarding the neighborhood definition Ni is an attempt to capture the impact 

of travel times on coverage, that is, Ni is determined such that it only includes other demand 

nodes such that the probability of reaching those demand nodes from demand node i within a 

time standard S is greater than or equal to β, a second standard. A normal distribution for travel 

times is assumed (following Daskin,1987) and an inequality that determines membership is 

derived. The inequality includes expected travel times between nodes and the variance in terms 

of a standard deviation.90 As for the workload constraint, Marianov & ReVelle (1996) propose 

a constraint that effectively limits workloads by requiring a minimum number of server (gi 

servers in a neighborhood Ni) so that the probability that all servers in a neighborhood are busy 

(
i

sP ) remains below some rate w∈(0,1). The value gi is calculated using the same iterative 

procedure used to calculate bi.   

The formulation is as follows: 

Model 

                                                      
of the system. Thus, this change in QMALP has theoretical and methodological significance but no practical 

significance. We revisit this issue when discussing RC-QMALP.   

90 We omit presenting this alternative definition and the workload constraint as they are not implemented by 

the authors.   
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As with the MALP 2 objective (MA2-O), the QMALP objective (QMA-O) maximizes the 

amount of demand that is covered with α-reliability. Constraints (QMA-C1) and (QMA-C2) 

establish the coverage-level in each demand node i’s neighborhood. Note that the objective 

improves only when 
ibY = 1 and so without (QMA-C2) we would have 

ibY = 1 when then there 

is at least one server located in Ni regardless of the value bi. To prevent this, (QMA-C2) 

requires the presence of k - 1 facilities in Ni to allow the possibility of Yk being 1 and thus the 

Yk values are properly set in (QMA-C1) beginning with Y1. Constraint (QMA-C3) limits the 

total number of facilities to p and the capacity of locations (j) are established by the limiting 

the highest index value of the second summation to Cj. 

Marianov & ReVelle (1996) assessed QMALP (and its performance relative to MALP) 

with Swain's (1971) 55-node network with a 45 minute average service time, five α-reliability 

levels (α = 0.85, 0.90, 0.90, and 0.97), and a 1.5 mile service standard. Interestingly, the 

investigation used a single level of demand intensity where demand nodes generated an 

average of 0.4 calls per day. In comparing MALP and QMALP, Marianov & ReVelle (1996) 

reported a similar distribution of bi values in MALP and QMALP across most α-reliability 

levels although they observed an upward skewed distribution of bi values in QMALP when α 

= 0.99. However, they also reported lower estimates of server availability for demand nodes 

with MALP than QMALP when a single server was located in the demand node’s 

neighborhood. Finally, they also noted that the marginal decrease in the percentage of demand 

covered with α-reliability increased with higher α values (i.e., the drop in α-reliable coverage 

between α = 0.85 and 0.90 was significantly smaller than the drop between α = 0.90 and 0.95).     

With respect to the validity of QMALP’s availability measures, the QLSCP results and 

critiques of Alminana et al. (1996), Borrás & Pastor (2002), and Baron et al. (2009) also apply 
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to QMALP. Erkut, Ingolfsson, & Budge (2008) present another, broader critique of QMALP 

(and MALP). First, they present a general critique of set covering based models (probabilistic, 

stochastic, or deterministic) in that they produce uneconomically sound solutions as they 

include an excessive number of vehicles. Moreover, they argue that these type of objectives 

(minimum coverage or reliability levels) do not coincide with the priorities of EMS system 

practitioners. Second, they construct a pathological example to show that a model emphasizing 

systemwide reliability rather than local reliability (with equal α values91) can produce more 

desirable solutions (i.e., solutions with fewer vehicles).  

As for specific issues concerning QMALP, Erkut et al. (2008) remark on the lack of 

guidance in setting both the α and β parameters and that, to their knowledge, EMS practitioners 

do not measure, track, or discuss such measures. Likewise, they also highlight a lack of 

guidance for setting the average service time parameter and note the difficulty in obtaining an 

accurate estimate a priori as these values are contingent on the server locations. As for the 

nature of QMALP solutions, they present four observations highlighting the challenges and 

disadvantages with using QMALP. First, they reported that QMALP solutions are sensitive to 

both α and β parameters after observing some large changes in coverage (20%+) after changing 

some parameter values. Second, they reported that the “best” α and β values varied with the 

number of servers although they observed a consistent relationship with high β values and high 

expected coverage. Lastly, they reported that QMALP compared unfavorably to the 

Hypercube-based model of Ingolfsson et al. (2008) in that (1) its solutions always 

outperformed the best QMALP solutions (given a fixed number of facilities over various α and 

                                                      
91 Erkut et al. (2008) propose a systemwide reliability constraint of the form that requires that α fraction of 

the total system demand be covered reliably.  
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β values for QMALP) by covering 0.1-0.6% more expected demand and (2) QMALP took 2-

6 times longer to solve.  

3.3.6 The Queueing Maximal Covering Location-Allocation Problem 

Marianov & Serra (1998) present another stochastic coverage-based location model called 

the Queueing Maximal Covering Location-Allocation Problem (QMCLAP). It is most similar 

to QMALP given its queue theory-based framework and implicit focus on system performance 

where the primary focus is to maximize coverage within a time/distance standard given p 

facilities/servers to locate). However, it differs in that the model uses different queue related 

performance measures/standards (waiting times and queue lengths) and uses a location-

allocation framework. Moreover, while Marianov & ReVelle (1996) developed QMALP to 

model a system with mobile facilities that visit customers, Marianov & Serra (1998) model a 

system with immobile facilities that customers visit (such as banks, healthcare service centers, 

and distribution centers).  

Although RC-QMALP’s focuses on mobile servers that visit customers and return to their 

base, QMCALP is of interest because of how the location-allocation framework is used to 

capture congestion explicitly. Whereas models such as QMALP capture congestion implicitly 

(through service reliability constraints), the QMCALP assignment decisions help capture 

congestion explicitly by determining server allocations endogenously. The meaning of these 

assignments do not translate perfectly to a mobile server problem like RC-QMALP but they’re 

useful for explicitly capturing congestion, a problem with QMALP. We examine this issue in 

the discussion section immediately below.       
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Marianov & Serra's (1998) QMCLAP formulation effectively combine the MCLP and 

QPMP formulations. As in both models, they denote location decisions with 0-1 binary Xj 

decision variables and like the QPMP, 0-1 binary Xij decision variables are used to indicate an 

assignment of demand node i to server j when Xij = 1. In a second formulation that is not 

presented here, they relax the implicit facility co-location restriction and allow the co-location 

of mj servers at location j (also subject to a maximum total number of facilities, p). They present 

two performance standard constraints concerning queue length and waiting times. Using 

M/M/1/∞ queues to model each facility, they develop two chance-constraints that set a lower 

bound for performance (α) for the probability that an arriving customer will (1) encounter b 

customers in the queue and (2) wait at the facility longer than some time W. Marianov & Serra 

(1998) use M/M/K/∞ queues in for their second QMCLAP model and later Moghadas & 

Kakhki (2011) and Moghadas, et al. (2013) extend QMCLAP with M/G/1/∞ and M/G/K/∞ 

queues, respectively. Finally, we note that it is assumed that customers visit the nearest facility 

although QMCLAP does not contain constraints that enforce such customer behavior. 

 

 

 

 

The formulation is as follows: 

Model 
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The QMCLAP objective function (QMLA-O) maximizes the total amount of demand that 

is assigned to facilities located within some time/distance standard (s). Constraint (QMLA-1) 

allows assignments only between a demand node i and a facility j if facility j is located (Xj = 

1); otherwise, when Xj = 0 then the assignments Xij on the LHS must also be 0. Constraint 

(QMLA-2) restricts the assignment of demand nodes to at most a single server and only to 

servers located in their neighborhood. Constraints (QMLA-3A) and (QMLA-3B) represent two 

options for controlling system performance. Constraint (QMLA-3A) requires that the sum of 

the demand intensities assigned to facility j (the LHS) remain below a limit so that the 

probability that a facility at j has at most b customers is greater than or equal to ∝. The second 

constraint option (QMLA-3B) also requires that the sum of the demand intensities assigned to 

facility j (the LHS) remain below a limit so that the probability that the waiting times at facility 

j are at most W is greater than or equal to ∝. Marianov & Serra (1998) derived the RHS using 

known formulas about M/M/1/∞ queues. Also, it is important to note that the summation of 

demand intensities on the LHS is valid for both equations because the sum of several 

independent Poisson processes is equivalent to a single Poisson process. QMALP relies on this 

property to calculate the arrival rate in a demand node i’s neighborhood (λi) but Marianov & 

ReVelle (1996) only assumed that λi was a Poisson process. Constraint (QMLA-4) simply 

limits the total number of located facilities to p.          

After QMCLAP, Marianov & Serra (2002) presented a set covering version of QMCALP 

the Probabilistic Location–Allocation Set Covering Model with co-location of a pre-specified 

number m of servers per center (PLASCm). In this publication, the authors explicitly 

distinguish their fixed-server location model, from emergency service models such as QMALP 

and MEXCLP. They explain that with the PLASCm they model server capacity statistically 
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and that demand is assumed to arrive instantaneous. Furthermore, PLASCm constraints 

explicitly model closest-assignment constraints. 

In this explanation, Marianov & Serra (2002) raise the important issue of how models of 

mobile facilities such as ambulances differ from immobile facilities such as a bank or hospital. 

In a chapter about location models with stochastic demand and congestion, Berman & Krass 

(2001) attempt to distinguish between the two facility types based on operational 

characteristics of each type of system as well as on methodological grounds. They begin with 

an M/M/K/1 model where all servers are co-located and explain that such models are not 

entirely appropriate for mobile server systems due to travel times that are typically not 

distributed exponentially. As such, they argue that M/G/K/1 models are more appropriate for 

such systems but that these systems are difficult to use because of a lack of some key analytical 

formulas for such systems. Then they move on to an M/G/K/1 system where the k and K-k 

servers are located at two distinct locations and the nearest available location responds to an 

emergency call. This case they note, is a system with distinguishable servers which pose the 

additional challenges of (1) an absence of approximate analytical results and (2) that the service 

times for consecutive calls are not independent (because the servers from the further location 

might need to respond). Lastly, they note that mobile systems typically operate under a directed 

choice policy where a central authority determines how customers are served rather than 

customers selecting which facility or server to use. 

Berman & Krass (2015) revisit this issue in a chapter on stochastic models with congestion 

and make a similar argument that mobile system models need to consider distinguishable 

servers as these systems cannot be readily decoupled as a set of independent queueing systems. 

However, they emphasize and clarify that the need to distinguish servers arises from the 
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dynamic (or state dependent) nature of server assignments. Interestingly, they also note that 

the tractability of immobile facility location models depends on static server assignments even 

if they can be decoupled into a set of independent queues. With these observations, Berman & 

Krass (2015) effectively highlighted the nature of server assignments and identified it as a 

more fundamental factor than facility type. The argument here is that some immobile facility 

models operate more like a mobile facility (and vice-versa) due to the nature of assignments. 

For instance, they note that mobile facility models are more appropriate for immobile facility 

location systems where customer-facility assignments depend on the system state or those that 

have dynamic customer allocation systems. Likewise, they suggest immobile facility location 

models that can model mobile server systems with static and non-intersecting service regions 

for all facilities. Consequently, Berman & Krass (2015) suggest that perhaps it is more useful 

to differentiate between systems with static and dynamic assignments than between immobile 

and mobile server systems.  

3.3.7 Ranked Multiobjective Location Models  

In this review, we presented both minsum and coverage location models but have yet to 

discuss how these two modeling approaches can be unified within a single model (as is the 

case with RC-QMALP). RC-QMALP is predominantly a coverage-based model but it also 

includes considerations for travel times. Motivating this decision is a second hypothesis that 

reducing average travel times can improve the overall system performance.  

Strict coverage models include little guidance with respect to a server’s relative location to 

the demand nodes its serves. Consequently, the intuition behind this is that accounting for 

travel times should produce more central server location configurations at the neighborhood 
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level (i.e., server locations in a neighborhood’s busier areas). Moreover, at an operational level, 

ambulances become more available through lower overall service times as they include travel 

times.  

One approach for capturing both coverage and travel times is the multiobjective approach 

alluded to in the GLPSDC (Berman & Krass, 2001) where coverage (TCNC) and a travel time 

(TCWC) objectives are jointly considered in the objective function. Each objective is usually 

assigned a weight of θ and (1- θ), where θ∈[0,1], although some models include arbitrary 

weights if any at all. Daskin (1995) presents a simple, context-free version of such a model 

and more recently, Hosseini & Jabal Ameli (2011) developed a multiobjective EMS model 

with coverage and travel time objectives. 

Multiobjective models are appealing because they allow an analyst to consider the tradeoffs 

between two objectives. That is, if Z1 and Z2 are the objective values for two objectives, we 

can use the weight θ (using the setup described above) to set the relative importance of Z1 to 

Z2. With a composite objective function ZM
 = θ * Z1 + (1 - θ) * Z2, note that if θ = 1 (or θ = 0) 

then only objective Z1 (or Z2) is considered and with all θ values in between zero and one both 

objectives are considered. 

Technically, multiobjective models are used to generate the non-inferior tradeoffs between 

two objectives or more objectives. However, in some cases, the interest in not in tradeoffs 

between objectives but rather, in solving problems with a hierarchy of objectives. Here 

objectives are first ranked in terms of their importance (Z1 ≿ Z2 ≿ … ≿ ZN).92 Then the overall 

problem solved first with only the highest ranked objective in the objective function (Z = Z1). 

                                                      
92 ≿ is a preference/ranking operator. If A is weakly preferred to B then A ≿ B and vice-versa. 
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For subsequent objectives, the same problem is solved with only the lesser ranked objective (Z 

= Zn, 1 < n ≤ N) but the problem is amended so that all higher ranked objectives (Zi, ∀i < n) 

are included as constraints (individually) where the objective functions must be as good as or 

equal to its corresponding optimal solution value (if the objective maximizes or minimizes the 

objective then the constraint should be, respectively greater or less than the corresponding 

optimal solution value). If Zi* represents the optimal objective function solution value to the 

problem with objective function Zi then the problem is formulated as follows: 
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where bj and ck represent generic constraints. This problem is completely formulated when n 

= N. Note that if the objective is maximized (minimized) when it’s a constraint, its value must 

be greater (less) than or equal to the corresponding optimal value.  

This approach to solving problems where solutions from one problem stage are used as 

parameters in a subsequent problem stage in known as the ε-constraint method (Ehrgott, 2005) 

developed by Haimes, Lasdon, & Wismer (1971) (as noted by Chanta, Mayorga, Mclay, & 

Wiecek, 2009). In formulating and solving these types of problems (for two objectives), 

Haimes et al. (1971) proved that this method is appropriate only when every problem stage n 

< N generates a feasible solution (with respect to the subsequent problem stage) that is unique 

whether in terms of the objective value or the specific solution values. Also, the generic 

constraints do not have to be the same across all problem stages with the ε-constraint method. 
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However, EMS models (including RC-QMALP) mostly utilize the objective values (Zi*) from 

each stage to parametrize subsequent stages as in the model formulated above.    

 Chanta et al. (2009) developed an EMS location model using the ε-constraint method that 

minimized the maximum distance between uncovered demand areas and located facilities 

subject to maximizing the total expected coverage of demand (within some acceptable bound). 

Shariat-Mohaymany, et al. (2012) also developed an ε-constraint EMS model where they first 

sought to minimize the costs associated with locating ambulances and stations and then 

searched for the solution that minimizes ambulance arrival times. As such, the first-stage 

objective minimized the weighted number of ambulances and ambulance stations where 

ambulance stations were capacitated. Ambulances were allocated to these stations. This was 

subject to MALP-like constraints with additional constraints to limit the server workloads at 

the neighborhood level.  In the second stage, the model’s objective function was to minimize 

the total response times subject to a constraint on the number of ambulances and ambulance 

depots. The objective function amounted to the sum of the travel times between the located 

ambulances and each demand node weighted by the corresponding proportion of demand 

assigned to the located ambulances from each demand node. The second stage problem 

included the previous stage’s constraints in addition to constraints that limited and balanced 

the server workloads for each ambulance. 

If both conditions required for the ε-constraint method are not met, then an integrated 

model that simultaneously considers multiple objectives is required. However, in some 

situations it’s preferable to forego the ε-constraint method despite satisfying both of its 

prerequisites. In his dissertation, Church (1974) presented a simple, context-free model 

combining the MCLP and PMP while prioritizing the MCLP’s objective function. This 
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model’s objective function included a composite PMP objective function that represents both 

covering and median objectives, which preemptively maximizes coverage over weighted 

distance. This model formulation required less computational resources in comparison to using 

the ε-constraint method. Another challenge was that solution times with the ε-constraint 

method can increase dramatically if it is difficult to find an initial feasible solution. This was 

our experience when testing RC-QMALP prototypes where many hours passed without the 

MIP solver finding any feasible solutions. To address this issue, we reformulated the model 

into a multiobjective model with both objectives included in the objective function but with 

the weight biased for the primary coverage objective. This drastically reduced computation 

times from hours to seconds in some cases.        

In this section, we have reviewed most of the models used to develop RC-QMALP and 

several important results including their problems and limitations. We began with the 

foundational deterministic model before moving on to more sophisticated stochastic and 

probabilistic models that were developed to capture system congestion. This review concluded 

with a discussion of various multiobjective modeling approaches. 

