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ABSTRACT OF THE DISSERTATION

Effects of vibrational strong coupling on ground-state chemical kinetics

by

Jorge Arturo Campos Gonzalez Angulo

Doctor of Philosophy in Chemistry

University of California San Diego, 2021

Professor Joel Yuen-Zhou, Chair

The energy of an electromagnetic field can be stored with the help of confining devices,

known as optical cavities, that localize it temporarily. If a dielectric material with a high dipole

moment shares space with the confined field, the optical properties of the system correspond to

neither of its components but rather to a light-matter hybrid, whose excitations are called polaritons.

While experimental realizations of this phenomenon date back to decades ago, it was not until the

last decade when advances in sample preparation technologies enabled the investigation of the

consequences of polariton formation on the observables related to the material. In this regard, a

particularly active area of interest is the study of chemical reactivity under strong-light matter

coupling. A striking development in the area is the observation that reactions inside infrared
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cavities, which couple to bond vibrations, experience a change in their rate even without any energy

source other than room temperature. This effect has been observed in various reactions, including

organometallic and carbonyl substitutions, and even in enzymatic processes. Consistently, these

experiments show that rate modification is subject to the same conditions as polariton formation:

the requirement of resonance between cavity and vibration and the intensification of the effect

with the concentration of the sample. However, cavity quantum electrodynamics (CQED), the

same theory that has successfully explained and predicted the optical properties of polaritons for

decades, at first glance suggests that a local process such as a chemical reaction should not be

affected by an essentially delocalized phenomenon such as light-matter coupling. This dissertation

presents how CQED combines with two approaches to chemical rate theory: adiabatic reactions

described within transition state theory (TST), and non-adiabatic processes, described by Marcus’

theory of charge transfer. In the first case, it is found that under typical experimental conditions,

a description at the level of TST predicts that vibrational strong light-matter coupling should

produce no effect on the chemical rate. In contrast, for non-adiabatic processes, it is possible to

conceptualize rate alteration in terms of a modified distribution of activation energies that accounts

for the presence of polariton modes. Additionally, this work presents a group-theoretical method

to simplify the description of a collective of identical oscillators with an arbitrary structure to a

cavity mode, which may have applications to understanding chemical processes and non-linear

response phenomena.

xiv



Chapter 1

Introduction

The shape of the contemporary world could not be understood without the ability of

humankind to artificially modify substances. From the materials in our everyday items to

the medicines with which we intend to alleviate our ailments, the ever-increasing landscape

of chemical synthesis defines how people go about their lives and interact among themselves

and their surrounding world. In many instances, the complexity of the compounds to prepare

creates a demand for highly tailored processes that maximize the yield of a desired product while

minimizing the formation of subproducts. In this regard, electromagnetic (EM) radiation, given

the high specificity with which it interacts with the energetics of atoms and molecules, emerges as

an obvious tool to manipulate the outcome of a chemical transformation. Thus, mode-selective

photochemistry and optimal quantum control were developed with the aim of promoting or

hindering bond dissociation through laser-induced excitations [1, 2].

Among the many phenomena related to the interaction between matter and light, those

due to vacuum fluctuations stand out. Early developments in the research of those phenomena

include the correction to the energy levels observed by Willis Lamb in the hydrogen spectrum [3],

the realization by Edward Mills Purcell that the rate of spontaneous emission by a quantum

emitter should be enhanced when coupled to a tuned resonant electric circuit [4], as well as
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the examination by Hendrik Casimir and Dirk Polder of the force that these fluctuations induce

between an atom and a conducting plane [5]. These advancements helped cement the area of

cavity Quantum Electrodynamics, which deals with describing the properties resulting from

the reciprocal action between the distribution of electric charges in a material and a long-lived

spatially confined electromagnetic field [6].

Through its electric dipole moment, a material can absorb the energy stored in the EM

field. This process results in the population of the excited states of the material. The interaction

is considered weak when either component loses energy at a rate such that the system quickly

reaches thermalization after a single occurrence of absorption followed by emission. In these

circumstances, the properties of the system are mostly those of the material, and the EM field plays

only a perturbative role [7]. In contrast, under conditions where energy dissipation is minimized or

the interaction is enhanced several absorption/emission cycles occur before the system equilibrates;

thus, the population in the excited states oscillates at the so-called Rabi frequency [8, 9]. In this

strong coupling regime, the system displays an energy spectrum that corresponds with neither of

its components; this observation is interpreted as the formation of hybrid entities in which the

contributions from both material and field are comparable. The excitations resulting from the

mixture of light and matter come from the polarization field; hence, they receive the name of

polaritons [10]. As first observed with Cs atoms at cryogenic temperatures [11], a signature of

polariton formation is the bifurcation of the absorption –or transmission– signal corresponding to

the frequencies at which the material and the confined light are in resonance. The difference in

frequency between the straying signals corresponds to the Rabi frequency; for this reason, this

quantity is also usually referred to as Rabi splitting.

From the perspective of the EM field, there are two ways to control the properties of the

system to increase the light-matter interaction intensity. First, since the dipolar interaction is

proportional to it, the field intensity ought to be amplified. The electric field amplitude is inversely

proportional to the square root of the so-called mode volume; therefore, this amplification occurs
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Figure 1.1: Fabry Perot resonator hosting organic molecules.

when the field is highly localized in space. Second, losses need to be minimized, which can

be achieved by forcing the field to reside within the mode volume as long as possible. Devices

that incorporate both approaches to various extents are known as resonators or cavities; there

are several kinds of them, and their particular features are widely discussed elsewhere [12–14].

Two of particular interest are plasmonic resonators and Fabry-Perot (FP) interferometers. In a

plasmonic cavity, an external source of light excites the electron density of a conductor, i.e., a

plasmonic mode, creating a highly intense evanescent EM field at the surface of the conductor,

thus achieving the sought-out mode confinement. In contrast, a FP resonator (fig. 1.1) is composed

of two highly reflective surfaces parallel to each other separated by a dielectric medium [15].

Although the mode volumes in these devices are relatively large, the reflective surfaces act as a

photon trap, effectively storing the EM energy for as long as 100 fs [16].

From the viewpoint of the material, energy losses can be reduced by lowering the

temperature. Additionally, the dipolar interaction intensity scales as the square root of the

number of dipoles within the mode volume. This fact implies that the strong coupling regime

can be achieved simply by increasing the concentration of quantum emitters inside the active

volume of a resonator [17]. Beyond atoms, polaritons have been fabricated from inorganic

semiconductors [18], quantum dots [19], color centers [20], superconducting circuits [21], and

Van der Waals materials [22]. Of particular interest are organic semiconductors, which offer high
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photoluminescence quantum yields, large transition dipole moments, narrow linewidths, and a

vast flexibility to build photonic devices [23, 24].

The peculiarities of polaritonic systems, such as a modified energy spectrum and the

impregnation of photonic character to material degrees of freedom, have been exploited for purposes

as diverse as Bose-Einstein condensation [25], quantum computing [26], room temperature lasing

[27,28], nonlinear optical responses [29,30], reversible optical switching [31], enhanced charge

conductivity [32] and long-range excitation energy transfer [16,33]. Theoretical considerations

on the latter phenomenon [34, 35] have led to the proposal of the innovative idea of remote

catalysis [36].

Of utmost interest are the efforts in the direction of employing cavity resonances to control

chemical reactivity [37–43]. In [44], Hutchison and co-workers demonstrated for the first time

an observable effect of strong light-matter coupling on a chemical reaction. Specifically, the

authors observed a Rabi-splitting-dependent slowdown in the photoisomerization of spiropyran to

merocyanine when the latter is coupled to the cavity. Another example of cavity-modified excited-

state chemistry can be found in [45], where Munkhabat and collaborators observe suppression of

photo-oxidation for a dye aggregate by tuning the cavity to the exciton frequency of the sample.

These and other excited-state chemical processes [46, 47] have motivated an intense theoretical

interest in the field of polaritonic chemistry [48–53], and can be generally understood based on

how light-matter coupling modifies the relaxation channels available during the processes.

Most of the works referenced so far regarding chemical modifications focus on exciton-

polaritons, i.e., the molecular degree of freedom resonant with the cavity mode is an electronic

excitation. However, in the pursuit of mode selective chemistry, it is reasonable to explore

the scenarios where the excitations engaging with the EM field are those in bond vibrations.

Conveniently, strong coupling in the infrared has been observed for a variety of substances, such

as polymers [54, 55], proteins [56],organometallic complexes [57, 58], and, remarkably, organic

solutes [59], and others [60]. Vibrational strong coupling has been extensively investigated
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from both theoretical and experimental fronts. Among the developments along this line research

there is enhanced Raman scattering [61–63], mode hybridization [64, 65], two-dimensional

spectroscopy [66, 67] and non-linear response [68–70].

The most striking finding regarding molecules and cavities in the infrared is the observation

that performing a chemical reaction inside a resonator can modify the rate of the process even

in the absence of external stimuli [41,43]. This phenomenon is the central topic of the present

dissertation.

1.1 Cavity-induced modifications of ground-state chemical ki-

netics: Experimental observations

Since 2016, the Nanostructures Laboratory at the Université de Strasbourg, directed by

Prof. Thomas Ebbesen, has led the charge of producing a series of experimental evidence that,

when it takes place inside a FP microcavity, the kinetics of a chemical reaction is modified under

conditions consistent with strong-light matter coupling.

In [71], Thomas and co-workers observed that the deprotection of 1-phenyl-2-trimethyl-

silylacetylene experiences slowdown when performed in a FP cavity with inter-mirror separation

tuned to produce the maximum Rabi splitting over the peak at 860 cm−1, which is arguably

assigned to the stretching mode of the Si C bond that brakes during the reaction [72]. They

found that varying the length of the cavity gap reduces the deviation between the rates measured

inside and outside of the cavity following a trend reminiscent of the absorption peak, i.e., the effect

is maximum at resonance, and it decreases with the detuning following the absorption line shape.

Furthermore, they found a positive correlation between the magnitude of the deceleration and the

reactant concentration; this observation is interpreted as the effect on the rate being dependent

on the Rabi splitting. They extracted kinetic parameters and calculated an increase in activation

enthalpy and an increase in activation entropy. The latter suggests a change in the mechanism,
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going from a bimolecular to a unimolecular slow-step [73].

Ebbesen’s research group built upon these findings and published a study with a similar

reaction but in which the reactant, tert-butyldimethyl{[4-(trimethylsilyl)but-3-yn-1-yl]oxy}silane,

has two liable sites: a Si C (842 cm−1) and a Si O (1110 cm−1) [74]. Moreover, this time

they tuned the cavity to the bending mode of Si CH3 (1250 cm−1) and the stretching of C O

(1045 cm−1); these bonds do not break during the reactions. Unsurprisingly, they found that

coupling to the C O bond does not affect the rate. In contrast, the results indicate that, among

the remaining ones, the identity of the mode engaging with the cavity is irrelevant for retardation

to be observed, although it slightly impacts the magnitude of the effect. Furthermore, the scission

of the Si C is more affected than that of Si O independently of the coupled mode. This

imbalance in retardation affords to invert the bare branching ratio. Despite not providing the

desired selectivity, in the sense that tuning the cavity to a mode does not necessarily imply that that

mode is affected above the others, the findings of this study enable the development of strategies

for mode selective chemistry.

Resonant retarding effects that increase with the Rabi splitting have also been observed in

prins cyclization [75] and the proteolytic activity of pepsin [76]. Later investigations had shown

catalytic activity when solvent molecules couple resonantly to the cavity. Carbonyl group [77],

a variety of reactions are performed under the so-called ultrastrong coupling regime, i.e., with

Rabi splitting larger than 10 % of the resonant frequency. Additions and carbonyl exchanges

exhibit moderate rate increases, while hydrolysis accelerates up until four orders of magnitude.

Carboxyl hydrolysis, in turn, shows a more moderate enhancement when the nucleophile, ethyl

acetate, is strongly coupled [78]. Interestingly, replacing the solvent with its enriched with its

version enriched in the 13C in the carbonyl position negates any modification induced by the

cavity. Table 1.1 summarizes these results.
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Table 1.1: Chemical reactions modulated by vibrational strong coupling. Ω is the Rabi frequency,
𝜔 is the frequency of the coupled mode, 𝑘VSC is the rate under VSC, and 𝑘bare is the rate outside
of the cavity. Adapted from [43,77].

Coupled vibrational mode Ω/𝜔 𝑘VSC/𝑘bare Ref.

Si
TBAF
MeOH + F Si

Si C 0.081 0.25 [71]

Si
O

Si
TBAF

MeOH/THF
Si

O

Si CH3 0.034

[74]Si C 0.083 0.27

Si O 0.077 0.25

Si
O

Si
TBAF

MeOH/THF
HO

Si

Si CH3 0.034

[74]Si C 0.083 0.65

Si O 0.077 0.49
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Table 1.1 Chemical reactions modulated by vibrational strong coupling. Continued

Coupled vibrational mode Ω/𝜔 𝑘VSC/𝑘bare Ref.

R1

O

R2 + HO

I2
CH2Cl2

O

R1

R2

I

(C O) ≈ 0.061

0.26 Acetaldehyde

0.23 Propionaldehyde

0.28 Acetone

0.19 Cyclohexanone

[75]

2H2O + OCN− CO2−
3 + NH+

42D2O + OCN− CO2−
3 + ND+

4

O H 0.22 110
[77]

O D 0.22 31

2H2O + NH3BH3 NH+
4 + BO−

2 + 3H2

O H 0.22 1 × 104 [77]

N C O R-OH NH C

O

O R

N C O 0.046
1.56 R: CH3

1.90 R: CH(CH3)2
[77]
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Table 1.1 Chemical reactions modulated by vibrational strong coupling. Continued

Coupled vibrational mode Ω/𝜔 𝑘VSC/𝑘bare Ref.

K+ [O C N−] + NH4Cl (H2N2)CO + KCl

O C N 0.070 2.41 [77]

Ph3P C C O acetone

O PPh3

OC

C O 0.064 1.55
[77]

C C O 0.062 1.29

Ph P

Ph

Ph

C C O + S C S Ph P

Ph

Ph

C C S + S C O

S C S 0.036 3.01
[77]

C C O 0.054 2.12

O2N O
O TBAF

Et(OAc) O2N O− + F

O

12C O 0.089 12.5
[78]

13C O 0.091 1

R1NHCOR2 R1NH
+
3 + R2COOH

O H 0.21 0.22 [76]

A prominent step forward towards the utilization of VSC in mode selective chemistry can
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be found in [79]. Pang and collaborators coupled several vibrational modes of mesitylene and

other charge transfer donors to resonant cavity modes and measured the equilibrium constant of

the complexation reaction with iodine. They found that coupling to modes with the 𝐴′ irreducible

representation of the 𝐶3ℎ symmetry group resulted in deceleration, while coupling to 𝐸′ modes

produced acceleration.

More recently, similar results have been obtained in laboratories with no relation to

Ebbesen’s group [80]. All these results indicate that the EM mode is effectively modifying the

energetic landscape of the ground-state in a way that must be consistent with some of the notions

of polariton formation. The next section presents the efforts to provide a theoretical explanation

for these phenomena.

1.2 Theoretical approaches to VSC modified chemical kinet-

ics.

In contrast with excited-state reactions, a successful conceptualization of how light-matter

coupling modifies the observed rates in thermally driven reactions has evaded the scientific

community for as long as these experimental results have been made public. This situation can

be understood because the theoretical frameworks that have been successful at explaining and

predicting the optical properties of vibrational polaritons suggest that the material properties

involved in chemical transformations should not experience an observable modification inside

infrared microcavities [41].

The argument is as follows: the collective effects that allow the polaritonic coupling to

overcome the dissipative process also produce normal modes that exclude any interaction with

the EM field and can therefore be regarded as bare molecules. Moreover, these dark modes

overwhelmingly outnumber the polaritons. To be exact, if there are 𝑁 molecular dipoles coupling

to one cavity mode, by “conservation of the number of modes,” these 𝑁 + 1 modes end up as
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Figure 1.2: Correlation diagram of polaritonic energy levels.

one upper polariton with higher frequency, one lower polariton with lower frequency, and 𝑁 − 1

degenerate dark modes at the original frequency of vibration (fig. 1.2). The estimates of the

number of dipoles that couple together to produce the experimentally observed Rabi splittings go

from 1 × 107 to 1 × 1012 per cavity mode [81,82]. The proportion between polaritonic and dark

modes clearly indicates that thermodynamic averages are governed by the dark bundle, suggesting

that most observables at equilibrium will be indistinguishable whether measured inside or outside

a resonator.

Another argument against VSC effects is that a chemical transformation is (not referring

to the reaction mechanism) a single-molecule event, i.e., only a single dipole is removed from the

polaritonic ensemble. This picture implies that at a given instant during the reaction, the transition

to consider is from 𝑁 to 𝑁 − 1 coupled molecules. Given the orders of magnitude for 𝑁 in VSC,

this change is negligible in the coupled ensemble. The constrains imposed by these reasons have

produced that several of the attempts to rationalize the changes to the kinetics are focused on the

single-molecule limit. These efforts are discussed next.

The group of Johannes Feist at the Universidad Autónoma de Madrid put forward the

first theory of cavity induced modification of ground-state reaction rates. Galego and co-workers

presented a detailed discussion of how light-matter interaction, as described by a minimal coupling
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Hamiltonian [7], can affect adiabatic reactions [83]. The authors worked through a hierarchy of

formalisms, starting from a full-quantum first-principles description and then simplifying within

the frame of the cavity Born-Oppenheimer approximation [51, 52], which allowed them to apply

transition state theory to their analysis. They found that coupling between a confined EM mode

and the reactive coordinate can reshape the potential energy surface governing the nuclear motion,

thus modifying the activation barriers for a reaction. They showed that, within this approach,

the molecularity of the transition state could be modified, consistently with the thermodynamic

parameters extracted from experiments [84]. However, their formalism results in rates that are

independent of the cavity frequency, i.e., it does not describe a resonant effect. Moreover, the

coupling relies on the molecular permanent dipole moment. This quantity averages to zero in a

collective ensemble with isotropically distributed molecular orientations, as expected in a liquid

solution. Consequently, in the collective regime, the formalism predicts no effect on the rate.

References [85, 86] and chapter 3 of this dissertation discuss the shortcomings of this approach.

Inspired by the work of Galego and Climent, the group of Pengfei Huo at the University

of Rochester took a modified approach considering dynamical effects [87]. By giving the cavity

mode the role of a solvent mode in Kramers-Grote-Hynes theory [88–90], they were able to

recover the dependence on cavity frequency. Additionally, their approach produces changes in

the free energy of activation with similar trends as the experimentally observed. However, this

formalism introduces a pseudo-resonant condition not with those at equilibrium but with the

unstable mode. Furthermore, in the collective regime, the 𝑁 → 𝑁 − 1 argument defeats this

theory.

Considering that the nuclear motion along the reaction coordinate is not harmonic, the

group of Felipe Herrera at the Universidad de Santiago de Chile studied the coupling between a

photon mode and a single anharmonic oscillator [91,92]. In the case of a Morse potential [93]

Herrera and coworkers found a shortening effect of the bond length. They interpret this observation

as the excited states having a significant photon component that ingrains them with a harmonic
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character. Later, Triana and collaborators concluded that, for more realistic molecular oscillators,

the nuclear dynamics inside the cavity depends mostly on the shape of the dipole moment

function; therefore, both a bond length enlargement and shortening are possible. In chapter 5,

this dissertation introduces an argument that makes the extension of their findings to the many-

molecules case unlikely. To be specific, collective coupling only produces permutationally

invariant observables. During a chemical reaction, it is expected that the reactive molecule breaks

this symmetry, and therefore no longer participates in the polaritonic ensemble.

The group of Angel Rubio at the Max Planck Institute assessed whether discarding the

usual approximations incorporated in the minimal coupling Hamiltonian could provide more

robust explanations of the modified kinetics. In [94], Hoffman and collaborators considered

the interaction of a single molecule with multiple cavity modes. They found that the nuclear

dynamics strongly changes as the number of considered photon modes increases. Adversely,

this approach suffers from the same downsides as the one by Herrera’s group when intended to

be applied in the collective regime. On the other hand, Schäfer and coworkers contrasted the

implications of including and excluding the often-neglected self-interacting terms [95]. They

concluded that their absence leads to unphysical situations; moreover, its inclusion might alleviate

the incompatibilities between the local nature of a chemical reaction and the delocalized essence

of light-matter coupling.

As argued in chapter 4 of this dissertation, the non-adiabatic perspective of charge transfer

processes allows formalizing a rate theory that circumvents all the hindrances endured by the

approaches detailed earlier [96]. To be specific, considering the intramolecular degrees of freedom

as quantum while approximating the solvent contribution to the reaction coordinate as classical

enables to imprint the structure of the polaritonic energy spectrum in the frame of Marcus theory

as upgraded by Levich and Jortner [97–99]. In this approach, the thermodynamic average of

reaction channels, which the dark modes usually dominate, accounts for the polaritonic energies

with exponential weights. Consequently, polaritonic channels are accessible that can outcompete
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the dark channels by virtue of reduced activation energies, and thus the reaction experiences

catalysis. This theory is the first to successfully incorporate collective and pseudo-resonant

effects consistent with the experimental observations. Although limited in its application to real

systems [100], this formalism has expanded the general understanding of the phenomena and is

the basis for promising works with the potential of a more accurate explanation [101].

On the flip side, other theoretical studies have been recently published that discard other

intuitive lines of thought about this problem. For instance, Vurgaftman and collaborators at the U.

S. National Laboratory argue that rationalization in terms of activation energies located at the

polariton resonances is inoperant under realistic experimental conditions [100]. The reason is that

the natural broadening of the dark modes implies that their density of states is vastly more extensive

than that of the polariton modes even at the energies of the polariton themselves. Additionally, Li

and coworkers at the University of Pennsylvania analyzed the potential of mean force derived

from the minimal coupling Hamiltonian [102], and concluded that a classical treatment of nuclear

dynamics, such as transition state theory, cannot account for collective coupling of nuclear degrees

of freedom to a cavity mode.

This dissertation compiles the contributions from Joel Yuen-Zhou’s research group at the

University of California San Diego to understand the cavity-induced modification of thermally

driven chemical kinetics.

1.3 Summary of contents

Chapter 2 the formalism of cavity Quantum Electrodynamics is introduced to describe the

general features of light-matter interaction. The approximations needed to reduce the description

of the system only in terms of nuclear degrees of freedom are discussed. And the general language

of the elements of vibrational strong coupling is established.

In chapter 3, an analysis of the theory by Galego and coworkers is presented using the
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language of polariton modes, at the level of transition state theory, to illustrate why their formalism

fails to include resonant and collective effects. The groundwork for dynamic considerations is

laid out in this chapter.

Chapter 4 discusses the impact of VSC on Marcus rate theory of non-adiabatic charge

transfer processes. It is argued that an entirely classical treatment is ineffective at incorporating the

light-matter coupling effects. In contrast, the consideration of high-frequency modes results in a

theory that successfully predicts rate modification because of collective coupling in near-resonant

conditions.

In chapter 5, the generalized model of a collection of 𝑁 dipoles with an arbitrary energy

spectrum coupled to a single cavity mode is solved. Taking advantage of the permutational

symmetry of the system, a group theoretical strategy is implemented to make the problem tractable.

Symmetry considerations and observables are discussed.

Finally, in chapter 6, this work presents a perspective on the accomplished work and the

future directions this research line might take.

Chapter 1, in part is currently being prepared for submission for publication of the material.

“Thermally-activated vibro-polaritonic chemistry: theoretical perspectives.” Campos-Gonzalez-

Angulo, Jorge A.; Du, Matthew; Yuen-Zhou, Joel. The dissertation author was the primary

investigator and author of this material.
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Chapter 2

Theoretical background

This chapter lays-off the theoretical foundations of vibrational strong coupling, and

introduces the language and notation that will be found in subsequent chapters. First, Cavity

Quantum Electrodynamics (CQED) is used to describe confinement of electromagnetic (EM) fields

and explain cavity resonances and photon leakage. Then, the description of the molecular degrees

of freedom is simplified by framing vibrations in terms of nuclear motion. Next, the interaction

of the confined modes with the molecular vibrations are discussed, exploring the accuracy of

theoretical models for several ranges of coupling intensity, and reviewing the consequences of

having a numerous ensemble of dipoles. Finally, some intuitions are developed with regards to

possible consequences that vibrational strong-coupling might have on chemical reactivity.

2.1 Fundamentals of microcavities

Enhancement of light-matter interaction is achieved through confinement of the EM field,

i.e., permanence of EM energy stored in a finite region of space. In practice, this is accomplished

with optical cavities. While several kinds of these devices are discussed in the literature (e.g.,

plasmonic resonators, photonic crystal microcavities, and whispering gallery modes microcavities),

this work focuses on the symmetric and planar Fabry-Perot resonator, which consists of a pair
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Figure 2.1: Cavity modes in cartesian space.

of parallel reflective surfaces, each of area A, separated by a gap of length 𝐿, which is much

smaller than
√
A, and filled with a dielectric material of refractive index n . In the most convenient

coordinate system, the mirrors are parallel to the 𝑥𝑦 plane, and therefore perpendicular to the 𝑧

direction, which defines the confinement axis (fig. 2.1).

The following discussion follows the treatment found in [103–105].

In general, the electric and magnetic fields, E andB respectively, are functions of position,r,

and time, 𝑡, that can be written terms of a vector potential, A, and a scalar potential, 𝜙, as

E(r, 𝑡) = − 𝜕
𝜕𝑡
A(r, 𝑡) − ∇𝜙(r, 𝑡), (2.1a)

and

B(r, 𝑡) = ∇ ×A(r, 𝑡). (2.1b)

In turn, within the space between mirrors, and in absence of any other electrical charges, the

potentials satisfy the Maxwell’s equations in a dielectric medium:

∇ ·
𝜕

𝜕𝑡
A(r, 𝑡) + ∇2𝜙(r, 𝑡) = 0 (2.2a)
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and

n2

𝑐2

[
𝜕2

𝜕𝑡2
A(r, 𝑡) + ∇

𝜕

𝜕𝑡
𝜙(r, 𝑡)

]
+ ∇ × [∇ ×A(r, 𝑡)] = 0, (2.2b)

where 𝑐 is the speed of light in vacuum. In the Coulomb gauge (∇ ·A = 0), eq. (2.2) simplifies to

∇2𝜙(r, 𝑡) = 0 (2.3a)

and

n2

𝑐2

[
𝜕2

𝜕𝑡2
A(r, 𝑡) + ∇

𝜕

𝜕𝑡
𝜙(r, 𝑡)

]
− ∇2A(r, 𝑡) = 0. (2.3b)

In this gauge, it is possible to identify a transverse component of the electric field, E⊥ = −𝜕A/𝜕𝑡,

and a longitudinal one, E‖ = −∇𝜙. This section focuses on the former.

The boundary conditions imposed by the microcavity entail that this arrangement supports

a set of standing EM waves with wave vectors

k = k𝑥𝑦 +
𝑚𝜋

𝐿
ẑ 𝑚 ∈ {0} ∪ Z+, (2.4)

where k𝑥𝑦 is the wave vector component lying on the plane parallel to the plates. These wave

vectors define the frequencies

𝜔k = 𝜔k𝑥𝑦 ,𝑚 =
𝑐

n

√︂��k𝑥𝑦��2 + (𝑚𝜋
𝐿

)2
. (2.5)

To be specific, the quantized vector potential in the space between mirrors has the form

Â(r, 𝑡) =
∑︁
k

∑︁
𝜎∈{𝑠,𝑝}

[
Ak,𝜎 (r)𝑎k,𝜎e−𝑖𝜔k𝑡 +A∗

k,𝜎 (r)𝑎
†
k,𝜎

e𝑖𝜔k𝑡
]
, (2.6)
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where

Ak,𝜎 (r) = 𝑖
√︄

ℏ

2𝜔k𝜖0Vk,𝜎
fk,𝜎 (r), (2.7)

ℏ is the reduced Planck’s constant, and 𝜖0 is the vacuum permittivity. The mode volume is

Vk,𝜎 =

∫
A𝐿 𝑢k,𝜎 (r)d

3𝑟

maxr
[
𝑢k,𝜎 (r)

] ≈ A𝐿, (2.8)

where

𝑢k,𝜎 (r) = 𝜖0
(
𝜖𝑟 (r)

��Ek,𝜎 (r)
��2 + 𝑐2��Bk,𝜎 (r)

��2) (2.9)

is the energy density of the mode, 𝜖𝑟 (r) is the relative permittivity, and the quantities Ek,𝜎 (r)

and Bk,𝜎 (r) are the spatial mode components of the transverse electric and magnetic fields,

respectively. The index 𝜎 labels polarizations; for the current setting, 𝜎 = 𝑠 indicates transverse

electric (TE) polarization, which is perpendicular (senkrecht in German) to the plates, and

𝜎 = 𝑝 identifies the transverse magnetic (TM) polarization, which is parallel to the mirrors. The

operators 𝑎k,𝜎 and 𝑎†
k,𝜎

annihilate and create, respectively, excitations in the electromagnetic

modes, and fulfill the bosonic commutation relations

[
𝑎k,𝜎, 𝑎k′,𝜎′

]
=

[
𝑎k†,𝜎, 𝑎

†
k′,𝜎′

]
= 0, (2.10a)

and

[
𝑎k,𝜎, 𝑎

†
k′,𝜎′

]
= 𝛿2k𝑥𝑦 ,k′𝑥𝑦

𝛿𝑚,𝑚′𝛿𝜎,𝜎′ . (2.10b)

The orthogonal mode functions, fk,𝜎 (r), satisfy

∫
Vk,𝜎

fk,𝜎 (r) · f ∗k′,𝜎′ (r)d3𝑟 = Vk,𝜎𝛿
2
k𝑥𝑦 ,k′𝑥𝑦

𝛿𝑚,𝑚′𝛿𝜎,𝜎′, (2.11)
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and, when the mirrors are perfect, they are given by

fk,𝑠 (r) =
√
2e𝑖k𝑥𝑦 ·r sin(𝑘𝑧𝑧)k̂𝑥𝑦 × ẑ, (2.12)

and

fk,𝑝 (r) =
√
2e𝑖k𝑥𝑦 ·r

|k|

(
𝑘𝑧 sin(𝑘𝑧𝑧)k̂𝑥𝑦 + 𝑖

��kxy�� cos(𝑘𝑧𝑧)ẑ) , (2.13)

where 𝑘𝑧 = k · ẑ.

The form of the electric field afforded by the vector potential in eq. (2.6), and the mode

functions in eq. (2.12), implies that the resonator experiences a strong interaction, i.e., is resonant,

with an electromagnetic field only if its frequency is given by eq. (2.5). The electromagnetic

energy inside the cavity is described by the Hamiltonian

𝐻cav =
𝜖0

2

∫
A𝐿

(���Ê⊥

���2 + 𝑐2���B̂���2)d3𝑟
=
∑︁
k

∑︁
𝜎∈{𝑠,𝑝}

ℏ𝜔k

(
𝑎
†
k,𝜎
𝑎k,𝜎 + 1

2

)
.

(2.14)

Realistic resonators experience losses due to energy leakage through imperfect mirrors;

under such consideration, the frequency-dependent intensity is

𝐼 (𝜔) = 𝐼max

1 +
(
2F
𝜋

)2
sin2

(
𝜔𝑚𝜋
𝜔FSR

) , (2.15)

where 𝐼max = (n𝑐/A𝐿𝜇𝑟)ℏ𝜔FSR is the intensity at resonance, and 𝜇𝑟 ≈ 1 is the relative

magnetic permeability of the material in the gap. The frequency 𝜔FSR = 𝜔0,1/cos 𝜃, where

𝜃 = arccos (𝑘𝑧/|k|) is the incident angle, is known as free spectral range (FSR); it is related to

the time it takes for the light to make a round trip between the mirrors, and corresponds to the

distance in frequency between maxima in the absorption spectrum of the resonator. The lossy
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nature of the cavity is characterized by its finesse:

F =
𝜋
√
𝑟

1 − 𝑟 , (2.16)

where 𝑟 is the Fresnel reflection coefficient of the reflective surfaces. The full width at half

maximum (FWHM) of 𝐼 (𝜔) is given by

𝜅 =
𝜔FSR

F
, (2.17)

and corresponds to the cavity decay rate, i.e., the rate at which energy leaks-out of the resonator

through the mirrors.

2.2 Normal modes of vibration

This section deals with the derivation of the vibrational degrees of freedom of a molecule

from the general form of the coulombic interaction among nuclei and electrons [106,107].

The energy of a molecule comprising 𝑛𝑛 nuclei and 𝑛𝑒 electrons is defined by the

Hamiltonian

𝐻mol(R, r) = 𝑇𝑛 +𝑉𝑛𝑛 (R) + 𝑇𝑒 +𝑉𝑒𝑒 (r) +𝑉𝑛𝑒 (R, r), (2.18)

where R and r are the arrays of all nuclear and electronic positions, respectively; to be specific,[
R

]
𝑖,𝛼

denotes the Cartesian component 𝛼 ∈ {𝑥, 𝑦, 𝑧} of the position of the 𝑖th nucleus. The terms

in eq. (2.18) can be split into nuclear and electronic kinetic energy operators:

𝑇𝑛 =
1

2

𝑛𝑛∑︁
𝑖=1

P̂2
𝑖

𝑀𝑖

, (2.19a)
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and

𝑇𝑒 =
1

2

𝑛𝑒∑︁
𝑗=1

p̂2
𝑗

𝑚𝑒
, (2.19b)

where P̂𝑎 = −𝑖ℏ∇R𝑎
and p̂𝑎 = −𝑖ℏ∇r𝑎 are canonical momenta; and potential energy operators

describing the electrostatic interactions among charges:

𝑉𝑛𝑛 (R) = 𝑒2

4𝜋𝜖0

𝑛𝑛−1∑︁
𝑖=1

𝑛𝑛∑︁
𝑖′=𝑖+1

𝑍𝑖𝑍
′
𝑖��R𝑖 −R′
𝑖

�� , (2.19c)

𝑉𝑒𝑒 (r) =
𝑒2

4𝜋𝜖0

𝑛𝑒−1∑︁
𝑗=1

𝑛𝑒∑︁
𝑗 ′= 𝑗+1

1���r 𝑗 − r′
𝑗

��� , (2.19d)

and

𝑉𝑛𝑒 (R, r) = − 𝑒2

4𝜋𝜖0

𝑛𝑛∑︁
𝑖=1

𝑛𝑒∑︁
𝑗=1

𝑍𝑖��R𝑖 − r 𝑗
�� , (2.19e)

where 𝑒 and𝑚𝑒 are, respectively, the electronic charge and mass, are the potential energy operators

due to the electrostatic interactions among charges.

For the purposes of this work, it is useful to explore the dynamics of the nuclei in a timescale

well separated from that of the electronic motion. With this consideration, the complexity of the

problem can be significantly reduced with the so-called Born-Oppenheimer approximation in

which the electronic Schrödinger equation

(
𝑇𝑒 +𝑉𝑒𝑒 +

〈
R
��𝑉𝑛𝑒 ��R〉) ��𝜒𝜑〉 = Ê𝜑

��𝜒𝜑〉 , (2.20)

(where the arguments have been dropped for the sake of clarity) is solved treating the nuclear

coordinates as parameters. The quantity Ê𝜑 (R) is the R dependent energy of the 𝜙th electronic

eigenstate,
��𝜒𝜑 (R)

〉
; however, although an eigenvalue in the electronic Hilbert subspace, it is also
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an operator in the nuclear subspace. Hence, the nuclear degrees of freedom are described by a set

of simplified Hamiltonians of the form

𝐻
(𝜑)
BO

(R) = 𝑇𝑛 +𝑉𝑛𝑛 (R) + Ê𝜑 (R). (2.21)

Presumably, a bonding electronic state has a global minimum at the equilibrium nuclear

configuration R(𝜑)
eq . The Born-Oppenheimer nuclear potential, 𝑉 (𝜑)

BO
(R) = 𝑉𝑛𝑛 (R) + Ê𝜑 (R), can

be expanded around the nuclear configuration as

𝑉
(𝜑)
BO

(R) = 𝑉 (𝜑)
BO

(R(𝜑)
eq ) + 1

2

(
R̂ −R(𝜑)

eq

)𝑇
H

(𝜑)
BO

(R(𝜑)
eq )

(
R̂ −R(𝜑)

eq

)
+O

(
R3

)
, (2.22)

where H(𝜑)
BO

(R) is the Hessian of 𝑉 (𝜑)
BO

(R), i.e., the matrix with elements given by

[
H

(𝜑)
BO

(R)
]
𝑖,𝛼; 𝑗 ,𝛽

=
𝜕2𝑉

(𝜑)
BO

(R′)
𝜕𝑅′

𝑖,𝛼
𝜕𝑅′

𝑗 ,𝛽

�����
R

. (2.23)

In the neighborhood of the equilibrium configuration, the Hamiltonian becomes

𝐻
(𝜑)
BO

(R ≈ R(𝜑)
eq ) = 1

2
P̂
𝑇
M−1P̂ +𝑉 (𝜑)

BO
(R ≈ R(𝜑)

eq ), (2.24)

where P is the vector of all nuclear momenta, and M is the diagonal matrix of nuclear masses.

