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EXPERT RECOMMENDATIONS

Acute kidney injury in the perioperative 
period and in intensive care units (excluding 
renal replacement therapies)
Carole Ichai1*, Christophe Vinsonneau2*, Bertrand Souweine3, Fabien Armando4, Emmanuel Canet5, 
Christophe Clec’h6, Jean‑Michel Constantin7, Michaël Darmon8, Jacques Duranteau9, Théophille Gaillot10, 
Arnaud Garnier11, Laurent Jacob12, Olivier Joannes‑Boyau13, Laurent Juillard14, Didier Journois15, 
Alexandre Lautrette16, Laurent Muller17, Matthieu Legrand18, Nicolas Lerolle19, Thomas Rimmelé20, 
Eric Rondeau21, Fabienne Tamion22, Yannick Walrave3, Lionel Velly23, Société française d’anesthésie et de 
réanimation (Sfar)Société de réanimation de langue française (SRLF)

Abstract 

Acute kidney injury (AKI) is a syndrome that has progressed a great deal over the last 20 years. The decrease in urine 
output and the increase in classical renal biomarkers, such as blood urea nitrogen and serum creatinine, have largely 
been used as surrogate markers for decreased glomerular filtration rate (GFR), which defines AKI. However, using such 
markers of GFR as criteria for diagnosing AKI has several limits including the difficult diagnosis of non‑organic AKI, 
also called “functional renal insufficiency” or “pre‑renal insufficiency”. This situation is characterized by an oliguria and 
an increase in creatininemia as a consequence of a reduction in renal blood flow related to systemic haemodynamic 
abnormalities. In this situation, “renal insufficiency” seems rather inappropriate as kidney function is not impaired. On 
the contrary, the kidney delivers an appropriate response aiming to recover optimal systemic physiological haemody‑
namic conditions. Considering the kidney as insufficient is erroneous because this suggests that it does not work cor‑
rectly, whereas the opposite is occurring, because the kidney is healthy even in a threatening situation. With current 
definitions of AKI, normalization of volaemia is needed before defining AKI in order to avoid this pitfall.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.
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Background
Acute kidney injury (AKI) is a syndrome that has pro-
gressed a great deal over the last 20 years. The decrease in 
urine output and the increase in classical renal biomark-
ers, such as blood urea nitrogen (BUN) and serum creati-
nine (Scr), have largely been used as surrogate markers for 
decreased glomerular filtration rate (GFR), which defines 
AKI. However, using such markers of GFR as criteria for 
diagnosing AKI has several limits including the difficult 
diagnosis of non-organic AKI, also called “functional 
renal insufficiency” or “pre-renal insufficiency”. This situa-
tion is characterized by an oliguria and an increase in cre-
atininemia as a consequence of a reduction in renal blood 
flow (RBF) related to systemic haemodynamic abnormali-
ties. In this situation, “renal insufficiency” seems rather 
inappropriate as kidney function is not impaired. On the 
contrary, the kidney delivers an appropriate response aim-
ing to recover optimal systemic physiological haemody-
namic conditions. Considering the kidney as insufficient 
is erroneous because this suggests that it does not work 
correctly, whereas the opposite is occurring, because the 
kidney is healthy even in a threatening situation. With 
current definitions of AKI, normalization of volaemia is 
needed before defining AKI in order to avoid this pitfall.

In addition, numerous data highlight that Scr has 
strong limitations, which make it an imperfect surrogate 
marker for assessing GFR and consequently AKI.

However, because its use has long been standardized 
around the world and it is easy and inexpensive to meas-
ure, SCr remains the dominant renal biomarker used in 
the current definitions of AKI.

The literal translation between related French and Eng-
lish terminologies can be confusing (Fig. 1)

1. Acute kidney injury (AKI) is diagnosed thanks to one 
clinical criterium (urine output) and one biomarker 
for renal function (SCr). Despite frequent situations 
in which renal parenchymal damage is generally pre-
sent, this definition is focused on kidney “dysfunc-
tion” (in terms of the inability of the kidney to main-
tain homoeostasis due to a reduction in GFR). Thus, 
AKI has replaced the use of the older term “acute 
renal failure” (ARF), which corresponds to the most 
severe level of AKI and is characterized by clinically 
relevant renal failure.

2. Acute kidney damage (AKD) refers to renal paren-
chymal damage that may be evidenced via histologi-
cal samples or by biomarkers of renal tissue damage 
but not by measures of renal function. Finally,

3. Acute kidney attack refers to situations at risk of kid-
ney injury and kidney dysfunction. This latter situa-
tion is frequently observed in various conditions such 
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as in sepsis, major surgery and nephrotoxic agent 
administration.

These different notions of AKI and damage have 
emerged over the last few years, partly due to the dis-
covery of new biomarkers for renal function that allow 
clinicians to accurately assess kidney damage, and conse-
quently renal dysfunction, before any subsequent change 
in the classical parameters of AKI.

Clinicians must know that kidney injury is not synony-
mous with renal failure and that AKD and attack develop 
as part of the continuum of AKI. These notions are essen-
tial since they allow clinicians to describe the conditions 
in which a therapeutic action might avoid or reduce the 
risk of worsening ARF. Growing experimental and clini-
cal research actively seeks to assess the role of these renal 
biomarkers in detecting early AKI.

Methods
The working method used to elaborate these recommen-
dations is the GRADE® method. Following a quantita-
tive literature analysis, this method is used to separately 
determine the quality of available evidence on the one 
hand (i.e. a confidence estimation needed to analyse the 
effect of the quantitative intervention) and a level of rec-
ommendation on the other. The quality of evidence is dis-
tributed into four categories:

  • High: further research is very unlikely to change the 
confidence in the estimate of the effect.

  • Moderate: further research is likely to have an impact 
on the confidence in the estimate of the effect and 
may change the estimate of the effect itself.

  • Low: further research is very likely to have an impact 
on the confidence in the estimate of the effect and is 
likely to change the estimate of the effect itself.

  • Very low: any estimate of the effect is very unlikely.

The analysis of the quality of evidence is completed for 
every study; then, a global level of evidence is defined for 
a given question and criterion. The final formulation of 
recommendations will always be binary, positive or nega-
tive and strong or weak.

  • Strong: we recommend or we recommend not to do 
(GRADE 1+ ou 1−).

  • Weak: we suggest or we suggest not to do (GRADE 
2+ ou 2−).

The strength of the recommendations is determined 
according to key factors and validated by the experts after 
a vote, using the Delphi and GRADE Grid method.

  • The estimate of the effect.
  • The global level of evidence: the higher the level of 

evidence, the stronger the recommendation.
  • The balance between desirable and undesirable 

effects: the more favourable the balance, the stronger 
the recommendation.

  • Values and preferences: in case of uncertainty or large 
variability, the level of evidence of the recommenda-
tion is probably weak, and values and preferences 
must be more clearly obtained from the affected per-
sons (patient, physician and decision-maker).

  • Cost: the greater the costs or the use of resources, the 
weaker the recommendation.

  • The elaboration of a recommendation requires that 
50 % of participants should have an opinion and that 
<20 % of participants prefer the opposite proposition.

  • The elaboration of a strong recommendation requires 
the agreement of at least 70 % of participants.

The analysis of AKI management has been assessed 
according to seven themes: (1) AKI detection and diagno-
sis strategies; (2) AKI risk assessment; (3) non-specific AKI 
prevention strategies; (4) nephrotoxic agent management; 
(5) pharmacological strategies for the preventive and cura-
tive treatment of AKI; (6) AKI nutritional modalities; and 
(7) assessment of renal function recovery after AKI.

A specific analysis was performed for AKI in paediatric 
patients. A total of 24 experts were separated into nine 
working groups (the paediatric experts were involved in 
all questions).

Acute Kidney 
Injury

Acute Kidney 
Attack

Acute Kidney 
Damage

Fig. 1 Acute kidney disease: from attack to dysfunction
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Publications had to have taken place after 1999 to be 
selected. In case of an absence or a very low number of 
publications during the considered period, the timing of 
publications could be extended to 1990.

The level of evidence of the literature focused on AKI is 
globally associated with a weak level of methodology. The 
experts were, therefore, faced with three situations:

  • For some questions, in the existence of several trials 
or meta-analyses with an acceptable methodological 
quality, the GRADE® method was totally applicable 
and allowed recommendations.

  • When no meta-analysis was available to answer the 
question, a qualitative analysis by the experts follow-
ing the GRADE® method was possible and a system-
atic review was performed.

  • For some questions, in the absence of recent studies, 
no recommendation was possible.

After a synthesis of the experts, work and, implementa-
tion of the GRADE® method, 33 recommendations were 
formally developed by the organizing committee. Among 
all recommendations, 9 were strong (Grade 1±) and 16 
were weak (Grade 2±), and for eight questions, it was 
impossible to apply the GRADE® method.

All of these recommendations were submitted to a 
reviewing group for a Delphi method assessment. After 
two rounds of voting and evaluation and after various 
amendments, a strong agreement was reached for 32 
(99 %) recommendations.

1. How to establish the diagnosis of AKI and its 
severity

R1.3—To estimate GFR, we do not recommend the 
use of formulas (Cockroft-Gault, MDRD, CKD-EPI) 
in critically ill patients or in the post-operative period.

(Grade 1−) STRONG Agreement

Table 1 Classification of AKI according to the KDIGO crite‑
ria [1]

The stage is determined by the worse of either the “serum creatinine” or “urine 
output” criteria

Stage Serum creatinine Urine output

1 ≥26.5 μmol/l or 1.5–1.9 times  
baseline serum creatinine level

<0.5 ml/kg/h for 6–12 h

2 2.0–2.9 times baseline serum  
creatinine level

<0.5 ml/kg/h for ≥12 h

3 3.0 times baseline serum creatinine  
level ou serum creatinine 
≥354 µmol/l or initiation of renal 
replacement therapy

<0.3 ml/kg/h for ≥24 h 
or anuria for ≥12 h

R1.1—We recommend to use the KDIGO criteria (stage 
1) to define AKI based on the presence of at least one of 
these 3 following diagnostic criteria: (1) an increase in Scr 
≥26.5 μmol/l within 48 h; (2) an increase in Scr ≥1.5-fold 
from baseline value within the last 7 days; and (3) urine 
output <0.5 ml/kg/h for 6 h.

(Expert opinion) STRONG Agreement

R1.2—We recommend to use the KDIGO classifica-
tion to characterize the severity of AKI, according to 
the following table (Table 1).

(Expert opinion) STRONG Agreement

R1.4—To estimate GFR, we suggest calculation of cre-
atinine clearance using the following formula: meas-
ured creatinine clearance with the UV/P creatinine 
formula.

(Grade 2+) STRONG Agreement

Rationale: AKI is a clinical and biological syndrome 
with multiple causes and which includes various 
degrees of severity from AKD to ARF. The definition 
of AKI proposed in this recommendation is the inter-
national Kidney Disease Improving Global Outcomes 
(KDIGO) classification published in March 2012 [1]. 
As of 2015, there are no recent studies questioning 
this definition, and most of the available scientific tri-
als that have focused on AKI and ARF use the KDIGO 
definition. AKI is defined by an increase in Scr which 
indicates a reduction in GFR. The best way to evalu-
ate GFR is given by the calculated creatinine clear-
ance using the formula UV/P (ml/min) (U being the 
urinary creatinine concentration in µmol/l, V the uri-
nary volume expressed in ml per unit time, P the Scr 
concentration in µmol/l). This technique requires the 
collection of at least 1 h worth of urine (“flash creati-
nine clearance”) [2]. Estimated creatinine clearance 
formulas (sMDRD, CKD-EPI, Cockroft and Gault) 
must not be used because they were developed for sta-
ble patients with chronic renal insufficiency (CRI), but 
not validated in critically ill patients [2]. However, it 
is possible to use them carefully during pre-operative 
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visits for surgical patients. An accurate assessment 
of GFR is essential for adapting the dosing of drugs, 
which are eliminated by kidney.

The KDIGO classification represents an optimized 
synthesis of both pre-existing classifications (RIFLE 
and AKIN), which were previously elaborated by an 
international expert group including nephrologists 
and intensivists aiming to characterize the severity 
of AKI [1, 3]. Since the publication of the RIFLE [4] 
and AKIN [5] classifications, a wide literature high-
lights that they are well correlated with AKI sever-
ity because the resulting morbidity (risk of requiring 
renal replacement therapy [6–9], in-ICU and in-hos-
pital lengths of stay, risk of CRI development [10] 
and mortality rate increase proportionally with the 
stage of severity of these classifications [6–9]. Follow-
ing AKI diagnosis, the determination of its severity is 
required for evaluating prognosis.

paediatric formula [12] and is compared to the ref-
erence value of 100  ml/min/1.73  m2 if the previous 
value of the patient is unknown, which is frequent in 
this population. This pRIFLE classification has been 
subsequently validated in various prospective stud-
ies considering children in ICUs or those in the early 
post-operative period after cardiac surgery [13]. By 
extension, the severity of AKI is also based on the pRI-
FLE (Table 2).

