# **Lawrence Berkeley National Laboratory**

## **LBL Publications**

#### **Title**

Complexity of Groundwater Contaminants at DOE Sites

#### **Permalink**

https://escholarship.org/uc/item/6062j05b

#### **Authors**

Hazen, T.C. Faybishenko, B. Jordan, P.

#### **Publication Date**

2010-12-06

## **Complexity of Groundwater Contaminants at DOE Sites**

Terry C. Hazen<sup>1,2,\*</sup>, Boris Faybishenko<sup>1</sup>, and Preston Jordan<sup>1</sup>

Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720

Virtual Institute for Microbial Stress and Survival, http://vimss.lbl.gov

September 2008

#### Introduction

The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity (1; 2). As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship (3, p.25). Currently, 19 DOE sites are on the National Priority List (6). The total number of contaminated plumes on DOE lands is estimated to be 10,000 (7). However, a significant number of DOE sites have not yet been fully characterized (6). The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites (6, Page 1-14).

A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions—planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites (the 20-year Strategic Plan of DOE's Office Science Office, February 2004 (8). (Note that the definitions of the terms "site" and "facility" may differ from one publication to another. In this report, the terms "site," "facility" or "installation" are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term "plume" is used here to indicate an individual area of contamination, which can be small or large.)

Even though several publications and databases contain information on groundwater contamination and remediation technologies (e.g., 6, 9-17), no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara (18). The DOE Groundwater Data Base (GWD) (16) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites and facilities (listed in Table S1 in Supporting Information). Note that Riley and Zachara (18) analyzed the data from only 18 sites/facilities including 91 plumes.

In this paper, we present the results of statistical analyses of the data in the GWD (16) as guidance for planning future basic and applied research of groundwater contaminants within the DOE complex. Our analyses include the evaluation of a frequency and ranking of specific

<sup>\*</sup>Corresponding author e-mail: tchazen@lbl.gov, phone: 510-486-6223, fax: 510-486-7152

contaminants and contaminant groups, contaminant concentrations/activities and total contaminant masses and activities. We also compared the results from analyses of the GWD with those from the 1992 report by Riley and Zachara (18). The difference between our results and those summarized in the 1992 report by Riley and Zachara (18) could be caused by not only additional releases, but also by the use of modern site characterization methods, which more accurately reveal the extent of groundwater contamination.

Contaminated sites within the DOE complex are located in all major geographic regions of the United States, with highly variable geologic, hydrogeologic, soil, and climatic conditions. We assume that the information from the 60 DOE sites included in the GWD (16) are representative for the whole DOE complex. These 60 sites include the major DOE sites and facilities, such Rocky Flats Environmental Technology Site, Colorado; Idaho National Laboratory, Idaho; Savannah River Site, South Carolina; Oak Ridge Reservation, Tennessee; and Hanford Reservation, Washington. These five sites alone account for 71% of the value of the remediation work (6, pp. 1-9). For assumptions and uncertainties used in this paper see Section S1 in Supporting Information. For the results of testing the integrity of the GWD see Section S2 in Supporting Information.

#### **Frequency of Occurrence of Contaminants**

**Contaminant Groups.** The GWD contaminants detected in groundwater at 60 DOE sites and facilities can be grouped into the following eight contaminant groups:

- Chlorinated hydrocarbons
- Fuels and fuel components (i.e., petroleum/fuel hydrocarbons)
- Explosives
- Metals
- Radioactive isotopes (excluding tritium)
- Tritium
- Sulfates
- Nitrates

We identified tritium as an individual contaminant group (apart from other radioisotopes, which are combined in a separate group), because tritium is present in groundwater only in a dissolved state. Tritium in groundwater is subject to the processes of radioactive decay, dispersion, or dilution, with no transformation between the dissolved and solid states. Contrary to tritium, other radioactive isotopes are affected by radionuclide transformation between the dissolved and solid states.

Table S1 in Supporting Information lists the types of contaminant groups for each groundwater plume. In their 1992 report, Riley and Zachara (18) also identified the presence of radionuclides, metals, organic solvents, and fuel hydrocarbons. In addition, they identified polychlorinated biphenyls (PCBs) and organic ligands. Five contaminant groups (chlorinated hydrocarbons, fuel and fuel components, explosives, metals, and radioactive isotopes) contain more than one contaminant, and three groups include only a single component (tritium, sulfates, or nitrates). The most frequent contaminant groups (as percentage of the number of plumes surveyed for this contaminant group) are: chlorinated hydrocarbons (84%), tritium (51%), other radioactive isotopes (47%), nitrates (46%), metals (43%), sulfates (32%), fuel (11%), and explosives (10%) (Table S2).