Defining P̃ = M−1/2P̂ and R̃ = M1/2
(
R̂ −R(𝜑)

eq

)
as the mass-scaled momenta and position, and

setting 𝑉 (𝜑)
BO

(R(𝜑)
eq ) = 0, eq. (2.24) can be recast as

𝐻
(𝜑)
BO

(R ≈ R(𝜑)
eq ) = 1

2

(
P̃
𝑇
P̃ + R̃

𝑇
V

(𝜑)
BO

R̃
)

(2.25)

where V
(𝜑)
BO

= M−1/2H(𝜑)
BO

(R(𝜑)
eq )M−1/2. Upon diagonalization of the latter, the Hamiltonian
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becomes

𝐻
(𝜑)
BO

(R ≈ R(𝜑)
eq ) = 1

2

(
P̂
𝑇

𝜑P̂𝜑 + R̂
𝑇

𝜑W𝜑R̂𝜑

)
, (2.26)

where W𝜑 = S−1𝜑 V
(𝜑)
BO

S𝜑 is a diagonal matrix, and S𝜑 the unitary basis transformation whose

columns are eigenvenctors of V(𝜑)
BO

. The new momenta and positions, P̂𝜑 = S−1𝜑 P̃ and R̂𝜑 = S−1𝜑 R̃

respectively, define the molecular normal modes, which are mutually independent degrees freedom

that correspond to oscillations with frequencies, 𝜔𝜑,𝜉 , given by the main diagonal of W1/2
𝜑 . Three

out of the 3𝑛𝑛 eigenvalues of V(𝜑)
BO

are non-positive, thus corresponding to translations. Depending

on whether the molecule is linear in its equilibrium configuration, two or three of the normal

modes are isometric motions, i.e., rotations, and the remaining 𝑛vib correspond to vibrations.

Let 𝑝𝜑,𝜉 and 𝑞𝜑,𝜉 be the 𝜉th element of P̂𝜑 and R̂𝜑, respectively, it is possible to define

vibrational Hamiltonians

𝐻
(𝜑,𝜉)
vib

=
1

2

(
𝑝2𝜑,𝜉 + 𝜔2

𝜑,𝜉𝑞
2
𝜑,𝜉

)
= ℏ𝜔𝜑,𝜉

(
𝑏
†
𝜑,𝜉
𝑏𝜑,𝜉 +

1

2

)
, (2.27)

such that

𝐻
(𝜑)
BO

(R ≈ R(𝜑)
eq ) =

𝑛vib∑︁
𝜉=1

𝐻
(𝜑,𝜉)
vib

+ 𝐻rot + 𝐻trans, (2.28)

where 𝑏𝜑,𝜉 =
(
𝜔𝜑,𝜉𝑞𝜑,𝜉 − 𝑖𝑝𝜑,𝜉

)
/
√︁
2ℏ𝜔𝜑,𝜉 is a harmonic annihilation operator fulfilling

[
𝑏𝜑,𝜉 , 𝑏𝜑,𝜉 ′

]
=

[
𝑏
†
𝜑,𝜉
, 𝑏

†
𝜑,𝜉 ′

]
= 0 (2.29)

and

[
𝑏𝜑,𝜉 , 𝑏

†
𝜑,𝜉 ′

]
= 𝛿𝜉,𝜉 ′ . (2.30)

The Hamiltonians containing the rotational and translational degrees of freedom, 𝐻rot and 𝐻trans,

respectively, are of little interest to the present discussion.
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2.3 Molecules in cavities

2.3.1 The Cavity Born-Oppenheimer approximation

In the prescence of the nuclear and electronic charges, eq. (2.3a) turns into the Poison’s

equation ∇2𝜙(r) = −𝜌(R, r)/𝜖0, where

𝜌(R, r) = 𝑒
(
𝑛𝑒∑︁
𝑗=1

𝛿(r − r 𝑗 ) −
𝑛𝑛∑︁
𝑖=1

𝑍𝑖𝛿(R −R𝑖)
)
, (2.31)

is the charge density; therefore,

∫
A𝐿

𝜌(R, r)𝜙(r)d3𝑟 = 𝑉𝑛𝑛 (R) +𝑉𝑒𝑒 (r) +𝑉𝑛𝑒 (R, r). (2.32)

As a consequence, when a molecule is subjected to the EM field inside the cavity, the Hamiltonian

of the system is

𝐻𝐶mol−cav = 𝐻cav + 𝑇𝑛cav +𝑉𝑛𝑛 (R) + 𝑇𝑒cav +𝑉𝑒𝑒 (r) +𝑉𝑛𝑒 (R, r), (2.33)

where the kinetic energy operators have the form

𝑇𝑛cav =
1

2

𝑛𝑛∑︁
𝑖=1

(
P̂𝑖 − 𝑒𝑍𝑖Â(R𝑖)

)2
𝑀𝑖

, (2.34)

and

𝑇𝑒cav =
1

2𝑚𝑒

𝑛𝑒∑︁
𝑗=1

(
p̂ 𝑗 + 𝑒Â(r 𝑗 )

)2
. (2.35)
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Let’s introduce the Power-Zienau-Wooley (PZW) transformation:

𝑈PZW = exp

(
− 𝑖
ℏ

∫
A𝐿

P̂(r) · Â(r)d3𝑟
)
, (2.36)

where

P̂(r) = 𝑒
(
𝑛𝑛∑︁
𝑖=1

𝑍𝑖R𝑖

∫ 1

0
𝛿3(r − 𝑠R𝑖)d𝑠 −

𝑛𝑒∑︁
𝑗=1

r 𝑗

∫ 1

0
𝛿3(r − 𝑠r 𝑗 )d𝑠

)
(2.37)

(not to be confused with nuclear momentum) is the polarization vector. This gauge transformation

takes an operator from the Coulomb gauge to the dipole, or length, gauge. The transformed

Hamiltonian has the form

𝐻𝐷
mol−cav =𝑈

†
PZW

𝐻𝐶mol−cav𝑈PZW

=𝐻cav + 𝐻mol(R, r) +𝑉int [ 𝝁̂(R, r)],
(2.38)

where

𝑉int [ 𝝁̂(R, r)] = −𝝁̂(R, r) · Ê⊥(R0) +
1

ℏ

∑︁
k

∑︁
𝜎∈{𝑠,𝑝}

𝜔k

[
𝝁̂(R, r) · Ak,𝜎 (R0)

]2
, (2.39)

is the potential energy operator describing the interaction,

𝝁̂(R, r) = 𝑒
(
𝑛𝑛∑︁
𝑖=1

𝑍𝑖R̂𝑖 −
𝑛𝑒∑︁
𝑗=1

r̂ 𝑗

)
(2.40)

is the dipole moment operator, and

R0 =

∑𝑛𝑛
𝑖=1 𝑀𝑖R𝑖∑𝑛𝑛
𝑖=1 𝑀𝑖

(2.41)

is the center of mass of the molecule, typically in an equilibrium configuration. Writing

eq. (2.38) requires the invocation of the long-wavelength approximation, which assumes that the
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electromagnetic field remains spatially constant at the length scales of the motion of the charges.

This assumption is valid for cavity resonances in the infrared and molecular vibrations, which are

the main focus of the present work.

The electronic degrees of freedom can be removed from 𝐻𝐷
mol−cav through the same

procedure as in section 2.2, yielding the Cavity Born-Oppenheimer (CBO) Hamiltonian,

𝐻
(𝜑)
CBO

(R) = 𝐻 (𝜑)
BO

+ 𝐻cav +𝑉int [ 𝝁̂𝜑 (R)], (2.42)

with

𝝁̂𝜑 (R) = 𝝁̂(𝜑)
0 (R) + 𝛼𝜑 (R)Ê⊥(R(𝜑)

0 ) +O
(
Ê2

)
, (2.43)

where

𝝁̂(𝜑)
0 (R) =

〈
𝜒𝜑

��𝝁̂(R, r)��𝜒𝜑〉 , (2.44a)

and

𝛼𝜑 (R) =2
∑︁
𝜑′≠𝜑

�� 〈R�� 〈𝜒𝜑′��𝝁̂(R, r)��𝜒𝜑〉��R〉��2
𝑉

(𝜑′)
BO

(R) −𝑉 (𝜑)
BO

(R)
(2.44b)

is the static polarizability of the molecule.

The series expansion of the dipole moment operator,

𝝁̂(𝜑)
0 (R) = 𝝁(𝜑)

0 (Req) +
𝑛vib∑︁
𝜉=1

𝝁̂′𝜑,𝜉𝑞𝜑,𝜉 +O
(
𝑞2

)
, (2.45)

where

𝝁̂′𝜑,𝜉 =
𝜕 𝝁̂(𝜑)

0

𝜕𝑞𝜑,𝜉

�����
Req

, (2.46)

helps to distribute the dipole moment among the normal modes.
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The equilibrium configuration can be chosen to define a phase such that the mode functions

are entirely real and the electric field adopts the form

Ê(R(𝜑)
0 ) =

∑︁
k

∑︁
𝜎∈{𝑠,𝑝}

√︄
ℏ𝜔k

2𝜖0Vk,𝜎
fk,𝜎 (R(𝜑)

0 )
(
𝑎k,𝜎 + 𝑎†

k,𝜎

)
. (2.47)

This fact allows to define the photon coordinates

𝑞k,𝜎 =

√︄
ℏ

2𝜔k

(
𝑎
†
k,𝜎

+ 𝑎k,𝜎
)
, (2.48a)

and the photon momenta

𝑝k,𝜎 =

√︂
ℏ𝜔k

2

(
𝑎
†
k,𝜎

− 𝑎k,𝜎
)
, (2.48b)

with which the cavity Hamiltonian becomes

𝐻cav =
1

2

∑︁
k

∑︁
𝜎∈{𝑠,𝑝}

(
𝑝2k,𝜎 + 𝜔2

k𝑞
2
k,𝜎

)
, (2.49)

and the vibrational contribution from the vibrational normal modes to the interaction potential is

𝑉int−vib = −
∑︁
k

∑︁
𝜎∈{𝑠,𝑝}

[
𝑉

(𝜑;k,𝜎;1)
int−vib +𝑉 (𝜑;k,𝜎;2)

int−vib +O
(
𝑞3

)]
, (2.50)

where

𝑉
(𝜑;k,𝜎;1)
int−vib =

𝜔k𝑞k,𝜎√︁
𝜖0Vk,𝜎

[(
𝝁(𝜑)
0 (R(𝜑)

eq ) +
𝑛vib∑︁
𝜉=1

𝝁′𝜑,𝜉𝑞𝜑,𝜉

)
· fk,𝜎 (R(𝜑)

0 ) + 𝛼𝜑 (R(𝜑)
eq )

𝜔k𝑞k,𝜎√︁
𝜖0Vk,𝜎

]
, (2.51a)
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and

𝑉
(𝜑;k,𝜎;2)
int−vib =

1

2𝜖0Vk,𝜎

[(
𝝁(𝜑)
0 (R(𝜑)

eq ) +
𝑛vib∑︁
𝜉=1

𝝁′𝜑,𝜉𝑞𝜑,𝜉

)
· fk,𝜎 (R(𝜑)

0 )
]2
. (2.51b)

From the structure of eqs. (2.49) and (2.51) it is possible to infer that the photon modes can be

treated as additional vibrational modes coupled to the normal modes of the bare molecule. The

BO approximation relies on the fact that the timescales of electronic dynamics are considerably

distinct to those of nuclear dynamics; this consideration rises questions about the timescales of

photon dynamics which are reflected on the values of 𝜔k. Since all the EM modes are independent,

for the CBO approximation to hold, the sum over wave vectors k is constrained to those frequencies

for which 𝜔k ≈ 𝜔𝜑,𝜉 , i.e., infrared frequencies.

To gain some insight as to what the consequences of VSC are on the PES, let’s consider

the simple case of a single vibrational mode in the electronic ground-state, 𝜑 = 0, coupled to a

single photon mode. In this scenario, the potential energy function takes the form

𝑉 (𝑞k, 𝑞𝜉) =
(
1 − 2𝛼0

𝜖0Vk

)
𝜔2
k
𝑞2
k

2
+

(
1 −

4𝑔2
k;𝜉

𝜔k𝜔1

)
𝜔2
𝜉
𝑞2
𝜉

2
−

2𝑔k;𝜉
√
𝜔𝜉𝜔k

𝜔k𝜔𝜉𝑞k𝑞𝜉

− 𝜇0√
𝜖0Vk

(
𝜔k𝑞k +

2𝑔k;𝜉
√
𝜔𝜉𝜔k

𝜔𝜉𝑞𝜉

)
−

𝜇20

2𝜖0Vk
,

(2.52)

where 𝜇0 = 𝝁(0)
0 (R(0)

eq ) · fk(R
(0)
0 ) is the component of the molecular permanent dipole moment

along the polarization vector, and 𝑔k;𝜉 = 𝝁′
𝜉
· fk(R(0)

0 )
√︁
𝜔k/4𝜔𝜉𝜖0Vk is a coupling constant. From

this expression it can be concluded the following (fig. 2.2):

• The polarizability effectively squeezes the photon mode.

• The molecular transition dipole moment squared effectively squeezes the vibrational mode.

• The strength of the bi-linear coupling increases with the vibrational transition dipole

moment, and decreases with the quantization volume.
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Figure 2.2: Contour plot around the minimum of the PES for a single vibrational mode coupled
to a single EM mode. The used parameters are for carbon monoxide [108]: 𝜔𝜉 = 2196 cm−1,
𝜇0 = 0.112D, 𝜇′

𝜉
= −94.32 cm3/2 s−1, and 𝛼0 = 1.95Å3.

• Light matter coupling results in a rotation of the potential energy surface, which redefines

the normal modes.

• The molecular permanent dipole moment shifts the effective minima of both modes, as well

as the overall value of the potential energy.

The new normal modes are a mixture of photon and molecular vibration and are called

polariton modes, with the highest frequency belonging to the upper polariton, UP, while the

smallest frequency belongs to the lower polariton, LP.

The features regarding displacement of minima and squeezing are relevant in the semiclas-

sical analysis of adiabatic reactions as shown in [83] and chapter 3.

2.3.2 Regimes of coupling intensity

This section illustrates the relevance and gives some insight into the physical meaning

of the various terms contributing to the Hamiltonian. Let’s consider the simple case of a single
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Figure 2.3: Frequencies of LP and UP as a function of the coupling constant between the
vibration of CO [108] and a resonant cavity. The calculation compares leading terms proportional
to 1/Vk and to 1/

√
Vk.

vibrational mode in the electronic ground-state coupled to a single EM mode with TE polarization.

The permanent dipole shifts the equilibrium configuration but has no impact on the frequencies;

therefore the terms in the Hamiltonian that depend on it will b excluded from the remaining of

this discussion.

Figure 2.3 compares the frequencies of the UP, 𝜔+, and LP, 𝜔−, calculated with and

without the terms proportional to 1/Vk, i.e., the contributions from the polarizability and the

coupling constant squared. It becomes clear that these terms can be neglected for small values of

𝑔k;𝜉/𝜔𝜉 . The regime in which the coupling is large enough for this terms to be relevant is known

as the deep strong coupling regime. In particular, the term proportional to ℏ2𝑔2
k;𝜉

is commonly

known as the 𝐴2 term, and the relevance of its presence for the situations explored in this work is

still under debate [95].

After removing the deep-strong-coupling terms, the Hamiltonian of the system, in terms

of creation and annihilation operator, reads

𝐻k;𝜉 = ℏ𝜔k

(
𝑎
†
k
𝑎k +

1

2

)
+ ℏ𝜔𝜉

(
𝑏
†
𝜉
𝑏𝜉 +

1

2

)
− ℏ𝑔k;𝜉

(
𝑎
†
k
+ 𝑎k

) (
𝑏
†
𝜉
+ 𝑏𝜉

)
, (2.53)
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which is reminiscent of the Rabi Hamiltonian [8, 9]. The frequencies of the polariton modes

derived from this model are

𝜔± =

[
1

2

(
𝜔2
k + 𝜔

2
𝜉 ±

√︂(
𝜔2
k
− 𝜔2

𝜉

)2
+ 4𝑔2

k;𝜉
𝜔k𝜔𝜉

)]1/2
. (2.54)

The Hamiltonian in eq. (2.53), includes the so-called non-energy-conserving terms: 𝑎†
k
𝑏
†
𝜉

and 𝑎k𝑏𝜉 , which correspond to high-frequency oscillations in the Heisenberg interaction picture.

It is customary to apply the rotating wave approximation (RWA) in which these terms, also called

counter-rotating, are neglected to give rise to the Hamiltonian

𝐻RWA = ℏ𝜔k

(
𝑎
†
k
𝑎k +

1

2

)
+ ℏ𝜔𝜉

(
𝑏
†
𝜉
𝑏𝜉 +

1

2

)
− ℏ𝑔k;𝜉

(
𝑎
†
k
𝑏𝜉 + 𝑏†𝜉𝑎k

)
, (2.55)

which is now similar to the Jaynes-Cummings (JC) model [109]. The new polaritonic frequencies

are

𝜔± =
𝜔k + 𝜔𝜉 ±Ω

2
, (2.56)

where

Ω =

√︃
Δ2 + 4𝑔2

k;𝜉
(2.57)

is the Rabi frequency, with detuning Δ = 𝜔k − 𝜔𝜉 , which corresponds to the frequency of

oscillations of the probability of measuring the system in either a photonic or a molecular state.

Figure 2.4 illustrates the polaritonic frequencies obtained from the Rabi-like and the JC-like

Hamiltonians. The values of the corresponding frequencies diverge as 𝑔k;𝜉/2𝜔𝜉 ; however, for

𝑔k;𝜉 < 𝜔𝜉/10, the gains due to the simplification afforded by the RWA outweigh the error it

introduces. Typically, when a system is coupled so strongly that the RWA is bad, it is said to be in

the ultra-strong coupling regime.

When the light-matter coupling is small, it becomes necessary to acknowledge the

dissipation mechanisms. The EM mode is subject to cavity leakage, while intermolecular
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Figure 2.4: Frequencies of LP and UP as a function of the coupling constant for a Hamiltonian
with counter-rotating terms and one under the RWA. The resonance condition, 𝜔k = 𝜔𝜉 is
considered

interactions give rise to vibrational broadening. To include these dissipative channels the

Hamiltonian of the system adopts the form

𝐻RWA−dis = ℏ(𝜔k + 𝑖𝜅)
(
𝑎
†
k
𝑎k +

1

2

)
+ ℏ

(
𝜔𝜉 + 𝑖𝛾

) (
𝑏
†
𝜉
𝑏𝜉 +

1

2

)
− ℏ𝑔k;𝜉

(
𝑎
†
k
𝑏𝜉 + 𝑏†𝜉𝑎k

)
, (2.58)

where 𝛾 is the vibrational linewidth. Figure 2.5 shows the absorption signal as a function of

coupling. Three regimes can be identified:

• Weak coupling: 𝑔k;𝜉 < |𝜅 − 𝛾 |/2

The Rabi frequency is imaginary and, therefore, the polariton modes are degenerate.

• Intermediate coupling: |𝜅 − 𝛾 |/2 < 𝑔k;𝜉 <
√︃(
𝜅2 + 𝛾2

)
/2

The polariton modes are non-degenerate, strictly speaking, but the signals overlap so that

there is a single maximum. Dissipation overcomes the coupling.

• Strong coupling:
√︃(
𝜅2 + 𝛾2

)
/2 < 𝑔k;𝜉
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Figure 2.5: Absorption signal of the polariton modes as a function of the intensity of light-matter
coupling. The signal intensity goes from blue to yellow. In red it is shown the frequencies of UP
and LP.

Each polariton mode produces a well-defined absorption signal, i.e., the modes are robust

to dissipation.

In the strong-coupling regime, the difference between maxima corresponds to the Rabi

frequency, because of that, this quantity is also known referred to as Rabi splitting.

2.3.3 Many molecules inside the cavity

The Hamiltonian for a collection of N molecules in their electronic ground-state inside a

cavity is

𝐻 =
∑︁
k𝑥𝑦

∑︁
𝑚>0

∑︁
𝜎∈{𝑠,𝑝}

𝐻
(k𝑥𝑦 ,𝑚,𝜎)
cav +

𝑁∑︁
𝑖=1

𝑛vib∑︁
𝜉=1

𝐻
(𝑖,𝜉)
vib

+
∑︁
k𝑥𝑦

∑︁
𝑚>0

∑︁
𝜎∈{𝑠,𝑝}

𝑁∑︁
𝑖=1

𝑛vib∑︁
𝜉=1

𝐻
(k𝑥𝑦 ,𝑚,𝜎;𝑖,𝜉)
int . (2.59)

For a cavity with thickness in the range of typical vibrational wavelengths for organic

molecules, a reasonable assumption is that the only cavity modes that witness the presence of
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(a) (b)

Figure 2.6: Cavity angular dispersion spanning modes 1 ≤ 𝑚 ≤ 3. (a) Empty cavity. (b) Cavity
including a sample with a vibrational mode with frequency 𝜔𝜉 = 1.2𝜔0,1 and coupling constant
𝑔 = 0.07𝜔0,1.

the molecules are those with 𝑚 = 1 (fig. 2.6). In the same fashion, the independence among

normal modes imply that only those near resonant with the cavity would contribute significantly

to the coupling. With these considerations in mind, the notation can be simplified by making

(k𝑥𝑦, 1, 𝜎) → (k, 𝜎) and (𝑖, 𝜉) → (𝑖), and the components of eq. (2.59) become

𝐻
(k,𝜎)
cav =ℏ𝜔k

(
𝑎
†
k,𝜎
𝑎k,𝜎 + 1

2

)
, (2.60a)

𝐻
(𝑖)
vib

=ℏ𝜔𝜉

(
𝑏
†
𝑖
𝑏𝑖 +

1

2

)
, (2.60b)

and

𝐻
(k,𝜎;𝑖)
int = − ℏ𝑔k,𝜎;𝑖

(
𝑎
†
k,𝜎

+ 𝑎k,𝜎
) (
𝑏
†
𝑖
+ 𝑏𝑖

)
. (2.60c)

where the self-interacting (quadratic) terms have been neglected.

If the sample inside the cavity is approximated as a regular grid of cells with volume

A𝐿/𝑁 , the molecular operators can be written as position dependent 𝑏𝑖 → 𝑏r,𝑧, where r is the
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position of the molecule in the plane parallel to the plates, and 𝑧 is its position along the cavity

axis. The total number of values of r is 𝑁⊥ and that of 𝑧 is 𝑁𝑧, such that 𝑁⊥𝑁𝑧 = 𝑁 . For fixed

wave-vector and polarization, it is possible to define a collective mode whose operators are of the

form

𝑏k,𝜎;𝑧,0 =
1

√
𝑁⊥𝑔k,𝜎;𝑧

∑︁
r

𝑔k,𝜎;r,𝑧𝑏r,𝑧, (2.61)

such that the interaction Hamiltonian becomes

𝐻
(k,𝜎)
int = −

√︁
𝑁⊥

∑︁
𝑧

ℏ𝑔k,𝜎;𝑧

(
𝑎
†
k,𝜎

+ 𝑎k,𝜎
) (
𝑏
†
k,𝜎;𝑧

+ 𝑏k,𝜎;𝑧
)
, (2.62)

where

𝑔k,𝜎;𝑧 =

√︄∑︁
r

��𝑔k,𝜎;r,𝑧��2. (2.63)

In turn, the vibrational Hamiltonian is rewritten as

𝐻
(k,𝜎)
vib

= ℏ𝜔𝜉

∑︁
𝑧

𝑁⊥−1∑︁
𝜁=0

(
𝑏
†
k,𝜎;𝑧,𝜁

𝑏k,𝜎;𝑧,𝜁 +
1

2

)
, (2.64)

where the operators related to the collective modes are of the form

𝑏k,𝜎;𝑧,𝜁 =
∑︁
r

𝑐𝜁,r𝑏k,𝜎;r,𝑧, (2.65)

where the coefficients in the linear combination fulfill

∑︁
r

𝑐∗𝜁,r𝑐𝜁 ′,r =𝛿𝜁,𝜁 ′, (2.66a)

which implies

∑︁
r

𝑐∗𝜁,r𝑔k,𝜎;r,𝑧 =𝑔k,𝜎;𝑧𝛿𝜁,0. (2.66b)
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All the modes with 𝜁 > 0 do not take part in the light-matter interaction, and are therefore dark.

The previous treatment implies that the number of k𝑥𝑦 modes is 𝑁⊥, and it has been argued

that the ratio 𝑁/𝑁⊥ = 𝑁𝑧 in infrared microcavities has an order of magnitude between 107 and

1012 [81, 82]. In any case, since the number of molecules vastly outnumber that of photon modes,

it is safe to assume that the physics of the system can be captured with a coarse-grained scheme of

a single photon mode and 𝑁𝑧 molecules.

With some simplifications to the notation, such model is described by the Hamiltonian

𝐻 = ℏ𝜔0

(
𝑎
†
0𝑎0 +

1

2

)
+ ℏ𝜔1

𝑁∑︁
𝑖=1

(
𝑎
†
𝑖
𝑎𝑖 +

1

2

)
− ℏ𝑔

(
𝑎
†
0 + 𝑎0

) 𝑁∑︁
𝑖=1

(
𝑎
†
𝑖
+ 𝑎𝑖

)
, (2.67)

which is reminiscent of the Dicke model [110], or the Tavis-Cummings model if the RWA is

considered [111]. In eq. (2.67), 𝜔0 is the frequency of the EM mode, and 𝜔1 that of the vibrational

modes. The operators 𝑎0 and 𝑎†0 represent the photon mode, while 𝑎𝑖 and 𝑎†
𝑖

represent the 𝑖th

molecule. The coupling constant 𝑔 = 〈1|𝑒𝑥 |0〉
√︁
𝜔0𝑁⊥/2ℏ𝜀0A𝐿, is written under the assumption

that the molecular dipoles are isotropically oriented and all of them experience the same coupling

to the cavity.

Since the vibrations are all degenerate, the Hamiltonian can be recast as

𝐻 =ℏ𝜔0

(
𝑎
†
0𝑎0 +

1

2

)
+ ℏ𝜔1

(
𝑎
†
𝐵
𝑎𝐵 +

1

2

)
−
√
𝑁ℏ𝑔

(
𝑎
†
0 + 𝑎0

) (
𝑎
†
𝐵
+ 𝑎𝐵

)
+ ℏ𝜔1

𝑁−1∑︁
𝑘=1

(
𝑎
†
𝐷 (𝑘)𝑎𝐷 (𝑘) +

1

2

)
,

(2.68)

where

𝑎𝐵 =
1
√
𝑁

𝑁∑︁
𝑖=1

𝑎𝑖 (2.69)
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defines a bright mode that is the only one experiencing coupling to the EM mode, and

𝑎𝐷 (𝑘) =
𝑁∑︁
𝑖=1

𝑐𝑘,𝑖𝑎𝑖, (2.70a)

𝑁∑︁
𝑖=1

𝑐𝑘,𝑖 =0, (2.70b)

𝑁∑︁
𝑖=1

𝑐∗𝑘,𝑖𝑐𝑘 ′,𝑖 =𝛿𝑘,𝑘 ′, (2.70c)

define a set of dark modes that do not take part in the light-matter interaction.

It is now possible to write the Hamiltonian in terms of the polariton modes:

𝐻 =
1

2

(
𝑝2+ + 𝜔2

+𝑞
2
+

)
+ 1

2

(
𝑝2− + 𝜔2

−𝑞
2
−

)
+ 1

2

𝑁−1∑︁
𝑘=1

(
𝑝2
𝐷 (𝑘) + 𝜔

2
1𝑞

2
𝐷 (𝑘)

)
, (2.71)

if the counter-rotating terms are take into account, or

𝐻 = ℏ𝜔+

(
𝑎
†
+𝑎+ +

1

2

)
+ ℏ𝜔−

(
𝑎†−𝑎− + 1

2

)
+ ℏ𝜔1

𝑁−1∑︁
𝑘=1

(
𝑎
†
𝐷 (𝑘)𝑎𝐷 (𝑘) +

1

2

)
, (2.72)

under the RWA. In both cases, the polaritonic modes can be defined through

©­­«
𝑎+

𝑎−

ª®®¬ =
©­­«
cos 𝜃𝑁 sin 𝜃𝑁

− sin 𝜃𝑁 cos 𝜃𝑁

ª®®¬
©­­«
𝑎0

𝑎𝐵

ª®®¬ (2.73)

where 𝜃𝑁 is the mixing angle fulfilling

tan (2𝜃𝑁 ) =


2𝑔

√
𝑁𝜔0𝜔1

𝜔2
0−𝜔

2
1

Dicke-like

2𝑔
√
𝑁

𝜔0−𝜔1
TC-like

. (2.74)

A remarkable feature of the many-body Hamiltonians is that the intensity of the light-matter

interaction experiences an enhancement by a factor of
√
𝑁 . It is thanks to this collective effect
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that an ensemble of organic molecules can achieve the strong-coupling regime and exhibit the

well-known optical features of polaritonic systems. On the other hand, it must be taken into

account that, for every two polaritonic modes formed, there are 𝑁 − 1 dark modes that are, in

principle, indistinguishable from bare molecular modes in all regards except for localization.

2.4 Notions of cavity-modified chemical kinetics

This section explores the simplest approaches to develop some intuition as to how VSC

might modify chemical reactivity.

First, let’s consider the partition function for a collection of 𝑁 degenerate harmonic

oscillators with frequency 𝜔1, plus an additional one with frequency 𝜔0:

𝑍bare = csch

(
ℏ𝜔0

2𝑘B𝑇

)
csch𝑁

(
ℏ𝜔1

2𝑘B𝑇

)
, (2.75)

where 𝑘B is the Boltzmann’s constant, and 𝑇 is the temperature. This partition function

corresponds to the ensemble of uncoupled molecules and the cavity mode. On the other hand,

when strong-coupling is introduced, the partition function is

𝑍VSC = csch

(
ℏ𝜔+
2𝑘B𝑇

)
csch

(
ℏ𝜔−
2𝑘B𝑇

)
csch𝑁−1

(
ℏ𝜔1

2𝑘B𝑇

)
. (2.76)

At room temperature, and for typical vibrational frequencies, 𝑍bare/𝑍VSC ≈ 1. Moreover, a

chemical transformation occurs, presumably, one molecule at a time, which means that the true

comparison is between a polaritonic ensemble with 𝑁 coupled molecules and one with 𝑁 − 1.

Thus, the partition functions are, for all practical purposes, identical.

Lastly, consider now a chemical reaction described by the Lindemann-Hinshelwood

mechanism:

𝑅
𝑘1−−−⇀↽−−−
𝑘−1

𝑅∗ 𝑘2−−→ 𝑃. (2.77)
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Here, a reactant 𝑅 acquires an excess of energy, thus transforming into a n intermediate “hot”

species 𝑅∗ before relaxing into the final product 𝑃. The differential rate expressions for the

concentration of each species are

𝑑 [𝑅]
𝑑𝑡

= 𝑘−1 [𝑅∗] (𝑡) − 𝑘1 [𝑅] (𝑡), (2.78a)

𝑑 [𝑅∗]
𝑑𝑡

= 𝑘1 [𝑅] (𝑡) − (𝑘−1 + 𝑘2) [𝑅∗] (𝑡), (2.78b)

and

𝑑 [𝑃]
𝑑𝑡

= 𝑘2 [𝑅∗] (𝑡). (2.78c)

Applying the steady state approximation to the activated state yields

[𝑅∗] (𝑡) = 𝑘1 [𝑅] (𝑡)
𝑘−1 + 𝑘2

, (2.79)

with which the production rate law can be written as

𝑑 [𝑃]
𝑑𝑡

=
𝑘1𝑘2

𝑘−1 + 𝑘2
[𝑅] (𝑡). (2.80)

Therefore, a bare rate constant can be defined as

𝑘bare =
𝑘1𝑘2

𝑘−1 + 𝑘2
. (2.81)

A possibile scenario inside the cavity is that the activated state corresponds to a manifold

with polaritonic character, i.e., the mechanisms includes the additional channels:

𝑅
𝑘+UP−−−−⇀↽−−−−
𝑘−UP

𝑅∗
UP

𝑘2UP−−−−→ 𝑃, (2.82a)
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and

𝑅
𝑘+LP−−−−⇀↽−−−−
𝑘−LP

𝑅∗
LP

𝑘2UP−−−−→ 𝑃. (2.82b)

The rates can be assumed to be formulated according to Fermi’s Golden Rule (FGR):

𝑘𝑖→ 𝑓 ∝
�� 〈𝑖 |𝑉rxn | 𝑓 〉��2𝜌 𝑓 , (2.83)

where 𝑖 and 𝑓 denote the initial and final states, respectively, 𝑉rxn is a transition inducing potential

representing the chemical transformation, and 𝜌 𝑓 is the density of final states. In this situation then

𝑘−UP ≈ 𝑘−LP ≈ 𝑘−1, 𝑘2UP ≈ 𝑘2LP ≈ 𝑘2, but 𝑘1 ≈ 𝑁𝑘+𝑈𝑃 ≈ 𝑁𝑘+𝐿𝑃. With these considerations,

the rate constant becomes

𝑘VSC =
(𝑘1 + 𝑘+UP + 𝑘LP)𝑘2

𝑘−1 + 𝑘2
. (2.84)

However, by virtue of the of the proportions between the elementary-step rate constants, 𝑘VSC is

effectively 𝑘bare.

A final consideration is the fact that the equilibrium between the reactant and the activated

state could be affected by cavity leakage. This relaxation channel contributes to the back reaction

𝑅∗ → 𝑅. Nonetheless, in the timescale of photon leakage is much shorter than that of substitution

reactions. This fact implies that the equilibrium between the reactant and the activated state is

impervious to the new relaxation channel. Therefore, the upgraded rate constant is now

𝑘VSC =
𝑘1 + 𝐾𝜅

𝑘−1 + 𝜅 + 𝑘2
𝑘2. (2.85)

Since 𝜅 is expected to be much larger than any other rate constant, then

𝑘VSC ≈ 𝐾𝑘2. (2.86)
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If relaxation to the product is much slower than back to the reactant, the rate constants inside and

outside of the cavity are the same. On the other hand, for 𝑘2 � 𝑘−1, 𝑘bare ≈ 𝑘1, which can be

much smaller than 𝑘VSC. By introducing an additional relaxation channel, light-matter coupling

resulted in shifting the slowest step in the mechanism.

Although intuitive, this analysis is mostly phenomenological and is not grounded in in

a solid basis of first principles. The following chapters of this work explore in-depth some

theoretical approaches intended to formally explain the presence, or lack thereof, of VSC effects

on the observed chemical rates.
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Chapter 3

Effects of vibrational strong coupling on

adiabatic reactions

3.1 Introduction

Multiple experimental results show that reactions taking place inside of optical microcavi-

ties proceed with different kinetics than outside of them [56, 71, 74, 75, 77, 78]. Rate modification

seems to require that the confined electromagnetic mode couples to one of the varieties of

molecular vibrational modes present in the reactive medium [74]. For reactions in solution, where

molecules are isotropically distributed, this coupling is maximized under resonant conditions,

i.e., when the cavity is tuned to a vibrational frequency in the molecules. Also, the effect on the

kinetics has been observed to increase as the collective coupling intensifies, as a consequence of

the large number of molecules present in a sample [41, 71].