Table 2 Diagnosis and severity criteria of AKI in paediatric 
patients

Grade Estimated plasma 
creatinine clearance

Urine output

Risk Decrease >25 % <0.5 ml/kg/h during 
>8 h

Injury Decrease >50 % <0.5 ml/kg/h during 
>16 h

Failure Decrease >75 % or 
<35 ml/min/1.73 m2

<0.3 ml/kg/h during 
24 h or anuria >12 h

Loss Grade «failure» persist‑
ing for >4 weeks

End stage (chronic renal 
insufficiency)

Grade «failure» persist‑
ing for >3 months

R1.1 Paediatrics—In paediatric patients, we suggest 
using the RIFLE classification modified for paediat-
ric patients (pRIFLE) for diagnosing AKI: a decrease 
≥25 % of estimated creatinine clearance or urine out-
put <0.5 ml/kg/h during 8 h.

(Expert opinion) STRONG Agreement

R1.2 Paediatrics—In paediatric patients, we suggest 
evaluating the severity of AKI by using the criteria of 
the pRIFLE classification.

(Experts opinion) STRONG Agreement

Rationale: In 2012, KDIGO recommendations for 
defining AKI were formulated for both adult and pae-
diatric patients. However, RIFLE and AKIN criteria 
are not really appropriate for children as they do not 
take into account the large variations in body mass 
index found in these patients. Moreover, because 
muscle mass is lower in children than in adults, Scr 
values are not a good marker of paediatric AKI. Con-
sequently, a paediatric RIFLE classification (pRIFLE) 
based on an estimated Scr clearance and urine out-
put has been proposed by Akcan-Arikan et al. [11]. In 
these modified criteria, AKI is defined by the presence 
of at least one of the following:

  • a decrease in the estimated creatinine clearance 
>25 %

  • a urine output <0.5 ml/kg/h for 8 h

In this classification, the estimated creatinine 
clearance is calculated according to the Schwartz’s 

2. Strategies for the early diagnosis of AKI

R2.1—We recommend not to use renal biomarkers to 
diagnose early AKI.

(Grade 1−) WEAK agreement

Rationale: As mentioned in the introduction, regard-
less of its severity, AKI is characterized by renal dys-
function expressed by an increased Scr concentration 
or a decrease in urine output. When considering 
pathophysiology, this phase is always preceded by 
kidney attacks (of mostly haemodynamic or inflam-
matory nature), which can lead to irreversible paren-
chymal kidney damage and finally renal dysfunction 
when repeated [14, 15]. Currently, no curative strate-
gies enable clinicians to treat such established damage, 
and AKI is clearly associated with an increased inde-
pendent risk of in-hospital mortality and CRI within 
a few years following AKI [16–21]. Therefore, current 
data strongly suggest the need to research risk factors 
for AKI and to detect early kidney attack episodes [1, 
22–24]. Consequently, over the last 10  years multi-
ple renal biomarkers capable of detecting early acute 
kidney attacks have been developed. These biomark-
ers are essentially proteins synthesized subsequent to 
renal damage.
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Numerous studies have evaluated the relevance of 
plasma and urinary renal biomarkers for diagnosing 
early AKI [1, 25, 26]. This evaluation, which is still 
ongoing for several of them, reports sensitivity rang-
ing from 70 to 92 % and specificity from 70 to 95 %, 
depending on the nature of the biomarker, the sample 
type (plasma or urine) and, above all, the threshold 
level used to define AKI. Cystatin appears to be a bio-
marker for GFR and consequently an earlier and more 
efficient functional marker than Scr. A recent meta-
analysis including 19 studies and 3336 patients reports 
that plasma cystatin has a sensitivity of 71  % and a 
specificity of 92 %, a predictive value which is higher 
than that of urinary cystatin and Scr [27]. Renal tubu-
lar biomarkers indicate kidney tissue damage. Among 
them, the most evaluated are kidney injury molecule-1 
(KIM-1), neutrophil gelatinase-associated lipocalin 
(NGAL), lipid acid-binding protein (L-FABP), inter-
leukin-18 (IL-18), β2-microglobulin and cell cycle 
arrest biomarkers [insulin growth factor-binding pro-
tein 7 (IGFBP 7) and tissue inhibitor of metallopro-
teinase-2 (TIMP-2)]. A recent meta-analysis including 
23 studies and 4512 patients showed a moderate sen-
sitivity and specificity for IL-18 measurements [28]. 
KIM-1, which has also been evaluated in a recent 
meta-analysis, seems to be an accurate biomarker for 
the diagnosis of early risk of AKI [29]. As found in a 
meta-analysis performed in 2009, urinary and plasma 
NGAL determination seems to be useful for the early 
diagnosis of AKI [30]. This study also demonstrated 
that NGAL has a good predictive value with reference 
to mortality rates and renal replacement requirements 
(RRTs) during ICU hospitalization. Similar to data 
related to other biomarkers, this meta-analysis con-
firms that NGAL measurements can be viewed as an 
accurate method for facilitating the early detection of 
kidney damage while no real benefit has been shown 
for the diagnosis of renal dysfunction. Recently, the 
same authors have reported similar results based on 
several prospective observational studies, leading to 
a cohort of 2322 critically ill patients [31]. However, 
results issued from this latter meta-analysis show a 
high heterogeneity between studies related to vari-
ous conditions, abnormal cut-off values and measure-
ment timings. Both IGFBP 7 and TIMP-2 biomarkers 
for cell cycle arrest have been assessed and compared 
with other major renal biomarkers in 738 critically 
ill patients at risk of AKI [32]. Results show that, in 
patients with various pathologies, a combined IGFBP7 
and TIMP-2 measurement results in a higher sensitiv-
ity and specificity as compared with all other studied 
biomarkers (AUC = 0.8). Moreover, the risks of death 

and of RRT increase with high levels of these two bio-
markers. A recent study with a cohort of 420 patients 
has confirmed that this biological tool is relevant for 
detecting and diagnosing early renal damage [33].

While data largely support that these biomarkers are 
useful for assessing early kidney damage and severity, 
the performance of these biomarkers and their daily 
use raise several problems. These various biomark-
ers indicate different mechanisms of injury: ischae-
mia, hypoxia, cellular regeneration or cell cycle arrest. 
Their syntheses are located in different sites, and they 
are activated with different kinetics following kidney 
injury [23, 26, 34]. Despite a growing literature, there 
is no study that truly demonstrates their utility in 
clinical practice for critically ill patients at risk of AKI. 
Several reasons preclude the implementation of such 
tools in current practice: multiple biomarkers, no real 
specificity, various kinetics of synthesis, impact of the 
pre-existing renal dysfunction, impact of the causal 
pathway leading to AKI and high costs. Therefore, 
until now, there is no ideal renal biomarker and the 
future use of these tools points towards combined and 
repeated measurements within time (kinetics). Finally, 
there are no data demonstrating the utility of such 
measurements for diagnosing AKI with dysfunction, 
which is simply based on Scr modifications or urine 
output, or for its therapeutic management.

In summary, there is at this time no randomized 
controlled study allowing experts to recommend the 
measurement of one or several renal biomarkers in 
order to diagnose AKI, which is already associated 
with renal dysfunction. On the other hand, the litera-
ture gives a strong signal that these biomarkers are 
useful tools that facilitate the early diagnosis of AKD, a 
stage which increases both the risks of AKI and death 
in critically ill patients. In the light of the current con-
text, the generalization of such measurements remains 
difficult, especially as concerns the need to choose one 
or several biomarkers, the clinical relevance, signifi-
cance thresholds and the timing for measurement(s), 
all of which are parameters that require more knowl-
edge according to the type of patients.

Rationale for paediatric patients: It is not possi-
ble to directly extrapolate results issued from studies 
performed on adults to paediatric patients. Indeed, 
multiple parameters such as aetiology or treatment of 
AKI, presence of comorbidities and anthropometric 
characteristics are strongly different between paediat-
ric and adult patients [35]. However, prospective tri-
als performed in paediatric populations, especially in 
the post-operative cardiac surgery period, suggest that 
urinary renal biomarkers could be useful for the early 
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diagnosis of AKI [36]. Moreover, data issued from a 
prospective study in critically ill paediatric patients 
have shown that estimated GFRs based on cystatin C 
levels have a higher sensitivity than those based on the 
usual equations using Scr [37].

these preliminary studies show a poor level of proof. 
Both the significance of resistive index variation and 
doubts related to the reproduction of measurements 
are major limitations for the interpretation of these 
results as well as for their recommendation in daily 
practical clinical use.

The second renal Doppler ultrasound research 
trend is focused on the assessment of renal prognosis. 
An observational study including 37 patients in sep-
tic shock suggests that the resistive index might help 
predict the occurrence of AKI on day 5 [44]. Several 
other preliminary trials also suggest that the resistive 
index would allow clinicians to distinguish pre-renal 
(non-organic) from intrarenal (organic) AKI [45–47], 
to predict renal function outcome at days 3 or 5 [43, 
48–50] and to predict RRT [51]. Thus, these stud-
ies suggest that the resistive index could be a tool for 
assessing renal prognosis with a good sensitivity and 
specificity [45, 47–51]. Certain studies performed on 
non-critically ill septic patients (35–91) have small 
sample sizes, which are mostly monocentric in nature 
or have poor methodological design [45–47, 49, 50]. A 
recent study including 94 patients reported contradic-
tory results and suggested that the resistive index had 
a limited performance when used to evaluate renal 
prognosis [52]. This contradictory set of results could 
be explained by two limitations associated with this 
technique. The first is the significance of the resistive 
index values and variations, which remains unclear 
because the relationship between this parameter and 
renal vascular resistances seems to be poor, perhaps 
due to a large number of additional factors implicated 
in AKI [38, 39, 53–56]. Indeed, experiments per-
formed on models of ex vivo kidneys have confirmed 
a major role for vascular compliance (modification in 
vascular diameter following changes in pressure) or 
pulse pressure as a determinant of the resistive index 
[54–56]. These experimental data have been recently 
confirmed in kidney-transplanted patients [57]. The 
second limitation is the feasibility and reproducibil-
ity of measures: a recent study confirms the feasibility 
of resistive index measurement after a short session 
of education for inexperienced intensivists, but the 
reproducibility between experienced and inexperi-
enced ones is poor with variations in the resistive 
index reaching ±0.1 [50]. Taking into account the 
available data, this promising technique deserves to 
be further evaluated and cannot be recommended for 
current use.

R2.2—We suggest not to use the Doppler renal resis-
tive index to diagnose or treat AKI.

(Grade 2−) STRONG agreement

Rationale: Measurement of renal velocity by Dop-
pler ultrasound is a non-invasive and rapid surrogate 
method that allows the instantaneous assessment 
of parenchymal renal perfusion [38, 39]. Because 
of its easily accurate and repeatable measurements, 
this approach supposedly allows the assessment 
of modifications of RBF in response to therapeu-
tic management. Therefore, the past 10  years have 
seen considerable growth in research on critically ill 
patients in order to evaluate the performance of Dop-
pler ultrasound during AKI. Research has been devel-
oped in two ways.

The first research trend is focused on the use of 
the resistive index as a tool for measuring intrare-
nal haemodynamics. A recent experimental study 
reported that measuring RBF was impossible using 
Doppler sonography. Indeed, there was no relation-
ship between measured RBF and estimated RBF by 
sonographic Doppler and the time for ultrasono-
graphic transit, which was previously validated for 
regional blood flow measurements [40]. The same 
study highlighted that the interpretation of variations 
in the resistive index is difficult due to a very low rela-
tionship between variations in RBF after various ther-
apeutic manoeuvres and variations in resistive index 
[40]. The most predictive parameter of 20 % variation 
in RBF issued from the Doppler was the variation in 
diastolic velocity, but the AUC was poor (0.75) [40]. 
Several authors have assessed resistive index varia-
tion in response to increasing doses of noradrenaline 
or “renal low” dose dopamine. Results suggest that the 
resistive index might be a guided goal measurement 
allowing the optimization of catecholamine doses in 
order to potentially improve renal perfusion [41, 42]. 
Finally, a further study did not find any variation in the 
resistive index following an intravascular load, regard-
less of pre-existing renal function and the response 
to this load as assessed by a variation in the systolic 
ejection volume [43]. Despite promising results, 
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3. How to assess the risk of AKI
after non-cardiac major surgery. This score is based 
on the attribution of points for each of the nine risk 
factors as follows: age ≥56  years, male sex, conges-
tive cardiac insufficiency, ascites, arterial hyperten-
sion, emergency surgeries, intraperitoneal surgery, 
CRI (pre-operative Scr ≥1.2 mg/dl) and diabetes (oral 
or insulin treatments). The ROC curve associated 
with this score was 0.80 ± 0.02. The incidence of AKI 
increased from 0.2  % in patients with 0–2 risk fac-
tors to 9.5 % in those with more than five risk factors, 
and this incidence increased with the number of risk 
factors.

Table  4 summarizes the major nephrotoxic agents 
that are most frequently used in ICUs and during the 
perioperative period [60, 61]. Among them, some 
could be replaced by non-nephrotoxic agents or 
administered using associated preventive measures 
(see the corresponding chapters).

The identification of patient exposure to nephrotoxic 
agents/procedures is essential for correctly adjusting 
patient monitoring and management. In high-risk situ-
ations, the close monitoring of urine output and Scr in 
ICUs would help assess the evolution of renal function 
and the efficiency of strategies for preventing AKI (see 
corresponding chapters). If AKI occurs, the same type 
of measures will continue in order to limit a worsen-
ing of function and avoiding the further compromise 
of renal recovery.

