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Nonnormality and its influence on the stability and behavior of ecological food webs

Abstract

The historic approach to food web research in theoretical ecology is frequently computational

with the focus on figuring out what sort food web attributes (e.g. topological structure, network

weights, etc.) confer stability to food webs. Much of the theory derived from the computational

approach for food web research relies on the linear stability of systems of ordinary differential

equations; where the stability of the resulting Jacobian matrices that encapsulate all the species

interaction structure and weights is used to determine whether we expect to see a community of

that type (or not). This approach almost always depends on using the eigenvalues of the matrix to

judge stability, which say something about the eventual asymptotic decay of a perturbation to that

system. Asymptotic metrics, such as the rightmost eigenvalue, are a sub-optimal metric for stability

to use for several reasons. First, natural systems are in a constant state of experiencing disturbances.

Second, the non-equilibrium dynamics during the transient phase of a system after a disturbance can

be strikingly different from the asymptotic dynamics and may take a surprisingly long time to decay.

Third, field observations frequently happen on much shorter timescales than the system dynamics,

contributing to a mismatch between empirical observations and theoretical predictions.

This research aims to understand how food web structure and the network weights influence the

transient finite-time behavior of food webs using a mixture of the old computation methods with

new techniques yet to be fully explored in ecology. I use the generalized Lotka-Volterra equations to

parameterize eight common food web module structures and create a large data set of feasible systems

based on random draws of the of original parameters (on the order of thousands to millions depending

on the structure). Since the old methods focus on linearizations of nonlinear systems, I will focus

on one source of odd transient dynamics that afflicts linear systems: Nonnormality of the Jacobian

matrix leading to sensitivity to perturbations of its entries and transient amplification of perturbations

to the equilibrium. One powerful technique used for nonnormal systems is pseudospectra, which

uses the norm of the resolvent to understand the finite-time dynamical behavior of nonnormal

systems. I will introduce nonnormality, pseudospectra and its relationship to old methods in ecology

to recognize systems with transient growth in Chapter 2, such as reactivity and the Kreiss constant.
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One weakness of both of using pseudospectra and the numerical abscissa (otherwise known

as reactivity in ecological literature) is that the worst case behavior predicted by these metrics is

dependent on the particular structure of the perturbation. To explore how perturbation structure

may contribute transient growth in natural systems, I look at two common types of equilibrium

perturbations. Resource pulse perturbations, where just the basal species is perturbed, and removal

pulse perturbations where I put the additional condition on the vector sign structure that all entries

must be negative. I found that resource pulse perturbations are unlikely to be amplified, but

simultaneous removal of both the top predator and its prey is far more likely to cause transient

amplification in model food webs than what one would predict given the probability of randomly

drawing a vector with all negative entries.

I hypothesize that sensitivity to perturbations is common is due to unavoidable asymmetry in

the predator prey interactions due to assimilation efficiency or predator-prey body size ratios. I

test this by comparing a metric of nonnormality, Henrici’s departure from normality to the ratio

between predator and prey interactions (coupling symmetry), and find that there is a cutoff coupling

symmetry to determine whether a system is forced to become reactive and this is strongly dependent

on the number of trophic levels in the module. Reactivity is strongly linearly correlated with

nonnormality for our simulated food webs, and this seems to be due in part to the most nonnormal

systems also having eigenvalues near zero. Finally, to understand how long transient in response

to perturbations of the equilibrium may relate to sensitivity to changes in the underlying model

parameters, I also calculate a pseudospectral metric, real distance to instability, for a subset of our

data. We find that the eigenvalue may also be an unreliable metric for how close a system is to

mathematical instability as well as how a system responds to equilibrium perturbations.
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CHAPTER 1

Introduction

The following dissertation is quite timely, pseudospectra likely originated as an obscure idea

introduced in an unpublished thesis in the year 1967 [94], but since then has probably been reinvented

at least five times in slightly different forms ( [92], Chapter 6) where it was eventually popularized in

1992 with Trefethen’s numerous examples of nonnormal matrices and their behavior [90]. Since then

it became important to the field of fluid dynamics [27,93] and robust stability and optimal control,

which developed many of the algorithms used here [15,16]. Now pseudospectral theory has made it

to network theory, in the process of completing this dissertation the field has already started to see

publications on nonnormality in real networks of all sorts [6], in networks with Lotka-Volterra type

dynamics specifically [18], in linear time-delayed periodic systems [13], and in human population

dynamics [73].

We save the detailed introduction for nonnormal behavior for the next chapter, but the primary

problem is that any system whose dynamics can described by a nonnormal matrix (or more generally

by a bounded linear operator) may show dynamics that defy the behavior predicted by eigenvalues,

such as eigenvalue sensitivity to changes in the operator and transient amplification of perturbations

one would expect asymptotic decay from. The latter is critical to the study of ecological communities

since historically much of the ecological research has been built on looking at eigenvalues, which

represent the stable, asymptotic behavior of the models. Given that ecological systems are constantly

perturbed by both biotic and abiotic factors, it is highly unlikely any system reaches asymptotic

dynamics, and the transient dynamics on the way to the equilibrium might be quite different than

the asymptotic dynamics [41]. There is frequently a mismatch between the time scale the data

was collected and the time scale assumed by the model; much of the research in ecology has been

conducted under the assumption that the assemblage of species we observe in field experiments are

at some sort of equilibrium that corresponds to the local asymptotic stability of a model system.

However, field data is frequently collected on short timescales (relative to the timescale of the system
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dynamics) and it is therefore critically important to understand the range of possible nonequilibrium

dynamics, especially when the data is used for management decisions [32,96].

In the following chapter we aim to provide an intuitive introduction to how long transients after

a perturbation can arise in linear systems as well as introduce the idea of pseudospectra. We cover

the history of tools in ecology to deal with nonnormal dynamics and as well as relate it back to

pseudospectra, and introduce some new ideas on thinking how ecological systems may have (or

manage to avoid) parameter sensitivity and long transients in response to perturbations. In Chapter

3 we take the computational approach widely used for answering questions about stability and

introduce the model ecological networks parameterized by the generalized Lotka-Volterra equations

which we will use Chapter 4 and 5.

One of the weaknesses of using the pseudospectral approach is that it tells you what sort

of transient dynamics are possible and gives lower bounds on the worst case behavior, but it

does not give information on the structure of the perturbations that results in that behavior. In

short, not all perturbations of the equilibrium will result in transient growth, this behavior is

directionally dependent, i.e. dependent on the particular structure of the perturbation. Chapter 4

uses optimization of the initial growth after a perturbation on a restricted domain to investigate

transient amplification to perturbations that strictly add or remove species. This sort of perturbation

is important for managing multi-species reserves and fisheries or studying some common types

of resource pulse perturbations like extreme flooding (ENSO bringing moisture to normally arid

palaces [82]), cicada emergence [97], fruit and seed masting [52,75]), or spatial accumulation and

release (eg. storms bringing seaweed to terrestrial locations [86]). We identify a new subclass of

system, food webs which show transient amplification to removal perturbations, and show that

the type of perturbations that lead to this behavior are conserved across different network module

structures.

In the penultimate chapter, our efforts in Chapter 2 to categorize the possible stability and

transient behaviors of small ecological food webs comes to fruition. We find that well-known metric

for transient amplification (reactivity/numerical abscissa [68]) correlates strongly and linearly with

a metric of nonnormality (Henrici’s departure from normality, [45,92]), but our model ecological

networks seem to cluster in a particular region of nonnormality and reactivity. We introduce the
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first example of using the real distance to instability to theoretical ecology, a metric that relates

loss of stability to changes in the entries of the Jacobian matrix and show it is possible for 1)

Systems which do not show transient amplification of perturbations can still be more sensitive than

expected to eigenvalues becoming positive if the underlying system parameters are changed and 2)

It is possible to find systems with the same eigenvalues and real distance to instability that show

distinctly different transient behavior. Our results also suggest that interaction asymmetry between

predators and prey due to body size ratio, assimilation efficiency or metabolics [12,31,103] may

introduce an unavoidable source of nonnormality while also interacting with stability and tendency

to amplify perturbations in a complicated way.

The history of tools used to understand transient dynamics and ecological stability is inextricably

tied to the history of computing. Yodzis’ 1988 paper mentions taking weeks of VAX 11/780 CPU

cycles to construct 100 plausible community matrices and compute the inverse [101]. Trefethen’s

2005 book Spectra and Pseudospectra records a time of 25 minutes to run inverse Lanczos iteration to

compute the pseudospectra of a 400 × 400 matrix on 100 × 100 grid ( [92], Chapter 39); performing

the exact same algorithm under the same conditions now takes 19.7 seconds on a mediocre processor

purchased on a graduate student budget. And it is not just the available raw computing power

and cheap memory, advances in the available open source computing languages mean implementing

algorithms to take advantage of parallelization and GPU computing can now practically be done in

pseudocode. Gone are the days where debugging frakencode C calls in matlab and python was the

only way to use a high-level language that runs in a reasonable time frame, languages like Julia have

dramatically cut down the mental overhead that goes into setting up the models in the first place.

Even though ecologists have been aware transient amplification of perturbations since 1997 [68], it

likely would have been impossible to do the same sort of large scale numerical experiments with

pseudospectra-derived metrics that we can do today.
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CHAPTER 2

An introduction to pseudospectra

The goal of this dissertation is to understand the stability and transient dynamics of ecological

networks of various sizes and structures and many of the tools we will be using are largely based on

either the idea of, or direct application of pseudospectra. This chapter is a brief introduction to the

problems nonnormality may cause and how pseudospectra may give us a better understanding the

behavior of nonnormal systems.

From an ecologists perspective, there are many interesting models that involve the time evolution

of a system of ordinary differential equations (ODEs), that is, we have a system

(2.1)
dx

dt
= Ax, x(0) = x0

where A is an invertible matrix that either represents the coefficients of a linear ODE or the

coefficients of a linearized system about an equilibrium. Equation 2.1 has a unique solution as long

as A is nonsingular

Table 2.1. Symbols used in this chapter

A Generic n× n matrix
Λ n× n matrix with the eigenvalues of A on the diagonal
V n× n matrix with the eigenvectors of A as the columns
Λ(.) The set of eigenvalues
λi(.) generic eigenvalue
Λε(.) The set of ε-pseudospectra
ΛR
ε (.) The set of real-structured ε-pseudospectra

ω(.) The numerical abscissa or reactivity of a matrix
α(.) The spectral abscissa, α(A) = maxiRe(λi(A))
αε(.) The ε-pseudospectral abscissa
K(.) The Kriess constant of a matrix
κ(.) The condition number of a matrix
depF (.) Henrici’s departure from normality of a matrix
σ(.) The set of singular values of a matrix
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x(t) = etAx0.

We can rewrite the general solution in eigenvalue-eigenvector form for an n−dimensional system.

Let V be the matrix whose columns are the eigenvectors of A and Λ be the diagonal matrix of

eigenvalues of A, the diagonalization and subsequent eigenvalue-eigenvector form of the solution is

x(t) = (VetΛV−1)x(0) = VetΛ(V−1x(0)) = c1λ1v1 + c2λ2v2 + . . .+ cnλnvn

where

(2.2) [c1, c2, . . . , cn]T = V−1x(0),

and λi,vi are the eigenvalues and eigenvectors of A, respectively. The point here to make is that to

write out a solution to the ODE in Eq. 2.1 with initial conditions, we have to transform the initial

condition vector into the eigenvector basis of A. Unless V is an orthogonal basis, we have to solve a

linear equation to get those coefficients. Quite a lot can happen to the initial condition x(0) during

this operation, the next section covers this in depth.

2.1. A motivating example: Eigenvalues fail to describe solution behavior

Let’s say we have three linear systems of ODEs

ẋ1 = −x1 + 0x2

ẋ2 = 0x1 − 2x2

ẋ1 = −x1 + 2x2

ẋ2 = 0x1 − 2x2

ẋ1 = −x1 + 9x2

ẋ2 = 0x1 − 2x2

If we put theses into matrix-vector form (ẋ = Ax), the three “A” matrices that represent the

2-D dynamical systems are

(2.3) A1 =

−1 0

0 −2

 A2 =

−1 2

0 −2

 A3 =

−1 9

0 −2

 .
Because all of the matrices are upper-triangular form, we can easily see they all have the same

eigenvalues (and therefore the same t→∞ behavior) and can be written in the form
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x(t) = etAx(0) = (VetΛV−1)x(0), Λ =

−1 0

0 −2

 ,
the only difference being in what the matrix of eigenvectors, V is for each system. This may

seem like an innocuous difference, but the devil is in the details. If we look at the matrix 2-norm of

etA as a function of t

f(t) = max
‖x‖2=1

‖etA‖2

for our three systems in Fig. 2.1 they have wildly different behavior in finite time. Note: We

will be using ‖.‖2 around a matrix to refer to the induced l2-norm of that matrix as defined above.

When we want to refer to the Frobenious (Hilbert-Schmidt) norm of a matrix we will use ‖.‖F . The

key to the very different behaviors is in what happens with the initial conditions in Eq. 2.2. The

culprit in this case are the eigenvectors. The matrix A may have a complete set of eigenvectors, but

there is no requirement that they are orthogonal. As we can see in Figure 2.2, while this selection of

systems all have the same eigenvalues their eigenvectors are quite different. Comparing the V−1 for

our three systems below, we can see that for the third system any initial condition vector with an

entry in the second index is going to be positively mauled by the eigenbasis transformation.

V−11 =

−1 0

0 −1

 V−12 =

1 −0.667

0 −1.20

 V−13 =

0 9.06

1 9.0

 .
For our third system there will always be at least one direction vector, regardless of starting

magnitude, that will be amplified by shoving it through etA and this means that etA can initially show

positive growth away from the equilibrium despite having all negative eigenvalues. As demonstrated

by our third system, one of the tell-tale signs for systems that might show transient growth in this

manner are large entries in V−1, or if we assume that ‖V‖ is around 1, an equivalent condition is

that the condition number κ(V) for V is large

(2.4) κ(V) = ‖V‖‖V−1‖ � 1.
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Figure 2.1. The behavior of ‖etA‖2 for our matrices A1,A2, and A3 with time.

Figure 2.2. Top: Visualizations of the eigenvectors for A1 (green), A2 (red), and
A3 (blue). Bottom: The corresponding plots of ‖etA‖2.

This phenomena is due to the fact that the eigenbasis of A was not orthogonal, which is equivalent

to saying A is nonnormal. A matrix A is said to be nonnormal if does not commute with its adjoint

(AA∗ 6= A∗A). Now there are many equivalent conditions for normality, a list of seventy can be

found in [49] and nineteen more in [28]; nonnormal operators get comparatively less attention in the
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literature. Normal matrices and orthogonal bases are mathematically nice to deal with; it is little

wonder so much time has been devoted to their study, but normality is a strong condition that many

matrices or bounded linear operators arising from applications will not meet. The matrices belonging

to the rather exclusive club of normality are the diagonal, symmetric, Hermitian, skew-symmetric,

skew-Hermitian, orthogonal, unitary, and circulant matrices. Other than the circulant matrices,

normal matrices have a high degree of symmetry and are therefore easy to recognize.

2.1.1. A scalar metric of nonnormality. Since we will be studying nonnormal systems

exclusively, is useful to have a metric of nonnormality. One that we will make use of is Henrici’s

departure from nonnormality [45]. This is certainly not the only option, others are reviewed here [92].

If a nonnormal matrix is a matrix that is not unitarily diagonalizable, an easy metric would be to do

a unitarily diagonalize it and measure how “off” it is. A Schur decomposition of A is given by

A = U(Λ + R)U∗,

where U is a unitary matrix, Λ is a diagonal matrix, and R is strictly upper-triangular. One

may be used to seeing the factorization UTU∗, T is upper triangle, when “Schur” is mentioned,

we use the sum Λ + R for a few reasons: 1) To stress the fact that the Schur factorization is

an eigenvalue-revealing factorization and Λ is the diagonal matrix of the eigenvalues of A and 2)

Taking some norm of R is a natural way of quantifying the nonnormality of a matrix. We have

made a conscientious decision to use “A Schur factorization” because Schur factorizations are not

unique. Henrici gets around this by taking the minimum value of the norm of R over all possible

Schur decompositions [45], we will get around the problem of non-uniqueness by using the unitarily

equivalence property of the Frobenius norm so that ‖A‖2F = ‖Λ + R‖2F = ‖Λ‖2F + ‖R‖2F (this is

true because Λ and R do not share any nonzero entry locations). Therefore we define Henrici’s

departure from nonnormality as

depF (A) = ‖R‖2F =
√
‖A‖2F − ‖Λ‖2F =

( N∑
j=1

σ2j −
N∑
j=1

|λj |2
)

where {Λj} and {λj} are the singular and eigenvalues of A, respectively.

8



The rest of this chapter will be a tour of how to deal with and understand the behavior of

nonnormal matrices. In basically all cases these ideas can be generalized to infinite-dimensional

linear operators as long as they are closed and bounded.

2.2. Introduction to pseudospectra

Let A ∈ CN×N , I be the identity, and z ∈ C, and Λ(A) be the eigenvalues of A. The resolvent

is the operator-valued function

R(z; A) := (zI−A)−1

is analytic and has point singularities precisely at z ∈ Λ(A). We therefore adopt the convention

that the ‖(zI −A)−1‖ = ∞ for z ∈ Λ(A). (A note: We do sweep some details under the rug, in

the case of general operators there may be things in the spectrum of the operator which are not

eigenvalues.)

For an arbitrary ε > 0, the ε−pseudospectra is defined as the set of values where the resolvent

is large

(2.5) Λε(A) := {z ∈ C : ‖(zI−A)−1‖ > ε−1},

and therefore the ε-pseudospectrum is an open subset of the complex plane bounded by the

ε−1-level curve of the norm of the resolvent. Figure 2.3 illustrates this, but every time there is

plot with nested contours it is referring to a three dimensional object. Because of the resolvent’s

relationship with eigenvalue perturbations, which we will go over shortly, the bands of color are

displayed as log10(ε).

The usefulness of this way of thinking about the spectrum of a matrix may not be immediately

obvious, but let is return to our three example systems in the previous section. Figure 2.4 has the

ε-pseudospectra of the matrices for our three matrices in Eq. 2.3. While the three matrices all have

the same eigenvalues, the differences in their pseudospectra are visually striking. A3, the system

which showed transient growth for some perturbations, extends into the positive real numbers for

9



Figure 2.3. A view of the ε-pseudospectra (left) which are level sets of the resolvent
function (right) for ε = 10−1, 10−1.25, 10−1.5, 10−1.75, 10−2 . The peaks are the
singularities of the resolvent and correspond to the eigenvalues of the operator.