After presenting the fundamental location models, we discussed the issue of capacity at 

length because the underlying motivation for modern EMS system models is making the best 

use of limited resources. The capacitated deterministic location models we reviewed 

represented a natural extension of the fundamental uncapacitated location models. However, 

in the stochastic and probabilistic location model review, we showed that in addition to 

concerns of capacity, there are questions and concerns about system congestion that are related 

to system capacity but cannot be readily addressed with deterministic models, namely the 

availability of servers. Then, we delved into four classes of stochastic and probabilistic models 
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(reliability-, districting-, multiobjective- and location-allocation-based models), their general 

structures, and limitations. Here, we discussed two critical issues associated with the first two 

model classes, respectively, the challenges with determining and satisfying reliability 

constraints and modeling intradistrict cooperation or non-cooperation (as well as the 

implications or limitations of each approach).  

In the third subsection, we presented and discussed several essential models in a detailed 

manner along with the previously raised issues although in a more thorough manner and in a 

more specific context. With the QPMP, we discussed how this model could be integrated into 

RC-QMALP framework and how the server-demand node assignment decision variables can 

be interpreted. The presentation of the MEXCLP served to introduce the concept of 

systemwide busyness fractions and how they are calculated as this information is critical to 

understanding MALP. MALP effectively relaxed some of the limitations of systemwide 

busyness fractions with local-reliability calculations but also shifted to a service reliability-

oriented version of the MCLP. For MALP, the discussion focused on its assumptions as many 

researchers have questioned their validity as well as that of the MALP solutions with respect 

to the service reliability that they promise to provide. Likewise, although QMALP relaxes 

some of MALP’s assumptions with the uses of queueing theory, many works have challenged 

QMALP on similar grounds with respect to the validity of its assumptions and solutions. With 

QMCLAP, the focus of this review was to expand the discussion on server-demand node 

assignment variables that have been used in stochastic locations models. QMCLAP and the 

PLASCm are designed to model immobile facilities rather than mobile facilities. However, 

making this distinction raises the question as to how such a distinction is justified. Ultimately, 

this leads to dynamic and static server-demand node assignments and how this might be a more 
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significant or proper system property to consider when modeling an EMS system. Lastly, we 

discussed multiobjective models, particularly problems with ranked objectives. We presented 

the ε-constraint method for formulating and solving these problems but also discussed 

alternative methods that have desirable computational requirements. 

Moving forward the two most significant challenges are: (1) adequately capturing the 

system network interactions, that is intra- and inter-district/neighborhood server cooperation, 

and (2) ensuring the validity of RC-QMALP with respect to the reliability constraints. 

Capturing system network interactions is persistently a challenge for location modelers 

because it requires making a priori estimates about the system that might not be consistent 

with the ex post system behavior. Using server assignments with a QMALP location model is 

a promising avenue for addressing this issue but the value of this approach needs to be assessed 

particularly in terms of how to interpret assignment decisions. The second challenge is an 

extension of the first, however, it is important because RC-QMALP is a reliability-based model 

and thus, it’s integral that the reliability constraints hold. However, complex system network 

interactions and interdependencies complicate efforts to mathematically validate location 

models (without at least making unrealistic assumptions or decisions) and so with RC-QMALP 

the focus is on whether it can generate consistent predictions about system performance. 

4. The Resource Constrained Queuing Maximum Availability Location Problem 

RC-QMALP is an effort to improve QMALP by addressing issues related to intra- and 

inter-neighborhood server interactions, the validity of reliability constraints, and the location 

of servers within a neighborhood. RC-QMALP maintains much of the QMALP model, 

however, there are three key additions that address these issues. 
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 First, RCQMALP includes assignment decision variables that track server workload 

assignments as well as server idle capacity (a server’s unassigned capacity). As discussed 

above, many location models explicitly include workload assignment variables (e.g., Heller, et 

al., 1989) in order to account for server capacity as well as to determine whether a demand 

node can be served. In contrast, server idle capacity is mostly addressed indirectly through 

objectives and constraints on waiting times and queue lengths (Berman & Krass, 2001; 

Marianov & Serra, 1998), workload constraints (e.g., Neebe, 1978), or workload balance 

objectives (e.g., Weaver & Church, 1981). Models typically include these constraints or 

objectives as a way to improve system performance, encourage equitable or well distributed 

workloads, or to simply to conform to system requirements or goals. With RC-QMALP these 

goals are at most secondary. Rather, these assignment variables are included to help determine 

the aggregate availability of service or server capacity within a demand node’s neighborhood. 

In QMALP, bi servers must be located in a demand node i‘s neighborhood (Ni) in order to 

satisfy the α-reliability service constraints. However, as noted above, it’s possible that the bi 

servers have sufficient commitments to demand nodes outside Ni such that more than bi servers 

are required to provide α-reliable service in Ni. Conversely, it’s possible that servers outside of 

Ni serve demand nodes inside Ni such that less than bi servers are required to provide α-reliable 

service in Ni. Thus, we address the inter-neighborhood cooperation issue and relax QMALP’s 

districting assumption by tracking both server workload and idle capacity allocations as server 

workload assignments alone do not indicate whether enough server capacity is present in a 

demand node’s neighborhood. 

Second, RCQMALP includes several new constraints to accommodate the location-

allocation model approach and to bolster the QMALP reliability constraint. The former 
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includes supply and demand constraints for, respectively, servers and demand nodes while the 

latter accounts for allocations of capacity at the neighborhood and inter-neighborhood level. 

Third, RC-QMALP includes a second QPMP-like objective function (QPM-O). We 

hypothesize that this second objective function will (1) result in superior solutions (in terms of 

reliability) and (2) help reduce computation times. Regarding the first, as previously discussed, 

QMALP offers no guidance as to where to locate servers within neighborhoods and thus 

QMALP solutions might fail to include attractive locations or site configurations. For example, 

a QMALP solution might include server locations in less congested areas of a neighborhood 

despite the availability of sites in more congested areas (of course assuming that the alternative 

solution is equally fit). Thus, we expect to generate improved solutions by including this 

second objective function. Regarding the second hypothesis, we expect faster computation 

times by including this objective function (rather than omitting it). Again, we expect to produce 

better solutions with the second objective function but also that the second objective function 

helps to reduce the solution space and helps eliminate alternative solutions more quickly when 

involving a branch and bound algorithm. 

Finally, before introducing the RC-QMALP formulation it’s important to address a 

common criticism of MALP-type models. As noted above, some publications have raised 

doubt about the usefulness of this this modeling paradigm. For instance, Erkut et al. (2008) 

argue that local-reliability objectives in MALP-type models do not coincide with the goals of 

EMS practitioners. This is a fair criticism although a recent publication by van Buuren, van 

der Mei, & Bhulai (2017) indicates that there is value in this modeling paradigm. They explain 

that local governmental figures or organizations frequently demand that their sub-regional 

districts receive adequate levels of service. Consequently, they report a shift in interest away 
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from aggregate coverage models and an increasing interest in maximum availability and 

minimum reliability models due to local intraregional politics (e.g., a mayor demanding better 

coverage for his/her city). Their study is based out of the Netherlands; however, it raises the 

point that the widespread adoption of certain EMS goals or objectives should not preclude 

consideration of other approaches.  

4.1 Model Formulation 

As with QMALP, RC-QMALP maintains the 0-1 binary decision variable Yi that indicates 

whether bi facilities (required for α-reliable service) are located in demand node i’s 

neighborhood. We note that this set of decision variables only track a single level of coverage 

(bi) whereas QMALP’s formulation included decision variable for all levels of coverage up to 

bi.  Likewise, the total number of facilities that can be located are limited to p where Xj decision 

variables track locational decisions for each site j . In RC-QMALP server co-location is not 

allowed and hence every Xj is a 0-1 binary decision variable. 

RC-QMALP’s allocation framework includes two sets of decisions variables for server 

workload and idle capacity assignments. Workload is assigned from each demand node to 

located servers and this is tracked with continuous, non-negative Γij decision variables. In 

contrast, server idle capacity is assigned from located servers to demand nodes and these 

assignments are tracked with continuous, non-negative Φji decision variables. Servers cannot 

accept more work than they can handle and demand nodes cannot be assigned more demand 

than they generate (on average). Thus, the total server workload from a server is limited to the 

server’s capacity (μj) while on the demand node side they are limited to the demand node’s 

intensity (λi). Likewise, a server’s idle capacity assignments are limited by its capacity slack 
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(μj - ij

i I 

 ). However, in RC-QMALP there is no limit as to how much server idle capacity 

can be assigned to any demand node. Lastly, the travel times associated with both server 

workload and idle capacity assignments are included in RC-QMALP’s second p-median 

oriented objective function. 

As for determining the reliability of service, the local-reliability and bi calculations from 

QMALP are applied in RC-QMALP. Thus, the assumption that each demand node’s 

neighborhood Ni operates as a M/G/s/s-loss system. Moreover, it’s assumed that the server’s 

capacity parameters (μj) include travel time.93 

 

 

 

Model 

                                                      
93 We discuss the implications of this and other assumptions in Section 5.3. 
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4.2 Model Components 

As with the QMALP objective (QMA-O), the first objective of RC-QMALP (RCQ-O1) 

maximizes the population that is covered with α-reliability. The second RC-QMALP objective 

(RCQ-O2) is minimizes the travel times between servers and the assigned locations of their 
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workload along with the assigned idle capacity assignments. To implement both objectives, 

we planned to use the ε-constraint method with (RCQ-O2) as our objective function and (RCQ-

O1) as a constraint bounded below by the optimal solution to RC-MALP. This approach turned 

out to be computationally intensive as most problem instances required hours to solve. To 

understand this issue, we analyzed the model statistics as the model solved and observed that 

the solver struggled to find a feasible solution to the combined problem. Consequently, we 

abandoned the ε-constraint method in favor of a multi-objective minimization model with both 

(RCQ-O1) and (RCQ-O2) in the objective function. The resulting new objective was:           

3( 3)  *ij ji ji i i

I J i

RCQMALP ij

j Ii

RCQ O Minimize Z t t M d Y
  

         

Recall that (RCQ-O1) is maximized and thus in (RCQ-O3) we make this objective negative so 

that it corresponds with the minimize objective. Moreover, to make certain that the optimal 

(RCQ-O1) value is generated with (RCQ-O3), we scaled (RCQ-O1) with a very large value 

M∈ℝ+ such that (1) minimizing (RCQ-O1) is absolutely prioritized over (RCQ-O2) and (2) the 

solution is Pareto optimal over both objectives. 

Constraints (RCQ-1) and (RCQ-2) constrain server workload and idle capacity 

assignments. Constraints (RCQ-1) limit the maximum workload assignments to every demand 

node to its demand intensity and constraints (RCQ-2) limit the total workload and idle capacity 

assignment for every located server to its service capacity.  

Constraints (RCQ-C3) through (RCQ-C5) set the requirements for establishing that a 

demand node has access to α-reliable service. Note that the RHS of these constraints contain 

the Yi decision variable multiplied by a parameter. These parameters represent requirements 

that must be met to establish α-reliability at demand node i as Yi = 1 only when the LHS is 
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larger than the RHS’s parameter value. For constraints (RCQ-C3) the LHS represents the total 

server workload assigned to demand node i’s neighborhood (Ni), or the amount of fulfilled 

demand in Ni. Thus, one condition to establish the α-reliability service for a demand node is 

that all demand in the demand node’s neighborhood is fulfilled. Note that the LHS sum 

accounts for workload assignments from servers inside and outside Ni. Constraints (RCQ-C4) 

are similar to the α-reliability constraints of MALP2 (MA2-C1 and C2) and QMALP (QMA-

C1 and 2), although in RC-QMALP these constraints are reduced to a single set of constraints. 

These “physical facility” constraints require that the total number of facilities located in Ni (the 

LHS) exceed bi to establish α-reliability service at each demand node i. Constraints (RCQ-C5) 

represent the server capacity constraints that require that the total server capacity available in 

Ni (the LHS) needs to equal or exceed the capacity of bi facilities to establish α-reliability 

service at each demand node i. However, we note that while source of server workload is not 

restricted (so long as the assignments conform to the specified service time/accessibility 

standards), there are two restrictions in accounting for server idle capacity for each demand 

node. First, for server idle capacity assignment to count for a demand node they must originate 

from a located server and be assigned to demand nodes that are both accessible to that demand 

node (that is only assignments Φjk where j∈Ni and k∈Mi). Second, if server idle capacity is 

“self-assigned” that is assigned from a server at site j to demand node k where j = k, then this 

assignment Φjj (or Φkk) is only factored towards establishing the α-reliability constraint of 

demand node k. The first restriction attempts to ensure that server idle capacity is available to 

a demand node rather than only to its neighbors94 while the second restriction attempts to 

                                                      
94 This prevents, for example, situations where server idle capacity is assigned by a server located outside a 

demand node i’s neighborhood to a demand node near the border of demand node i’s neighborhood.  
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address double counting of server idle time when servers are located at the intersection of two 

demand node neighborhoods (that is, facilities j such that j∈{Ni ∩ Nk} for demand nodes i and 

k, i ≠ k). Finally, constraint (RCQ-C6) limits the total number of facilities to p and constraints 

(RCQ-C7) to (RCQ-C10) define the domain of our decision variables.     

4.3 Discussion 

In the previous chapter, we identified two main challenges for modeling ambulance 

systems: adequately capture interactions and ensure the validity of the reliability constraints.  

With RC-QMALP, we address both issues with a location-allocation framework that tracks the 

allocation of server workloads and idle capacity. Given this fundamental change, it’s necessary 

to address new concerns and revisit the assumptions of the essential models used to develop 

RC-QMALP. 

4.2.1 Workload Assignments 

The first substantial issue is the significance of the assignments. In RC-QMALP, servers 

are assigned demand and demand nodes are assigned server idle capacity. In establishing these 

assignments, the intention isn’t to require that these assignments actually manifest themselves 

through a districting or dispatching policy. Rather, they serve primarily as an accounting 

method of sorts for server capacity and thus, one should proceed with caution when analyzing 

or interpreting any assignment values. It’s possible to use these assignments to develop 

districting or dispatching policies, however, no dispatching or districting policies are explicitly 

assumed in RC-MALP. Admittingly, there is an implicit assumption that servers are more 

likely to serve demand nodes that are closer (and busier) than those that are father away (and 

less busy). In location modeling, such a limitation is not unusual but rather the norm even when 
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considering alternative approaches. As previously discussed, Hypercube models and different 

approximations provide highly descriptive output measures but the models require 

computationally intensive MSC calculations to relax the unrealistic assumption that service 

times are exponentially distributed. Likewise, Jarvis’s (1975) simplified Hypercube model 

reduces the computational burden associated with MSC calculations but it requires balanced 

workloads among servers, which may or may not be a reasonable condition. With more 

prescriptive models, works such as Swoveland et al. (1973b) and  Weaver & Church, (1985) 

are based upon a “stability hypothesis” regarding the distribution of service performed by the 

kth-closest facility. Goldberg et al. (1990) computes “optimal” fixed preference schemes but 

found substantial differences between the dispatching predicted by the optimization model and 

the “actual” dispatching from their validation model. Heller et al. (1989) also encountered 

issues when validating a deterministic PMTP location model’s workload capacity constraints 

using simulation. They noted that the dispatching policy in their simulation model did not 

consider their model’s workload balancing objective/constraints and that situations with 

binding workload constraints would prove problematic given the stochastic nature of their 

simulation model. In all, they generated superior approximations of server workload with their 

model solutions (compared to PMP solutions) but reported that their model underestimated the 

simulated maximum server workload values.  

Despite such underwhelming results from this previous work, there are several promising 

results and insights. For instance, although the fixed preference schemes generate by Goldberg 

et al.'s (1990) model were not practically useful, the generated model solutions improved 

system performance in terms of balancing workloads and improving on-time response rates. 

Moreover, they found that the discrepancy between the predicted and actual dispatching 
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operations is partly attributable to server preference ties resulting from equidistantly located 

servers (that is to a demand zone). They did not observe this issue in situations with low vehicle 

utilization rates but when the problem appeared they altered the zone sizes to prevent ties. 

Likewise, Heller et al. (1989) reported a consistent relationship between their PMTP’s 

workload-oriented objective function and the simulated workloads and suggested that the 

PMTP showed great promise within a “multiobjective context.” Moreover, Heller et al. (1989) 

suggest that optimal PMTP location configurations are robust with respect allocations and 

availability in the presence of alternative optima for allocation decisions.95 In other words, 

while their PMTP model might not produce optimal workload allocations, it does not preclude 

the generation of an optimal location solution that can accommodate an optimal workload 

allocation. In all, the implication for RC-QMALP is that the assignment decisions are 

important for capturing the system interaction and although the actual assignment values can 

be important, they are not as integral to the solution as the locational component. 

4.3.2 Server Idle Capacity Assignments and the Queue Systems 

For RC-QMALP, we previously explained that both server workloads and idle capacities 

are considered in order to determine that there is at least enough server capacity equivalent to 

the capacity of the bi servers that are required to α-reliability serve each demand node i. Such 

workload and idle level assignments allow server cooperation by allowing a neighborhood’s 

workload to be handled by an outside server. In support of this proposition (beyond an intuitive 

explanation), we note that by requiring that the total/all demand in a neighborhood to be served 

                                                      
95 This is within the context of Heller’s (1985) analysis of capacitated location-allocation systems where she 

showed that optimal location configurations do not necessarily require unique allocations. 
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plus the total service idle capacity exceed bi we are effectively limiting the server utilization 

rate of the neighborhood. As such, even if a server in the local neighborhood assists an outside 

demand node, there must be enough server idle capacity within the neighborhood to 

compensate for this external transfer.  