Table 3 Major risk factors for  AKI related to  patient sus‑
ceptibilities and/or to exposures in hospitalized patients

a Most important risk factors

Underlying susceptibilities Procedures/exposures

Age ≥65 yearsa Sepsisa

Chronic kidney diseasea Haemodynamic instability

Male Perioperative perioda

Major surgerya (emergency, 
abdominopelvic, cardiovascular, 
thoracic, bleeding surgeries)

African origin Severe burn

Obesity (BMI >40 kg/m2) Severe trauma

Arterial hypertension Nephrotoxic agents (drugs,  
radiocontrast agents)

Congestive cardiac insufficiency

Hepatocellular insufficiency

Severe respiratory insufficiency

Diabetes

Cancer

Anaemia

Table 4 Major nephrotoxic agents responsible for  AKI 
in ICUs and in the perioperative period

Radiocontrast agents

Aminoglycosides

Amphotericin

Non‑steroidal anti‑inflammatory agents

β‑Lactams (interstitial nephropathies)

Sulfamides

Aciclovir, methotrexate, cisplatin

Cyclosporin, tacrolimus

Angiotensin‑converting‑enzyme inhibitors (ACE)

R3.1—We recommend looking for risk factors for AKI 
related to the patient’s susceptibilities and/or to expo-
sures (Table 3).

(Experts opinion) STRONG Agreement

Rationale: In hospitalized patients, all the different 
predictive scores for AKI reported in the literature 
describe more or less the same risk factors, which are 
related to patient susceptibilities and exposures. How-
ever, the weight of each of risk factors differs according 
to the type of patient and the surrounding procedures. 
The greater the number of risk factors, the greater 
the risk of AKI. The two most important risk factors 
related to patient susceptibilities are age and pre-exist-
ing chronic kidney disease. The age threshold above 
which the risk is present varies in the literature, from 
55 to 65  years old, according to the context. Among 
procedure-related risk factors, the most frequently 
found are sepsis and surgery, or even better the perio-
perative period [15, 58, 59]. The aim of this chapter is 
neither to supply an exhaustive review of these pre-
dictive scores [15], nor to create a global score for all 
patients and all procedures. For example, it has been 
shown that prolonged extracorporeal circulation (over 
2 h) is a major risk factor for AKI during cardiac sur-
gery. Kheterpal et  al. [59] defined a score (“AKI Risk 
Index”) designed to predict the development of AKI 

R3.2—In high-risk situations, we suggest monitoring 
urine output and Scr to detect the development of 
AKI and apply the appropriate preventive measures.

(Experts opinion) STRONG agreement
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4. Strategies for the non‑specific prevention of AKI was 331 ml (1709 ± 1164 vs 1379 ± 886 ml, p = 0.02). 
However, in this latter study, fluid balance was similar 
between both groups on day 4 (56.6 vs 55.8 ml/kg).

On 11 October 11 2013, the European Agency for 
Medicines (EMA) made public its conclusions con-
cerning the administration of HES [75]: HES must not 
be used in septic, critically ill or burned patients. Their 
administration remains possible in case of haemor-
rhage shock when crystalloids are not sufficient (for 
a period not exceeding 24  h, and in association with 
renal function monitoring for 90 days).

R4.1—We recommend not administering hydroxy-
ethyl starch (HES) in the ICU.

(Grade 1−) STRONG agreement

R4.2—We suggest the preferential use of crystalloids 
instead of colloids for fluid loading.

(Grade 2+) STRONG agreement

Rationale: Several randomized or observational stud-
ies and meta-analyses have examined the beneficial 
effect of a preferential administration of colloids com-
pared to crystalloids [62–73]. In the ICU, the use of 
HES, regardless of its type, has been reported to be 
associated with an increase in mortality rate, AKI inci-
dence and the need for RRT in several meta-analyses 
with a high level of proof [58–71, 73]. A Cochrane 
meta-analysis simultaneously considering all colloids 
did not find any beneficial effect associated with the 
preferential use of colloids, regardless of nature, com-
pared with crystalloids. The same study reported an 
increased risk of death related to HES administration 
[72]. Only one recent randomized controlled study 
suggested a decrease in 90-day mortality (second-
ary endpoint) associated with fluid vascular loading 
performed with colloids, the absence of deleterious 
effects in terms of 28-day outcomes (primary end-
point) and the absence of a higher risk of AKI (second-
ary endpoint) [15]. However, in this study, judgement 
criteria in favour of colloids were secondary in nature 
and the weakness of the benefit led the authors to con-
sider their results as investigational only [15]. There-
fore, these results cannot justify preferential use.

A recent meta-analysis performed during the peri-
operative period, including several studies with low 
levels of proof, did not find any effect of fluid solution 
on AKI occurrence [74]. The low prevalence of AKI in 
this population and thus the low power of studies con-
sidered in this meta-analysis make it difficult to inter-
pret this result [74].

In terms of fluid and sodium balance or haemo-
dynamic stability, the benefit of colloids seems lim-
ited. Indeed, in two trials with a high level of proof 
for assessing efficiency of fluid balance and vascu-
lar load, a limited difference in favour of HES was 
found. In Myburgh’s et al. trial [63], the difference in 
terms of fluid balance on day 4 corresponded to 61 ml 
(982 ±  1069 vs 921 ±  1161, p =  0.03). Guidet et  al. 
[67] found that the difference in fluid vascular load 

R4.3—We suggest preferring balanced solutions in 
case of large fluid vascular loading.

(Grade 2+) STRONG agreement

Rationale: At this time, there are no randomized stud-
ies demonstrating any beneficial effect in terms of mor-
tality when solutions with a low chloride concentration 
are preferentially administered in critically ill patients 
or in the perioperative period. However, experimen-
tal data show that hyperchloraemia may cause renal 
vasoconstriction in a manner proportional to severity 
[76–78]. One clinical trial has found that an infusion of 
2 l of 0.9 % saline is associated with a decrease in cor-
tical renal perfusion (assessed by magnetic resonance 
imaging) as compared with an infusion of balanced 
solutions in healthy volunteers [79]. All data issued 
from observational cohort studies with or without pro-
pensity scores and matching on large samples highlight 
the deleterious effects of non-balanced solutions, espe-
cially on the kidney [80, 81]. Three recent, large, obser-
vational trials show that volume loading with 0.9  % 
NaCl is associated with increased morbidity, especially 
for kidney dysfunction, as compared with volume load-
ing using balanced solutions [82–84]. In an observa-
tional study including 30,994 patients with abdominal 
surgery, Shaw et  al. [82] found that patients receiv-
ing 0.9 % NaCl compared to those receiving balanced 
solutions had a higher rate of post-operative compli-
cations and RRT (4.8 vs 1 %, p < 0.05). Similar results 
have been found in the sequential observational study 
performed by Yunos et al. [83] in critically ill patients. 
In a cohort of 5000 surgical patients matched with a 
propensity score, McCluskey et al. [84] also found that 
hyperchloraemia was an independent risk factor for 
post-operative AKI. However, there is currently no real 
randomized controlled trial that confirms these data 
and results concerning mortality remain uncertain [82, 
85]. A recent meta-analysis including more than 6000 
patients concluded that the use of crystalloids rich in 
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chloride increases the risk of AKI and blood transfu-
sion, without affecting mortality rates as compared 
with balanced solutions [86]. Finally, considering these 
data, we consider non-balanced solutions as poten-
tially deleterious, especially for kidneys, and suggest 
minimizing their use, especially for large-volume 
resuscitation [87].

to allow a MAP of 75–85 mmHg in patients suffering 
from persistent renal dysfunction despite an appropri-
ate fluid load and a MAP of 65 mmHg.

In an observational study including 33,300 patients 
with non-cardiac surgery, a MAP <55–60 mmHg was 
associated with an increase in post-operative AKI [99]. 
In cardiac surgery, a MAP under 50 mmHg was asso-
ciated with an increased rate of post-operative AKI, 
whereas a MAP of 60–70 mmHg was a protective fac-
tor [100]. In the same context, a 26-mmHg decrease 
in MAP was associated with a higher rate of AKI after 
cardiac surgery [101].

R4.4—We recommend maintaining a minimal level 
of mean arterial pressure (MAP) between 60 and 
70 mmHg to prevent and treat AKI.

(Grade 1+) STRONG agreement

R4.5—We suggest considering that patients with 
chronic arterial hypertension require a MAP target 
>70 mmHg.

(Grade 2+) STRONG agreement

Rationale: The optimal level of MAP during AKI 
has been rarely assessed. Because a MAP level of 
65  mmHg is a survival factor in critically ill patients 
[88], especially during sepsis [89–91], this value is usu-
ally considered as the lowest acceptable level required 
for maintaining renal perfusion during AKI [92]. A 
diastolic arterial pressure <50–55 mmHg is associated 
with an increased AKI occurrence during septic shock 
[93, 94]. Because the threshold for renal autoregula-
tion may be higher in the elderly and patients with a 
cardiovascular history, the requirement of maintain-
ing MAP above a 65-mmHg threshold is frequently 
questioned for these patients. In terms of mortality, 
a recent multicentre randomized trial showed that a 
level of 80–85  mmHg had no beneficial effect com-
pared with a level of 65–70 mmHg [95]. Two observa-
tional studies with a short follow-up (24 h) found no 
benefit for kidney function between a MAP of 65 ver-
sus 85 mmHg [96, 97]. However, several studies sug-
gest that a MAP above 65 mmHg may be beneficial for 
the management of AKI [92, 95, 98]. In a randomized 
trial performed with 776 patients with septic shock, 
a MAP level of 80–85  mmHg (vs 65–70  mmHg) 
was associated with a decrease in the risk of RRT in 
patients with chronic arterial hypertension, while 
mortality rates were similar in both groups [95]. Dur-
ing AKI, a retrospective study with a cohort of 274 
patients with sepsis suggested that a MAP <75 mmHg 
predicts the need for RRT [98]. In a retrospective trial 
including 423 patients, a level of MAP <75  mmHg 
was associated with an increase in AKI severity dur-
ing septic shock [92]. These data underline the need 
to personalize the MAP threshold for each patient and 

R4.6—We recommend monitoring and optimizing 
systolic ejection volume or derived parameters dur-
ing the perioperative period in order to guide vascular 
fluid loading.

(Grade 1+) STRONG agreement

R4.7—We suggest applying the same recommenda-
tions in the ICU.

(Grade 2+) STRONG agreement

R4.8—After haemodynamic stabilization, we suggest 
avoiding fluid overload in the ICU.

Grade 2+) STRONG agreement

Rationale: In the perioperative period, regardless 
of the type of surgery, intraoperative haemodynamic 
optimization aiming at a cardiac index threshold of 
4.5  l/min/m2, an oxygen delivery of 600  ml/min/m2 
or an oxygen consumption of 170  ml/min/m2 allows 
clinicians to limit hypovolaemic episodes and conse-
quently reduces the risk of post-operative AKI [102, 
103]. These goals can be reached using a pulmonary 
arterial catheter, oesophageal Doppler or devices 
using arterial pulse contour analysis. The means 
include vascular fluid loading, vasopressor agents and 
inotropic drugs. Similar recommendations can be 
made in ICUs, but the level of proof is low.

In the ICU, fluid overload is associated with an 
increased incidence in AKI and its severity, regard-
less of the need for RRT [21, 104–108]. An increase 
in weight above 10  % is the most frequently studied 
parameter. All studies concerning this point are purely 
observational; comparative studies do not currently 
exist. Despite the relationship between fluid overload 
and AKI frequency and severity, there are no data, 
demonstrating that the control of fluid overload may 
have a beneficial renal effect. In other words, it has not 
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been demonstrated that fluid overload is the cause or 
the consequence of AKI. Such fluid overload can be a 
simple marker of severity and not the cause of AKI. In 
the perioperative period, the control of fluid balance 
limits post-operative complications. During AKI, no 
benefit of controlling fluid balance has been demon-
strated for kidney function [109, 110].

in those with risk factors (chronic kidney disease, 
diabetes, concomitant administration of nephrotoxic 
agents) [121]. In the ICU, according to the definition 
used, this incidence varies from 16 to 31 % [122–125]. 
Several other risk factors for kidney injury are usually 
concomitantly found in critically ill patients (hypo-
tension, sepsis, nephrotoxic drugs), making it dif-
ficult to consider contrast media directly and solely 
responsible for AKI. Thus, most studies evaluate 
post-operative cardiac surgery patients or cardiology 
patients, but there are few trials available in critically 
ill patients.

The available studies considered in a large number 
of meta-analyses, which are unfortunately heteroge-
neous and for the most part poorly conducted (espe-
cially as concerns older studies), lead to conflicting 
results [126–131]. Moreover, in more recent meta-
analyses positive results favouring NAC are demon-
strated only when they include published trials. When 
considering all studies, especially unpublished ones, 
this favourable result disappears [128, 132]. Alkalini-
zation with sodium bicarbonate has been proposed 
for the prevention of CIN. Two recent meta-analyses 
have found a beneficial effect associated with sodium 
bicarbonate in terms of a decrease in AKI incidence, 
whereas there was no effect on the need for RRT and 
in-hospital mortality [130, 133]. Two recent prospec-
tive randomized trials did not confirm these later 
results. The first one demonstrated that hydration 
with 0.9 % saline was associated with a lower decrease 
in GFR and a lower incidence of CIN as compared 
with sodium bicarbonate (1 vs 9  %, p =  0.02) [134]. 
In the second study, the results found that there was 
no difference in the incidence of CIN between 0.9 % 
saline and sodium bicarbonate (3 vs 5.1 %, p = 0.23) 
[135]. Currently, though sodium bicarbonate may be a 
satisfactory alternative to 0.9 % saline, there is still no 
proof of any advantage associated with such a preven-
tive strategy. Other drugs that have been assessed have 
never shown any undisputable positive effect and can-
not be recommended [136, 137]. Finally, fluid vascu-
lar loading seems to be the most efficient prophylactic 
management [138, 139]. Such a strategy minimizes 
risk exposure when considering that a limited volume 
of fluids is needed in this indication (about 1000 to 
1500 ml within several hours) and will not have dele-
terious consequences, except for patients with cardiac 
insufficiency or fluid overload. Moreover, the expected 
benefit in terms of decreased incidence of AKI fol-
lowing the procedure should maintain sufficient urine 
output to allow rapid body water elimination.