Statistical analysis shows that single contaminants are contained in 23.5% of all plumes, binary combinations of contaminant groups are found in 29.4%, ternary—in 29%, quaternary—in 11.8%, and quinary—in 5% (Figure S1). The most frequent binary combinations of contaminant groups are those of mixed waste, including chlorinated hydrocarbons and tritium—35% of all plumes, metals and isotopes—28%, chlorinated hydrocarbons and isotopes—24%, isotopes and nitrate—23% (Figure 2. See also Table S3). Chlorinated hydrocarbons are also found in association with nitrate (30% of plumes), sulfate (26%), and metals (24%). A binary combination of radioactive contaminants, including tritium and other radioactive isotopes, is present at 31% of plumes. Calculations of binary combinations of contaminant groups (as a percentage of plumes coded for the presence or absence of a contaminant group that is present with at least one other contaminant group) show that the most frequently occurring group is chlorinated hydrocarbons (2/3 of all plumes), followed by tritium (51%), isotopes and nitrates (both 45%), metals (43%), sulfate (31%), explosives (10%), and fuel (8%).

In ternary combinations, the most frequent contaminant groups are mixed wastes—chlorinated hydrocarbons (20.8%), radionuclides (19.3%), and metals (15.6%) (See Table S4a). This combination was also the most frequent in 1992 (18, Table 4) along with a combination of metals, anions, and radionuclides. A quaternary combination of contaminant groups most frequently includes mixed wastes—nitrates (21.2%), metals (18.3%), chlorinated hydrocarbons (17.3%), and tritium (16.3%) (See Table S4b). This combination is different from that identified in 1992—metals, anions, radionuclides, and chlorinated hydrocarbons. The most frequent quinary combination of contaminant groups also contains mixed waste—metals, tritium, other radioactive isotopes, nitrates, and chlorinated hydrocarbons (See Table S4c).

**Specific Contaminants.** We calculated the frequency of occurrence of specific contaminants in multiple-contaminant groups as a percentage of: (a) all individual compounds in a given contaminant group, (b) a number of plumes containing the given contaminant group, and (c) a number of all plumes in the GWD.

Chlorinated hydrocarbons. The most common chlorinated hydrocarbons in the GWD were (in descending order, given as a percent of occurrence in all plumes): TCE—57.5%, PCE—31.7%, DCE—16.3%, carbon tetrachloride (CT)—15.8%, and VC—8.1% (Table S5a). These chlorinated hydrocarbons were also common in 1992 (18, Figure 7a).

*Fuels and fuel components*. No fuel component occurred in more than 5% of all plumes in the GWD, which seems low as discussed above. The most common fuel contaminants were benzene, diesel, jet fuel, MTBE, and toluene (Table S5b). In 1992, the most frequent fuel hydrocarbons were toluene, xylenes, benzene, ethylbenzene (18, Figure 8a).

Explosives. No explosive occurred in more than 5% of all plumes in the GWD. The most frequent explosives were perchlorate, DNT (dinitrotoluene), HMX (high melting explosive, octahydro- 1.3,5.7-tetranitro-1,3,5,7-tetraazozine), RDX (royal demolition explosive/cyclonite/hexogen/cyclotrimethylene-trinitramine), trinitrobenzene (TNB), trinitrotoluene (TNT), and tertyl (Table S5c). In 1992, the following explosives (at a very few sites) were found—HMX, RDX, and trinitrotoluene (18, Table 5).

*Metals*. The metals occurred in more than 5% of all plumes in the GWD, with the highest content ofchromium, molybdenum, and selenium, followed by arsenic, and lead at lower

percentages (Table S5d). In 1992, the most common metals in groundwater (in descending order of occurrence) were lead, chromium, arsenic, zinc, and copper (18, Figure 5a);

*Tritium and other radionuclides*. The most common radionuclide in the GWD was tritium, ocurring in 38% of all plume in the GWD. Three other radionuclides ocurred in more than 5% of all the plumes are: uranium—19.5%, strontium—10.9%, and technetium—7.2% (Table S5e). In 1992, the most common radionuclides were tritium, uranium, and strontium (*18*, Figure 6a), whereas technetium was ranked as the 7<sup>th</sup> radionuclide.