Figure 2.4. Back to our first example in Eq. 2.3, a comparison of the pseudospectra
for our three systems (left to right) A1, A2, and A3. Transient growth happens when
Λε(A) crosses over to the right half of the complex plane.

small perturbations. Formally state this idea, let ∆ε = {z ∈ C : |z| < ε} be an open ε-ball. It can

be shown that if A is normal then for the 2-norm its ε-pseudospectra is

Λε(A) = Λ(A) + ∆ε

and if A is nonnormal, then

Λ(A) + ∆ε ⊆ Λε(A).

Essentially, for a nonnormal system perturbing an eigenvalue by ε can result in a more-than-ε

shift of its spectrum. How bad the shift can be is dependent on the condition of the eigenvector

matrix, κ(V) mentioned in the previous section. This idea is made precise by using the Baur-Fike

theorem, details of the proof in [92].
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There are several other, equivalent definitions of ε-pseudospectra. The proof of their equivalence

can be found in [92] for Theorem 2.1 and is a nice example of application of the Hahn-Banach

theorem.

Theorem 2.2.1. For any matrix A ∈ CN×N the following definitions of pseudospectra are

equivalent:

• The set of values where the resolvent is large

Λε(A) := {z ∈ C : ‖(zI−A)−1‖ > ε−1},

• The set of values that are the eigenvalues of a perturbed matrix A + E,E ∈ CN×N

(2.6) Λε(A) := {z ∈ C : z ∈ Λ(A + E), where ‖E‖ < ε}

• The set of “pseudoeigenvalues” of A with corresponding “pseudoeigenvectors.” Let v ∈

CN , ‖v‖ = 1, then

Λε(A) := {z ∈ C : ‖(z −A)v‖ < ε}

• When ‖ · ‖ = ‖ · ‖2, we can define the ε-pseudospectral set in terms of the smallest singular

value of (zI−A)

(2.7) Λε(A) := {z ∈ C : σmin(zI−A) < ε}.

The last definition is key to efficient computation of 2-norm pseudospectra and provides the

foundation for most all of the algorithms required for generating the ε-pseudospectral figures you

will see in this document. In conclusion, if you perturb a nonnormal matrix by another matrix of

magnitude ε , the eigenvalues of the new matrix may be more than ε away. The pseudoeigenvalues

may even be positive for small perturbations, in the next section we will talk about the finite time

transient behavior of nonnormal operators. At this point it should be stressed that pseudospectra

are norm-dependent creatures; they are defined in terms of the norm of the resolvent and may show
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transient growth in one norm and not the other. Ecologists have been aware of the possible weird

behavior for some matrices for years now [68] and their metrics have historically used the 2-norm,

so we will do things in the context of the 2-norm for the sake of comparison.

2.2.1. Real-structured perturbations. Up to now we have focused on complex perturbations

of real matrices which gives us information on transient behavior. Another important question in many

applications is: “If we measured some of our parameters wrong or perturb the parameters slightly,

will our system still be stable?” To answer this question we need information on A + E,E ∈ RN×N ,

i.e. in terms of real perturbations of A.

The real structured ε-pseudospectra is defined as the set of values that are the eigenvalues

of a perturbed matrix A + E where A,E ∈ RN×N , i.e.

(2.8) ΛR
ε :=

⋃
‖E‖<ε

Λ(A + E).

Now this is easy to state, but harder to calculate since in order to find the closest real matrix of

norm ε we need to perform an optimization [83]. Let σ2(.) denote the second-largest singular value,

then the 2-norm real stability radius

%(A, z) ≡
(

inf
β∈(0,1]

σ2

( Re((zI−A)−1) −βIm((zI−A)−1)

β−1Im((zI−A)−1) Re((zI−A)−1)

))−1
is unimodal (any local minimum is also a global minimum). We use %(A, z) to make clear the

dependence on z, this setup is preferred for computation which we will talk about in the next section.

We now define

(2.9) ΛR
ε := {z ∈ C : %(A, z) < ε}.

While the real-structured pseudospectra might give us information about how close a system

may be to instability, we need complex pseudospectra to give us info about transient behavior of
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Figure 2.5. Real pseudospectra do not determine behavior. For example, here is a

comparison of the complex versus real-structured pseudospectra of M =

[
−1 100
−1 −1

]
.

To the right is a plot of the transient trajectory in time, which shows the wildly
oscillatory behavior predicted by the complex pseudospectra. This is a log plot, so
the orange line represents perturbations of ε = 10−0.25, for example.

‖etA‖. To illustrate this point, a comparison of the real-structured versus the standard complex

pseudospectra for a small 2x2 matrix a long with the trajectory of ‖etA‖ can be found in Figure 2.5.

2.3. Distance to instability

One of our motivations for looking at real pseudospectra is answering questions about system

stability. Since we will focus on continuous-time systems of ODEs, a matrix representation of such a

system is considered stable if all of its eigenvalues lie to the left of the imaginary axis. It is then

natural to ask what the smallest magnitude perturbation that results in the pseudospectra to touch

the imaginary axis is.

The distance to instability or stability radius of a matrix A is defined as

rC(A) := min{ε : boundary of Λε(A) touches Re(z) = 0}

= min{‖E‖ : A + E is unstable , E ∈ CN×N}.

We have already seen in Figure 2.5 that the complex pseudospectra and real pseudospectra can

be quite different. Studying real structured perturbations allows us to identify systems which may be

in danger of losing stability despite have eigenvalues far to the left of the imaginary axis or identify
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systems which may have wild transient behavior, but are not at risk losing mathematical stability.

Let σ2(.) denote the second-largest singular value, then the 2-norm real stability radius

(2.10) rR(A) =

(
sup

Re(z)=0
inf

β∈(0,1]
σ2

( Re((zI−A)−1) −βIm((zI−A)−1)

β−1Im((zI−A)−1) Re((zI−A)−1)

))−1

is unimodal (any local minimum is also a global minimum) [83]. To put into words, we are finding

the smallest ε-magnitude real perturbation matrix that makes the rightmost eigenvalue of A have

zero real part, so we must do a search over the imaginary axis as well as over β ∈ (0, 1].

2.4. Computation of Pseudospectra

2.4.1. Generating the pseudspectral pictures. For complex pseudospectra, the foundation

for generating the pseudospectra plots is computing the norm of the resolvent for each z on a mesh

(iterating over the real and complex axis in the loop) and then making a contour plot, which can be

done for any norm. However, this can get computationally expensive and there are a number of

algorithms that use clever ways of calculating the norm of the resolvent depending on the norm [91].

In the two norm, it is best to use Equation 5.2 for the calculation on the mesh, and we use an

implementation of the slightly more sophisticated and noticeably faster Lanczos iteration with

preliminary triangularization [91] (and outlined in [92]) for generating our pseudopectra figures (e.g.

in Figure 2.4). One possible confusion that can happen depending on the algorithm you chose for

pseudospectra computation is the value outputted from an algorithm may either be the value of

the resolvent norm (ε−1) in Equation 2.5 or the value of ε as a perturbation magnitude such as

in Equation 5.2. All figures in this dissertation has the contour plots in terms of displaying the

pseudospectra as log10(ε). This means for naive looping over a mesh of z and brute force calculation

of the resolvent norm or for our implementation of Lanczos iteration we have to invert each returned

value of the mesh point to get things in terms of ε, but algorithms using Eq. 5.2 will return ε

without needing any modification.

Real-structured pseudospectra computation requires an optimization search over γ ∈ (0, 1] which

requires a singular value decomposition for every test value in the optimization and at every grid

point z. Because all the grid point calculations are independent of each other, this is at least an

“embarrassingly parallel” problem and we recommend running the calculation over each mesh point
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over multiple cores. One thing to keep in mind is that value at each grid point has the possibility of

being an underestimate (Let’s say we didn’t find the true infimum then the value we found was an

overestimate which means when we invert it we get an underestimate for the value of ε).

What about more specific structures? What if we want to perturb a Leslie matrix at only nonzero

entries? For extremely specific structured perturbations one can use Equation 5.1 and choose random

E for each so that ‖E‖ < ε for a selection of ε and of structure as specific as you need and then

scatter plot the eigenvalues in the complex plane for a bunch of perturbations. For reference, §50

of [92] has some examples of such plots.

2.4.2. Computation of the distance to instability. We did not end up using the complex

distance to instability, but numerical calculation of the complex distance to instability is usually done

by bisection [14,33]. As with the real-structured pseudospectra computation discussed in the previous

section (Section 2.4), finding the real distance to instability (rR) requires performing an optimization.

However, unlike the straight computation on a grid for displaying the real pseudospectra of we have

the additional complication of a min-max problem with no guarantees on the shape or convexity

of the function for the optimization over the imaginary axis. There are some things that make

the optimization easier, because we have real-valued matrices we can leverage the symmetry in the

eigenvalues restrict our search to the either the positive or negative half of the imaginary axis. Since

we are dealing with finite operators, the vertical locations of the eigenvalues provide reasonable

starting points for the search with a big caveat: We are not guaranteed the nearest real unstable

matrix will be located at the complex part of the rightmost eigenvalues. This was proven in a famous

counterexample constructed by Demmel in 1987, where the crux of the argument comes down to the

fact that Λε(A) is not guaranteed to be convex [25]. For the search over the imaginary axis we did a

naive random search, selecting points from a combination of a truncated normal distribution about

zero and a truncated normal distribution around the imaginary part of the rightmost eigenvalue.

We tuned the search so that we would have high precision on the finding the infimum, so that when

we did an unsophisticated random search our estimates for the real distance to instability will in

general be an overestimate (i.e. Let’s say the our guess for the inner optimization of Equation 2.10

is correct, then doing a bad job at the search over the imaginary axis will give an underestimate of

the supremum so that when we take the inverse we get an overestimate).
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All algorithms in this dissertation were coded in the Julia programming language, we used

BlackBoxOptim.jl for the optimization steps in our real-structured pseudospectra and make generous

use of the built-in Julia “Distributed” package to do the mesh calculations over multiple cores.

2.5. Understanding transient dynamics

2.5.1. Bounds in ecology literature: Reactivity. The awareness of the possibility of tran-

sient amplification of perturbations after small perturbations due to nonnormality has been around

since at least 1997 in the ecology literature [68]. The reactivity [68], or the numerical abscissa ω(A)

is defined as the maximum initial growth rate of ‖etA‖ away from equilibrium. It is calculated as

the maximum real part of the field of values of A (or the spectral abscissa of the Hermitian part of

A). We frame the problem in terms of optimization since later we will modify the problem to look

at the optimization on a constrained space.

One way to characterize the transient response of a perturbation is to think about the maximum

possible rate of change, ω(A) right after perturbation x

max
‖x‖6=0

[
1

‖x‖
d‖x‖

dt

]∣∣∣∣
t=0

= lim
t→0+

t−1 log ‖etA‖ = ω(A)

Framing the numerical abscissa as a initial rate of change was the approach used in [68] and

a derivation in terms of expanding out that derivative can be found therein. However, since dx
dt

is defined in terms of matrix multiplication by the Jacobian A we can also think of the maximal

initial growth ω(A) in terms of the optimization problem looking for the maximum real value of the

transformation

F (A) :=

{
x∗Ax

x∗x
: x ∈ Cn

}
which is the definition of the field of values for matrix A. The field of values has many nice

properties which are discussed in detail in [47], but one in particular is that F (A) is defined for

complex inputs and can give complex outputs, but if you want to only consider the real-valued

outputs Re(F (A)) then we have the relationship
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Re(F (A)) = F (H(A)) = F

(
1

2
(A + A∗)

)
where H(A) is the Hermitian part of A. Note that after we sub in for F

(
1
2(A + A∗)

)
into the

original definition we get the exact same optimization problem of Neubert and Caswell in [68], a

Rayleigh quotient that we want to maximize over input vectors x

ω(A) = max
‖x‖6=0

xTH(A)x

xTx

= max
λi

Λ

(
1

2
(A + A∗)

)
.

(2.11)

The solution to this problem, vector vω, is the eigenvector that corresponds to the largest

eigenvalue λ1(H(A)) which is the maximum value of this ratio over all x [47]. The value λ1(H(A)) =

ω(A) is known as the numerical abscissa in numerical analysis and is the reactivity of Neubert and

Caswell [47,68]. The numerical abscissa both determines the behavior of lim
t→0+

t−1 log ‖etA‖ and

gives us an upper bound on ‖etA‖ for all t ≥ 0

‖etA‖ ≤ etω(A).

If the numerical abscissa is positive, then it is possible for there to be transient growth immediately

following a perturbation of the equilibrium and this can happen despite the eigenvalues predicting

eventual asymptotic decay [68,92]. It should be noted that we are only guaranteed this growth for

the vector solution of the above problem, vω, and it is possible for other perturbation directions to

show no initial growth. For now on we will refer to vω as the “optimal perturbation” vector, this is

the unit vector (or a direction vector) that produces the largest initial transient growth and specifies

a perturbation direction. The directional dependence in a system’s response to a perturbation has

been highlighted before (see: [4, 68]), so it is natural to ask what happens to the possibility of

transient growth if we add more constraints on the direction of the perturbation vector, which we

will address in Chapter 4.

The numerical abscissa is useful as an easily-calculated metric for identifying systems with

problematic transients, which we will leverage in later chapters. Its main weaknesses is that it only
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tells us something about the t→ 0 behavior and its nice relationship to Hermitian real part of A is

only available to us in Hilbert spaces.

The next bound tells us something about the finite-time behavior of ‖etA‖, specifically a

time-independent lower bound on transient amplification.

2.5.2. Bounds in ecology literature: Kreiss bound. The Kreiss constant with respect to

the left-half of the complex plane uses the resolvent [54] and is defined as

K(A) := sup
Re(z)>0

Re(z)‖(zI−A)−1‖,

which gives us another lower bound on ‖etA‖

sup
t≥0
‖etA‖ ≥ K(A).

If we use the results in [57] the Kreiss constant also provides an upper bound

sup
t≥0
‖etA‖ ≤ eNK(A), N dimension of AN×N .

The Kreiss bound is useful in understanding transient amplification because it can be used in

sensitivity analysis using the Sherman-Woodbury-Morrison equation [44,89]. Numerical implemen-

tations to calculate the Kreiss bound are nontrivial to implement [65], and since many ecologists

may end up plotting ‖etA‖ vs time anyway it is far easier to just estimate it from plotting for a

single parameter set.

2.5.3. Pseudospectra for transient dynamics. This section will be devoted to the study

of x(t) as it evolves with time. While I will focus on the exponentiation of matrices, this theory

readily extends to closed linear operators. Before we talk about lower bounds on ‖etA‖ we need a few

preliminaries. The ε-pseudospectral abscissa αε(A) is define as the largest real part of Λε(A) (Figure

2.6). For a negative-stable matrix A and ε > 0, if αε(A) > ε then the ‖etA‖ must have transient

growth as it evolves with time. This “overlap” of the ε-pseudospectraal abscissa that extended over

the expected perturbation magnitude ε gives us another definition of the numerical abscissa ω(A):
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Figure 2.6

ω(A) = lim
ε→∞

αε(A)− ε.

Theorem 2.5.1. ( [92], §15) Let A be a matrix, if ‖(zI−A)−1‖ = K/Re(z) for some z ∈ C

with Re(z) > 0 and K > 1, then

sup
t/ge0
‖etA‖ ≥ K.

The ε-pseudospectral abscissa αε(A) is finite for each ε > 0. Taking the rightmost value of z in

the complex plane of the level contour ‖(zI−A)−1‖ gives us the convenient lower bound

(2.12) sup
t≥0
‖etA‖ ≥ αε(A)/ε ∀ε > 0.

Now, we have already mentioned the Kreiss constant. If we take the supremum over ε > 0 of the

above we get the second definition of the Kreiss constant

K(A) := sup
ε>0

αε(A)/ε,

so that
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(2.13) sup
t≥0
‖etA‖ ≥ K(A).

If a = Re(z), then for any τ > 0,

(2.14) sup
0<t≤τ

‖etA‖ ≥ eaτ
/(

1 +
eaτ − 1

K

)
.

Equation 5.6 makes precise the conditions for seeing transient growth for a given perturbation

‖E‖ = ε, when an ε-pseudospectral contour extends into the right half of the complex plane we can

expect some perturbations to lead to transient growth (the “reactivity” observed by [68]). During

this time of transient growth z behaves like an eigenvalue and ‖etA‖ evolves like eat. How long this

lasts for depends on the resolvent norm at z, we see from Eq. 5.7 that the larger the resolvent norm

is, the larger K is and the longer the time scale that z behaves like an eigenvalue of A. At this

point two subtleties should be stressed. Firstly, these bounds depend on the resolvent, which means

complex perturbations are involved. Even if we are only concerned with real matrices that act on

real vectors we still need the complex perturbation to understand the time evolution behavior. We

have already shown an example of where complex perturbations predict the transient behavior, but

real perturbations fail to in Figure 2.5, but also in ( [92], pg. 457). Secondly, these give bounds in

terms of the operator norm, so they represent the worst case response to a perturbation. It could be

that a subset of matrix perturbations result in no transient growth, and one way this manifests is

that not all vector inputs to etA may result in transient amplification.

2.5.4. An example of a very nonnormal matrix without unruly transients. So far we

have spent a lot of time talking about nonnormality and its relation to transients, but is a nonnormal

matrix is not doomed to bad behavior. It is quite possible for the eigenvalue sensitivity to be

concentrated on the negative side in such a way that the matrix not in danger of having a positive

pseudoeigenvalue. Let A be a 20 X 20 upper triangular matrix of negative ones such that
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Figure 2.7. The complex pseudospectra for a 20 X 20 matrix upper matrix tiled with -1.

A =



−1 −1 . . . −1

0 −1
. . .

...
...

. . . . . . −1

0 . . . 0 −1


If this matrix was representative of a dynamical system, we would call this a “recipient-controlled”

system (if not a rather extreme case). The calculated numerical abscissa is ω(A) ≈ −0.5 and the

Henrici’s departure from nonnormality is depF (A) ≈ 13.78. While this matrix is quite nonnormal, it

does not have a positive numerical abscissa and will not show transient growth for any perturbation

direction.

2.6. Pseudospectra in context

We have given a very brief introduction to pseudospectra and the behavior of nonnormal matrices

and introduced some illustrative examples of some subtleties to keep in mind. The most important

conclusion, that eigenvalues may not give good information about finite-timescales and this has

something to do with transient amplification, is one already known to ecologists for quite some time

now. However, it is an open question how community structure, perturbation structure, and species

21



attributes might contribute to stability and transient dynamics [85]. Pseudospectral theory gives

a starting framework to begin answering ecological questions that is more flexible than looking at

simple reactivity (or the numerical abscissa).