R4.9—We suggest using noradrenaline as a first-line 
treatment for maintaining MAP goals if a vasopressor 
drug is required.

(Grade 2+) STRONG agreement

Rationale: The use of vasopressors during AKI to 
reach or maintain the previously mentioned MAP and 
DAP goals is logical when fluid vascular load does not 
allow clinicians to reach them. Several observational 
studies show that noradrenaline is the vasoconstric-
tive agent of choice, which combines the best compro-
mise in term of cost, safety and ease of use [111–117]. 
There is no controlled study concerning this specific 
point. Terlipressin may be an alternative to noradrena-
line in the absence of coronary artery disease [118, 
119]. Vasopressin has been used in rare cases, but the 
low sample size of these studies does not allow par-
ticular recommendations.

R4.10—We suggest not delaying any additional exami-
nations or potentially nephrotoxic agent administra-
tion if they are needed to manage the patient.

(Experts opinion) STRONG agreement

5. How to manage nephrotoxic agents?

R5.1—We suggest optimizing hydration using crystal-
loids to prevent contrast-induced nephropathy (CIN), 
ideally before contrast media infusion and to continue 
this therapy within 6–12 h after this infusion.

(Grade 2+) STRONG agreement

R5.2—We suggest not using N-acetylcysteine (NAC) 
and/or sodium bicarbonate to prevent CIN.

(Grade 2−) STRONG agreement

Rationale: Despite a small number of studies with 
poor methodology, using numerous different defini-
tions, the incidence of CIN in non-ICUs varies from 
2 % in patients without any risk factor [120] to 25 % 



Page 12 of 20Ichai et al. Ann. Intensive Care  (2016) 6:48 

Finally, fluid vascular loading before procedures 
seems to be the most efficient preventive treatment 
for CIN with a largely positive benefit/risk ratio, pro-
vided one is careful in patients at high risk of decom-
pensation following moderate fluid infusion.

while limiting toxicity [144]. This limitation does not 
apply to endovascular and osteoarticular infections 
with material, as well as endocarditis. In these latter 
situations, the prolonged administration of amino-
glycosides over several days or weeks may be needed. 
Nevertheless, there is no study assessing the recom-
mended usual strategy in these conditions. This rec-
ommendation is an expert opinion issued from results 
based on older studies evaluating toxicity.

Despite the absence of randomized controlled 
studies evaluating the cumulative use of nephrotoxic 
agents, studies with cohorts of patients and those 
evaluating toxicity show that the association of sev-
eral nephrotoxic risk factors, especially the accumu-
lation of several nephrotoxic drugs, exponentially 
increases the risk of AKI [60, 61]. This should be taken 
into account when choosing drugs for patients at risk 
of AKI by considering their indications and favour-
ing essential drugs. For example, non-steroidal anti-
inflammatory agents should be avoided in patients 
treated with both aminoglycosides and glycopeptides. 
Only essential drugs and alternative strategies should 
be favoured for decreasing nephrotoxicity [151–153].

R5.3—We suggest administering aminoglycosides 
when necessary with respect to the following rules:

  • administer them with single dosing per day,
  • monitor their residual level in case of more than a 

single infusion,
  • administer them for a maximum of 3 days when-

ever possible.

(Grade 2+) STRONG agreement

R5.4—We suggest not using non-steroidal anti-inflam-
matory drugs (NSAIs), converting enzyme inhibi-
tors (CEIs), and angiotensin 2 receptor antagonists in 
patients at risk of AKI.

(Experts opinion) STRONG agreement

Rationale: Studies showing renal and ear toxicity 
associated with aminoglycosides are old and based 
on a design of twice-daily administration without any 
consideration of residual serum concentration levels 
[140–142]. More recent studies have shown that tox-
icity was essentially related to high levels of residual 
serum concentration of the drug (more than 20 h after 
infusion), while the peak concentration (measured 
½  h after infusion) was the parameter responsible 
for efficiency [143–150]. Current recommendations 
are based on these later trials, favouring a high peak 
serum concentration using high doses of aminogly-
coside as boluses and close monitoring of residual 
serum concentrations to avoid renal toxicity. In prac-
tice, the determination of peak serum levels per-
formed 30  min after the infusion of aminoglycosides 
should be used, and then, the following dose should be 
adapted in order to reach the recommended thresh-
old. For the problem of toxicity, if the aminoglycoside 
is used for several consecutive days, the evaluation 
of the residual serum level 24  h after its administra-
tion should be performed before infusing a new dose, 
provided the serum concentration is below the rec-
ommended threshold. Moreover, it has been shown 
that prolonged exposure increases the occurrence of 
AKI, explaining the reason for limiting the duration 
of treatment to 3  days. Such a strategy allows clini-
cians to be efficient during the acute phase of sepsis 

6. Pharmacological strategies for the preventive 
and curative treatment of AKI

R6.1—We recommend not using diuretics in order to 
prevent or treat AKI; we suggest using them for treat-
ing fluid overload.

(Grade 1−) STRONG agreement

Rationale: AKI is a frequent organ failure in the ICU 
and during the perioperative period surrounding 
cardiovascular surgery and is associated with a high 
risk of morbidity and mortality. In two recent meta-
analyses [154, 155], the administration of diuretics 
did not reduce the incidence and severity of AKI. For 
this indication, furosemide did not demonstrate any 
benefit in terms of in-hospital mortality, the need for 
and the number of sessions of RRT. Because AKI with 
fluid overload is associated with higher mortality rates 
[104, 107], diuretics can be proposed for treating fluid 
overload.

R6.2—We suggest not using sodium bicarbonate to 
prevent or treat AKI

(Grade 2−) STRONG agreement

Rationale: The prevention of AKI using sodium 
bicarbonate has been performed in a randomized 
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controlled multicentre study (sodium bicarbonate vs 
0.9 % sodium chloride) with a primary endpoint being 
the occurrence of AKI in the post-operative period 
[156]. The results found a higher incidence of AKI 
in the sodium bicarbonate group (83/174 [47.7  %]) 
compared with the control group (64/176 [36.4  %], 
odds ratio [OR] 1.60 [95  % CI 1.04–2.45], p =  0.03). 
This study was stopped early because there was an 
increased mortality in patients receiving sodium 
bicarbonate (11/174 [6.3 %] vs 3/176 [1.7 %], OR 3.89 
[1.07–14.2], p = 0.03). Two other recent studies per-
formed in cardiac surgery did not find any beneficial 
effect of sodium bicarbonate for preventing AKI [157, 
158].

Concerning the treatment of AKI, a recent meta-
analysis has assessed the administration of sodium 
bicarbonate for this indication [159]. The primary 
endpoint was in-hospital mortality; secondary end-
points were the need for RRT, renal recovery and 
global survival. Four studies were considered in this 
analysis, but none met the pre-defined criteria. Conse-
quently, taking into account data issued from current 
literature, we do not recommend the administration 
of sodium bicarbonate to prevent or treat AKI.

In the special condition of rhabdomyolysis-related 
AKI, fluid vascular loading requirements seem to 
be established [160–162], but the nature of the fluid 
remains in discussion. Theoretical benefits for using 
sodium bicarbonate are described (inhibition of intra-
renal vasoconstriction, inhibition of lipid peroxida-
tion and decreases in myoglobin crystallization with 
Tamm–Horsfall protein). Nevertheless, for methodo-
logical reasons (small size, multiple interventions, 
non-randomized studies), the rare availability of such 
studies cannot be used to confirm that sodium bicar-
bonate is superior to other solutions used for vascular 
loading [163–167].

Low-dose dopamine (1–3 µg/kg/min) induces renal 
vasodilation and natriuresis in healthy adults. This 
agent has been evaluated as a preventive treatment for 
AKI in multiple clinical situations: critically ill patients 
with SIRS, the perioperative period for aortic surgery, 
the post-operative period following liver or kidney 
transplantation. Most studies, which include a rand-
omized, controlled multicentre trial, a meta-analysis 
and a systematic review, conclude that dopamine has 
no beneficial effect either in preventive or in the cura-
tive treatment of AKI [171–173].

Fenoldopam is a dopamine-1 receptor agonist with-
out α or β adrenergic systemic effects. Seven studies 
have included 1218 patients and did not find benefi-
cial effects associated with the preventive or curative 
administration of fenoldopam as concerns mortal-
ity and the need for RRT [174–180]. The benefit of 
fenoldopam in terms of AKI occurrence is difficult to 
evaluate due to heterogenous delays in administration 
and diagnosis criteria among studies. Four meta-anal-
yses are available but show conflicting results: two of 
them reported a beneficial effect with a reduction in 
the risk of AKI, one did not find any beneficial effect 
and the last one did not analyse the risk of AKI [181–
184]. Considering current data in the literature, it is 
recommended not to use fenoldopam for the preven-
tion or treatment of AKI.

Several natriuretic peptides that can increase GFR 
have been proposed as preventive and curative ther-
apies for AKI. Most of the prospective randomized 
controlled trials and 3 meta-analyses have not found 
any benefit associated with these agents [185–188].

The preventive or curative administration of NAC 
for AKI has not demonstrated any beneficial effect 
concerning the need for RRT and reductions in mor-
tality [129, 189–192]. Apart for preventing CIN, stud-
ies were performed essentially in the perioperative 
period of cardiovascular surgery.

Based on the available studies, no beneficial effect 
associated with the preventive and curative adminis-
tration of IGF-1 has been demonstrated for AKI [193, 
194]. Currently, there are not enough data to recom-
mend erythropoietin for preventing or treating AKI 
[195]. Only one study including 171 patients undergo-
ing cardiac surgery (coronary artery bypass graft) has 
shown that erythropoietin (300  U/kg) administered 
before cardiac surgery for coronary artery bypass 
grafts, enabled a reduction in the risk of post-oper-
ative AKI compared with 0.9  % saline solution (8 vs 
29 %, p = 0.03) [196].

In two pilot studies, rolofylline (an antagonist of A 1 
adenosine receptors) versus placebo was administered 

R6.3—We recommend not using the following treat-
ments to prevent or treat AKI: mannitol, dopamine, 
fenoldopam, atrial natriuretic factor, NAC, insulin-
like growth factor-1 (IGF-1), erythropoietin, adeno-
sine receptor antagonists.

(Grade 1−) STRONG agreement

Rationale: Mannitol has been proposed as a preven-
tive treatment of AKI during the perioperative period 
in traumatic brain injury, in patients with rhabdomy-
olysis or those undergoing coronarography. In most 
studies, it increases urine output while increasing or 
not decreasing the incidence of AKI [168–170].
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in patients with acute cardiac insufficiency [197, 198]. 
Both found that rolofylline increased urine output 
and improved creatinine clearance (vs placebo). The 
largest and more recent prospective multicentre trial 
(n = 2033 patients) comparing rolofylline versus pla-
cebo in patients with acute cardiac insufficiency did 
not find beneficial effect of rolofylline in terms of sur-
vival, cardiac and renal function [199].

There are two special conditions requiring the pre-
ventive treatment of AKI: (1) high doses of metho-
trexate infusion [200]; (2) patients with a high risk of 
tumour lysis syndrome. Methotrexate at high doses 
(1–12  g/m2) is a treatment required for numerous 
malignant tumours. This drug can induce AKI (up 
to 40  % of patients in a recent study), which is due 
to direct tubular toxicity and intratubular precipita-
tion [201]. Intravenous hydration (≥2 l/m2) and urine 
alkalinization are both recommended strategies for 
preventing AKI. Several historical observational and 
interventional studies highlighted that these strategies 
were associated with an increased methotrexate clear-
ance and decreased episodes of severe toxicity [202–
205]. Urine alkalinization decreases methotrexate 
crystallization [202]. Thus, it is recommended to alka-
linize the urine of patients who must receive high doses 
of methotrexate (1–12 g/m2) in order to prevent AKI. 
About one-third of patients with a high risk of tumour 
lysis syndrome develop AKI [206, 207]. In this clinical 
condition, hyperuricaemia is one of the factors which 
contribute to AKI by different mechanisms [208]. In 
two randomized controlled studies and 2 recent meta-
analyses, rasburicase administration was associated 
with a more rapid and profound decrease in uricaemia 
as compared with allopurinol [209–211]. However, 
there is no proof that rasburicase is associated with 
reduced AKI incidence [212]. Hyperuricaemia is only 
one of the numerous mechanisms implicated in renal 
injury during tumour lysis syndrome (phosphate and 
calcium crystals, hypovolaemia, renal tumour infiltra-
tion, nephrotoxic exposure, inflammation). In patients 
with a high risk of tumour lysis syndrome, rasburicase 
administration is proposed by four recent expert rec-
ommendations [198, 213–215].