Based on our analysis, out of 69 contaminants occurring in at least one of the plumes listed in the GWD, nine contaminants occur in more than 15% of the plumes in the GWD. These contaminants are (in descending order of occurrence): TCE, tritium, nitrates, PCE, sulfates, U, Cr, DCE and CT.

A comparison of the present data with those reported by Riley and Zachara (18) shows that the frequency of occurrence of individual contaminants has changed over the past decade. For example, technetium, CT, and MTBE were not significant contaminants in 1992, but they have recently become contaminants of concern at DOE facilities.

The frequency of occurrence of individual contaminants in binary combinations of contaminant groups is as follows (Table S6) is as follows:

- (a) chlorinated hydrocarbons (including TCE, PCE, DCE, and CT) with nitrate and sulfates,
- (b) chlorinated hydrocarbons (TCE and PCE) with tritium,
- (c) chlorinated hydrocarbons (TCE and PCE) with metals (chromium),
- (d) radioisotopes (tritium and uranium) with nitrate, (e) metals (chromium) with sulfate, and
- (f) sulfate with nitrate.

**Plume Volumes and Maximum Contaminant Concentrations.** The GWD lists the volumes of 134 plumes, or 61% of the total 221 plumes. The plume volumes vary over approximately 6 orders of magnitude—from  $5\times10^4$  to  $3.5\times10^{10}$  gallons, with a mean value of  $1.15\times10^9$  gallons (Table S7). The statistical distribution of plume volumes is close to lognormal (Figure S2). The total volume of 134 plumes is  $1.54\times10^{11}$  gal  $(5.85\times10^{11} \, \text{L})$ . Assuming that the remaining 87 plumes (with no volumes given in the GWD) are characterized by the same statistical distribution, the estimated total volume of contaminated groundwater would be  $2.55\times10^{11}$  gal  $(9.65\times10^{11} \, \text{L})$ , i.e. approximately 1 trillion liters. This estimated volume of 221 plumes in the GWD exceeds the value of  $1\times10^{10}$  gal  $(3.79\times10^{10} \, \text{L})$  given in the 1997 Federal Register, but it is about one half of that reported in (20, Pages 15 and 21)— $4.75\times10^{11}$  gal  $(1.8\times10^{12} \, \text{L})$ . The estimated volume of 221 plumes in the GWD is 6.7 times less than the estimate of  $1.7\times10^{12}$  gal  $(6.44\times10^{12} \, \text{L})$  for 5,000 DOE plumes identified by the Subsurface Contaminants Focus Area (20). These comparisons are commensurate with our belief that the GWD is a significant sample of groundwater contamination in the DOE complex.

The distribution of the maximum contaminant concentrations for individual compounds detected in at least 10 groundwater plumes are given in Figures S3-S8. Because some concentration populations extend to the detection limit, the concentration distributions appear to

be left-truncated. For the past decade, the ranges of PCE and TCE concentrations remained practically the same (Figure S3a). A normal quantile score (calculated as a probability corresponding to the normal distribution of quantile values) versus maximum concentrations of chlorinated hydrocarbons indicates that the DCE and, to a lesser extent, TCE distributions consist of two superimposed, lognormal distributions (Figure S4). This may be a result of the contribution from both primary contamination and degradation of PCE, and the DCE distribution could result from degradation of both PCE and TCE.

The Cr concentration distribution is lognormal and left truncated (Figures S3b and S6). The Cr concentration has essentially remained in the same range as that in 1992 (18). The lognormal and left truncated patterns are also typical for <sup>3</sup>H, Sr and Tc activities (Figure S3b, Figure S7 and Table S8). The present maximum tritium concentration is approximately one order of magnitude higher than that a decade ago from (18). The present maximum Sr concentration in groundwater (Figure S3c) is more than two orders of magnitude greater than that reported 1992 (18). Figure S3b also shows the box-and-whiskers plot for technetium, which was not included in the 1992 report (18), and uranium, which had a one order higher minimum and maximum concentration than that reported in 1992.