We approach the question of how network structure and species attributes may contribute to

transient dynamics by looking at what contributes to nonnormality in model systems, which is a

necessary requirement for transient dynamics. Normality is a strong condition to meet, so we start

by looking at biological constraints that might break the symmetry in species interactions, such

as body size ratios and conversion efficiency. However, as we have shown, a system can be highly

nonnormal but in a way that does not affect either transient dynamics or stability; these are the

rare cases where the eigenvalues do accurately describe behavior and it is unknown to what extent

stable ecological systems may meet this requirement.

One important consequence of nonnormality is that there exists linear (or linearized) dynamical

systems that will always show transient growth or perturbation amplification for some perturbation

directions. Previous ecological research has approached this problem by using the numerical

abscissa as a flag for stable systems that may amplify perturbations, but not what types of

perturbations may result in transient behavior. We leverage the optimization version of the definition

of the numerical abscissa to study how network structure may lead to ecological systems to show

transient amplification to removal perturbations, which has implications for management decisions

in monitoring an ecosystem after a preserve is opened or closed and multi-species fisheries.

Finally, real-structured pseudospectra may not give us information about transient behavior but

they are useful for telling us if a system may be in danger due to small changes in parameters. For

ecological communities, it is unknown whether transient growth may be a signal a system that is

close to instability. Even for systems which are not in danger of showing transient amplification of

some types of perturbations can still be nonnormal, resulting in systems whose transient phase may

last longer than expected and whose distance to instability is smaller than what their eigenvalues

predict. For the latter, this is a case where just considering sign on numerical abscissa may be

misleading when trying to understanding system behavior and it must be supplemented with other

methods.
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We close with the reminder that pseudospectra are norm-dependent, it is completely possible for

a matrix to show transient growth in response to perturbations in one norm and not the other. The

2-norm is often used because existing in a Hilbert space gives us some nice easy-to-calculate metrics to

identify systems which might have transient behavior and the algorithms to calculate pseudospectra

in the 2-norm are efficient and easy to implement; we too fall into the trap of convenience for

much of this dissertation due to the nature of our approach. However, it is hard to interpret the

biological meaning of the two norm and for some systems it may be more natural to think about

the 1-norm (the total density or abundance across all age classes or species). The benefit of using

pseudospectra over some of the previous metrics found in ecological literature is that it is possible to

choose whatever norm makes the most sense for the problem.
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CHAPTER 3

Generalized Lotka-Volterra equations and their simulation

3.1. The generalized Lotka-Volterra equations

The previous chapter introduced nonnormality, pseudospectra, and provided some background

intuition for why what sort of things we might need to check to fully understand the transient

dynamics and stability of a system. This chapter introduces the model we will use to explore how

structure and biological constraints contribute to the dynamics of small ecological networks in the

context of nonnormality.

Figure 3.1. The eight modules whose dynamics are explored in this paper: (a) three
species food chain, (b) three species omnivory, (c) four species generalist predator, (d)
four species diamond, (e) four species food chain, (f) four species intraguild predation,
(g) four species omnivory, third level omnivore, (h) four species omnivory, fourth level
omnivore.
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Ecological networks can be extremely large and complex, even a small subset of a community in

a simplified food can have many connections over multiple trophic levels in ways where it is hard

to tease out which things are most important to contributing to system dynamics [81]. A large

network may be too complex to study, but only studying pairwise interactions may miss important

dynamics such as chaos in the continuous-time case. One common approach to dealing with this

complexity is to study small (on the order of 3-4 nodes), repeated subsets of the network structure

called motifs in network analysis and generally refers to the structure of connections or modules in

food web theory where the focus is on a weighted, directed network. Modules allow ecologists to

bridge pairwise interactions to the dynamics of larger food webs [87], and it turns out that in real

empirical food webs there are some modules that over-represented relative to synthetic food webs

with randomly generated interactions [8,17].

We chose eight small network module configurations to focus on (Fig. 3.1): Four are common

food web modules found in empirical food webs (three species omnivory, four species diamond, and

four species intraguild predation) [8] and the other four were chosen to explore how trophic level,

multiple prey species, and omnivory may influence stability and reactivity of feasible parameter

sets. The community dynamics were described by the generalized Lotka-Volterra equations, which

are one of the simplest models to explicitly describe the trophodynamics (dynamics of the trophic

interactions) of S interacting species in an ecological network and are commonly used in community

ecology studies [30,36,64,104]:

(3.1)
dNi

dt
= Ni

ri +
∑
j

aijNj

 , i = 1, . . . , S.

Here rj are the intrinsic per-capita growth rates for each species where it is understood that

rj > 0 for basal species and rj < 0 is the starvation rates for nonbasal species. The parameters

aij are the per-capita consumptive interaction rates, i.e., if species i is consumed by species j then

aij < 0 and aji > 0 [102]. We assume a simple linear functional response (Type I) for the predator as

well as intraspecific dampening (the aiiN2
i terms). In order to include asymmetry into predator-prey

interactions due to body size ratio, assimilation efficiency or metabolics, which may be important to

determining trophic interactions [12,31,103], we introduce an asymmetry parameter, cs (coupling
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symmetry), sensu [35] which is defined so that the negative interaction coefficient of the resource

on the consumer scales as cs = aji/aij . This form of the Lotka-Volterra equations was chosen for

its simplicity in explicitly calculating the equilibrium point and Jacobian matrix. Let [aij] be the

S × S matrix of coefficients of the interaction parameters aij and r be the S × 1 vector of per-capita

growth rates, then the equilibrium, N∗, is the S × 1 solution vector to

r + [aij]N
∗ = 0.

So long as [aij] is invertible, this system of equations has the unique solution

(3.2) N∗ = −[aij]
−1r

and the Jacobian matrix at this equilibrium is given by

Aij = N∗i aij .

The biological meaning and terminology associated with the Jacobian matrix has historically

varied in food web ecology [74] and at this point it is worthwhile to clarify some nomenclature. In

this dissertation the aij parameters in the original Lotka-Volterra equations will be referred to as the

“predator-prey interaction parameters. The Jacobian, A, corresponds to the “Community matrix”

of [74] where each entry Aij is interpreted as the direct effect of the average species j individual on

species i’s population growth rate.

3.2. Simulation and parameter set generation

We had two goals in mind when setting up the feasible parameter search: To include the minimal

amount of detail in order for realistic-looking systems to emerge and to thoroughly explore the

parameter space to generate such systems. For each of the sets of the parameters in Equation 3.1 we

calculated the linearization around the guaranteed unique equilibrium by directly solving Equation

3.2. For each module type in Figure 3.1 we drew 100,000,000 parameter sets as outlined in Appendix

B.1 and kept those which were considered feasible, i.e. the equilibrium contains no species with a

negative density (N∗i ≥ 0 for all Ni); parameter sets which were not feasible were discarded (similar
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to [104]). The enforcement of the feasibility requirement is why we go from parameterizing the

original Lotka-Volterra equations and finding the Jacobian rather than using the random matrix

approach of starting with the Jacobian that is common in community ecology research [2,3,63].

Another notable detail is that we excluded diagonally dominant matrices since we know they are

guaranteed to be stable by the Gershgorin disc theorem [43]. The distributions and explanation for

each of the parameters can be found in Table 3.1. The quantities calculated and tracked for each

parameter set can be found in Table 3.2.

3.3. Results of the parameter set generation

The end result for our choices were that despite not enforcing this in the parameter search, the

equilibrium densities of our systems frequently followed a “pyramid” pattern where lower trophic

levels had higher equilibrium density levels (Appendix B.2). For the modules where the predators

feed on multiple prey at the same trophic level, the predator has the highest consumption of the

most abundant prey, but the positive benefit of the prey on the predator are roughly the same for

all choices of prey. Except for the two trophic level four species generalist module, finding a feasible

parameter set was rare but once a feasible system was found it was highly likely to be stable (Table

3.3). In the average our parameter sets displayed strong-weak consumer-resource pattern where a

predator feeding on multiple species has the strongest resulting interaction strength with the most

abundant prey (Appendix B.2) and a predator that consumes multiple prey species has only one

strong interaction.

It is apparent from our results that number of trophic levels, rather than number of species is

more important for finding a stable parameter set with feasible equilibrium. The two-trophic level

four species generalist module had orders of magnitude more stable parameter sets found all the

other modules with more trophic levels. For the limited number of network structures studied there

appears to be the pattern that the number of trophic levels, rather than number of species, seems to

correlate with the proportion of reactive parameter sets found. A more detailed analysis with larger

food webs would be needed to see if that pattern holds true in the general sense.
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Table 3.1. A reference table for the parameters and the distributions they were
drawn for the generalized Lotka-Volterra equations of eight different module structures.

parameter description distribution or value

ri growth rate of basal species (+)/starvation rates of nonbasal species (-) Uniform(0.1, 1)
aij per-capita consumption rate of predator on prey -(Uniform(0.01, 1))
cs asymmetry parameter controlling assimilation efficiency/body size ratio -(Uniform(0.0000001, 1))
aji per-capita consumption rate of predator on prey (+)* csaji

* = sign clarifications

Table 3.2. Values tracked for each parameter set during the initial parameter set
search and in later chapters.

value description calculation

Re (maxλi σ(A)) maximum real eigenvalue -
ω(A) numerical abscissa/reactivity maxλi σ

(
1
2(A + A∗)

)
depF (A) Henrici’s departure from normality

(∑N
j=1 σ

2
j −

∑N
j=1 |λj |2

)1/2
Values collected in later chapters

γ(A) structured numerical abscissa for removal perturbations gradient ascent search on restricted domain
rR real distance to instability (see Equation 2.10 )
‖A−1‖−1 distance to singularity -

28



Table 3.3. The proportion breakdown of stable, stable reactive, unstable, and
unstable reactive systems for each module (given as %). The raw number of non-
negative equilibria out of 100,000,000 sets of parameters for each simple Lotka-Volterra
network module is reported in the rightmost column.

Here S = stable, US = unstable, and R = reactive

positive coexistence ≥ 1 species extinct

(module) S SR USR S SR USR Total #

generalist (4 species) 35.3553 64.2347 0.0 0.0026 0.4073 0.0001 31,785,650
omnivory (3 species) 11.9691 87.1983 0.1438 0.0002 0.6878 0.0009 4,438,997
chain (3 species) 14.9089 84.6195 0.0 0.0019 0.4698 0.0 * 3,122,030
diamond (4 species) 4.2403 94.9187 0.0 0.0002 0.8407 0.0001 965,307
omnivory (4 sp. 3rd L) 4.4686 94.8607 0.0314 0.0019 0.6361 0.0012 885,023
intraguild predation 3.682 95.446 0.0504 0.0 0.8212 0.0003 868,217
omnivory (4 sp. 4th L) 2.4291 96.6124 0.0 0.0004 0.9581 0.0 759,739
chain (4 species) 4.227 95.1618 0.0 0.0053 0.606 0.0 416,516

* = This entry was reported as zero because there was only 1 system found
NOTE: No systems were found to be purely unstable (and not also reactive), so those columns were
omitted
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CHAPTER 4

A study on pulse perturbations and the transient behavior of

nonnormal systems

4.1. A preface

This next chapter may feel a little odd after the pseudospectra chapter since there is not a

pseudospectra in sight. However, it covers an important consequence of nonnormality: The tendency

for nonnormal systems to amplify perturbations and the fact that the direction of the perturbation

(or in the ecological case, which species you perturb) matters. Up to this point a lot of research

has been focused on whether or not a system can display weird transients, and not if it will for the

types of perturbations ecological communities commonly experience. In this chapter we show that

reactive, or systems with a positive numerical abscissa, make up a majority of the parameter space

for small communities and that this sort of amplification happens more than expected for removal

perturbations involving multiple species at once.

4.2. Introduction

How does an ecosystem respond to change? Any attempt to describe the dynamics will need

to consider at least 1) The timescale, spatial scale, frequency, and magnitude of the disturbance

causing the change; 2) The timescale, spatial scale, and magnitude of the response of the system to

the disturbance; 3) Some reference point to compare the above to. Deciding on the reference point

is of course the hard part, since it sets the expectations for what gets measured and what counts as

a long timescale or a large change for the first two.

Ecological stability is a multidimensional concept that characterizes the ecosystem response to

external disturbances. To put in simple terms, a system with high stability mostly stays the same

after a disturbance and if it does change, it quickly moves back to where it was before [26,46,51].

Under the idea stability we have the more specific concepts of resistance and resilience. Resistance
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describes the magnitude of the measured system response to a disturbance, but does not refer to

the timescale of the response in any way (how long it takes to recover); systems that have a large

magnitude response to a perturbation are said to not be very resistant [77]. Resilience has been a

recent popular topic of discussion [1,37,78]; and like other stability measures can mean slightly

different things depending on the reference point chosen, what actually gets measured, and which

discipline is using the term [26,38]. For our purposes, we take the meaning of resilience to specifically

describes the timescale of recovery as in [5,77] rather than the more general interpretation involving

absorbing changes so that the reference point is maintained [46]. We say a system has high resilience

if the recovery time after a disturbance is short [78]. Since we will be using a system of ordinary

differential equations to describe an ecological system and its interactions between species, our

reference point will be a linearization about an equilibrium.

A common way to study ecological stability is through perturbations, or altering the density

of one or more species and seeing how the system responds [11,51]. Theoretical studies tend to

focus on either the short end of the timescale (pulse perturbations) or the long end of the timescale

(press perturbations) [51]. In this paper we will be looking at pulse perturbations, where a system

is instantaneously perturbed by adding or removing members of a species population [11]. The

direction of the pulse perturbation, or how the intensity of the perturbation is distributed over all

the species in the system, determines the finite-time system dynamics for the system [4,68]. There

is of course comes the practical issue of what and when to measure, and unfortunately there is

frequently a mismatch in the timescales studied by theoreticians and empiricists [26]. The finite-time

behavior of a system, which is the timescale empirical data is collected on, can be qualitatively

quite different than the asymptotic dynamics predicted by many models [39]. These counterintuitive

transient dynamics can arise from many sources [41]; since we will be focusing on linearization

about an equilibrium we will be using reactivity as a proxy for possible transient behavior, defined

as the maximum possible initial amplification following a perturbation calculated over all possible

perturbations [68]. Systems which have a positive initial amplification (or reactivity) in response to

a pulse perturbation despite being asymptotically stable are said to be reactive. The characteristic

growth of reactive systems away from the equilibrium may continue for quite some time before

decaying, meaning old metrics of resilience which focus on asymptotic decay may be inappropriate

31



since they are not representative of the population dynamics on the sort of timescales ecological data

is collected on [40,68]. Additional theoretical stability metrics that account for reactivity have since

been introduced, such as intrinsic stochastic invariability and average return rate [4,5]. All of these

seek to improve on the original metric of resilience, asymptotic resilience, which historically has been

used because it is easily calculated from the eigenvalues of the Jacobian matrix determining the

system dynamics.

At this point reactivity is a well documented phenomena that is present in discrete-time [19] as

well as continuous-time models (in particular all predator-prey models when at least one species

has density-independent mortality [71]). Reactivity is a necessary condition for developing Turing

instabilities in spatial pattern formation for systems modeled by reaction-diffusion equations or the

discrete-time analog of integrodifference equations [69]. Average reactivity tends to increase with

the number of species present and number of donor-controlled links [20]. Large elements in the

Jacobian matrices governing the system dynamics increases the capacity for a system to be reactive

in continuous-time systems and can force reactivity in discrete-time systems if the mean element

size is large enough [85].

Reactivity is important but it comes with a caveat in that it describes the worst possible behavior,

i.e. it is an upper bound. Whether or not odd transient behavior can happen is dependent on the

perturbation direction [4,68,85]. Stated in biological terms, the pulse perturbation direction is how

the intensity of the perturbation is distributed over all the species in the system. Reactivity is said to

be directionally dependent because the characteristic perturbation amplification may only happen for

some combination of perturbations of species densities and this behavior is independent of the total

pulse magnitude. Since reactive systems may initially grow exponentially away from an equilibrium

and take a long time to eventually decay back, this brings up the possibility of ecological systems

which fail to be resilient and resistant for only some types of perturbation. It is still unknown how

specific the conditions need to be for a stable reactive system to display the characteristic transient

growth.

Here we leverage the definition reactivity and its roots in the Rayleigh quotient to investigate if

pulse perturbations which alter species densities by either leaving them untouched or removing them

are amplified. This type of structured perturbation is relevant for studying reactivity in systems after
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Table 4.1. A reference table for the model used in this chapter. Details on parameter
set generation can be found in Chapter 3. We use the generalized Lotka-Volterra
equations to describe the dynamics of small network modules of 3-4 species given
by dNi

dt = Ni

(
ri +

∑
j aijNj

)
, i = 1, . . . , S for S interacting species. This was

done for the eight different network module structures in Figure 3.1.

parameter description calculation

ri growth rate of basal species (+)/starvation rates of nonbasal species (-) -
r the S × 1 vector of ri’s

aij per-capita consumption rate of predator on prey -
cs asymmetry parameter controlling assimilation efficiency/body size ratio -
aji per-capita consumption rate of predator on prey (+)* csaji
[aij] S × S matrix of interaction parameters

Ni density of species i -
N∗ the S × 1 vector of equilibrium densities N∗ = −[aij]

−1r
A the S × S Jacobian matrix Aij = N∗i aij

* = sign clarifications

catastrophic natural disasters, the trajectory of recovering communities after extractive activities have

been discontinued (such as fishing), and to resource pulses (due to some symmetries in the Rayleigh

quotient we can flip the sign on the perturbation). We call these removal pulse perturbations, and

the systems which are reactive for these restricted-structure perturbations Removal Stable Reactive

(RSR) systems. Since we would like to understand how community structure might contribute to

reactive dynamics, we take the approach of studying simple network modules commonly found in

real food webs rather than randomly generated network structures [8].

4.3. Methods

4.3.1. Model Description. We use the model and the parameter sets generated as outlined

in Chapter 3. Table 5.2 has a notation summary of the previous chapter for reference.

4.3.2. Optimization to find maximal pulse perturbation. First let us take a brief detour

to talk about some properties of the linear systems of ODEs of the form dx
dt = Ax, x(0) = x0, where

A is invertible and then we will talk about our specific case. One way to characterize the transient

response of a perturbation is to think about the maximum possible rate of change, ω(A) right after

perturbation x
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max
‖x‖6=0

[
1

‖x‖
d‖x‖

dt

]∣∣∣∣
t=0

= lim
t→0+

t−1 log ‖etA‖ = ω(A)

This was termed “reactivity" in [68] and a derivation in terms of expanding out that derivative

can be found therein. However, since dx
dt is defined in terms of matrix multiplication by the Jacobian

A we can also think of the maximal initial growth ω(A) in terms of the optimization problem looking

for the maximum real value of the transformation

F (A) :=

{
x∗Ax

x∗x
: x ∈ Cn

}
which is the definition of the field of values for matrix A. The field of values has many nice

properties which are discussed in detail in [47], but one in particular is that F (A) is defined for

complex inputs and can give complex outputs, but if you want to only consider the real-valued

outputs Re(F (A)) then we have the relationship

Re(F (A)) = F (H(A)) = F

(
1

2
(A + A∗)

)
where H(A) is the Hermitian part of A. Note that after we sub in for F

(
1
2(A + A∗)

)
into the

original definition we get the exact same optimization problem of Neubert and Caswell in [68]. The

Rayleigh quotient that we want to maximize over input vectors x is

ω(A) = max
‖x‖6=0

xTH(A)x

xTx

= max
λi

Λ

(
1

2
(A + A∗)

)
.