R7.2—We recommend not limiting nutritional sup-
port in order to only prevent fluid overload and/or the 
need for renal replacement therapy.

(Grade 1−) STRONG agreement

7. Nutritional modalities for AKI

R7.1—We suggest following the same nutritional 
strategy rules in critically ill patients whether or not 
they have AKI (without renal replacement therapy).

(Grade 2+) STRONG agreement

Rationale: AKI has an impact on fluid balance and acid–
base equilibrium, but also interferes with the metabolism 
of each macronutrient, generally towards hypercatabo-
lism. Thus, the consequences of AKI on nutrition add 
to those related to the underlying pathology [216]. In 
patients with AKI, undernutrition is significantly associ-
ated with a high incidence of infectious complications, 
prolonged in-hospital length of stay and mortality [18]. 
Nutritional evaluation is complex because normally 
available markers (body mass index, impedancemetry) 
become inaccurate due to modifications in hydration 
status [217]. Nutritional support in injured patients with 
or without AKI must be similar, aiming at an appropri-
ate energy and protein intake, muscle mass preserva-
tion, improvement in immune function and reduction in 
mortality [218]. Nutritional requirements must take into 
account hypercatabolism related to illness and the pres-
ence or not of RRT and its technique. These parameters, 
more than AKI itself, have a major impact on nutritional 
strategies. Indirect calorimetry remains the reference 
tool required to define patient energy requirements. 
When this device cannot be used, it is recommended to 
provide an energy target of 20–30 kcal/kg/day and a pro-
tein target of 1.5 g/kg/day, in the absence of RRT [219]. 
In case of RRT, an increase in protein supply including 
glutamine and micronutrients (vitamins and trace ele-
ments) is suggested [220]. Water-soluble vitamins from 
the B group (especially B1 vitamins and folates) are sig-
nificantly eliminated during RRT [221].

R7.1 Paediatric—We suggest adapting protein intake 
according to the age of children with AKI.

(Grade 2+) STRONG agreement

Paediatric rationale: KDIGO recommendations in 
2012 [1] have elaborated recommendations for the 
nutrition of paediatric patients with AKI that can be 
followed. The authors insist on the essential point for 
paediatric patients, i.e. the dynamics of growth and 
weight gain, which justify a higher nutrition intake 
than in adults. The KDIGO recommendations have 
proposed the following protein intake depending on 
the age of children presenting with AKI:

  • 2–3 g/kg/day from 0 to 2 years,
  • 1.5–2 g/kg/day from 2 to 13 years,
  • 1.5 g/kg/day above 13 years.
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8. How to evaluate kidney functional recovery 
after AKI
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R8.1—We recommend considering patients with AKI 
as patients at high risk of developing CRI.

(Grade 1+) STRONG agreement

R8.2—We suggest assessing renal function in patients 
who presented AKI 6 months after the acute episode.

(Grade 2+) STRONG agreement

R8.3—We suggest defining the absence of renal 
functional recovery following AKI as follows: an 
increase in Scr above 25  % of its basal value or RRT 
dependancy.

(Grade 2+) STRONG agreement

Rationale: Severe AKI can be associated with a total 
or partial absence of renal functional recovery, leading 
to CRI. Paediatric studies using long-term follow-up 
were the first to show that patients considered as com-
pletely recovered based on biological data can pro-
gress towards CRI within the 3 following years in 10 % 
of cases [222]. An incomplete recovery can lead to a 
normalization of the usual biological parameters (Scr), 
despite a decreased number of nephrons. This phe-
nomenon leads to higher renal susceptibility in case of 
a new injury or during physiological ageing.

 A recent review estimates the incidence of CRI after 
an acute injury at 25.8/100 patient-years and the inci-
dence of end-stage kidney disease at 6.6/100 patient-
years [10]. Thus, it is clear that there is a relationship 
between AKI and CRI. Moreover, several studies 
report that there is also a relationship between the 
severity of AKI and the increased risk of chronic dam-
age with a twofold increase in end-stage CRI requir-
ing dialysis at 10  years [223]. This evolution towards 
CRI is associated with an increased mortality rate. The 
study of Pannu et al. [224] found that as soon as renal 
function recovery remains below 125 % of pre-injured 
Scr, a nephrologic follow-up is required in order to 
detect long-term poor renal functional recovery. A 
study assessed 3877 patients and, among them, 1153 
were followed for 3  months by a nephrologist. This 
study found that these patients had a significantly 
higher survival compared with the matched control 
group (RR 0.76, 95 % CI 0.62–0.93) [225]. Therefore, 
a systematic follow-up by nephrologists is advised 
in patients who present with AKI, regardless of their 
early renal function recovery.



Page 16 of 20Ichai et al. Ann. Intensive Care  (2016) 6:48 

ALEXION. Lionel VELLY declares consulting fees from NOVARTIS, HOSPAL‑GAM‑
BRO, FRESENIUS MEDICAL CARE, MSD. Fabien ARMANDO, Emmanuel CANET, 
Christophe CLEC’H, Jean‑Michel CONSTANTIN, Michaël DARMON, Jacques 
DURANTEAU, Théophille GAILLOT, Arnaud GARNIER, Carole ICHAI, Laurent 
JACOB, Didier JOURNOIS, Laurent JUILLARD, Alexandre LAUTRETTE, Nicolas 
LEROLLE, Thomas RIMMELE, Bertrand SOUWEINE, Fabienne TAMION, Yannick 
WALRAVE declare no competing interest with this manuscript.

Received: 4 April 2016   Accepted: 19 April 2016

References
 1. The Kidney Disease Improving Global Outcomes (KDIGO) Working 

Group. KDIGO clinical practice guideline for acute kidney injury. Kidney 
Int Suppl. 2012;2:1–138.

 2. Hoste EA, Damen J, Vanholder RC, et al. Assessment of renal function 
in recently admitted critically ill patients with normal serum creatinine. 
Nephrol Dial Transplant. 2005;20:747–53.

 3. Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute 
kidney injury: a KDIGO summary (part 1). Crit Care. 2013;17:204.

 4. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal 
failure—definition, outcome measures, animal models, fluid therapy 
and information technology needs: the second international consensus 
conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit 
Care. 2004;8:R204–12.

 5. Mehta RL, Kellum JA, Shah SV, et al. Acute kidney injury network: report 
of an initiative to improve outcomes in acute kidney injury. Crit Care. 
2007;11:R31.

 6. Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C. An assessment of 
the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care 
Med. 2006;34:1913–7.

 7. Hoste EA, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney 
injury are associated with hospital mortality in critically ill patients: a 
cohort analysis. Crit Care. 2006;10:R73.

 8. Bagshaw SM, George C, Dinu I, Bellomo R. A multi‑centre evaluation 
of the RIFLE criteria for early acute kidney injury in critically ill patients. 
Nephrol Dial Transplant. 2008;23:1203–10.

 9. Joannidis M, Metnitz B, Bauer P, et al. Acute kidney injury in critically 
ill patients classified by AKIN versus RIFLE using the SAPS 3 database. 
Intensive Care Med. 2009;35:1692–702.

 10. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute 
kidney injury: a systematic review and meta‑analysis. Kidney Int. 
2012;81:442–8.

 11. Akcan‑Arikan A, Zappitelli M, Loftis LL, Wasburn KK, Jefferson LS, Gold‑
stein SL. Modified RIFLE criteria in critically ill children with acute kidney 
injury. Kidney Int. 2007;71:1028–35.

 12. Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concen‑
tration for estimating glomerular filtration rate in infants, children, and 
adolescents. Pediatr Clin N Am. 1987;34:57–90.

 13. Plötz F, Bouma A, van Wijk J, Kneyber M, Bökenkamp A. Pediatric acute 
kidney injury in the ICU: an independent evaluation of pRIFLE criteria. 
Intensive Care Med. 2008;34:1713–7.

 14. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute 
kidney injury. J Clin Invest. 2011;121:4210–21.

 15. Bellomo R, Kellum JA, Ronco C. Acute kidney Inj. Lancet. 
2012;380:7556–66.

 16. Chertow GM, Burdock E, Honour M, et al. Acute kidney injury, mortality, 
length of stay and costs in hospitalized patients. J Am Soc Nephrol. 
2005;16:3365–70.

 17. Wald R, Quinn RR, Luo J, et al. Chronic dialysis and death among survi‑
vors of acute kidney injury requiring dialysis. JAMA. 2009;302:1179–85.

 18. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill 
patients: a multinational, multicenter study. JAMA. 2005;294:813–8.

 19. Waikar SS, Liu KD, Chertow GM. Diagnosis, epidemiology and outcomes 
of acute kidney injury. Clin J Am Soc Nephrol. 2008;3:844–61.

 20. Nisula S, Kaukonen K‑M, Vaara ST, et al. Incidence, risk factors and 
90‑day mortality of patients with acute kidney injury in Finnish inten‑
sive care units: the FINNAKI study. Intensive Care Med. 2013;39:420–8.

 21. Vaara ST, Pettilä V, Reinkainen M, Kaukonen K‑M, for the Finnish Inten‑
sive Care Consortium. Population‑based incidence, and mortality and 
quality of life in critically ill patients treated with renal replacement 
therapy: a nationwide retrospective cohort study in finnish intensive 
care units. Crit Care. 2012;16:R13.

 22. Endre ZH, Pickering JW, Walker RJ. Clearance and beyond: the com‑
plementary roles of GFR measurement and injury biomarkers in acute 
kidney injury (AKI). Am J Physiol Renal Physiol. 2011;301:F697–707.

 23. Murray PT, Mehta RL, Shaw A, et al. Current use of biomarkers in acute 
kidney injury: report and summary of recommendations from the 
10th acute dialysis quality initiative consensus conference. Kidney Int. 
2014;85:513–21.

 24. Bihorac A, Kellum JA. Acute kidney injury in 2014: a step towards under‑
standing mechanism of renal repair. Nat Rev Nephrol. 2015;11:74–5.

 25. Cruz DN, Mehta RL. Acute kidney injury in 2013: breaking barriers for 
biomarkers in AKI‑progress at last. Nat Rev Neprhol. 2014;10:74–6.

 26. Parikh CR, Devarajan P. New biomarkers in acute kidney injury. Crit Care 
Med. 2008;36:S159–65.

 27. Shang Z, Lu B, Sheng X, Jin N. Cystatin C in prediction of acute 
kidney injury: a systemic review and meta‑analysis. Am J Kidney Dis. 
2011;58:356–65.

 28. Liu Y, Guo W, Zhang J, et al. Urinary interleukin 18 for detection of acute 
kidney injury: a metanalysis. Am J Kidney Dis. 2013;62:1058–67.

 29. Shao X, Tian L, Xu W, et al. Diagnostic value of urinary kidney injury 
molecule 1 for acute kidney injury: a meta‑analysis. PLoS One. 
2014;9:e84131.

 30. Haase M, Bellomo R, Devarajan P, et al. Accuracy of neutrophil 
gelatinase‑associated lipocalin (NGAL) in diagnosis and prognosis in 
acute kidney injury: a systematic review and meta‑analysis. Am J Kidney 
Dis. 2009;54:1012–24.

 31. Haase M, Devarajan P, Haase‑Fielitz A, et al. The outcome of neutrophil 
gelatinase‑associated lipocalin‑positive subclinical acute kidney injury. 
JACC. 2011;57:1752–61.

 32. Kashani K, Al‑Khafaji A, Ardiles T, et al. Discovery and validation of 
cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 
2013;17:R25.

 33. Bihorac A, Chawla LS, Shaw AD, et al. Validation of cell‑cycle arrest bio‑
markers for acute kidney injury using clinical adjudication. Am J Resp 
Crit Care Med. 2014;189:932–9.

 34. McIllroy DR, Epi MC, Wagener G, Lee HT. Biomarkers of acute kidney 
injury: an evolving domain. Anesthesiology. 2010;112:998–1004.

 35. Goldstein SL. Acute kidney injury in children and its potential conse‑
quences in adulthood. Blood Purif. 2012;33:131–7.

 36. Schiffl H, Lang S. Urinary biomarkers and acute kidney injury in children: 
the long road to clinical application. Pediatr Nephrol. 2013;28:837–42.

 37. Ataei N, Bazargani B, Sonbol A, et al. Early detection of acute kidney 
injury by serum cystatin C in critically ill children. Pediatr Nephrol. 
2014;29:133–8.

 38. Schnell D, Darmon M. Renal Doppler to assess renal perfusion in the 
critically ill: a reappraisal. Intensive Care Med. 2012;38:1751–60.

 39. Duranteau J, Deruddre S, Vigue B, Chemla D. Doppler monitoring of 
renal hemodynamics: why the best is yet to come. Intensive Care Med. 
2008;34:1360–1.

 40. Wan L, Yang N, Hiew C‑Y, et al. An assessment of the accuracy of renal 
blood flow estimation by Doppler ultrasound. Intensive Care Med. 
2008;34:1503–10.

 41. Lauschke A, Teichgräber UKM, Frei U, Eckardt KU. “Low‑dose” dopamine 
worsens renal perfusion in patients with acute renal failure. Kidney Int. 
2006;69:1669–74.

 42. Deruddre S, Cheisson G, Mazoit JX, et al. Renal arterial resistance in sep‑
tic shock: effects of increasing mean arterial pressure with norepineph‑
rine on the renal resistive index assessed with Doppler ultrasonogra‑
phy. Intensive Care Med. 2007;33:1557–62.