To see this, we note that bi calculations consider the total demand in a neighborhood (λi) 

and assume that k servers are completely available. Thus, we use the following utilization rate 

(ρi) to calculate bi (where k is determined by α): 

  1;
i

i i

ik


 


   

Because λi
 is fixed and we required that all λi

 be assigned to establish α-reliability, we only 

need to concern ourselves with the denominator or server capacity (server workload and idle 

capacity). Clearly, if all server workload and idle capacity remains within a neighborhood there 

is no issue in terms of assigned capacity, but if a server helps an outside demand node, then 

there must remain enough server idle capacity to meet the bi capacity requirement. However, 

if there is an outside server assisting with a neighborhood’s demand, ceteris paribus, it is not 

clear if this situation is equivalent to that of an interior server handling the workload. 

Unfortunately, the answer to this question depends on various factors, namely the service times 

distribution, the system queueing capacity, and the independence of service times.96 To show 

this, let L(k, 𝜌) be the system loss (e.g., dropped calls) that is a function of the number of 

servers (ki∈ℕ+), the demand arrival rate (λi), the service rate(μ), and utilization rate ( / )  

                                                      
96 These results are as presented in (Smith & Whitt, 1981). 
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, It’s well known that the function ) * ( , )( , kL k B    where B is the Erlang blocking 

function as previously defined97: 
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If we assume a M/M/K/K-loss system that can be divided into two M/M/k/k-loss systems (K 

= k1 + k2 with demands λ1 and λ2),98 then we have the following inequality: 

1 2 21 12 1 2( , , ( , , ( ,) ),)L k k L k L k           

This implies that a combined system of servers loses at most the same amount of calls as 

compared to two systems operating in parallel. Moreover, it can be shown that B(t*k, t*𝜌) 

strictly decreases with t. However, if we consider a M/G/K/K-loss system we have 

1 1 2 1 2 12 2( , ,( ) / ( ))L k k           where a similar inequality does not apply as it can be 

shown that in some cases: 

1 1 2 1 2 1 2 1 12 2 2( , ,( ) / ( )) ( , , ) ( , , )L k k L k L k               

In other words, sometimes two parallel sever M/G/ki/ki-loss systems lose less calls than a 

combined M/G/K/K-loss system. Smith & Whitt (1981) suggest that this is likely when the 

server systems have substantially different service times.  

                                                      
97 It was previously defined as 

k

iP  for QMALP, etc.  

98  Here we assume that each system can only serve arrivals from their own system (i.e., no server 

cooperation). In the context of neighborhoods, the servers inside the neighborhood comprise one system and the 

external servers comprise another.   
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With QMALP, there is an assumption that there is a balance of intra-district server 

cooperation and thus, these results further cast doubt on the suitability of this assumption. This 

is also the case with RC-QMALP, however, it is far less concerning because of the additional 

server capacity constraint.  

In any case, these inequalities are useful in analyzing local interactions. Unfortunately, 

questions remain about the behavior of the system as a whole, that is, whether the queue system 

is stable. With queueing systems, the most critical consideration is that the utilization rate ( )  

does not exceed 1. This is particularly important for buffered systems (e.g., M/G/K/∞ queues) 

as with 1   queues become unstable or they almost surely grow. In contrast, with unbuffered 

systems (e.g., M/G/K/K-loss queues) as the utilization rate grows it is less likely to find the 

system in a state where one or more servers are available.  

Baron et al. (2009) present an interesting perspective on queue stability in their analysis 

that involves restricted inter-district cooperation (i.e., calls can only be served by servers in 

demand node’s neighborhood). These types of problems are a form of a Multi-Class Multi-

Server Queueing (MCMSQ) System with partially accessible queues (PAQ)99 whereas systems 

where all servers are accessible to all customers are fully accessible queue (FAQ) systems.  In 

this paper, Baron et al. (2009) propose two location set covering problems with stochastic 

demand and congestion and PAQs. Although they limit their analysis to M/M/K/∞ systems and 

explore decoupling systems into a set of PAQ systems, there remains the question of stability. 

Caldentey and Kaplan (2007) have proved that an MCMSQ system with M/M/K/∞ queues is 

stable if and only if: 

                                                      
99 We refer to this article for references about MCMSQ systems. 



150 

 

( )

;i s

V S Vi s

V N 
 

     

where N is the set of all customers, λi is the arrival rate of customer type i, S is the set of servers 

(s∈S), μs is the service rate of server s, and S(V) is the set of all servers accessible to the 

customers in subset V⊂N. This property holds under any work conserving discipline (servers 

cannot be idle if there is an unserved customer in the system and servers cannot terminate a 

job with a customer before completing the job) which include the FIFO discipline. This 

approach is limited however, in that it assumes an exponential service time distribution but 

more importantly 2|N| subsets need verification to establish queue stability. Nonetheless, this is 

a serious concern with all MALP-based models, This is especially true when dealing with 

uncovered demand, that is, demand nodes without a server in their neighborhood. In QMALP, 

this is handled by what amounts to a PAQ system as uncovered demands are ignored since 

they are not factored in any part of the model. Admittingly, this is also an issue with RC-

QMALP although the server capacity constraints represent an attempt to promote local queue 

stability by considering the demand node neighborhood subsets. Another option enabled by 

RC-MALP’s location-allocation framework is to factor all demand directly in the model but 

this goes beyond the scope of this thesis (although we revisit this issue in the discussion).  

The final issue of importance involves the independence of service times. It is a well-

known result that the blocking probabilities in M/G/K/K-loss depend only on the mean service 

time (Burman, 1981). Models such as QMALP and RC-QMALP use these queue systems due 

to their flexibility in this respect. However, Singer & Donoso (2008) and others have observed 

that the spatial distribution of servers and demand play a critical role in the suitability of using 

queues in location models. Despite the insensitivity of M/G/K to service time distributions in 
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affecting the mean (e.g., blocking probabilities) they are sensitive to any system delays or other 

issues that significantly alter the mean service times. One notorious cause is the unavailability 

of the nearest facility (to an incident) which might require dispatching a more distant unit (and 

hence increasing average travel times). This issue of geographical dispersion (Delasay et al., 

2015) is most pronounced in congested buffered queue systems (modeled or otherwise), but 

can also be an issue with unbuffered FAQ systems. Aside from affecting mean service times, 

another assumption with M/G/K queues is that the service times are identically and 

independently distributed. Geographical dispersion can certainly conflict with this assumption 

but demand side issues (e.g., emergencies requiring multiple ambulances) can also pose some 

problems. On the supply side, one “solution” is to employ PAQs to limit geographical 

dispersion while others have proposed “adjustment” or correction factors (e.g., Batta, Dolan, 

& Krishnamurthy, 1989) to account for server dependence. The first option is interesting but 

might conflict with EMS response policies while the later introduces non-linearities that are 

not compatible with the mathematical programming approach employed here. With RC-

QMALP this is admittingly an open issue as it is assumed that travel times are included in the 

total service time, however this worthy problem is beyond the scope of this work. 

4.3.3 Impact of Median Objectives 

Another facet of RC-QMALP’s location-allocation component is the PMP-like objective 

function. As previously discussed, by adding this objective: (1) we expect to improved 

computational performance; (2) we hope to generate “reasonable” server workload and idle 

capacity assignments between servers and demand nodes that tend to be close assignments as 

compared to something farther away; and (3) we expect that chosen locations will be close to 
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areas with high demand. It remains to be seen, however, whether these elements will improve 

system performance with respect to both total and reliable coverage.    

Encouraging close or closer assignments may help in creating realistic estimates of 

workload and whether reliable coverage levels can be met. But, some have questioned such 

assignment policies. For example, Carter et al. (1972) has challenged nearest server dispatch 

policies by showing that these policies are suboptimal in some cases, notably where there are 

large variations in demand over short distances. Likewise, Berman & Mandowsky (1986) also 

report that system performance becomes increasingly more sensitive to location and allocation 

decisions as congestion increases and that optimal facility locations in cases of high demand 

are not intuitive with respect to “popular median-proximity” location-allocation policies. 

However, the non-cooperative districting approach used in both models limits the general 

applicability of these results. Larson & Odoni (1981) note that cooperative server systems have 

more balanced workloads than districting systems. This is important as without thresholds on 

blocking probabilities it can be shown that a system of M/G/K/K-loss queues 100  (with 

homogenous service rates) optimize throughput (i.e., minimized blocked calls) when workload 

is evenly distributed among the systems (Yao & Shanthikumar, 1987). 

Berman, et al. (2007) provide another interesting perspective in the context of unreliable 

facilities where they note that facilities tend to become more centralized in order to 

accommodate disruptions while p-median models tend to “spread” out facilities in order to 

minimize travel costs. Likewise, Church, et al. (2004) also provide some insight with their 

                                                      
100 Note that the queue systems must all have the same number of servers. 
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PMP (and MCLP) based model where r of p facilities are expected to be interdicted, however, 

the p – r remaining facilities must continue to serve the system. Thus, the objective is to locate 

p facilities such that, respectively, the average travel distance is minimized (or the total 

coverage is maximized) upon the removal of the r facilities that result in the maximum increase 

in average travel distance (or the maximum decrease in coverage). For both models, they 

showed that robust solutions for the interdiction models had significantly lower objective 

values than their non-interdiction model counterparts which raises the possibility that of the p-

median objective alone produces inferior solutions.    

In any case, these results and insights are highly interesting but difficult to apply to RC-

QMALP. First, the MALP-family of models is rather unique in that despite being a coverage-

based model, it promotes centralization (due to the bi requirements). As the number of facilities 

increase, the extent of coverage should grow to cover more demand, however, these additions 

to coverage can be expected when there are sufficient servers to support the expansion. Second, 

while p-median objective is included in RC-QMALP and should encourage a “spread” in 

locational configurations, the model is subject to the QMALP objective which will tend to 

cluster facilities in order to meet alpha reliability constraints. Third, workload balancing 

constraints are not implemented within RC-QMALP and so it is not clear how the p-median 

objective might affect workload. Again, the bi requirements should assist in balancing 

workloads but this is not clear to what extent any of these factors might affect system 

performance. 
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5. Results and Analysis 

With RC-QMALP we expect to improve the reliability estimates predicted by the 

optimization model as compared to reliability estimates of MALP and QMALP. We expect 

RC-QMALP to outperform both models with respect to aggregate on-time response coverage.  

These hypotheses effectively amount to an operational validation of the location 

optimization models which involves determining how the optimization location model outputs 

(the location configuration and its associated α-reliability objective value) correspond to the 

system they represent101 (Sargent, 2005). This process can be subjective or objective where the 

former type relies on exploring the model behavior (e.g., using parameter variability-sensitivity 

analysis) and graphical instruments (e.g., graphs and charts) while the latter involves statistical 

tests and procedures. In any case, operational model validity is consistent with providing a 

high degree of confidence in the model’s output within its domain and with respect to range of 

accuracy required by the model’s purpose or application (Sargent, 2005; Schlesinger et al., 

1979)  

In this thesis, we use the optimization-simulation approach employed by Sorensen & 

Church (2010) to compare MEXCLP-LR with MEXCLP and MALP  along with objective and 

subjective approaches. They generated optimal location solutions using each model and then 

tested each solution using an ambulance simulation program. They assessed the three models 

by tabulating the instances where each model uniquely (and jointly) produced the best solution 

according to the simulation model and compared the deviations between the α-reliable 

                                                      
101 The system and its behavior can described by empirically collected data or generated by another model 

(Aboueljinane et al., 2013).  
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coverage of the best location configuration and the corresponding solution of each model for 

each problem instance. Moreover, they performed a t-test on a comparison of the aggregate 

on-time response coverage of MEXCLP and MEXCLP-LR. 

Validating location models with simulations is not a new idea (Ignall, Kolesar, & Walker, 

1978) and several works have validated optimization location models using simulation (see 

Aboueljinane et al., 2013) and but as Sorensen & Church (2010) note, these analyses “[appear] 

to be the exception rather than the rule.”102 Comparing models strictly through their objective 

function values and over several parameters is a great first step, however, this approach does 

not assess the operational validity of the model particularly with respect to its assumptions (as 

with QMALP and the districting assumption). Hypercube-based models are often used to 

validate optimization and heuristic models (e.g., Erkut et al., 2009) given their highly 

descriptive nature. However, these models are also based on assumptions that can’t be readily 

assessed.103    

5.1 Experiments 

For our experiments, we programmed MALP2, QMALP, and RC-QMALP on FICO’s 

Xpress-IVE Version 1.24.06 64 bit using Xpress Mosel Version 3.8.0 and solved with Xpress 

Optimizer Version 27.01.02. We used a computer equipped with an Intel i7 3370K with 8 GB 

of RAM. We established our problem instances for MALP 2, QMALP, and RC-QMALP based 

                                                      
102 Aboueljinane et al.'s (2013) review of simulation models applied to EMS operations listed less than 10 

works related to mathematical programming-based ambulance deployment models. This list appears to be 

incomplete, however.   

103 For instance, Jarvis's (1985) hypercube approximation assumes exponential services times and does not 

consider queues. Embedding a hypercube model within a location model can also be problematic (see Chiyoshi, 

Galvão, & Morabito, 2003). 
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on Sorensen & Church (2010) with some additional parameter values to test various elements 

of the models.  

Model Parameter Dimensions & Values 

Total system call-volume 2 and 4 calls per hour (CPH) 

City diameters (mins) 16, 24, 32 

Total number of servers 4, …, 15  

Response standards (mins) 6, 8, 10 

Total service time (mins) 60 [fixed] 

α-Reliability Standards 0.80, 0.85, 0.90, 0.95, 0.99 

Table 1 - Location Model Parameter Dimensions & Values 

The two call-volume levels represent high and low call-volume scenarios. We used Swain's 

(1971) 55-node network dataset and adjusted call intensity proportionally according to the 

demand levels at each demand node.104  We also scaled this network dataset to three city 

diameter values. We set a maximum number of servers at 15 as at this point all models 

generated solutions with complete α-reliable coverage (ZModel = 640). The total service time 

was fixed at 60 mins due to the software limitations (we discuss this below). Although this is 

limiting in some respects, generally distributed service times are assumed in RC-QMALP and 

thus, this does not create a conceptual model validation issue. This is also a standard used in 

                                                      
104 Our work is admittingly limited by relying exclusively on Swain's (1971) data. However, this dataset is 

useful as this is a classic dataset in location science modeling and this allows us to estimate the performance of 

RC-QMALP with other works. Nonetheless, in future works we expect to consider a greater number of datasets. 
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the industry when a service call includes a patient transport. Five α-reliability standards are 

considered and thus a total of 1,080 problem instances were solved for each model  

 To evaluate the model solutions, we used the same simulation program described and used 

in Sorensen & Church (2010). The general structure of the system is such that (1) all calls have 

equal priority, (2) service times (travel and on-scene time) are constant, (3) the nearest 

available server is dispatched to calls, (4) calls are placed in a FIFO queue if all servers are 

busy, and (5) servers return to their home location before responding to a new call. Each 

problem instance involved simulating 10,000 calls (the software maximum). The simulation 

software tracks and reports information about the total demand served with the specified time 

standard and the reliability of service at each demand nodes.  

5.1.1. Comparing MALP, QMALP, and RC-QMALP 

To compare the three models, we first tabulated the instances that each model outperformed 

or tied other models, the number of instances where each model produced a solution within 

three thresholds (1%, 2%, and 5%) of the best solution, and summary statistics about how the 

simulated results of each solution deviated from predicted solution values (the model 

objective), how they deviated from the best overall solution, as well as the computational times 

of each model.  

We initially considered follow the Sign Test approach used by Murray & Church (1992) 

to compare the simulated total and α-reliable coverage of each model as well as to assess the 

operational validity of RC-QMALP by comparing the predicted and simulated α-reliable 

coverage. However, we reconsidered this decision upon reviewing the models results as it 

became clear that our questions require the development of a more proper simulation 
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experiment (Barton, 2013), particularly in regards to the theoretical components of our 

questions (Davis, Eusebgardt, & Binghaman, 2007). 

5.1.2 Assessing RC-QMALP’s Server Cooperation Constraints (RCQ-C5) 

Constraints (RCQ-C5) are an integral part of how inter-district cooperation is handled in 

RC-QMALP. As previously discussed, the constraint is formulated to discourage the double-

counting of idle server capacity. However, the efficacy of this formulation is not clear as to 

whether inter-district cooperation can be effectively handled with a more relaxed constraint. 

As such, to test these constraints we replaced them with four alternative constraint sets that 

increasingly relax constraints (RCQ-C5). For each alternative constraint set, we define a new 

version of RC-QMALP: 
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105  In RC-QMALP-ILA constraints (RCQ-C2) are replaced with constraints (RCQ-C2A) as only self-

assigned server idle capacity is allowed. 
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Class (D) - LA-QMALP+DR 

( 5 ) is removed and not replaced.RCQ C D   

With constraints (RCQ-C2A) RCQMALP+ILA (immobile local assignment), self-assignment 

of server idle capacity is allowed and can count towards the reliability requirement of any 

demand node in the same neighborhood. However, it can only remain at the server’s location. 

In RC-QMALP+FLA (flexible local assignment), constraints (RCQ-C5B) also allow self-

assigned server idle capacity but assignments to other local/neighborhood demand nodes is 

allowed. The OIC (outside idle capacity) extension in RC-QMALP+FLA+OIC allows idle 

capacity from outside to demand node’s neighborhood to count towards it server capacity 

requirement. Finally, when (RCQ-C5) is removed from RC-QMALP the resulting model is 

effectively a location-allocation version of QMALP with the added restriction that establishing 

α-reliable coverage in a demand node’s neighborhood requires accounting for all demand in 

that neighborhood. 