These observations are reminiscent of the description of light-matter coupling in terms

of hybrid states known as polaritons [37–40, 42, 112], which successfully explains the optical

properties of these systems [55,58, 67, 113,114]. Recently, it has been suggested that a class of

nonadiabatic charge transfer reactions would experience a catalytic effect from resonant collective
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coupling between high-frequency modes and infrared cavity modes; the mechanism relies on the

formation of vibrational polaritons which feature reduced activation energies compared to the

bare molecules [96, 115].

However, a large class of reactions fall in the adiabatic regime, where the potential energy

surfaces of the electronic ground and excited states are well-separated. These reactions should be

accurately described by a transition state theory (TST) [116–118] that accounts for vibrational

strong coupling (VSC). Feist and coworkers have in fact developed a theoretical framework with

the essential ingredients to capture the action of a confined electromagnetic field on chemical

processes such as nucleophylic substitution [83, 84]. Within this framework, they find that the

presence of a cavity mode modifies the reactive potential energy surface, thus predicting conditions

for increase and decrease of reaction rates. However, according to their results, resonance is not

essential for this modification to take place. Furthermore, the effect depends on the intensity

of the single-molecule coupling, and cooperativity can only occur under conditions such as the

anisotropic alignment of the permanent dipoles, an unlikely condition for the aforementioned

reported experiments [102]. Remarkably, Feist’s formalism excludes the language of polaritons.

In fact, they concede that polaritonic degrees of freedom appear inconsequentially in the form of

normal modes near the equilibrium configurations of the system, and that the effects are of the

Casimir-Polder type [83]. In the present work, we restate their formalism bringing the polaritonic

modes into the limelight; we take advantage of the polaritonic framework to expand the formalism

and obtain simple and physically intuitive analytical TST expressions that describe the modified

collisional prefactors and activation energies in terms of light and matter parameters. Our results

are in line with the predictions of [83, 84], highlighting that further work must be carried out to

understand the difference between experiment and theory in the context of thermally-activated

reactions under VSC. A similar discussion to the present one can be found in [85].
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3.2 Theory

According to TST, the rate constant at temperature 𝑇 is defined as [119–123]

𝑘TST =
𝑘𝐵𝑇

2𝜋ℏ

𝑍‡
𝑍eq

e−
𝐸𝑎
𝑘𝐵𝑇 , (3.1)

where 𝑘𝐵 and ℏ are the Boltzmann and reduced Planck constants, respectively. 𝑍‡ is the partition

function of the transition state (TS) without the contribution of the reactive mode, and 𝑍eq is

the total partition function of the reactant state. 𝐸𝑎 = 𝑉‡ + 1
2

∑
𝑖 ℏ𝜔𝑖,‡ −𝑉eq − 1

2

∑
𝑗 ℏ𝜔 𝑗 ,eq is the

activation energy, where the frequency 𝜔𝑖,𝑟 corresponds to the square root of the 𝑖-th positive

eigenvalue of the Hessian of the potential energy surface evaluated at the state 𝑟. We will

determine how the rate constant changes for a thermally-activated process in which the reactant

is a heteronuclear diatomic molecule, when it takes place inside an optical microcavity. While

the following analysis can be straightforwardly generalized for a multimode system, we will treat

only the simplest case for the sake of conceptual clarity. Such a system with 𝑁 identical reactant

molecules can be described by the Hamiltonian [52, 83]

𝐻 = 𝐻EM +
𝑁∑︁
𝑖=1

(
𝐻

(𝑖)
mol +𝑉

(𝑖)
int

)
, (3.2)

where 𝐻EM = ℏ𝜔0

(
𝑎
†
0𝑎0 +

1
2

)
characterizes a confined electromagnetic field of frequency 𝜔0, and

creation and annihilation operators 𝑎†0 and 𝑎0, respectively. 𝐻 (𝑖)
mol = 𝑇

(𝑖)
nuc+𝑉 (𝑖)

nuc+𝑇 (𝑖)
elec+𝑉

(𝑖)
elec+𝑉

(𝑖)
nuc-elec

is the Hamiltonian of the 𝑖-th molecule containing the kinetic, 𝑇 , and potential, 𝑉 , energies

of the nuclear and electronic degrees of freedom, as well as their Coulomb interaction. The

coupling between light and matter is given by𝑉 (𝑖)
int = 𝑔𝜔0𝑞0𝝐 · 𝜇𝑖, where 𝑞0 =

√︃
ℏ

2𝜔0

(
𝑎
†
0 + 𝑎0

)
, and

𝑔 = −(V𝜀0)−1/2 is the coupling constant, with V the mode volume and 𝜀0 the vacuum permittivity;

𝝐 is the polarization vector of the cavity field, and 𝜇𝑖 is the molecular vibrational electric dipole

moment. In the (cavity) Born-Oppenheimer approximation [51,112], the ground state potential
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Figure 3.1: Effect of VSC on a reactive potential energy surface. a) Asymmetric double well
potential uncoupled to an orthogonal harmonic cavity mode. b) Same as in (a) but with non-zero
light-matter coupling. The distortion of the wells reveals the redefinition of normal modes from
cavity and molecule to upper and lower polaritons.

energy for the electronic Schrödinger equation with Hamiltonian 𝐻elec = 𝐻 − ∑𝑁
𝑖=1 𝑇nuc, can be

parameterized in terms of the nuclear coordinates, R, and the photon coordinate 𝑞0, which is an

eigenvalue of the operator 𝑞0. Thus, the potential energy surface governing the nuclear degrees of

freedom (Fig. 3.1) becomes

𝑉 (R, 𝑞0) =
𝑁∑︁
𝑖=1

𝑉nuc(R𝑖) +
𝜔2
0

2
𝑞20 + 𝜔0𝑔𝑞0𝝐 ·

𝑁∑︁
𝑖=1

𝝁(R𝑖). (3.3)

Equation 3 implicitly assumes that the excited potential energy surfaces are well separated in

energy from the ground state. This is reasonable given that 𝜔0 is a frequency in the infrared

region of the electromagnetic spectrum. In writing Eqs. (3.2) and (3.3) we have neglected the

diamagnetic term arising from the Power-Zienau-Woolley transformation [7]. Its relevance for

problems in the current context is explored in detail in Refs. [95,102]. Nevertheless, since even in

the ultrastrong regime, light-matter coupling per molecule is much smaller than the vibrational

transition energies [50], the inclusion of such term should only account for slight modifications to

the formalism that leave the findings unchanged.

In the neighborhood of the equilibrium configuration of the reactants, Req, the potential

is reasonably well described by a second order expansion while the dipole moment can be
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approximated to first order:

𝑉 (R ≈ Req, 𝑞0) =
𝑁∑︁
𝑖=1

𝑉nuc(R𝑖,eq) +
𝜔2

eq

2

𝑁∑︁
𝑖=1

𝑞2𝑖 +
𝜔2
0

2
𝑞20 + 𝜔0𝑔𝑞0

𝑁∑︁
𝑖=1

(
𝜇𝑖,eq + 𝜇′𝑖,eq𝑞𝑖

)
, (3.4)

where 𝑞𝑖 is the mass-reduced bond elongation with respect to the equilibrium length of the 𝑖-th

molecule, 𝜔2
eq =

𝜕2𝑉
(𝑖)
nuc

𝜕𝑞2
𝑖

����
0

, 𝜇𝑖,eq = 𝝐 · 𝝁(R𝑖,eq), and 𝜇′
𝑖,eq = 𝝐 · 𝜕𝝁(R𝑖)

𝜕𝑞𝑖

���
0
. We note that this expansion

excludes the polarizability term present in the perturbative treatment by [83]; however, as we shall

see, this omission does not affect the main conclusions.

Differentiation of Eq. (3.4) yields

𝜕𝑉

𝜕𝑞0
= 𝜔2

0𝑞0 + 𝜔0𝑔

𝑁∑︁
𝑖=1

(
𝜇𝑖,eq + 𝜇′𝑖,eq𝑞𝑖

)
(3.5a)

𝜕𝑉

𝜕𝑞 𝑗
= 𝜔2

eq𝑞 𝑗 + 𝜔0𝑔𝑞0𝜇
′
𝑗 ,eq 1 ≤ 𝑗 ≤ 𝑁; (3.5b)

therefore, at the new minimum, RVSC
eq , close to Req, the coordinates fulfill

©­­«
𝜔2
0 𝜔0𝑔

√︃
𝑁

〈
𝜇′2eq

〉
𝑁

𝜔0𝑔

√︃
𝑁

〈
𝜇′2eq

〉
𝑁

𝜔2
eq

ª®®¬
©­­«
𝑞0

𝑞B(𝑁)

ª®®¬ = −𝜔0𝑔𝑁
〈
𝜇eq

〉
𝑁

©­­«
1

0

ª®®¬ , (3.6)

where 〈𝑥〉𝑁 = 1
𝑁

∑𝑁
𝑖=1 𝑥𝑖, and the bright molecular mode is given by 𝑞B(𝑁) =

√︃
𝑁

〈𝜇′2eq〉𝑁
〈
𝜇′eq𝑞

〉
𝑁

.

The coefficient matrix in Eq. (3.6) corresponds to the Hopfield-Bogoliubov form of the

Dicke model in the normal phase [124,125]; therefore, its diagonalization gives rise to polariton

modes, as shown in Fig. 3.1. To be specific, Eq. (3.6) can be rewritten as

©­­«
𝜔2
+(𝑁) 0

0 𝜔2
−(𝑁)

ª®®¬
©­­«
𝑞+(𝑁)

𝑞−(𝑁)

ª®®¬ = −𝜔0𝑔𝑁
〈
𝜇eq

〉
𝑁

©­­«
cos 𝜃𝑁

sin 𝜃𝑁

ª®®¬ , (3.7)

where 𝜔2
±(𝑁) =

1
2

[
𝜔2
0 + 𝜔

2
eq ±

√︃
4𝜔2

0𝑔
2𝑁

〈
𝜇′2eq

〉
𝑁
+

(
𝜔2
0 − 𝜔

2
eq
)2] is the frequency squared of the
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upper(lower) polaritonic mode,
©­­«
𝑞+(𝑁)

𝑞−(𝑁)

ª®®¬ =
©­­«
cos 𝜃𝑁 − sin 𝜃𝑁

sin 𝜃𝑁 cos 𝜃𝑁

ª®®¬
©­­«
𝑞0

𝑞B(𝑁)

ª®®¬ are the polaritonic mode

coordinates, and 𝜃𝑁 = −1
2 arctan

2𝜔0𝑔

√︃
𝑁〈𝜇′2eq〉𝑁

𝜔2
0−𝜔

2
eq

is the mixing angle.

Equation (3.4) can be recast using this new set of coordinates in the form

𝑉 (R ≈ Req, 𝑞0) =
𝑁∑︁
𝑖=1

𝑉nuc(R𝑖,eq) +
𝜔2

eq

2

𝑁−1∑︁
𝑘=1

𝑞
(𝑘)2
D(𝑁) +

𝜔2
+(𝑁)
2

𝑞2+(𝑁) +
𝜔2
−(𝑁)
2

𝑞2−(𝑁)

+ 𝜔0𝑔𝑁
〈
𝜇eq

〉
𝑁

(
cos 𝜃𝑁𝑞+(𝑁) + sin 𝜃𝑁𝑞−(𝑁)

)
,

(3.8)

where 𝑞 (𝑘)D(𝑁) =
∑𝑁
𝑖=1 𝑐𝑘𝑖𝑞𝑖 are the dark vibrational modes, with the coefficients 𝑐𝑘𝑖 fulfilling∑𝑁

𝑖=1 𝜇
′∗
𝑖,eq𝑐𝑘𝑖 = 0 and

∑𝑁
𝑖=1 𝑐

∗
𝑘 ′𝑖𝑐𝑘𝑖 = 𝛿𝑘 ′𝑘 . Evaluating the potential in Eq. (3.8) at RVSC

eq yields

𝑉VSC
eq =

𝑁∑︁
𝑖=1

𝑉nuc(R𝑖,eq) −
(

𝜔0𝜔eq

𝜔+(𝑁)𝜔−(𝑁)
𝑔𝑁 〈𝜇eq〉𝑁

)2
. (3.9)

We note that the modification to the potential is proportional to the ratio of the determinants of the

Hessian without and with light-matter coupling, which acts as a measure of the redefinition of the

normal modes. Additionally, the presence of the permanent dipole reveals the largely electrostatic

nature of this effect.

Without loss of generality, let us assume that the molecule with label 𝑁 undergoes a

reaction. The potential energy surface in the neighborhood of the TS configuration, R‡, is

𝑉 (R ≈ R‡, 𝑞0) =
𝑁∑︁
𝑖=2

𝑉nuc(R𝑖,eq) +𝑉nuc(R𝑁,‡) +
𝜔2

eq

2

𝑁−1∑︁
𝑖=1

𝑞2𝑖 +
𝜔2
0

2
𝑞20 +

𝜔2
‡
2
𝑞2𝑁

+ 𝜔0𝑔𝑞0

[
𝑁−1∑︁
𝑖=1

(
𝜇𝑖,eq + 𝜇′𝑖,eq𝑞𝑖

)
+ 𝜇‡ + 𝜇′‡𝑞𝑁

]
.

(3.10)

Here, 𝜔2
‡ =

𝜕2𝑉
(𝑁 )
nuc

𝜕𝑞2
𝑁

����
𝑞‡

< 0 is the squared frequency of the unstable mode, 𝜇‡ = 𝝐 · 𝝁(R𝑁,‡), and
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𝜇′‡ = 𝝐 · 𝜕𝝁(R𝑁 )
𝜕𝑞𝑁

���
𝑞‡

.

Applying the previous treatment to the potential energy surface in the saddle point, RVSC
‡ ,

the coordinates fulfill

©­­­­­«
𝜔2
0 𝜔0𝑔

√︃
(𝑁 − 1)

〈
𝜇′2eq

〉
𝑁−1 𝜔0𝑔𝜇

′
‡

𝜔0𝑔

√︃
(𝑁 − 1)

〈
𝜇′2eq

〉
𝑁−1 𝜔2

eq 0

𝜔0𝑔𝜇
′
‡ 0 𝜔2

‡

ª®®®®®¬
©­­­­­«

𝑞0

𝑞B(𝑁−1)

𝑞𝑁

ª®®®®®¬
= −𝜔0𝑔

[
(𝑁 − 1)

〈
𝜇eq

〉
𝑁−1 + 𝜇‡

] ©­­­­­«
1

0

0

ª®®®®®¬
. (3.11)

For typical values of the transition dipole moments, the off-diagonal terms that depend on

𝑁 remain significant since the number of molecules per cavity mode is estimated between 106

and 1010 [81, 82]. The term 𝑔𝜔0𝜇
′
‡ is several orders of magnitude smaller, and we can neglect it

to recover a polaritonic picture where

©­­­­­«
𝜔2
+(𝑁−1) 0 0

0 𝜔2
−(𝑁−1) 0

0 0 𝜔2
‡

ª®®®®®¬
©­­­­­«
𝑞+(𝑁−1)

𝑞−(𝑁−1)

𝑞𝑁

ª®®®®®¬
≈ −𝜔0𝑔

[
(𝑁 − 1)

〈
𝜇eq

〉
𝑁−1 + 𝜇‡

] ©­­­­­«
cos 𝜃𝑁−1

sin 𝜃𝑁−1

0

ª®®®®®¬
(3.12)

at RVSC
‡ . Thus, the potential at the saddlepoint becomes

𝑉VSC
‡ =

𝑁−1∑︁
𝑖=1

𝑉nuc(R𝑖,eq) +𝑉nuc(R𝑁,‡) −
(

𝜔0𝜔eq

𝜔+(𝑁−1)𝜔−(𝑁−1)
𝑔

[
(𝑁 − 1)

〈
𝜇eq

〉
𝑁−1 + 𝜇‡

] )2
. (3.13)

From Eqs. (3.4), (3.10) and (3.12), it follows that the step to the TS can be written as

UP𝑁 + LP𝑁 +
𝑁−1∑︁
𝑘=1

𝐷
(𝑘)
𝑁

−→ UP𝑁−1 + LP𝑁−1 +
𝑁−2∑︁
𝑘 ′=1

𝐷
(𝑘 ′)
𝑁−1 + 𝑅

‡
𝑁

(3.14)
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where 𝑅‡
𝑁

represents the reactive molecule in the TS. Therefore, the rate constant should include

the partition functions of the whole ensemble of molecules coupled to light; however, as we will

see, since only one molecule undergoes the reaction, the ratio of partition functions simplifies to

an intelligible expression in terms of the single molecule 𝑘TST.

Outside of the cavity the rate constant takes the form

𝑘TST =
𝑘𝐵𝑇

𝜋ℏ

𝑄‡
𝑄eq

sinh

(
ℏ𝜔eq

2𝑘𝐵𝑇

)
exp

(
−
𝑉nuc

(
R𝑁,‡

)
−𝑉nuc

(
R𝑁,eq

)
𝑘𝐵𝑇

)
, (3.15)

where the ratio 𝑄‡/𝑄eq captures all the information from the translational and rotational degrees

of freedom (for a 1D system comprised of the reactive mode only, 𝑄‡ = 𝑄eq). To characterize the

effect of the cavity mode on the kinetics, we define

𝑘VSC
TST = 𝜅𝑁 𝑘TST, (3.16)

where the ratio of rate constants is given by

𝜅𝑁 = 𝐴VSC(𝑇) exp
(
−
Δ𝑉VSC + Δ𝐸VSC

0

𝑘𝐵𝑇

)
, (3.17a)

with prefactor

𝐴VSC(𝑇) =
sinh

(
ℏ𝜔+(𝑁)/2𝑘𝐵𝑇

)
sinh

(
ℏ𝜔−(𝑁)/2𝑘𝐵𝑇

)
sinh

(
ℏ𝜔+(𝑁−1)/2𝑘𝐵𝑇

)
sinh

(
ℏ𝜔−(𝑁−1)/2𝑘𝐵𝑇

) , (3.17b)

cavity-induced potential energy difference

Δ𝑉VSC = 𝜔2
0𝜔

2
eq𝑔

2


(
𝑁 〈𝜇eq〉𝑁
𝜔+(𝑁)𝜔−(𝑁)

)2
−

(
(𝑁 − 1)

〈
𝜇eq

〉
𝑁−1 + 𝜇‡

𝜔+(𝑁−1)𝜔−(𝑁−1)

)2 , (3.17c)
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and zero-point-energy difference

Δ𝐸VSC
0 =

ℏ𝜔+(𝑁−1) + ℏ𝜔−(𝑁−1) − ℏ𝜔+(𝑁) − ℏ𝜔−(𝑁)
2

. (3.17d)

As stated before, 𝑁 � 1. In this limit, 𝐴VSC(𝑇) ≈ 1, Δ𝐸VSC
0 ≈ 0, and the ratio of rate

constants becomes

𝜅𝑁 ≈ exp

[ (
𝜔eq𝑔𝜇‡

)2(
𝜔2

eq − 𝑔2𝑁
〈
𝜇′2eq

〉)
𝑘𝐵𝑇

]
, (3.18)

where we have considered that, for typical reactions in liquid solution, the molecular dipoles

are isotropically distributed; therefore, 〈𝜇eq〉𝑁 = 0. Regarding collective effects, in Fig. 3.2, we

show the ratio of rate constants as a function of the collective coupling and the permanent dipole

moment of the TS. We can see that the variation of 𝜅𝑁 throughout the span of the weak and strong

light-matter coupling regimes is negligible. Furthermore, even over a huge range of possible

values of 𝜇‡, the ratio of rate constants remains too close to 1 to imply any observable change in

the reaction rate. In contrast, note that in a sample with perfectly aligned dipoles,
〈
𝜇eq

〉
𝑁
≠ 0,

leading to substantial collective 𝑂 (𝑁) contributions to Δ𝑉VSC [see Eq. (3.17c)]. Furthermore,

regardless of dipole alignment, it can be shown that Δ𝑉VSC is independent of 𝜔0, and is therefore

unable to describe a resonant effect.

3.2.1 Single-molecule case

When there is a single molecule per cavity mode, the only surviving coupling in Eq. (3.11)

is that between the TS and the photon. In this case, the saddlepoint condition can be recast in

terms of the eigenmodes as

©­­«
𝜔2
−‡ 0

0 𝜔2
+‡

ª®®¬
©­­«
𝑞+‡

𝑞−‡

ª®®¬ = −𝜔0𝑔𝜇‡
©­­«
cos 𝜃‡

sin 𝜃‡

ª®®¬ , (3.19)
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Figure 3.2: Ratio of rate constants as a function of the permanent dipole in the TS, and the
collective light-matter coupling. 𝜇‡ = 𝜇‡/|〈𝑛 + 1| 𝜇eq |𝑛〉| is the permanent dipole moment in the
TS normalized with respect to the transition dipole moment in the equilibrium configuration, and
Ω̃𝑁 = 𝑔

√︃
𝑁

〈
𝜇2eq

〉
/𝜔eq is the light-matter coupling normalized with respect to the frequency in

the same configuration. Over the span of the weak and strong coupling regimes, and a wide range
of values of the TS dipole, the transmission coefficient remains close to 1. For this calculation,
𝜔𝑒𝑞 = 2000 cm−1, 𝑁 = 109, and 𝑘𝐵𝑇 = 208.5 cm−1.

where 𝜔2
−‡ < 0 < 𝜔2

+‡. The potential energy evaluated at RVSC
‡ is

𝑉VSC
‡ = 𝑉nuc(R‡) −

(
𝜔0𝜔‡
𝜔+‡𝜔−‡

𝑔𝜇‡

)2
, (3.20)

which produces

𝐴VSC =
sinh (ℏ𝜔+/2𝑘𝐵𝑇) sinh (ℏ𝜔−/2𝑘𝐵𝑇)
sinh

(
ℏ𝜔+‡/2𝑘𝐵𝑇

)
sinh

(
ℏ𝜔eq/2𝑘𝐵𝑇

) , (3.21a)

Δ𝑉VSC = 𝑔2𝜔2
0

[(
𝜔eq𝜇eq

𝜔+𝜔−

)2
−

(
𝜔‡𝜇‡
𝜔+‡𝜔−‡

)2]
, (3.21b)

Δ𝐸VSC
0 =

ℏ𝜔+‡ − ℏ𝜔+ − ℏ𝜔− + ℏ𝜔eq

2
. (3.21c)

It is worth noting that, despite 𝐴VSC(𝑇) and Δ𝐸VSC
0 deviating from 1 and 0, respectively, in the

single-molecule limit, the effect is still off-resonant, thus reinforcing the findings in [83]. In any
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case, the mode volumes and transition dipole moments required to modify a reaction rate are

unrealistic unless we consider nano- and picocavities.

3.3 Conclusions

From the previous analysis we reach the same conclusions of [83]: effects of resonance

between the cavity and the vibrational modes cannot be captured in a description at the level of

TST, and the isotropic distribution of the permanent dipole moments negates the possibility of

cooperative light-matter coupling effects. These results contrast with the situation of thermally-

activated nonadiabatic charge transfer reactions, where the role of collective light-matter resonance

in isotropic media is more evident. While we agree that the role of the polaritonic picture in our

present analysis is rather shallow, it undoubtedly simplifies and clarifies the theoretical analysis.

In conclusion, our results restate that a TST that takes into account strong coupling of the reactive

mode to a resonant optical cavity mode is still insufficient to explain the experimental results

involving thermally-activated adiabatic reactions in Refs. [56, 71, 73, 75, 77, 78].

Chapter 3, in full, is adapted from the material as it appears in “Polaritonic normal modes

in transition state theory”. Campos-Gonzalez-Angulo, Jorge A.; Yuen-Zhou, Joel. The Journal of

Chemical Physics, 152, 161101 (2020). The dissertation author was the primary investigator and

author of this paper.
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Chapter 4

Effects of vibrational strong coupling on

non-adiabatic processes

4.1 Introduction

The strong interaction between excitations in a material medium and a resonant confined

electromagnetic mode results in new states with light-matter hybrid character (polaritons) [10,126].

Recent studies of molecular polaritons have revealed new phenomena and features that are appealing

for applications in chemistry and materials science. These discoveries opened the doors to the

emerging field of polariton chemistry [37–40, 46, 112, 127–129]. Of particular interest are

recent observations of chemoselective suppression and enhancement of reactive pathways for

molecules whose high-frequency vibrational modes are strongly coupled to infrared optical

cavities [71, 74, 77, 78]. These effects of vibrational strong coupling (VSC) are noteworthy in

that they occur in the absence of external photon pumping; implying that they involve thermally-

activated (TA) processes, and potentially paving the road for a radically new synthetic chemistry

strategy that involves injecting microfluidic solutions in suitable optical cavities (Fig. 4.1) to

induce desired transformations. It is important to highlight that the VSC in these samples is the
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consequence of an ensemble effect: each cavity mode (that is resonant with the polarization of

the material) coherently couples to a large number of molecules. This coupling leads to two

polaritonic modes and a macroscopic set of quasi-degenerate dark (subradiant) modes that, to a

good approximation, should feature chemical dynamics that is indistinguishable from that of the

bare molecular modes [113]. This picture could potentially change as a consequence of ultrastrong

coupling effects; however, these effects should not be significant for modest Rabi splittings as

those observed in the experiments [71, 74, 77, 78].

From the population of vibrationally excited states at thermal equilibrium, a tiny fraction

would be allocated to the polariton modes, with the overwhelming majority residing in the

dark-state reservoir [67, 81, 82, 114], unless the temperature is low enough for the lower polariton

to overtake the predominant population second to that of the ground state. It is thus puzzling and

remarkable that differences in the chemical kinetics can be detected in macroscopic systems under

VSC at room temperature. This article provides a possible rationale for these observations. By

studying a VSC version of the well-established Marcus-Levich-Jortner (MLJ) TA electron transfer

model [97–99], we find a parameter range where, even if the number of dark-state channels

massively outweigh the few polaritonic ones, the latter dictate the kinetics of the reaction given

their smaller activation energies. The present model does not feature the complexity of the

experimentally studied systems; however, it provides a minimalistic conceptual framework to

develop qualitative insights on general TA VSC processes. We believe that this mechanism of

polaritonic activation barrier reduction might be a widespread feature among such processes.
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Figure 4.1: Depiction of a microcavity. A large number of molecules can undergo a chemical
reaction (e.g., electron-transfer induced conformational transformation [130]) and support a high-
frequency vibrational mode that can strongly couple to a confined optical mode; these molecules
are in a solvated environment (blue/purple moieties). The reaction of concern is mediated by
that intramolecular mode and a low-frequency collective configuration of the solvation sphere.
The optical mode is typically confined by two dielectric mirrors (blue structures) separated by a
spacer that is saturated with the reaction mixture.

4.2 Theoretical framework

According to MLJ theory, the rate coefficient of charge-transfer from a reactant (R) to a

product (P) electronic state, at constant temperature 𝑇 , is given by [97–99]

𝑘R→P =

√︂
𝜋

𝜆S𝑘B𝑇

|𝐽RP |2
ℏ

e−𝑆
∞∑︁
𝑣=0

𝑆𝑣

𝑣!
exp

(
− (Δ𝐸 + 𝜆S + 𝑣ℏ𝜔P)2

4𝜆S𝑘B𝑇

)
, (4.1)

where 𝐽RP is the non-adiabatic coupling between electronic states, 𝜆S is the outer-sphere reorgani-

zation energy related to the low-frequency (classical) degrees of freedom of the solvent, 𝜔P is the

frequency of a high-frequency intramolecular (quantum) mode with quantum number labeled

by 𝑣, 𝑆 = 𝜆P/ℏ𝜔P is a Huang-Rhys parameter with 𝜆P the reorganization energy of the quantum

mode, Δ𝐸 is the difference in energy between the equilibrium configurations of the R and P

potential energy surfaces, and 𝑘B is the Boltzmann constant. The MLJ rate can be thought of as a

generalization of Marcus theory to include a sum over channels with different quanta 𝑣 in the

high-frequency mode of the product.
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To gauge the effects of VSC, we consider the interaction between a single microcavity

mode and an ensemble of 𝑀 molecules that undergo electron transfer. For simplicity, we assume

that VSC occurs via the high-frequency mode of P (since the MLJ rate only accounts for transitions

originated in the ground state of the reactants, the case where this coupling also happens through

R shares features with the current one that we shall discuss later). This constraint implies a

drastic change in molecular geometry upon charge transfer so that the vibrational transition dipole

moment goes from negligible to perceptible. This rather unusual behavior can be observed in

molecular actuators. [130, 131] The Hamiltonian for such system is

𝐻 = 𝐻ph +
𝑀∑︁
𝑖=1

[
𝐻

(𝑖)
R |R𝑖〉 〈R𝑖 | +

(
𝐻

(𝑖)
P + V̂ (𝑖)

int

)
|P𝑖〉 〈P𝑖 | + 𝐽RP ( |R𝑖〉 〈P𝑖 | + |P𝑖〉 〈R𝑖 |)

]
, (4.2)

where 𝐻ph = ℏ𝜔0

(
𝑎
†
0𝑎0 +

1
2

)
is the Hamiltonian of the electromagnetic mode with frequency

𝜔0, |R𝑖〉 and |P𝑖〉 denote the electronic (reactant/product) states of the 𝑖-th molecule, 𝐻 (𝑖)
R =

ℏ𝜔RD̂†
𝑖
Ŝ†
𝑖

(
𝑎
†
𝑖
𝑎𝑖 + 1

2

)
Ŝ𝑖D̂𝑖 +𝐻S(q̂(𝑖)S +dS) and 𝐻 (𝑖)

P = ℏ𝜔P

(
𝑎
†
𝑖
𝑎𝑖 + 1

2

)
+𝐻S(q̂(𝑖)S ) +Δ𝐸 are the bare

Hamiltonians of the 𝑖-th reactant/product with quantum mode frequency 𝜔R and 𝜔P, respectively.

V̂ (𝑖)
int = ℏ𝑔

(
𝑎
†
𝑖
𝑎0 + 𝑎†0𝑎𝑖

)
is the light-matter interaction under the rotating wave approximation [132]

with single-molecule coupling 𝑔 = −𝜇
√︃

ℏ𝜔0
2𝑉𝜀0

, transition dipole moment 𝜇, and cavity mode volume

𝑉 , 𝑎†
𝑖
/𝑎𝑖 are creation/annihilation operators acting on the quantum mode of the 𝑖-th molecule (𝑖 = 0

denotes the cavity mode), Ŝ𝑖 = exp
[
1
2 ln

(√︃
𝜔P
𝜔R

)
(𝑎†2
𝑖

− 𝑎2
𝑖
)
]

and D̂𝑖 = exp
[
1√
2
(𝑎†
𝑖
− 𝑎𝑖)DP

]
are squeezing and displacement operators [132], 𝐻S(q̂(𝑖)S ) = ∑

ℓ
1
2ℏ𝜔

(ℓ)
S

(
𝑝
(𝑖,ℓ)2
S + 𝑞 (𝑖,ℓ)2S

)
is the

Hamiltonian of the classical modes with frequencies 𝜔(ℓ)
S , p̂(𝑖)

S and q̂(𝑖)S are the set of rescaled

classical momenta and positions associated with the 𝑖-th quantum mode, and DP and dS are the

rescaled (dimensionless) distances between equilibrium configurations of the reactant and product

along the quantum and classical mode coordinates, respectively. We shall point out that, since

it only considers coupling to a single cavity mode, the Hamiltonian in equation (4.2) entails

coarse-graining; therefore, 𝑀 is not the total number of molecules in the cavity volume, but the
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average number of molecules coupled per cavity mode [81]. While polaritonic effects in electron

transfer processes have been studied in the pioneering work of [49] (see also [53]), we note that

they were considered in the electronic strong coupling regime; as we shall see, the vibrational

counterpart demands a different formalism and offers conceptually different phenomenology.

4.2.1 Relation between reactant and product harmonic oscillator opera-

tors.

Let us consider the vibrational Hamiltonians for the single-molecule reactant and product

electronic states (we omit label (𝑖) for simplicity hereafter),

𝐻R =
𝑝2

2𝑚
+
𝑚𝜔2

R𝑥
2

2
= ℏ𝜔R

(
𝑎
†
R𝑎R + 1

2

)
, (4.3)

𝐻P =
𝑝2

2𝑚
+
𝑚𝜔2

P(𝑥 − 𝑑P)2

2
+ Δ𝐸 = ℏ𝜔P

(
𝑎
†
P𝑎P +

1

2

)
+ Δ𝐸, (4.4)

where 𝑚 is the reduced mass of the mode, 𝜔𝐴 is the frequency of the mode in each electronic state

(𝐴 = R, P), 𝑑P is the difference between nuclear equilibrium configurations, Δ𝐸 is the energy

difference between the electronic states, and 𝑝 and 𝑥 are the momentum and position operators

for the described mode; therefore, the harmonic oscillator potential energy surface for P is a

displaced-distorted version of that for R. The creation and annihilation operators are defined in

terms of position and momentum (𝑑R = 0),

𝑎
†
𝐴
=

√︂
𝜔𝐴𝑚

2ℏ
(𝑥 − 𝑑𝐴) −

𝑖𝑝
√
2ℏ𝜔𝐴𝑚

,

𝑎𝐴 =

√︂
𝜔𝐴𝑚

2ℏ
(𝑥 − 𝑑𝐴) +

𝑖𝑝
√
2ℏ𝜔𝐴𝑚

;

(4.5)
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conversely, the position-momentum representation is written in terms of the creation and

annihilation operators as

𝑥 − 𝑑𝐴 =

√︄
ℏ

2𝜔𝐴𝑚

(
𝑎
†
𝐴
+ 𝑎𝐴

)
,

𝑝 =

√︂
ℏ𝜔𝐴𝑚

2
𝑖

(
𝑎
†
𝐴
− 𝑎𝐴

)
.

(4.6)

Equation (4.6) implies

𝑎
†
R + 𝑎R
√
𝜔R

=
𝑎
†
P + 𝑎P + 𝑑P

√
𝜔P

,

√
𝜔R

(
𝑎
†
R − 𝑎R

)
=
√
𝜔P

(
𝑎
†
P − 𝑎P

)
,

(4.7)

where 𝑑P =
√︁
2𝑚/ℏ 𝑑P; therefore, the reactant operators are written in terms of product ones as

𝑎
†
R =

1

2

(√︂
𝜔R
𝜔P

+
√︂
𝜔P
𝜔R

)
𝑎
†
P +

1

2

(√︂
𝜔R
𝜔P

−
√︂
𝜔P
𝜔R

)
𝑎P +

√︂
𝜔R
𝜔P

𝑑P
2
,

𝑎R =
1

2

(√︂
𝜔R
𝜔P

−
√︂
𝜔P
𝜔R

)
𝑎
†
P +

1

2

(√︂
𝜔R
𝜔P

+
√︂
𝜔P
𝜔R

)
𝑎P +

√︂
𝜔R
𝜔P

𝑑P
2
.

(4.8)

These transformations can be written in terms of a squeezing and a displacement operator [132]:

ŜP(𝑟) = exp
[ 𝑟
2
(𝑎2P − 𝑎

†2
P )

]
, (4.9)

D̂P(𝛼) = exp
[
𝛼(𝑎†P − 𝑎P)

]
, (4.10)

with actions given by

Ŝ†
P (𝑟)𝑎

†
PŜP(𝑟) = 𝑎†P cosh 𝑟 − 𝑎P sinh 𝑟, (4.11)

D̂†
P(𝛼)𝑎PD̂P(𝛼) = 𝑎P + 𝛼. (4.12)
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Therefore,

𝑎
†
R = D̂†

P(𝛼)Ŝ
†
P (𝑟)𝑎

†
PŜP(𝑟)D̂P(𝛼)

𝑎R = D̂†
P(𝛼)Ŝ

†
P (𝑟)𝑎PŜP(𝑟)D̂P(𝛼),

(4.13)

for

𝑟 = ln

√︂
𝜔R
𝜔P
, (4.14)

𝛼 = 𝑑P. (4.15)

4.2.2 Rate in terms of polariton moldes

As a consequence of VSC, the system is best described in terms of collective normal

modes defined by the operators [38, 133]

𝑎+(𝑁) = cos 𝜃𝑁𝑎0 − sin 𝜃𝑁𝑎B(𝑁) ,

𝑎−(𝑁) = sin 𝜃𝑁𝑎0 + cos 𝜃𝑁𝑎B(𝑁) ,

𝑎
(𝑘)
D(𝑁) =

𝑁∑︁
𝑖=1

𝑐𝑘𝑖𝑎𝑖; 2 ≤ 𝑘 ≤ 𝑁

(4.16)

where 0 ≤ 𝑁 ≤ 𝑀 is the number of molecules in the P state at a given stage in the reaction.