 43. Schnell D, Camous L, Guyomarc’h S, et al. renal perfusion assess‑
ment by renal doppler during fluid challenge in sepsis. Crit Care Med. 
2013;41:1214–20.

 44. Lerolle N, Guérot E, Faisy C, et al. Renal failure in septic shock: predictive 
value of Doppler‑based renal arterial resistive index. Intensive Care 
Med. 2006;32:1553–5.



Page 17 of 20Ichai et al. Ann. Intensive Care  (2016) 6:48 

 45. Platt JF, Rubin JM, Ellis JH. Acute renal failure: possible role of duplex 
Doppler US in distinction between acute prerenal failure and acute 
tubular necrosis. Radiology. 1991;179:419–23.

 46. Izumi M, Sugiura T, Nakamura H, et al. Differential diagnosis of prerenal 
azotemia from acute tubular necrosis and prediction of recovery by 
Doppler ultrasound. Am J Kidney Dis. 2000;35:713–9.

 47. Stevens PE, Gwyther SJ, Hanson ME, et al. Noninvasive monitoring 
of renal blood flow characteristics during acute renal failure in man. 
Intensive Care Med. 1990;16:153–8.

 48. Schnell D, Deruddre S, Harrois A, et al. Renal resistive index better 
predicts the occurrence of acute kidney injury than cystatin C. Shock. 
2012;38:592–7.

 49. Darmon M, Schortgen F, Vargas F, et al. Diagnostic accuracy of Doppler 
renal resistive index for reversibility of acute kidney injury in critically ill 
patients. Intensive Care Med. 2011;37:68–76.

 50. Schnell D, Reynaud M, Venot M, et al. Resistive index or color‑Doppler 
semi‑quantitative evaluation of renal perfusion by inexperienced physi‑
cians: results of a pilot study. Minerva Anestesiol. 2014;80:1273–81.

 51. Bossard G, Bourgoin P, Corbeau JJ, et al. Early detection of postoperative 
acute kidney injury by Doppler renal resistive index in cardiac surgery 
with cardiopulmonary bypass. Br J Anaesth. 2011;107:891–8.

 52. Dewitte A, Coquin J, Meyssignac B, et al. Doppler resistive index to 
reflect regulation of renal vascular tone during sepsis and acute kidney 
injury. Crit Care. 2012;16:R165.

 53. Lerolle N. Please don’t call me RI anymore; I may not be the one you 
think I am! Crit Care. 2012;16:174.

 54. Bude RO, Rubin JM. Relationship between the resistive index and 
vascular compliance and resistance. Radiology. 1999;211:411–7.

 55. Murphy ME, Tublin ME. Understanding the Doppler RI: impact of renal 
arterial distensibility on the RI in a hydronephrotic ex vivo rabbit kidney 
model. J Ultrasound Med. 2000;19:303–14.

 56. Tublin ME, Tessler FN, Murphy ME. Correlation between renal vascular 
resistance, pulse pressure, and the resistive index in isolated perfused 
rabbit kidneys. Radiology. 1999;213:258–64.

 57. Naesens M, Heylen L, Lerut E, et al. Intrarenal resistive index after renal 
transplantation. N Engl J Med. 2013;369:1797–806.

 58. Huen SC, Parikh CR. Predicting acute kidney injury after cardiac surgery: 
a systematic review. Ann Thorac Surg. 2012;93:337–47.

 59. Kheterpal S, Tremper KK, Heung M, et al. Development and validation 
of an acute kidney injury risk index for patients undergoing general sur‑
gery: results from a national data set. Anesthesiology. 2009;110:505–15.

 60. Pannu N, Nadim MK. An overview of drug‑induced acute kidney injury. 
Crit Care Med. 2008;36(Suppl.):5216–23.

 61. Bentley ML, Corwin HI, Dasta J, et al. Drug‑induced acute kidney injury 
in the critically ill adult: recognition and preventive strategies. Crit Care 
Med. 2010;38(Suppl. 6):5169–74.

 62. Annane D, Siami S, Jaber S, et al. Effects of fluid resuscitation with 
colloids vs crystalloids on mortality in critically ill patients present‑
ing with hypovolemic shock: the CRISTAL randomized trial. JAMA. 
2013;310:1809–17.

 63. Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for 
fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.

 64. Haase N, Perner A, Hennings LI, et al. Hydroxyethyl starch 130/0.38–0.45 
versus crystalloid or albumin in patients with sepsis: systematic review 
with meta‑analysis and trial sequential analysis. BMJ. 2013;346:f839.

 65. Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 
versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34.

 66. Zarychanski R, Abou‑Setta AM, Turgeon AF, et al. Association of hydrox‑
yethyl starch administration with mortality and acute kidney injury in 
critically ill patients requiring volume resuscitation: a systematic review 
and meta‑analysis. JAMA. 2013;309:678–88.

 67. Guidet B, Martinet O, Boulain T, et al. Assessment of hemodynamic 
efficacy and safety of 6 % hydroxyethylstarch 130/0.4 vs. 0.9 % NaCl 
fluid replacement in patients with severe sepsis: the CRYSTMAS study. 
Crit Care. 2012;16:R94.

 68. Patel A, Waheed U, Brett SJ. Randomised trials of 6% tetrastarch (hydrox‑
yethyl starch 130/0.4 or 0.42) for severe sepsis reporting mortality: sys‑
tematic review and meta‑analysis. Intensive Care Med. 2013;39:811–22.

 69. Hartog CS, Reinhart K. CRYSTMAS study adds to concerns about renal 
safety and increased mortality in sepsis patients. Crit Care. 2012;16:454.

 70. Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pen‑
tastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.

 71. Schortgen F, Lacherade JC, Bruneel F, et al. Effects of hydroxyethylstarch 
and gelatin on renal function in severe sepsis: a multicentre ran‑
domised study. Lancet. 2001;357:911–6.

 72. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation 
in critically ill patients. Cochrane Database Syst Rev. 2013;2:CD000567.

 73. Mutter TC, Ruth CA, Dart AB. Hydroxyethyl starch (HES) versus other 
fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 
2013;7:CD007594.

 74. Martin C, Jacob M, Vicaut E, et al. Effect of waxy maize‑derived hydroxy‑
ethyl starch 130/0.4 on renal function in surgical patients. Anesthesiol‑
ogy. 2013;118:387–94.

 75. The European Medicines Agency’s Pharmacovigilance Risk Assess‑
ment Committee. Hydroxyethyl‑starch solutions (HES) should no 
longer be used in patients with sepsis or burn injuries or in critically ill 
patients. 2015. http://www.ema.europa.eu/ema/index.jsp?curl=pages/
medicines/human/referrals/Hydroxyethyl_starch‑containing_solu‑
tions/human_referral_prac_000012.jsp&mid=WC0b01ac05805c516f. 
Accessed 27 Jan 2016.

 76. Kurtz TW, Morris RC Jr. Dietary chloride as a determinant of “sodium‑
dependent” hypertension. Science. 1983;222:1139–41.

 77. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin 
Invest. 1983;71:726–35.

 78. Hansen PB, Jensen BL, Skott O. Chloride regulates afferent arte‑
riolar contraction in response to depolarization. Hypertension. 
1998;32:1066–70.

 79. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, 
double‑blind crossover study on the effects of 2‑L infusions of 0.9% 
saline and plasma‑lyte® 148 on renal blood flow velocity and renal cor‑
tical tissue perfusion in healthy volunteers. Ann Surg. 2012;256:18–24.

 80. Lobo DN, Awad S. Should chloride‑rich crystalloids remain the mainstay 
of fluid resuscitation to prevent ‘pre‑renal’ acute kidney injury?:con. 
Kidney Int. 2014;86:1096–105.

 81. Yunos NM, Kim IB, Bellomo R, et al. The biochemical effects of restricting 
chloride‑rich fluids in intensive care. Crit Care Med. 2011;39:2419–24.

 82. Shaw AD, Bagshaw SM, Goldstein SL, et al. Major complications, mortal‑
ity, and resource utilization after open abdominal surgery: 0.9 % saline 
compared to plasma‑lyte. Ann Surg. 2012;255:821–9.

 83. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association 
between a chloride‑liberal vs chloride‑restrictive intravenous fluid 
administration strategy and kidney injury in critically ill adults. JAMA. 
2012;308:1566–72.

 84. McCluskey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Scott 
Beattie W. Hyperchloremia after non cardiac surgery is independently 
associated with increased morbidity and mortality: a propensity‑
matched cohort study. Anesth Analg. 2013;13:412–21.

 85. Raghunathan K, Shaw A, Nathanson B, et al. Association between the 
choice of IV crystalloid and in‑hospital mortality among critically ill 
adults with sepsis. Crit Care Med. 2014;40:1897–905.

 86. Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw 
AD. Meta‑analysis of high—versus low‑chloride content in periopera‑
tive and critical care fluid resuscitation. Br J Surg. 2015;102:24–36.

 87. Raghunathan K, Murray PT, Beattie WS, ADQI XII Investigators Group, 
et al. Choice of fluid in acute illness: what should be given? An interna‑
tional consensus. Br J Anaesth. 2014;113:772–83.

 88. Antonelli M, Levy M, Andrews PJ, et al. Hemodynamic monitoring in shock 
and implications for management. International consensus conference, 
Paris, France, 27–28 April 2006. Intensive Care Med. 2007;33:575–90.

 89. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: inter‑
national guidelines for management of severe sepsis and septic shock, 
2012. Intensive Care Med. 2013;39:165–228.

 90. Varpula M, Tallgren M, Saukkonen K, Voipio‑Pulkki LM, Pettila V. Hemo‑
dynamic variables related to outcome in septic shock. Intensive Care 
Med. 2005;31:1066–71.

 91. Rivers E, Nguyen B, Havstad S, et al. Early goal‑directed therapy 
in the treatment of severe sepsis and septic shock. N Engl J Med. 
2001;345:1368–77.

 92. Poukkanen M, Wilkman E, Vaara ST, et al. Hemodynamic variables and 
progression of acute kidney injury in critically ill patients with severe 

http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/Hydroxyethyl_starch-containing_solutions/human_referral_prac_000012.jsp&mid=WC0b01ac05805c516f
http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/Hydroxyethyl_starch-containing_solutions/human_referral_prac_000012.jsp&mid=WC0b01ac05805c516f
http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/Hydroxyethyl_starch-containing_solutions/human_referral_prac_000012.jsp&mid=WC0b01ac05805c516f


Page 18 of 20Ichai et al. Ann. Intensive Care  (2016) 6:48 

sepsis: data from the prospective observational FINNAKI study. Crit 
Care. 2013;17:R295.

 93. Asfar P, Meziani F, Hamel JF, et al. High versus Low blood‑pressure target 
in patients with septic shock. N Engl J Med. 2014;370:1583–93.

 94. Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C. Increas‑
ing mean arterial pressure in patients with septic shock: effects on 
oxygen variables and renal function. Crit Care Med. 2005;33:780–6.

 95. LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure 
on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–32.

 96. Dunser MW, Takala J, Ulmer H, et al. Arterial blood pressure during early 
sepsis and outcome. Intensive Care Med. 2009;35:1225–33.

 97. Benchekroune S, Karpati PC, Berton C, et al. Diastolic arterial blood 
pressure: a reliable early predictor of survival in human septic shock. J 
Trauma. 2008;64:1188–95.

 98. Legrand M, Dupuis C, Simon C, et al. Association between systemic 
hemodynamics and septic acute kidney injury in critically ill patients: a 
retrospective observational study. Crit Care. 2013;17:R278.

 99. Walsh M, Devereaux PJ, Garg AX, et al. Relationship between intraopera‑
tive mean arterial pressure and clinical outcomes after noncardiac 
surgery: toward an empirical definition of hypotension. Anesthesiology. 
2013;119:507–15.

 100. Haase M, Bellomo R, Story D, et al. Effect of mean arterial pressure, 
haemoglobin and blood transfusion during cardiopulmonary bypass 
on post‑operative acute kidney injury. Nephrol Dial Transplant. 
2012;27:153–60.

 101. Kanji HD, Schulze CJ, Hervas‑Malo M, et al. Difference between 
pre‑operative and cardiopulmonary bypass mean arterial pressure is 
independently associated with early cardiac surgery‑associated acute 
kidney injury. J Cardiothorac Surg. 2010;5:71.

 102. Brienza N, Giglio MT, Marucci M, Fiore T. Does perioperative hemody‑
namic optimization protect renal function in surgical patients? A meta‑
analytic study. Crit Care Med. 2009;37:2079–90.

 103. Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, 
Rowan K. Perioperative increase in global blood flow to explicit defined 
goals and outcomes after surgery: a Cochrane systematic review. Br J 
Anaesth. 2013;111:535–48.

 104. Bouchard J, Soroko SB, Chertow GM, et al. Fluid accumulation, survival 
and recovery of kidney function in critically ill patients with acute 
kidney injury. Kidney Int. 2009;76:422–7.

 105. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive 
fluid balance is associated with a worse outcome in patients with acute 
renal failure. Crit Care. 2008;12:R74.

 106. Teixeira C, Garzotto F, Piccinni P, et al. Fluid balance and urine volume 
are independent predictors of mortality in acute kidney injury. Crit Care. 
2013;17:R14.

 107. Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD. Fluid balance, diu‑
retic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol. 
2011;6:966–73.