5.1.3 Assessing the secondary p-Median Objective 

 Our key interest in the secondary p-Median objective is as to its impact on computation 

times, its simulated performance, and its predictive power as compared to RC-QMALP without 

the secondary objective. For this analysis, we shall present some key summary statistics and 

conduct a Sign test to compare the two models along all three dimensions.   
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5.2 Results 

5.2.1 Model Predictions 

To visualize these results, Figure 1 and Figure 2 (below) report the predicted α-reliable 

coverage for each model under varying parameters. Predicted results represent the objective 

function value of each model, and may not in themselves represent the actual performance of 

a system. Within each graph the predicted percentage of demand covered with α-reliability 

(PRC) is reported on the y-axis (PRC. [%]) and the number of facilities is on the x-axis (P). 

Also, within each graph we plot the α-reliable coverage values for all five reliability standards 

(the color legend is at the bottom of the graph). 

In both figures (and other figures Section 5.2) the graphs are sorted according to different 

parameters. First, Figure 1 corresponds to the low call intensity scenarios (2 CPH) while Figure 

2 corresponds to the high call intensity scenarios (4 CPH). Then, along the columns they are 

sorted by service time standards (6 and 10 minutes) and thus the first column of graphs 

corresponds to models parameterized with the 6-minute response time standard. Along the 

rows, four main models MALP 2, QMALP, RCQ (RC-QMALP without the PMP objective), 

and RCQPM (RC-QMALP) are grouped by the city diameter (16 and 32 minutes). Thus, in 

the first group the results of the five models are associated with a 16-minute city diameter 

where columns present results for different coverage standards. For example, the top graph on 

the far-left concerns MALP 2 (with colored line graphs for all five reliability standards) when 

there are two calls per hours, a 16-minute city diameter, and a 6-minute service standard. Note 

that we only report the highest and lowest city diameters and service standards (a total of four 

dimensions per scenario) as all observed patterns are most pronounced with these 
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combinations. Also, that we maintain this structure and a model row order of MALP 2, 

QMALP, RCQ, and RCQPM throughout Section 5.2 unless its noted otherwise. 

Beginning with the low call intensity scenario, the two most notable general trends in 

Figure 1 (below) are that (1) model objective values increase and converge more gradually 

along P (number of located units) with increasing city diameters and (2) objective function 

values converge faster for all different α-reliability standards as service standards increase. As 

for model specific trends, MALP 2 generates high objective values the soonest along P and 

this trend is maintained along increasing service time standards although it’s less obvious as 

city diameters increase. The other three models seemingly produce similar solutions along all 

model parameters and dimensions perhaps reflecting their common queue based framework. 
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Figure 1 - Predicted α-reliable coverage: Low call intensity scenario (2 CPH) 
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Figure 2 - Predicted α-reliable coverage: High call intensity scenario (4 CPH) 
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In the high call intensity scenario depicted in Figure 2 (above), we observe similar yet more 

pronounced patterns. First, the model objective values increase and converge far more 

gradually along P with increasing city diameters. Second, the “base” objective values (i.e., P 

= 4) are far lower than in the low call volume scenario and more servers are required with 

higher α-reliability standards to achieve similar levels of reliable coverage. Third, the concave 

objective value functions also appear to increase less gradually with higher service standards 

and α-reliability standards.  

To understand the differences between models, we turn to our tabulation analysis where 

we compared the objective values generated by each model to the maximum objective value 

(ZPM) generated by these models for every problem instance. In Table 2 the instances where 

each model matched ZPM or produced objective values within 1%, 2%, and 5% of ZPM as well 

as unique objective values. The counts are aggregated across all model dimensions and 

parameters.  

 

Table 2 – Highest predicted reliable coverage: Aggregated across all scenarios 

From Table 2 it’s clear that MALP 2 has the highest proportion of maximum predicted 

objective values at all four levels and also produced the highest number of unique solutions. 

The other three models produced considerably fewer solutions with lower objective values of 

 [Count] [%]  [Count] [%]  [Count] [%]  [Count] [%]

Max 978 90.56% 729 67.50% 571 52.87% 571 52.87%

0.01 1011 93.61% 798 73.89% 624 57.78% 624 57.78%

0.02 1040 96.30% 836 77.41% 667 61.76% 667 61.76%

0.05 1065 98.61% 929 86.02% 756 70.00% 756 70.00%

Unique 351 32.50% 90 8.33% 0 0.00% 0 0.00%

MALP 2 QMALP RCQ RCQPM
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α-reliability, although QMALP generated a few unique solutions whereas RCQ and RCQPM 

did not produce any. 

The next dimensions we consider are both different P values and α-reliability standards.  

 

Table 3 - Highest predicted reliable coverage: Aggregated for all P and α, α = 80% 

With α at 80%, QMALP produced the highest proportion of maximum predicted objective 

values at all four tiers as well as the highest proportion of unique solution values for all P 

values. Moreover, only QMALP produced unique solution values at this level of reliability 

although the number of solutions decreased as P increased. Note that both RCQ and RCQPM 

tie QMALP for the highest proportion of maximum predicted objective values beginning at P 

= 14 while MALP 2 ties QMALP beginning at P = 15.  

P

4 5 6 7 8 9 10 11 12 13 14 15

α: 80% MALP 2 - Max 33.33% 27.78% 38.89% 55.56% 55.56% 77.78% 77.78% 83.33% 94.44% 94.44% 94.44% 100.00%

0.01 33.33% 50.00% 55.56% 61.11% 83.33% 83.33% 83.33% 94.44% 94.44% 94.44% 100.00% 100.00%

0.02 38.89% 72.22% 66.67% 77.78% 83.33% 83.33% 94.44% 94.44% 100.00% 100.00% 100.00% 100.00%

0.05 50.00% 83.33% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

QMALP - Max 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.01 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.02 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 61.11% 61.11% 55.56% 44.44% 27.78% 22.22% 22.22% 5.56% 5.56% 5.56% 0.00% 0.00%

RCQ - Max 22.22% 27.78% 44.44% 50.00% 72.22% 77.78% 77.78% 88.89% 94.44% 94.44% 100.00% 100.00%

0.01 27.78% 27.78% 50.00% 66.67% 77.78% 77.78% 88.89% 94.44% 100.00% 100.00% 100.00% 100.00%

0.02 33.33% 38.89% 55.56% 72.22% 77.78% 88.89% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00%

0.05 50.00% 50.00% 77.78% 77.78% 88.89% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RCQMALP - Max 22.22% 27.78% 44.44% 50.00% 72.22% 77.78% 77.78% 88.89% 94.44% 94.44% 100.00% 100.00%

0.01 27.78% 27.78% 50.00% 66.67% 77.78% 77.78% 88.89% 94.44% 100.00% 100.00% 100.00% 100.00%

0.02 33.33% 38.89% 55.56% 72.22% 77.78% 88.89% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00%

0.05 50.00% 50.00% 77.78% 77.78% 88.89% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Table 4 - Highest model predicted coverage: Aggregated for all P and α, α = 85% 

With α at 85%, again QMALP produced the highest proportion of maximum predicted 

objective values at all four tiers and the highest proportion of unique solution values. Likewise, 

only QMALP generated unique solutions and their number decreased as P increased. No model 

tied QMALP for the highest proportion of maximum predicted objective values at any level of 

P although MALP 2’s proportion of solutions matching ZPM surpassed 90% at P = 10 while 

RCQ and RCQPM surpassed 90% at P = 13. 

 

Table 5 - Highest predicted reliable coverage: Aggregated for all P and α, α = 90% 

P

4 5 6 7 8 9 10 11 12 13 14 15

α: 85% MALP 2 - Max 72.22% 66.67% 77.78% 72.22% 77.78% 77.78% 94.44% 94.44% 94.44% 94.44% 94.44% 94.44%

0.01 88.89% 77.78% 83.33% 88.89% 77.78% 94.44% 100.00% 94.44% 94.44% 94.44% 94.44% 94.44%

0.02 94.44% 77.78% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.05 94.44% 88.89% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

QMALP - Max 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.01 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.02 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 27.78% 33.33% 22.22% 27.78% 22.22% 11.11% 5.56% 5.56% 5.56% 5.56% 5.56% 5.56%

RCQ - Max 27.78% 22.22% 44.44% 50.00% 61.11% 77.78% 77.78% 77.78% 88.89% 94.44% 94.44% 94.44%

0.01 27.78% 27.78% 44.44% 50.00% 72.22% 77.78% 77.78% 88.89% 94.44% 94.44% 94.44% 94.44%

0.02 27.78% 33.33% 55.56% 55.56% 77.78% 77.78% 100.00% 94.44% 94.44% 100.00% 100.00% 100.00%

0.05 38.89% 44.44% 66.67% 77.78% 77.78% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RCQMALP - Max 27.78% 22.22% 44.44% 50.00% 61.11% 77.78% 77.78% 77.78% 88.89% 94.44% 94.44% 94.44%

0.01 27.78% 27.78% 44.44% 50.00% 72.22% 77.78% 77.78% 88.89% 94.44% 94.44% 94.44% 94.44%

0.02 27.78% 33.33% 55.56% 55.56% 77.78% 77.78% 100.00% 94.44% 94.44% 100.00% 100.00% 100.00%

0.05 38.89% 44.44% 66.67% 77.78% 77.78% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

4 5 6 7 8 9 10 11 12 13 14 15

α: 90% MALP 2 - Max 100.00% 100.00% 100.00% 100.00% 94.44% 100.00% 100.00% 94.44% 100.00% 100.00% 100.00% 100.00%

0.01 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.02 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 66.67% 83.33% 83.33% 66.67% 38.89% 33.33% 33.33% 16.67% 5.56% 16.67% 5.56% 5.56%

QMALP - Max 33.33% 16.67% 16.67% 33.33% 61.11% 66.67% 66.67% 83.33% 94.44% 83.33% 94.44% 94.44%

0.01 55.56% 22.22% 66.67% 61.11% 61.11% 77.78% 100.00% 100.00% 100.00% 94.44% 100.00% 100.00%

0.02 61.11% 44.44% 66.67% 72.22% 77.78% 88.89% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.05 83.33% 61.11% 83.33% 83.33% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 5.56% 0.00% 0.00% 5.56% 0.00% 0.00% 0.00% 0.00%

RCQ - Max 22.22% 16.67% 11.11% 33.33% 44.44% 50.00% 66.67% 77.78% 77.78% 77.78% 94.44% 94.44%

0.01 22.22% 16.67% 22.22% 38.89% 44.44% 55.56% 77.78% 77.78% 94.44% 94.44% 94.44% 94.44%

0.02 22.22% 22.22% 22.22% 55.56% 55.56% 66.67% 77.78% 83.33% 94.44% 94.44% 94.44% 100.00%

0.05 27.78% 33.33% 27.78% 55.56% 66.67% 83.33% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RCQMALP - Max 22.22% 16.67% 11.11% 33.33% 44.44% 50.00% 66.67% 77.78% 77.78% 77.78% 94.44% 94.44%

0.01 22.22% 16.67% 22.22% 38.89% 44.44% 55.56% 77.78% 77.78% 94.44% 94.44% 94.44% 94.44%

0.02 22.22% 22.22% 22.22% 55.56% 55.56% 66.67% 77.78% 83.33% 94.44% 94.44% 94.44% 100.00%

0.05 27.78% 33.33% 27.78% 55.56% 66.67% 83.33% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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With α at 90%, MALP 2 produced the highest proportion of maximum predicted objective 

values at all four tiers as well as the highest proportion of unique solution values. The number 

of unique solutions also decreased as P increased, however, QMALP also produced unique 

solutions when P = 8 and 11.  No model tied QMALP for the highest proportion of maximum 

predicted objective values at any level of P although QMALP’s proportion of solutions 

matching ZPM surpassed 90% at P = 12, 14, and 15 while RCQ and RCQPM surpassed 90% at 

P = 14. 

 

Table 6 - Highest predicted reliable coverage: Aggregated for all P and α, α = 95% 

With α at 95%, MALP 2 again produced the highest proportion of maximum predicted 

objective values at all four tiers well as the highest proportion of unique maximum predicted 

objective values. Again, the number of unique maximum objective values also decreased as P 

increased, however, no other model produced any unique maximum objective values.  No 

model tied QMALP for the highest proportion of maximum objective values at any level of P 

or had their proportion of maximum objective values matching ZPM exceeded 80% at any level 

of P.  

P

4 5 6 7 8 9 10 11 12 13 14 15

α: 95% MALP 2 - Max 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.01 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.02 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 72.22% 77.78% 88.89% 88.89% 55.56% 55.56% 44.44% 33.33% 22.22% 22.22% 22.22% 22.22%

QMALP - Max 27.78% 22.22% 11.11% 11.11% 44.44% 44.44% 55.56% 66.67% 77.78% 77.78% 77.78% 77.78%

0.01 33.33% 38.89% 27.78% 27.78% 55.56% 55.56% 66.67% 77.78% 77.78% 77.78% 83.33% 94.44%

0.02 33.33% 50.00% 27.78% 44.44% 55.56% 66.67% 83.33% 83.33% 83.33% 94.44% 94.44% 94.44%

0.05 44.44% 72.22% 50.00% 83.33% 77.78% 77.78% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RCQ - Max 16.67% 16.67% 11.11% 11.11% 33.33% 33.33% 44.44% 55.56% 77.78% 77.78% 77.78% 77.78%

0.01 16.67% 22.22% 11.11% 22.22% 44.44% 44.44% 50.00% 72.22% 77.78% 77.78% 77.78% 88.89%

0.02 16.67% 22.22% 11.11% 22.22% 44.44% 44.44% 55.56% 77.78% 77.78% 77.78% 88.89% 88.89%

0.05 16.67% 27.78% 22.22% 33.33% 66.67% 66.67% 77.78% 83.33% 94.44% 94.44% 94.44% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RCQMALP -Max 16.67% 16.67% 11.11% 11.11% 33.33% 33.33% 44.44% 55.56% 77.78% 77.78% 77.78% 77.78%

0.01 16.67% 22.22% 11.11% 22.22% 44.44% 44.44% 50.00% 72.22% 77.78% 77.78% 77.78% 88.89%

0.02 16.67% 22.22% 11.11% 22.22% 44.44% 44.44% 55.56% 77.78% 77.78% 77.78% 88.89% 88.89%

0.05 16.67% 27.78% 22.22% 33.33% 66.67% 66.67% 77.78% 83.33% 94.44% 94.44% 94.44% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Table 7 - Highest predicted reliable coverage: Aggregated for all P and α, α = 99% 

Lastly, with α at 99%, MALP 2 again produced the highest proportion of maximum predicted 

objective values at all four tiers as well as the highest proportion of unique maximum predicted 

objective values. Likewise, the number of unique maximum objective values also decreased as 

P increased and no other model produced any unique maximum objective values. Again, no 

model tied QMALP for the highest proportion of maximum objective values at any level of P 

or had their proportion of maximum objective values matching ZPM exceeded 65% at any level 

of P.  

In all, the tabulations at this level indicated that QMALP begins as the dominant model but 

MALP 2 begins predicting high levels of reliable coverage beginning at α = 90%. Moreover, 

at this point the proportion of maximum objective values matching ZPM continually drops for 

all other models and interestingly, at α = 99% the proportions for these three models converged 

at every tier and all P values. 

To explore other factors, in Table 8,  

P

4 5 6 7 8 9 10 11 12 13 14 15

α :99% MALP 2 - Max 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.01 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.02 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 83.33% 88.89% 94.44% 88.89% 94.44% 88.89% 77.78% 66.67% 61.11% 55.56% 50.00% 38.89%

QMALP - Max 16.67% 11.11% 5.56% 11.11% 5.56% 11.11% 22.22% 33.33% 38.89% 44.44% 50.00% 61.11%

0.01 16.67% 11.11% 5.56% 11.11% 11.11% 16.67% 33.33% 44.44% 44.44% 50.00% 55.56% 77.78%

0.02 16.67% 11.11% 5.56% 11.11% 11.11% 22.22% 38.89% 44.44% 50.00% 55.56% 72.22% 83.33%

0.05 16.67% 16.67% 38.89% 22.22% 33.33% 50.00% 66.67% 61.11% 72.22% 83.33% 94.44% 94.44%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RCQ - Max 16.67% 11.11% 5.56% 11.11% 5.56% 11.11% 22.22% 33.33% 38.89% 44.44% 50.00% 61.11%

0.01 16.67% 11.11% 5.56% 11.11% 11.11% 16.67% 33.33% 38.89% 44.44% 50.00% 55.56% 77.78%

0.02 16.67% 11.11% 5.56% 11.11% 11.11% 22.22% 33.33% 44.44% 50.00% 55.56% 72.22% 77.78%

0.05 16.67% 11.11% 5.56% 16.67% 22.22% 27.78% 50.00% 44.44% 55.56% 83.33% 77.78% 83.33%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RCQMALP - Max 16.67% 11.11% 5.56% 11.11% 5.56% 11.11% 22.22% 33.33% 38.89% 44.44% 50.00% 61.11%

0.01 16.67% 11.11% 5.56% 11.11% 11.11% 16.67% 33.33% 38.89% 44.44% 50.00% 55.56% 77.78%

0.02 16.67% 11.11% 5.56% 11.11% 11.11% 22.22% 33.33% 44.44% 50.00% 55.56% 72.22% 77.78%

0.05 16.67% 11.11% 5.56% 16.67% 22.22% 27.78% 50.00% 44.44% 55.56% 83.33% 77.78% 83.33%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Table 9, and 

 

Table 10 (below) we disaggregate the model results along all other dimension while 

aggregating along p and α. 