These operators correspond to the upper and lower polaritons (UP,LP), and dark (D) modes,

respectively. Note that the operators 𝑎 (𝑘)D(𝑁) are defined only for 𝑁 ≥ 2, and the coefficients 𝑐𝑘𝑖

fulfill
∑𝑁
𝑖=1 𝑐𝑘𝑖 = 0 and

∑𝑁
𝑖=1 𝑐

∗
𝑘 ′𝑖𝑐𝑘𝑖 = 𝛿𝑘 ′𝑘 . In equation (4.16), 𝜃𝑁 = 1

2 arctan
2𝑔

√
𝑁

Δ
is the mixing

angle, where Δ = 𝜔0 − 𝜔P is the light-matter detuning, and 𝑎B(𝑁) =
1√
𝑁

∑𝑁
𝑖=1 𝑎𝑖 corresponds to
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the so-called bright (superradiant) mode. These modes have associated frequencies

𝜔±(𝑁) =
𝜔0 + 𝜔P

2
± Ω𝑁

2
,

𝜔D = 𝜔P,

(4.17)

where Ω𝑁 =
√︁
4𝑔2𝑁 + Δ2 is the effective Rabi splitting; equivalent definitions can be made for

the creation operators. Note that there is no free-lunch: the superradiantly enhanced VSC with

the bright mode occurs at the expense of the creation of a macroscopic number of dark modes

that –under the context of this model– do not mix with light. (Inhomogeneous broadening results

in small but experimentally observable light-like character for these modes [133–136]. This

effect is negligible for the phenomena considered in this work given that the density of molecular

excitations is much larger than that of the photon modes.)

Inside of the cavity, the reaction R −→ P becomes

R + UP𝑁−1 + LP𝑁−1 +
𝑁−1∑︁
𝑘=2

D(𝑘)
𝑁−1 −→ UP𝑁 + LP𝑁 +

𝑁∑︁
𝑘=2

D(𝑘)
𝑁
, (4.18)

where the subscripts indicate the number of molecules that participate in VSC (from equation

(4.16) it can be seen that UP0 corresponds to the uncoupled photon mode, and LP0 and D(𝑘)
0

are nonexistent). This reaction implies that each time a molecule transforms into the product, it

becomes part of the ensemble that couples to light (see 4.2.3 for additional insight). Electron

transfer occurs as a result of a vibronic transition between diabatic states; this feature makes it

similar to Raman scattering. A study of the latter under VSC [63] took advantage of the massive

degeneracy of the dark modes to introduce a judicious basis [137],

𝑎
(𝑘)
D =

1√︁
𝑘 (𝑘 − 1)

(
𝑘−1∑︁
𝑖=1

𝑎𝑖 − (𝑘 − 1)𝑎𝑘

)
, (4.19)

that enables calculations for an arbitrary number of molecules, and will prove to be convenient for
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Figure 4.2: Probability coefficients for each molecular mode in the quasi-localized basis of
dark modes defined in equation (4.19). As the dark mode index, 𝑘 , increases, it becomes more
localized in the 𝑘-th molecule, leaving a long tail behind it [63].

our purposes. Notice that the mode 𝑎 (𝑘)D is highly localized at 𝑎𝑘 but has a long tail for 𝑎1≤𝑖≤𝑘−1

(fig. 4.2); furthermore, it is fully characterized by the index 𝑘 , and thus does not depend explicitly

on 𝑁 . In terms of these dark modes, the reaction in equation (4.18) can be drastically simplified

from an 𝑁 + 1 to a three-body process,

R + UP𝑁−1 + LP𝑁−1 −→ UP𝑁 + LP𝑁 + D(𝑁)
𝑁
, (4.20)

where, without loss of generality, we have considered that the 𝑁-th molecule is the one that

undergoes the reaction (notice that, in accordance with the notation introduced in equation (4.19),

the mode D(𝑁)
𝑁

is highly localized in 𝑃𝑁 for sufficiently large 𝑁). Furthermore, we can identify

the normal modes of the photon (𝑎0), the 𝑁-th molecule (𝑎𝑁 ), and the bright state that excludes it

(𝑎B(𝑁−1)) as natural degrees of freedom of the problem since the modes in reactants and products
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can be written as Duschinsky transformations [138] of these. Explicitly, for the reactants we have

©­­«
𝑎+(𝑁−1)

𝑎−(𝑁−1)

ª®®¬ =
©­­«
cos 𝜃𝑁−1 − sin 𝜃𝑁−1

sin 𝜃𝑁−1 cos 𝜃𝑁−1

ª®®¬
©­­«

𝑎0

𝑎B(𝑁−1)

ª®®¬ , (4.21)

𝑎′𝑁 = D̂†
𝑁
Ŝ†
𝑁
𝑎𝑁 Ŝ𝑁D̂𝑁 , (4.22)

where 𝑎′
𝑁

acts on the vibrational degrees of freedom of the 𝑁-th reactant (see 4.2.1 for a derivation);

while for the products

©­­­­­«
𝑎+(𝑁)

𝑎−(𝑁)

𝑎
(𝑁)
D

ª®®®®®¬
=

©­­­­­«
cos 𝜃𝑁 − sin 𝜃𝑁 0

sin 𝜃𝑁 cos 𝜃𝑁 0

0 0 1

ª®®®®®¬
©­­­­­«
1 0 0

0
√︃
𝑁−1
𝑁

√︃
1
𝑁

0
√︃

1
𝑁

−
√︃
𝑁−1
𝑁

ª®®®®®¬
©­­­­­«

𝑎0

𝑎B(𝑁−1)

𝑎𝑁

ª®®®®®¬
. (4.23)

With the above considerations, the VSC analogue of the MLJ rate coefficient in equation

(4.1) is given by a sum over possible quanta {𝑣+, 𝑣−, 𝑣D} in the product modes UP𝑁 , LP𝑁 and

D(𝑁)
𝑁

, respectively:

𝑘VSC
R→P =

√︂
𝜋

𝜆S𝑘B𝑇

|𝐽RP |2
ℏ

∞∑︁
𝑣+=0

∞∑︁
𝑣−=0

∞∑︁
𝑣D=0

𝑊𝑣+,𝑣−,𝑣D , (4.24)

where𝑊𝑣+,𝑣−,𝑣D = |𝐹𝑣+,𝑣−,𝑣D |2 exp
(
−𝐸

‡
𝑣+ ,𝑣− ,𝑣D
𝑘B𝑇

)
, and

|𝐹𝑣+,𝑣−,𝑣D |2 = |
〈
0+(𝑁−1)0−(𝑁−1)0R

��𝑣+𝑣−𝑣D
〉
|2

=

(
sin2 𝜃𝑁
𝑁

)𝑣+ (
cos2 𝜃𝑁
𝑁

)𝑣− (
𝑁 − 1

𝑁

)𝑣D (
𝑣+ + 𝑣− + 𝑣D
𝑣+, 𝑣−, 𝑣D

)
|〈0′|𝑣+ + 𝑣− + 𝑣D〉|2,

(4.25)

is a Franck-Condon factor between the global ground state in the reactants and the excited

vibrational configuration in the product [63]. Here, |0′〉 is the vibrational ground state of the 𝑁-th

molecule in the reactant electronic state and |𝑣+ + 𝑣− + 𝑣D〉 is the vibrational state of the 𝑁-th
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molecule with 𝑣+ + 𝑣− + 𝑣D in the product electronic state. The calculation in equation (4.25)

(see 4.2.4 for a derivation) is reminiscent to the contemporary problem of boson sampling [139].

Using the notation from equation (4.1),

𝐸‡
𝑣+,𝑣−,𝑣D =

(𝐸𝑣+,𝑣−,𝑣D
P − 𝐸0

R + 𝜆S)2

4𝜆S
, (4.26)

is the activation energy of the channel, with 𝐸0
R = ℏ

2

(
𝜔+(𝑁−1) + 𝜔−(𝑁−1) + 𝜔R

)
and 𝐸𝑣+,𝑣−,𝑣D

P =

Δ𝐸 + ℏ
[
𝜔+(𝑁)

(
𝑣+ + 1

2

)
+ 𝜔−(𝑁)

(
𝑣− + 1

2

)
+ 𝜔P

(
𝑣D + 1

2

) ]
. equation (4.25) affords a transparent

physical interpretation: the state |𝑣+𝑣−𝑣D〉 is accessed by creating 𝑣+ + 𝑣− + 𝑣D excitations in

the high-frequency oscillator of the 𝑁-th product; there are
(𝑣++𝑣−+𝑣D
𝑣+,𝑣−,𝑣D

)
ways to do so;

(
sin2 𝜃𝑁
𝑁

)
,(

cos2 𝜃𝑁
𝑁

)
, and

(
𝑁−1
𝑁

)
are the projections of the product normal modes on the oscillator of the 𝑁-th

product; these scalings are the same as those obtained in our studies on polariton assisted energy

transfer (PARET) [35].

4.2.3 Initial and final many-body vibronic states.

The rate to calculate corresponds to the stoichiometric process

(𝑀 − 𝑁)R + 𝑁P −→ (𝑀 − 𝑁 − 1)R + (𝑁 + 1)P, (4.27)

where 𝑁 is the number of molecules in the product electronic state P, and 𝑀 − 𝑁 is the number of

molecules in the reactant electronic state R, such that 𝑀 is the total number of molecules in the

reaction vessel. Assigning labels to each molecule, without loss of generality, the transformation

of the 𝑁 + 1-th molecule can be written in the form

𝑀∑︁
𝑖=𝑁+1

R𝑖 +
𝑁∑︁
𝑗=1

P 𝑗 −→
𝑀∑︁
𝑖=𝑁

R𝑖 +
𝑁+1∑︁
𝑗=1

P 𝑗 , (4.28)
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which reduces to

R𝑁+1 −→ P𝑁+1. (4.29)

The charge transfer is ruled by the adiabatic coupling 𝐽 = 𝐽RP
∑𝑀
𝑖=1 ( |R𝑖〉 〈P𝑖 | + |P𝑖〉 〈R𝑖 |); then,

the matrix element that describes the process of our focus is

〈𝑀 − 𝑁, 𝑁 | 𝐽 |𝑀 − 𝑁 − 1, 𝑁 + 1〉 = 𝐽RP 〈𝑀 − 𝑁, 𝑁 |R𝑁+1〉 〈P𝑁+1 |𝑀 − 𝑁 − 1, 𝑁 + 1〉 , (4.30)

with many-body vibronic states given by

|𝑋,𝑌〉 = |P1P2 . . . P𝑌−1P𝑌R𝑌+1R𝑌+2 . . .R𝑋+𝑌−1R𝑋+𝑌 〉 ⊗
��Φ𝑌𝑋〉 , (4.31)

where
��Φ𝑌

𝑋

〉
is an eigenfunction of a vibrational Hamiltonian of the form

𝐻𝑋,𝑌 = 𝐻ph +
𝑌∑︁
𝑖=1

(
𝐻

(𝑖)
P + V̂ (𝑖)

int

)
+

𝑋+𝑌∑︁
𝑗=𝑌+1

𝐻
( 𝑗)
R

= 𝐻+(𝑌 ) + 𝐻−(𝑌 ) +
𝑌−1∑︁
𝑘=1

𝐻
(𝑘)
D(𝑌 ) +

𝑌∑︁
𝑖=1

𝐻S(q̂(𝑖)S ) + 𝑌Δ𝐸 +
𝑋+𝑌∑︁
𝑗=𝑌+1

𝐻
( 𝑗)
R .

(4.32)

In equation (4.32), we have used the notation introduced in equation (4.2), and 𝐻±(𝑌 ) =

ℏ𝜔±
(
𝑎
†
±(𝑌 )𝑎±(𝑌 ) +

1
2

)
and 𝐻 (𝑘)

D(𝑌 ) = ℏ𝜔P

(
𝑎
†(𝑘)
D(𝑌 )𝑎

(𝑘)
D(𝑌 ) +

1
2

)
are the Hamiltonians of the upper/lower

and 𝑘-th dark modes, respectively, all with creation and annihilation operators as defined in

equation (4.16). Therefore, the matrix element corresponding to the transition becomes

〈𝑀 − 𝑁, 𝑁 | 𝐽 |𝑀 − 𝑁 − 1, 𝑁 + 1〉 = 𝐽RP
〈
Φ𝑁
𝑀−𝑁

��Φ𝑁+1
𝑀−𝑁−1

〉
. (4.33)
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4.2.4 Dimensionally reduced Franck-Condon factor.

The non-vanishing overlaps between the vibrational ground state of the reactants and an

arbitrary vibrational excitation with quantum numbers {𝑣+, 𝑣−, 𝑣D} on the products can be written

in terms of creation operators as

〈
000B(𝑁−1)0

′
𝑁

�� 𝑣+𝑣−𝑣D
〉
=

〈
000B(𝑁−1)0

′
𝑁

�� (
𝑎
†
+(𝑁)

)𝑣+
√
𝑣+!

(
𝑎
†
−(𝑁)

)𝑣−
√
𝑣−!

(
𝑎
(𝑁−1)†
D

)𝑣D

√
𝑣D!

���0+(𝑁)0−(𝑁)0(𝑁−1)D

〉
. (4.34)

These operators acting in the UP and LP can be written as linear combinations of the operators

acting on the electromagnetic mode and the bright mode [equation (4.16)], i.e.,

〈
000B(𝑁−1)0

′
𝑁

�� 𝑣+𝑣−𝑣D
〉
=

〈
000B(𝑁−1)0

′
𝑁

�� (
𝑎
†
0 cos 𝜃 − 𝑎

†
B(𝑁) sin 𝜃

)𝑣+
√
𝑣+!

×

(
𝑎
†
0 sin 𝜃 + 𝑎

†
B(𝑁) cos 𝜃

)𝑣−
√
𝑣−!

(
𝑎
(𝑁−1)†
D

)𝑣D

√
𝑣D!

���000B(𝑁)0
(𝑁−1)
D

〉
(4.35)

The binomial theorem yields

〈
000B(𝑁−1)0

′
𝑁

�� 𝑣+𝑣−𝑣D
〉
=

𝑣+∑︁
𝑚=0

𝑣−∑︁
𝑛=0

(
𝑣+
𝑚

) (
𝑣−
𝑛

) 〈
000B(𝑁−1)0

′
𝑁

�� (
𝑎
†
0 cos 𝜃

)𝑚 (
−𝑎†B(𝑁) sin 𝜃

)𝑣+−𝑚
√
𝑣+!

×

(
𝑎
†
0 sin 𝜃

)𝑛 (
𝑎
†
B(𝑁) cos 𝜃

)𝑣−−𝑛
√
𝑣−!

(
𝑎
(𝑁−1)†
D

)𝑣D

√
𝑣D!

���000B(𝑁)0
(𝑁−1)
D

〉
. (4.36)

Since [𝑎0, 𝑎B(𝑁)] = 0, the only non-vanishing terms are those with 𝑚 = 𝑛 = 0, otherwise the

overlap in the photonic mode would be between non-displaced states with different excitations;
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therefore,

〈
000B(𝑁−1)0

′
𝑁

�� 𝑣+𝑣−𝑣D
〉
=

〈
0B(𝑁−1)0

′
𝑁

�� (
−𝑎†B(𝑁) cos 𝜃

)𝑣+
√
𝑣+!

(
𝑎
†
B(𝑁) sin 𝜃

)𝑣−
√
𝑣−!

(
𝑎
(𝑁−1)†
D

)𝑣D

√
𝑣D!

���0B(𝑁)0
(𝑁−1)
D

〉
. (4.37)

Moreover, the creation operators acting on the bright and dark modes can be expressed as linear

combinations of operators acting on the 𝑁-th molecule and the bright mode that excludes it

[equation (4.19)], i.e.,

〈
000B(𝑁−1)0

′
𝑁

�� 𝑣+𝑣−𝑣D
〉
=

(− cos 𝜃)𝑣+ (sin 𝜃)𝑣−
√
𝑣+!𝑣−!𝑣D!

〈
0B(𝑁−1)0

′
𝑁

�� (𝑎†B(𝑁−1)

√︃
𝑁−1
𝑁

+ 𝑎†
𝑁

√︃
1
𝑁

)𝑣+
×

(
𝑎
†
B(𝑁−1)

√︃
𝑁−1
𝑁

+ 𝑎†
𝑁

√︃
1
𝑁

)𝑣− (
𝑎
†
B(𝑁−1)

√︃
1
𝑁
− 𝑎†

𝑁

√︃
𝑁−1
𝑁

)𝑣D ��0B(𝑁−1)0𝑁
〉
. (4.38)

By expanding the binomials as before, and discarding the terms that excite the B(𝑁 − 1) mode,

we arrive at

〈
000B(𝑁−1)0

′
𝑁

�� 𝑣+𝑣−𝑣D
〉
=

(− cos 𝜃)𝑣+ (sin 𝜃)𝑣−
√
𝑣+!𝑣−!𝑣D!

×
〈
0′𝑁

�� (−𝑎†
𝑁

√︃
1
𝑁

)𝑣+ (
𝑎
†
𝑁

√︃
1
𝑁

)𝑣− (
−𝑎†

𝑁

√︃
𝑁−1
𝑁

)𝑣D

|0𝑁〉

=

〈
0′
𝑁

�� (𝑎†
𝑁

)𝑣++𝑣−+𝑣D
|0𝑁〉

√
𝑣+!𝑣−!𝑣D!

(
−cos 𝜃√

𝑁

)𝑣+ ( sin 𝜃
√
𝑁

)𝑣− (
−
√︂
𝑁 − 1

𝑁

)𝑣D

.

(4.39)

Acting the creation operator on the 𝑁-th mode allows us to write

〈
000B(𝑁−1)0

′
𝑁

�� 𝑣+𝑣−𝑣D
〉
=√︄

(𝑣+ + 𝑣− + 𝑣D)!
𝑣+!𝑣−!𝑣D!

(
−cos 𝜃√

𝑁

)𝑣+ ( sin 𝜃
√
𝑁

)𝑣− (
−
√︂
𝑁 − 1

𝑁

)𝑣D 〈
0′𝑁

�� (𝑣+ + 𝑣− + 𝑣D)𝑁
〉
. (4.40)
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Therefore, the square of the Franck-Condon factor in equation (4.34) is

��〈000B(𝑁−1)0
′
𝑁

�� 𝑣+𝑣−𝑣D
〉��2 =(

𝑣+ + 𝑣− + 𝑣D
𝑣+, 𝑣−, 𝑣D

) (
cos2𝜃

𝑁

)𝑣+ ( sin2𝜃
𝑁

)𝑣− (
𝑁 − 1

𝑁

)𝑣D ��〈0′𝑁 �� (𝑣+ + 𝑣− + 𝑣D)𝑁
〉��2. (4.41)

4.2.5 Conditions for rate enhancement

When 𝜔R = 𝜔P and 𝑁 � 1, the expressions for the Franck-Condon factor and activation

energy simplify to

|𝐹𝑣+,𝑣−,𝑣D |2 =
e−𝑆

𝑣+!𝑣−!𝑣D!

(
𝑆 sin2 𝜃

𝑁

)𝑣+ (
𝑆 cos2 𝜃

𝑁

)𝑣−
𝑆𝑣D , (4.42)

𝐸‡
𝑣+,𝑣−,𝑣D =

[Δ𝐸 + 𝜆S + ℏ(𝑣+𝜔+ + 𝑣−𝜔− + 𝑣D𝜔P)]2
4𝜆S

, (4.43)

where we have dropped the dependence of angles and frequencies on 𝑁 for brevity. For most of

the experiments that have achieved VSC [54–56,58,67,71,140], the number of molecules that

take part in the coupling is between 𝑁 = 106 and 1010 per cavity mode [81]. For such orders

of magnitude, at first glance, equation (4.25) would suggest that the contribution from the dark

modes dominates the rate, which, according to equation (4.42), is the same as the bare case

(equation (4.1)) for 𝑣D = 1 and 𝑣+ = 𝑣− = 0, i.e., if the polaritons are not employed in the reaction.

In fact, this was the conclusion for PARET [35], where coupling the product to transitions to the

cavity led to no change in energy transfer from reactant molecules. However, the TA processes in

electron transfer kinetics offers a new dimension to the problem that PARET does not feature.

Careful inspection of the expressions at hand hints to the existence of parameters Δ𝐸 and 𝜆S for

which changes in the activation energy for the polariton channels dominate the rate. To find those

parameters, we need first that the contribution going to the first vibrational excitation outplay that
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Figure 4.3: Electron transfer parameters for catalytic behavior. The lower polariton (LP) channel
dominates the kinetics over the many dark (D) channels for these values of Δ𝐸 (the energy
difference between product P and reactant R), 𝜆S (the classical reorganization energy), and Δ

(the detuning between the cavity and the high-frequency mode of the product). In (a) we explore
the three variables, while in (b) we show the cross section under resonant conditions. For these
calculations, the high frequency modes are equal 𝜔R = 𝜔P, 𝑘B𝑇 = 0.2ℏ𝜔P, 𝑁 = 1010, 𝑆 = 1,
and the Rabi splitting is ℏΩ = 5 × 10−2ℏ𝜔P.

between ground states, i.e.,𝑊001 > 𝑊000, which implies

𝜆P
ℏ𝜔P

> exp

(
ℏ𝜔P

4𝜆S𝑘B𝑇
[2(Δ𝐸 + 𝜆S) + ℏ𝜔P]

)
. (4.44)

Next, if the contribution from the channel where the product is formed with an excitation in the

LP mode (𝑣− = 1, and 𝑣+ = 𝑣D = 0) dominates, then𝑊010 > 𝑊001, which yields

𝑁

cos2 𝜃
< exp

(
ℏ(Ω𝑁 − Δ)
4𝜆S𝑘B𝑇

[
Δ𝐸 + 𝜆S + ℏ𝜔P +

ℏ(Δ −Ω𝑁 )
4

] )
. (4.45)

The region of parameters that satisfies these inequalities for room-temperature (𝑘B𝑇 ≈ 0.2ℏ𝜔P)

and typical experimental VSC Rabi-splittings ℏΩ(≈ 0.1ℏ𝜔P) [58, 71] is illustrated in Fig.

4.3.a. The order of magnitude of the plotted Δ𝐸 values is reasonably standard for this kind of

processes [141,142], which suggests the experimental feasibility of attaining these conditions.
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The effect of the electromagnetic mode and the conditions for which the enhancement of

the polaritonic coupling can be achieved is illustrated in Fig. 4.4. We can understand this effect as

follows; the reaction takes place as a multi-channel process consisting of an electronic transition

from the reactant global ground state into the product electronic state dressed with high-frequency

vibrational excitations. As shown in Fig. 4.4 and 4.5, the channel between global ground states is

in the Marcus inverted regime [117,143] and, given the small value of the classical reorganization

energy, the activation energy is fairly high. On the other hand, the channel to the first excited

manifold is in the normal regime with a much lower activation energy, but the range of parameters

implies that the decrease in activation energy for the channel with an excitation in the LP mode is

enough to overcome the elevated multiplicity of the dark modes (Fig. 4.4 and 4.5), and effectively

catalyze the electron transfer process. In terms of the expression for the rate coefficient, even

though the entropic pre-exponential factor of the D channel is 𝑁 − 1 larger than that of the LP

channel, the latter is associated with a larger exponential factor (lower activation energy).

In Fig. 4.3.b we also show the parameter space that produces polaritonic enhancement as

a function the detuning Δ. It can be noticed that the range of admissible values for the classical

reorganization energy increases as the detuning becomes negative. This can be understood

from the fact that, for negative detunings, the frequency of the photon is smaller than that of

the vibrational high-frequency mode and, therefore, the activation energy to LP is lower than

that corresponding to D, thus providing more flexibility for parameters to fulfill the inequalities

in equation (4.45). However, we must remark that this effect disappears at sufficiently large

detunings, as the matter character of the LP becomes negligible to effectively mediate the electron

transfer.

4.2.6 Simulation of modified kinetics

The overall effect of the cavity in the charge transfer kinetics is displayed in Fig. 4.6, where

we show the ratio of the rate coefficients, calculated inside (𝑘R→P) and outside (𝑘VSC
R→P) of the cavity
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Figure 4.4: Potential energy surfaces under VSC along the slow coordinate. (Not to scale)
With respect to the reactant (blue), the vibrational ground state of the product (orange) is in the
Marcus inverted regime; the manifold of states with one vibrational excitation (green, red and
purple) in the product is in the normal regime. While the dark states (green) outnumber the
lower (red) and upper (purple) polaritons, the small activation energy associated with the lower
polariton channel might make it the preferred pathway for reactivity.

as a function of the collective coupling 𝑔
√
𝑁/𝜔P, for several values of detuning. The bell-shaped

curves reflect the fact that, as the Rabi splitting increases, the activation energy of the LP decreases,

thus making this channel the most prominent one. This trend goes on until 𝐸‡
010 = 0, where this

LP channel goes from the normal Marcus regime to the inverted one, and the activation energy

starts to increase with the coupling until this pathway is rendered insignificant as compared to the

transition to the D manifold, giving rise to kinetics indistinguishable from the bare molecules.

The observation that larger detunings require stronger coupling to reach the maximum ratio of rate

coefficients is consistent with the fact that ℏΩ increases sublinearly with ℏ𝑔
√
𝑁; therefore, larger

detunings require larger couplings to attain the same splitting. Additionally, the trend observed in

the maxima, which decrease with the detuning, can be regarded as a consequence of the previous

effect: the larger couplings required to reach the zero-energy-barrier are achieved with more of

molecules; thus, the contribution of LP becomes less relevant than that of D, as can be seen

from the pre-exponential factors. Finally, a peculiar result is the fact that the effect on the rate
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Figure 4.5: Amplification of Fig. 4.4, showing a situation where a polariton channel dominates
the kinetics of a reaction starting at reactant R. The channel involving a vibrational excitation in
the lower polariton of the product (P𝐿𝑃) features a small enough activation barrier 𝐸‡

001 that can
effectively compete against the many channels ending with a vibrational excitation in any of the
dark modes, PD, which feature corresponding activation energies 𝐸‡

001. These two activation
energies are much smaller than 𝐸‡

000, the one associated with the channel leading to the global
ground state of the products, P0 (not shown in this amplified figure).
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Figure 4.6: Ratio between rate coefficients inside and outside the cavity. The relation of
𝑘 in = 𝑘VSC

R→P and 𝑘out = 𝑘R→P was calculated at several detunings Δ. For these calculations
1 ≤ 𝑁 ≤ 1011, 𝜔R = 𝜔P, 𝑘B𝑇 = 0.2ℏ𝜔P, 𝑆 = 1, ℏ𝑔 = 1.6 × 10−5ℏ𝜔P and 𝐸‡

001 = 4.9ℏ𝜔P. In
agreement with Marcus theory, as the lower polariton mode decreases in energy (with increasing
Rabi splitting), its corresponding activation energy falls and then rises, thus dominating the
kinetics and becoming irrelevant, respectively. Notice that the trend of apparent enhancement at
negative detunings eventually stops at low values of |Δ| .

coefficient is more prominent in a range of few molecules for slightly negative detunings. This

observation should not come as surprising since, as previously mentioned, under this condition,

the LP mode has a substantially decreased activation energy; therefore, for as small as it is, the

light-matter coupling is enough to open a very favored channel that accelerates the reaction. This

effect might end up quenched by dissipation; however, even in the absence of the latter, it becomes

irrelevant for the cumulative kinetics, as we shall see next.

Up until now, we have shown that the rate coefficient depends on the number of molecules

that take part in the VSC, which changes as the reaction progresses. To illustrate the cumulative

effect on the kinetics, we numerically integrate the rate law

d〈𝑁R〉
d𝑡

= −〈𝑘VSC
R→P(𝑁R)𝑁R〉 (4.46)

where 〈·〉 indicates an average over the ensemble of reactive trajectories (see 4.2.8). We show the

behavior of 𝑁R(𝑡) = 𝑀 − 𝑁 (𝑡) for several detunings in Fig. 4.7. In writing equation (4.46) we
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have assumed that every electron transfer event is accompanied by a much faster thermalization

of the products (largely into the global ground state in the products side) that allows us to

ignore back-reactions. This assumption is well justified if we consider that, for systems with

parameters close to our model molecule, the vibrational absorption linewidth is of the order

of 0.01ℏ𝜔P [58, 67, 71], which represents a timescale suitably shorter than the reaction times

estimated from the rate constant, 𝑘R→P = 9.4 × 10−6𝜔P, calculated with the same parameters. In

Fig. 4.7 we can see that, for Δ ≥ 0, at early times the reactions proceed in the same way as in

the bare case. However, after some molecules have been gathered in the product, the coupling is

strong enough for the LP channel to open and dominate over the D ones. This effect is cumulative,

and the reaction endures a steady catalytic boost. Importantly, the maximum enhancement is

observed for resonant conditions where the light-matter coupling is the most intense. On the

other hand, with a slightly negative detuning, Δ = −0.02𝜔P, the reaction is intensified in the early

stages (as explained above) but is taken over by the dark states after a relatively short amount of

time. Although this off-resonant effect might look appealing, it occurs at an early stage of the

reaction when VSC is not technically operative, namely, when the energetic separation between

dark and polaritonic modes might be blurred by dissipative processes. These considerations are

beyond the scope of the current article and will be systematically explored in future work. In

conclusion, even though some off-resonant effects might be present at the rate coefficient level,

the condition of resonance is essential to observe a significant cumulative acceleration of the

reaction (i.e., change in reactant lifetime) with respect to the bare case.

Importantly, in the case where the high-frequency mode of the reactant molecules also

couples to light, the system is under VSC before the reaction begins and the spectrum in the first

excited manifold in the products remains invariant throughout the reaction. Therefore, the rate

coefficient is a true rate constant evaluated at 𝑁 = 𝑀, i.e, at the maximum coupling. We will

present a detailed analysis of this problem elsewhere.
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Figure 4.7: Evolution of reactant consumption. a) Integrated rate law for the reaction outside
and inside of the cavity at several detunings. The departure of the VSC enhanced kinetics
with respect to the bare case becomes more significant at resonance. b) Evolution of effective
Rabi splittings as the reaction progresses. The effects on the kinetics are observed when the
VSC regime (Ω𝑁 > 0.01𝜔P) is achieved. For these calculations 𝑀 = 𝑁R(0) = 107, 𝜔R = 𝜔P,
𝑘B𝑇 = 0.2ℏ𝜔P, and 𝐸‡

001 = 3.5ℏ𝜔P.

4.2.7 Numerical simulation

To calculate the consumption of the reactant as the polaritonic ensemble grows, we

performed a finite-difference numerical integration of equation (4.46). Since the rate coefficient

remains constant during a single molecule event, we assume a mean-field ansatz

〈𝑘VSC
R→P(𝑁R)𝑁R〉(𝑡) ' 𝑘VSC

R→P(〈𝑁R〉(𝑡))〈𝑁R〉(𝑡),

〈𝑘VSC
R→P(𝑁R)𝑁R〉(𝑡 + Δ𝑡) ' 𝑘VSC

R→P(〈𝑁R〉(𝑡)) (〈𝑁R〉(𝑡) − 1) ,
(4.47)

which enables the stepwise integration of equation (4.46) with limits 𝑡 → 𝑡 +Δ𝑡 and 𝑁R → 𝑁R−1,

yielding

Δ𝑡 (𝑁R) =
1

𝑘VSC
R→P(𝑁R)

ln
𝑁R

𝑁R − 1
. (4.48)
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We verified that this mean-field method gives numerically consistent results with the stochastic

simulation algorithm (see 4.2.8 and 4.1) [144], in agreement with recent studies of mean-field

solutions to polariton problems in the ensemble regime [145]. The rate coefficient 𝑘VSC
R→P(𝑁R)

at each step is calculated from equation (4.24) truncating the sum up to 𝑣+ = 𝑣− = 𝑣D = 2;

terms beyond these excitations do not contribute appreciably given their huge activation energies

resulting from the chosen parameters. The Franck-Condon and exponential factors are calculated

respectively from equation (4.25) and equation (4.26) by setting 𝜔R = 𝜔P.

4.2.8 Integration of the rate law.

Chemical Master Equation The chemical master equation for the reaction in equation (4.20)

is given by

𝜕

𝜕𝑡
Pr(𝑁R, 𝑡 | 𝑀, 0) = 𝑎(𝑁R + 1) Pr(𝑁R + 1, 𝑡 | 𝑀, 0) − 𝑎(𝑁R) Pr(𝑁R, 𝑡 | 𝑀, 0), (4.49)

where Pr(𝑛, 𝑡 | 𝑚, 0) is the conditional probability to observe 𝑛 molecules of the donor at time

𝑡 given that there were 𝑚 at 𝑡 = 0, and 𝑎(𝑛) = 𝑛𝑘𝑉𝑆𝐶
𝑅→𝑃

(𝑛) is the propensity function [144].

Since Pr(𝑀 + 1, 𝑡 | 𝑀, 0) ≡ 0, this equation can be solved exactly by successively plugging

𝑁R = 𝑀, 𝑀 − 1, . . . , 0, yielding

Pr(𝑀 − 𝑛, 𝑡 | 𝑀, 0) = (−1)𝑛
𝑛−1∏
𝑖=0

𝑎(𝑀 − 𝑖)
𝑛∑︁
𝑗=0

e−𝑎(𝑀− 𝑗)𝑡∏𝑛
ℓ=0

[
𝑎(𝑀 − 𝑗) − 𝑎(𝑀 − ℓ) + 𝛿 𝑗ℓ

] . (4.50)

This probability density function can be used to determine the average number of donor molecules

at a given time:

〈𝑁R(𝑡)〉 �
𝑀∑︁
𝑛=0

(𝑀 − 𝑛) Pr(𝑀 − 𝑛, 𝑡 | 𝑀, 0). (4.51)

Taking the time derivative of this average yields equation (4.46).

However, for the number of molecules considered, 𝑀 = 107, this calculation becomes

76



intractable; therefore, we resort to the strategy described in section 4.2.7 and corroborate its

validity with the stochastic simulation algorithm [144].

Stochastic Simulation Algorithm (SSA) For the decomposition reaction in equation (4.46),

we can define

𝑝(𝜏 | 𝑀 − 𝑛, 𝑡) = 𝑎(𝑀 − 𝑛) exp [−𝑎(𝑀 − 𝑛)𝜏] , (4.52)

as the conditioned probability density function for the time of the next reaction (𝜏) given that the

number of donor molecules left is 𝑀 − 𝑛 at 𝑡. This function enables the construction of an exact

numerical realization of the reaction with the following algorithm:

1. Initialize the system at 𝑁R(0) = 𝑀 .

2. With the system in state 𝑁R(𝑡) = 𝑀 − 𝑛(𝑡), evaluate 𝑎(𝑁R).

3. Generate a value for 𝜏 = − ln(𝑟)/𝑎(𝑁R), where R is a uniformly distributed random number.

4. Perform the next reaction by making 𝑁R(𝑡 + 𝜏) = 𝑁R(𝑡) − 1.

5. Register 𝑁R(𝑡) as needed. Return to 2 or else end the simulation.

In Table 4.1, we show the correlation (𝑟2) between the reaction times calculated according

to the mean-field finite difference approach described in section 4.2.7 and the reaction times

corresponding to the same step in the reaction with populations obtained from the mean of 100

trajectories computed with the SSA algorithm. Since these correlations are very close to the unity,

we conclude that the compared methods are numerically equivalent [146]. These observations are

consistent with a recent study that shows that mean-field theories provide good descriptions for

polaritonic systems involving a large number of molecules [145].
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Table 4.1: Correlation between methods of reaction time calculation

Ω Δ/𝜔P 𝑟2

0 - 0.9970

≥ 0

–0.02 0.9965
0 0.9982

0.02 0.9973
0.04 0.9970
0.06 0.9969

4.3 Discussion

We have shown that VSC can result in catalysis of TA reactions. We have presented an

MLJ model to study charge transfer processes under VSC (in passing, these results suggest a VSC

alternative to enhance charge conduction which has so far been only considered in the electronic

strong coupling regime [32,35, 147–149]). In this model, there is a range of molecular features

where the shrinkage of the activation energy of the lower polariton channel can outcompete

the rate associated with the massive number of dark-state channels. This model describes a

mechanism suitable to be present in a wide variety of thermally activated nonadiabatic reactions,

e.g., electron, proton and methyl transfer, among others. We have found a range of molecular

parameters where the shrinkage of the activation energy of the lower polariton channel can

outcompete the rate associated with the massive number of dark-state channels. We determined

that these effects are most prominent under resonant conditions. This finding is relevant since such

is the behavior observed in experimentally in reactions performed under VSC. We must remark,

however, that the latter are presumably vibrationally adiabatic reactions and the involvement

of the present mechanism is not obvious (for a recent study on possibly important off-resonant

Casimir-Polder effects, we refer the reader to [83]). While a thorough understanding of the

reaction pathways involved in these observations is beyond the scope of this article, we believe

that the tug-of-war between the activation energy reduction from few polariton channels against

the numerical advantage of the dark states could be a ubiquitous mechanism of TA polariton
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chemistry under VSC, independently of whether it occurs with reactants or products. Even though

there might be other subtle physical mechanisms underlying VSC TA reactions, we conclude

with three important observations regarding the presently proposed catalytic mechanism. First,

it does not offer a reduction of reaction rate coefficients for a broad range of parameters; after

all, if the polariton channels do not provide incentives for their utilization, the dark states will

still be accessible, leading to virtually unaffected reaction rates as compared with the bare case.