 108. Bellomo R, Cass A, Cole L, et al. An observational study fluid bal‑
ance and patient outcomes in the randomized evaluation of normal 
vs. augmented level of replacement therapy trial. Crit Care Med. 
2012;40:1753–60.

 109. Boland MR, Noorani A, Varty K, Coffey JC, Agha R, Walsh SR. Perio‑
perative fluid restriction in major abdominal surgery: systematic 
review and meta‑analysis of randomized, clinical trials. World J Surg. 
2013;37:1193–202.

 110. Varadhan KK, Lobo DN. A meta‑analysis of randomised controlled trials 
of intravenous fluid therapy in major elective open abdominal surgery: 
getting the balance right. Proc Nutr Soc. 2010;69:488–98.

 111. Desjars P, Pinaud M, Bugnon D, Tasseau F. Norepinephrine therapy 
has no deleterious renal effects in human septic shock. Crit Care Med. 
1989;17:426–9.

 112. Desjars P, Pinaud M, Potel G, Tasseau F, Touze MD. A reappraisal of 
norepinephrine therapy in human septic shock. Crit Care Med. 
1987;15:134–7.

 113. Fukuoka T, Nishimura M, Imanaka H, Taenaka N, Yoshiya I, Takezawa J. 
Effects of norepinephrine on renal function in septic patients with nor‑
mal and elevated serum lactate levels. Crit Care Med. 1989;17:1104–7.

 114. Martin C, Viviand X, Leone M, Thirion X. Effect of norepinephrine on the 
outcome of septic shock. Crit Care Med. 2000;28:2758–65.

 115. Redl‑Wenzl EM, Armbruster C, Edelmann G, et al. Noradrenaline in the 
“high output‑low resistance” state of patients with abdominal sepsis. 
Anaesthesist. 1990;39:525–9.

 116. Albanese J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C. Renal 
effects of norepinephrine in septic and nonseptic patients. Chest. 
2004;126:534–9.

 117. Martin C, Papazian L, Perrin G, Saux P, Gouin F. Norepinephrine or 
dopamine for the treatment of hyperdynamic septic shock? Chest. 
1993;103:1826–31.

 118. Leone M, Albanese J, Delmas A, Chaabane W, Garnier F, Martin C. 
Terlipressin in catecholamine‑resistant septic shock patients. Shock. 
2004;22:314–9.

 119. Albanese J, Leone M, Delmas A, Martin C. Terlipressin or norepinephrine 
in hyperdynamic septic shock: a prospective, randomized study. Crit 
Care Med. 2005;33:1897–902.

 120. Rihal CS, Textor SC, Grill DE, et al. Incidence and prognostic importance 
of acute renal failure after percutaneous coronary intervention. Circula‑
tion. 2002;105:2259–64.

 121. Rudnick MR, Goldfarb S, Tumlin J. Contrast‑induced nephropathy: is the 
picture any clearer? Clin J Am Soc Nephrol. 2008;3:261–2.

 122. Hoste EAJ, Doom S, De Waele J, et al. Epidemiology of contrast‑associ‑
ated acute kidney injury in ICU patients: a retrospective cohort analysis. 
Intensive Care Med. 2011;37:1921–31.

 123. Chousterman BG, Bouadma L, Moutereau S, et al. Prevention of con‑
trast‑induced nephropathy by N‑acetylcysteine in critically ill patients: 
different definitions, different results. J Crit Care. 2013;5:701–9.

 124. Valette X, Savary B, Nowoczyn M, et al. Accuracy of plasma neutrophil 
gelatinase‑associated lipocalin in the early diagnosis of contrast‑
induced acute kidney injury in critical illness. Intensive Care Med. 
2013;39:857–65.

 125. Clec’h C, Razafimandimby D, Laouisset M, et al. Incidence and outcome 
of contrast‑associated acute kidney injury in a mixed medical‑surgical 
ICU population: a retrospective study. BMC Nephrol. 2013;4:14–31.

 126. Brar SS, Hiremath S, Dangas G, et al. Sodium bicarbonate for the 
prevention of contrast induced‑acute kidney injury: a systematic review 
and meta‑analysis. Clin J Am Soc Nephrol. 2009;4:1584–92.

 127. Zoungas S, Ninomiya T, Huxley R, et al. Systematic review: sodium bicar‑
bonate treatment regimens for the prevention of contrast‑induced 
nephropathy. Ann Intern Med. 2009;151:631–8.

 128. Brown JR, Block CA, Malenka DJ, et al. Sodium bicarbonate plus 
N‑acetylcysteine prophylaxis: a meta‑analysis. JAAC Cardiovasc Interv. 
2009;2:1116–24.

 129. Sun Z, Fu Q, Cao L, et al. Intravenous N‑acetylcysteine for prevention 
of contrast‑induced nephropathy: a meta‑analysis of randomized, 
controlled trials. PLoS One. 2013;8:e55124.

 130. Jang JS, Jin HY, Seo JS, et al. Sodium bicarbonate therapy for the pre‑
vention of contrast‑induced acute kidney injury—a systematic review 
and meta‑analysis. Circ J. 2012;76:2255–65.

 131. Solomon R, Werner C, Mann D, et al. Effects of saline, mannitol, and 
furosemide to prevent acute decreases in renal function induced by 
radiocontrast agents. N Engl J Med. 1994;331:1416–20.

 132. Vaitkus PT, Brar C. N‑acetylcysteine in the prevention of contrast‑
induced nephropathy: publication bias perpetuated by meta‑analyses. 
Am Heart J. 2007;153:275–80.

 133. Hoste EAJ, De Waele JJ, Gevaert SA, Uchino S, Kellum JA. Sodium 
bicarbonate for prevention of contrast‑induced acute kidney injury: 
a systematic review and meta‑analysis. Nephrol Dial Transplant. 
2010;25:747–58.

 134. Klima T, Christ A, Marana I, et al. Sodium chloride vs. sodium bicarbo‑
nate for the prevention of contrast medium‑induced nephropathy: a 
randomized controlled trial. Eur Heart J. 2012;33:2071–9.

 135. Kooiman J, Sijpkens YWJ, de Vries J‑PPM, et al. A randomized 
comparison of 1‑h sodium bicarbonate hydration versus standard 
peri‑procedural saline hydration in patients with chronic kidney disease 
undergoing intravenous contrast‑enhanced computerized tomogra‑
phy. Nephrol Dial Transplant. 2014;29:1029–36.

 136. Pattharanitima P, Tasanarong A. Pharmacological strategies to 
prevent contrast‑induced acute kidney injury. BioMed Res Int. 
2014;2014:236930.



Page 19 of 20Ichai et al. Ann. Intensive Care  (2016) 6:48 

 137. Kelly AM, Dwamena B, Cronin P, et al. Meta‑analysis: effectiveness of 
drugs for preventing contrast‑induced nephropathy. Ann Intern Med. 
2008;148:284–94.

 138. McCullough P. Radiocontrast‑induced acute kidney injury. Nephron 
Physiol. 2008;109:61–72.

 139. Kellum J, Leblanc M, Venkataraman R. Acute renal failure. BMJ Clin Evid. 
2008;9:2001.

 140. Rybak MJ, Abate BJ, Kang SL, et al. Prospective evaluation of the effect 
of an aminoglycoside dosing regimen on rates of observed nephrotox‑
icity and ototoxicity. Antimicrob Agents Chemother. 1999;43:1549–55.

 141. Bailey TC, Little JR, Littenberg B, et al. A meta‑analysis of extended‑
interval dosing versus multiple daily dosing of aminoglycosides. Clin 
Infect Dis. 1997;24:786–95.

 142. Hatala R, Dinh T, Cook DJ. Once‑daily aminoglycoside dosing 
in immunocompetent adults: a meta‑analysis. Ann Intern Med. 
1996;124:717–25.

 143. Wargo KA, Edwards J. Aminoglycoside‑induced nephrotoxicity. J Pharm 
Pract. 2014;27:573–7.

 144. Picard W, Bazin F, Clouzeau B, et al. Propensity‑based study of amino‑
glycoside nephrotoxicity in patients with severe sepsis or septic shock. 
Antimicrob Agents Chemother. 2014;58:7468–74.

 145. Boyer A, Gruson D, Bouchet S, et al. Aminoglycosides in septic shock: 
an overview, with specific consideration given to their nephrotoxic risk. 
Drug Saf. 2013;36:217–30.

 146. Croes S, Koop AH, van Gils SA, Neef C. Efficacy, nephrotoxicity and oto‑
toxicity of aminoglycosides, mathematically modelled for modelling‑
supported therapeutic drug monitoring. Eur J Pharm. 2012;45:90–100.

 147. Pagkalis S, Mantadakis E, Mavros MN, et al. Pharmacological considerations 
for the proper clinical use of aminoglycosides. Drugs. 2011;71:2277–94.

 148. Oliveira JFP, Silva CA, Barbieri CD, et al. Prevalence and risk factors for 
aminoglycoside nephrotoxicity in intensive care units. Antimicrob 
Agents Chemother. 2009;53:2887–91.

 149. Selby NM, Shaw S, Woodier N, et al. Gentamicin‑associated acute 
kidney injury. QJM. 2009;102:873–80.

 150. Bartal C, Danon A, Schlaeffer F, et al. Pharmacokinetic dosing of amino‑
glycosides: a controlled trial. Am J Med. 2003;114:194–8.

 151. Perazella MA. Drug use and nephrotoxicity in the intensive care unit. 
Kidney Int. 2012;81:1172–8.

 152. Papadopoulos J, Smithburger PL. Common drug interactions leading 
to adverse drug events in the intensive care unit: management and 
pharmacokinetic considerations. Crit Care Med. 2010;38:S126–35.

 153. Schetz M, Dasta J, Goldstein S, Golper T. Drug‑induced acute kidney 
injury. Curr Opin Crit Care. 2005;11:555–65.

 154. Ho KM, Power BM. Benefits and risks of furosemide in acute kidney 
injury. Anaesthesia. 2010;63:283–94.

 155. Ho KM, Sheridan DJ. Meta‑analysis of frusemide to prevent or treat 
acute renal failure. BMJ. 2006;333:420.

 156. Haase M, Fielitz AH, Plass M, et al. Prophylactic perioperative sodium 
bicarbonate to prevent acute kidney injury following open heart sur‑
gery: a multicenter double‑blinded randomized controlled trial. PLoS 
One. 2013;10:e1001426.

 157. Kristeller JL, Zavorsky GS, Prior JE, et al. Lack of effectiveness of sodium 
bicarbonate in preventing kidney injury in patients undergoing cardiac 
surgery: a randomized controlled trial. Pharmacotherapy. 2013;3:710–7.

 158. McGuinness SP, Parke RL, Bellomo R, Van Haren FMP, Bailey M. Sodium 
bicarbonate infusion to reduce cardiac surgery‑associated acute kidney 
injury: a phase II multicenter double‑blind randomized controlled trial. 
Crit Care Med. 2013;41:1599–607.

 159. Hewitt J, Uniacke M, Hansi NK, Venkat‑Raman G, McCarthy K. Sodium 
bicarbonate supplements for treating acute kidney injury. Cochrane 
Database Syst Rev. 2012;6:CD009204.

 160. Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N 
Engl J Med. 2009;361:62–72.

 161. Chatzizisis YS, Misirli G, Hatzitolios AI, Giannoglou GD. The syndrome 
of rhabdomyolysis: complications and treatment. Eur J Intern Med. 
2008;19:568–74.

 162. Scharman EJ, Troutman WG. Prevention of kidney injury following rhab‑
domyolysis: a systematic review. Ann Pharmacother. 2013;47:90–105.

 163. Shimazu T, Yoshioka T, Nakata Y, et al. Fluid resuscitation and systemic 
complications in crush syndrome: 14 Hanshin–Awaji earthquake 
patients. J Trauma. 1997;42:641–6.

 164. Gunal AI, Celiker H, Dogukan A, et al. Early and vigorous fluid resuscita‑
tion prevents acute renal failure in the crush victims of catastrophic 
earthquakes. J Am Soc Nephrol. 2004;15:1862–7.

 165. Homsi E, Barreiro MF, Orlando JM, Higa EM. Prophylaxis of acute renal 
failure in patients with rhabdomyolysis. Ren Fail. 1997;19:283–8.

 166. Brown CVR, Rhee P, Chan L, Evans K, Demetriades D, Velmahos GC. Pre‑
venting renal failure in patients with rhabdomyolysis: do bicarbonate 
and mannitol make a difference? J Trauma. 2004;56:1191–6.

 167. Cho YS, Lim H, Kim SH. Comparison of lactated Ringer’s solution and 
0.9% saline in the treatment of rhabdomyolysis induced by doxylamine 
intoxication. Emerg Med J. 2007;24:276–80.

 168. Yallop KG, Sheppard SV, Smith DC. The effect of mannitol on renal 
function following cardio‑pulmonary bypass in patients with normal 
pre‑operative creatinine. Anaesthesia. 2008;63:576–82.

 169. Smith MNA, Best D, Sheppard SV, Smith DC. The effect of mannitol on 
renal function after cardiopulmonary bypass in patients with estab‑
lished renal dysfunction. Anaesthesia. 2008;63:701–4.

 170. Majumdar SR, Kjellstrand CM, Tymchak WJ, Hervas‑Malo M, Taylor DA, 
Teo KK. Forced euvolemic diuresis with mannitol and furosemide for 
prevention of contrast‑induced nephropathy in patients with CKD 
undergoing coronary angiography: a randomized controlled trial. Am J 
Kidney Dis. 2009;54:602–9.