The sulfate and, to a greater degree, nitrate concentration distributions (Figure S8) are relatively peaked and strongly positive kurtosis. The quartile plots of the maximum concentrations of sulfates and nitrates indicate that both distributions comprise of two parts: (a) low-concentration segments exhibiting a log-normal distribution, and (b) high-concentration segments departing from a log-normal distribution. For sulfates, the log-normal distribution segment likely represents background concentrations, whereas the high concentrations might be caused by groundwater contamination. The presence of low and high concentration segments of the nitrate distribution is likely to reflect different anthropogenic causes of groundwater contamination. For example, low concentrations could be caused by leakage of nitrates from sewage lines and agricultural releases, and higher concentrations could indicate discharges from fuel processing, uranium recovery, or fuel fabrication (19). Figure S3c shows that the present maximum concentration of nitrates in groundwater is lower by a factor of 2 than that in 1992 (18).

To assess a relative (apparent) risk of the groundwater plumes, we calculated a normalized concentration as a ratio given by

$$C_{ci} = (C - C_{st}) / (C_{max} - C_{st})$$
 (1)

where C is the maximum contaminant concentration in a plume,  $C_{\text{max}}$  is the maximum contaminant concentration within a contaminant group, and  $C_{\text{st}}$  is the drinking water standard for this contaminant.  $C_{\text{st}}$  is determined from various drinking water standards as shown in Table S11. The  $C_{\text{ci}}$  values vary from negative values, when the contaminant concentration is below  $C_{\text{st}}$ , to 1, which corresponds to the highest contaminant hazard of a particular contaminant. As an example, the plumes with the five largest estimates of  $C_{\text{ci}}$  for the five most prevalent chlorinated hydrocarbons are shown in Figure S9. For PCE, TCE, CT, and DCE only positive  $C_{\text{ci}}$  values are shown, because the scale of the vertical axis (apparent risk) is logarithmic.

**Maximum Contaminant Masses/Activities.** The maximum contaminant masses/activities were calculated for plumes with known maximum concentrations and volumes from

$$M_{\text{max}} = C_{\text{max}} * V \tag{2}$$

where  $C_{\rm max}$  is the maximum concentration/activity of a compound, and V is the total plume volume. The total mass/activity for a contaminant and contaminant group is calculated as a sum of the masses/activities of calculated for each plume. For the plumes with either no reported concentration or volume, we estimated the maximum contaminant mass by assuming the same statistical distribution of concentrations (for a given contaminant) or volumes as for the plumes with the known information. The results are summarized in Tables S9 and S10.

The contaminant masses above the regulatory limits were calculated from the formula

$$M_{\text{max, reg}} = (C_{\text{max}} - C_{\text{reg}}) * V$$
 (3)

where  $M_{\text{max, reg}}$  is the maximum estimate of the mass/activity of each compound, and  $C_{\text{reg}}$  is the regulatory limit (Table S11). The regulatory limits were chosen for calculations according to the following precedence: Maximum Contaminant Limit (MCL), California Maximum Contaminant Limit (CA MCL), Treatment Technology (TT), California Response Limit (CA RL), Secondary Drinking Water Standard (SDWS), California Secondary Drinking Water Standard (CA SDWS). For contaminants without a regulatory limit (designated in Table S11 with an asterisk, \*) no limit-corrected mass/activity was calculated. For contaminants with no concentration and volume data in the database (designated with a double asterisk, \*\*) no mass/activity was calculated. Note from Tables S9 and S10 that the contaminant masses and activities above the regulatory limits are not significantly different from the total masses and activities.

The ranking of contaminant masses (as a percentage of the total contaminant mass) at all DOE sites is as follows: nitrates—55%, chlorinated hydrocarbons—23% (including TCE—17% and PCE-6%), sulfates—15%, PCE—6%, diesel—5%. According to the statistics of radioactive activities, virtually 100% of the total activity is attributed to tritium. Note the ranking according to occurrence is different than the ranking according to mass. For instance nitrates are the fourth ranked contaminant group by occurrence, but the first ranked group by contaminant mass. Isotopes are the second ranked group by occurrence, but virtually 100% of the total activity is due to tritium. The five largest sites by estimated maximum contaminant group mass (kg) or activity (pCi) are given in Figure 3.

Multiple Factor Analysis and k-means Clustering of the Groundwater Plumes. To assess the complexity and to integrate the different groundwater plume characteristics (Tables S1 and S12) we used a multiple factor analysis, MFA (22) followed by a k-means cluster analysis of main factors characterizing groundwater plumes. The approach and the results of this analysis are given in Section S3 in Supporting Information. Based on the basic plume characteristics, the plumes are classified into 5 clusters as given in Tables S13h,i. Using the basic plume characteristics together with the CT concentrations, the plumes are classified into 5 clusters as given in Tables S14g,h.