(4.1)

In the second line we show the solution to this problem, vector vω, is the eigenvector that

corresponds to the largest eigenvalue λ1(H(A)) which is the maximum value of this ratio over all

x [47]. The value λ1(H(A)) = ω(A) is known as the numerical abscissa in numerical analysis and is

the reactivity of Neubert and Caswell [47,68]. The numerical abscissa both determines the behavior

of limt→0+ t
−1 log ‖etA‖ and gives us an upper bound on ‖etA‖ for all t ≥ 0

‖etA‖ ≤ etω(A).
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If the numerical abscissa is positive, then it is possible for there to be transient growth immediately

following a perturbation and this can happen despite the eigenvalues predicting eventual asymptotic

decay [68,92]. It should be noted that we are only guaranteed this growth for the vector solution

of the above problem, vω, and it is possible for other perturbation directions to show no initial

growth. For now on we will refer to vω as the “optimal perturbation" vector, this is the unit vector

(or a direction vector) that produces the largest initial transient growth and specifies a perturbation

direction. The directional dependence in a system’s response to a perturbation has been highlighted

before (see: [4,68]), so it is natural to ask what happens to the possibility of transient growth if

we add more constraints on the direction of the perturbation vector. In optimization terms, this

translates to restricting the domain the optimization search is run on.

4.3.2.1. Modifying the optimization problem for sign-structured inputs. The last section applies

to any linear system, let us return to our particular problem which is a linearization of a system

about the equilibrium N∗

(4.2)
dN

dt
= A(N−N∗)

to explore how module structure influences the system response to a small pulse perturbation

away from the equilibrium N = N∗ + ∆N. We are interested in looking at what happens when you

restrict the sign structure so that every term in the input vector has the same sign parity. For our

particular linearization sign convention above, if we want to think about a removal perturbation

where we either leave a species untouched or subtract from the equilibrium population we now have

the condition

(∆N)i ≤ 0, ∀i.

In our optimization framework above, this is equivalent to adding the constraint (xi) ≤ 0, ∀i to

our optimization problem in eq. 4.1.

Our optimization problem is quadratic, so for practical purposes it does not matter if we choose

our constraint to be xi ≤ 0, ∀i or xi ≥ 0, ∀i so long as we do not have mixed signs in the vector

x, since xTH(A)x = (−xT )H(A)(−x). With this constraint on the domain we can no longer use
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the property in Equation 4.1, so we use gradient descent method and at each step projected the

prospective solution vector vγ onto the positive real numbers so that negative values in the vector are

set to zero. Since positive symmetric matrices will have an all positive solution vector to Equation 4.1,

we confirmed the modified gradient descent was working by making the checking that the solutions

ω(A), γ(A) and their corresponding vectors vγ and vω matched. One thing to worry about is if

the optimization algorithm finds a different or misses a parameter set that has positive numerical

abscissa for a removal perturbation. We ran the optimization gradient descent twice and got the

exact same number of results for every module except the generalist four species module (which

differed by 0.1 %).

At this point we would like to clarify the relationship between our parameters ω(A) and γ(A).

Since we are looking at a restricted domain of the same optimization problem in eq. 4.1, γ(A) ≤ ω(A)

and γ(A) may be negative, meaning that there are no all removal perturbations can result in a

positive initial proportional amplification. Both ω(A) and γ(A) describe the system behavior as

t → 0, and for linear systems of the form dx
dt = Ax, x(0) = x0, where x represents a population

vector then ω(A) is the maximum possible initial growth rate ω(A) = ( d
dt‖e

A‖)t=0. However, since

we are interested in perturbations of a system linearized about an equilibrium of the form in Equation

4.2, ω(A) and γ(A) describe by what factor the perturbation (N−N∗) is amplified at t = 0. As has

been brought up in the past, the perturbation that results in the greatest initial amplification my

not be the perturbation that results in the largest magnitude “peak" in the amplification envelope

(i.e. the trajectory of ‖eA‖ as it evolves with time) [68].

Another point of interest we will look into is resource pulses, which are low-frequency, large-

magnitude resource super-abundances that happen over a short time scale [98]. In our framework,

this would be represented as a positive direction vector of unit length, vr with a one in the last

index. Similarly to above, we are interested in whether this perturbation is initially amplified which

suggests that the system may experience a long transient phase away from the equilibrium before

returning. Using Equation 4.1 calculate the growth rate of our specific resource pulse perturbation as

d‖vr‖
dt

=
vTr H(A)vr

vTr vr
, vr := (1, 0, . . . , 0)T .
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Table 4.2. The relative percent positive coexistence equilibria categorized by tran-
sient behavior for eight simple Lotka-Volterra network modules. The “expected %" is
the proportion of stable reactive parameter sets we should expect to be reactive for
strict-removal experiments if the optimal perturbation vectors for SR systems were
distributed uniformly in S−dimensional space, S being the number of species in the
system. This is calculated as 1/2S .

(module) % SRI of S parameter
sets

% RSR of SRI Expected % for RSR of
SRI

generalist (4 species) 64.50 12.93 6.25
omnivory (3 species) 87.93 13.29 12.5
chain (3 species) 85.02 9.289 12.5
diamond (4 species) 95.72 20.78 6.25
omnivory (4 sp. 3rd L) 95.50 31.16 6.25
intraguild predation 96.29 31.74 6.25
omnivory (4 sp. 4th L) 97.55 19.94 6.25
chain (4 species) 95.75 15.84 6.25

S = stable systems (which include stable reactive and removal stable reactive)
SRI = stable reactive inclusive (which includes RSR sets)
RSR = removal stable reactive (reactive for species removal pulse perturbations).
Note: I ran the optimization gradient descent twice and got the exact same number of results for
every module except the generalist 4 species module (which differed by 0.1 %).

4.4. Results

4.4.1. Initial growth of perturbations. For the remainder of the paper we shall refer to

stable reactive systems which are reactive for removal perturbations as RSR (Removal Stable

Reactive) systems and those which are not reactive for the optimal removal perturbation simply

as SR (Stable Reactive) systems. These two types of system together form a partition of the SRI

(Stable Reactive, Inclusive) parameter sets and we will focus on comparing the characteristics of

these two subsets of SRI systems. These results reiterate previous finding that eigenvalues are poor

predictors of the initial transient behavior of an ecological community. A majority of the generated

stable systems we found to also be reactive (> 85% of the feasible stable systems found for every

module except the four species generalist, Table 4.2). The numerical abscissa represents an upper

bounder relative to γ(A), but it is notable the magnitude of γ(A) corresponding to the removal

perturbation vγ for RSR systems was much smaller than the magnitude than the standard numerical

abscissa ω(A), and this was true for all module structures (Table 4.3). Removal stable reactive
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Table 4.3. A comparison of the average numerical abscissa, ω(A), and removal
numerical abscissa, γ(A), for eight different food web module structures. We also
include the average rightmost eigenvalue for each dataset (last two columns).

ω(A) γ(A) Re (maxλi σ(A))

(module) SR RSR SR RSR SR RSR

generalist (4 species) 0.251 0.105 -0.127 0.055 -0.133 -0.046
omnivory (3 species) 0.205 0.402 -0.043 0.067 -0.073 -0.075
chain (3 species) 0.214 0.546 -0.048 0.133 -0.101 -0.166
diamond (4 species) 0.259 0.47 -0.03 0.079 -0.062 -0.054
omnivory (4 sp. 3rd L) 0.263 0.487 -0.031 0.088 -0.07 -0.079
intraguild predation 0.248 0.488 -0.031 0.092 -0.063 -0.063
omnivory (4 sp. 4th L) 0.275 0.284 -0.026 0.043 -0.061 -0.052
chain (4 species) 0.224 0.416 -0.028 0.085 -0.076 -0.091

SR = stable reactive systems (to the exclusion of removal stable reactive systems)
RSR = removal stable reactive (reactive for species removal pulse perturbations).

systems also had a higher average ω(A) than SR systems, except for the omnivory four species, 4th

level omnivore and the generalist four species modules.

4.4.2. Perturbation direction. In order to compare the RSR to the SR parameter sets, we

calculate the probability of randomly selecting a vector with all negative entries from S−dimensional

space as 1
2S

. This value only depends on the number of species in the system and gives the expected

proportion SRI system if the optimal perturbation vectors were uniformly distributed. Systems

which can show reactive transient dynamics in response to a removal perturbation happen more

likely than expected for the four-species modules, but not the three-species modules (Table 4.2).

We collected the optimal removal vector vγ and optimal perturbation vector vω for both the RSR

and SR parameter sets. Since we are interested in how structure and removal perturbation direction

might differ between the RSR and SR parameter sets, we have histograms of the magnitudes of vγ

in Figures 4.1 - 4.2. The direction of the RSR optimal vectors (vω) that result in the largest initial

growth were relatively agnostic to underlying module structure. Unlike the mixed-sign optimal

perturbation vector, the optimal removal vector almost never perturbs the basal species, regardless of

the network structure (Figure 4.1 - 4.2). Now, just because the optimal perturbation does not involve

perturbing the basal species does not exclude a system showing positive initial growth to a resource

pulse. However, we tried resource pulse perturbations of the form: just the basal species, just the
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second trophic level, and just the basal and second trophic level simultaneously and calculated the

Rayleigh quotient of each RSR system at the vector. For our model systems, reactivity to resource

pulses are rare and only happens if you perturb multiple trophic levels at once (less than 5% of the

RSR systems for each module, except for the four-species food chain and and four-species, 4th level

omnivory modules at 6.63% and 7.34% respectively).

One thing the SRS and SR systems shared is the structure of vγ involves removing the top

predator and the species with the smallest equilibrium density on the trophic level below it (Figure

4.1 - 4.2). This only fails for omnivory modules, where it is optimal to perturb the omnivore and its

prey directly below it regardless of the trophic level of the omnivore as can be see with the omnivory

four-species, 3rd level. module (Figure 4.2). During parameter set generation we noticed that for

modules with structural symmetries, like the diamond and four-species generalist, there was an

emergent pattern for the top predator to have the highest consumption rate of the most abundant

prey. In the case of modules where a predator feeds on multiple prey on the same trophic level

(i.e. diamond and generalist modules) the optimal removal perturbation targeted the rarest of the

prey species that results in positive growth in response (diamond 97.95% of the datatsets, generalist

100%).

4.4.3. Patterns in perturbation-growth response. So far we have found that perturbations

that remove the top predators at multiple trophic levels is the most likely going to result in transient

growth (or the slowest decay in the cases of the SR parameter sets). We summarize the sign of the

entries of vω and vγ for the SR and RSR systems and the corresponding response of the species

initial growth or decay Avω and Avγ in Table 4.4-4.7. Systems which show transient growth to

removal perturbations also have a characteristic growth-response sign pattern. With the exception

of the four species generalist, perturbation vγ of SR systems tend to remove the top predator

and the result is the consumer one trophic responds with positive growth and the top predator

increases back to equilibrium. Because of the way the initial growth is calculated, this suggests that

penalty the predator is experiencing due to the simultaneous removal of its prey is greater than

the benefit it would gain by the reduction of density-dependent mortality pressure in SRS systems.

Stated differently, interaction strength of the positive predator-prey link Ai,j is larger relative to the

intraspecific dampening, Ai,i, i.e. the ratio Ai,j/Ai,i is in general larger in RSR systems than it is in
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Figure 4.1. Distribution of the magnitude at each trophic level for the removal
perturbation (vγ) of the SR (Stable Reactive) and RSR parameter (Removal Stable
Reactive) sets. Modules with more than one species on the same trophic level
(generalist 4 sp. and diamond 4 sp.) were ordered so that higher equilibrium density
were assigned a lower index in the vγ vector. These histograms represent a minimum
of 300,000 parameter sets each.

SR systems. This pattern is strongly true in the food chain modules and the dominant pattern in

the intraguild predation, diamond, and omnivory modules (Table 4.4-4.7, rows for N3 and N4).
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Figure 4.2. Distribution of the magnitude at each trophic level for the removal
perturbation (vγ) of the SR (Stable Reactive) and RSR (Removal Stable Reactive)
parameter sets. These histograms represent a minimum of 300,000 parameter sets
each.

4.5. Discussion/Conclusions

This paper addresses how pulse perturbations may be amplified by a system, in particular,

how pulses which either only add or only remove species can be initially amplified by the system

dynamics. We define the optimal perturbation, vω as the pulse perturbation that results in the

largest initial transient growth in the two norm. This type of perturbation can be mixed sign i.e., this

would correspond to an experiment where you add members to one species and remove individuals

of another in the same perturbation. If the optimization is constrained to find the largest initial

growth for a pulse perturbation vector with all negatively-signed entries, we get the the removal

perturbation, vγ , (vγ)i ≤ 0. One benefit to thinking about removal or additive perturbations is that

it removes a level of complexity when considering how network attributes may contribute to the
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Chain, 3 sp.

optimal perturbation (vω) sign removal perturbation (vγ) sign
+ - - 0

G
ro
w
th

R
es
po

ns
e
Si
gn

+ 27.51 11.76 1.39 1.34 0.37 4.82 14.63 95.18
N1 - 0.42 3.48 70.68 83.42 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 85.0 0.0

+ 17.11 3.48 8.71 11.76 14.63 95.18 85.0 0.0
N2 - 53.99 83.42 20.19 1.34 0.36 4.82 0.01 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+ 11.03 83.49 60.07 3.41 85.0 0.0 0.0 0.0
N3 - 27.42 1.34 1.48 11.76 12.51 95.25 2.48 4.75

0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0

Omnivory, 3 sp.

optimal perturbation (vω) sign removal perturbation (vγ) sign
+ - - 0

G
ro
w
th

R
es
po

ns
e
Si
gn

+ 42.99 81.63 2.62 1.87 1.19 2.89 98.81 97.11
N1 - 0.01 0.45 54.38 16.04 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+ 0.02 0.37 39.25 81.71 44.07 97.11 54.74 0.0
N2 - 45.52 15.88 15.2 2.04 0.87 2.41 0.32 0.48

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+ 4.23 6.28 20.79 22.84 54.74 0.0 0.0 0.0
N3 - 61.02 11.74 13.95 59.14 33.07 97.98 12.19 2.02

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.4. This table explores the trophic-level patterns comparing the sign of the
optimal perturbation (vω) and removal perturbation (vγ) to the sign of the initial
growth response after the perturbation (calculated as Avω and Avγ , respectively.
We partition the reactive stable parameter sets into those that can be reactive for
removal perturbations (RSR - Removal Stable Reactive; grey columns) and those
which are not reactive for removal perturbations (SR - Stable reactive; white columns).
Column-wise represent the sign of the perturbation for the optimal and the removal
perturbation and row-wise is the sign of the initial growth response for the different
trophic levels starting from N1 (basal species) to Nn (top predator), e.g. For the
three species food chain, 95.25% of the RSR data sets negative growth response to
removal of the top predator (N3).

dynamics. It is easier to think about removing some proportion of the top predator and its prey and

following through the dynamics rather than juggling both additions and removals at once, which

may additive effects on the dynamics.

We can think of a pulse perturbation in two ways: 1) A sudden change in the systems underlying

parameters that would necessitate traveling to a new equilibrium; or 2) A sudden removal or addition

of population density. An important example of the first type of pulse perturbation is either opening

new marine reserve/closing a fishery. Multispecies fisheries usually removes from the top part of the

food chain [76] and single species fisheries may, depending on the catch method, perturb multiple
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Generalist, 4 sp.

optimal perturbation (vω) sign removal perturbation (vγ) sign
+ - - 0

G
ro
w
th

R
es
po

ns
e
Si
gn

+ 2.91 62.04 0.0 6.75 0.0 7.01 42.05 92.99
N1 - 0.0 0.26 97.09 30.95 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 57.95 0.0

+ 2.51 32.62 0.41 36.17 1.03 42.02 41.06 57.98
N2 - 0.58 5.85 96.51 25.37 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 57.91 0.0

+ 0.05 0.0 2.86 68.79 71.33 100.0 28.63 0.0
N3 - 10.55 31.21 86.53 0.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0

+ 0.35 12.32 2.37 8.54 28.63 0.0 0.0 0.0
N4 - 96.73 18.89 0.54 60.24 13.42 100.0 57.95 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Diamond, 4 sp.

optimal perturbation (vω) sign removal perturbation (vγ) sign
+ - - 0

G
ro
w
th

R
es
po

ns
e
Si
gn

+ 68.96 80.65 1.07 1.5 0.53 2.07 45.21 97.93
N1 - 0.11 1.07 29.87 16.79 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 54.26 0.0

+ 3.88 5.47 51.7 75.87 5.65 41.58 82.35 56.35
N2 - 26.64 15.8 17.78 2.86 0.52 2.07 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 11.47 0.0

+ 1.83 1.26 51.58 80.4 45.19 97.93 54.26 0.0
N3 - 28.52 16.61 18.07 1.72 0.08 0.39 0.45 1.68

0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0

+ 2.48 13.8 27.49 3.74 54.27 0.0 0.0 0.0
N4 - 57.44 13.44 12.58 69.02 33.71 97.94 12.02 2.06

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.5. This table explores the trophic-level patterns comparing the sign of the
optimal perturbation (vω) and removal perturbation (vγ) to the sign of the initial
growth response after the perturbation (calculated as Avω and Avγ , respectively).
We partition the reactive stable parameter sets into those that can be reactive for
removal perturbations (RSR - Removal Stable Reactive; grey columns) and those
which are not reactive for removal perturbations (SR - Stable reactive; white columns).
Column-wise represent the sign of the perturbation for the optimal and the removal
perturbation and row-wise is the sign of the initial growth response for the different
trophic levels starting from N1 (basal species) to Nn (top predator).

trophic levels due to unintended bycatch [10,53]. During the fished state the target fish populations

are kept artificially low with respect to the unfished state, corresponding to a removal perturbation

in sign. Once that fishing pressure is released, the system is free to travel back to the unfished

equilibrium. Other authors have noted that previously fished populations can experience a long

transient period of recovery inside newly placed marine reserves in single species models with multiple

age classes [96]. Our results that trophic level and food web structure (i.e. whether an omnivore is

perturbed rather than a top predator) may also need to be an additional consideration. Similarly
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Chain, 4 sp.