However, an experimental suppression of reactions by VSC under TA conditions (as in [71, 74])

could correspond, microscopically, to the polaritonic modification of elementary step rates in the

network of reaction pathways that comprises the mechanism. Second, it is not evident whether

the conclusions associated with this mechanism are relevant in photochemical processes where

nonequilibrium initialization of polariton populations is allowed. Finally, it is important to

emphasize that this VSC mechanism is not guaranteed to yield changes in TA reactivity, given

that particular geometric molecular conditions need to be fulfilled. Regardless, it is remarkable

that TA reactions under VSC can be modified at all given the entropic limitations imposed by

the dark states. It is of much interest to the chemistry community to unravel the broader class of

reactions and the VSC conditions for which this mechanism is operative; this will be part of our

future work.

Chapter 4, in full, is adapted from the material as it appears in “Resonant catalysis of

thermally activated chemical reactions with vibrational polaritons.” Campos-Gonzalez-Angulo,

Jorge A.; Ribeiro, Raphael F.; Yuen-Zhou, Joel. Nature Communications, 10, 4685 (2019). The

dissertation author was the primary investigator and author of this paper.
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Chapter 5

Vibrational strong coupling of anharmonic

oscillators

5.1 Introduction

Optical microcavities and similar devices enable the dipolar interaction between the

electromagnetic (EM) field they confine and a suitable degree of freedom of quantum emitters

[37–40,42]. The coupled system, whose excitations receive the name of polaritons, is a hybrid

between light and matter, and their properties have motivated extensive exploration from disciplines

such as quantum optics [150], excitonic and two-dimensional materials science [151–153], and

chemistry [43, 49]. In some of the systems of interest, the coupling can reach enough intensity to

produce observable effects only as a consequence of the cooperative interaction of a large number

of material dipoles with a single photon mode. [10, 154].

Polaritons have been produced in diverse setups and materials that require different

theoretical frameworks to describe them. For instance, real spins, NV centers [155], qubits [156],

SQUIDS [157], quantum dots [158,159], and electronic transitions in organic molecules [160] are

studied as two-level systems, while low vibrational transitions in molecules can be modeled with
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harmonic oscillators [161, 162]. The success of these two models stems from their simplicity and

the fact that conditions for the light-matter interaction can be found for which their formulations

give rise to similarly simple analytical solutions.

The interest in strongly coupled systems in which the emitters have a multi-level anharmonic

spectrum has recently increased. For instance, in [91,92], Herrera and co-workers explore the role

that light-matter interaction might have on chemical reactivity by studying the Rabi model with

a single emitter described by a Morse oscillator. Additionally, signatures of the non-linearities

present in states with two quanta have been observed experimentally [67, 69, 163], studied from

theory [66, 68], and motivated revolutionary ideas for signal enhancement [70, 164].

The dynamics of the interaction between many multi-level systems and several EM modes

has been discussed when non-energy conserving terms of the Hamiltonian can be neglected,

i.e., under the so-called rotating wave approximation (RWA) [165–167], and it is known that

analytical solutions exist for the coupling of 𝑟-level systems to 𝑟 − 1 EM modes [168]. Regarding

the problem of 𝑁 molecules coupled to a single EM mode, the RWA allows separating the

Hamiltonian of the system such that exact solutions can be computed numerically. However, in

this kind of calculations the Hilbert space scales as the number of molecules considered, thus

being suitable only for systems of relatively small size. Nonetheless, for the case of identical

emitters, the permutational symmetry implies a high degree of degeneracy, which can be exploited

to reduce the number of degrees of freedom of the Hamiltonian, thus increasing the computational

capabilities of the model. Such an approach has been utilized to provide a formulation for open

quantum systems that can be used to explore spectroscopic measurements and other processes

involving relaxation [169,170]. There is, however, little to no word about the stationary features

of such systems, which are discussed in depth in the present work.

Permutational symmetry has been exploited in the few body limit to study systems such as

nuclear structure [171], quantum circuits [172], magnons [173], ultra cold atoms [174], nuclear

spins within molecules [175], and the one-dimensional Hubbard model [176]. In the general case,

81



the properties of the symmetrized quantum states have also been extensively discussed [177, 178].

However, to the best of our knowledge, there has not been an effort to present concrete results

from the application of this algebraic approach to the problem of light-matter coupling in the

collective regime beyond the case of two-level systems, which is widely known [177,179,180].

In the present work, we provide a fathomable, insightful and easily implementable

procedure to simplify the Schrödinger equation for 𝑁 emitters, each with 𝑟 non-degenerate and

non-equidistant bound states in their energy spectrum, coupled to a harmonic mode through a

bilinear and excitation-conserving interaction. We identify a correlation between the symmetries

of the system and the distribution of photonic component among the emerging manifolds. Of

particular interest is the realization that collective states comprising excitations of distinct natures

give rise to cooperative couplings that depart from the well-known factor of
√
𝑁 that characterizes

polaritons in the singly excited manifold. We also present the effects of anharmonicity, detuning,

and intensity of collective coupling on the eigenenergies, and photon contents of the eigenstates.

This paper is organized as follows: in section 5.2 we introduce the model Hamiltonian,

discuss the implied approximations and provide a layout of the algebraic structure that enables its

separation. In section 5.3 we introduce the tools and concepts that enable the block-diagonalization

and show the form and distribution of the diagonal elements. In section 5.4 we formulate the

off-diagonal matrix elements that result from the block-diagonalization. In section 5.5 we

summarize the simplification method, providing a general recipe to put it in practice. In section 5.6

we present examples for the separation for the lowest-lying excitation manifolds. In section 5.7

we explore the implications of varying parameters on properties of the eigenstates. Finally, we

present the conclusions in section 5.8.
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5.2 Description of the model

The Hamiltonian

𝐻bare(𝑁) = ℏ𝜔

(
𝑎
†
0𝑎0 +

1

2

)
+

𝑁∑︁
𝑖=1

𝑟∑︁
𝑣=0

𝜀𝑣𝜎̂
(𝑖)
𝑣,𝑣 , (5.1)

describes a collection of 𝑁 identical emitters with 𝑟 + 1 states each (which could represent the

lowest vibrational bound states of the ground electronic state of an anharmonic molecule) and an

EM mode with frequency 𝜔. Here, 𝑎 (†)0 is the annihilation (creation) operator of the EM mode,

𝜀𝑣 is the energy of the 𝑣th state of the emitter, and 𝜎̂ (𝑖)
𝑣,𝑢 is the transition operator between levels 𝑢

and 𝑣 in the 𝑖th emitter, i.e.,

𝜎̂
(𝑖)
𝛼,𝛽

|𝑣0𝑣1 . . . 𝑣𝑖 . . . 𝑣𝑁〉 = 𝛿𝑣𝑖𝛽 |𝑣0𝑣1 . . . 𝛼𝑖 . . . 𝑣𝑁〉 . (5.2)

In eq. (5.2), the eigenstates of 𝐻bare(𝑁) in eq. (5.1), henceforth pure bare-eigenstates (PBEs), are

written in a collective Fock representation where the index 𝑣𝑖 indicates the number of bosonic

excitations in the 𝑖th emitter or the EM mode (𝑖 = 0). Hereafter, modes with 𝑣 = 0 are considered

implicitly for brevity.

The Hamiltonian describing the emitters, the EM mode, and their dipolar interactions

under the RWA is

𝐻 (𝑁) = 𝐻bare(𝑁) + 𝐻int(𝑁), (5.3)

where

𝐻int(𝑁) =
𝑟−1∑︁
𝑣=0

(
𝑔𝑣,𝑣+1𝑎

†
0𝐽

(𝑣+1,𝑣)
− + 𝑔𝑣+1,𝑣𝐽 (𝑣+1,𝑣)+ 𝑎0

)
, (5.4)

with collective ladder operators for the emitters,

𝐽
(𝑣+ 1±1

2 𝑢,𝑣− 1∓1
2 𝑢)

± =

𝑁∑︁
𝑖=1

𝜎̂
(𝑖)
𝑣±𝑢,𝑣 𝑢 > 0. (5.5)
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Here, the coupling constant 𝑔𝑣±𝑢,𝑣 =
√︃

ℏ𝜔
2𝜖0V 〈𝑣 ± 𝑢 | 𝑒𝑥 |𝑣〉 is the product of the amplitude of the

single-photon electric field, confined to a mode volume V , and the value of the transition dipole

moment between emitter states 𝑣±𝑢 and 𝑣. Notice that the model considers coupling only between

states that differ by one excitation, and therefore neglects overtone transitions.

The operator 𝑛exc = 𝑎
†
0𝑎0 +

∑𝑁
𝑖=1

∑𝑟
𝑣=0 𝑣𝜎̂

(𝑖)
𝑣,𝑣 acts on the PBEs according to

𝑛exc |𝑣0𝑣1 . . . 𝑣𝑁〉 =
𝑁∑︁
𝑗=0

𝑣 𝑗 |𝑣0𝑣1 . . . 𝑣𝑁〉 , (5.6)

thus indicating the total number of excitations of a given state; moreover, since
[
𝐻 (𝑁), 𝑛exc

]
= 0,

this operator corresponds to a constant of the motion. Therefore, the Hamiltonian can be recast in

the form

𝐻 (𝑁) =
∑︁
𝑛exc

𝐻𝑛exc (𝑁), (5.7)

in which each of the terms in the sum of the right-hand-side can be represented as block matrices

spanned by PBEs of constant 𝑛exc, these blocks generate the so-called excitation manifolds.

Explicitly, we have

𝐻0(𝑁) =
(
ℏ𝜔

2
+ 𝑁𝜀0

)
|0〉 〈0| , (5.8a)

𝐻1(𝑁) =
(
3

2
ℏ𝜔 + 𝑁𝜀0

)
|10〉 〈10 | +

(
ℏ𝜔

2
+ 𝜀1 + (𝑁 − 1)𝜀0

) 𝑁∑︁
𝑖=1

|1𝑖〉 〈1𝑖 |

+
𝑁∑︁
𝑖=1

(𝑔01 |10〉 〈1𝑖 | + 𝑔10 |1𝑖〉 〈10 |) , (5.8b)

𝐻2(𝑁) =
(
5

2
ℏ𝜔 + 𝑁𝜀0

)
|20〉 〈20 | +

(
3

2
ℏ𝜔 + 𝜀1 + (𝑁 − 1)𝜀0

) 𝑁∑︁
𝑖=1

|101𝑖〉 〈101𝑖 |

+
(
ℏ𝜔

2
+ 2𝜀1 + (𝑁 − 2)𝜀0

) 𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

��1𝑖1 𝑗 〉 〈
1𝑖1 𝑗

��
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+
(
ℏ𝜔

2
+ 𝜀2 + (𝑁 − 1)𝜀0

) 𝑁∑︁
𝑖=1

|2𝑖〉 〈2𝑖 |

+
𝑁∑︁
𝑖=1

[
√
2𝑔01 |20〉 〈101𝑖 | + |101𝑖〉

(
𝑔12 〈2𝑖 | + 𝑔01

∑︁
𝑗≠𝑖

〈
1𝑖1 𝑗

��) + H.c.

]
, (5.8c)

𝐻3(𝑁) =
(
7

2
ℏ𝜔 + 𝑁𝜀0

)
|30〉 〈30 | +

(
5

2
ℏ𝜔 + 𝜀1 + (𝑁 − 1)𝜀0

) 𝑁∑︁
𝑖=1

|201𝑖〉 〈201𝑖 |

+
(
3

2
ℏ𝜔 + 𝜀2 + (𝑁 − 1)𝜀0

) 𝑁∑︁
𝑖=1

|102𝑖〉 〈102𝑖 |

+
(
3

2
ℏ𝜔 + 2𝜀1 + (𝑁 − 2)𝜀0

) 𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

��101𝑖1 𝑗 〉 〈
101𝑖1 𝑗

��
+

(
ℏ𝜔

2
+ 𝜀3 + (𝑁 − 1)𝜀0

) 𝑁∑︁
𝑖=1

|3𝑖〉 〈3𝑖 |

+
(
ℏ𝜔

2
+ 𝜀2 + 𝜀1 + (𝑁 − 2)𝜀0

) 𝑁∑︁
𝑖=1

∑︁
𝑗≠𝑖

��2𝑖1 𝑗 〉 〈
2𝑖1 𝑗

��
+

(
ℏ𝜔

2
+ 3𝜀1 + (𝑁 − 3)𝜀0

) 𝑁−2∑︁
𝑖=1

𝑁−1∑︁
𝑗=𝑖+1

𝑁∑︁
𝑘= 𝑗+1

��1𝑖1 𝑗1𝑘〉 〈
1𝑖1 𝑗1𝑘

��
+

𝑁∑︁
𝑖=1

[
√
3𝑔01 |30〉 〈201𝑖 | +

√
2 |201𝑖〉

(
𝑔12 〈102𝑖 | + 𝑔01

∑︁
𝑗≠𝑖

〈
101𝑖1 𝑗

��) + H.c.

]

+
𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1


��101𝑖1 𝑗 〉 𝑔12

(〈
2𝑖1 𝑗

�� + 〈
2 𝑗1𝑖

��) + 𝑔01 ∑︁
𝑘≠𝑖, 𝑗

〈
1𝑖1 𝑗1𝑘

�� + H.c.


+
𝑁∑︁
𝑖=1

[
|102𝑖〉

(
𝑔23 〈3𝑖 | + 𝑔01

∑︁
𝑗≠𝑖

〈
2𝑖1 𝑗

��) + H.c.

]
, (5.8d)

...

where |0〉 = |0001 . . . 0𝑁〉 is the global ground state and H.c. stands for Hermitian conjugate.

While eq. (5.8a) represents a significant simplification that allows diagonalization of

eq. (5.3), it is important to remark that the matrices generated with this approach can quickly

become intractable as the number of molecules increases. For instance, 𝐻𝑛exc (𝑁) is an operator in(𝑁+𝑛exc
𝑛exc

)
dimensions. Therefore, it is impractical to deal with the number of molecules required to
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achieve observable ensemble strong coupling, which is usually in the order of millions [81,82,181].

5.3 Permutational symmetry

Further simplification of eq. (5.3) requires to identify the additional symmetries of the

Hamiltonian. An inspection of eq. (5.8a) reveals that PBEs with the same distribution of quanta

are degenerate under the action of 𝐻bare(𝑁); therefore, it becomes convenient to introduce a label

that characterizes PBEs yet avoids spurious identification due to accidental degeneracies. While,

in principle, this characterization could be achieved with the bare energy and the collection of

eigenvalues of the operators

𝐽
(𝑢,𝑣)
0 =

1

2

[
𝐽
(𝑢,𝑣)
+ , 𝐽 (𝑢,𝑣)−

]
0 ≤ 𝑣 < 𝑢 ≤ 𝑟, (5.9)

which commute with 𝐻bare(𝑁), a much simpler approach is the description of the distribution of

quanta itself. Let us define the spectral configuration:

𝜇 =

𝑟∏
𝑣=0

𝑣𝑛𝜇 (𝑣) , (5.10)

a notation device that indicates the number of emitters 𝑛𝜇 (𝑣) in the 𝑣th excited state. See table 5.1

for usage examples.

The spectral configuration labels not only PBEs, but also any bare eigenstate (BE) resulting

from linear combinations of PBEs with the same distribution of quanta. The BEs can thus be

partially characterized with three labels: the excitation manifold (𝑛exc), the spectral configuration

(𝜇), and a basis-dependent degeneracy index (𝑦). These states fulfill

𝐻bare(𝑁) |𝑛exc, 𝜇; 𝑦〉 = 𝜀(𝜇)𝑛exc |𝑛exc, 𝜇; 𝑦〉 , (5.11)
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Table 5.1: Examples of spectral configurations, partitions, and Young diagrams corresponding
to selected PBEs.

PBE 𝜇 𝝁 𝝂 Young diagram

|0〉 0𝑁 [𝑁] [0]
|1𝑖〉 0𝑁−111 [𝑁 − 1, 1] [1]��1𝑖1 𝑗 〉 0𝑁−212 [𝑁 − 2, 2] [1, 1]

|2𝑖〉 0𝑁−121 [𝑁 − 1, 1] [2]��2𝑖4 𝑗5𝑘〉 0𝑁−3214151 [𝑁 − 3, 1, 1, 1] [5, 4, 2]��1𝑖1 𝑗2𝑘2ℓ2𝑚4𝑛〉 122341 [3, 2, 1] [4, 2, 2, 2, 1, 1]

𝑁 = 6

where

𝜀
(𝜇)
𝑛exc = ℏ𝜔

(
𝑣
(𝑛exc,𝜇)
0 + 1

2

)
+
𝑛exc∑︁
𝑣=0

𝑛𝜇 (𝑣)𝜀𝑣 (5.12)

is the characteristic bare energy for states with those labels, and 𝑣 (𝑛exc,𝜇)
0 = 𝑛exc −

∑𝑛exc
𝑣=1 𝑣𝑛𝜇 (𝑣) is

the corresponding number of quanta in the EM mode.

Since
∑𝑟
𝑣=0 𝑛𝜇 (𝑣) = 𝑁 for a given 𝜇, the spectral configuration corresponds to a partition

of the total number of emitters. For reasons that will become apparent, it is convenient to write

these partitions in its regular (non-increasing) form, i.e.,

𝝁 = [𝜇1, 𝜇2, . . . , 𝜇𝑟+1] (5.13)

where 𝜇𝑖 = 𝑛𝜇 (𝑣𝑖) under the constraint that 𝜇𝑖 ≤ 𝜇𝑖′ for 𝑖 > 𝑖′ [182]. In what follows, all the

empty elements, 𝜇𝑖 = 0, will be omitted for brevity, as illustrated in table 5.1. Furthermore, the

spectral configurations can be identified as partitions of the number of excitations distributed

among the emitters, i.e. for every 𝜇 there exists a regular partition 𝝂(𝜇) such that

𝝂(𝜇) = {𝑣 (𝑖) : 1 ≤ 𝑣 ≤ 𝑟, 0 ≤ 𝑖 ≤ 𝑛𝜇 (𝑣)}, (5.14)
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Table 5.2: Spectral configurations, EM mode excitations and degeneracies for the first five
excitation manifolds.

𝑛exc

𝜇
0 1 2 3 4

dim(𝑀𝝁) dim(𝑆𝝀)
𝑣
(𝑛exc ,𝜇)
0

0𝑁 0 1 2 3 4 1 1
0𝑁−111 0 1 2 3 𝑁 𝑁 − 1
0𝑁−212 0 1 2 𝑁 (𝑁 − 1)/2 𝑁 (𝑁 − 3)/2
0𝑁−121 0 1 2 𝑁

0𝑁−313 0 1 𝑁 (𝑁 − 1) (𝑁 − 2)/6 𝑁 (𝑁 − 1) (𝑁 − 5)/6
0𝑁−21121 0 1 𝑁 (𝑁 − 1) (𝑁 − 1) (𝑁 − 2)/2
0𝑁−131 0 1 𝑁

0𝑁−414 0 𝑁 (𝑁 − 1) (𝑁 − 2) (𝑁 − 3)/24 𝑁 (𝑁 − 1) (𝑁 − 2) (𝑁 − 7)/24
0𝑁−31221 0 𝑁 (𝑁 − 1) (𝑁 − 2)/2 𝑁 (𝑁 − 2) (𝑁 − 4)/3
0𝑁−222 0 𝑁 (𝑁 − 1)/2
0𝑁−21131 0 𝑁 (𝑁 − 1)
0𝑁−141 0 𝑁

|𝜇𝑛exc | 1 2 4 7 12
|𝜆𝑛exc | 1 2 3 5 7

𝝀 = 𝝁 when applicable.

as illustrated in table 5.1. Because of the latter, the number of possible spectral configurations

within a given manifold is

|𝜇𝑛exc | =
𝑛exc∑︁
𝑛=0

𝑝(𝑛), (5.15)

where 𝑝(𝑛) is the number of partitions of the integer 𝑛. These numbers can be extracted from the

expansion [183]
𝑚∏
𝑘=1

(
1 − 𝑥𝑘

)−1
=

𝑚∑︁
𝑛=0

𝑝(𝑛)𝑥𝑛 +O
(
𝑥𝑚+1

)
. (5.16)

Since the emitters are considered as identical, 𝐻 (𝑁) is invariant under the action of the

symmetric group of degree 𝑁 , 𝑆𝑁 , whose elements are the 𝑁! possible permutations of labels of

the emitters. In other words, for all permutations 𝜋 ∈ 𝑆𝑁 ,
[
𝐻 (𝑁), 𝜋

]
= 0.

The permutation operators act on the BEs according to

𝜋 |𝑛exc, 𝜇; 𝑦〉 = |𝑛exc, 𝜇; 𝑦
′〉 , (5.17)

88



which means that BEs with common 𝑛exc and 𝜇 can be used to form a representation of 𝑆𝑁 . For

instance,

𝜋() = |11〉 〈11 | + |12〉 〈12 | + |13〉 〈13 | , (5.18)

𝜋(12) = |11〉 〈12 | + |12〉 〈11 | + |13〉 〈13 | , (5.19)

𝜋(23) = |11〉 〈11 | + |12〉 〈13 | + |13〉 〈12 | , (5.20)

𝜋(31) = |11〉 〈13 | + |12〉 〈12 | + |13〉 〈11 | , (5.21)

𝜋(123) = |11〉 〈13 | + |12〉 〈11 | + |13〉 〈12 | , (5.22)

𝜋(132) = |11〉 〈12 | + |12〉 〈13 | + |13〉 〈11 | , (5.23)

are the six elements of 𝑆3 in the basis of PBEs with 𝜇 = 11.

The representations of 𝑆𝑁 identified with a partition 𝝁 are, in general, reducible; they

receive the name of permutation modules and are denoted by 𝑀 𝝁 [184]. The dimension of this

representation is the number of BEs with the same 𝝁, i.e.,

dim(𝑀 𝝁) = 𝑁!
𝑟+1∏
𝑖=1

𝜇𝑖!

. (5.24)

The permutation modules can, in turn, be decomposed in irreducible representations

(irreps) according to Young’s rule [185]:

𝑀 𝝁 =
⊕
𝝀D𝝁

𝐾𝝀𝝁𝑆
𝝀, (5.25)

where 𝑆𝝀 symbolizes the irreps, also known as Specht modules [186].

The direct sum in eq. (5.25) runs over all partitions 𝝀 of 𝑁 that dominate (denoted by the
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symbol D) over 𝝁, i.e., they fulfill [185]

𝑗∑︁
𝑖=1

𝜆𝑖 ≥
𝑗∑︁
𝑖=1

𝜇𝑖 1 ≤ 𝑗 ≤ 𝑟. (5.26)

For instance, consider the spectral configurations in the triply excited manifold: 0𝑁 , 0𝑁−111,

0𝑁−212, 0𝑁−121, 0𝑁−313, 0𝑁−21121, and 0𝑁−131. Since they correspond to the same regular

partition, the spectral configurations 0𝑁−111, 0𝑁−121 and 0𝑁−131 have identical permutational

properties. Let us identify how each partition relates to [𝑁 − 2, 1, 1] in terms of dominance.

Following eq. (5.26), it is possible to conclude that

[𝑁] D [𝑁 − 2, 1, 1],

[𝑁 − 1, 1] D [𝑁 − 2, 1, 1],

[𝑁 − 2, 2] D [𝑁 − 2, 1, 1],

[𝑁 − 3, 3] 4 [𝑁 − 2, 1, 1],

[𝑁 − 2, 1, 1] D [𝑁 − 2, 1, 1] . (5.27)

The coefficients 𝐾𝝀𝝁 in eq. (5.25) are known as Kostka numbers [187]; they indicate the

number of times a permutation module contains a Specht module. While obtaining a closed

analytical expression to calculate them remains an open problem [188,189], these coefficients

can be found through their combinatorial interpretation: the number of semi-standard Young

tableaux (SSYT) of shape 𝝀 and content 𝝁 [185]. A Young diagram (YD) of size 𝑁 and shape 𝝁

is a collection of 𝑁 cells arranged in 𝑟 left-justified rows with 𝜇𝑖 cells on the 𝑖th row. The present

work uses the English notation, which is consistent with the regular form of the partitions (see

table 5.1 for selected examples). A SSYT of shape 𝝀 and content 𝝁 is obtained by filling in the

cells of a 𝝀-shaped YD with a collection of ordered symbols partitioned according to 𝝁 in such a

manner that the rows do not decrease to the right and the columns increase to the bottom [185].
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For instance, the SSYT of shape [𝑁 − 1, 1] and content [𝑁 − 2, 1, 1] are

0 0 . . . 0 1
2

and 0 0 . . . 0 2
1

; (5.28)

therefore, 𝐾[𝑁−1,1],[𝑁−2,1,1] = 2.

With the above definitions, it can be verified that the representation of 𝑆𝑁 in the basis of

all BEs with 𝜇 = 0𝑁−21121 fulfills

𝑀 [𝑁−2,1,1] = 𝑆 [𝑁] ⊕ 2𝑆 [𝑁−1,1] ⊕ 𝑆 [𝑁−2,2] ⊕ 𝑆 [𝑁−2,1,1] . (5.29)

The dimension of the Specht modules corresponds to the number of standard Young

tableaux (SYT) of shape 𝝀, i.e., the number of ways in which the sequence [1, 2, . . . , 𝑁] fills a

𝝀-shaped YD such that the entries increase across rows and columns [185]. For instance, the

SYTs for 𝝀 = [3, 2] are

1 2 3
4 5

,
1 2 4
3 5

,
1 2 5
3 4

,
1 3 4
2 5

, and 1 3 5
2 4

. (5.30)

This quantity is given by the hook-length formula [190]:

dim(𝑆𝝀) = 𝑁!
𝑁∏
𝑖=1

ℎ𝜆 (𝑖)
, (5.31)

where ℎ𝜆 (𝑖) represents the number of cells in the hook of the 𝑖th cell in the 𝝀-shaped YD, i.e. the

number of cells that are either directly below of, directly to the right of, or the 𝑖th cell itself. For
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example, for 𝝀 = [6, 4, 3, 2, 1], the hook of the cell with coordinates (2, 2) is

,

and the hook-lengths for each cell are

10 8 6 4 2 1
7 5 3 1
5 3 1
3 1
1

.

A direct result from Young’s rule is that

dim(𝑀 𝝁) =
∑︁
𝝀D𝝁

𝐾𝝀𝝁 dim(𝑆𝝀). (5.32)

The dimensions of the permutation and Specht modules for the spectral configurations found up

to 𝑛exc = 4 are displayed in table 5.2.

The irreps identify the smallest possible subspaces that remain excluded under permutations.

In other words, the space of BEs with the same 𝜇 can be split into sets of symmetry adapted linear

combinations of BEs (SABEs) labeled by 𝝀 for which

𝜋 |𝑛exc, 𝜇, 𝝀; y,w〉 = |𝑛exc, 𝜇, 𝝀; y
′,w〉 , (5.33)

for all 𝜋 ∈ 𝑆𝑛, where the label w has been added to acknowledge repetition of irreps, i.e., when

𝐾𝝀𝝁 > 1.
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Table 5.3: Examples of standard Young tableaux and their associated indices for 𝑁 = 6.

SYT 𝝀 y

1 2 3 4 5 6 [6] 0
1 2 3 4 5
6

[5, 1] 6

1 2 4 6
3 5

[4, 2] (3, 5)

1 2 4
3 5 6

[3, 3] (3, 5, 6)

1 2 5 6
3
4

[4, 1, 1] (3; 4)

1 3 4
2 5
6

[3, 2, 1] (2, 5; 6)

It is a well-known result from Representation Theory that

(
C𝑟+1

)⊗𝑁
�

⊕
𝝀`𝑁

(
𝑆𝝀 ⊗ 𝑉𝝀

𝑟+1

)
, (5.34)

where C𝑟+1 is the vector space spanned by the energy eigenstates of each molecule, and therefore(
C𝑟+1

)⊗𝑁 is the vector space spanned by the BEs. The symbol ` reads as partition of, and 𝑉𝝀
𝑟+1 is

a so-called weight-space; it corresponds to an irrep of the unitary group 𝑈 (𝑟 + 1). This result,

known as the Schur-Weyl duality [191, 192], implies that the SABEs are arranged in exclusive

subspaces, labeled by 𝝀, in which they are classified according to not only their behavior under

permutations, but also under unitary operators. Furthermore, the decomposition in eq. (5.34)

provides with the meaning of all the indices in eq. (5.33).

As previously discussed, the dimension of a Specht module corresponds with the number

of SYT of shape 𝝀, and the index y was used to enumerate them; therefore the indices 𝝀 and y

uniquely define a SYT. In what remains of this paper, the index y will encode the elements of the

Young tableaux after removal of the top row. See some examples in table 5.3. On the other hand,
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Table 5.4: Examples of semistandard Young tableaux and their associated indices for 𝑁 = 6 and
𝜇 = 031221.

SSYT 𝝀 w

0 0 0 1 1 2 [6] 0
0 0 0 1 2
1

[5, 1] 11

0 0 0 1 1
2

[5, 1] 21

0 0 0 1
1 2

[4, 2] 1121

0 0 0
1 1 2

[3, 3] 1221

0 0 0 1
1
2

[4, 1, 1] (11, 21)

0 0 0
1 1
2

[3, 2, 1] (12, 21)

the dimension of the irreps of 𝑈 (𝑟 + 1) correspond to the Kostka numbers. To be specific, the

elements of the weight space 𝑉𝝀
𝑟+1 can be enumerated with SSYT, and thus uniquely identified

with the indices 𝜇, 𝝀, and w. In the remaining of the present work, w will encode the elements of

the SSYT after removal of the top row. See some examples in table 5.4.

To gain some insight into the meaning of the irreps, let us consider the global groundstate

of the emitters, i.e., the state with 𝜇 = 0𝑁 . The only partition that dominates over [𝑁] is itself, and

there is a unique SSYT when the shape and content correspond to the same partition; therefore,

𝑀 [𝑁] = 𝑆 [𝑁] . These facts are consistent with the uniqueness of the state within each manifold

where all the excitations reside in the EM mode, which is denoted by
��𝑛exc, 0

𝑁 , [𝑁]; 0, 0
〉
.

Since
[
𝜋, 𝐽

(𝑢,𝑣)
+

]
= 0, the states |𝑛exc, 𝜇, 𝝀; y,w〉 behave identically to 𝑎0𝐽𝑢,𝑣+ |𝑛exc, 𝜇, 𝝀; y,w〉

under permutations. This means that, even though the operator 𝑎0𝐽 (𝑢,𝑣)+ modifies the spectral

configuration, the states it couples carry the same irrep. Consequently

𝑎0𝐽
(𝑢,0)
+

��𝑛exc, 0
𝑁 , [𝑁]; 0, 0

〉
∝

��𝑛exc, 0
𝑁−1𝑢1, [𝑁]; 0, 0

〉
. (5.35)
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��2, 0𝑁 , [𝑁 ]; 0, 0
〉 ��2, 0𝑁−111 , [𝑁 ]; 0, 0

〉 ��2, 0𝑁−212 , [𝑁 ]; 0, 0
〉

��2, 0𝑁−111 , [𝑁 − 1, 1]; 𝑘, 11
〉 ��2, 0𝑁−212 , [𝑁 − 1, 1]; 𝑘, 11

〉
��2, 0𝑁−121 , [𝑁 ]; 0, 0

〉 ��2, 0𝑁−212 , [𝑁 − 2, 2]; (𝑘′, ℓ) , 12
〉

��2, 0𝑁−121 , [𝑁 − 1, 1]; 𝑘, 21
〉

𝑎0𝐽
(1,0)
+ 𝑎0𝐽

(1,0)
+

𝑎0𝐽
(1,0)
+𝑎0𝐽

(2,1)
+

𝑎0𝐽
(2,1)
+

GS

GS

GS

Figure 5.1: Diagram of the relations between SABEs in the doubly excited manifold. GS
denotes Gram-Schmidt orthogonalization, 2 ≤ 𝑘 ≤ 𝑁 , 2 ≤ 𝑘 ′ < ℓ, and 4 ≤ ℓ ≤ 𝑁 .

However, 𝑀 [𝑁−1,1] = 𝑆 [𝑁] ⊕ 𝑆 [𝑁−1,1] , which means that the remaining SABEs with 𝜇 = 0𝑁−1𝑢1

carry the irrep with 𝝀 = [𝑁 − 1, 1]. These states,
��𝑛exc, 0

𝑁−1𝑢1, [𝑁 − 1, 1]; 𝑘, 11
〉

with 1 ≤ 𝑘 ≤

𝑁 − 1, can be obtained through Gram-Schmidt orthogonalization over the basis of PBEs but with��𝑛exc, 0
𝑁−1𝑢1, [𝑁]; 0, 0

〉
replacing one of the states and remaining fixed as seed of the procedure.

The structure of the doubly excited manifold can be understood in terms of this procedure as

illustrated in fig. 5.1. 5.4.1 provides with operators that allow to write the part of the emitters of

all the SABEs present up to the triply excited manifold.

To exemplify how these concepts unfold, let us return to the representation in eq. (5.18).

Starting from the state
��1, 03, [3]; 0, 0〉, the action of the operator 𝑎0𝐽 (1,0)+ yields

��1, 0211, [3]; 0, 0〉 = 1
√
3
( |11〉 + |12〉 + |13〉) . (5.36)

The remaining two SABEs with 𝜇 = 0211 are

��1, 0211, [2, 1]; 2, 11〉 = |11〉 − |12〉√
2

, (5.37a)

95



and

��1, 0211, [2, 1]; 3, 11〉 = |11〉 + |12〉 − 2 |13〉√
6

. (5.37b)

The permutation operators in this basis are

𝜋() = | [3]; 0〉 〈[3]; 0| + | [2, 1]; 2〉 〈[2, 1]; 2| + | [2, 1]; 3〉 〈[2, 1]; 3| , (5.38)

𝜋(12) = | [3]; 0〉 〈[3]; 0| − | [2, 1]; 2〉 〈[2, 1]; 2| + | [2, 1]; 3〉 〈[2, 1]; 3| , (5.39)

𝜋(23) = | [3]; 0〉 〈[3]; 0| + 1
2 ( | [2, 1]; 2〉 〈[2, 1]; 2| − | [2, 1]; 3〉 〈[2, 1]; 3|)

+
√
3
2 ( | [2, 1]; 2〉 〈[2, 1]; 3| + | [2, 1]; 3〉 〈[2, 1]; 2|) , (5.40)

𝜋(31) = | [3]; 0〉 〈[3]; 0| + 1
2 ( | [2, 1]; 2〉 〈[2, 1]; 2| − | [2, 1]; 3〉 〈[2, 1]; 3|)

−
√
3
2 ( | [2, 1]; 2〉 〈[2, 1]; 3| + | [2, 1]; 3〉 〈[2, 1]; 2|) , (5.41)

𝜋(123) = | [3]; 0〉 〈[3]; 0| − 1
2 ( | [2, 1]; 2〉 〈[2, 1]; 2| + | [2, 1]; 3〉 〈[2, 1]; 3|)

−
√
3
2 ( | [2, 1]; 2〉 〈[2, 1]; 3| − | [2, 1]; 3〉 〈[2, 1]; 2|) , (5.42)

𝜋(132) = | [3]; 0〉 〈[3]; 0| − 1
2 ( | [2, 1]; 2〉 〈[2, 1]; 2| + | [2, 1]; 3〉 〈[2, 1]; 3|)

+
√
3
2 ( | [2, 1]; 2〉 〈[2, 1]; 3| − | [2, 1]; 3〉 〈[2, 1]; 2|) . (5.43)

where the notation was simplified by making implicit the common indices 𝑛exc = 1 and 𝜇 = 0211,

as well as by omitting the label w. As it can be seen in eq. (5.38), the permutation operators have

two clear independent subspaces labeled by [3] and [2, 1], respectively.