Demand  [Call/Hr.]: 2 4

Service Std. [Min]: 6 8 10 6 8 10

MALP 2 - Max 75.00% 81.67% 95.00% 68.33% 86.67% 93.33%

0.01 88.33% 90.00% 98.33% 73.33% 88.33% 95.00%

0.02 93.33% 96.67% 98.33% 90.00% 91.67% 96.67%

0.05 100.00% 98.33% 98.33% 100.00% 98.33% 98.33%

Unique 48.33% 31.67% 26.67% 58.33% 55.00% 45.00%

QMALP - Max 51.67% 68.33% 73.33% 41.67% 45.00% 55.00%

0.01 61.67% 78.33% 80.00% 53.33% 53.33% 60.00%

0.02 70.00% 81.67% 83.33% 60.00% 58.33% 61.67%

0.05 96.67% 91.67% 90.00% 76.67% 71.67% 71.67%

Unique 25.00% 15.00% 5.00% 30.00% 11.67% 6.67%

RCQ - Max 15.00% 41.67% 60.00% 3.33% 18.33% 38.33%

0.01 21.67% 48.33% 65.00% 6.67% 26.67% 43.33%

0.02 28.33% 51.67% 71.67% 16.67% 31.67% 48.33%

0.05 46.67% 63.33% 80.00% 30.00% 41.67% 60.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RCQPM -Max 15.00% 41.67% 60.00% 3.33% 18.33% 38.33%

0.01 21.67% 48.33% 65.00% 6.67% 26.67% 43.33%

0.02 28.33% 51.67% 71.67% 16.67% 31.67% 48.33%

0.05 46.67% 63.33% 80.00% 30.00% 41.67% 60.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

City Diameter: 32 [Min]
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Table 8 – Highest predicted reliable coverage: City diameter 16 [Min], aggregated across p and α. 

In Table 8, we observe that models generally generate an increasing proportion of objective 

values equal to ZPM and a decreasing proportion of unique maximum objective values as the 

service distance standards increase. Across different demand intensities, there appears to be a 

decrease in the proportion of solutions equal to ZPM except this effect is less pronounced with 

MALP 2. In the lower call intensity scenario, the top tiers of QMALP, RCQ, and RCQPM 

exceed 90% beginning with the 8-minute service standard. For the higher demand intensities, 

the top tiers of QMALP, RCQ, and RCQPM exceed 90% only at the 10-minute service 

standard but they converge at the 8-minute service standard. Lastly, only MALP 2 generated 

unique maximum objective values in the low demand intensity scenario and both MALP 2 and 

Demand  [Call/Hr.]: 2 4

Service Std. [Min]: 6 8 10 6 8 10

MALP 2 - Max 100.00% 100.00% 100.00% 86.67% 96.67% 98.33%

0.01 100.00% 100.00% 100.00% 90.00% 96.67% 98.33%

0.02 100.00% 100.00% 100.00% 91.67% 96.67% 98.33%

0.05 100.00% 100.00% 100.00% 95.00% 96.67% 98.33%

Unique 23.33% 10.00% 5.00% 36.67% 23.33% 10.00%

QMALP - Max 76.67% 90.00% 95.00% 63.33% 76.67% 90.00%

0.01 86.67% 93.33% 95.00% 68.33% 83.33% 90.00%

0.02 88.33% 93.33% 95.00% 75.00% 83.33% 90.00%

0.05 93.33% 93.33% 95.00% 85.00% 83.33% 90.00%

Unique 0.00% 0.00% 0.00% 13.33% 0.00% 0.00%

RCQ - Max 70.00% 90.00% 95.00% 50.00% 76.67% 90.00%

0.01 75.00% 93.33% 95.00% 55.00% 83.33% 90.00%

0.02 80.00% 93.33% 95.00% 65.00% 83.33% 90.00%

0.05 86.67% 93.33% 95.00% 76.67% 83.33% 90.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RCQPM - Max 70.00% 90.00% 95.00% 50.00% 76.67% 90.00%

0.01 75.00% 93.33% 95.00% 55.00% 83.33% 90.00%

0.02 80.00% 93.33% 95.00% 65.00% 83.33% 90.00%

0.05 86.67% 93.33% 95.00% 76.67% 83.33% 90.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

City Diameter:16 [Min]
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QMALP produced the unique maximum objective values in the high demand intensity scenario 

although MALP 2 produced more at every service standard level.  

 

Table 9 - Highest predicted reliable coverage: City diameter 24 [Min], aggregated across p and α. 

In Table 9, we observe that models tend to generate an increasing proportion of objective 

values equal to ZPM, a decreasing number of unique maximum objective values as the service 

time standards increase, and a decreasing number of objective values equal to ZPM with 

increasing demand. The latter trend is less pronounced with MALP 2, however. In the lower 

call intensity scenario, only the 5% tier of QMALP, RCQ, and RCQPM exceeded 90% and at 

the 10-minute service standard QMALP does not converge with the RC-QMALP models. For 

Demand  [Call/Hr.]: 2 4

Service Std. [Min]: 6 8 10 6 8 10

MALP 2 - Max 81.67% 93.33% 100.00% 86.67% 93.33% 93.33%

0.01 90.00% 98.33% 100.00% 88.33% 95.00% 95.00%

0.02 96.67% 98.33% 100.00% 91.67% 96.67% 96.67%

0.05 98.33% 100.00% 100.00% 98.33% 98.33% 96.67%

Unique 31.67% 26.67% 21.67% 55.00% 41.67% 35.00%

QMALP - Max 68.33% 73.33% 78.33% 45.00% 58.33% 65.00%

0.01 78.33% 80.00% 85.00% 53.33% 61.67% 68.33%

0.02 81.67% 86.67% 88.33% 58.33% 65.00% 73.33%

0.05 91.67% 91.67% 95.00% 71.67% 76.67% 83.33%

Unique 15.00% 6.67% 0.00% 11.67% 5.00% 5.00%

RCQ - Max 41.67% 66.67% 73.33% 18.33% 45.00% 58.33%

0.01 48.33% 70.00% 81.67% 26.67% 48.33% 61.67%

0.02 51.67% 70.00% 83.33% 31.67% 51.67% 68.33%

0.05 63.33% 78.33% 91.67% 41.67% 61.67% 76.67%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RCQPM - Max 41.67% 66.67% 73.33% 18.33% 45.00% 58.33%

0.01 48.33% 70.00% 81.67% 26.67% 48.33% 61.67%

0.02 51.67% 70.00% 83.33% 31.67% 51.67% 68.33%

0.05 63.33% 78.33% 91.67% 41.67% 61.67% 76.67%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

City Diameter: 24 [Min]
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the higher demand intensities, the top tiers of QMALP, RCQ, and RCQPM do not exceed 90% 

at any service time standard and again, QMALP and the RC-QMALP models do not converge. 

Lastly, both MALP 2 and QMALP generated unique maximum objective values in both call 

intensity scenarios although, again, MALP 2 produced more unique solutions at every service 

standard level in both call intensity scenarios.  

 

Table 10 - Highest predicted reliable coverage: City diameter 32 [Min], aggregated across p and α. 

In Table 10, we observe many of the same patterns as in the previous table but with this 

additional scenario it becomes apparent that the number of unique solutions generated by 

MALP 2 and QMALP increase along with the city diameter. Moreover, the RC-QMALP  

objective values are drastically lower along this dimension, particularly in the high call 

Demand  [Call/Hr.]: 2 4

Service Std. [Min]: 6 8 10 6 8 10

MALP 2 - Max 75.00% 81.67% 95.00% 68.33% 86.67% 93.33%

0.01 88.33% 90.00% 98.33% 73.33% 88.33% 95.00%

0.02 93.33% 96.67% 98.33% 90.00% 91.67% 96.67%

0.05 100.00% 98.33% 98.33% 100.00% 98.33% 98.33%

Unique 48.33% 31.67% 26.67% 58.33% 55.00% 45.00%

QMALP - Max 51.67% 68.33% 73.33% 41.67% 45.00% 55.00%

0.01 61.67% 78.33% 80.00% 53.33% 53.33% 60.00%

0.02 70.00% 81.67% 83.33% 60.00% 58.33% 61.67%

0.05 96.67% 91.67% 90.00% 76.67% 71.67% 71.67%

Unique 25.00% 15.00% 5.00% 30.00% 11.67% 6.67%

RCQ - Max 15.00% 41.67% 60.00% 3.33% 18.33% 38.33%

0.01 21.67% 48.33% 65.00% 6.67% 26.67% 43.33%

0.02 28.33% 51.67% 71.67% 16.67% 31.67% 48.33%

0.05 46.67% 63.33% 80.00% 30.00% 41.67% 60.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RCQPM -Max 15.00% 41.67% 60.00% 3.33% 18.33% 38.33%

0.01 21.67% 48.33% 65.00% 6.67% 26.67% 43.33%

0.02 28.33% 51.67% 71.67% 16.67% 31.67% 48.33%

0.05 46.67% 63.33% 80.00% 30.00% 41.67% 60.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

City Diameter: 32 [Min]
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intensity scenario. Together, this supports the idea that RC-QMALP models are very 

conservative with their predictions (likely due to the presence of additional constraints) or at 

least that MALP 2 and QMALP are more flexible although for different reasons. 

As reported above, QMALP generates higher maximum objective values with lower α-

reliability values while MALP 2 generates higher values with higher α-reliability values. This 

is not a coincidence but rather an arguably overlooked point that is based on the calculations 

of the bi requirements to establish α-reliable service. To discuss this it’s useful to consider a 

subtle conundrum in Marianov & ReVelle's (1996) presentation of QMALP. Here they clearly 

reported the later point by comparing MALP and QMALP in that with higher α-reliability 

values, more demand nodes required higher bi values with QMALP. They also emphasized 

their findings of achieving higher levels of availability for demand nodes under QMALP for 

the case where one server was located in each neighborhood. This seemingly suggests a 

relationship between higher service availability and QMALP but it also appears to contradict 

their findings about QMALP and MALP’s bi requirements. The answer (which we shall discuss 

in more depth later) is that the way that MALP calacualtes bi leads to significant overestimates, 

particualrly with low α-reliability values. With MALP, a utilization rate of 1 (i.e., 1 call per 

hour) requires 2 servers to surpass 50% reliability. In contrast, a utilization rate of 1 with an 

M/G/1/1-loss queue results in a server availability of 50%!   

5.2.2 Simulation Results 

To report our simulation results we follow the same reporting style as in the earlier section. 

We begin with the simulated reliable coverage results before reporting the simulated total 

coverage results.  
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5.2.2.1 Simulated Reliable Coverage 

The graphs in this section report the simulation performance for all four models in terms 

of simulated reliable coverage for, respectively, a low call intensity scenario (2 CPH) and then 

a high call intensity scenario (4 CPH) under the same city diameters, service time standards, 

and α-reliability values. Within each graph the simulated percentage of demand covered with 

α-reliability (SRC) is reported on the y-axis (SRC [%]) and the number of facilities is on the 

x-axis (P). 

Beginning with general trends, perhaps the most striking feature about the simulated 

reliability coverage values is that the function they formed was at times not monotonic. With 

the predicted reliability value functions, adding an ambulance improved the level of coverage 

or at least maintained the current level. In contrast, in our simulation study in some instances 

adding an ambulance resulted in lower reliable coverage levels. The problem appeared with 

all models although the size and frequencies of these drops varied widely although they 

emerged more often with shorter service standards and larger city diameters. Another related 

issue included simulated reliability value lines for different α-reliability values actually 

crossing each other. In generating optimal solutions, solutions to problem instances with lower 

α-reliability values must be at least as good as solutions for similar problem instances with 

higher α-reliability values. However, in our simulation study we observed both low α-

reliability value lines surpass high α-reliability value lines and high α-reliability value lines 

sink below low α-reliability value lines.106 

                                                      
106 This issue is well known in the literature (e.g., Erkut et al., 2008) and presents a serious challenge to 

solving and formulating MALP-like problems.  
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Figure 3 - Simulated α-reliable coverage: High call intensity scenario (2 CPH) 



176 

 

In the low call intensity scenario depicted in Figure 3 (above), the general characteristics 

of predicted reliability value lines from the previous section also apply here for the most part, 

although they are not as pronounced due to the issues described above. For instance, the model 

objective values increase and converge more gradually along the P axis as the city diameter 

increases. There are also sudden and often drastic non-monotonic changes (i.e., over some 

interval of P values). Likewise, the objective function values converge faster as the service 

standards increase. But, again, some value lines do not absolutely converge due to non-

monotonic changes that occur for large city diameters and low service standards. Unlike the 

predicted reliability value graphs, no model stood out as all four models produced similar 

objective value functions for the most part although two model groups (one with MALP and 

QMALP and the other with RCQ and RCQPM) each generated objective value functions with 

distinct features, namely similar kinks or changes at similar positions in the graph.  

In the high call intensity scenario depicted in Error! Reference source not found. (

below), overall trends patterns become less clear. First, the most obvious pattern is the zero or 

near zero objective values for the low values of P. Second, after a “lag”, the objective value 

lines form concave like function and converge to high objective values the fastest with higher 

service standards and lower city diameters. Notably, these increases are relatively steep with 

lower α-reliability values. But with   the highest city diameters and smallest service standards, 

the lines of coverage tend to rise much more slowly and slowly converge to the highest value. 

No model stands out above the rest but the two model groups produce objective value lines 

with distinctive issues, like lines crossing for different alpha values and sometimes even 

dipping with additional units.   
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Figure 4 - Simulated α-reliable coverage: High call intensity scenario (4 CPH) 
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Table 11 (below) reports the relative performance between the four models with respect to 

simulated α-reliable coverage. MALP 2 and QMALP produce the highest proportion of 

solutions with objective values greater than or equal to the maximum simulated reliability 

value for each problem instance (ZSR). For the top three tiers (Max, 0.01, and 0.02), the 

difference between MALP 2 and QMALP and the RC-QMALP models is between ~11 and 

17%. However, RQPM outperformed all models in the fourth tier with all objective values 

being within 5% ZSR. The other models generated objective values that were lower by at least 

~7% (MALP 2) and 18% (RCQ) at most. Lastly, only RCQPM and RCQ produced unique 

maximum objective values and at a similar rate with a slight edge to RCQPM. 

 

Table 11 - Highest predicted reliable coverage: Aggregated across all scenarios 

Upon disaggregating these results along P and α, these general patterns persisted although 

and both RCQPM and RCQ outperformed or tied MALP 2 and QMALP on several occasions. 

However, we did not find any distinct or consistent patterns that would suggest a significant 

trend. With QMALP and MALP, the only discernable trend we identified along P and/or α was 

that they generated higher proportions across all models along P values below P = 13 although 

at that these proportions mostly decreased until about P = 8 or 9. 

6.2.2.2 Simulated Total Coverage 

 [Count] [%]  [Count] [%]  [Count] [%]  [Count] [%]

Max 739 68.43% 739 68.43% 586 54.26% 556 51.48%

0.01 865 80.09% 865 80.09% 716 66.30% 711 65.83%

0.02 921 85.28% 921 85.28% 804 74.44% 775 71.76%

0.05 1001 92.69% 892 82.59% 880 81.48% 1080 100.00%

Unique 0 0.00% 0 0.00% 119 11.02% 125 11.57%

MALP 2 QMALP RCQ RCQPM
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The graphs in this section report the simulation performance for all four models in terms 

of total expected coverage for, respectively, a low call intensity scenario (2 CPH) and then a 

high call intensity scenario (4 CPH) under the same city diameters, service time standards, and 

all p. Within each graph the simulated percentage of demand covered with the service time 

standard (TC) is reported on the y-axis (TC [%]) and the number of facilities is on the x-axis 

(P). 
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Figure 5 – Simulated total coverage: Low call intensity scenario (2 CPH) 
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For the low call intensity scenario depicted in Figure 5 (above), we note that all models 

provide similar levels of coverage throughout all values of P. For the smallest city dimeter and 

shorter service time standards, there is a slight difference between the lower and higher α-

reliability values with the lower P values (which are slightly larger with the RC-QMALP 

models) but all models mostly converge along all α-reliability levels by P = 7. With the higher 

service time standard, all models at all α-reliability levels are effectively similar throughout all 

values of P. For the larger city diameter and shorter service time standards, the initial coverage 

levels (P = 4) are substantially lower as compared to the smaller city diameter (some models 

drop more than 40%) and the difference between the lower and higher α-reliability values are 

also larger (between 25% and 35%). The gaps are smaller with the larger service time standard, 

however. Lastly, all models converge quite fast with larger city diameters but the rates of 

increase are smaller, particularly with the lower service time standards. 

For the high call intensity scenario depicted in Figure 6 (below), all models provide   similar 

levels of coverage throughout all P values. The difference between the high and low call 

intensity scenarios are most apparent in terms of the initial coverage levels where all models 

begin with total coverage levels near 0 for all city diameter and service time standard 

parameters. However, there was drastically smaller differences within models along different 

α-reliability values. With smaller city diameters, all models converge faster than with larger 

city diameters. Here all models achieved at least 90% total coverage at P = 8 with 6-minute 

service time standards and at P = 7 with 10-minute service time standards while with larger 

city diameters we observed convergence at P = 15+ and P = 10 with, respectively, smaller and 

higher service time standards. Also, at P = 6 we observed the largest differences within models 
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under different α-reliability values for almost all models although occasionally we observed 

smaller differences at higher P values. 
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Figure 6 - Simulated total coverage: High call intensity scenario (4 CPH) 
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Insofar as performance across models, in Table 12 we observed similar coverage values in 

all tiers except within the unique maximum value tier. In the top tier, MALP 2 and QMALP 

were tied again and produced the highest proportion of simulated coverage values greater than 

or equal to the maximum total coverage value for each problem instance (ZTC). However, the 

RC-QMALP models generated similar proportions that were within ~2% of MALP 2 and 

QMALP. In the other four tiers, RCQPM outperformed all other models by producing between 

~4% and 7% more objective values within 1% of ZTC, between ~1 and cgv4% more solutions 

within 2% of ZTC, and between ~5 and 6% more objective values within 5% of ZTC (in this case 

100% of RCQPM’s objective function values were within 5%). 