optimal perturbation (vω) sign removal perturbation (vγ) sign
+ - - 0

G
ro
w
th

R
es
po

ns
e
Si
gn

+ 31.29 28.48 2.74 8.28 0.35 6.82 2.94 46.27
N1 - 1.13 5.37 64.83 57.88 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 96.71 46.92

+ 25.52 19.0 8.62 6.82 2.94 46.27 13.75 46.92
N2 - 40.45 44.25 25.41 29.93 0.35 6.82 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 82.95 0.0

+ 17.43 40.85 45.93 22.25 13.77 46.92 82.97 0.0
N3 - 23.12 30.26 13.52 6.64 2.82 46.34 0.44 6.74

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+ 5.58 29.57 34.97 41.54 82.97 0.0 0.0 0.0
N4 - 53.37 8.37 6.08 20.52 11.54 47.32 5.05 45.94

0 0.0 0.0 0.0 0.0 0.0 0.0 0.44 6.74

Intraguild predation, 4 sp.

optimal perturbation (vω) sign removal perturbation (vγ) sign
+ - - 0

G
ro
w
th

R
es
po

ns
e
Si
gn

+ 80.53 79.09 1.32 0.6 0.21 0.66 46.04 99.34
N1 - 1.36 3.31 16.78 17.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 53.74 0.0

+ 8.07 13.54 67.09 72.04 21.73 65.85 78.06 33.49
N2 - 13.74 12.72 11.1 1.7 0.16 0.58 0.06 0.08

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+ 5.05 4.15 48.18 54.24 27.21 52.88 56.16 3.57
N3 - 15.05 10.38 31.72 31.22 14.47 42.32 2.17 1.22

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+ 3.24 10.07 15.12 5.96 53.74 0.0 0.0 0.0
N4 - 65.89 29.05 15.75 54.92 30.56 72.63 15.69 27.37

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.6. This table explores the trophic-level patterns comparing the sign of the
optimal perturbation (vω) and removal perturbation (vγ) to the sign of the initial
growth response after the perturbation (calculated as Avω and Avγ , respectively).
We partition the reactive stable parameter sets into those that can be reactive for
removal perturbations (RSR - Removal Stable Reactive; grey columns) and those
which are not reactive for removal perturbations (SR - Stable reactive; white columns).
Column-wise represent the sign of the perturbation for the optimal and the removal
perturbation and row-wise is the sign of the initial growth response for the different
trophic levels starting from N1 (basal species) to Nn (top predator).

to [96], the systems which where most likely to show transients in response to a removal perturbation

showed an initial paradoxical decline in response to a removal perturbation (Table 4.4 -4.7) which

should be accounted for before a marine reserve is judged to be a failure in the short term.

A common example of an addition pulse perturbation are low trophic level pulses due to climactic

or environmentally driven events (eg. extreme flooding, ENSO bringing moisture to normally

arid palaces [82]), temporal resource accumulation and release (eg. cicadas [97], fruit and seed

masting [52,75]), or spatial accumulation and release (eg. storms bringing seaweed to terrestrial
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Omnivory, 4 sp., 3rd lvl

optimal perturbation (vω) sign removal perturbation (vγ) sign
+ - - 0

G
ro
w
th

R
es
po

ns
e
Si
gn

+ 50.71 66.99 2.94 3.42 0.34 1.86 37.3 98.14
N1 - 0.43 0.34 45.92 29.25 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 62.36 0.0

+ 2.1 0.28 46.36 65.49 25.48 73.39 11.71 24.75
N2 - 39.4 22.97 12.13 11.27 0.3 1.71 0.04 0.15

0 0.0 0.0 0.0 0.0 0.11 0.0 62.36 0.0

+ 11.59 4.47 17.21 22.09 13.32 34.38 62.74 0.0
N3 - 43.3 30.37 27.9 43.07 20.7 64.09 3.23 1.53

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+ 10.22 27.7 44.68 7.14 62.75 0.0 0.0 0.0
N4 - 40.09 48.35 5.02 16.81 14.83 43.73 19.2 54.74

0 0.0 0.0 0.0 0.0 0.0 0.0 3.22 1.53

Omnivory, 4 sp., 4th lvl

optimal perturbation (vω) sign removal perturbation (vγ) sign
+ - - 0

G
ro
w
th

R
es
po

ns
e
Si
gn

+ 42.42 56.29 1.72 12.27 1.23 8.23 90.09 91.77
N1 - 0.82 7.88 55.04 23.56 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0 0.0 8.69 0.0

+ 9.48 16.12 26.77 25.84 4.52 12.31 38.54 82.12
N2 - 45.34 12.14 18.41 45.89 0.88 5.28 0.02 0.28

0 0.0 0.0 0.0 0.0 0.0 0.0 56.04 0.0

+ 6.55 7.81 21.07 18.74 38.57 82.42 56.04 0.0
N3 - 36.73 57.89 35.66 15.56 4.16 12.34 1.22 5.24

0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0

+ 4.52 33.05 39.25 34.73 56.05 0.0 0.0 0.0
N4 - 54.95 17.5 1.28 14.73 30.43 83.92 13.16 16.08

0 0.0 0.0 0.0 0.0 0.0 0.0 0.36 0.0

Table 4.7. This table explores the trophic-level patterns comparing the sign of the
optimal perturbation (vω) and removal perturbation (vγ) to the sign of the initial
growth response after the perturbation (calculated as Avω and Avγ , respectively).
We partition the reactive stable parameter sets into those that can be reactive for
removal perturbations (RSR - Removal Stable Reactive; grey columns) and those
which are not reactive for removal perturbations (SR - Stable reactive; white columns).
Column-wise represent the sign of the perturbation for the optimal and the removal
perturbation and row-wise is the sign of the initial growth response for the different
trophic levels starting from N1 (basal species) to Nn (top predator).

locations [86]); see also an excellent review in [98]. Our results suggest that resource pulses that

perturb up two the bottom two trophic levels is not likely to result in transient growth, despite the

systems tested being both classically reactive and reactive for removal perturbations involving the

top trophic levels. Stated in terms of stability, this suggests that most systems will be both resistant

and resilient to resource pulses.

There are a few necessary simplifications we made in our model that may not accurately

represent real systems, one thing our model did not account for was behavioral responses to a
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pulses. We modeled closed systems and in practice the immigration of mobile consumers into the

system experiencing the resource pulse is important for the consumer numerical response to resource

pulses [99]. Another important behavioral response is rapid changes in diet, which would represent a

network structure rewiring in our model rather than a basic population perturbation [23]. Another

consideration is pulse duration, we focused on the short end of pulse timescale it is important to note

that actual ecological disturbances come in a continuous range of time and spatial scales, frequencies,

and magnitudes [48,99].

In this paper we describe a subclass of systems where doing a removal experiment on the top

couple of trophic levels uncovers transient dynamics. This property is mostly network structure-

agnostic and implies classical reactivity. The direction of the perturbation matters, just because a

system is reactive does not mean it will be reactive for removal perturbations. However, systems that

are reactive for removal perturbations happen more frequently than expected, and we confirm that

reactive systems make up the majority of the stable parameter sets found. Eigenvalues can be used to

describe asymptotic behavior in modeled systems, but they are only good for describing short-term

dynamics if a system is normal, which in our case requires the Jacobian matrix to commute with its

inverse [92]. For the simple predator-prey systems covered by this paper, normality requires the

Jacobian of a modeled systems to have a high degree of symmetry (i.e. orthogonal, symmetric, or

skew-symmetric) that is not likely to happen given natural constraints on body size, stoichiometry

and assimilation efficiency relationships between predators and prey [12,31,103].
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CHAPTER 5

Food web structure, nonnormality, and reactivity

In Chapter 2 we discussed nonnormality as necessary but not sufficient condition for transient

amplification in systems governed by linear ordinary differential equations or linearizations about an

equilibrium. Not all nonnormal systems are doomed to showing wild transients as seen in Section

2.5.4 and not all systems with wild transients are doomed to stability related to parameter sensitivity

as shown in Figure 2.5. In this chapter we finally explore the consequences for nonnormality directly

for simulated small ecological networks.

Figure 5.1. The eight modules whose dynamics are explored in this paper: (a) three
species food chain, (b) three species omnivory, (c) four species generalist predator, (d)
four species diamond, (e) four species food chain, (f) four species intraguild predation,
(g) four species omnivory, third level omnivore, (h) four species omnivory, fourth level
omnivore.
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Table 5.1. Symbols used in this chapter

A Generic n× n matrix
Λ n× n matrix with the eigenvalues of A on the diagonal
V n× n matrix with the eigenvectors of A as the columns
Λ(.) The set of eigenvalues
λi(.) generic eigenvalue
Λε(.) The set of ε-pseudospectra
ΛR
ε (.) The set of real-structured ε-pseudospectra

ω(.) The numerical abscissa or reactivity of a matrix
α(.) The spectral abscissa, α(A) = maxiRe(λi(A))
αε(.) The ε-pseudospectral abscissa
K(.) The Kriess constant of a matrix
κ(.) The condition number of a matrix
depF (.) Henrici’s departure from normality of a matrix
σ(.) The set of singular values of a matrix

5.1. Introduction

Why do we observe the assemblages of species we do in the wild? What sort of things allow

ecological communities resist change? Why are there so many species? Ever since Robert May made

the observation in the 1970’s that complexity alone does not predict stable ecosystems [62,63] an

enormous amount of research and computational effort has been spent to figure out what about the

structure and patterns of interacting species do confer stability [42,67]. Frequently, these types of

studies have one thing in common, at some point conclusions are drawn based on properties of a set

of matrices that represent the Jacobian of a system linearized about an equilibrium [2,34,62,80,88].

The goal of these studies is generally twofold. First is to discover what details in the structure

and interactions do we need to include in order for a system to be feasible, i.e. the Jacobian governing

the system dynamics has all negative eigenvalues (later this definition was extended to include

something about guaranteeing the equilibrium having nonnegative entries). The second goal is to

gain some understanding about the behavior of the model system in response to perturbations.

Ecological systems are constantly subject to perturbations, most metrics of stability are defined in

the context of how a system responds to disturbances. We say a system has high resilience if the

recovery time after a disturbance is short [78]. The rightmost eigenvalue of the Jacobian A (λ1),

which we will now refer to as the spectral abscissa (α(A) = maxRe(λ1(A))), has historically been

used as a metric of resilience, since it represents the asymptotic decay of a perturbation:
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lim
t→∞

t−1 log ‖etA‖ = α(A).

Originally this was used in [79] in the context of how long it takes for the solution to decay by a

factor of 1/e in the time interval (return time = −1/maxRe(λ1(A))). Later, Neubert and Caswell

introduced the reactivity (otherwise known as the numerical abscissa) as a metric of resilience that

at least takes into account possible nonnormal behavior which we have already discussed in detail in

previous chapters, but is defined as the maximum possible initial growth after a perturbation of the

equilibrium

max
‖x‖6=0

[
1

‖x‖
d‖x‖

dt

]∣∣∣∣
t=0

= lim
t→0+

t−1 log ‖etA‖ = ω(A).

The other aspect of stability introduced in Chapter 4 is something called resistance, which

describes the magnitude of the measured system response to a disturbance; systems that have a large

magnitude response to a perturbation are said to not be very resistant [77]. The Kreiss constant,

which is a lower bound on the maximum possible value ‖etA‖ takes on it its time evolution, could be

considered a metric of resistance (although has yet to be explicitly stated as such in an ecological

context) [89].

As we have shown in Chapter 2, pseudospectra are a tool that gives a more nuanced view of

system dynamics and stability as well as providing a mathematical understanding of how the two can

be connected. This chapter investigates the role of nonnormality plays in the sensitivity of ecological

networks to perturbations, and following is a list of new things we can check in the framework of

pseudospectra that were unavailable to us before.

First, it is possible for a continuous-time linear dynamical system could be nonnormal and not

display sensitivity to perturbations, this represents a system that is both resilient and resistant.

For avoiding transient amplification of perturbations to the equilibrium (pulse perturbations), the

system is nonnormal in a way that its pseudospectra would overlap into the positive real side, but

its eigenvalues are bounded away enough from the imaginary axis so that this does not result in a

positive numerical abscissa. This case may still have problems with distance to instability, i.e. press

perturbations, that change the underlying system parameters, but would not amplify perturbations
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to the equilibrium. Another case would be similar to the example we gave in Figure 2.7, where a

system was very nonnormal, but this was concentrated away from the real axis. We approach this

question in a general sense by seeing if there was a correlation between reactivity and nonnormality

for our parameter sets. To test the specific question about parameter sensitivity for systems which

do not show transient growth we compared the real distance to instability to introduced in Section

2.3 to the spectral abscissa for a sample of generalized Lotka-Volterra systems of different network

structures that have negative reactivity.

Second there was the possibility that a system could amplify perturbations to its equilibrium,

but would be robust to real perturbations of its parameters (a tendency to show transient dynamics,

but not be in danger of losing stability in the sense of its rightmost eigenvalue becoming positive e.g.

Figure 2.5). This sort of system may amplify perturbations to its equilibrium, so may appear to

neither be resistant nor resilient, but small changes to the underlying parameters would not cause

the system to lose mathematical stability. The fact that there is no ecological stability jargon related

to this sort of behavior [26] suggests that this may not have every been considered before. Transient

amplification of perturbations without underlying parameter sensitivity is possible when the real

stability radius is less than the complex stability radius. We check this indirectly by comparing

calculating the real distance to instability to the distance to singularity, which when they are close

sandwiches the complex distance to instability.

Finally, there is the question of what contributes to nonnormality of in model food webs, a

question that has not yet been fully explored [85]. We hypothesize asymmetry in predator-prey

interactions may contribute to nonnormality in the respective Jacobians. This sort of asymmetry

would be due tobody size ratio, assimilation efficiency or metabolics which may be important to

determining trophic interactions [12,31,103], which is important because it could represent a source

of unavoidable nonnormality. We test this by introducing a parameter that controls the asymmetry

in predator-prey interactions and compare it to a metric of nonnormality.

5.2. Methods

It is now time we start checking for the consequences of normality we provided intuition for in

Chapter 2. We will repeat the relevant equations and theorems so that they are contained in this
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Table 5.2. A reference table for the model used in this chapter. Details on parameter
set generation can be found in Chapter 3. We use the generalized Lotka-Volterra
equations to describe the dynamics of eight small network modules of 3-4 species
given by dNi

dt = Ni

(
ri +

∑
j aijNj

)
, i = 1, . . . , S for S interacting species. This

was done for the eight different network module structures in Figure 3.1.

parameter description calculation

ri growth rate of basal species (+)/starvation rates of nonbasal species (-) -
r the S × 1 vector of ri’s

aij per-capita consumption rate of predator on prey -
cs asymmetry parameter controlling assimilation efficiency/body size ratio -
aji per-capita consumption rate of predator on prey (+)* csaji
[aij] S × S matrix of interaction parameters

Ni density of species i -
N∗ the S × 1 vector of equilibrium densities N∗ = −[aij]

−1r
A the S × S Jacobian matrix Aij = N∗i aij

* = sign clarifications

chapter, but for the intuition please refer back to the relevant chapter-section pointers given in the

text.

5.2.1. Model Description. We use the model and the parameter sets generated for eight

difference small network modules (Figure 5.1) as outlined in Chapter 3. Table 5.2 has a notation

summary of the model for reference.

In Chapter 4 we found that for small ecological systems governed by the generalized Lotka-Volterra

equations, systems with a positive numerical abscissa or “reactivity” can be further partitioned

into systems which are reactive for removal perturbations (Removal Stable Reactive, or RSR) and

systems which are not (Stable Reactive or SR). These two subgroups together make up what we

call the Stable Reactive Inclusive (SRI) parameter sets. We will continue with this partitioning for

aspects of this chapter to study the stability properties of small ecological communities since these

three types of systems show distinct transient dynamics, but for the purposes of judging stability

the separation may be superficial.

5.2.2. Measuring nonnormality. Reactivity has had an important place in theoretical ecol-

ogy for a while, it is an easy to calculate metric that determines whether a system can amplify
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perturbations. However, transient amplification of perturbations it is only one symptom of nonnor-

mality and it is possible for a system to not be reactive and still be closer to dynamical instability

than expected. To explore this possibility, for all parameter sets we generated we calculated Henrici’s

departure from normality

depF (A) = ‖R‖2F =
√
‖A‖2F − ‖Λ‖2F =

( N∑
j=1

σ2j −
N∑
j=1

|λj |2
)

where {Λj} and {λj} are the singular and eigenvalues of A, respectively (See Section 2.1.1).

Henrici’s departure from normality is not the only scalar metric of nonnormality, it would also be

reasonable to use the condition number of the matrix of eigenvectors introduced as Equation 2.4

in Section 2.1 but that happens to be discontinuous with respect to the matrix entries [92]. We

are also interested what biological aspects lead to nonnormality in the Jacobian associated with

the dynamics of model ecological communities. One plausible factor that breaks the symmetry in

species interactions is such as body size ratios between a consumer and its resource and conversion

efficiency [12,31,103] which in our model is represented by a coupling symmetry parameter cs

(Table 5.2).

5.2.3. Real distance to instability. Thus far we have been concerned with the influence

of nonnormality on transient dynamics, now we will consider the influence of nonnormality on

dynamical stability. In Chapter 3 we considered the generalized Lotka-Volterra equations (Table 5.2)

where the linearization of this nonlinear systems of equations takes the form

x(t) = etAx0, x(0) = x0

and A is the S×S Jacobian matrix calculated as in (Table 5.2, where S is the number of species

in the network; bottom row). With our model setup, each entry of the Jacobian matrix, Aij , is

interpreted as the direct effect of the average species individual, j, on species i’s population growth

rate [74]. What if we measured some of the parameters incorrectly when we set up the model? If

some of the parameters change slightly, do we expect to have the same asymptotic dynamics, i.e.

is the system still stable? These sort of questions can be framed as perturbations of the Jacobian

matrix A. Suppose we have a matrix E summarizing all the possible small (‖E‖ < ε) changes to A
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so that the perturbed system can be written A + E. The combination of spectra associated all such

perturbed matrices, Λ(A + E) for given ε, ‖E‖ < ε,E ∈ CS×S is the ε-pseudospectra of A, Λε(A).