The spectral configurations, 𝜇, giving rise to partitions that are valid labels, 𝝀, for the

irreps fulfill

𝑛𝜇 (𝑣) ≥ 𝑛𝜇 (𝑣′) ∀𝑣, 𝑣′ : 𝑣′ > 𝑣 > 0; (5.44)

this constraint produces the so-called partitions with weakly decreasing multiplicities [193]. The
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enumeration of these partitions imply that the total number of irreps in the 𝑛excth manifold is

|𝜆𝑛exc | =
𝑛exc∑︁
𝑛=0

𝑞(𝑛), (5.45)

where 𝑞(𝑛) is the number of partitions of 𝑛 with weakly decreasing multiplicities as illustrated in

table 5.2. These numbers can be extracted from the expansion [182,183]

𝑚∏
𝑘=2

(
1 − 𝑥(

𝑘
2)

)−1
=

𝑚∑︁
𝑛=0

𝑞(𝑛)𝑥𝑛 +O
(
𝑥𝑚+1

)
. (5.46)

The main result of this section is that the Hamiltonians of the excitation manifolds can be

split according to

𝐻𝑛exc (𝑁) =
|𝜆𝑛exc |∑︁
𝑖=1

𝐻
(𝝀𝑖)
𝑛exc , (5.47)

where

𝐻
(𝝀)
𝑛exc =

dim(𝑆𝝀)∑︁
𝑗=1

𝐻
(𝝀,y 𝑗)
𝑛exc , (5.48)

with each 𝐻 (𝝀,y)
𝑛exc encoding the energies and interactions of spectral configurations with the same

symmetry. Equation eq. (5.48) implies that the states obtained from diagonalizing 𝐻 (𝝀)
𝑛exc are

dim(𝑆𝝀)-fold degenerate. In particular, for the diagonal part of the Hamiltonian, we have

𝐻
(𝝀)
bare,𝑛exc

=
∑︁
𝜇:𝝁E𝝀

dim(𝑆𝝀)∑︁
𝑖=1

𝐾𝝀𝝁∑︁
𝑗=1

𝜀
(𝜇)
𝑛exc

��𝑛exc, 𝜇, 𝝀; y𝑖,w 𝑗

〉 〈
𝑛exc, 𝜇, 𝝀; y𝑖,w 𝑗

�� , (5.49)

Notice that

dim
(
𝐻

(𝝀,𝑦)
𝑛exc

)
=

∑︁
𝝁E𝝀

𝐾𝝀𝝁 . (5.50)

The simplification achieved with this strategy is significant since, for each excitation manifold,
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the problem has been reduced to the diagonalization of |𝜆𝑛exc | ∼ exp
(
𝐴𝑛

1/3
exc

)
matrices with

dimensions in the neighborhood of |𝜇𝑛exc | ∼ exp
(√
𝐶𝑛exc

)
[194], both independent of 𝑁 , which is

a substantial gain over the original
(𝑁+𝑛exc
𝑛exc

)
-dimensional matrices.

A complete discussion of the structure of the Hamiltonians requires to include the couplings

between spectral configurations induced by collective excitations; these will be explored in the

next section.

5.4 Collective couplings.

Having determined the SABEs, the matrix elements of the interaction Hamiltonian are

〈
𝑛′exc, 𝜇

′, 𝝀′; y′,w′��𝐻int(𝑁) |𝑛exc, 𝜇, 𝝀; y,w〉

= 𝑔𝜇′𝜇𝐵
(𝑛exc)
𝜇′,𝜇 𝐿

(𝝀)
𝜇′,𝜇𝐶

(𝝀)
𝜇′,𝜇 (w

′,w)𝛿𝑛′exc𝑛exc𝛿𝝀′𝝀𝛿y′y. (5.51)

The notation in 5.51 highlights the fact that transitions in the EM mode produce changes in the

spectral configuration. It can be shown that, for a given manifold, the number of pairings {𝜇′, 𝜇}

afforded by photonic (de)excitations is

𝑛int(𝑛exc) =
𝑛exc−1∑︁
𝑖=1

(
𝑛exc − 𝑖 + 2

𝑖 + 1

)
. (5.52)

The first factor at the right-hand-side of eq. (5.51) is given by

𝑔𝜇′,𝜇 = 𝑔𝑣∗+𝑠,𝑣∗𝛿 |𝑠 |,1𝛿𝑛𝜇′ (𝑣∗),𝑛𝜇 (𝑣∗)−1𝛿𝑛𝜇′ (𝑣∗+𝑠),𝑛𝜇 (𝑣∗+𝑠)+1, (5.53)

where 𝑠 =
∑𝑛exc
𝑣=1 𝑣 [𝑛𝜇′ (𝑣) − 𝑛𝜇 (𝑣)], with 𝑣∗ and 𝑣∗ + 𝑠 labeling the energy levels coupled by the
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matrix element, i.e., the relevant operator acting on the emitters is 𝐽 (𝑣
∗+𝑠,𝑣∗)

+ . The coefficient

𝐵
(𝑛exc)
𝜇′,𝜇 =

(
𝑣
(𝑛exc,𝜇)
0 + 𝛿𝑠,−1

)1/2
, (5.54)

accounts for the (de)excitation of the EM mode.

To describe the redistribution of quanta among the emitters, let’s define the operators

𝐽
(𝜇′,𝜇)
𝑟 = 𝐽

(𝑣∗+𝑠,𝑣∗)
𝑟 , (5.55)

where 𝑟 ∈ {−, 0, +}, which generate the 𝔰𝔲(2) algebra with Casimir operator

Ĵ2𝜇′,𝜇 =
(
𝐽
(𝜇′,𝜇)
0

)2
+ 1

2

(
𝐽
(𝜇′,𝜇)
+ 𝐽 (𝜇

′,𝜇)
− + 𝐽 (𝜇′,𝜇)− 𝐽

(𝜇′,𝜇)
+

)
. (5.56)

These operators allow the definition of the quantities

𝑀𝜇′,𝜇 = 〈𝜇 | 𝐽 (𝜇
′,𝜇)

0 |𝜇〉 (5.57)

and

𝐽
(𝝀)
𝜇′,𝜇

(
𝐽
(𝝀)
𝜇′,𝜇 + 1

)
= 〈𝜇, 𝝀 | Ĵ2𝜇′,𝜇 |𝜇, 𝝀〉 , (5.58)

where the explicit labels in bras and kets are the only relevant ones in the calculation of the

indicated matrix elements as pointed out in the study of two-level systems, where the SABEs are

known as Dicke states, and 𝐽 (𝝀)
𝜇′,𝜇 as the Dicke cooperation number [110]. To be specific

𝑀𝜇′,𝜇 =
𝑛𝜇 (𝑣∗ + 𝑠) − 𝑛𝜇 (𝑣∗)

2
, (5.59)
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and

𝐽
(𝝀)
𝜇′,𝜇 =max

𝜇′′

(
〈𝜇′′, 𝝀 | 𝐽 (𝜇

′,𝜇)
0 |𝜇′′, 𝝀〉

)
. (5.60)

According to the prescription of quantum angular momentum, the contribution of collective

(de)excitations to the coupling between states is given by

𝐿
(𝝀)
𝜇′,𝜇 =

[(
𝐽
(𝝀)
𝜇′,𝜇 + 𝑀𝜇′,𝜇

) (
𝐽
(𝝀)
𝜇′,𝜇 − 𝑀𝜇,𝜇′

)]1/2
. (5.61)

Couplings are said to be superradiant if 𝐿 (𝝀)
𝜇′,𝜇 > 1, and subradiant if 𝐿 (𝝀)

𝜇′,𝜇 < 1 [110]. Section 5.4.2

shows a couple of neat ways to calculate these coefficients.

The last component of eq. (5.51), the coefficient 𝐶 (𝝀)
𝜇′,𝜇 (w

′,w), acknowledges the fact

that, since
[
𝐽
(𝑣′,𝑣)
+ , 𝐽

(𝑢′,𝑢)
+

]
∝ 1 − 𝛿𝑢𝑣𝛿𝑢′𝑣′, two strings of the same raising operators applied in

different order to a SABE will not, in general, produce the same state. This situation creates an

ambiguity when 𝐻 (𝝀,y)
𝑛exc requires more than one function with the same 𝜇, i,e, when 𝐾𝝀𝝁 > 1;

otherwise, 𝐶 (𝝀)
𝜇′,𝜇 (w

′,w) = 1. For instance, consider the state
��3, 0𝑁−111, [𝑁 − 1, 1]; 2, 1

〉
=

( |2011〉 − |2012〉)/
√
2, and apply to it consecutive excitations to get to a state with 𝜇 = 0𝑁−21121.

There are two possible paths:

|2011〉 − |2012〉√
2

𝑎0𝐽
(1,0)
+−−−−−−→

𝑁∑︁
𝑖=3

|10111𝑖〉 − |10121𝑖〉√︁
2(𝑁 − 2)

𝑎0𝐽
(2,1)
+−−−−−−→

𝑁∑︁
𝑖=3

|211𝑖〉 − |221𝑖〉 + |112𝑖〉 − |122𝑖〉
2
√
𝑁 − 2

, (5.62a)

and

|2011〉 − |2012〉√
2

𝑎0𝐽
(2,1)
+−−−−−−→|1021〉 − |1022〉√

2
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𝑎0𝐽
(1,0)
+−−−−−−→ 1√︁

2(𝑁 − 1)

[
|2112〉 − |1122〉 +

𝑁∑︁
𝑖=3

( |211𝑖〉 − |221𝑖〉)
]
. (5.62b)

While the identifications

��3, 0𝑁−212, [𝑁 − 1, 1]; 2, 1
〉
=

𝑁∑︁
𝑖=3

|10111𝑖〉 − |10121𝑖〉√︁
2(𝑁 − 2)

, (5.63)��3, 0𝑁−121, [𝑁 − 1, 1]; 2, 1
〉
=
|1021〉 − |1022〉√

2
(5.64)

are immediate, the assignment of
��3, 0𝑁−21121, [𝑁 − 1, 1]; 2, 1

〉
and

��3, 0𝑁−21121, [𝑁 − 1, 1]; 2, 2
〉

is unclear since the two obtained states are linearly independent yet not mutually orthogonal.

Bypassing this ambiguity requires the definition of an orthonormal basis spanned by the previous

states, then the coefficients can be extracted from the identity

𝐿
(𝝀)
𝜇′𝜇𝐶

(𝝀)
𝜇′𝜇 (w

′,w) = 〈𝜇, 𝝀; y,w| 𝐽 (𝜇′,𝜇)− |𝜇′, 𝝀; y,w′〉 . (5.65)

For instance, let’s set

|𝐴〉 =
𝑁∑︁
𝑖=3

|211𝑖〉 − |221𝑖〉 + |112𝑖〉 − |122𝑖〉
2
√
𝑁 − 2

, (5.66)

and

|𝑋〉 =
|2112〉 − |1122〉 +

∑𝑁
𝑖=3( |211𝑖〉 − |221𝑖〉)√︁

2(𝑁 − 1)
, (5.67)

and compute their orthogonal complements:

|𝐵〉 = 𝐼 − |𝐴〉 〈𝐴|(
1 − |〈𝑋 |𝐴〉|2

)1/2 |𝑋〉 , (5.68)
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Table 5.5: Coefficients of projected couplings involving 𝜇′ = 0𝑁−21121 for repeated irreps with
𝝀 = [𝑁 − 1, 1].

|3, 𝜇′, 𝝀; 2, 1〉 |3, 𝜇′, 𝝀; 2, 2〉 𝜇 𝐶
(𝝀)
𝜇′,𝜇 (1

1, 11) 𝐶
(𝝀)
𝜇′,𝜇 (1

1, 21)

|𝐴〉 |𝐵〉 0𝑁−212 1 0
0𝑁−121 〈𝑋 |𝐴〉 〈𝑋 |𝐵〉

|𝑋〉 |𝑌〉 0𝑁−212 〈𝐴|𝑋〉 〈𝐴|𝑌〉
0𝑁−121 1 0

and

|𝑌〉 = 𝐼 − |𝑋〉 〈𝑋 |(
1 − |〈𝑋 |𝐴〉|2

)1/2 |𝐴〉 , (5.69)

where 𝐼 is the identity operator. The values of the coefficients calculated with both working

basis are shown in table 5.5. Since the bare energies, 𝜀(𝜇)𝑛exc , are independent of the index w, and∑𝐾𝝀𝝁′

𝑡 ′=1

���𝐶 (𝝀)
𝜇′𝜇 (w

′,w)
���2 = 1, the choice of basis is immaterial for the eigenvalues of 𝐻 (𝝀,y)

𝑛exc .

In summary, the full symmetrized blocks of the interaction Hamiltonian are given by

𝐻
(𝝀,y)
int,𝑛exc

=∑︁
𝜇:𝝁E𝝀

∑︁
𝜇′:𝝁′E𝝀

𝐾𝝀𝝁∑︁
𝑖=1

𝐾𝝀𝝁′∑︁
𝑖′=1

𝑔𝜇′𝜇𝐵
(𝑛exc)
𝜇′,𝜇 𝐿

(𝝀)
𝜇′,𝜇𝐶

(𝝀)
𝜇′,𝜇 (w

′
𝑖′,w𝑖)

��𝑛exc, 𝜇
′, 𝝀; y,w′

𝑖′
〉
〈𝑛exc, 𝜇, 𝝀; y,w𝑖 | . (5.70)

5.4.1 Schur-Weyl basis.

The SABEs obtained through application of the collective excitations, 𝐽 (𝑢,𝑣)+ , and Gram-

Schmidt orthogonalization have been discussed in the literature under the name of Schur-Weyl

states [173, 195–197], or Gelfand-Tsetlin states [198–201]. Although not necessary for the

block-diagonalization of the Hamiltonian, an illustration of the explicit form of the symmetrized

states in terms of the PBEs might be useful for the reader. Since symmetrization only affects the

portion of the Hilbert space concerning the emitters, the quantum number 𝑛exc, as well as the
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operators acting on the photonic mode, 𝑎 (†)0 , are not included in the following discussion, i.e., the

SABEs are denoted by |𝜇, 𝝀; y,w〉.

If the explicit form of the SABE in terms of PBEs is known, the application of collective

excitation operators gives a straightforward result. For instance, the ground-state and some of its

collective excitations are

��0𝑁 , [𝑁]; 0, 0〉 = |0〉 , (5.71a)��0𝑁−1𝑣1, [𝑁]; 0, 0〉 = 1
√
𝑁

𝑁∑︁
𝑖=1

|𝑣𝑖〉 , (5.71b)

��0𝑁−2𝑣2, [𝑁]; 0, 0〉 =(
𝑁

2

)−1/2 𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

��𝑣𝑖𝑣 𝑗 〉 , (5.71c)

��0𝑁−3𝑣3, [𝑁]; 0, 0〉 =(
𝑁

3

)−1/2 𝑁−2∑︁
𝑖=1

𝑁−1∑︁
𝑗=𝑖+1

𝑁∑︁
𝑘= 𝑗+1

��𝑣𝑖𝑣 𝑗𝑣𝑘〉 , (5.71d)

��0𝑁−2𝑢1𝑣1, [𝑁]; 0, 0〉 = 1√︁
𝑁 (𝑁 − 1)

𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

(��𝑢𝑖𝑣 𝑗 〉 + ��𝑣𝑖𝑢 𝑗 〉) , (5.71e)

where 𝝀 = [𝑁] and y = 0 indicate the SYT 1 2 . . . 𝑁 . This tableau implies that the wavefunction

must be invariant under any permutation of all the labels. Since all emitters are in the same state

in the collective ground-state, this condition is met by default. The linear combinations of the

excited spectral configurations are thus totally symmetric.

The states with spectral configuration such that 𝝁 = 𝝀 cannot be generated through

excitation operators, and thus require a orthogonalization strategy. Since these states are highly

degenerate, the change of basis is not unique; however, there is an approach that highlights

the meaning of the label y. For a 1D array (𝑖1, 𝑖2, . . . , 𝑖𝑛), let’s define the vandermonde matrix

V̂(𝑖1, 𝑖2, . . . , 𝑖𝑛) with elements

[
V̂(𝑖1, 𝑖2, . . . , 𝑖𝑛)

]
𝛼,𝛽

= 𝜎̂
(𝛽)
𝛼−1,0. (5.72)
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A given SYT can be associated to Young operators of the form

𝑌 (𝝀, y) =
∑︁
𝜓

𝜆1∏
𝑗=1

det
(
V̂(col 𝑗 [y′𝜓])

)
, (5.73)

where col 𝑗 (A) extracts the 𝑗 th column of array A, and y′
𝜓

is any permutation of the elements in

each row of y that produces downwards increasing columns. For instance, the SYT

y′1 =
1 3 4
2 5
6

, (5.74)

generates the arrays

y′2 =
1 3 4
2 5
6

, (5.75a)

y′3 =
1 3 4
2 5

6
, (5.75b)

y′4 =
1 3 4
2 5

6
. (5.75c)

And the corresponding operator is

𝑌 ( [3, 2, 1], (2, 5; 6)) = det
(
V̂(1, 2, 6)

)
det

(
V̂(3, 5)

)
det

(
V̂(4)

)
+ det

(
V̂(1, 2, 6)

)
det

(
V̂(3)

)
det

(
V̂(4, 5)

)
+ det

(
V̂(1, 2)

)
det

(
V̂(3, 5, 6)

)
det

(
V̂(4)

)
+ det

(
V̂(1, 2)

)
det

(
V̂(3)

)
det

(
V̂(4, 5, 6)

)
(5.76)

If 𝝁 = 𝝀, the wavefunction |𝜇, 𝝀; y,w〉 is proportional to 𝑌 (𝝀, y)
��0𝑁 , [𝑁]; 0, 0〉. Notice

that the constraint 𝝁 = 𝝀 uniquely defines a SSYT, and therefore a w.

The states orthogonal to
��0𝑁−111, [𝑁]; 0, 0〉 with the same 𝜇 can be written as
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��0𝑁−111, [𝑁 − 1, 1]; 𝑘, 11
〉
, with 2 ≤ 𝑘 ≤ 𝑁 . The corresponding SYT are

1 2 . . . 𝑘−1 𝑘+1 . . . 𝑁

𝑘
,

which have associated Young operators of the form

𝑌 ( [𝑁 − 1, 1], 𝑘) =
𝑘−1∑︁
𝑖=1

𝑖−1∏
𝑗=1

𝜎̂
( 𝑗)
0,0 ·

�������𝜎̂
(𝑖)
0,0 𝜎̂

(𝑘)
0,0

𝜎̂
(𝑖)
1,0 𝜎̂

(𝑘)
1,0

������� ·
𝑁∏

𝑗 ′=𝑖+1
𝜎̂

( 𝑗 ′)
0,0 . (5.77)

Therefore, the corresponding SABEs are

��0𝑁−111, [𝑁 − 1, 1]; 𝑘, 11
〉
=

1√︁
𝑘 (𝑘 − 1)

(
−
𝑘−1∑︁
𝑖=1

|1𝑖〉 + (𝑘 − 1) |1𝑘〉
)
. (5.78)

The functions
��0𝑁−1𝑣1, [𝑁 − 1, 1]; 𝑘, 𝑣1

〉
for 𝑣 > 1 have an equivalent form. Furthermore, the

action of the collective excitation 𝐽 (1,0)+ yields

��0𝑁−212, [𝑁 − 1, 1]; 𝑘, 11
〉
=

1√︁
(𝑁 − 2) 𝑘 (𝑘 − 1)


𝑘−1∑︁
𝑖=1

(𝑘 − 2) |1𝑖1𝑘〉 −
𝑁∑︁

𝑗=𝑘+1

��1𝑖1 𝑗 〉
+ (𝑘 − 1)

𝑁∑︁
𝑖=𝑘+1

|1𝑘1𝑖〉 − 2
𝑘−2∑︁
𝑖=1

𝑘−1∑︁
𝑗=𝑖+1

��1𝑖1 𝑗 〉} (5.79)

Following the same reasoning, the remaining states with 𝜇 = 0𝑁−212 that are orthogonal
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to all the states above are

��0𝑁−212, [𝑁 − 2, 2]; (𝑘, ℓ), 12
〉
=

1√︁
𝑘 (𝑘 − 1) (ℓ − 2) (ℓ − 3)

{
2
𝑘−2∑︁
𝑖=1

𝑘−1∑︁
𝑗=𝑖+1

��1𝑖1 𝑗 〉
− (𝑘 − 2)

𝑘−1∑︁
𝑖=1

|1𝑖1𝑘〉 −
ℓ−1∑︁
𝑗=𝑘+1

[
(𝑘 − 1)

��1𝑘1 𝑗 〉 − 𝑘−1∑︁
𝑖=1

��1𝑖1 𝑗 〉]
+(ℓ − 3)

[
(𝑘 − 1) |1𝑘1ℓ〉 −

𝑘−1∑︁
𝑖=1

|1𝑖1ℓ〉
]}

(5.80)

Tables 5.6 and 5.7 show the excitation operators, 𝑂{𝜇, 𝝀; y,w} that produce the states

with the same labels when applied to the global groundstate of the emitters, i.e.

𝑂{𝜇, 𝝀; y,w} |0〉 = N −2 |𝜇, 𝝀; y,w〉 . (5.81)

The nested structure of the operators responds to the fact that the higher states are obtained through

either collective excitations, or Gram-Schmidt orthogonalization of the lower ones.

5.4.2 Efficient calculation of 𝐿 (𝝀)
𝜇′,𝜇

In this section, we present two approaches, one analytical and other computational, to the

calculation of the contribution of the collective transitions in the Hilbert space of the emitters to

the couplings between states in eq. (5.51).

First, we introduce a by-hand method to compute individual instances of eq. (5.61). Taking

advantage of the fact that 𝑛𝜇 (𝑣∗ + 𝑠) + 𝑛𝜇 (𝑣∗) = 𝑛𝜇′ (𝑣∗ + 𝑠) + 𝑛𝜇′ (𝑣∗), we can write

𝐿
(𝝀)
𝜇′𝜇 =

{[
𝑛𝜇 (𝑣∗) − 𝜌𝐽

] [
𝑛𝜇′ (𝑣∗ + 𝑠) − 𝜌𝐽

]}1/2
, (5.82)

where 𝜌𝐽 = [𝑛𝜇 (𝑣∗ + 𝑠) + 𝑛𝜇 (𝑣∗)]/2 − 𝐽 (𝝀)𝜇′𝜇. When 𝜌𝐽 = 0, which is a typical situation among low
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excitation manifolds, the term inside the radical has an intuitive interpretation since it can be read

as the product of the number of emitters in 𝜇 available for excitation with the number of emitters

in 𝜇′ available for deexcitation. Furthermore, 𝜌𝐽 increases as 𝝀 becomes less dominant, i.e., strays

away from [𝑁]; this provides with an automatic way to determine the symmetry labels for which a

given coupling is worth to calculate. table 5.8 illustrates this calculation for the couplings between

𝜇 = 0𝑁−212 and 𝜇′ = 0𝑁−313.

Second, we discuss a computational method to get not only multiple values of the sought

coefficients, but also the SABEs connected by a particular raising operator. Given that

𝐽
(𝜇′,𝜇)
+ |𝜇, 𝝀; y,w〉 = 𝐿 (𝝀)

𝜇′,𝜇𝐶
(𝝀)
𝜇′,𝜇 (w

′,w) |𝜇′, 𝝀; y,w′〉 , (5.83)

it is possible to write

𝐽
(𝜇′,𝜇)
+ =

∑︁
𝝀D𝝁′

dim(𝑆𝝀)∑︁
𝑖=1

𝐾𝝀𝝁′∑︁
𝑗 ′=1

𝐾𝝀𝝁∑︁
𝑗=1

𝐿
(𝝀)
𝜇′,𝜇𝐶

(𝝀)
𝜇′,𝜇 (w

′,w)
���𝜇′, 𝝀; y𝑖,w′

𝑗 ′

〉 〈
𝜇, 𝝀; y𝑖,w 𝑗

�� , (5.84)

and define

𝑈𝜇 =
∑︁
𝝀D𝝁

dim(𝑆𝝀)∑︁
𝑖=1

𝐾𝝀𝝁∑︁
𝑗=1

��𝜇, 𝝀; y𝑖,w 𝑗

〉 〈
𝜇, 𝝀; y𝑖,w 𝑗

�� . (5.85)

The latter implies that, if the raising operator is written in the basis of the PBEs, the coefficients

𝐿
(𝝀)
𝜇′,𝜇𝐶

(𝝀)
𝜇′,𝜇 (w

′,w) are its singular values, while the unitary operators 𝑈𝜇′ and 𝑈𝜇 correspond

to the matrices of singular vectors, which provide with the changes of basis between PBEs

and SABEs. In short, singular value decomposition of 𝐽 (𝜇
′,𝜇)

+ in an arbitrary basis yields the

coupling coefficients as well as the symmetrized states in the subspaces of functions with the

spectral configurations involved in the transition. The apparent contradiction in eq. (5.84) that

there are symmetry labels such that 𝝀 D 𝝁′ yet 𝝀 4 𝝁 is solved by recognizing the set of states

{|𝜇′, 𝜆; 𝑦, 𝑡′〉 : 𝝀 4 𝝁} as the null-space of the raising operator, i.e., 𝐿 (𝝀4𝝁)
𝜇′,𝜇 = 0. This feature is

consistent with the fact that dim(𝑀 𝝁′) > dim(𝑀 𝝁).

107



Ta
bl

e
5.

6:
SA

BE
si

n
te

rm
so

fP
BE

sf
or

sp
ec

tra
lc

on
fig

ur
at

io
ns

w
ith

at
m

os
tt

hr
ee

ex
ci

ta
tio

ns
in

th
e

em
itt

er
s.

𝜇
𝝀

y
w

𝑂
{𝜇

,
𝝀
;
y
,
w
}

N
−2

N
ot

es

0
𝑁

[𝑁
]

0
0

1
1

0
𝑁

−1
𝑣
1

[𝑁
]

0
0

𝑁 ∑︁ 𝑖=
1

𝜎
(𝑖
)

𝑣
,0

𝑁
𝑣
∈
{1

,
2
,
3
}

[𝑁
−
1
,
1
]

𝑘
𝑣
1

(𝑘
−
1
)𝜎

(𝑘
)

𝑣
,0

−
𝑂
{0

𝑘
−2

1
1
,
[𝑘

−
1
];
0
,
0
}

𝑘
(𝑘

−
1
)

2
≤
𝑘
≤

𝑁

0
𝑁

−2
1
2

[𝑁
]

0
0

2

𝑁
−1 ∑︁ 𝑖=
1

𝑁 ∑︁
𝑗=
𝑖+

1

𝜎
(𝑖
)

1
,0
𝜎

(𝑗
)

1
,0

2
𝑁
(𝑁

−
1
)

[𝑁
−
1
,
1
]

𝑘
1
1

(𝑘
−
2
)𝜎

(𝑘
)

1
,0
𝑂
{0

𝑘
−2

1
1
,
[𝑘

−
1
];
0
,
1
}−

𝑂
{0

𝑘
−3

1
2
,
[𝑘

−
1
];
0
,
0
}

+
𝑁 ∑︁

𝑗=
𝑘
+1

𝜎
(𝑗
)

1
,0
𝑂
{0

𝑘
−1

1
1
,
[𝑘

−
1
,
1
];
𝑘
,
1
1
}

𝑘
(𝑘

−
1
)(
𝑁

−
2
)

2
≤
𝑘
≤

𝑁

[𝑁
−
2
,
2
]

(𝑘
,
ℓ
)

1
2

(ℓ
−
3
)𝜎

(ℓ
)

1
,0
𝑂
{0

𝑘
−1

1
1
,
[𝑘

−
1
,
1
];
𝑘
,
1
1
}−

𝑂
{0

ℓ
−3

1
2
,
[ℓ

−
2
,
1
];
𝑘
,
1
1
}

𝑘
(𝑘

−
1
)(
ℓ
−
2
)(
ℓ
−
3
)

4
≤
ℓ
≤

𝑁
2
≤
𝑘
<
ℓ

0
𝑁

−3
1
3

[𝑁
]

0
0

6

𝑁
−2 ∑︁ ℎ
=
1

𝑁
−1 ∑︁

𝑖=
ℎ
+1

𝑁 ∑︁
𝑗=
𝑖+

1

𝜎
(ℎ

)
1
,0

𝜎
(𝑖
)

1
,0
𝜎

(𝑗
)

1
,0

6
𝑁
(𝑁

−
1
)(
𝑁

−
2
)

[𝑁
−
1
,
1
]

𝑘
1
1

(𝑘
−
3
)𝜎

(𝑘
)

1
,0
𝑂
{0

𝑘
−3

1
2
,
[𝑘

−
1
];
0
,
0
}−

𝑂
{0

𝑘
−4

1
3
,
[𝑘

−
1
];
0
,
0
}

+2
𝑁 ∑︁

ℎ
=
𝑘
+1

𝜎
(ℎ

)
1
,0

[ (𝑘
−
2
)𝜎

(𝑘
)

1
,0
𝑂
{0

𝑘
−2

1
1
,
[𝑘

−
1
];
0
,
0
}−

𝑂
{0

𝑘
−3

1
2
,
[𝑘

−
1
];
0
,
0
}]

+
2

𝑁
−1 ∑︁

𝑗=
𝑘
+1

𝑁 ∑︁
ℎ
=
𝑗+

1

𝜎
(𝑗
)

1
,0
𝜎

(ℎ
)

1
,0
𝑂
{0

𝑘
−1

1
1
,
[𝑘

−
1
,
1
];
𝑘
,
1
1
}

2
𝑘
(𝑘

−
1
)𝑁

(𝑁
−
1
)

2
≤
𝑘
≤

𝑁

[𝑁
−
2
,
2
]

(𝑘
,
ℓ
)

1
2

(ℓ
−
4
)𝜎

(ℓ
)

1
,0
𝑂
{0

ℓ
−3

1
2
,
[ℓ

−
2
,
1
];
𝑘
,
1
}+

𝑁 ∑︁
ℎ
=
ℓ
+1

𝜎
(ℎ

)
1
,0
𝑂
{0

ℓ
−3

1
2
,
[ℓ

−
3
,
2
];
(𝑘

,
ℓ
),
1
2
}

−𝑂
{0

ℓ
−4

1
3
,
[ℓ

−
2
,
1
];
𝑘
,
1
1
}

𝑘
(𝑘

−
1
)(
ℓ
−
2
)(
ℓ
−
3
)(
𝑁

−
4
)

4
≤
ℓ
≤

𝑁
2
≤
𝑘
<
ℓ

[𝑁
−
3
,
3
]

(𝑘
,
ℓ
,
𝑚
)

1
3

(𝑚
−
5
)𝜎

(𝑚
)

1
,0

𝑂
{0

ℓ
−3

1
2
,
[ℓ

−
3
,
2
];
(𝑘

,
ℓ
),
1
2
}+

𝑂
{0

𝑚
−4

1
3
,
[𝑚

−
3
,
2
];
(𝑘

,
ℓ
),
1
2
}

𝑘
(𝑘

−
1
)(
ℓ
−
2
)(
ℓ
−
3
)(
𝑚

−
4
)(
𝑚

−
5
)

6
≤
𝑚

≤
𝑁

4
≤
ℓ
<
𝑚

2
≤
𝑘
<
ℓ

108



Ta
bl

e
5.

7:
SA

BE
si

n
te

rm
so

fP
BE

sw
ith

𝜇
=
0
𝑁
−2
1
1
2
1
.

𝜇
𝝀

y
w

𝑂
{𝜇

,
𝝀
;
y
,
w
}

N
−2

N
ot

es

0
𝑁

−2
1
1
2
1

[𝑁
]

0
0

2

𝑁
−1 ∑︁ 𝑖=
1

𝑁 ∑︁
𝑗=
𝑖+

1

( 𝜎
(𝑖
)

2
,0
𝜎

(𝑗
)

1
,0

+
𝜎

(𝑗
)

2
,0
𝜎

(𝑖
)

1
,0

)
4
𝑁
(𝑁

−
1
)

[𝑁
−
1
,
1
]

𝑘
1
1

(𝑘
−
2
)( 𝜎

(𝑘
)

2
,0
𝑂
{0

𝑘
−2

1
1
,
[𝑘

−
1
];
0
,
0
}+

𝜎
(𝑘

)
1
,0
𝑂
{0

𝑘
−2

2
1
,
[𝑘

−
1
];
0
,
0
})

−
𝑁 ∑︁

𝑗=
𝑘
+1

( 𝜎
(𝑗
)

1
,0
𝑂
{0

𝑘
−2

2
1
,
[𝑘

−
1
];
0
,
0
}+

𝜎
(𝑗
)

2
,0
𝑂
{0

𝑘
−2

1
1
,
[𝑘

−
1
];
0
,
0
})

+
(𝑘

−
1
)

𝑁 ∑︁
𝑗=

𝑘
+1

( 𝜎
(𝑘

)
2
,0

𝜎
(𝑗
)

1
,0

+
𝜎

(𝑘
)

1
,0

𝜎
(𝑗
)

2
,0

) −
𝑂
{0

𝑘
−3

1
1
2
1
,
[𝑘

−
1
],
0
,
0
}

2
𝑘
(𝑘

−
1
)(
𝑁

−
2
)

2
≤
𝑘
≤

𝑁

2
1

𝑘

( 𝜎
(𝑘

)
2
,0
𝑂
{0

𝑘
−2

1
1
,
[𝑘

−
1
];
0
,
0
}−

𝜎
(𝑘

)
1
,0
𝑂
{0

𝑘
−2

2
1
,
[𝑘

−
1
];
0
,
0
})

+
𝑁 ∑︁

𝑗=
𝑘
+1

( 𝜎
(𝑗
)

2
,0
𝑂
{0

𝑘
−2

1
1
,
[𝑘

−
1
];
0
,
0
}−

𝜎
(𝑗
)

1
,0
𝑂
{0

𝑘
−2

2
1
,
[𝑘

−
1
];
0
,
0
})

+
(𝑘

−
1
)

𝑁 ∑︁
𝑗=

𝑘
+1

( 𝜎
(𝑘

)
2
,0

𝜎
(𝑗
)

1
,0

+
𝜎

(𝑘
)

1
,0

𝜎
(𝑗
)

2
,0

)
2
𝑘
(𝑘

−
1
)𝑁

2
≤
𝑘
≤

𝑁

[𝑁
−
2
,
2
]

(𝑘
,
ℓ
)

1
1
2
1

(ℓ
−
3
)( 𝜎

(ℓ
)

1
,0
𝑂
{0

𝑘
−1

2
1
,
[𝑘

−
1
,
1
];
𝑘
,
2
1
}+

𝜎
(ℓ
)

2
,0
𝑂
{0

𝑘
−1

1
1
,
[𝑘

−
1
,
1
];
𝑘
,
1
1
})

−𝑂
{0

ℓ
−3

1
1
2
1
,
[ℓ

−
2
,
1
];
𝑘
,
1
1
}

2
𝑘
(𝑘

−
1
)(
ℓ
−
2
)(
ℓ
−
3
)

4
≤
ℓ
≤

𝑁
2
≤
𝑘
<
ℓ

[𝑁
−
2
,
1
,
1
]

(𝑘
;
ℓ
)

(1
1
,
2
1
)

(ℓ
−
2
)( 𝜎

(𝑘
)

2
,0

𝜎
(ℓ
)

1
,0

+
𝜎

(𝑘
)

1
,0

𝜎
(ℓ
)

2
,0

) +
ℓ
−1 ∑︁

𝑖=
𝑘
+1

[( 𝜎
(𝑘

)
2
,0

−
𝜎

(ℓ
)

2
,0

) 𝜎
(𝑖
)

1
,0

+
( 𝜎

(ℓ
)

1
,0

−
𝜎

(𝑘
)

1
,0

) 𝜎
(𝑖
)

2
,0

]
+

( 𝜎
(𝑘

)
2
,0

−
𝜎

(ℓ
)

2
,0

) 𝑂
{0

𝑘
−1

1
1
,
[𝑘

−
1
];
0
,
0
}+

( 𝜎
(ℓ
)

1
,0

−
𝜎

(𝑘
)

1
,0

) 𝑂
{0

𝑘
−1

2
1
,
[𝑘

−
1
];
0
,
0
}

2
ℓ
(ℓ

−
1
)

3
≤
ℓ
≤

𝑁
2
≤
𝑘
<
ℓ

109



Table 5.8: Contribution of transitions in emitter space to the coupling coefficients between
𝜇 = 0𝑁−212 and 𝜇′ = 0𝑁−313. Notice that 𝑛𝜇 (0) = 𝑁 − 2 and 𝑛𝜇′ (1) = 3.