 

Table 12 - Highest total simulated coverage: Aggregated across all scenarios 

Upon disaggregating by P and α, we observe that MALP 2 and QMALP generate better 

solutions with low α-reliability values (α = 80% and 85%). In Table 13 and Table 14 (below) 

it is evident that MALP 2 and QMALP generate more objective values equal to or near ZTC for 

a wide range of P values. The RC-QMALP models only tied MALP 2 and QMALP at the 

highest tiers in very specific problem instances (at α = 80% with P = 7 and 8), however, only 

the RC-MALP models generated the unique maximum objective values. Furthermore, all of 

RCQPM’s objective values remained within 5% of ZTC although the other three models 

remained within this range for most problem instances.    

 [Count] [%]  [Count] [%]  [Count] [%]  [Count] [%]

Max 528 48.89% 528 48.89% 505 46.76% 504 46.67%

0.01 814 75.37% 814 75.37% 846 78.33% 886 82.04%

0.02 918 85.00% 918 85.00% 954 88.33% 965 89.35%

0.05 1017 94.17% 1025 94.91% 1030 95.37% 1080 100.00%

Unique 0 0.00% 0 0.00% 193 17.87% 222 20.56%

MALP 2 QMALP RCQ RCQPM
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Table 13 - Highest simulated total coverage: Aggregated for all P and α, α = 80% 

 

Table 14 - Highest simulated total coverage: Aggregated for all P and α, α = 85% 

With a higher α-reliability values (α = 90%), the trend begins reversing with RCQ and 

RCQPM producing a greater proportion of objective values greater than or equal to ZTC. In 

Table 15 both groups performed similarly at the highest tier although the RC-QMALP models 

(mainly RCQPM) mostly performed better along lower P values while MALP 2 and QMALP 

P

α: 80% 5 6 7 8 9 10 11 12 13 14 15

Max 55.56% 50.00% 44.44% 55.56% 55.56% 66.67% 72.22% 55.56% 66.67% 72.22% 66.67%

0.01 83.33% 83.33% 77.78% 88.89% 77.78% 83.33% 88.89% 83.33% 88.89% 88.89% 83.33%

0.02 88.89% 94.44% 88.89% 100.00% 94.44% 88.89% 100.00% 94.44% 100.00% 100.00% 100.00%

0.05 94.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 55.56% 50.00% 44.44% 55.56% 55.56% 66.67% 72.22% 55.56% 66.67% 72.22% 66.67%

0.01 83.33% 83.33% 77.78% 88.89% 77.78% 83.33% 88.89% 83.33% 88.89% 88.89% 83.33%

0.02 88.89% 94.44% 88.89% 100.00% 94.44% 88.89% 100.00% 94.44% 100.00% 100.00% 100.00%

0.05 100.00% 83.33% 100.00% 100.00% 100.00% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 50.00% 11.11% 50.00% 22.22% 22.22% 22.22% 22.22% 33.33% 27.78% 50.00% 44.44%

0.01 61.11% 55.56% 77.78% 55.56% 55.56% 44.44% 61.11% 66.67% 83.33% 83.33% 66.67%

0.02 88.89% 66.67% 88.89% 88.89% 88.89% 61.11% 77.78% 88.89% 94.44% 94.44% 100.00%

0.05 100.00% 88.89% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 94.44% 100.00%

Unique 22.22% 0.00% 16.67% 16.67% 11.11% 11.11% 11.11% 16.67% 11.11% 22.22% 11.11%

Max 22.22% 50.00% 50.00% 27.78% 33.33% 27.78% 27.78% 38.89% 33.33% 27.78% 55.56%

0.01 61.11% 72.22% 72.22% 83.33% 83.33% 72.22% 77.78% 72.22% 77.78% 72.22% 72.22%

0.02 88.89% 77.78% 88.89% 100.00% 94.44% 94.44% 83.33% 77.78% 88.89% 94.44% 77.78%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 38.89% 16.67% 27.78% 27.78% 16.67% 16.67% 22.22% 22.22% 5.56% 16.67%
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α: 85% 5 6 7 8 9 10 11 12 13 14 15

Max 61.11% 61.11% 50.00% 61.11% 61.11% 55.56% 44.44% 33.33% 61.11% 50.00% 55.56%

0.01 88.89% 83.33% 66.67% 88.89% 88.89% 83.33% 88.89% 72.22% 88.89% 88.89% 72.22%

0.02 88.89% 83.33% 88.89% 100.00% 100.00% 83.33% 100.00% 88.89% 100.00% 100.00% 100.00%

0.05 94.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 61.11% 61.11% 50.00% 61.11% 61.11% 55.56% 44.44% 33.33% 61.11% 50.00% 55.56%

0.01 88.89% 83.33% 66.67% 88.89% 88.89% 83.33% 88.89% 72.22% 88.89% 88.89% 72.22%

0.02 88.89% 83.33% 88.89% 100.00% 100.00% 83.33% 100.00% 88.89% 100.00% 100.00% 100.00%

0.05 100.00% 88.89% 100.00% 94.44% 100.00% 100.00% 100.00% 94.44% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 44.44% 38.89% 27.78% 16.67% 38.89% 22.22% 44.44% 61.11% 27.78% 61.11% 50.00%

0.01 55.56% 72.22% 61.11% 66.67% 66.67% 61.11% 77.78% 77.78% 83.33% 77.78% 72.22%

0.02 88.89% 83.33% 83.33% 77.78% 83.33% 88.89% 83.33% 88.89% 100.00% 94.44% 100.00%

0.05 100.00% 88.89% 100.00% 94.44% 100.00% 100.00% 100.00% 94.44% 100.00% 100.00% 100.00%

Unique 16.67% 5.56% 16.67% 5.56% 16.67% 16.67% 22.22% 38.89% 11.11% 27.78% 22.22%

Max 27.78% 38.89% 33.33% 38.89% 22.22% 27.78% 33.33% 27.78% 44.44% 55.56% 50.00%

0.01 61.11% 77.78% 66.67% 72.22% 77.78% 72.22% 77.78% 88.89% 88.89% 72.22% 83.33%

0.02 94.44% 83.33% 88.89% 83.33% 83.33% 88.89% 100.00% 94.44% 88.89% 77.78% 88.89%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 5.56% 11.11% 22.22% 27.78% 11.11% 27.78% 22.22% 16.67% 27.78% 16.67% 16.67%
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performed better at higher P values. Again, all of RCQPM’s objective values remained within 

5% of ZTC while the other three models remained within this range for most problem instances. 

 

Table 15 - Highest simulated total coverage: Aggregated for all P and α, α = 90% 

At the highest α-reliability values, both RCQ and RCQPM outperform MALP 2 and 

QMALP by generating more objective values equal to or near ZTC for a wide range of P values. 

Whereas MALP 2 and QMALP generate similar results, RCQ and RCQPM performed 

differently along the α and P dimensions. In Table 16 where α = 95%, RCQ outperformed or 

tied all other models along most P values at almost every tier. RCQPM outperformed and tied 

RCQ in the highest tiers of performance (Max, 0.01, etc.) in two instances with high P values 

(respectively P = 13 and 14) and mostly tied RCQ in between the 2nd and 4th tiers across all P 

values (notably RCQPM remained consistent the 4th tier with all its objective values remained 

within 5% of ZTC). Nonetheless, in instances where RCQ produced more maximum objective 

value solutions, RCQ generated between 11 and 22% more unique solutions than RCQPM.  

α: 90% 5 6 7 8 9 10 11 12 13 14 15

Max 27.78% 50.00% 33.33% 33.33% 38.89% 44.44% 55.56% 44.44% 61.11% 77.78% 77.78%

0.01 44.44% 77.78% 55.56% 77.78% 88.89% 83.33% 94.44% 88.89% 94.44% 94.44% 94.44%

0.02 50.00% 94.44% 61.11% 88.89% 94.44% 94.44% 94.44% 94.44% 100.00% 100.00% 100.00%

0.05 77.78% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 27.78% 50.00% 33.33% 33.33% 38.89% 44.44% 55.56% 44.44% 61.11% 77.78% 77.78%

0.01 44.44% 77.78% 55.56% 77.78% 88.89% 83.33% 94.44% 88.89% 94.44% 94.44% 94.44%

0.02 50.00% 94.44% 61.11% 88.89% 94.44% 94.44% 94.44% 94.44% 100.00% 100.00% 100.00%

0.05 77.78% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 38.89% 50.00% 44.44% 33.33% 44.44% 38.89% 38.89% 55.56% 38.89% 38.89% 50.00%

0.01 66.67% 83.33% 77.78% 100.00% 83.33% 94.44% 83.33% 88.89% 94.44% 94.44% 88.89%

0.02 72.22% 94.44% 88.89% 100.00% 100.00% 100.00% 100.00% 94.44% 100.00% 100.00% 100.00%

0.05 77.78% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 16.67% 27.78% 16.67% 11.11% 16.67% 22.22% 16.67% 22.22% 5.56% 5.56% 16.67%

Max 55.56% 27.78% 50.00% 66.67% 50.00% 38.89% 38.89% 38.89% 50.00% 33.33% 44.44%

0.01 72.22% 77.78% 94.44% 100.00% 94.44% 100.00% 88.89% 94.44% 83.33% 94.44% 77.78%

0.02 72.22% 94.44% 100.00% 100.00% 100.00% 100.00% 100.00% 94.44% 100.00% 100.00% 88.89%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 38.89% 11.11% 27.78% 44.44% 27.78% 27.78% 27.78% 22.22% 22.22% 16.67% 5.56%
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Table 16 - Highest simulated total coverage: Aggregated for all P and α, α = 95% 

Overall at α = 99% (Table 17) RCQ and RCQPM outperformed MALP 2 and QMALP in 

most problem instances (QMALP’s objective values were all within 5% of ZTC for all P ≥ 7) 

and perform similarly at all tiers although their relative performance varied along P. For P ≤ 

7, RCQPM topped RCQ in all tiers and problem instances (save for one tie in the 4th tier) by 

considerable margins that at times exceeded 50%. Beginning with P = 8, RCQ began to 

outperform RCQPM at the highest and lowest tiers in five of the eight problem instances and 

at least tying RCQ in six of them. However, both models tied along most of these P values in 

the 2nd through 4th tiers with a slight edge to RCQPM. Also, RCQ’s improvements were not as 

large and just exceed 20% twice for P = 15 at the highest and 5th tier.   

α: 95% 5 6 7 8 9 10 11 12 13 14 15

Max 22.22% 33.33% 33.33% 27.78% 22.22% 22.22% 66.67% 55.56% 55.56% 55.56% 61.11%

0.01 44.44% 50.00% 50.00% 66.67% 77.78% 66.67% 83.33% 77.78% 94.44% 88.89% 100.00%

0.02 44.44% 61.11% 66.67% 77.78% 94.44% 88.89% 88.89% 94.44% 100.00% 100.00% 100.00%

0.05 88.89% 88.89% 94.44% 88.89% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 22.22% 33.33% 33.33% 27.78% 22.22% 22.22% 66.67% 55.56% 55.56% 55.56% 61.11%

0.01 44.44% 50.00% 50.00% 66.67% 77.78% 66.67% 83.33% 77.78% 94.44% 88.89% 100.00%

0.02 44.44% 61.11% 66.67% 77.78% 94.44% 88.89% 88.89% 94.44% 100.00% 100.00% 100.00%

0.05 94.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 50.00% 50.00% 61.11% 61.11% 77.78% 61.11% 44.44% 44.44% 38.89% 61.11% 66.67%

0.01 77.78% 77.78% 100.00% 100.00% 100.00% 100.00% 100.00% 94.44% 94.44% 100.00% 100.00%

0.02 83.33% 83.33% 100.00% 100.00% 100.00% 100.00% 100.00% 94.44% 100.00% 100.00% 100.00%

0.05 72.22% 88.89% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 27.78% 27.78% 33.33% 27.78% 33.33% 27.78% 5.56% 11.11% 5.56% 16.67% 27.78%

Max 50.00% 38.89% 38.89% 50.00% 55.56% 50.00% 38.89% 50.00% 61.11% 61.11% 50.00%

0.01 66.67% 77.78% 88.89% 100.00% 100.00% 100.00% 100.00% 100.00% 94.44% 88.89% 94.44%

0.02 66.67% 77.78% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 27.78% 22.22% 16.67% 22.22% 11.11% 22.22% 16.67% 16.67% 27.78% 11.11% 5.56%
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Table 17 - Highest simulated total coverage: Aggregated for all P and α, α = 99%  

To further explore total coverage performance along other parameter values we further 

disaggregated our simulation results along call intensity, city diameter and service time 

standards (as in Table 8). The most interesting results concerned the performance at the highest 

tier (the proportion of objective values matching ZTC). Consequently, we summarize these 

results in Table 19 (below) and tabulate the results in Table 19.107 In both tables we shorten the 

combination of MALP 2 and QMALP to MQ (both models generated similar results), RCQ to 

R, and RCQPM to RPM. 

Demand [Call/Hr.]:  2   4  

Service Time Std.[Min]: 6 8 10 6 8 10 

 16 [Min] MQ R R MQ R MQ 

 24 [Min] R RPM MQ MQ RPM MQ 

 32 [Min] R R, RPM RPM RPM MQ RPM 

Table 18 – Model(s) with most objective values matching ZTC: Aggregated for all city diameters, call intensities, 

and service time standards 

                                                      
107 We refer the reader to Appendix  for more detailed tables. 

α: 99% 5 6 7 8 9 10 11 12 13 14 15

Max 16.67% 33.33% 27.78% 22.22% 33.33% 33.33% 50.00% 50.00% 33.33% 66.67% 66.67%

0.01 27.78% 44.44% 50.00% 55.56% 61.11% 61.11% 66.67% 88.89% 66.67% 83.33% 88.89%

0.02 33.33% 66.67% 50.00% 66.67% 72.22% 66.67% 88.89% 88.89% 83.33% 83.33% 100.00%

0.05 44.44% 94.44% 72.22% 77.78% 83.33% 83.33% 94.44% 100.00% 100.00% 94.44% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 16.67% 33.33% 27.78% 22.22% 33.33% 33.33% 50.00% 50.00% 33.33% 66.67% 66.67%

0.01 27.78% 44.44% 50.00% 55.56% 61.11% 61.11% 66.67% 88.89% 66.67% 83.33% 88.89%

0.02 33.33% 66.67% 50.00% 66.67% 72.22% 66.67% 88.89% 88.89% 83.33% 83.33% 100.00%

0.05 66.67% 72.22% 77.78% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 33.33% 44.44% 38.89% 55.56% 61.11% 61.11% 77.78% 72.22% 77.78% 61.11% 100.00%

0.01 38.89% 55.56% 66.67% 94.44% 100.00% 94.44% 88.89% 100.00% 100.00% 94.44% 100.00%

0.02 44.44% 66.67% 72.22% 94.44% 100.00% 100.00% 88.89% 100.00% 100.00% 94.44% 100.00%

0.05 88.89% 83.33% 100.00% 94.44% 100.00% 88.89% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 0.00% 22.22% 22.22% 33.33% 27.78% 16.67% 22.22% 22.22% 33.33% 5.56% 22.22%

Max 83.33% 55.56% 61.11% 55.56% 55.56% 77.78% 66.67% 66.67% 66.67% 66.67% 77.78%

0.01 88.89% 77.78% 88.89% 72.22% 100.00% 83.33% 88.89% 100.00% 100.00% 100.00% 100.00%

0.02 88.89% 77.78% 88.89% 83.33% 100.00% 88.89% 88.89% 100.00% 100.00% 100.00% 100.00%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 50.00% 33.33% 50.00% 33.33% 22.22% 33.33% 5.56% 16.67% 22.22% 16.67% 0.00%
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 Totals 

 MQ R RPM 

16 [Min] 3 3 0 

24 [Min] 3 1 2 

32 [Min] 1 2 4 

Subtotal 7 6 6 

2 [CPH] 2 5 3 

4 [CPH] 5 1 3 

Subtotal 7 6 6 

6 [Min] 3 2 1 

8 [Min] 1 3 3 

10 [Min] 3 1 2 

Subtotal 7 6 6 

Table 19 – Instances where models generated the highest proportion of solutions matching ZTC [Count]: 

Aggregated for all city diameters, call intensities, and service time standards 

In Table 19 (above) we observe that the subtotals for each model are about the same along 

the city diameter, call intensity, and service time standard parameter but disaggregating along 

these dimensions reveals that they don’t perform equally. As the city diameter increases, 

MALP 2 and QMALP’s performance at the highest tier decreases, RCQ’s performance dips 

significantly for the middle value of city diameter but remains about the same, while RCQPM’s 

performance increases. With increasing call intensity, MALP 2 and QMALP’s performance 

increases significantly, RCQ’s performance decreases significantly, and RCQPM’s 

performances remains unchanged. Lastly, with increasing service time standards, the patterns 

are not as clear. For MALP 2 and QMALP they appear to stay relatively high except for the 
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drop along the middle service time standard and for RCQ and RCQPM they appear to decrease 

and increase, respectively.  

5.2.3 Relative Model Accuracy Assessment 

The graphs in this section report the simulation performance for all four models in terms 

of how accurately they predicted reliable coverage for, respectively, a low call intensity 

scenario (2 CPH) and then a high call intensity scenario (4 CPH) under the same city diameters, 

service time standards, and all α-reliability values. Within each graph the difference between 

the predicted and simulated percentage of demand covered with α-reliability (PRC [%] – SRC 

[%]) is reported on the y-axis (Deviation [%]) and the number of facilities is on the x-axis (P). 