 171. Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta‑analysis: low‑dose 
dopamine increases urine output but does not prevent renal dysfunc‑
tion or death. Ann Intern Med. 2005;142:510–24.

 172. Kellum JA, Decker JM. Use of dopamine in acute renal failure: a meta‑
analysis. Crit Care Med. 2001;29:1526–31.

 173. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low‑dose 
dopamine in patients with early renal dysfunction: a placebo‑con‑
trolled randomised trial. Australian and New Zealand Intensive Care 
Society (ANZICS) Clinical Trials Group. Lancet. 2000;356:2139–43.

 174. Stone GW, McCullough PA, Tumlin JA, et al. Fenoldopam mesylate 
for the prevention of contrast‑induced nephropathy: a randomized 
controlled trial. JAMA. 2003;290:2284–91.

 175. Caimmi P‑P, Pagani L, Micalizzi E, et al. Fenoldopam for renal protection 
in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc 
Anesth. 2003;17:491–4.

 176. Bove T, Landoni G, Calabrò MG, et al. Renoprotective action of fenoldo‑
pam in high‑risk patients undergoing cardiac surgery: a prospective, 
double‑blind, randomized clinical trial. Circulation. 2005;111:3230–5.

 177. Brienza N, Malcangi V, Dalfino L, et al. A comparison between fenoldo‑
pam and low‑dose dopamine in early renal dysfunction of critically ill 
patients. Crit Care Med. 2006;34:707–14.

 178. Ranucci M, Soro G, Barzaghi N, et al. Fenoldopam prophylaxis of post‑
operative acute renal failure in high‑risk cardiac surgery patients. Ann 
Thorac Surg. 2004;78:1332–7.

 179. Tumlin JA, Finkel KW, Murray PT, Samuels J, Cotsonis G, Shaw AD. Fenoldo‑
pam mesylate in early acute tubular necrosis: a randomized, double‑blind, 
placebo‑controlled clinical trial. Am J Kidney Dis. 2005;46:26–34.

 180. Morelli A, Ricci Z, Bellomo R, et al. Prophylactic fenoldopam for renal 
protection in sepsis: a randomized, double‑blind, placebo‑controlled 
pilot trial. Crit Care Med. 2005;33:2451–6.

 181. Patel NN, Rogers CA, Angelini GD, Murphy GJ. Pharmacological thera‑
pies for the prevention of acute kidney injury following cardiac surgery: 
a systematic review. Heart Fail Rev. 2011;16:553–67.

 182. Landoni G, Biondi‑Zoccai GGL, Marino G, et al. Fenoldopam reduces the 
need for renal replacement therapy and in‑hospital death in cardiovascu‑
lar surgery: a meta‑analysis. J Cardiothorac Vasc Anesth. 2008;22:27–33.

 183. Landoni G, Biondi‑Zoccai GGL, Tumlin JA, et al. Beneficial impact of 
fenoldopam in critically ill patients with or at risk for acute renal failure: a 
meta‑analysis of randomized clinical trials. Am J Kidney Dis. 2007;49:56–68.

 184. Zangrillo A, Biondi‑Zoccai GGL, Frati E, et al. Fenoldopam and acute 
renal failure in cardiac surgery: a meta‑analysis of randomized placebo‑
controlled trials. J Cardiothorac Vasc Anesth. 2012;26:407–13.

 185. Sackner‑Bernstein JD, Skopicki HA, Aaronson KD. Risk of worsening 
renal function with nesiritide in patients with acutely decompensated 
heart failure. Circulation. 2005;111:1487–91.

 186. Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK. Atrial natriuretic pep‑
tide for management of acute kidney injury: a systematic review and 
meta‑analysis. Clin J Am Soc Nephrol. 2009;4:261–72.



Page 20 of 20Ichai et al. Ann. Intensive Care  (2016) 6:48 

 187. Mitaka C, Kudo T, Haraguchi G, Tomita M. Cardiovascular and renal 
effects of carperitide and nesiritide in cardiovascular surgery patients: a 
systematic review and meta‑analysis. Crit Care. 2011;15:R258.

 188. Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK. Atrial natriuretic 
peptide for preventing and treating acute kidney injury. Cochrane 
Database Syst Rev. 2009;(4):CD006028.

 189. Adabag AS, Ishani A, Bloomfield HE, Ngo AK, Wilt TJ. Efficacy of N‑ace‑
tylcysteine in preventing renal injury after heart surgery: a systematic 
review of randomized trials. Eur Heart J. 2009;30:1910–7.

 190. Duong MH, MacKenzie TA, Malenka DJ. N‑acetylcysteine prophylaxis 
significantly reduces the risk of radiocontrast‑induced nephropathy: 
comprehensive meta‑analysis. Catheter Cardiovasc Interv. 2005;64:471–9.

 191. Ho KM, Morgan DJR. Meta‑analysis of N‑acetylcysteine to prevent acute 
renal failure after major surgery. Am J Kidney Dis. 2009;53:33–40.

 192. Nigwekar SU, Kandula P. N‑acetylcysteine in cardiovascular‑
surgery‑associated renal failure: a meta‑analysis. Ann Thorac Surg. 
2009;87:139–47.

 193. Hirschberg R, Kopple J, Lipsett P, et al. Multicenter clinical trial of recom‑
binant human insulin‑like growth factor I in patients with acute renal 
failure. Kidney Int. 1999;55:2423–32.

 194. Hladunewich MA, Corrigan G, Derby GC, et al. A randomized, placebo‑
controlled trial of IGF‑1 for delayed graft function: a human model to 
study postischemic ARF. Kidney Int. 2003;64:593–602.

 195. Endre ZH, Walker RJ, Pickering JW, et al. Early intervention with 
erythropoietin does not affect the outcome of acute kidney injury (the 
EARLYARF trial). Kidney Int. 2010;77:1020–30.

 196. Song YR, Lee T, You SJ, et al. Prevention of acute kidney injury by 
erythropoietin in patients undergoing coronary artery bypass grafting: 
a pilot study. Am J Nephrol. 2009;30:253–60.

 197. Gottlieb SS, Brater DC, Thomas I, et al. BG9719 (CVT‑124), an A1 adeno‑
sine receptor antagonist, protects against the decline in renal function 
observed with diuretic therapy. Circulation. 2002;105:1348–53.

 198. Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC, CKI‑201 
and CKI‑202 Investigators. The effects of KW‑3902, an adenosine 
A1‑receptor antagonist, on diuresis and renal function in patients with 
acute decompensated heart failure and renal impairment or diuretic 
resistance. J Am Coll Cardiol. 2007;50:1551–60.

 199. Massie BM, O’Connor CM, Metra M, et al. Rolofylline, an adeno‑
sine A1‑receptor antagonist, in acute heart failure. N Engl J Med. 
2010;363:1419–28.

 200. Howard SC, Jones DP, Pui C‑H. The tumor lysis syndrome. N Engl J Med. 
2011;364:1844–54.

 201. Mikkelsen TS, Mamoudou AD, Tuckuviene R, Wehner PS, Schroeder 
H. Extended duration of prehydration does not prevent nephrotoxic‑
ity or delayed drug elimination in high‑dose methotrexate infusions: 
a prospectively randomized cross‑over study. Pediatr Blood Cancer. 
2014;61:297–301.

 202. Sand TE, Jacobsen S. Effect of urine pH and flow on renal clearance of 
methotrexate. Eur J Clin Pharmacol. 1981;19:453–6.

 203. Christensen ML, Rivera GK, Crom WR, Hancock ML, Evans WE. Effect 
of hydration on methotrexate plasma concentrations in children with 
acute lymphocytic leukemia. J Clin Oncol. 1988;6:797–801.

 204. Kinoshita A, Kurosawa Y, Kondoh K, et al. Effects of sodium in hydration 
solution on plasma methotrexate concentrations following high‑dose 
methotrexate in children with acute lymphoblastic leukemia. Cancer 
Chemother Pharmacol. 2003;51:256–60.

 205. Relling MV, Fairclough D, Ayers D, et al. Patient characteristics associated 
with high‑risk methotrexate concentrations and toxicity. J Clin Oncol. 
1994;12:1667–72.

 206. Darmon M, Vincent F, Camous L, et al. Tumour lysis syndrome and 
acute kidney injury in high‑risk haematology patients in the rasburicase 
era. A prospective multicentre study from the Groupe de Recherche 
en Réanimation Respiratoire et Onco‑Hématologique. Br J Haematol. 
2013;162:489–97.

 207. Galardy PJ, Hochberg J, Perkins SL, Harrison L, Goldman S, Cairo MS. Ras‑
buricase in the prevention of laboratory/clinical tumour lysis syndrome 
in children with advanced mature B‑NHL: a Children’s Oncology Group 
Report. Br J Haematol. 2013;163:365–72.

 208. Shimada M, Johnson RJ, May WS Jr, et al. A novel role for uric acid in 
acute kidney injury associated with tumour lysis syndrome. Nephrol 
Dial Transplant. 2009;24:2960–4.

 209. Lopez‑Olivo MA, Pratt G, Palla SL, Salahudeen A. Rasburicase in tumor 
lysis syndrome of the adult: a systematic review and meta‑analysis. Am 
J Kidney Dis. 2013;62:481–92.

 210. Cheuk DK, Chiang AK, Chan GC, Ha SY. Urate oxidase for the preven‑
tion and treatment of tumor lysis syndrome in children with cancer. 
Cochrane Database Syst Rev. 2010;(6):CD006945.

 211. Cortes J, Moore JO, Maziarz RT, et al. Control of plasma uric acid in 
adults at risk for tumor Lysis syndrome: efficacy and safety of rasbur‑
icase alone and rasburicase followed by allopurinol compared with 
allopurinol alone—results of a multicenter phase III study. J Clin Oncol. 
2010;28:4207–13.

 212. Goldman SC, Holcenberg JS, Finklestein JZ, et al. A randomized 
comparison between rasburicase and allopurinol in children 
with lymphoma or leukemia at high risk for tumor lysis. Blood. 
2001;97:2998–3003.

 213. Coiffier B, Altman A, Pui C‑H, Younes A, Cairo MS. Guidelines for 
the management of pediatric and adult tumor lysis syndrome: an 
evidence‑based review. J Clin Oncol. 2008;26:2767–78.

 214. Cairo MS, Coiffier B, Reiter A, Younes A, TLS Expert Panel. Recommen‑
dations for the evaluation of risk and prophylaxis of tumour lysis syn‑
drome (TLS) in adults and children with malignant diseases: an expert 
TLS panel consensus. Br J Haematol. 2010;149:578–86.

 215. Will A, Tholouli E. The clinical management of tumour lysis syndrome in 
haematological malignancies. Br J Haematol. 2011;154:3–13.

 216. Druml W. Nutritional support in acute renal failure. Handbook of nutri‑
tion and the kidney. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 
2005. p. 95–114.

 217. Fiaccadori E, Cremaschi E, Regolisti G. Nutritional assessment and deliv‑
ery in renal replacement therapy patients. Semin Dial. 2011;24:169–75.

 218. Cano N, Aparicio M, Brunori G, Carrero JJ, Cianciaruso B, Fiaccadori E, 
et al. ESPEN Guidelines on parenteral nutrition: adult renal failure. Clin 
Nutr. 2009;28:401–14.

 219. Fiaccadori E, Parenti E, Maggiore U. Nutritional support in acute kidney 
injury. J Nephrol. 2008;21:645–56.

 220. Bellomo R, Tan HK, Bhonagiri S, et al. High protein intake during 
continuous hemodiafiltration: impact on amino acids and nitrogen 
balance. Int J Artif Organs. 2002;25:261–8.

 221. Berger MM, Shenkin A, Revelly JP, et al. Copper, selenium, zinc, and 
thiamine balances during continuous venovenous hemodiafiltration in 
critically ill patients. Am J Clin Nutr. 2004;80:410–6.

 222. Mammen C, Al Abbas A, Skippen P, et al. Long term risk of CKD in 
children surviving episodes of acute kidney injury in the intensive care 
unit: a prospective cohort study. Am J Kidney Dis. 2012;59:523–30.

 223. Wald R, Quinn RR, Adhikari NK, University of Toronto Acute Kidney 
Injury Research Group, et al. Risk of chronic dialysis and death following 
acute kidney injury. Am J Med. 2012;125:585–93.

 224. Pannu N, James M, Hemmelgarn B, Klarenbach S, Alnerta Kidney Dis‑
ease Network. Association between AJI, recovery of renal function, and 
long‑term outcomes after hospital discharge. Clin J Am Soc Nephrol. 
2013;8:194–202.

 225. Harel Z, Wald R, Bargman JM, et al. Nephrologists follow‑up improves 
all‑cause mortality of severe acute kidney injury survivors. Kidney Int. 
2013;83:901–8.


	Acute kidney injury in the perioperative period and in intensive care units (excluding renal replacement therapies)
	Abstract 
	Background
	Methods
	1. How to establish the diagnosis of AKI and its severity
	2. Strategies for the early diagnosis of AKI
	3. How to assess the risk of AKI
	4. Strategies for the non-specific prevention of AKI
	5. How to manage nephrotoxic agents?
	6. Pharmacological strategies for the preventive and curative treatment of AKI
	7. Nutritional modalities for AKI
	8. How to evaluate kidney functional recovery after AKI
	Authors’ contributions
	References