𝝀 𝐽
(𝝀)
0𝑁−313,0𝑁−212

𝜌𝐽 𝐿
(𝝀)
0𝑁−313,0𝑁−212

[𝑁] 𝑁
2 0

√︁
3(𝑁 − 2)

[𝑁 − 1, 1] 𝑁
2 − 1 1

√︁
2(𝑁 − 3)

[𝑁 − 2, 2] 𝑁
2 − 2 2

√
𝑁 − 4

[𝑁 − 3, 3] 𝑁
2 − 3 3 0

To conclude, we work the example of the coupling, in a system with 𝑁 = 4, between

𝜇 = 0311 and 𝜇′ = 0212. The subspaces and couplings are given by

©­­­­­­­­«

|11〉

|12〉

|13〉

|14〉

ª®®®®®®®®¬
𝐽
(1,0)
+−−−−⇀↽−−−−
𝐽
(1,0)
−

©­­­­­­­­­­­­­­­«

|1112〉

|1113〉

|1114〉

|1213〉

|1214〉

|1314〉

ª®®®®®®®®®®®®®®®¬

(5.86)

In this basis, the raising operator is

J(0
212,0311)

+ =

©­­­­­­­­­­­­­­­«

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

ª®®®®®®®®®®®®®®®¬

. (5.87)
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Its singular value decomposition yields

U0311 =
1

2

©­­­­­­­­«

1 −
√
3 0 0

1 1√
3

−
√︃

8
3 0

1 1√
3

√︃
2
3 −

√
2

1 1√
3

√︃
2
3

√
2

ª®®®®®®®®¬
, (5.88)

U0212 =
1
√
6

©­­­­­­­­­­­­­­­«

1 −1 −
√
2 0 − 1√

2

√︃
3
2

1 −1 1√
2

−
√︃

3
2

√
2 0

1 −1 1√
2

√︃
3
2 − 1√

2
−
√︃

3
2

1 1 − 1√
2

−
√︃

3
2 − 1√

2
−
√︃

3
2

1 1 − 1√
2

√︃
3
2

√
2 0

1 1
√
2 0 − 1√

2

√︃
3
2

ª®®®®®®®®®®®®®®®¬

, (5.89)

S0
212

0311
=

©­­­­­­­­­­­­­­­«

√
6 0 0 0

0
√
2 0 0

0 0
√
2 0

0 0 0
√
2

0 0 0 0

0 0 0 0

ª®®®®®®®®®®®®®®®¬

, (5.90)

where S𝜇
′

𝜇
= U†

𝜇′J
(𝜇′,𝜇)
+ U𝜇 is the matrix whose diagonal lists the singular values of J(𝜇

′,𝜇)
+ . Notice

that these values correspond with the expected
√︁
2(𝑁 − 1) and

√
𝑁 − 2 with degeneracy degrees

of 1 and 𝑁 − 1 respectively; furthermore, the null-space has dimension 𝑁 (𝑁 − 3)/2.

5.5 Algorithm for Hamiltonian separation

In this section we lay out the specific steps to write the block diagonalized Hamiltonian of

a given excitation manifold.
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1. Define 𝑛exc, the manifold.

2. List all relevant 𝜇, the spectral configurations.

(a) Enumerate all the partitions, 𝝂 = [𝑣1, 𝑣2, . . . , 𝑣𝑘 ], of integers from 0 to 𝑛exc. These

must amount to |𝜇𝑛exc | as calculated with eq. (5.15) and eq. (5.16).

(b) Gather the unique elements in each partition and their corresponding multiplicities.

These are the excited levels, 1 ≤ 𝑣 ≤ 𝑟, and their populations, 𝑛𝜇 (𝑣), respectively.

(c) Write the spectral configurations according to eq. (5.10), taking into account that

𝑛𝜇 (0) =


𝑁 if 𝝂 = [0]

𝑁 − 𝑘 otherwise
. (5.91)

3. Calculate all the relevant bare energies, 𝜀(𝜇)𝑛exc , with eq. (5.12).

4. List all the allowed 𝝀, the symmetry defining partitions.

(a) Enumerate the spectral configurations as 𝝁, i.e., as partitions in regular form.

(b) Discard redundancies. The remaining partitions are the possible 𝝀. Their number

must add up to |𝜆𝑛exc | as calculated with eq. (5.45) and eq. (5.46).

5. Determine the composition of each 𝜇 in terms of 𝝀 according to Young’s rule [ eq. (5.25)].

(a) Find out the dominance relations among partitions according to Eq eq. (5.26).

(b) Compute the pertinent Kostka numbers (𝐾𝝀𝝁).

6. Write the diagonal of 𝐻 (𝝀)
𝑛exc .

(a) Write the diagonal of 𝐻 (𝝀,1)
𝑛exc .

i. Identify all the 𝜇 to which 𝝀 contributes.
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ii. Collect the bare energies with the 𝜇 identified above and list each of them 𝐾𝝀𝝁

times.

(b) Calculate the dimension of the representation, dim(𝑆𝝀), according to the hook-length

formula eq. (5.31).

(c) By following

H(𝝀)
𝑛exc = 1dim(𝑆𝝀) ⊗ H(𝝀,1)

𝑛exc , (5.92)

register the blocks of the Hamiltonian.

7. Calculate the couplings.

(a) Among the available spectral configurations, determine all pairings {𝜇′, 𝜇} such that�����𝑛exc∑︁
𝑣=1

𝑣
[
𝑛𝜇′ (𝑣) − 𝑛𝜇 (𝑣)

] ����� = 1. (5.93)

The number of pairings inside a given manifold must be 𝑛int(𝑛exc) as calculated with

eq. (5.52).

(b) For each pair

i. Identify the the levels involved in the transition, 𝑣∗ and 𝑣∗ + 𝑠, as well as the

respective transition dipole moment, and calculate 𝑔𝜇′,𝜇 with eq. (5.53).

ii. Compute the contribution from the transition in the EM mode, 𝐵𝑛exc
𝜇′,𝜇, with

eq. (5.54).

(c) Write the off-diagonal terms of 𝐻 (𝝀,1)
𝑛exc . For each pair {𝜇′, 𝜇} within each block of

symmetry 𝝀:

i. Evaluate the contributions from the transition in the space of emitters, 𝐿 (𝝀)
𝜇′,𝜇,

according to eq. (5.61). This can be accomplished by brute-force computation of

eq. (5.59) and eq. (5.60), or with the strategies described in Appendix 5.4.2.
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Table 5.9: Relevant partitions, spectral configurations, excitations in the EM mode, bare energies,
and module dimensions calculated in the block diagonalization of 𝐻3(𝑁).

𝑛 𝑝 (𝑛) 𝝂 𝜇 𝑣
(3,𝜇)
0 𝜀

(𝜇)
3 𝝁 𝑞 (𝑛) 𝝀 dim(𝑆𝝀 )

0 1 [0] 0𝑁 3 7
2 ℏ𝜔 + 𝑁 𝜀0 [𝑁 ] 1 [𝑁 ] 1

1 1 [1] 0𝑁−111 2 5
2 ℏ𝜔 + (𝑁 − 1) 𝜀0 + 𝜀1 [𝑁 − 1, 1] 1 [𝑁 − 1, 1] 𝑁 − 1

2 2 [2] 0𝑁−121 1 3
2 ℏ𝜔 + (𝑁 − 1) 𝜀0 + 𝜀2 [𝑁 − 1, 1] 1 - -

[1, 1] 0𝑁−212 1 3
2 ℏ𝜔 + (𝑁 − 2) 𝜀0 + 2𝜀1 [𝑁 − 2, 2] [𝑁 − 2, 2] 𝑁 (𝑁 − 3)/2

3 3 [3] 0𝑁−131 0 ℏ𝜔
2 + (𝑁 − 1) 𝜀0 + 𝜀3 [𝑁 − 1, 1] 2 - -

[2, 1] 0𝑁−21121 0 ℏ𝜔
2 + (𝑁 − 2) 𝜀0 + 𝜀1 + 𝜀2 [𝑁 − 2, 1, 1] [𝑁 − 2, 1, 1] (𝑁 − 1) (𝑁 − 2)/2

[1, 1, 1] 0𝑁−313 0 ℏ𝜔
2 + (𝑁 − 3) 𝜀0 + 3𝜀1 [𝑁 − 3, 3] [𝑁 − 3, 3] 𝑁 (𝑁 − 1) (𝑁 − 5)/6

|𝜇3 | = 7 |𝜆3 | = 5

ii. If 𝐾𝝀𝝁′ > 1

A. Construct SABEs, |𝑛exc, 𝜇𝑖, 𝝀; y1,w1〉, for all 𝜇𝑖 connected to 𝜇′ in a conve-

nient basis.

B. Apply 𝐽𝜇
′,𝜇𝑖

+ to generate a basis.

C. Orthogonalize the basis.

D. Apply 𝐽𝜇′,𝜇𝑖− to the elements of the basis and extract the quantities

𝐿
(𝝀)
𝜇′𝜇𝐶

(𝝀)
𝜇′𝜇 (w

′,w) using eq. (5.65).

iii. Calculate the coupling matrix element according to eq. (5.51).

8. Collect the calculated couplings in their respective blocks.

5.6 Worked examples

5.6.1 The triply excited manifold

In this section we illustrate the implementation of the algorithm when dealing with the

system when it holds three quanta, i.e., 𝑛exc = 3.

table 5.9 compiles the quantities computed according to steps 1 − 4 of the algorithm in the

previous section, as well as the dimensions of the irreps in step 6.b.

In table 5.10, we show the Kostka numbers that indicate the composition of the spaces

spanned by wavefunctions with the same 𝜇 in terms of symmetrized subspaces labeled by 𝝀.
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Table 5.10: Kostka numbers, 𝐾𝝀𝝁, relating the permutation and Specht modules that appear in
the triply excited manifold.

𝝁
𝝀 [𝑁] [𝑁 − 1, 1] [𝑁 − 2, 2] [𝑁 − 2, 1, 1] [𝑁 − 3, 3]
[𝑁] 1 1 1 1 1

[𝑁 − 1, 1] 0 1 1 2 1
[𝑁 − 2, 2] 0 0 1 1 1
[𝑁 − 2, 1, 1] 0 0 0 1 0
[𝑁 − 3, 3] 0 0 0 0 1

Notice that 𝐾𝝀𝝁 = 0 implies that 𝝀 4 𝝁.

The factors required to calculate the off-diagonal elements, as prescribed by step 7, up

until 7.c.i, are on display in table 5.11. Step 7.c.ii was worked in detail in the discussion leading

to table 5.5. What is left to this section are the explicit forms of the overlaps:

〈𝑋 |𝐴〉 =
(
𝑁 − 2

2(𝑁 − 1)

)1/2
,

and

〈𝑋 |𝐵〉 =
(

𝑁

2(𝑁 − 1)

)1/2
= 〈𝐴|𝑌〉 .

With all these elements, the Hopfield-Bogoliubov forms of the block-diagonalized
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Table 5.11: Energy levels involved and contributions from transitions in the EM and emitter
modes to the couplings between spectral configurations in the triply excited manifold.

𝜇 𝜇′ 𝑣∗ 𝑣∗ + 𝑠 𝐵
(3)
𝜇′,𝜇 𝐿

[𝑁]
𝜇′,𝜇 𝐿

[𝑁−1,1]
𝜇′,𝜇 𝐿

[𝑁−2,2]
𝜇′,𝜇

0𝑁 0𝑁−111 0 1
√
3

√
𝑁

0𝑁−111 0𝑁−212 0 1
√
2

√︁
2(𝑁 − 1)

√
𝑁 − 2

0𝑁−111 0𝑁−121 1 2
√
2 1 1

0𝑁−212 0𝑁−313 0 1 1
√︁
3(𝑁 − 2)

√︁
2(𝑁 − 3)

√
𝑁 − 4

0𝑁−212 0𝑁−21121 1 2 1
√
2

√
2

√
2

0𝑁−121 0𝑁−21121 0 1 1
√
𝑁 − 1

√
𝑁 − 1

0𝑁−121 0𝑁−331 2 3 1 1 1

Hamiltonian are

H[𝑁]
3 =

©­­­­­­­­­­­­­­­­­­­­­­­«

𝜀
(0𝑁 )
3

𝜀
(0𝑁−111 )
3

𝜀
(0𝑁−212 )
3

𝜀
(0𝑁−121 )
3

𝜀
(0𝑁−313 )
3

𝜀
(0𝑁−21121 )
3

𝜀
(0𝑁−131 )
3

𝑔 1
0

√ 3
𝑁

𝑔 1
0
2
√ 𝑁

− 1

𝑔21
√
2

𝑔 1
0

√︁ 3
(𝑁

− 2
)

𝑔21
√
2

𝑔 1
0

√ 𝑁
− 1

𝑔32

ª®®®®®®®®®®®®®®®®®®®®®®®¬

, (5.94a)
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H[𝑁−1,1]
3 =1𝑁−1 ⊗

©­­­­­­­­­­­­­­­­­­­­­­­­­«

𝜀
(0𝑁−111 )
3

𝜀
(0𝑁−212 )
3

𝜀
(0𝑁−313 )
3

𝜀
(0𝑁−121 )
3

𝜀
(0𝑁−21121 )
3

𝜀
(0𝑁−131 )
3

𝑔 1
0

√︁ 2
(𝑁

− 1
)

𝑔21
√
2

𝑔 1
0

√︁ 2
(𝑁

− 2
)

𝑔21
√
2

𝑔 1
0

√︃ 𝑁 2
− 1

𝑔 1
0

√︃ 𝑁 2

𝑔32

ª®®®®®®®®®®®®®®®®®®®®®®®®®¬

, (5.94b)

H[𝑁−2,2]
3 =1𝑁 (𝑁−3)/2 ⊗

©­­­­­­­­­«

𝜀
(0𝑁−212 )
3

𝜀
(0𝑁−313 )
3

𝜀
(0𝑁−21121 )
3

𝑔 1
0

√︁ 2
(𝑁

− 2
)

𝑔21
√
2

ª®®®®®®®®®¬
, (5.94c)

H[𝑁−3,3]
3 =1𝑁 (𝑁−1) (𝑁−5)/6 ⊗

(
𝜀
(0𝑁−313)
3

)
, (5.94d)

and

H[𝑁−2,1,1]
3 =1(𝑁−1) (𝑁−2)/2 ⊗

(
𝜀
(0𝑁−21121)
3

)
, (5.94e)

where 1𝑛 is the 𝑛×𝑛 identity matrix. The matrices above are displayed in a diagrammatic form such

that the horizontal lines represent energy levels, and therefore their labels correspond to diagonal

elements, while the double-headed arrows indicate the couplings with their labels corresponding

to off-diagonal matrix elements. In constructing eq. (5.94b), the couplings involving the states

with 𝜇 = 0𝑁−21121 were worked out with the basis {|𝐴〉 , |𝐵〉}.

In the case of the totally symmetric subspace, we can recognize a ladder of four super-

radiantly coupled levels, corresponding to the Dicke states. These are weakly connected to a
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two-level superradiant interaction between the SABEs with one excitation in 𝑣 = 2. In turn,

this interaction connects weakly with the remaining SABE in which the third excited state is

populated. For the 𝑁 − 1-degenerate subspace with 𝝀 = [𝑁 − 1, 1], the superradiantly connected

Dicke states form a three-level system in Ξ configuration. They weakly couple to a Λ three-level

system produced by the degeneracy introduced by the two-fold contribution of 𝜇 = 0𝑁−21121

to this symmetry. As in the case above, the remaining SABE interacts only weakly with this

array. For the symmetry 𝝀 = [𝑁 − 2, 2] the subspace corresponds to a three-level system with

configuration Λ and degeneracy degree of 𝑁 (𝑁 − 3)/2. However, only one of the couplings is

superradiant while the other is weak. The remaining subspaces with symmetries [𝑁 − 3, 3] and

[𝑁 − 2, 1, 1] are dark, and therefore there are no interactions among the states with degeneracy

degrees 𝑁 (𝑁 − 1) (𝑁 − 5)/6 and (𝑁 − 1) (𝑁 − 2)/2, respectively.

5.6.2 Matrices for lower manifolds

Finally, we present the Hopfield Bogoliubov form of the Hamiltonian operators for

0 ≤ 𝑛exc ≤ 2. Their properties have been exhaustively discussed elsewhere.

H[𝑁]
0 =

(
𝜀
(0𝑁 )
0

)
, (5.95)

H[𝑁]
1 =

©­­«
𝜀
(0𝑁 )
1 𝑔10

√
𝑁

𝑔01
√
𝑁 𝜀

(0𝑁−111)
1

ª®®¬ , (5.96a)

H[𝑁−1,1]
1 =1𝑁−1 ⊗

(
𝜀
(0𝑁−111)
1

)
, (5.96b)
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H[𝑁]
2 =

©­­­­­­­­«

𝜀
(0𝑁 )
2 𝑔10

√
2𝑁 0 0

𝑔01
√
2𝑁 𝜀

(0𝑁−111)
2 𝑔10

√︁
2(𝑁 − 1) 𝑔21

0 𝑔01
√︁
2(𝑁 − 1) 𝜀

(0𝑁−212)
2 0

0 𝑔12 0 𝜀
(0𝑁−121)
2

ª®®®®®®®®¬
, (5.97a)

H[𝑁−1,1]
2 =1𝑁−1 ⊗

©­­­­­«
𝜀
(0𝑁−111)
2 𝑔10

√
𝑁 − 2 𝑔21

𝑔01
√
𝑁 − 2 𝜀

(0𝑁−212)
2 0

𝑔12 0 𝜀
(0𝑁−121)
2

ª®®®®®¬
(5.97b)

H[𝑁−2,2]
2 =1𝑁 (𝑁−3)/2 ⊗

(
𝜀0

𝑁−212

2

)
. (5.97c)

5.7 Properties of eigenstates.

To showcase the usefulness of the formalism, in this section, we analyze the behavior

of the energy spectrum and photon content of the eigenstates as a function of parameters in the

Hamiltonian, such as anharmonicity, intensity of coupling and detuning.

In the harmonic case, we can define

𝑎𝑖 = 𝜎̂
(𝑖)
𝑣−1,𝑣 𝑣 > 0, (5.98)

and the eigenstates can be represented as excitations of the polariton modes:

|𝑣(UP)𝑣(LP)𝑣(D1) . . . 𝑣(D𝑁−1)〉 = (𝑎†+)𝑣(UP) (𝑎†−)𝑣(LP)
𝑁−1∏
𝑘=1

(𝑎D(𝑘))𝑣(D𝑘 ) |0〉 , (5.99)

where

𝑎
†
± =

1
√
2Ω10

(
±
√︁
Ω10 ± Δ𝑎

†
0 +

√︂
Ω10 ∓ Δ

𝑁

𝑁∑︁
𝑖=1

𝑎
†
𝑖

)
, (5.100a)
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𝑎D(𝑘) =
1
√
𝑘

(
√
𝑘 − 1𝑎†

𝑘
− 1
√
𝑘 − 1

𝑘−1∑︁
𝑖=1

𝑎
†
𝑖

)
. (5.100b)

The quantities Δ = 𝜔 − (𝜀1 − 𝜀0)/ℏ, and Ω10 = [Δ2 + 4(𝑔10/ℏ)2𝑁]1/2 are the detunning and Rabi

frequency, respectively, and the labels UP, LP and D stand for upper, lower and dark polaritons,

respectively.

When anharmonicity is considered, the excitations in the polaritonic modes are no longer

good quantum numbers; however, the actual eigenstates are similar enough to those in the harmonic

case that the labels introduced in eq. (5.99) can still be consistent with some of the features

displayed by these states. We introduce anharmonicities by considering the emitters as Morse

oscillators [93], i.e., the single-emitter Hamiltonians include a potential energy function of the

form

𝑉 (𝑅) = 𝐷𝑒

(
1 − e−𝑎(𝑅−𝑅𝑒)

)2
, (5.101)

where 𝑅 is the mass-scaled length of the oscillator with value at equilibrium 𝑅𝑒,𝐷𝑒 = 𝑉 (∞)−𝑉 (𝑅𝑒)

is the dissociation energy, and

𝑎2 =
1

2𝐷𝑒

𝑑2𝑉 (𝑅)
𝑑𝑅2

����
𝑅𝑒

. (5.102)

The corresponding eigenenergies are given by

𝜀𝑣 = ℏ𝑎

(
𝑣 + 1

2

) [√︁
2𝐷𝑒 −

ℏ𝑎

2

(
𝑣 + 1

2

)]
𝜀𝑣 ≤ 𝐷𝑒, (5.103)

with the implication that the number of bound-states is b𝑟MOc, where

𝑟MO =

√
2𝐷𝑒

ℏ𝑎
− 1

2
; (5.104)

therefore, the potential becomes harmonic as 𝐷𝑒 → ∞ (𝑎 → 0) [202]. This model introduces

a mechanical anharmonicity characterized by −𝑎2, as well as an electric anharmonicity, which
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stems from the fact that

𝑔MO
𝑣+1,𝑣

𝑔HO
𝑣+1,𝑣

=
2

2(𝑟MO − 𝑣) − 1

[
2

√
2𝐷𝑒

ℏ𝑎

(𝑟MO − 𝑣) (𝑟MO − 𝑣 − 1)
(2𝑟MO − 𝑣)

]1/2
, (5.105)

where the labels MO and HO indicate Morse and harmonic oscillators, respectively [203].

Figure 5.2 compares the eigenenergies as functions of the Rabi splitting, ℏΩ10 = 2𝑔10
√
𝑁 ,

of systems with different anharmonicities in which the frequency of the EM mode is resonant

with the transition 0 → 1 of the emitters. As expected, the slope of the energy as a function of the

coupling intensity is proportional to the number of quanta in the non-dark modes, with the sign of

the contribution being positive for UP, and negative for LP. The introduction of anharmonicity lifts

the degeneracy of states with multiple excitations in the dark modes, which has some remarkable

consequences.

In the harmonic case, the quantum numbers facilitate the identification of the symmetry

of a state just by inspection of its multiplicity. For instance, the state |3+〉 is unique in regards

of its spectral configuration; therefore, it belongs to 𝝀 = [𝑁]. On the other hand, states of

the form
��1+1−1D(𝑘)

〉
have multiplicity of 𝑁 − 1 and symmetry 𝝀 = [𝑁 − 1, 1]. Also, from

the (𝑁 − 1) (𝑁 − 2)/2 states of the form
��1−1D(𝑘)1D(𝑘 ′)

〉
, one has symmetry 𝝀 = [𝑁] while

the remaining 𝑁 (𝑁 − 3)/2 are of the 𝝀 = [𝑁 − 2, 2] kind. In contrast, when anharmonicities

are involved, the harmonic states of reference are those with the appropriate energetics. As

a consequence, a state with labels
��1+2D(𝑘)

〉
, which accounts for BEs with 𝜇 = 0𝑁−121, now

has symmetry 𝝀 = [𝑁] despite belonging to a multiplet of size 𝑁 − 1. The lift in degeneracy,

together with the diversity in slopes with which the eigenenergies depend on the coupling strength

generate situations in which the ordering of levels changes for different coupling intensities. This

might result in interesting spectroscopic observations for samples with different concentrations of

emitters.

In fig. 5.3 the energy of the eigenstates is plotted against the number of coupled molecules
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Figure 5.2: Energy spectra of emitters with various anharmonicities coupled to a harmonic EM
mode as a function of coupling intensity in the weak-to-strong regime. The parameters of the
Morse potential are such that the number of bound states, 𝑟MO, are ∞, 24 and 4, respectively, for
each of the displayed columns. The legend to the left shows the labels of states in the harmonic
case, while the legend to the right labels states in the anharmonic regime.
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Figure 5.3: Energy spectra of anharmonic emitters coupled to a harmonic EM mode with
illustrated degeneracies. The Morse potential parameters are 𝐷𝑒 = 15.25ℏ𝜔 and 𝑎2 = 0.034𝜔/ℏ.
The thickness of the lines are proportional to log[dim(𝑆𝝀)].

with the thickness of the lines illustrating the degeneracy of each energy level. In each case, the

thickness corresponds to log[dim(𝑆𝝀)] and should not be mistaken by any broadening mechanism

such as dissipation or disorder. It can be seen that both, degeneracy and energy separation,

increase with the number of molecules. Furthermore the most degenerate levels are those with

constant energy, which are presumably dark. This observation informs that light-matter coupling

might not impact processes that engage the matter component, such as chemical reactions, even

when anharmonicities are taken into account. Moreover, the resolution in energies also suggests

that naturally occurring broadenings shall smear the energy levels making them effectively

indistinguishable.

The formalism presented in this work also allows to calculate observables associated with

operators for which the permutational symmetry holds. One clear example is the photon number

operator, 𝑣0 = 𝑎
†
0𝑎0, which measures the photon contents of a given state. In the symmetrized
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Figure 5.4: Photon content of harmonic eigenstates as a function of detuning.

basis, this operator is diagonal and has the form

𝑣0 =
∑︁
𝜇:𝝁E𝝀

dim(𝑆𝝀)∑︁
𝑖=1

𝐾𝝀𝝁∑︁
𝑗=1

𝑣
(𝑛exc,𝜇)
0

��𝑛exc, 𝜇, 𝝀; y𝑖,w 𝑗

〉 〈
𝑛exc, 𝜇, 𝝀; y𝑖,w 𝑗

�� . (5.106)

In fig. 5.4 the photon content of the eigenstates is plotted as a function of the detunning for a fixed

value of the collective coupling. The inclusion of anharmonicity should be inconsequential except

for the change in the labeling of eigenstates.

5.8 Conclusions.

In this paper, we address the problem of the coupling between 𝑁 identical dipoles, each

with an arbitrary spectral structure, and a harmonic electromagnetic mode confined in a cavity.

We have introduced tools from Group Theory that capitalize from the permutational symmetry of

the system to simplify the Schrödinger equation. In the symmetry-adapted basis, the Hamiltonian

breaks down into manageable matrices whose dimension is independent of the number of emitters
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and grows only subexponentially with the number of excitations. And while the total number

of these matrices does depend polynomially on the number of emitters, they encode highly

degenerate subspaces; therefore, the effective number of matricses to diagonalize is actually small.

Since the method here presented does not rely on the explicit form of the basis transformation, the

off-diagonal matrix elements are constructed by taking advantage of the fact that the structure

of the Hilbert space also displays the symmetry of the special unitary group, and therefore

can be described with the tools from angular momentum theory. This procedure exhibits the

(super)radiant character of the transitions. We have also explored the immediate implications of

including anharmonicities on the energetic and combinatorial characterization of the eigenstates.

Finally, we have calculated the photon content of the eigenstates to exemplify the utility of the

method in the calculation of observables associated with symmetry-preserving operators.

Chapter 5, in full is currently being prepared for submission for publication of the material.

“Generalization of the Tavis-Cummings model for multi-level anharmonic systems”. Campos-

Gonzalez-Angulo, Jorge A.; Ribeiro, Raphael F.; Yuen-Zhou, Joel. The dissertation author was

the primary investigator and author of this material.
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Chapter 6

Conclusions and outlook.

This dissertation presents a review of the phenomenon of vibrational strong coupling

and explores its implications for chemical reactivity from a theoretical point of view. It is a

fact that the kinetics of several reactions have been observed to experience modification due

to resonant coupling to confined electromagnetic fields. Nevertheless, a simple analysis of

cavity quantum electrodynamics (CQED), the theory that successfully has helped to understand

the optical properties of coupled systems, suggests that such an effect should not be observed.

Even more elaborated arguments, including considerations of chemical dynamics, have been

put forward, exhibiting the incapability of the theory in its current state to explain the observed

phenomena [102]. Transition state theory (TST) is the main tool to explain the rates of reactions

in which cavity effects have been observed. Galego and collaborators [83, 84] formalized the

incorporation of CQED to TST in an attempt to explain the rate modifications. While they

presented changes in the energetic landscape of a single molecule, the consideration of more

realistic situations leads to conclude that their effort actually supports the idea that cavity-induced

modifications should not happen. This dissertation adapted their formalism to the language of

polaritons to simplify the understanding of the absence of resonant effects and illustrate how this

theory is incompatible with the experimental observations in the collective regime. A possible
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reason for the failure of TST to explain rate modifications is the fact that, as a classical theory,

it cannot incorporate the structure of the quantized energy spectrum of polaritons. In contrast,

the modification of Levich and Jortner to Marcus’ rate theory of electron transfer provides a

playground in which the insertion of polariton energies is straightforward. This dissertation

highlights that in this framing, it is possible to conceptualize rate modification in terms of the

opening of reaction channels with activation energies determined by the Rabi splitting that can

be more favored than the default channel. By being consistent with the polaritonic picture, this

approach relates the extent of the modification to the number of coupled reactants and finds its

maximal prominence in the neighborhood of the resonant condition. Although there are arguments

against the operativity of this line of reasoning in realistic situations [100], this approach has set

the basis for further approaches with a higher potential of success [101, 115]. In an attempt to

understand the implications of anharmonicities for VSC, beyond the single-molecule case [91],

this work presents how to address the quantum problem of an arbitrary number of identical

emitters coupled to a cavity mode. Given the large number of molecules required to observe

strong-light matter coupling, a brute-force approach to this problem cannot proceed since the

dimension of the Hilbert space renders the problem intractable. Conveniently, the permutational

symmetry introduced by the uniformity of the oscillators allows us to approach the problem

with group-theoretical tools that notably reduce its complexity. The present work discusses the

application of such tools to reduce the dimensionality of the problem and presents the method to

compute the symmetry dependent couplings for each excitation manifold. Once the problem has

been simplified, it is possible to obtain the energy spectrum and characterize the eigenstates in

their photon content and their similarities to polaritonic eigenstates. Since the only meaningful

observables with the considered characterizations are those that preserve permutational invariance,

the locality of an event such as a chemical reaction, which breaks this symmetry, makes it unlikely

that an anharmonic oscillator would remain as a part of the collective coupling while it transforms.

Through VSC and chemical reactivity, this experience leaves the lesson that there is still much to
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figure out about how to combine chemical dynamics and quantum optics. The consistent failure

of traditional theories to explain a confirmed phenomenon illustrates their limitations and the

need for innovative considerations that will hopefully be informed by the findings in this work.

Since classical theories at quasi-equilibrium had been arguably discarded, the next approaches

need to incorporate non-equilibrium considerations and possibly acknowledge more directly the

quantum spectrum of polariton modes.

128



Bibliography

[1] J. Jortner, R.D. Levine, and A. Pullman. Mode Selective Chemistry: Proceedings of the
Twenty-Fourth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in
Jerusalem, Israel, May 20–23, 1991. Jerusalem Symposia. Springer Netherlands, 2012.

[2] M. Shapiro and P. Brumer. Quantum Control of Molecular Processes. Wiley, 2012.

[3] Willis E. Lamb and Robert C. Retherford. Fine structure of the hydrogen atom by a
microwave method. Phys. Rev., 72:241–243, Aug 1947.

[4] E. M. Purcell. Proceedings of the american physical society. Phys. Rev., 69:674–674, Jun
1946.

[5] H. B. G. Casimir and D. Polder. The influence of retardation on the london-van der waals
forces. Phys. Rev., 73:360–372, Feb 1948.

[6] S. Haroche, J.M. Raimond, and Oxford University Press. Exploring the Quantum: Atoms,
Cavities, and Photons. Oxford Graduate Texts. OUP Oxford, 2006.

[7] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons and Atoms: Introduction
to Quantum Electrodynamics. Wiley, 1989.

[8] I. I. Rabi. On the process of space quantization. Phys. Rev., 49:324–328, Feb 1936.

[9] I. I. Rabi. Space quantization in a gyrating magnetic field. Phys. Rev., 51:652–654, Apr
1937.

[10] J. J. Hopfield. Theory of the Contribution of Excitons to the Complex Dielectric Constant
of Crystals. PR, 112(5):1555–1567, 1958.

[11] M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael. Normal-
mode splitting and linewidth averaging for two-state atoms in an optical cavity. Phys. Rev.
Lett., 63:240–243, Jul 1989.

[12] Kerry J. Vahala. Optical microcavities. Nature, 424(6950):839–846, 2003.

[13] A. Kavokin, J.J. Baumberg, G. Malpuech, and F.P. Laussy. Microcavities. Series on
Semiconductor Science and Technology. OUP Oxford, 2011.

129



[14] M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim. Quantum
plasmonics. Nature Physics, 9(6):329–340, 2013.

[15] S. M. Dutra and P. L. Knight. Spontaneous emission in a planar fabry-pérot microcavity.
Phys. Rev. A, 53:3587–3605, May 1996.

[16] Kyriacos Georgiou, Paolo Michetti, Lizhi Gai, Marco Cavazzini, Zhen Shen, and David G.
Lidzey. Control over energy transfer between fluorescent bodipy dyes in a strongly coupled
microcavity. ACS Photonics, 5(1):258–266, January 2018.

[17] D L Mills and E Burstein. Polaritons: the electromagnetic modes of media. Reports on
Progress in Physics, 37(7):817–926, jul 1974.

[18] Gregory H. Wannier. The structure of electronic excitation levels in insulating crystals.
Phys. Rev., 52:191–197, Aug 1937.

[19] J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh,
V. D. Kulakovskii, T. L. Reinecke, and A. Forchel. Strong coupling in a single quantum
dot-semiconductor microcavity system. Nature, 432(7014):197–200, 2004.

[20] A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. von Borczyskowski.
Scanning confocal optical microscopy and magnetic resonance on single defect centers.
Science, 276(5321):2012–2014, 1997.

[21] V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret. Quantum coherence with a
single cooper pair. Physica Scripta, T76(1):165, 1998.

[22] A. K. Geim and I. V. Grigorieva. Van der waals heterostructures. Nature, 499(7459):419–
425, 2013.

[23] V.M. Agranovich and G. Czajkowski. Excitations in Organic Solids. International Series
of Monogr. OUP Oxford, 2009.

[24] Paolo Michetti, Leonardo Mazza, and Giuseppe C. La Rocca. Strongly Coupled Organic
Microcavities, pages 39–68. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[25] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M.
Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood,
B. Deveaud, and Le Si Dang. Bose-einstein condensation of exciton polaritons. Nature,
443(7110):409–414, 2006.

[26] Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, S. M. Girvin, and R. J. Schoelkopf.
Cavity quantum electrodynamics for superconducting electrical circuits: An architecture
for quantum computation. Phys. Rev. A, 69:062320, Jun 2004.

[27] S. Kéna-Cohen and S. R. Forrest. Room-temperature polariton lasing in an organic
single-crystal microcavity. Nature Photonics, 4(6):371–375, 2010.

130



[28] Denis Sannikov, Timur Yagafarov, Kyriacos Georgiou, Anton Zasedatelev, Anton Baranikov,
Lizhi Gai, Zhen Shen, David Lidzey, and Pavlos Lagoudakis. Room temperature broadband
polariton lasing from a dye-filled microcavity. Advanced Optical Materials, 7(17):1900163,
2019.

[29] Fábio Barachati, Simone De Liberato, and S. Kéna-Cohen. Generation of rabi-frequency
radiation using exciton-polaritons. Phys. Rev. A, 92:033828, Sep 2015.

[30] Fábio Barachati, Janos Simon, Yulia A. Getmanenko, Stephen Barlow, Seth R. Marder,
and Stéphane Kéna-Cohen. Tunable third-harmonic generation from polaritons in the
ultrastrong coupling regime. ACS Photonics, 5(1):119–125, January 2018.

[31] T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen. Reversible switching of
ultrastrong light-molecule coupling. Phys. Rev. Lett., 106:196405, May 2011.

[32] E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet,
J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen. Conductivity in
organic semiconductors hybridized with the vacuum field. Nature Materials, 14(11):1123–
1129, 2015.