We present the results for the low call intensity scenario in Figure 7 (below). With the 

small city diameter and both service time standards, we notice that that the model deviations 

generally decrease with P. At lower levels of P (i.e., P = 4) the higher α-reliability standards 

result in higher deviations. For the lower service time standard, the queue-based model 

deviations appear to be lower than the MALP 2 deviations at least until the models begin to 

mostly converge as the number of units being located reaches P = 8. Also, the queue-based 

models underestimate the simulated reliable coverage at P = 5 by between 2 and 8%. For the 

higher service time standard, the model deviations become more erratic although they 

generally decrease for α = 80% and 85% across all models. With the 90% α-reliability standard 

the model deviations remain at the same level although they increase slightly with RCQ and 

RCQPM and decrease slightly with MALP 2 and QMALP. With the 95% α-reliability 

standard, all models further underestimate reliable coverage at P = 4 and then at P = 5, the 

queue-based models further overestimate reliable coverage by a couple of percentage points 
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(MALP 2). Lastly, at the 95% α-reliability standard the MALP 2 deviations decreased overall 

while the queue-based model deviations substantially increased between P = 4 and 6 by further 

underestimating simulated reliable coverage.  
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Figure 7 – Model deviation (Predicted - Simulated reliability) [%]: Low call intensity scenario (2 CPH) 
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We present the results for the high call intensity scenario in Figure 9. Compared with the 

low call intensity scenario and with the smaller city diameters, the initial deviations at P = 4 

were substantially smaller among all models with the 80%, 85%, and 90% α-reliability 

standards and slightly higher with the 95% and 99% α-reliability standards. For larger values 

of P, there is a sharp increase with in the 80%, 85%, and 90% α-reliability standard lines that 

peak at P = 6 with deviations that exceed the maximums for the same lines in the low call 

intensity scenario. These lines converged to a deviation of about 0 at a later point (between P 

= 8 and 10). For the higher α-reliability standard, MALP 2 and the queue-based models 

produced different patterns. At the 95% α-reliability standard, MALP 2 deviations peaked at 

P = 6 at slightly higher level and converged with the other models at P = 10. The queue-based 

models peaked at similar levels at P = 7 and converged at P = 9. For a 95% α-reliability 

standard we can observe significant differences between MALP 2 and the queue-based models. 

With a higher call intensity, MALP 2’s deviation peaked at a higher value and with a higher 

number of facilities (P = 9). In contrast, the deviations of all three queued-based models 

gradually declined (one with a negative deviation) to a slightly lower level as the number of 

units were increased to P = 8. All four models converged at P = 13 however.  

With the larger city diameter, all four models were also rather similar overall with the 

smaller service standard although the MALP 2 model deviations appear to be higher than the 

queue-based model deviations particularly with the 99% α-reliability standard line. In 

comparison to the lower call intensity scenario, the various α-reliability standard lines were 

smoother and more gradual in their rise and decline. Moreover, the 80% α-reliability standard 

line shows that deviations were substantially higher with every model. With the higher service 
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time standard, the α-reliability standard lines are quite variable, sometimes with dramatic 

swings between negative and positive deviations.  The models were also rather similar except 

MALP 2 generated higher model deviations with the 99% α-reliability standard between P = 

7 and P = 9 while RCQ and RCQPM produced higher peaks with the 85% α-reliability standard 

at P = 7. 
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Figure 8 - Model deviation (Predicted - Simulated reliability) [%]: High call intensity scenario (4 CPH) 



196 

 

 

Table 20 provides summary statistics about all models aggregated across all scenarios/ 

parameter variations. These results suggest that RCQ outperforms the other models with 

smaller average deviations, variance, and a lower median for deviations. For the exception of 

MALP 2’s minimum deviation and maximum deviation measures, the differences across 

models were relatively small. However, upon further disaggregating the model deviation 

results we found that the aggregate results held up only partly and were not consistent across 

other dimensions/parameters. 

 

Table 20 – Model deviation summary statistics (Predicted - Simulated reliability) [%]: Aggregated across all 

scenarios 

MALP2 QMALP RCQ RCQPM

Average Dev.: 12.66% 9.55% 8.90% 9.07%

Population Std. Dev.: 20.56% 18.75% 17.22% 17.20%

Max Dev.: 87.34% 97.81% 97.81% 97.81%

Median Dev.: 2.73% 2.03% 2.19% 2.50%

Min. Dev.: -13.91% -65.47% -65.47% -65.47%
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Table 21 - Instances where models generated the minimum maximum error [Count] and average minimum 

maximum error across all P values [%]: Aggregated over all city diameters, call intensities, and service time 

standards. 

Table 21 (above) presents model deviations across α and P. These results are similar to 

what was presented in  Table 20. In four of the five α-reliability levels, RCQ either produced 

or matched the minimal maximum error (MMXE) across all values of P or produced the lowest 

average MMXE across all values of P. Moreover, in three of the five α-reliability levels (for 

both low and high α-reliability levels), RCQ uniquely produced the most MMXEs and the 

lowest average MMXE value. These results are summarized below in Table 22. Note that RCQ 

produced almost 1.5 times more MMXEs that the second highest MMXE producer (RCQPM). 

α P : 4 5 6 7 8 9 10 11 12 13 14 15 Subtotal (P) Average  (P)

80% MALP 2 0 1 0 0 1 0 0 1 0 1 0 0 4 30.27%

QMALP 0 0 0 0 0 0 0 0 0 0 0 0 0 32.64%

RCQ 1 0 1 1 0 1 0 0 1 0 1 1 7 29.90%

RCQPM 1 0 1 0 0 0 0 0 0 0 0 0 2 30.47%

85% MALP 2 0 0 0 0 1 1 1 0 1 0 0 1 5 30.29%

QMALP 0 0 0 0 1 1 1 0 0 0 0 0 3 31.00%

RCQ 1 1 0 0 0 0 0 1 0 0 1 0 4 31.08%

RCQPM 1 1 1 1 0 0 0 0 0 1 0 0 5 31.93%

90% MALP 2 1 0 0 0 0 0 0 0 0 0 0 1 2 34.15%

QMALP 1 0 0 0 1 1 0 1 1 1 1 1 8 32.45%

RCQ 1 1 1 0 0 0 1 0 0 0 0 1 5 31.64%

RCQPM 1 1 1 1 0 0 0 0 0 0 0 0 4 32.46%

95% MALP 2 0 0 0 0 0 0 0 0 0 0 0 0 0 40.20%

QMALP 0 0 0 0 0 1 0 0 0 1 0 0 2 34.44%

RCQ 1 1 1 1 0 0 1 1 1 0 1 1 9 26.51%

RCQPM 1 1 1 1 1 0 1 0 0 0 0 0 6 27.64%

99% MALP 2 0 0 0 0 0 0 0 0 0 0 0 0 0 40.20%

QMALP 0 0 0 0 0 0 1 0 0 0 1 0 2 34.44%

RCQ 1 1 1 1 1 1 0 0 0 1 1 0 8 26.51%

RCQPM 1 1 0 1 0 1 0 1 1 0 0 0 6 27.64%

Minimum Max. Error
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Table 22 - Instances where models generated the minimum maximum error in each and for all α [Count]: 

Aggregated over all city diameters, call intensities, service time standards, and P. 

To address model performance over P, we aggregated the results given in Table 21 over α 

in Table 22. RCQ again frequently produced the most MXMEs, but note that this is also over 

most values of P (8 of 12) and over the widest range, that is, from P = 4 to P = 15. This range 

was also twice as large as the second ranked model in this category (QMALP) and 6 and 12 

times as large as the third and fourth ranked models, respectively.108  

 

Table 23 – Range and Instances where models generated the minimum maximum error in each and across P 

[Count]: Aggregated over all city diameters, call intensities, service time standards, and α. 

We calculated the medians of deviation errors across α and P.  In this analysis the results, 

reported in Table 24, only partially agree with the aggregated results. Here RCQ only produces 

                                                      
108 This appears to call for some ordered statistics tests. However, the observations over P are not both 

independently and identically distributed (IID) - they are independent but not identically distributed. To my 

limited knowledge, most order statistic require IID random variables with the exception of methods based on 

something like the Bapat–Beg theorem (Bapat & Beg, 1989) that can consider independent but not necessarily 

identically distributed random variables. Unfortunately, it appears that this specific approach is not easily 

implementable to due inordinately high computational requirements (Glueck et al., 2008).   

 

α: 80 85 90 95 99 Subtotal

MALP 2 4 5 2 0 0 11

QMALP 0 3 8 2 2 15

RCQ 7 4 5 9 8 33

RCQPM 2 5 4 6 6 23

Minimum  Max. Error

Count (P ) Range (P )

MALP 2 1 1 0 0 2 1 1 1 1 1 0 2 1 1

QMALP 1 0 0 0 2 3 2 1 1 2 2 1 4 6

RCQ 5 4 4 3 1 2 2 2 2 1 4 3 8 12

RCQPM 5 4 4 4 1 1 1 1 1 1 0 0 4 2

P

Minimum Max. Error
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the minimum median of deviation errors (MMDEs) twice (although for the highest and lowest 

α-reliability levels) and the MMDE average once. Furthermore, unlike in the previous analysis, 

these measurements did not occur simultaneously. We do note, however, that no model 

established a majority or plurality in terms of MMDE counts (including ties), however, 

QMALP produced the lowest average MMDE values in the three highest α-reliability levels.  

 

Table 24 - Instances where models generated the minimum median error [Count] and average median maximum 

error across all P values [%]: Aggregated over all city diameters, call intensities, and service time standards. 

To further this MDE analysis, we disaggregated the information given in Table 24 in terms 

of both α and P in Table 25 and27. Table 25 elucidates our observations about overall model 

performance along α-reliability levels, but perhaps more importantly, it shows that the 

difference between the top ranked model and the two second-ranked models (in terms of 

α P : 4 5 6 7 8 9 10 11 12 13 14 15 Subtotal  (P) Average  (P)

80% MALP 2 1 1 1 0 0 0 0 1 0 0 1 1 6 5.56%

QMALP 0 0 0 0 0 0 0 1 0 0 1 1 3 8.24%

RCQ 0 0 0 1 0 1 0 1 1 1 1 1 7 8.20%

RCQPM 0 0 0 0 1 0 1 1 0 0 1 0 4 7.85%

85% MALP 2 0 0 1 1 1 0 1 0 1 1 0 1 7 9.41%

QMALP 0 0 0 1 0 0 0 0 1 1 0 1 4 9.79%

RCQ 1 1 0 0 0 1 0 0 0 0 1 1 5 9.40%

RCQPM 0 1 0 0 0 0 0 1 0 0 0 0 2 9.92%

90% MALP 2 0 0 0 0 0 0 1 0 1 1 1 1 5 9.04%

QMALP 0 1 1 1 0 1 1 0 1 1 1 1 9 6.30%

RCQ 1 0 0 0 1 0 0 0 0 0 0 1 3 7.50%

RCQPM 1 0 0 0 0 0 0 1 1 1 0 0 4 6.94%

95% MALP 2 0 0 0 0 1 0 1 0 1 1 1 1 6 9.04%

QMALP 1 0 0 1 1 1 1 1 1 1 1 1 10 6.30%

RCQ 0 1 1 0 0 0 0 0 0 0 1 1 4 7.50%

RCQPM 1 1 0 0 0 0 0 0 0 0 1 1 4 6.94%

99% MALP 2 0 0 0 0 0 0 0 0 0 0 1 1 2 9.04%

QMALP 0 0 0 0 0 1 1 0 0 0 1 1 4 6.30%

RCQ 0 1 1 1 0 0 0 1 1 0 1 1 7 7.50%

RCQPM 1 1 1 0 1 0 0 0 0 1 0 1 6 6.94%

Minimum Median  Error
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counts) is not as large as in the previous analysis. Here QMALP only produces the lowest 

MMDEs 1.15 times more often than RCQ and MALP 2. QMALP produced the lowest MMDE 

1.5 times more often than bottom-ranked RCQPM but RCQ produced 3 and 2.2 times more 

MMXEs than the third and fourth ranked models.          

 

Table 25 - Instances where models generated the minimum median error in each and for all α [Count]: 

Aggregated over all city diameters, call intensities, service time standards, and P. 

Likewise, QMALP also produces the MMDE over the largest number of values of P over a wide 

range, but its relative performance is questionable. RCQ produced MMXEs for twice as many values 

of P than the second and third ranked models and for eight times as many values of P than the fourth 

ranked model. In contrast, the subtotals in Table 26 indicate that QMALP produced MMDE’s for just 

as many values of P as the second ranked model (MALP 2) and 1.75 times as the third and fourth 

ranked models. Moreover, MMDEs of RCQ appear over a wider range of P (11) than second ranked 

QMALP (10 – tied for second) and the MMDEs QMALP are 1.25 times more frequent than the fourth 

ranked model (RCQPM). 

 

Table 26 – Range and instances where models generated the minimum maximum error in each and across all P 

[Count]: Aggregated over all city diameters, call intensities, service time standards, and α. 

α: 80 85 90 95 99 Subtotal

MALP 2 6 7 5 6 2 26

QMALP 3 4 9 10 4 30

RCQ 7 5 3 4 7 26

RCQPM 4 2 4 4 6 20

Minimum Median Error

Count (P ) Range

MALP 2 1 1 2 1 2 0 3 1 3 3 4 5 7 10

QMALP 1 1 1 3 1 3 3 2 3 3 4 5 7 10

RCQ 2 3 2 2 1 2 0 2 2 1 4 5 4 11

RCQPM 3 3 1 0 2 0 1 3 1 2 2 2 4 8

P

Median Max. Error
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To further explore model performance (particularly given the discrepancy between the two 

analyses), we disaggregated the model deviation results along city diameters, call intensities, 

and service time standards while aggregating along P and α. We summarize the details of these 

tables grouped by call intensity, city diameter, and service time standards.  

Beginning with the low call intensity scenario (Table 27), with a 16-minute city diameter, 

RCQ generates the highest number of MMXEs and MMDE as well as the lowest average 

MMXE and MMDE values. QMALP also tied RCQ’s counts but only matched the average 

MMDE value and RCQPM only matched the MMXE count. With the 24-minute city diameter, 

RCQ again generated the highest MMXE and MMDE counts along with the lowest average 

for both measures although QMALP matched the MMDE count while RCQPM matched the 

MMXE count and average. With the 32-minute city diameter, RCQ generated the highest 

MMXE and MMDE counts while QMALP matched the MMDE count but with the lowest 

average while RCQPM matched the MMXE count also with the lowest average. 
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Table 27 - Instances where models generated the minimum maximum and median error in each and across all city 

diameters and service standards (2 CPH) [Count] and the average values [%]: Aggregated over all P and α values.  

In Table 28 the results of Table 28 are aggregated city diameters. Here, we observe that RCQ 

generates the highest MMXE and MMDE counts although QMALP and RCQPM match the MMDE 

and MMXE counts. RCQ generates the longest range for both MMXE and MMDE values from the 

high end of service time standards while QMALP and RCQPM, respectively, match the MMDE and 

MMXE range but from the lower range of service time standards. 

2

6 8 10 Subtotal Average

16 [Min.] MALP 2 Max 0 0 1 1 68.07%

Median 0 1 1 2 0.10%

QMALP Max 0 1 1 2 62.81%

Median 1 1 1 3 0.00%

RCQ Max 0 1 1 2 60.36%

Median 1 1 1 3 0.00%

RCQPM Max 1 1 0 2 61.25%

Median 0 1 1 2 0.10%

24 [Min.] MALP 2 Max 0 0 0 0 73.07%

Median 0 0 1 1 0.99%

QMALP Max 0 0 0 0 58.75%

Median 1 1 1 3 0.10%

RCQ Max 1 1 1 3 52.60%

Median 1 1 1 3 0.10%

RCQPM Max 1 1 1 3 52.60%

Median 0 0 0 0 1.98%

32 [Min.] MALP 2 Max 0 0 0 0 68.54%

Median 0 0 0 0 3.46%

QMALP Max 0 0 0 0 60.89%

Median 1 1 0 2 0.91%

RCQ Max 1 1 1 3 51.72%

Median 0 1 1 2 0.94%

RCQPM Max 1 1 1 3 49.79%

Median 0 0 0 0 4.53%

Demand [Call/Hr.]:

Service Time Std. [Min]:
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Table 28 - Instances where models generated the minimum maximum and median error in each and across all 

service standards (2 CPH) [Count] and the average values [%]: Aggregated over all city diameters, P, and α 

values.  

With the high call intensity scenario (Table 29), with a 16-minute city diameter, MALP 2 

generates the highest MMXE count with the lowest average value. Both QMALP and RCQ 

generated the highest MMDE counts along with the lowest average value. With the 24-minute 

city diameter, RCQ generated both the highest MMXE and MMDE counts along with the 

lowest average values for both measures. QMALP and RCQPM matched RCQ on counts and 

the lowest average value but only for the MMDE and MMXE measures, respectively. With the 

32-minute city diameter, RCQ generated both the highest MMDE and MMXE counts along 

with the lowest average values for both measures although RCQPM matched the MMXE count 

and MMDE values. 

2

6 8 10 Subtotal Range

MALP 2 Max 0 0 1 1 0

Median 0 1 2 3 0

QMALP Max 0 1 1 2 0

Median 3 3 2 8 2

RCQ Max 2 3 3 8 2

Median 2 3 3 8 2

RCQPM Max 3 3 2 8 2

Median 0 1 1 2 0

Demand [Call/Hr.]:

Service Time Std. [Min]:
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Table 29 - Instances where models generated the minimum maximum and median error in each and across all 

city diameters and service standards (4 CPH) [Count] and the average values [%]: Aggregated over all P and α 

values. 