As covered in Chapter 2, this is equivalent to the pseudoeigenvalue and resolvent-norm definitions of

pseudospectra (Theorem 5.2.1) which we will restate here for convenience:

Theorem 5.2.1. For any matrix A ∈ CN×N the following definitions of pseudospectra are

equivalent:

• The set of values where the resolvent is large

Λε(A) := {z ∈ C : ‖(zI−A)−1‖ > ε−1},

• The set of values that are the eigenvalues of a perturbed matrix A + E,E ∈ CN×N

(5.1) Λε(A) := {z ∈ C : z ∈ Λ(A + E), where ‖E‖ < ε}

• The set of “pseudoeigenvalues” of A with corresponding “pseudoeigenvectors.” Let v ∈

CN , ‖v‖ = 1, then

Λε(A) := {z ∈ C : ‖(z −A)v‖ < ε}

• When ‖ · ‖ = ‖ · ‖2, we can define the ε-pseudospectral set in terms of the smallest singular

value of (zI−A)

(5.2) Λε(A) := {z ∈ C : σmin(zI−A) < ε}.

Now for our particular problem of parameter sensitivity, we are only interested in real-structured

perturbations of A so that A + E,E ∈ RN×N and we are in particular interested in how close A

is to instability for small real perturbations of its parameters. There is one important assumption

buried in this setup, this distance to instability as written below is limited to the real numbers, but

locations of the entries in our perturbation matrix E is not constrained. Therefore, for the purposes
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of a biological interpretation, the perturbations include what happens if we guessed the network

topology of the species interactions wrong.

Calculation of the real distance to instability is an optimization problem [83]. Let σ2(.) denote

the second-largest singular value, then the 2-norm real stability radius

(5.3) rR(A) =

(
sup

Re(z)=0
inf

β∈(0,1]
σ2

( Re((zI−A)−1) −βIm((zI−A)−1)

β−1Im((zI−A)−1) Re((zI−A)−1)

))−1

is unimodal (any local minimum is also a global minimum) [83]. To put into words, we are finding

the smallest ε-magnitude real perturbation matrix that makes the rightmost eigenvalue of A have

zero real part, so we must do a search over the imaginary axis as well as over β ∈ (0, 1]. For more

details, this is Equation 2.10 in Section 2.3 .

We implemented Equation 2.10 in the Julia programming language, and the code can be found

in Appendix D.

5.2.4. Distance to instability, distance to singularity, and press perturbations. A

related problem to distance to instability with ecologically significant interpretations is distance to

singularity. The distance to singularity of A is defined as the

εsingular := min{ε := ‖E‖ : A + E is singular}.

The straightforward pseudospectral interpretation is for which ε does the boundary of Λε(A)

pass through the origin, i.e. in terms of the resolvent definition of pseudospectra we have

‖(zI−A)−1‖ = ‖(0I−A)−1‖ = ‖A−1‖ = ε−1

so ‖E‖ = ‖A−1‖−1 or the smallest singular value of A or σmin(A) in the 2-norm. While the

distance to instability tells us something about whether a system is in danger of developing a positive

eigenvalue, the distance to singularity is most useful as a proxy for ill-conditioning. If ‖A−1‖ is

large, then A−1 will have some large entries and anything depending on this inverse will be expected

to amplify errors.
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To give a clear example of the difference between the distance to instability and distance to

singularity consider the two normal matrices B1 and B2

B1 =


(−0.01 + 1i) 0 0

0 (−0.01− 1i) 0

0 0 −1

 , B2 =


(−0.01 + 0.00001i) 0 0

0 (−0.01− 0.00001i) 0

0 0 −1

 .
We chose diagonal matrices so we are guaranteed the difficulties of nonnormality are not an

issue. The matrices B1 and B2 have the same real distance (and complex distance) to instability

(rR(A) = 0.01), however, ‖B1
−1‖−1 = 1 and B2 is much closer to singularity with ‖B2

−1‖−1 = 0.01.

Note that distance to singularity has nothing to do with transient behavior in isolation, plotting

‖etBi‖ w.r.t. t for both of these matrices results in the exact same curve. Where distance to

singularity becomes useful is that it turns out that the negative inverse of the Jacobian, −A−1, has

a nice ecological interpretation in its relationship to press perturbations.

A press perturbation is sustained alteration of a species density or numbers over time, it represents

a chronic change (e.g. the removal of all of a particular species, or the constant addition of a number

of individuals to a system); this is very different then the aforementioned pulse perturbations [?].

Mathematically, a press perturbation takes on the form

dNi

dt
= f(N), i 6= j(5.4)

dNj

dt
= f(N) + Ij , i = j

and if we want to determine the change in the equilibrium density of each species N∗i with

respect to this chronic change in density of species j, Ij , this is

∂N∗i
∂Ij

= −(A−1)ij
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which can be interpreted as the net effect of a sustained unit increase in species j’s population

growth rate on species i’s population size (with all species responding) [11] [102] [74]. Essentially,

the largest entries in the inverse describe which effects on species i are most important and if A is

ill-conditioned these can be quite large.

5.2.5. Nonnormality, reactivity, and eigenvalues. While this chapter is focused on stabil-

ity, it is impossible to avoid talking about the consequences of nonnormality on transient dynamics

and we include this section to help interpret the coming results. First we will consider the influence

of shift the spectrum and leaving the eigenvectors untouched. For a given shift of the spectrum, ζ so

that we have (A− ζI), we can expect a shift in the reactivity, or numerical abscissa (ω(A)) by the

same amount since

ωζ(A) = ωζ(H(A− ζI)) = λ1(
1
2((A− ζI) + (A− ζI)∗)) = λ1(

1
2((A + A∗− 2ζI))) = λ1(H(A)− ζI)

where λ1(.) corresponds to taking the rightmost eigenvalue, and therefore ωζ(A) = ω(A)− ζ. So

for two A with the exact same eigenvectors, we expect the A with rightmost eigenvalue closer to

the imaginary axis to have a faster initial growth rate in ‖etA‖ w.r.t. t and expect the transient

trajectory to decay slower since

‖etA‖ ≥ etα(A), ∀t ≥ 0

where α(A) is the spectral abscissa (rightmost eigenvalue) of A.

Less trivially proved than the first two examples is that due to ( [92], §15), and is a slight

modification of Theorem 5.2.2 introduced in Chapter 2.5.3.

Theorem 5.2.2. ( [92], §15) Let A be a matrix, if ‖(zI −A)−1‖ = K/(Re(z) − ζ) for some

z ∈ C with Re(z) > ζ and K > 1, then

sup
t≥0
‖e−ζtetA‖ ≥ K.

The ε-pseudospectral abscissa αε(A) is finite for each ε > 0. Taking the rightmost value of z in

the complex plane of the level contour ‖(zI−A)−1‖ gives us the convenient lower bound
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(5.5) sup
t≥0
‖e−ζtetA‖ ≥ (αε(A)− ζ)/ε ∀ε > 0.

Now, we have already mentioned the Kreiss constant. If we take the supremum over ε > 0 of the

above we get the second definition of the Kreiss constant

K(A) := sup
ε>0

(αε(A)− ζ)/ε = sup
Re(z)>ζ

(Re(z)− ζ)‖(zI−A)−1‖,

so that

(5.6) sup
t≥0
‖e−ζtetA‖ ≥ K(A).

If a = Re(z), then for any τ > 0,

(5.7) sup
0<t≤τ

‖e−ζtetA‖ ≥ e(a−ζ)τ
/(

1 +
e(a−ζ)τ − 1

K

)
.

To sum things up, for two systems with equal eigenvectors but one system with a smaller spectral

abscissa, we also expect the lower bound on maximum value attained by ‖etA‖ to increase, as well

as the initial transient growth rate, and take a longer time to decay back to equilibrium.

5.2.6. Data generation. In addition to tracking the numerical abscissa (reactivity), the

asymmetry in interaction strengths due to conversion efficiency or body size differences (cs), and the

rightmost eigenvalue mentioned for all parameter sets generated in Chapter 3, we calculated the

distance to instability and singularity for a subset of 10,000 parameter sets for the each of the Stable,

Stable Reactive, and Removal Stable Reactive datasets of our eight network module structures (for

a total of 240,000 parameter sets). Taking a subset of the data for the distance to instability was

absolutely necessary due needing to run an optimization for each one. While each matrix associated

with the problem was small (8× 8 matrices max), we ended up tuning the algorithm so that the

optimization for the search for σ2 of the inner matrix of Equation 5.3 was highly accurate and the
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Figure 5.2. I asked my friend and optimization confidant Jeff for the best way
to go about 30,000 min max problems and his response was "Can you buy 30,000
computers?" ... Then I said "Well, actually I need to do that eight times for a
total of 240,000 optimizations" and his response was this image. This image is also
representative of my cpu after 26 hours of all eight cores at 100% load. We live in a
blessed time of computing where multi-core processors are standard and parallelizing
your code is trivially easy in Julia.

naive grid search over the imaginary axis was coarser, resulting in the distance to instability being

an overestimate (see Section 2.4.2 for more details).

5.3. Results

5.3.1. Coupling asymmetry and nonnormality. The relationship between nonnormality

in the Jacobian and asymmetry in predator-prey interaction parameters cs is somewhat opaque,

but there are a couple of patterns. Figure 5.3 shows a histogram for Henrici’s departure from

normality depF (A) vs the coupling symmetry due to conversion efficiency or body size ratios cs.

The number of trophic levels in the module is related to both how much asymmetry in the predator

prey relationship is tolerated (how far left the data extends on the cs axis, past which the system

is either unfeasible or there is one or more species is extinct at equilibrium) and how extreme of

the nonnormality can get on the low end of cs. Plotting the real part of the rightmost eigenvalue,

the spectral abscissa α(A), vs cs in Figure 5.4 suggests that the cutoff behavior of cs is due to loss

of stability (an eigenvalue becomes positive). We divided the data based on reactivity (Stable vs
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Figure 5.3. Histograms showing Henrici’s departure from normality depF (A) of
the Jacobian vs the coupling symmetry due to conversion efficiency or body size
ratios cs for our dataset of parameterized generalized Lotka-Volterra equations. These
histograms show the full parameter sets for all eight network module structures and
have been scaled to a probability density function for easier comparison. We split
the data down the line for reactive (SRI - Stable Reactive Inclusive; ω(A) > 0) and
nonreactive (S-Stable; ω(A) < 0). The scale on the histogram was chosen for optimal
visual contrast.

Stable Reactive Inclusive), and found that for each module there is a cutoff cs where anything more

asymmetrical results in systems which will amplify some perturbations.

Figures 5.3 and 5.4 suggest a interesting relationship between the eigenvalues and nonnormality

in model small communities due to limitations on coupling symmetry cs, where a smaller α(A) is

associated with higher nonnormality. Figure 5.5 plots α(A) vs Henrici’s departure from normality,

depF (A). While most of the data for each network module sits below depF (A) = 2 the extremes

show a relationship between the spectra abscissa and increasing nonnormality. As we show in Chapter

2.5.4, an extremely nonnormal system is not necessarily doomed to a large growth in response to

some perturbations, however that does seem to be the case for small network modules governed
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Figure 5.4. Histograms showing the spectral abscissa α(A) of the Jacobian vs the
coupling symmetry due to conversion efficiency or body size ratios cs for our dataset
of parameterized generalized Lotka-Volterra equations. These histograms show the
full parameter sets for all eight network module structures and have been scaled to a
probability density function for easier comparison. We split the data down the line
for reactive (SRI - Stable Reactive Inclusive; ω(A) > 0) and nonreactive (S-Stable;
ω(A) < 0). The scale on the heatmap was chosen for optimal visual contrast. The
rightmost eigenvalues for the four species generalist extend past the scale shown.

by the generalized Lotka-Volterra equations and the relationship is surprisingly linear (Figure 5.6).

Figuring out exactly why depF (A) and ω(A) have this relationship is buried somewhere in how the

eigenvalues of hermitian real part of A, H(A) relates to the singular values of A for our data set.

5.3.2. Nonnormality and distance to instability. A useful consequence of pseudospectra

is that we can relate the spectrum of our matrix of study to the stability of small perturbations of

matrix elements, allowing us to answer questions about parameter sensitivity. Figures ?? and ??

show histograms of the ratio, rR(A)/|α(A)| to get an idea of how well the spectral abscissa would

do as an indicator for how close a system is to instability based on perturbations of its parameters.

Since for the purposes of stability, the location of spectra in the complex plane also matters, we also
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Figure 5.5. Histograms showing Henrici’s departure from normality depF (A) of the
Jacobian vs the real part of the spectral abscissa α(A) for our dataset of parameterized
generalized Lotka-Volterra equations. These histograms show the full parameter sets
for all eight network module structures and have been scaled to a probability density
function for easier comparison. The scale on the heatmap was chosen for optimal
visual contrast. The rightmost eigenvalues for the four species generalist extend past
the scale shown.

plot a count 2D histogram of the absolute value of the spectral abscissa (|α(A)| and the real distance

to instability (rR(A)) for our eight network modules divided into the three sub categories of different

transient behavior: stable (S), stable reactive (SR), and removal stable reactive (RSR) in Figures

5.9 and 5.10. These figures make one well-known bound obvious: The real or complex distance to

instability can not be more than the distance of the rightmost eigenvalue to the imaginary axis and

this is due to the fundamental problem of a nonnormal system where perturbing an system of a
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Figure 5.6. This figure displays 2D histograms of the numerical abscissa/reactivity
ω(A) vs Henrici’s departure from normality depF (A) of the Jacobian, ω(A). The
results are scaled to a discrete probability distribution function to show where the
density of points are and we display the marginal histograms to show where the data
are accumulating.

matrix of magnitude ε results in a more-ε-shift in the spectrum. Stated formally in set notation, we

give this theorem as it appears in [92].

Theorem 5.3.1. Take ∆ε to be the open ε-ball
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Figure 5.7. This figures shows the ratio rR(A)/|α(A)|, between the real distance
to instability, rR and the spectral abscissa αA for several module structures. The
histograms are scaled to a probability density function so that the total area of the
bins is 1. All of these parameter sets are of the same size, each histogram represents
a subset of 10,000 points.

∆ε = {z ∈ C : |z| < ε}

then for any A ∈ CS×S we have

Λε(A) ⊇ Λ(A) + ∆ε, ∀ε > 0
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Figure 5.8. This figures shows the ratio rR(A)/|α(A)|, between the real distance
to instability, rR and the spectral abscissa αA for several module structures. The
histograms are scaled to a probability density function so that the total area of the
bins is 1. All of these parameter sets are of the same size, each histogram represents
a subset of 10,000 points.

and if A is normal and ‖.‖ = ‖.‖2, then

Λε(A) = Λ(A) + ∆ε, ∀ε > 0.
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Figure 5.9. This figure gives a frequency 2D histogram the real distance to instability
(rR(A)) vs the absolute value of the spectral abscissa |α(A)| for several module
structures. For nearly normal systems, these points should be near the y = x line,
however, it is clear that even stable, nonreactive systems can be closer to instability
than their spectrum suggests. All of these parameter sets are of the same size, each
histogram represents a subset of 10,000 points.

So in our case, if we have the smallest ε such that Λε(A) touches the imaginary axis then the

rightmost eigenvalue(s) (the spectral abscissa, α(A)) is more-than-ε away from the imaginary axis

thus rR(A) ≤ |α(A)|.

The most striking about Figures 5.9 and 5.10 is that even for the stable, non-reactive modules

the eigenvalues can still fail to give a good estimate for the real distance to instability, with the
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Figure 5.10. This figure gives a frequency 2D histogram the real distance to
instability (rR(A)) vs the absolute value of the spectral abscissa |α(A)| for several
module structures. For nearly normal systems, these points should be near the
y = x line, however, it is clear that even stable, nonreactive systems can be closer to
instability than their spectrum suggests. All of these parameter sets are of the same
size, each histogram represents a subset of 10,000 points.

exception for the parameter sets that were already close to instability. It is likely that for the

parameter sets close to instability, they end up with a positive numerical abscissa and get categorized

as stable reactive since all of the parameter sets found have at least some (if not small) amount

of nonnormality. However, there is a remarkable similarity between the possible locations the

real distance to instability vs spectral abscissa in the upper end of the spectral abscissa for our
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data showing distinctly different types of transient dynamics (S, SR, and RSR). This means it is

possible to find two systems which have the same spectral distance to instability and same level of

sensitivity to perturbations of the Jacobian, but one is guaranteed to amplify some perturbations to

the equilibrium and one is guaranteed to not.

In the previous chapter we found a sub-type of system with positive numerical abscissa which

shows transient amplification of removal perturbations (RSR-removal stable reactive) which happens

more than one might expect based on geometrical arguments. Unlike the structure of the removal

perturbation that can result in transients, comparing the SR and RSR columns of Figures 5.9 and

5.10 does not bring any coherent pattern in the influence of network structure and the stability

properties of SR and RSR systems.

One thing that is worth mentioning is that while these plots are representative of their subgroups

categorized by their transient dynamics, they are not representative of the data set as a whole. As

shown in a previous chapter (Table 4.2), and in the four species food webs overwhelming majority of

the parameter sets found have a positive numerical abscissa and 15-30% of those can be categorized

as RSR (removal stable reactive). So the middle columns of Figures 5.9, 5.10, 5.11, and 5.12 for the

SR parameter sets provide an idea what most of the behavior of the whole data set.

5.3.3. Nonnormality and distance to singularity. We compare the distance to instability,

rR(A), to the distance to singularity, ‖A−1‖−1, in Figures 5.11 and 5.12. Similar to our results in

Figures 5.9 and 5.10, we expect the distance to singularity to be an upper bound for the distance to

instability. This relationship is most easily understood by thinking about where the ε-pseudospectra

of A, Λε(A) touches imaginary axis (the distance to instability is the smallest such ε for Λε(A) to

exactly touch the origin). This gives us two cases: 1) The location of rightmost point of the Λε(A) is

dominated by a real eigenvalue and its associated eigenvectors or a complex pair of eigenvalues that

has an imaginary part near zero so that the crossing of Λε(A) and happens exactly at the origin.

This is the case where the complex distance to instability and distance to singularity are the exact

same (Figure 5.15 shows the pseudospectra for a case like this). 2) The location of rightmost point

of the Λε(A) is dominated by a pair of complex eigenvalues and their associated eigenvectors and

touches the imaginary axis in two locations for a given ε and curves into the negative part of the

real axis - thereby excluding the origin (Figure 5.14 has an example, Figure 2.5 in Chapter 2 has
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Figure 5.11. This figure gives a frequency 2D histogram the real distance to insta-
bility (rR(A)) vs the distance to singularity ‖A−1‖−1 for several module structures.
For nearly normal systems, these points should be near the y = x line, however, it
is clear that even stable, nonreactive systems can be closer to instability than their
spectrum suggests. All of these parameter sets are of the same size, each histogram
represents a subset of 10,000 points.

an even clearer example). In this case the distance to singularity is greater than the distance to

instability since we would have to increase ε to push Λε(A) to the origin.