We suggest using the quantitative information about the individual contaminants and contaminant mixtures in decision making to establish priorities to advance the basic research on

environmental problems and developing remediation technologies for groundwater plumes throughout the DOE complex. The data analysis presented in this report could be of value to environmental managers, stakeholders, funding sources, site operators, the R&D community, as well as other interested parties.

#### Acknowledgments

This project was supported by the Environmental Remediation Science Division, Office of Sciences, U.S. Department of Energy. Lawrence Berkeley National Laboratory is operated Contract No. DE-AC02-05CH11231 with DOE. We are thankful to Blaine Rowley of DOE for providing us the DOE Groundwater Database in the Access format and for his gracious patience answering our many questions about its content.

Supporting Information is available free of charge via the internet at http://pubs.acs.org.

#### **Literature Cited**

- (1) U.S. Department of Energy/Environmental Management Report to Congress on Long-Term Stewardship, DOE/EM-0563, January 2001, Volume I Summary Report, 2001. Available at <a href="http://lts.apps.em.doe.gov/center/reports/pdf/SS">http://lts.apps.em.doe.gov/center/reports/pdf/SS</a> VolI.pdf
- (2) U.S. Department of Energy, 2006, Department of Energy Five Year Plan, FY 2007-FY 2011, Environmental Management, Office of the Chief Financial Officer Volume II, March 2006. Available at <a href="http://www.em.doe.gov/PDFs/170016EM\_FYP\_Final\_3-6-06.pdf">http://www.em.doe.gov/PDFs/170016EM\_FYP\_Final\_3-6-06.pdf</a>
- (3) U.S. Department of Energy, 1999, From Cleanup to Stewardship, a Companion Report to Accelerating Cleanup. Available at <a href="http://www.em.doe.gov/pdfs/doc130.pdf">http://www.em.doe.gov/pdfs/doc130.pdf</a>
- (4) U.S. Department of Energy, 1998, Accelerating Cleanup: Paths to Closure, DOE/EM-0362, June 1998. Available at http://www.em.doe.gov/Publications/accpath.aspx
- (5) Nuclear Waste Policy Act of 1982. Available at http://epw.senate.gov/nwpa82.pdf
- (6) U.S. Environmental Protection Agency. Cleaning Up the Nation's Waste Sites: Markets and Technology Trends, EPA 542-R-04-015, 2004. Available at <a href="http://www.clu-in.org/download/market/2004market.pdf">http://www.clu-in.org/download/market/2004market.pdf</a>
- (7) McCune, M. C.; Brin, G. L., Sharing expertise and technologies in deactivating and decommissioning DOE's contaminated excess facilities, WM'01 Conference, February 25-March 1, 2001, Tucson, AZ, 2001.