In Table 30 we further summarize results of Table 29 by aggregating across city diameters. 

Here, we observe that RCQ generates the highest MMDE counts and the longest MMDE range 

while RCQPM generates the highest MMXE counts and range from the lower service time 

standard. 

4

6 8 10 Subtotal Average

16 [Min.] MALP 2 Max 0 1 1 2 82.50%

Median 0 0 1 1 2.89%

QMALP 2 Max 0 0 0 0 94.95%

Median 1 1 1 3 0.00%

RCQ Max 0 0 0 0 93.23%

Median 1 1 1 3 0.00%

RCQPM Max 1 0 0 1 92.71%

Median 0 0 1 1 1.51%

24 [Min.] MALP 2 Max 0 0 1 1 80.78%

Median 0 0 0 0 9.06%

QMALP 2 Max 0 0 0 0 83.49%

Median 0 1 1 2 1.04%

RCQ Max 1 1 0 2 76.20%

Median 1 0 1 2 0.99%

RCQPM Max 1 1 0 2 76.20%

Median 0 0 0 0 6.67%

32 [Min.] MALP 2 Max 0 0 0 0 75.94%

Median 0 0 0 0 13.26%

QMALP 2 Max 0 0 0 0 76.67%

Median 0 0 1 1 3.52%

RCQ Max 1 1 1 3 69.11%

Median 1 1 1 3 2.79%

RCQPM Max 1 1 1 3 69.11%

Median 0 0 0 0 9.17%

Demand [Call/Hr.]:

Service Time Std. [Min]: 
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Table 30 - Instances where models generated the minimum maximum and median error in each and across all 

service standards (4 CPH) [Count] and the average values [%]: Aggregated over all city diameters, P, and α 

values. 

To conclude this section, we offer two final tables where we present the results where we 

have aggregated across call intensity (Table 31) and then along service time standards (Table 

32) to return to a different but fully high-level view. In our analysis, these tables summarize 

the findings about model deviation in this section and support the results from Table 20, 

although in a more nuanced manner. 

Demand [Call/Hr.]: 4

6 8 10 Subtotal Range

MALP 2 Max 0 1 2 3 0

Median 0 0 1 1 0

QMALP Max 0 0 0 0 0

Median 1 2 3 6 2

RCQ Max 2 2 1 5 1

Median 3 2 3 8 3

RCQPM Max 3 2 1 6 2

Median 0 0 1 1 0
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Table 31 - Instances where models generated the minimum maximum and median error in each and across all 

city diameters and service standards [Count] and the average values [%]: Aggregated over all P and α values, 

and call intensities. 

From Table 31, one can see that for the 16-minute city diameter both MALP 2 and RCQPM 

generated the highest MMXE count and longest/complete MMXE range while both QMALP 

and RCQPM generated the highest MMDE count and MMDE range. MALP 2 performed well 

with longer service time standard while RCQPM was better at the lower end. For larger city sizes 

MALP 2 is virtually absent in generating the best values for MMXE and MMDE. In contrast, 

the other three models appeared to generate higher MMDE counts, RCQPM with MMXE 

counts and range, and RCQ with both MMDE and MMXE counts and ranges. Notably, MALP 

6 8 10 Subtotal Range

16 [Min] MALP 2 Max 0 1 2 3 2

Median 0 1 2 3 1

QMALP Max 0 1 1 2 1

Median 2 2 2 6 3

RCQ Max 0 1 1 2 1

Median 2 2 2 6 3

RCQPM Max 2 1 0 3 2

Median 0 1 2 3 1

24 [Min] MALP 2 Max 0 0 1 1 1

Median 0 0 1 1 0

QMALP Max 0 0 0 0 0

Median 1 2 2 5 2

RCQ Max 2 2 1 5 3

Median 2 1 2 5 3

RCQPM Max 2 2 1 5 3

Median 0 0 0 0 0

32 [Min] MALP 2 Max 0 0 0 0 0

Median 0 0 0 0 0

QMALP Max 0 0 0 0 0

Median 1 1 1 3 0

RCQ Max 2 2 2 6 3

Median 1 2 2 5 2

RCQPM Max 2 2 2 6 3

Median 0 0 0 0 0

Service Time Std. [Min]:
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and QMALP failed to match that the performance of RCQ and RCQPM for larger city 

diameters.    

 

Table 32 - Instances where models generated the minimum maximum and median error in each and across all 

service standards [Count] and the average values [%]: Aggregated over all P and α values, city diameters, and 

call intensities. 

Finally, in Table 32 we tabulated the total MMXE and MMDE counts over every 

dimension. Again, we observe the same relative strengths of QMALP, RCQ, and RCQPM, 

however, we note that only marginal differences for both the subtotals and ranges. This again 

would suggest that the models are rather similar but this is misleading because as noted about 

they perform differently under different conditions.    

5.2.4 Interdisctrict Reliability Constraints 

In this section, we examine the performance of RCQ and RCQPM. In Table 32 and Table 

33 we compared the predicted reliable coverage values across all RCQMALP variations (the 

version corresponds to the four different constraint classes outlined in Section 5.1.2). What we 

found was that the models predicted similar objective values with the exception of the Class C 

variation where idle capacity is restricted to the server location. Also, all model classes (except 

6 8 10 Subtotal Range

MALP 2 Max 0 1 3 4 0

Median 0 1 3 4 0

QMALP Max 0 1 1 2 0

Median 4 5 5 14 1

RCQ Max 4 5 4 13 2

Median 5 5 6 16 3

RCQPM Max 6 5 3 14 2

Median 0 1 2 3 0

Service Time Std. [Min]:
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C) generated objective values that were all within 5% of the best solution of a similarly 

parameterized model.  

 

Table 33 - Highest predicted reliable coverage (Non-PMP models): Aggregated across all scenarios 

 

Table 34 - Highest predicted reliable coverage (PMP models): Aggregated across all scenarios 

Likewise, the model simulations suggest that there are no pronounced differences between the 

PMP and the non-PMP versions of the model. In any case, RC-QMALPB and RC-QMALPD appear 

to perform the best with a slight edge to RC-QMALPB in the fourth tier and RC-QMALPD in the 

second and third tiers.  

 

Table 35 - Highest simulated reliable coverage (Non-PMP models): Aggregated across all scenarios 

 

Table 36 - Highest simulated reliable coverage (PMP models): Aggregated across all scenarios 

[Count] [%] [Count] [%] [Count] [%] [Count] [%] [Count] [%]

Max 1,037 96.02% 1,039 96.20% 1,039 96.20% 505 46.76% 1,039 96.20%

0.01 1,058 97.96% 1,060 98.15% 1,060 98.15% 579 53.61% 1,060 98.15%

0.02 1,073 99.35% 1,073 99.35% 1,073 99.35% 679 62.87% 1,073 99.35%

0.05 1,080 100.00% 1,080 100.00% 1,080 100.00% 842 77.96% 1,080 100.00%

Unique 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

RCQMALPA RCQMALPB RCQMALPC RCQMALPDRCQMALP

[Count] [%] [Count] [%] [Count] [%] [Count] [%] [Count] [%]

Max 1,037 96.02% 1,037 96.02% 1,080 100.00% 505 46.76% 1,080 100.00%

0.01 1,058 97.96% 1,058 97.96% 1,080 100.00% 579 53.61% 1,080 100.00%

0.02 1,073 99.35% 1,073 99.35% 1,080 100.00% 679 62.87% 1,080 100.00%

0.05 1,080 100.00% 1,080 100.00% 1,080 100.00% 842 77.96% 1,080 100.00%

Unique 0 0.00% 0.00% 0.00% 0 0.00% 0 0.00% 0 0.00%

RCQMALPPMC RCQMALPPMDRCQMALPPMA RCQMALPPMBRCQMALPPM

[Count] [%] [Count] [%] [Count] [%] [Count] [%] [Count] [%]

Max 512 47.41% 441 40.83% 545 50.46% 501 46.39% 545 50.46%

0.01 659 61.02% 608 56.30% 683 63.24% 663 61.39% 686 63.52%

0.02 761 70.46% 719 66.57% 782 72.41% 749 69.35% 785 72.69%

0.05 894 82.78% 879 81.39% 912 84.44% 893 82.69% 910 84.26%

Unique 26 2.41% 33 3.06% 2 0.19% 57 5.28% 2 0.19%

RCQMALP RCQMALPA RCQMALPB RCQMALPC RCQMALPD

[Count] [%] [Count] [%] [Count] [%] [Count] [%] [Count] [%]

Max 446 41.30% 470 43.52% 550 50.93% 540 50.00% 541 50.09%

0.01 659 61.02% 663 61.39% 689 63.80% 664 61.48% 682 63.15%

0.02 736 68.15% 744 68.89% 770 71.30% 755 69.91% 777 71.94%

0.05 883 81.76% 881 81.57% 886 82.04% 884 81.85% 883 81.76%

Unique 8 0.74% 10 0.93% 46 4.26% 59 5.46% 31 2.87%

RCQMALPPM RCQMALPPMA RCQMALPPMB RCQMALPPMC RCQMALPPMD
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In Error! Reference source not found., Error! Reference source not found., Figure 12, an

d Error! Reference source not found. (below) we provide the SRC [%] graphs for all model 

variations. We note that the models are mostly similar along all dimensions although slight 

artifacts appear in some cases but they do not appear to establish any consistent pattern. As 

such, we conclude that the PMP models have little to offer in terms of increasing reliability 

considering that the differences between RCQ or RCQPM and QMALP or MALP were 

significantly higher than the differences among these RC-QMALP variations.   
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Figure 9 -  Simulated α-reliable coverage: Low call intensity scenario (2 CPH) and small city diameter (16 

[Min]) 
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Figure 10 - Simulated α-reliable coverage: Low call intensity scenario (2 CPH) and large city diameter (32 

[Min]) 
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Figure 11 - Simulated α-reliable coverage: High call intensity scenario (4 CPH) and small city diameter (16 

[Min]) 
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Figure 12 - Simulated α-reliable coverage: High call intensity scenario (4 CPH) and large city diameter (32 [Min]) 
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6. CONCLUSION 

The objectives of this thesis were twofold: (1) review the history of EMSS location models 

and EMSSs in general; and (2) develop a new resource constrained model building upon the 

components of the MALP modeling paradigm of ReVelle and Hogan (ReVelle and Hogan, 

1989). The history of EMSS speaks volumes about the complexity of EMSS planning because 

of problems that include a lack of information about patients, financing issues, technological 

limits, the state of emergency medical science research, and a patchwork of varying legal and 

regulatory frameworks. Notably, most of these problems have been identified and discussed 

for over 50 years in the Unites States and yet they persist to this day. The review has also 

included a review of the fundamental modeling approaches that have been developed to 

analyze and plan EMS systems, ranging from the Hypercube queuing approach to the Maximal 

Availability Location problem (MALP). This review also included the current concerns within 

the medical community and the “modeling” community. 

The MALP modeling paradigm and the related Queuing Based MALP (QMALP) 

(Marianov and ReVelle, 1989) are fundamentally important approaches to modeling 

probabilistic and stochastic elements found in EMSS. They have been applied in real-world 

situations and have influenced the development of many new models including variations of 

the models themselves. Nonetheless, an increasing number of publications have questioned 

both the applicability and foundations of these two models. Some publications have questioned 

the validity of these models’ assumptions (Baron et al., 2009; Murray & Church, 1992) and 

others have questioned the usefulness of the modeling approach in the area of EMSS 

ambulance deployment (Erkut et al., 2008). 
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The development of the Resourced Constrained QMALP (RC-QMALP) model represented 

an attempt to answer these critiques by implementing within QMALP a location-allocation 

framework. We hoped that adding a resource constrained framework would address some of 

biggest flaws of MALP and QMALP, namely, that of relaxing the districting assumption that 

had very little theoretical support, and demonstrating the validity of reliability constraints.  

To test RC-QMALP we used a simulation method and a subjective comparison approach 

to validate our new model and test MALP2 and QMALP. We stress that the latter represented 

a response to the limits with statistical approaches that require much more thought that is 

beyond the scope of this thesis (in terms of establishing more sophisticated experiments) but 

also technical limits given that the observed solutions (i.e., simulations under varying 

parameters) are not identically distributed. With these limited efforts, we argue that even 

though RC-QMALP was not the best model in terms of producing the locational solutions with 

the highest reliable coverage, it produced solutions that were desirable in other ways including 

with respect to their accuracy and the total coverage that they produced.  

RCQ was the more balanced of all models, producing better solutions as measured by the 

median of deviation errors (MMDE) and Minimum Maximum Errors (MMXE) across most 

parameter values, while the RCQPM tended to produce better solutions as measured by the 

average of the Minimum Maximum Errors (MMXE) under lower service time standards and 

larger city diameters. Also, RCQPM always produced solutions within 5% of the best-found 

configurations as estimated by simulation. MALP 2 and QMALP produced the highest 

proportion of solutions that had the highest reliable performance. Overall, RCQ and RCQPM 

generated the highest proportion of unique optimal solutions.  Consequently, the overall results 

are somewhat mixed, in that there was no clear winner over all categories of comparison.  
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There remain two promising versions of RC-QMALP (RC-QMALPB and RC-QMALPD) 

that are based upon relaxing the idle capacity constraint. These models were compared to the 

basic versions of RC-QMALP (RCQ and RCQPM) and although they did not significantly 

improve upon RCQ and RCQPM in terms of reliable coverage these improvements suggest 

that they might perform well against MALP2 and QMALP in other respects, a task left for 

future research. There are also issues that should be addressed with respect to the simulation 

model that was used to test the validity of all model solutions. This simulation model maintains 

queues of calls whereas the underlying assumption of most EMS models is that if a queue 

occurs, calls will be either dropped or handled by a different service. Because queues do form 

in some of the simulations, the current results may be overly conservative in estimating 

expected and reliable coverage.     
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APPENDIX A 

 

Table 37 - Highest simulated total coverage: City diameter 16 [Min], aggregated across p and α. 
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Table 38 - Highest simulated total coverage: City diameter 24 [Min], aggregated across p and α. 

2 4

6 8 10 6 8 10

Max 40.00% 36.67% 73.33% 43.33% 28.33% 56.67%

0.01 66.67% 83.33% 90.00% 61.67% 56.67% 80.00%

0.02 80.00% 93.33% 96.67% 75.00% 78.33% 88.33%

0.05 91.67% 98.33% 100.00% 88.33% 91.67% 91.67%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 40.00% 36.67% 73.33% 43.33% 28.33% 56.67%

0.01 66.67% 83.33% 90.00% 61.67% 56.67% 80.00%

0.02 80.00% 93.33% 96.67% 75.00% 78.33% 88.33%

0.05 100.00% 96.67% 98.33% 83.33% 90.00% 91.67%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 46.67% 36.67% 45.00% 41.67% 35.00% 28.33%

0.01 86.67% 75.00% 83.33% 75.00% 60.00% 70.00%

0.02 98.33% 95.00% 91.67% 78.33% 75.00% 85.00%

0.05 96.67% 100.00% 100.00% 85.00% 88.33% 96.67%

Unique 20.00% 16.67% 5.00% 21.67% 26.67% 10.00%

Max 43.33% 58.33% 50.00% 35.00% 48.33% 45.00%

0.01 73.33% 90.00% 91.67% 63.33% 75.00% 91.67%

0.02 85.00% 98.33% 98.33% 73.33% 81.67% 96.67%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 15.00% 38.33% 11.67% 16.67% 41.67% 25.00%

Q
M

A
L

P
R

C
Q

R
C

Q
P

M

Demand  [Call/Hr.]:

Service Std. [Min]: 

M
A

L
P

 2
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Table 39 - Highest simulated total coverage: City diameter 32 [Min], aggregated across p and α. 

 

 

 

 

 

 

 

 

2 4

6 8 10 6 8 10

Max 38.33% 40.00% 26.67% 38.33% 41.67% 20.00%

0.01 55.00% 66.67% 56.67% 50.00% 61.67% 60.00%

0.02 68.33% 81.67% 80.00% 56.67% 78.33% 73.33%

0.05 88.33% 93.33% 95.00% 86.67% 88.33% 90.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 38.33% 40.00% 26.67% 38.33% 41.67% 20.00%

0.01 55.00% 66.67% 56.67% 50.00% 61.67% 60.00%

0.02 68.33% 81.67% 80.00% 56.67% 78.33% 73.33%

0.05 98.33% 100.00% 98.33% 93.33% 83.33% 95.00%

Unique 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Max 45.00% 45.00% 43.33% 38.33% 40.00% 53.33%

0.01 65.00% 86.67% 75.00% 71.67% 73.33% 75.00%

0.02 78.33% 98.33% 90.00% 86.67% 78.33% 86.67%

0.05 98.33% 100.00% 98.33% 93.33% 83.33% 90.00%

Unique 25.00% 16.67% 20.00% 11.67% 23.33% 28.33%

Max 36.67% 45.00% 58.33% 55.00% 35.00% 55.00%

0.01 65.00% 73.33% 93.33% 73.33% 63.33% 80.00%

0.02 81.67% 90.00% 95.00% 86.67% 73.33% 83.33%

0.05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Unique 16.67% 16.67% 36.67% 26.67% 18.33% 31.67%

M
A

L
P

 2
Q

M
A

L
P

R
C

Q
R
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Q
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M

Demand  [Call/Hr.]:

Service Std. [Min]: 

City Diameter: 32 [Min]
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