As mentioned before, the real distance to instability is bounded above by the complex distance

to instability, so we have rR(A) ≤ rC(A) ≤ ‖A−1‖−1. The clustering of the points along the y = x

axis in our results suggests that our real distance to instability is close to the complex distance to
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Figure 5.12. This figure gives a frequency 2D histogram the real distance to insta-
bility (rR(A)) vs the distance to singularity ‖A−1‖−1 for several module structures.
For nearly normal systems, these points should be near the y = x line, however, it
is clear that even stable, nonreactive systems can be closer to instability than their
spectrum suggests. All of these parameter sets are of the same size, each histogram
represents a subset of 10,000 points.

instability in many cases. Figure 5.11 shows an interesting situation where for many of the plots we

see a line with sparse feathering despite each plot representing an equal amount of points, this is

especially true for three species omnivory module. We also found that the in most cases the real

distance to instability and the distance to singularity were equal or near equal for most of the cases

except for when the distance to instability gets small, which is responsible for the “wedge” pattern
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of points. This suggests a general pattern that when system is dangerously near instability, if the

rightmost eigenvalues are a complex pair, they have a very small imaginary part.

5.3.4. Measurements of transient dynamics and norm dependence. In this final section

we give some examples of the real and complex pseudospectra for a couple of examples and look at

the transient trajectory. Pseudospectra are defined in terms of a norm (Equation 2.5) and therefore

are a norm-dependent way of describing behavior, a system can show transient amplification of

perturbations in one norm and not another. As mentioned in Chapter 2, there is no obviously better

choice of norm for the purposes of ecologists studying transient dynamics which other authors have

noted in the past [89]. Historically, ecologists have used the 2-norm when studying dynamics related

to nonnormality ( [5,7,19,68,70,71,85,88,95]), although [89] does make use of the 1-norm for

both the initial growth and Kreiss bound. Neubert and Caswell utilize the nice relationship between

the numerical range as a Rayleigh quotient and the norm of the initial growth of the perturbation to

find the maximum initial amplification [68] (We cover this relationship in Chapter 4.3.2 when we

alter the optimization problem to restrict the domain). The generalization of the calculating the

numerical range in other norms does exist (see the Bauer field of values in [9,61]), but it is easier to

numerically estimate or ignore it entirely if you are already bothering to calculate the amplification

envelope ( ‖etA‖ vs time) for that norm.

We have so far distinction between reactive and nonreactive systems, but one conclusion of the

present chapter is that this may be less useful than previously thought due to norm dependence

and how nonnormality influences stability of our model systems. We now give some illustrative

examples of multidimensional complexity that can go into studying the dynamics of even small, simple

ecological systems. For the four species, 3rd level omnivore module we chose three parameter sets to

compare the transient dynamics and pseudospectra of: 1) A randomly selected stable, nonreactive

system (Figure 5.13 ); 2) A system where Henrici’s departure from normality and reactivity where

close to the average values for the pooled dataset (all the feasible parameter sets found for that

module were pooled together; Figure 5.14 ); 3) The most nonnormal parameter set (Figure 5.15).

Figure 5.13 for our stable parameter set displays the type of norm-dependent behavior discussed

in previous paragraphs. It is well behaved in the 2-norm and its real distance to instability (2-norm)

is close to its spectral distance (nearly the same magnitude as the rightmost eigenvalue). However,
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in the one norm we would expect it to amplify perturbations, as seem by the 1-norm amplification

envelope (orange). While the reactivity of this example is negative (ω(A) = −0.0301), it is pretty

close to zero. The relationship between induced p-norms of matrices is that they are equivalent but

we can not claim that the one norm of the transient trajectory is always greater (or less) than the

two norm (Figure 5.15 is a nice counterexample). However, being close to reactivity in the 2-norm

may be a good flag to check other norms if it matters for the problem at hand.

Figure 5.14 shows an average and rather tame system: It is not that nonnormal, and while it

will amplify perturbations this is only max around a factor of 1.5-2. It is another example where

the 1-norm is less well behaved then the two norm, the maximum amplification is larger and the

oscillation due to the rightmost eigenvalues being complex happens in a much more lumpy manner

than the examples in previous chapters would suggest is possible (and this is the tame example!).

In the 1-norm the initial growth is faster and the transient takes slightly longer to decay than the

2-norm trajectory for this example as well.

Our final example is a display of extreme behavior possible when a system is very nonnormal

and close to both instability and singularity. The slowness of decay due to being nearly singular is

dramatic in this example, while we were able to keep the scales equal on the previous two examples of

transient trajectories, we were not able to in Figure 5.15 since it took two orders of magnitude longer

to decay than the previous two examples. We also include what happen when you leave the same

nonnormality (eigenvectors) but shift the entire spectrum (A− 0.1I in our case.) This example hints

at one possible way for a system to be resilient (returns to equilibrium quickly) but not resistant

(the perturbation is amplified quite a bit), which may happen if system is highly nonnormal but the

rightmost eigenvalue is not close to the imaginary axis.

5.4. Discussion

To our knowledge this is the first in-depth look at the consequences for nonnormality beyond

categorizing whether a system is reactive (ω(A) > 0) or not and the first to use pseudospectral

methods to study stability. We found that reactivity strongly correlates with a metric of nonnormality

in a linear way for small model ecological networks (Figure 5.6) and that even systems which do

not show transient amplification of perturbations may be sensitive to changes in their dynamical

71



Figure 5.13. A “full workup” of a randomly selected parameter set of the four species
omnivory, 3rd level ominvore module structure showing the complex pseudspectra,
the real-structured pseudospectra, as well as the transient trajectory for the 1-norm,
the 2-norm, and the trajectory from the rightmost eigenvalue prediction.

parameters (Figures 5.9 and 5.10). Our results also hint at what symptoms may signal stability loss

in ecological systems. It is true for a majority of our parameter sets, the real distance to instability

is frequently similar to the distance to singularity and nearly guaranteed on the low end (resulting

in the characteristic wedges in Figures 5.11 and 5.12). This could suggest that large magnitude,
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Figure 5.14. A “full workup” of an average reactivity and nonnormality parameter
set of the four species omnivory, 3rd level ominvore module structure showing the
complex pseudspectra, the real-structured pseudospectra, as well as the transient
trajectory for the 1-norm, the 2-norm, and the trajectory from the rightmost eigenvalue
prediction.

slow decaying transients may characterize nearly unstable systems. The special relationship between

press perturbations and the inverse of the Jacobian also suggests that loss of stability may also be

associated with large and possibly indirect effects of one species on another [101,102].
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Figure 5.15. A “full workup” of system with the highest reactivity and nonnormality
in the parameter set of the four species omnivory, 3rd level ominvore module structure
showing the complex pseudospectra, the real-structured pseudospectra, as well as
the transient trajectory for the 1-norm, the 2-norm, and the trajectory from the
rightmost eigenvalue prediction. The Jacobian matrix governing the dynamics is
nearly singular

For the first time our results show the existence of systems which have completely different

transient behavior in response to perturbations of the equilibrium, but same spectral abscissa and

sensitivity to underlying system parameters (same rR, α(A) but different ω(A)). It is hard to say
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how important this subclass of systems would be in real ecological communities. As a whole, stable,

nonreactive systems were rare and get increasingly rare with increasing trophic levels (see Table 3.3

in Chapter 3 ). In Figure 5.6 (which shows the full dataset for each module structure rather than

a subset of 10,000), the systems with negative numerical abscissa are just barely negative, given

the parameter sensitivity it is possible any small change in dynamical parameters that pushes the

spectrum to the right could result in a system that can show transient amplification of perturbations.

There is also the norm dependence of the numerical abscissa to consider, we show in Figure 5.13 a

example system where all perturbation decay in the 2-norm, but can be amplified in the 1-norm.

Unexpectedly, we found that the upper bound on nonnormality increased as the rightmost

eigenvalue approaches the imaginary axis for our parameter sets. This suggests that systems near

instability could be even less robust to small changes in parameters that result in stability loss

than expected. The sandwiching of the real distance to instability to the distance to singularity

suggests that the real and complex distance to instability are roughly the same for a majority of

our model systems, which excludes the case mentioned in the introduction where perturbations

to the equilibrium are amplified, but the system parameters are not sensitive to changes. As can

be seen in our plotted examples of real vs complex pseudospectra (Figures 5.13, 5.14, and 5.15),

there is a characteristic squishing of the pseudospectra when you consider only real perturbations

relative to the complex pseudospectra. In the discussion so far we have talked about the extremes of

nonnormality and instability, but there are so many additional nearby questions we did not have

time to fully explore about the average systems. Other than the obvious question of why is the

relationship between reactivity and nonnormality so linear with nearly the same slope for all of our

module structures, the data clearly accumulate in a particular range and demonstrates it is possible

to increase nonnormality without increasing reactivity. It could be that for a subset of our feasible

systems we do get a sort of accidental optimization to reduce the consequences of nonnormality, and

while the first obvious thing to check is the locations of the eigenvalues and it would be interesting

to know if there are biological features associated with that (equilibrium population distribution,

interaction parameter strengths, etc.).

We had a specific interest in how the coupling asymmetry cs = aji/aij in the predator-prey

interaction parameters may contribute to nonnormality because it represents and unavoidable source
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of asymmetry in the sense that there will always been inefficiency in the transfer of energy between

trophic levels. The relationship between cs, nonnormality and stability is complicated; cs seems

to determine the bounds on the location the spectrum of a system can live in but the relationship

between cs and nonnormality is not nearly as tidy as we found for reactivity and nonnormality.

Regardless of network structure, most of the feasible systems we found were concentrated in a

particular range of nonnormality and cs, but a smaller cs allowed for more extreme nonnormality

and each network structure has a cutoff cs where all systems are reactive for any smaller values of

cs. The fact that this cutoff cs is related to the number of trophic levels in the module (the more

distance between the top predator and the basal species, the larger the cutoff cs is) hints at a very

old question in ecology: What determines the maximum length of a food chain in a food web?

The observation that maximum food chain length in empirical food webs tends to limit around

three to four species was first commented on by Elton in 1927 [29] and figuring why that may be has

motivated reams of both theoretical and experimental ecological research since then. The two broad

hypotheses explaining this pattern is that it my be a problem of dynamics (i.e. systems with longer

food chains end up with smaller eigenvalues and therefore have longer return time, [24,80]) and/or

a problem of energetics (i.e. since energy transfer between trophic levels is inefficient, only so many

levels can be supported [58,100]). Our results suggest it might be a strong mixture of the two, that

energy inefficiency represented by cs may introduce unavoidable nonnormality as well as restrict how

negative the rightmost eigenvalue can be for a system that translates into sensitivity to perturbations

and the tendency to take a long time to return to equilibrium after a perturbation. The more trophic

levels you add, the higher the allowed cutoff for cs to avoid those aforementioned problems so there

is a maximum number of trophic levels a system can support before there is not enough energy

transferred to the top level as well as enough sensitivity to perturbations to never be observed on

field-experiment timescales. There are some interesting caveats to this around network structure and

number of species, for example, the four species diamond module is dynamically distinct from the

three species food chain, which is has a subnetwork. Adding a species and the interactions in the

diamond relative to the chain resulted in restricting the rightmost eigenvalue closer to the imaginary

axis, but also resulted in decreasing the possible discrepancy between the real distance to instability

and the spectral distance to instability (α(A)) Figure 5.9. Something similar happens with the
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four species food chain and adding omnivory links Figure 5.10. We did not design our numerical

experiments to test this hypothesis, but looking at the relationship between interaction asymmetry

due to energy efficiency, parameter sensitivity and number of sustainable trophic levels for larger

food webs looks like a promising avenue of research.

Our goal was to explore the parameter space that small ecological communities could live in, and

therefore allowed a range in the distributions the parameters were drawn from to be beyond what

may be representative in nature. It is worth noting that for cs specifically the data accumulates in

the range 0.7 < cs < 1 for all modules and this is spot on for empirical estimates on the fraction

of ingested energy that is lost to feces and urine in carnivores (they report the fraction loss is

δ = 0.15 for carnivores, and δ = 0.55 for herbivores [103]). This sort of estimate for cs is works if

predator-prey pairs are roughly the same size, but since our equation setup also lumps body size

ratio into cs we expect cs to be smaller for predator-prey relationships (the per-capita effect of a

large predator on smaller prey is larger magnitude than the converse) [80]. We hold cs constant for

the entire food web, which may reasonable if we are looking at subgraphs of some larger network,

but to have more realistic variation for metabolism and body size relationships we would need to

vary it in future studies. It will be interesting to see how including the interaction types we left out

as a necessary simplification (e.g. host-parasite interactions [56,81]) and increasing the number of

species changes the stability properties of our networks.

We did not demonstrate this here, but it is possible to do more structured perturbations of

the Jacobian entries and plot the eigenvalues, which allows checking for specific sensitivities, an

example of this can be found in [92]. The primary weakness of our approach is that pseudospectra

predict worst case behavior, but do not give us anything about specific perturbations that caused

this behavior and structured perturbations may be useful for studying a specific model system. The

press perturbations of [11] and [102] may also be a useful supplemental approach. Recall that a

press perturbation is a chronic change in in the equilibrium density of a species, it presents a related

problem to the type of perturbation pseudospectra represents in that it is related to the system

sensitivity. (For clarification: Pseudospectra represent perturbations of the entries of the Jacobian

matrix while press perturbations represent a change in the species rate of growth and can be read

off the Jacobian’s inverse, as seen in Equation 5.4, [74].) Press perturbations were important for
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highlighting the importance of indirect effects in ecological communities [102] but came with the

problem of something called directional uncertainty, where the locations and signs of the largest

entries in −A−1 are inconsistent for the same food web structure for numerical experiments much like

ours that explore a “statistical universe” [21,84,101]. It has been hypothesized that the degree of

aggregation in the early empirical food webs might have been the source of this sensitivity [81,101],

but this sort of parameter sensitivity smells like nonnormality, it would be interesting to see what

happens to the directional uncertainty if you exclude systems like the one in Figure 5.15 which

is highly unlikely to exist in nature due to being both sensitive to perturbations of all sorts, near

instability, and the transients taking too long to decay.

Pseudospectral methods give us a new lens to think about the stability of ecosystems and there

are so many old interesting questions than can be studied in a new way. It is general pattern that

weak links in food webs are stabilizing in both empirical and model food webs, and this is particularly

true for omnivory links [34,35,72], so how do strong omnivory links influence a system sensitivity

to perturbations? What happens when we increase the number of species? The upper bound on

reactivity increases with number of species [85] and some of our preliminary explorations suggest

that increasing the number of species increases the possibility for nonnormality.

Nonnormality, it so happens, is normal for ecological communities and this requires tools to

take that into account. There is also a practical problem: Field experiments generally happen on

short time scales (relative to the dynamics of the system), and ecosystems are constantly undergoing

perturbations from both biotic and abiotic factors. It is possible the theoretical equilibrium is never

observed or even realized in the actual community due to long transient behavior [32,39]. More

concerning though is we show that the tendency for long transients is also related to sensitivity to

changes in the underlying parameters, which is important considering impacts global climate change

may have on food web structure through altering metabolics and body-size relationships [50,59,60].
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CHAPTER 6

A mechanistic understanding of transient dynamics due to

nonnormality

In this dissertation we introduce a lot of new methods and ways of thinking about ecological

stability, and in some sense now the real work begins. Pseudospectral methods offer an improved

first past filter for finding model ecological systems that may be more sensitive to perturbations than

expected, both in sensitivity to underlying parameter changes and to perturbations in equilibrium

densities. However, what is missing from the general pseudospectral setup is a notion of what the

subspace of perturbations (of the Jacobian elements or the equilibrium) looks like. We address this in

a limited way in Chapter 4 when we look at perturbations of a specific sign structure that is relevant

to common source of perturbations in nature as well anthropogenic sources, but much more work will

be needed to characterize it in full. Natural systems do not sit around politely declining additional

perturbations until after the first one decays (if only!), it is critically important to understand how

specific (or unspecific) the structure of the perturbations need to be in order to observe the sort of

transient dynamics discussed here.

Do natural food webs somehow manage to minimize the effects of perturbations? As could be

seen in all of our various histograms in the previous chapter, the locations of our parameter sets do

seem to cluster in a particular location in parameter space, especially with regards to nonnormality

and reactivity. We also only studied small modules, real food webs are large, complex, and have

a variety of interaction types not covered in the present research [81]. Why do parasites seem to

dominate food web links? Parasites can invert the body-size ratio of the interaction in that parasites

are much smaller than their prey and may be another source of asymmetrical links in a food web as

well as change the link structure of the food web [55,56]. The next step is to scale up the size of the

food webs studied, dig into the biological aspects of why long transients and parameter sensitivity

may happen, and figure out what attributes of a food web increase or reduce the likelihood of
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perturbation sensitivity. Yodzis in 1989 discusses how the transient trajectory of press perturbed

systems moves to a new equilibrium and one cannot help but see the similarities to the present

research ( [102], Chapter 7). Not only is there the connection to distance to singularity via press

perturbations and the inverse of the Jacobian, the sort of experimental dynamics described as a

result of a press perturbation hints at a possible mechanism for long transient behavior. Yodzis

frames the discrepancy between short term and long term experiments on ant-rodent granivore

systems (original source [22]) in terms of the indirect effects between plants bearing large seeds and

small seeds taking a long time to fully be realized [102]. Finding a relationship between the locations

and signs of the largest entries in the negative inverse Jacobian,−A−1 and reactivity or the real

distance to instability would be the first step in grounding the incredibly abstract idea nonnormality

into the more concrete idea of the structure of species interactions. Poorly connected species in

empirical food webs tend to have stronger net effects (entries in −A−1 which include indirect effects)

than well connected species [66]. It would be particularly interesting if large-magnitude indirect

effects were associated with longer transients and the time it takes for the transient to decay could

be interpreted as taking a while for a perturbation to “walk” the food web and be fully realized.

For the sort of investigation outline in the previous paragraph I would use something other than

reactivity as a metric for possible transient growth. As we have shown in the previous chapter, the

problem with both the reactivity and eigenvalues as a metric for worst case transient growth and

decay is that they represent the very beginning and the very end of the transient phase and fails to

differentiate systems which may grow quickly and reach a large maximum amplification, but also

decay quickly and systems which take an extremely long time to decay (Figure 5.15 being a prime

example of this). Reactivity also does not scale in what I would consider a sane way, ω(A) = 4.08 in

Figure 5.15 and ω(A) = 0.226 in Figure 5.15, while the timescale of return is al least two orders of

magnitude larger for the first system. An easy way around that is to use a different metric for the

present of transients that was originally proposed by Neubert and Caswell in 1997 as a metric for

return time [68]:

TR =

ˆ ∞
0
‖etA‖ dt.