[33] Xiaolan Zhong, Thibault Chervy, Lei Zhang, Anoop Thomas, Jino George, Cyriaque Genet,
James A. Hutchison, and Thomas W. Ebbesen. Energy transfer between spatially separated
entangled molecules. Angewandte Chemie International Edition, 56(31):9034–9038, 2017.

[34] Luis A. Martínez-Martínez, Matthew Du, Raphael F. Ribeiro, Stéphane Kéna-Cohen, and
Joel Yuen-Zhou. Polariton-assisted singlet fission in acene aggregates. J. Phys. Chem.
Lett., 9(8):1951–1957, April 2018.

[35] Matthew Du, Luis A. Martínez-Martínez, Raphael F. Ribeiro, Zixuan Hu, Vinod M. Menon,
and Joel Yuen-Zhou. Theory for polariton-assisted remote energy transfer. Chem Sci,
9(32):6659–6669, 2018.

[36] Matthew Du, Raphael F. Ribeiro, and Joel Yuen-Zhou. Remote control of chemistry in
optical cavities. Chem, 5(5):1167 – 1181, 2019.

[37] Thomas W. Ebbesen. Hybrid Light-Matter States in a Molecular and Material Science
Perspective. Acc Chem Res, 49(11):2403–2412, Nov 2016.

[38] Raphael F. Ribeiro, Luis A. Martínez-Martínez, Matthew Du, Jorge Campos-Gonzalez-
Angulo, and Joel Yuen-Zhou. Polariton chemistry: controlling molecular dynamics with
optical cavities. Chem Sci, 9(30):6325–6339, 2018.

[39] Johannes Feist, Javier Galego, and Francisco J. Garcia-Vidal. Polaritonic Chemistry with
Organic Molecules. ACS Photonics, 5(1):205–216, January 2018.

[40] Johannes Flick, Nicholas Rivera, and Prineha Narang. Strong light-matter coupling in
quantum chemistry and quantum photonics. Nanophotonics, 7(9):1479, 2018.

131



[41] Stéphane Kéna-Cohen and Joel Yuen-Zhou. Polariton chemistry: Action in the dark. ACS
Cent. Sci., 5(3):386–388, March 2019.

[42] Felipe Herrera and Jeffrey Owrutsky. Molecular polaritons for controlling chemistry with
quantum optics. J. Chem. Phys., 152(10):100902, 2020.

[43] Kenji Hirai, James A. Hutchison, and Hiroshi Uji-i. Recent progress in vibropolaritonic
chemistry. ChemPlusChem, 85(9):1981–1988, 2020.

[44] James A. Hutchison, Tal Schwartz, Cyriaque Genet, Eloïse Devaux, and Thomas W.
Ebbesen. Modifying chemical landscapes by coupling to vacuum fields. Angewandte
Chemie International Edition, 51(7):1592–1596, 2012.

[45] Battulga Munkhbat, Martin Wersäll, Denis G. Baranov, Tomasz J. Antosiewicz, and Timur
Shegai. Suppression of photo-oxidation of organic chromophores by strong coupling to
plasmonic nanoantennas. Sci Adv, 4(7):eaas9552, July 2018.

[46] Kati Stranius, Manuel Hertzog, and Karl Börjesson. Selective manipulation of electronically
excited states through strong light-matter interactions. Nature Communications, 9(1):2273,
2018.

[47] Elad Eizner, Luis A. Martínez-Martínez, Joel Yuen-Zhou, and Stéphane Kéna-Cohen.
Inverting singlet and triplet excited states using strong light-matter coupling. Science
Advances, 5(12), 2019.

[48] Javier Galego, Francisco J. Garcia-Vidal, and Johannes Feist. Cavity-induced modifications
of molecular structure in the strong-coupling regime. Phys. Rev. X, 5:041022, Nov 2015.

[49] Felipe Herrera and Frank C. Spano. Cavity-controlled chemistry in molecular ensembles.
Phys Rev Lett, 116(23):238301, June 2016.

[50] Luis A. Martínez-Martínez, Raphael F. Ribeiro, Jorge Campos-González-Angulo, and
Joel Yuen-Zhou. Can ultrastrong coupling change ground-state chemical reactions? ACS
Photonics, 5(1):167–176, January 2018.

[51] Johannes Flick, Heiko Appel, Michael Ruggenthaler, and Angel Rubio. Cavity Born-
Oppenheimer approximation for correlated electron-nuclear-photon systems. J Chem
Theory Comput, 13(4):1616–1625, April 2017.

[52] Johannes Flick, Michael Ruggenthaler, Heiko Appel, and Angel Rubio. Atoms and
molecules in cavities, from weak to strong coupling in quantum-electrodynamics (qed)
chemistry. Proc. Natl. Acad. Sci. U.S.A., 114(12):3026–3034, 2017.

[53] Alexander Semenov and Abraham Nitzan. Electron transfer in confined electromagnetic
fields. J. Chem. Phys., 150(17):174122, June 2019.

132



[54] J. P. Long and B. S. Simpkins. Coherent coupling between a molecular vibration and
Fabry-Perot optical cavity to give hybridized states in the strong coupling limit. ACS
Photonics, 2(1):130–136, January 2015.

[55] A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen. Coherent
coupling of molecular resonators with a microcavity mode. Nat Commun, 6:5981, January
2015.

[56] Robrecht M. A. Vergauwe, Jino George, Thibault Chervy, James A. Hutchison, Atef
Shalabney, Vladimir Y. Torbeev, and Thomas W. Ebbesen. Quantum strong coupling with
protein vibrational modes. J. Phys. Chem. Lett., 7(20):4159–4164, October 2016.

[57] B. S. Simpkins, Kenan P. Fears, Walter J. Dressick, Bryan T. Spann, Adam D. Dunkelberger,
and Jeffrey C. Owrutsky. Spanning strong to weak normal mode coupling between
vibrational and fabry-pérot cavity modes through tuning of vibrational absorption strength.
ACS Photonics, 2(10):1460–1467, October 2015.

[58] Shaelyn R. Casey and Justin R. Sparks. Vibrational Strong Coupling of Organometallic
Complexes. The Journal of Physical Chemistry C, 120(49):28138–28143, 2016.

[59] Jino George, Atef Shalabney, James A. Hutchison, Cyriaque Genet, and Thomas W.
Ebbesen. Liquid-phase vibrational strong coupling. J. Phys. Chem. Lett., 6(6):1027–1031,
March 2015.

[60] J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman. Strong coupling of molecular and
mid-infrared perfect absorber resonances. IEEE Photonics Technology Letters, 24(1):31–33,
Jan 2012.

[61] Atef Shalabney, Jino George, Hidefumi Hiura, James A. Hutchison, Cyriaque Genet, Petra
Hellwig, and Thomas W. Ebbesen. Enhanced raman scattering from vibro-polariton hybrid
states. Angewandte Chemie International Edition, 54(27):7971–7975, 2015.

[62] Javier del Pino, Johannes Feist, and F. J. Garcia-Vidal. Signatures of vibrational strong
coupling in Raman scattering. J. Phys. Chem. C, 119(52):29132–29137, December 2015.

[63] Artem Strashko and Jonathan Keeling. Raman scattering with strongly coupled vibron-
polaritons. Phys Rev A, 94(2):023843, August 2016.

[64] Merav Muallem, Alexander Palatnik, Gilbert D. Nessim, and Yaakov R. Tischler. Strong
light-matter coupling and hybridization of molecular vibrations in a low-loss infrared
microcavity. J. Phys. Chem. Lett., 7(11):2002–2008, June 2016.

[65] Vivian F. Crum, Shaelyn R. Casey, and Justin R. Sparks. Photon-mediated hybridization of
molecular vibrational states. Phys. Chem. Chem. Phys., 20:850–857, 2018.

[66] Prasoon Saurabh and Shaul Mukamel. Two-dimensional infrared spectroscopy of vibrational
polaritons of molecules in an optical cavity. J. Chem. Phys., 144(12):124115, 2018-11.

133



[67] Bo Xiang, Raphael F. Ribeiro, Adam D. Dunkelberger, Jiaxi Wang, Yingmin Li, Blake S.
Simpkins, Jeffrey C. Owrutsky, Joel Yuen-Zhou, and Wei Xiong. Two-dimensional infrared
spectroscopy of vibrational polaritons. Proceedings of the National Academy of Sciences,
115(19):4845–4850, 2018.

[68] Raphael F. Ribeiro, Adam D. Dunkelberger, Bo Xiang, Wei Xiong, Blake S. Simpkins,
Jeffrey C. Owrutsky, and Joel Yuen-Zhou. Theory for Nonlinear Spectroscopy of Vibrational
Polaritons. J. Phys. Chem. Lett., 9(13):3766–3771, 2018.

[69] Bo Xiang, Raphael F. Ribeiro, Yingmin Li, Adam D. Dunkelberger, Blake B. Simpkins, Joel
Yuen-Zhou, and Wei Xiong. Manipulating optical nonlinearities of molecular polaritons
by delocalization. Science Advances, 5(9), 2019.

[70] Raphael F Ribeiro, Jorge A Campos-Gonzalez-Angulo, Noel C Giebink, Wei Xiong,
and Joel Yuen-Zhou. Enhanced optical nonlinearities under strong light-matter coupling.
Preprint, 2020.

[71] Anoop Thomas, Jino George, Atef Shalabney, Marian Dryzhakov, Sreejith J. Varma,
Joseph Moran, Thibault Chervy, Xiaolan Zhong, Eloïse Devaux, Cyriaque Genet, James A.
Hutchison, and Thomas W. Ebbesen. Ground-state chemical reactivity under vibrational
coupling to the vacuum electromagnetic field. Angew Chem Int Ed, 55(38):11462–11466,
February 2016.

[72] Anoop Thomas, Lucas Lethuillier-Karl, Joseph Moran, and Thomas Ebbesen. Comment
on “on the sn2 reactions modified in vibrational strong coupling experiments: Reaction
mechanisms and vibrational mode assignments", Sep 2020.

[73] Anoop Thomas, Anjali Jayachandran, Lucas Lethuillier-Karl, Robrecht M.A. Vergauwe,
Kalaivanan Nagarajan, Eloise Devaux, Cyriaque Genet, Joseph Moran, and Thomas W.
Ebbesen. Ground state chemistry under vibrational strong coupling: dependence of
thermodynamic parameters on the rabi splitting energy. Nanophotonics, 9(2):249 – 255,
2020.

[74] A. Thomas, L. Lethuillier-Karl, K. Nagarajan, R. M. A. Vergauwe, J. George, T. Chervy,
A. Shalabney, E. Devaux, C. Genet, J. Moran, and T. W. Ebbesen. Tilting a ground-state
reactivity landscape by vibrational strong coupling. Science, 363(6427):615, February
2019.

[75] Kenji Hirai, Rie Takeda, James A. Hutchison, and Hiroshi Uji-i. Modulation of prins
cyclization by vibrational strong coupling. Angewandte Chemie International Edition,
59(13):5332–5335, 2020.

[76] Robrecht M. A. Vergauwe, Anoop Thomas, Kalaivanan Nagarajan, Atef Shalabney,
Jino George, Thibault Chervy, Marcus Seidel, Eloïse Devaux, Vladimir Torbeev, and
Thomas W. Ebbesen. Modification of enzyme activity by vibrational strong coupling of
water. Angewandte Chemie International Edition, 58(43):15324–15328, 2019.

134



[77] Hidefumi Hiura, Atef Shalabney, and Jino George. Vacuum-field catalysis: Accelerated
reactions by vibrational ultra strong coupling, Nov 2018.

[78] Jyoti Lather, Pooja Bhatt, Anoop Thomas, Thomas W. Ebbesen, and Jino George. Cavity
catalysis by cooperative vibrational strong coupling of reactant and solvent molecules.
Angewandte Chemie International Edition, 58(31):10635–10638, 2019.

[79] Yantao Pang, Anoop Thomas, Kalaivanan Nagarajan, Robrecht M. A. Vergauwe, Kripa
Joseph, Bianca Patrahau, Kuidong Wang, Cyriaque Genet, and Thomas W. Ebbesen. On the
role of symmetry in vibrational strong coupling: The case of charge-transfer complexation.
Angewandte Chemie International Edition, 59(26):10436–10440, 2020.

[80] Blake Simpkins. Vibration-cavity coupling: Modulation of coupling strength and ground
state reaction rates. YouTube.

[81] Javier del Pino, Johannes Feist, and Francisco J Garcia-Vidal. Quantum theory of collective
strong coupling of molecular vibrations with a microcavity mode. New J Phys, 17(5):053040,
May 2015.

[82] Konstantinos S. Daskalakis, Stefan A. Maier, and Stéphane Kéna-Cohen. Polariton Con-
densation in Organic Semiconductors, pages 151–163. Springer International Publishing,
Cham, 2017.

[83] Javier Galego, Clàudia Climent, Francisco J. Garcia-Vidal, and Johannes Feist. Cavity
Casimir-Polder Forces and Their Effects in Ground-State Chemical Reactivity. Phys Rev X,
9:021057, June 2019.

[84] Clàudia Climent, Javier Galego, Francisco J. Garcia-Vidal, and Johannes Feist. Plasmonic
Nanocavities Enable Self-Induced Electrostatic Catalysis. Angew Chem Int Ed, 58(26):8698–
8702, 2019.

[85] Vladimir P. Zhdanov. Vacuum field in a cavity, light-mediated vibrational coupling, and
chemical reactivity. Chemical Physics, page 110767, 2020.

[86] Jorge A. Campos-Gonzalez-Angulo and Joel Yuen-Zhou. Polaritonic normal modes in
transition state theory. The Journal of Chemical Physics, 152(16):161101, 2020.

[87] Xinyang Li, Arkajit Mandal, and Pengfei Huo. Resonance theory of vibrational strong
couplings in polariton chemistry, Sep 2020.

[88] H.A. Kramers. Brownian motion in a field of force and the diffusion model of chemical
reactions. Physica, 7(4):284 – 304, 1940.

[89] Richard F. Grote and James T. Hynes. The stable states picture of chemical reactions. ii.
rate constants for condensed and gas phase reaction models. The Journal of Chemical
Physics, 73(6):2715–2732, 1980.

135



[90] Eli Pollak. Theory of activated rate processes: A new derivation of kramers’ expression.
The Journal of Chemical Physics, 85(2):865–867, 1986.

[91] Federico J. Hernández and Felipe Herrera. Multi-level quantum rabi model for anharmonic
vibrational polaritons. The Journal of Chemical Physics, 151(14):144116, 2019.

[92] Johan F. Triana, Federico J. Hernández, and Felipe Herrera. The shape of the electric dipole
function determines the sub-picosecond dynamics of anharmonic vibrational polaritons.
The Journal of Chemical Physics, 152(23):234111, 2020.

[93] Philip M. Morse. Diatomic molecules according to the wave mechanics. ii. vibrational
levels. Phys. Rev., 34:57–64, Jul 1929.

[94] Norah M. Hoffmann, Lionel Lacombe, Angel Rubio, and Neepa T. Maitra. Effect of many
modes on self-polarization and photochemical suppression in cavities. The Journal of
Chemical Physics, 153(10):104103, 2020.

[95] Christian Schäfer, Michael Ruggenthaler, Vasil Rokaj, and Angel Rubio. Relevance of the
quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics. ACS
Photonics, 7(4):975–990, April 2020.

[96] Jorge A. Campos-Gonzalez-Angulo, Raphael F. Ribeiro, and Joel Yuen-Zhou. Resonant
catalysis of thermally activated chemical reactions with vibrational polaritons. Nat Commun,
10(1):4685, October 2019.

[97] R. A. Marcus. Chemical and electrochemical electron-transfer theory. Annu Rev Phys
Chem, 15(1):155–196, February 1964.

[98] VG Levich. Present state of the theory of oxidation-reduction in solution (bulk and electrode
reactions). Advances in electrochemistry and electrochemical engineering, 4:249–371,
1966.

[99] Joshua Jortner. Temperature dependent activation energy for electron transfer between
biological molecules. J Chem Phys, 64(12):4860–4867, February 1975.

[100] Igor Vurgaftman, Blake S. Simpkins, Adam D. Dunkelberger, and Jeffrey C. Owrutsky.
Negligible effect of vibrational polaritons on chemical reaction rates via the density of
states pathway. J. Phys. Chem. Lett., 11(9):3557–3562, May 2020.

[101] Matthew Du, Jorge A. Campos-Gonzalez-Angulo, and Joel Yuen-Zhou. Nonequilibrium
effects of cavity leakage and vibrational dissipation in thermally-activated polariton
chemistry, 2020.

[102] Tao E. Li, Abraham Nitzan, and Joseph E. Subotnik. On the origin of ground-state
vacuum-field catalysis: Equilibrium consideration. The Journal of Chemical Physics,
152(23):234107, 2020.

136



[103] Daniel A Steck. Classical and modern optics. course notes available online.

[104] Daniel A Steck. Quantum and atom optics, 2007.

[105] Nur Ismail, Cristine Calil Kores, Dimitri Geskus, and Markus Pollnau. Fabry-Pérot
resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses,
and performance at low or frequency-dependent reflectivity. Optics Express, 24(15):16366–
16389, Jul 2016.

[106] R. Lemus-Casillas and L. Narvaez-Macarro. Introducción a la teoría de representaciones
de grupos con aplicaciones a sistemas moleculares y cristalinos. Monografías de la Real
Academia Sevillana de Ciencias. Real Academia Sevillana de Ciencias, 2006.

[107] E.B. Wilson, J.C. Decius, and P.C. Cross. Molecular Vibrations: The Theory of Infrared
and Raman Vibrational Spectra. Dover Books on Chemistry. Dover Publications, 2012.

[108] K. Huber. Molecular Spectra and Molecular Structure: IV. Constants of Diatomic
Molecules. Springer US, 2013.

[109] E. T. Jaynes and F. W. Cummings. Comparison of quantum and semiclassical radiation
theories with application to the beam maser. Proceedings of the IEEE, 51(1):89–109, 1963.

[110] R. H. Dicke. Coherence in Spontaneous Radiation Processes. Phys. Rev., 93:99–110, 1954.

[111] Michael Tavis and Frederick W. Cummings. Exact Solution for an 𝑁-Molecule—Radiation-
Field Hamiltonian. Phys. Rev., 170:379–384, 1968.

[112] Michael Ruggenthaler, Nicolas Tancogne-Dejean, Johannes Flick, Heiko Appel, and Angel
Rubio. From a quantum-electrodynamical light-matter description to novel spectroscopies.
Nat. Rev. Chem., 2:0118, March 2018.

[113] A. D. Dunkelberger, B. T. Spann, K. P. Fears, B. S. Simpkins, and J. C. Owrutsky. Modified
relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons.
Nat Commun, 7(1):13504, November 2016.

[114] Justin Erwin, Madeline Smotzer, and James V. Coe. Effect of strongly coupled vibration-
cavity polaritons on the bulk vibrational states within a wavelength-scale cavity. J Phys
Chem B, 123(6):1302–1306, February 2019.

[115] Nguyen Thanh Phuc, Pham Quang Trung, and Akihito Ishizaki. Controlling the nonadiabatic
electron-transfer reaction rate through molecular-vibration polaritons in the ultrastrong
coupling regime. Scientific Reports, 10(1):7318, 2020.

[116] Donald G. Truhlar, Bruce C. Garrett, and Stephen J. Klippenstein. Current status of
transition-state theory. J. Phys. Chem., 100(31):12771–12800, January 1996.

[117] A. Nitzan. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions
in Condensed Molecular Systems. Oxford Graduate Texts. OUP Oxford, 2006.

137



[118] Christophe L. Vaillant, Manish J. Thapa, Jiří Vaníček, and Jeremy O. Richardson. Semiclas-
sical analysis of the quantum instanton approximation. J. Chem. Phys., 151(14):144111,
2019.

[119] E. Wigner. The transition state method. Trans. Faraday Soc., 34:29–41, 1938.

[120] Peter Hänggi, Peter Talkner, and Michal Borkovec. Reaction-rate theory: fifty years after
kramers. Rev. Mod. Phys., 62:251–341, April 1990.

[121] Eli Pollak and Peter Talkner. Reaction rate theory: What it was, where is it today, and where
is it going? Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(2):026116,
2005.

[122] L. Arnaut and H. Burrows. Chemical Kinetics: From Molecular Structure to Chemical
Reactivity. Elsevier Science, 2006.

[123] N.E. Henriksen and F.Y. Hansen. Theories of Molecular Reaction Dynamics: The
Microscopic Foundation of Chemical Kinetics. Oxford Graduate Texts. OUP Oxford, 2018.

[124] Clive Emary and Tobias Brandes. Chaos and the quantum phase transition in the dicke
model. Phys. Rev. E, 67:066203, June 2003.

[125] M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch. Comparative quantum
and semiclassical analysis of atom-field systems. ii. chaos and regularity. Phys. Rev. A,
89:032102, March 2014.

[126] V. M. Agranovich and A. G. Malshukov. Surface polariton spectra if the resonance with
the transition layer vibrations exist. Opt Commun, 11(2):169–171, June 1974.

[127] Kochise Bennett, Markus Kowalewski, and Shaul Mukamel. Novel photochemistry of
molecular polaritons in optical cavities. Faraday Discuss, 194(0):259–282, 2016.

[128] Maxim Sukharev and Abraham Nitzan. Optics of exciton-plasmon nanomaterials. J Phys :
Condens Matter, 29(44):443003, October 2017.

[129] Denis G. Baranov, Martin Wersäll, Jorge Cuadra, Tomasz J. Antosiewicz, and Timur Shegai.
Novel nanostructures and materials for strong light-matter interactions. ACS Photonics,
5(1):24–42, January 2018.

[130] Denan Wang, Maxim V. Ivanov, Saber Mirzaei, Sergey V. Lindeman, and Rajendra Rathore.
An electron-transfer induced conformational transformation: from non-cofacial “sofa” to
cofacial “boat” in cyclotetraveratrylene (cttv) and formation of charge transfer complexes.
Org Biomol Chem, 16(31):5712–5717, 2018.

[131] Sujata M. Khopde and K. Indira Priyadarsini. Application of marcus theory of electron
transfer for the reactions between hrp compound i and ii and 2,4-disubstituted phenols.
Biophysical Chemistry, 88(1):103–109, 2000.

138



[132] Daniel F Walls and Gerard J Milburn. Quantum Optics. Springer Berlin Heidelberg, 2008.

[133] Felipe Herrera and Frank C. Spano. Dark vibronic polaritons and the spectroscopy of
organic microcavities. Phys Rev Lett, 118(22):223601, May 2017.

[134] R. Houdré, R. P. Stanley, and M. Ilegems. Vacuum-field rabi splitting in the presence of
inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously
broadened system. Phys. Rev. A, 53:2711–2715, Apr 1996.

[135] L. Mazza, L. Fontanesi, and G. C. La Rocca. Organic-based microcavities with vibronic
progressions: Photoluminescence. Phys. Rev. B, 80(23):235314, dec 2009.

[136] J-M. Manceau, G. Biasiol, N. L. Tran, I. Carusotto, and R. Colombelli. Immunity of
intersubband polaritons to inhomogeneous broadening. Phys. Rev. B, 96(23):235301, dec
2017.

[137] E. J. Heller. The Semiclassical Way to Dynamics and Spectroscopy. Princeton University
Press, 2018.

[138] Gerald M. Sando, Kenneth G. Spears, Joseph T. Hupp, and Peder Thusgaard Ruhoff. Large
electron transfer rate effects from the Duschinsky mixing of vibrations. J Phys Chem A,
105(22):5317–5325, June 2001.

[139] Joonsuk Huh, Gian Giacomo Guerreschi, Borja Peropadre, Jarrod R. McClean, and Alán
Aspuru-Guzik. Boson sampling for molecular vibronic spectra. Nat Photonics, 9:615,
August 2015.

[140] Adam D. Dunkelberger, Roderick B. Davidson, Wonmi Ahn, Blake S. Simpkins, and
Jeffrey C. Owrutsky. Ultrafast transmission modulation and recovery via vibrational strong
coupling. J Phys Chem A, 122(4):965–971, February 2018.

[141] Fatemeh Mirjani, Nicolas Renaud, Natalie Gorczak, and Ferdinand C. Grozema. Theoretical
investigation of singlet fission in molecular dimers: The role of charge transfer states and
quantum interference. J Phys Chem C, 118(26):14192–14199, July 2014.

[142] Subhajyoti Chaudhuri, Svante Hedström, Dalvin D. Méndez-Hernández, Heidi P. Hen-
drickson, Kenneth A. Jung, Junming Ho, and Victor S. Batista. Electron transfer assisted
by vibronic coupling from multiple modes. J Chem Theory Comput, 13(12):6000–6009,
December 2017.

[143] R.A. Marcus and Norman Sutin. Electron transfers in chemistry and biology. Biochimica
et Biophysica Acta (BBA) - Reviews on Bioenergetics, 811(3):265 – 322, 1985.

[144] Daniel T. Gillespie. Stochastic simulation of chemical kinetics. Annu Rev Phys Chem,
58(1):35–55, March 2007.

[145] Jonathan Keeling and Peter G. Kirton. Orientational alignment in cavity quantum electro-
dynamics. Phys. Rev. A, 97:053836, May 2018.

139



[146] Daniel T. Gillespie. Deterministic limit of stochastic chemical kinetics. J Phys Chem B,
113(6):1640–1644, February 2009.

[147] David Hagenmüller, Johannes Schachenmayer, Stefan Schütz, Claudiu Genes, and Guido
Pupillo. Cavity-enhanced transport of charge. Phys Rev Lett, 119(22):223601, November
2017.

[148] Chiao-Yu Cheng, Rĳul Dhanker, Christopher L. Gray, Sukrit Mukhopadhyay, Eric R.
Kennehan, John B. Asbury, Anatoliy Sokolov, and Noel C. Giebink. Charged polaron
polaritons in an organic semiconductor microcavity. Phys Rev Lett, 120(1):017402, January
2018.

[149] Charles Möhl, Arko Graf, Felix J. Berger, Jan Lüttgens, Yuriy Zakharko, Victoria Lumsargis,
Malte C. Gather, and Jana Zaumseil. Trion-polariton formation in single-walled carbon
nanotube microcavities. ACS Photonics, 5(6):2074–2080, June 2018.

[150] D.G. Angelakis. Quantum Simulations with Photons and Polaritons: Merging Quantum
Optics with Condensed Matter Physics. Quantum Science and Technology. Springer
International Publishing, 2017.

[151] David Alcaraz Iranzo, Sébastien Nanot, Eduardo J. C. Dias, Itai Epstein, Cheng Peng,
Dmitri K. Efetov, Mark B. Lundeberg, Romain Parret, Johann Osmond, Jin-Yong Hong,
Jing Kong, Dirk R. Englund, Nuno M. R. Peres, and Frank H. L. Koppens. Probing
the ultimate plasmon confinement limits with a van der Waals heterostructure. Science,
360(6386):291, 2018-04.

[152] Junyi Lee, Victor Leong, Dmitry Kalashnikov, Jibo Dai, Alagappan Gandhi, and Leonid
Krivitsky. Hybrid quantum photonics. Preprint, 2020.

[153] Nicholas V. Proscia, Harishankar Jayakumar, Xiaochen Ge, Gabriel Lopez-Morales, Zav
Shotan, Weidong Zhou, Carlos A. Meriles, and Vinod M. Menon. Microcavity-coupled
emitters in hexagonal boron nitride. Nanophotonics, 9(9):2937–2944, 2020.

[154] VM Agranovich. Dispersion of electromagnetic waves in crystals. Sov. Phys. JETP,
10:307–313, 1960.

[155] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch,
A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve. Strong
Coupling of a Spin Ensemble to a Superconducting Resonator. PRL, 105(14):140502,
2010-09.

[156] Robert Alicki, Michał Horodecki, Paweł Horodecki, Ryszard Horodecki, Lucjan Jacak, and
Paweł Machnikowski. Optimal strategy for a single-qubit gate and the trade-off between
opposite types of decoherence. PRA, 70(1):010501, 2004.

140



[157] J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and
A. Wallraff. Dressed Collective Qubit States and the Tavis-Cummings Model in Circuit
QED. PRL, 103(8):083601, 2009.

[158] Julia Kabuss, Alexander Carmele, Tobias Brandes, and Andreas Knorr. Optically Driven
Quantum Dots as Source of Coherent Cavity Phonons: A Proposal for a Phonon Laser
Scheme. PRL, 109(5):054301, 2012.

[159] Wildan Abdussalam and Paweł Machnikowski. Superradiance and enhanced luminescence
from ensembles of a few self-assembled quantum dots. PRB, 90(12):125307, 2014-09.

[160] Marten Richter, Michael Gegg, T. Sverre Theuerholz, and Andreas Knorr. Numerically
exact solution of the many emitter–cavity laser problem: Application to the fully quantized
spaser emission. PRB, 91(3):035306, 2015.

[161] Wonmi Ahn, Igor Vurgaftman, Adam D. Dunkelberger, Jeffrey C. Owrutsky, and Blake S.
Simpkins. Vibrational Strong Coupling Controlled by Spatial Distribution of Molecules
within the Optical Cavity. ACS Photonics, 5(1):158–166, 2018.

[162] Shaul Mukamel and Yuki Nagata. Quantum field, interference, and entanglement effects in
nonlinear optical spectroscopy. Procedia Chemistry, 3(1):132–151, 2011.

[163] Courtney A. DelPo, Bryan Kudisch, Kyu Hyung Park, Saeed-Uz-Zaman Khan, Francesca
Fassioli, Daniele Fausti, Barry P. Rand, and Gregory D. Scholes. Polariton transitions
in femtosecond transient absorption studies of ultrastrong light–molecule coupling. The
Journal of Physical Chemistry Letters, 11(7):2667–2674, 2020. PMID: 32186878.

[164] Bing Gu and Shaul Mukamel. Manipulating two-photon-absorption of cavity polaritons by
entangled light. J. Phys. Chem. Lett., 11(19):8177–8182, October 2020.

[165] T. Skrypnyk. General integrable 𝑛-level, many-mode Jaynes-Cummings-Dicke models
and classical 𝑟-matrices with spectral parameters. Journal of Mathematical Physics,
56(2):023511, 2015.

[166] T Skrypnyk. Generalized 𝑛-level Jaynes–Cummings and Dicke models, classical rational
𝑟-matrices and algebraic Bethe ansatz. Journal of Physics A: Mathematical and Theoretical,
41(47):475202, 2008.

[167] Yuan-Harng Lee, Jon Links, and Yao-Zhong Zhang. Exact solutions for a family of
spin-boson systems. Nonlinearity, 24(7):1975, 2011.

[168] T Skrypnyk. Modified 𝑛-level, 𝑛 − 1-mode Tavis–Cummings model and algebraic Bethe
ansatz. Journal of Physics A: Mathematical and Theoretical, 51(1):015204, 2018.

[169] Michael Gegg and Marten Richter. Efficient and exact numerical approach for many
multi-level systems in open system CQED. New Journal of Physics, 18(4):043037, 2016.

141



[170] Nathan Shammah, Shahnawaz Ahmed, Neill Lambert, Simone De Liberato, and Franco
Nori. Open quantum systems with local and collective incoherent processes: Efficient
numerical simulation using permutational invariance. arXiv preprint arXiv:1805.05129,
2018.

[171] A.N. Bohr and B.R. Mottelson. Nuclear Structure (In 2 Volumes). World Scientific
Publishing Company, 1998.

[172] Dave Bacon, Isaac L. Chuang, and Aram W. Harrow. Efficient quantum circuits for schur
and clebsch-gordan transforms. Phys. Rev. Lett., 97:170502, Oct 2006.

[173] P. Jakubczyk, Y. Kravets, and D. Jakubczyk. Entanglement of one-magnon schur-weyl
states. The European Physical Journal D, 61(2):507–512, 2011.

[174] N. L. Harshman. One-dimensional traps, two-body interactions, few-body symmetries: I.
one, two, and three particles. Few-Body Systems, 57(1):11–43, 2016.

[175] Hanno Schmiedt, Per Jensen, and Stephan Schlemmer. Unifying the rotational and
permutation symmetry of nuclear spin states: Schur-weyl duality in molecular physics. The
Journal of Chemical Physics, 145(7):074301, 2016.

[176] Dorota Jakubczyk. Application of the schur–weyl duality in the one-dimensional hubbard
model. Reports on Mathematical Physics, 85(2):293 – 304, 2020.

[177] A.B. Klimov and S.M. Chumakov. A Group-Theoretical Approach to Quantum Optics:
Models of Atom-Field Interactions. Wiley, 2009.

[178] Robert Gilmore. Geometry of symmetrized states. Annals of Physics, 74(2):391–463,
1972.

[179] M.O. Scully and M.S. Zubairy. Quantum Optics. Cambridge University Press, 1997.

[180] Marcin Dukalski and Yaroslav M Blanter. High jaynes-cummings pseudospins eigenstates
in the homogeneous tavis-cummings model. Preprint, 2013.

[181] V. M. Agranovich, M. Litinskaia, and D. G. Lidzey. Cavity polaritons in microcavities
containing disordered organic semiconductors. PRB, 67(8):085311, 2003.

[182] G.E. Andrews. The Theory of Partitions. Cambridge mathematical library. Cambridge
University Press, 1998.

[183] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Applied mathematics series. U.S. Government Printing
Office, 1970.

[184] P.L. Meliot. Representation Theory of Symmetric Groups. Discrete Mathematics and Its
Applications. CRC Press, 2017.

142



[185] B.E. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms, and
Symmetric Functions. Graduate Texts in Mathematics. Springer New York, 2013.

[186] Wilhelm Specht. Die irreduziblen darstellungen der symmetrischen gruppe. Mathematische
Zeitschrift, 39(1):696–711, 1935.

[187] C. Kostka. Ueber den zusammenhang zwischen einigen formen von symmetrischen
functionen. Journal für die reine und angewandte Mathematik, 1882(93):89 – 123, 1882.

[188] Mathias Lederer. A determinant-like formula for the kostka numbers. arXiv preprint
math/0501132, 2005.

[189] Hariharan Narayanan. On the complexity of computing kostka numbers and littlewood-
richardson coefficients. Journal of Algebraic Combinatorics, 24(3):347–354, 2006.

[190] J. S. Frame, G. de B. Robinson, and R. M. Thrall. The hook graphs of the symmetric group.
Canadian Journal of Mathematics, 6:316–324, 1954.

[191] I. Schur. Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen.
1901.

[192] H. Weyl. The Classical Groups: Their Invariants and Representations (PMS-1). Princeton
Landmarks in Mathematics and Physics. Princeton University Press, 2016.

[193] The On-Line Encyclopedia of Integer Sequences: Number of partitions of n into nonzero
triangular numbers.

[194] Gert Almkvist. Asymptotics of various partitions. arXiv preprint math/0612446, 2006.

[195] R W Haase and P H Butler. Symmetric and unitary group representations. i. duality theory.
J. Phys. A: Math. Gen., 17(1):61–74, 1984.

[196] P Jakubczyk, T Lulek, D Jakubczyk, and B Lulek. Fourier and schur-weyl transforms
applied to XXX heisenberg magnet. J. Phys. Conf. Ser., 213:012018, mar 2010.

[197] Alonso Botero and José Mejía. Universal and distortion-free entanglement concentration
of multiqubit quantum states in the 𝑤 class. Phys. Rev. A, 98:032326, 2018.

[198] M. D. Gould. Representation theory of the symplectic groups. i. J. Math. Phys., 30(6):1205–
1218, 1989.

[199] A. I. Molev. Gelfand-tsetlin basis for representations of yangians. Lett. Math. Phys.,
30(1):53–60, 1994.

[200] S Cordero, O Castaños, R López-Peña, and E Nahmad-Achar. A semi-classical versus
quantum description of the ground state of three-level atoms interacting with a one-mode
electromagnetic field. J. Phys. A: Math. Theor., 46(50):505302, 2013.

143



[201] Vyacheslav Futorny, Luis Enrique Ramirez, and Jian Zhang. Combinatorial construction
of gelfand–tsetlin modules for gln. Advances in Mathematics, 343:681–711, 2019.

[202] Jens Peder Dahl and Michael Springborg. The morse oscillator in position space, momentum
space, and phase space. The Journal of Chemical Physics, 88(7):4535–4547, 1988.

[203] Emanuel F de Lima and José E M Hornos. Matrix elements for the morse potential
under an external field. Journal of Physics B: Atomic, Molecular and Optical Physics,
38(7):815–825, mar 2005.

144