80



The practical benefit of this is for the purposes of a computation exploration, we can identify the

worst behaving feasible systems using a combination of Henrici’s departure from normality, spectral

abscissa and numerical abscissa and then numerical integrates to some finite time that fully captures

the whole amplification envelope of ‖etA‖ vs time. We can then calculate TR for all of the parameter

sets and then we have a metric of how bad the system behaves during the finite time and for different

norms. This of course comes with the same caveat mentioned in [68] that no particular perturbation

may exactly match the trajectory of ‖etA‖, since the operator norm is calculated at every time step;

it truly does represent the worst of the worst case behavior.
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APPENDIX A

Code for generating pseudospectra

The code for an implementation of Lanczos iteration for efficient computation of pseudospectra.

The initial implementation is due to Gabriel Gellner with some minor changes and corrections as

well as keeping it up do date with the latest release in Julia.

� �
function pslanczos(A, x, y; maxiters = 200)

m = length(x)

m2 = length(y)

@assert m == m2

sig = 0.0

sigmin = zeros(m, m)

N, M = size(A)

#A is a square matrix

@assert N == M

T, Z, schureig = schur(complex.(A) )

for k = 1:m, j = 1:m

T1 = (x[k] + y[j] * 1im) * I - T

T2 = T1'

sigold = 0.0

qold = zeros(N, 1)

beta = 0.0

H = zeros(maxiters, maxiters)

q = randn(N, 1) + 1im * randn(N, 1)

q = q / norm(q)

for p = 1:maxiters

v = T1 \ (T2 \ q) - beta * qold

alpha = real(dot(q, v))

v = v - alpha * q
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beta = norm(v)

qold = q

q = v / beta

# growing the matrix here

H[p + 1, p] = beta

H[p, p + 1] = beta

H[p, p] = alpha

sig = maximum(eigvals(H[1:p, 1:p]))

if abs(sigold / sig - 1) < 1e-3

break

end

sigold = sig

end

#Changed it to 1/sig May 31 so that contours plot the eps.

sigmin[j, k] = 1/sqrt(sig) end

return sigmin

end� �

� �
# function to be optimized, from Qiu et. al. 1995

# A formula for computation of the real stability radius.

function QiuMat(A, z, gam)

Rz = inv(z*I-A) # The resolvant of A calculated at grid point z

muR = [real(Rz) -gam*imag(Rz); (1/gam)*imag(Rz) real(Rz)]

U, sig, Vt = svd(muR)

return sig[2] # The objective to minimize on gam in (0,1]

end
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function RealPseudospectra(A, x, y, maxtimeper)

n = length(x)

m = length(y)

perturbdist = fill(NaN, n,m)

for i in 1:n, j in 1:m

# Grid point the calculation is happening at in the complex plane

z = x[i]+y[j]* 1im

# Need a basic Julia function to find a global minimum on (0,1],

# BlackBoxOptim.jl with defaults should work fine.

result = bboptimize(gam->QiuMat(A, z, gam[1]); SearchRange = (1e-9, 1),

NumDimensions = 1, TraceMode = :silent, MaxTime = maxtimeper)

#This will put the value of the eps rather than "resolvant" at each

# entry, some large number

perturbdist[j,i] = 1/best_fitness(result)

end

return perturbdist

end� �
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APPENDIX B

Parameter set generation for the generalized Lotka-Volterra

equations

B.1. Code for data generation

The function that draws the parameter set based on the distributions described in Table

TABLEREF

� �
function LVParamDraw(foodweb, intradampen, c_s,

distinteraction, distgrowth, basal)

n = size(foodweb,1)

r = zeros(n, 1)

a_ij = zeros(n,n)

# Draw growth or death rate for non-basal species, the sign is determined by

#the basal vector which has a -1 for nonbasal and a 1 for basal species

for i in 1:n

r[i] = basal[i]*rand(distgrowth)

end # r vec loop

# Draw the interaction coefficients into an nxn matrix

for i in 1:n, j in 1:n

if i < j

interaction = abs(rand(distinteraction))

a_ij[i,j] = interaction*foodweb[i,j]

a_ij[j,i] = c_s * interaction*foodweb[j,i]

elseif i == j

a_ij[i,j] = intradampen*foodweb[i,j] # intraspecific dampening term
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end # if i < j statement

end

return r, a_ij

end #LVParamDraw function� �

B.2. Average values for the Jacobian matrix and stable equilibrium for each module

For each module we report a matrix with the average values for that entry and a vector the

represents the average equilibrium density for each species. We also report the standard deviation

(in paratheses) for the mean equilibrium values. The lowest matrix or vector index corresponds to

the basal species. In Chapter 4 we identify a subset of Stable Reactive (SR) systems that show

transient growth for perturbations that involve only removing some of each species we call Removal

Stable Reactive (RSR) systems and report them separately. For modules where there are multiple

species on the same trophic level (like the four species generalist and diamond modules) we order

them so that the lower index corresponds to larger densities. Without this ordering these modules

had the same average densities for things on the same trophic level.

Generalist, four species (SR)


−0.642 0.0 0.0 −0.728

0.0 −0.405 0.0 −0.54

0.0 0.0 −0.194 −0.274

0.045 0.054 0.056 −0.083




1.742 (1.326)

1.059 (0.602)

0.499 (0.237)

0.231 (0.049)


Generalist, four species (RSR)
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
−0.612 0.0 0.0 −0.575

0.0 −0.377 0.0 −0.435

0.0 0.0 −0.178 −0.222

0.085 0.11 0.12 −0.153




1.477 (1.07)

0.874 (0.455)

0.401 (0.17)

0.34 (0.08)


Omnivory, three species (SR)


−0.453 −0.719 −0.554

0.122 −0.094 −0.137

0.073 0.07 −0.077




1.211 (0.577)

0.274 (0.059)

0.217 (0.049)


Omnivory, three species (RSR)


−0.445 −0.718 −0.52

0.123 −0.095 −0.127

0.088 0.101 −0.093




1.198 (0.641)

0.261 (0.056)

0.269 (0.086)


Chain, three species (SR)

−0.446 −0.952 0.0

0.209 −0.124 −0.338

0.0 0.138 −0.058




1.878 (1.547)

0.516 (0.112)

0.275 (0.091)


Chain, three species (RSR)

−0.447 −0.943 0.0

0.218 −0.131 −0.319

0.0 0.186 −0.073




1.837 (1.676)

0.503 (0.106)

0.342 (0.172)


Diamond, four species (SR)
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
−0.407 −0.721 −0.708 0.0

0.201 −0.14 0.0 −0.257

0.081 0.0 −0.056 −0.104

0.0 0.074 0.064 −0.05




1.357 (0.674)

0.479 (0.082)

0.196 (0.023)

0.176 (0.033)


Diamond, four species (RSR)


−0.402 −0.762 −0.747 0.0

0.214 −0.139 0.0 −0.257

0.076 0.0 −0.052 −0.097

0.0 0.112 0.111 −0.064




1.424 (0.788)

0.491 (0.087)

0.178 (0.021)

0.255 (0.09)


Omnivory, four species, third level predator (SR)


−0.373 −0.846 −0.622 0.0

0.182 −0.093 −0.182 0.0

0.132 0.129 −0.099 −0.263

0.0 0.0 0.121 −0.052




1.45 (0.741)

0.386 (0.085)

0.382 (0.064)

0.221 (0.05)


Omnivory, four species, third level predator (RSR)


−0.364 −0.888 −0.671 0.0

0.171 −0.082 −0.177 0.0

0.157 0.179 −0.103 −0.292

0.0 0.0 0.184 −0.064




1.533 (0.864)

0.356 (0.094)

0.433 (0.092)

0.316 (0.121)


Intraguild predation (SR)


−0.432 −0.83 −0.587 0.0

0.171 −0.105 −0.159 −0.17

0.099 0.096 −0.089 −0.168

0.0 0.068 0.078 −0.053




1.363 (0.639)

0.344 (0.061)

0.288 (0.053)

0.18 (0.033)


Intraguild predation (RSR)
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
−0.42 −0.914 −0.638 0.0

0.171 −0.095 −0.162 −0.16

0.113 0.127 −0.089 −0.188

0.0 0.111 0.14 −0.069




1.492 (0.817)

0.333 (0.07)

0.322 (0.083)

0.281 (0.106)


Omnivory, four species, fourth level predator (SR)


−0.337 −0.797 0.0 −0.619

0.265 −0.134 −0.379 0.0

0.0 0.14 −0.056 −0.13

0.066 0.0 0.057 −0.043




1.387 (0.67)

0.563 (0.094)

0.256 (0.051)

0.181 (0.038)


Omnivory, four species, fourth level predator (RSR)


−0.323 −0.763 0.0 −0.593

0.271 −0.135 −0.396 0.0

0.0 0.135 −0.051 −0.117

0.08 0.0 0.077 −0.049




1.365 (0.699)

0.581 (0.104)

0.238 (0.062)

0.217 (0.052)


Chain, four species (SR)

−0.37 −1.012 0.0 0.0

0.338 −0.142 −0.476 0.0

0.0 0.248 −0.082 −0.29

0.0 0.0 0.1 −0.034




1.964 (1.35)

0.746 (0.135)

0.451 (0.105)

0.192 (0.044)


Chain, four species (RSR)

−0.366 −1.021 0.0 0.0

0.346 −0.142 −0.487 0.0

0.0 0.28 −0.085 −0.295

0.0 0.0 0.119 −0.038




1.981 (1.474)

0.752 (0.149)

0.481 (0.153)

0.222 (0.062)


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APPENDIX C

Code for iteratively finding the numerical abscissa for removal

perturbations

This is basic Gradient Descent/Ascent implementation with one minor twist that makes it work

for our particular case: At each step we projected the vector we want to be the maximizer onto the

positive real numbers. Everything about the problem is quadratic and the domain is the vectors

where all entries are the same sign, so we chose the convention to use positive vectors to make

tracking down negative signs easier in the debugging phase.

� �
function GradDescentRQ(M, x0)

max_sing_val = maximum(svdvals(M))

lip_const = 2*pi*max_sing_val

step_size = 1/lip_const

max_iters = 1000

use_accel_step = true

x0 = Project(x0)

x = x0/norm(x0)

s = []

push!(s, 0)

gamma = 0

y_prev = zeros(size(x0))

f_end = 0

for iter in 1:max_iters

f, g = GetFunAndGrad(M,x)
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if use_accel_step

xold = x

# addition to maximize objective function

y = Project(x + step_size*g)

x = (1-gamma)*y + gamma*y_prev

x = x/norm(x)

y_prev = y

s, gamma = GetAccelStep(s)

else

# addition to maximize objective function, this function is

# technically "gradient ascent"

x = Project(x + step_size*g)

x = x/norm(x)

end

if mod(iter,100) == 0

println(norm(x-xold,1))

end

f_end = f

end

return x, f_end

end� �
Definition of the Rayleigh quotient funtion and its gradient to pass to the gradient ascent

function.

� �
function GetFunAndGrad(M, x)

# The function we are trying to maximize is the numerical radius

# (or sometimes called the field of values) of a matrix M,

# this function is given by rho = x'*M*x / x'*x
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norm_x = norm(x)

Mx = M*x

rho = (x'*Mx) / (norm_xˆ2)

f = rho[1,1]

g = (2/(norm_xˆ2)) * (Mx - f*x)

return f, g

end� �
The function to project each step onto the positive reals so we end up with the maximizing

vector having all the same sign.

� �
# This is where I project a vector to get all the entries of the same parity,

# max(x[i],0) for a nonnegative perturbation, min(x[i],0) for a

# nonpositive perturbation

function Project(x)

x_p = zeros(size(x))

for i in 1:length(x)

# Note that if your initial vector only has negative and zero entries the

# optimization will return NaNs. For this particular problem, due to it

# being quadratic in everything the choice of min/max (the choice in domain)

# doesn't matter since it is not mixed sign.

x_p[i] = max(x[i],0)

end

return x_p

end� �
Optional acceleration function.

� �
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function GetAccelStep(s)

s_next = (1 + sqrt(1 + 4*s[end]ˆ2)) / 2

push!(s, s_next)

gamma = (1-s[end-1]) / s[end];

return s, gamma

end� �
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APPENDIX D

Code for finding the real distance to instability

This appendix contains the code for our distance to instability calculation runs.

� �
#This function calculateds the real-structured distance to instability using the

#propertry from Qiu et. al. 1995

function RealStructuredStabRad(A, y, maxtimeper) #, npts, optimsearch)

m = length(y)

perturbdist = fill(NaN, 1,m)

#atest = 0

# Calculate the first two points at a higher max time since they are more

# likely to be the maximizers

# bboptimize defaults to finding minimums

z = y[1]* 1im

result = bboptimize(gam->QiuMat(A, z, gam[1]); SearchRange = (1e-9, 1),

NumDimensions = 1, TraceMode = :silent, MaxTime = 0.01,

RandomizeRngSeed = false, RngSeed = 1234)

perturbdist[1] = best_fitness(result)

z = y[2]* 1im

result = bboptimize(gam->QiuMat(A, z, gam[1]); SearchRange = (1e-9, 1),

NumDimensions = 1, TraceMode = :silent, MaxTime = 0.01,

RandomizeRngSeed = false, RngSeed = 1234)

perturbdist[2] = best_fitness(result)
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# Find the abscissa by calculating over grid points and taking the maximum

# There is surely a more efficient way of doing this

for j in 3:m

# Grid point the calculation is happening at in the complex plane

z = 0 +y[j]* 1im

# Need a basic Julia function to find a global minimum on (0,1],

#BlackBoxOptim.jl with defaults should work fine.

# result is going to be some godawful vector, best_candidate(result)

#gives the best input and we want best_fitness(result) for the value

#of the optimized fuction.

result = bboptimize(gam->QiuMat(A, z, gam[1]); SearchRange = (1e-9, 1),

NumDimensions = 1, TraceMode = :silent, MaxTime = maxtimeper,

RandomizeRngSeed = false, RngSeed = 1234)

#This will put the value of the "resolvant" at each entry

perturbdist[j] = best_fitness(result)

end

maxperturb, argmax = findmax(perturbdist)

return argmax[2], y[argmax[2]], 1/maxperturb

end� �
This function defines the mesh we search over for the calculation of real distance to instability to

find the location where the resolvent was minimized. While we are not guaranteed the pseudspectral

abscissa will be at the same location on the imagary axis as the rightmost eigenvalue, for our first

small set of runs we found it was frequently very close. We took a truncated normal distribution

around the imaginary axis location of the rightmost eigenvalue to make a mesh.

95



� �
function RSSRmesh(est, npts, bd)

half = Int(round(npts/2))

if est != 0

d = TruncatedNormal(est, est+0.01, 0, 1+est)

ynorm = rand(d,half)

y = vcat(est, range(0, stop =est+bd, length = half), ynorm)

else

d = TruncatedNormal(est, 0.1, 0, 1+est)

ynorm = rand(d,half)

y = vcat(est, range(0, stop =est+bd, length = half), ynorm)

end

return y

end� �
The script used to run the real distance to instability calculation is below, we include it to

show just how easy it is to parallelize code in Julia. It really is as simple as calling Julia’s built in

Distributed package and making sure every core loads in the packages. The abbreviations S, SR,

NNSR, stand for Stable, Stable Reactive, and NonNegative Stable Reactive which was what we used

to call Removal Stable Reactive (RSR) before we decided that it wasn’t a meaningful enough name.

� �
using Distributed

addprocs(6) #How many cores to use

@everywhere using PseudospectraFoodWebs
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@everywhere using JLD2

@everywhere using FileIO

@everywhere using BlackBoxOptim

@everywhere using SharedArrays

@everywhere using LinearAlgebra

@everywhere using Distributions

datasets = ["generalist4sp" "omnivory3sp" "chain3sp" "diamond" "omnivory4sp3lvl"

"intraguil" "omnivory4sp4lvl" "chain4sp" ]

samplesize = 10000

maxtimeper = 0.01

npts = 200

bd = 1 # A lame upper bound to search added to the complex eigenvalue

datasetnum = length(datasets)

datastart = 3

@time for i in datastart:datasetnum

print(datasets[i])

print("\n")

data1 = string(directory, "/", datasets[i], "_stablereactivedata.jld2")

y = jldopen(data1, "a")

S_As = y["S_As"]

SR_As = y["SR_As"]

NNSR_As = y["NNSR_As"]

data2 = string(directory, "/", datasets[i], "_transientscalars2.jld2")

z = jldopen(data2, "a")

S_scalars = z["S_scalars"]

SR_scalars = z["SR_scalars"]

NNSR_scalars = z["NNSR_scalars"]
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S_realstab = SharedArray(fill(NaN, 4, samplesize))

SR_realstab = SharedArray(fill(NaN, 4, samplesize))

NNSR_realstab = SharedArray(fill(NaN, 4, samplesize))

@sync @distributed for j in 1:samplesize

A = S_As[:,:,j]

est = abs(S_scalars[5,j,2])

Seig = S_scalars[5,j,1]

y = RSSRmesh(est, npts, bd)

atest, maxpt, realstab = RealStructuredStabRad(A, y, maxtimeper)

S_realstab[1,j] = realstab

S_realstab[2,j] = -realstab/Seig

S_realstab[3,j] = atest

S_realstab[4,j] = maxpt

A = SR_As[:,:,j]

est = abs(SR_scalars[5,j,2])

SReig = SR_scalars[5,j,1]

y = RSSRmesh(est, npts, bd)

atest, maxpt, realstab = RealStructuredStabRad(A, y, maxtimeper)

SR_realstab[1,j] = realstab

SR_realstab[2,j] = -realstab/SReig

SR_realstab[3,j] = atest

SR_realstab[4,j] = maxpt

A = NNSR_As[:,:,j]

est = abs(NNSR_scalars[5,j,2])

NNSReig = NNSR_scalars[5,j,1]

y = RSSRmesh(est, npts, bd)

atest, maxpt, realstab = RealStructuredStabRad(A, y, maxtimeper)

NNSR_realstab[1,j] = realstab
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NNSR_realstab[2,j] = -realstab/NNSReig

NNSR_realstab[3,j] = atest

NNSR_realstab[4,j] = maxpt

end

#save the new scalar data structure

savename = string(directory, "/", datasets[i], "_realstabilityradius4.jld2")

save(savename, "S_realstab", S_realstab, "SR_realstab", SR_realstab,

"NNSR_realstab", NNSR_realstab, "bd", bd, "npts", npts,

"maxtimeper", maxtimeper)

close(z)

close(y)

# Reassign the loaded in data so that it gets garbage collected

# The number 3 isn't special, just keyboard mashing

S_As = 3

SR_As = 3

NNSR_As = 3

S_scalars = 3

SR_scalars = 3

NNSR_scalars = 3

GC.gc()

end� �
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