- (8) U.S. Department of Energy, Office of Science Strategic Plan, February 2004. Available at <a href="http://www.er.doe.gov/Sub/Mission/Mission\_Strategic.htm">http://www.er.doe.gov/Sub/Mission/Mission\_Strategic.htm</a>
- (9) U.S. Department of Energy. Cleanup Criteria/Decision Document (C2D2) Database. Available at <a href="http://c2d2.eml.doe.gov/index.cfm">http://c2d2.eml.doe.gov/index.cfm</a>
- (10) U.S. Department of Energy, Central Information Database (CID). Available at <a href="http://cid.em.doe.gov/">http://cid.em.doe.gov/</a>
- (11) A Report to Congress on Long-Term Stewardship, Volume I—Summary Report. Office of Environmental Management, Office of Long-Term Stewardship. DOE/EM-0563. January 2001. Washington, D.C.: U.S. Department of Energy. Available at http://lts.apps.em.doe.gov/center/ndaareport.html
- (12) U.S. Environmental Protection Agency, Record of Decision (ROD) database. Available at <a href="http://www.epa.gov/superfund/sites/rods/index.htm">http://www.epa.gov/superfund/sites/rods/index.htm</a>,
- (13) Cleanup Level Corporation database. Available at <a href="http://www.cleanuplevel.com/">http://www.cleanuplevel.com/</a>
- (14) Fountain, J. C., Technologies for Dense Nonaqueous Phase Liquid Source Zone Remediation, Technology Evaluation Report, TE-98-02, 1998. Available at <a href="http://www.clu-in.org/download/toolkit/e\_dnapl.pdf">http://www.clu-in.org/download/toolkit/e\_dnapl.pdf</a>
- (15) U.S. Environmental Protection Agency, Abstracts of Remediation, Case Studies, Volume 5, EPA 542-R-01-008, May 2001. Available at <a href="http://www.clu-in.org/download/frtr/factshee.pdf">http://www.clu-in.org/download/frtr/factshee.pdf</a>
- (16) U.S. Department of Energy, Groundwater Data Base, 2003. Dated 4-22-03. Available at <a href="http://www.em.doe.gov/pages/groundwatersoildatabase.aspx">http://www.em.doe.gov/pages/groundwatersoildatabase.aspx</a>
- (17) Groundwater and Soil Cleanup: Improving Management of Persistent Contaminants, National Research Council, National Academy Press, Washington, D.C., 1999. Available at <a href="http://books.nap.edu/openbook.php?isbn=0309065496">http://books.nap.edu/openbook.php?isbn=0309065496</a>
- (18) Riley R.G. and J.M. Zachara, Chemical Contaminants on U.S. Department of Energy Lands and Selection of Contaminant Mixtures for Subsurface Science Research. Pacific Northwest Laboratory, DOE/ER-0547T, April 1992. Available at <a href="http://www.osti.gov/energycitations/product.biblio.jsp?osti\_id=10147081">http://www.osti.gov/energycitations/product.biblio.jsp?osti\_id=10147081</a>
- (19) Stenner, R.D., K.H. Cramer, K.A. Higley, S.J. Jette, D.A. Lamar, T.J. McLaughlin, D.R. Sherwood, and N.C. Van Houten. Hazard Ranking System Evaluation of CERCLA Inactive Waste Sites at Hanford: Evaluation Methods and Results. PNL-6456, Volumes 1 and 2, Pacific Northwest Laboratory, Richland, WA, 1988. Available at <a href="http://www.osti.gov/bridge/product.biblio.jsp?osti\_id=6849042">http://www.osti.gov/bridge/product.biblio.jsp?osti\_id=6849042</a>

- (20) U.S. Department of Energy FY 2002 Congressional Budget. Available at <a href="http://www.cfo.doe.gov/budget/02budget/defem/all\_oth.pdf">http://www.cfo.doe.gov/budget/02budget/defem/all\_oth.pdf</a>
- (21) Greenacre, M.; Blasius, J. Multiple Correspondence Analysis and Related Methods, Chapman & Hall/CRC Statistics in the Social and Behavioral Science. Vol.1. 2006.

## **Supporting Information**

## **Complexity of Groundwater Contaminants at DOE Sites**

Terry C. Hazen<sup>1,2</sup>, Boris Faybishenko<sup>1</sup>, and Preston Jordan<sup>1</sup>

Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720

Virtual Institute for Microbial Stress and Survival, <a href="http://vimss.lbl.gov">http://vimss.lbl.gov</a>

## The file "Supporting Information" includes:

- S1. Assumptions and uncertainties—1 page.
- S2. Corroboration of the GWD (2003) data using the LBNL Records—1 page.
- S3. Multiple factor analysis and k-means clustering of the groundwater plumes—2 pages,
- 14 Tables and 11 Figures.

## S1. Assumptions and uncertainties

We assume that the GWD records are representative of the concentrations of contaminants present in multi-contaminant plumes, for which several types of chemical reactions could typically occur. The sources of uncertainty in the results of the DOE GWD data analysis, as compared to the actual situation, is inconsistency in the data collection from different sites located in various climatic conditions, a partial representation of all DOE sites, and the difference in site characterization technologies.

Maximum concentration/activity and plume volume are available for many plumes in the GWD. For a given plume, the GWD does not include concentration/activity data other than the maximum concentration. In this paper, the total mass/activity of a contaminant in a plume was calculated by multiplying the plume volume by the maximum concentration/activity. This approach overestimates the contaminant mass/activity as a result of many simplifying assumptions. The approach does not take into account the actual concentrations/activities throughout the plume, which are almost always lower than the maximum concentration/activity. The approach does not take into the portion of the plume volume occupied by single contaminants in multi-contaminant plumes. Despite these significant limitations, the simplified approach provides a "first cut" comparison of contaminant predominance in the DOE complex on a mass/activity basis using the data available in the GWD. These total masses/activities should not be taken as representative of the actual masses/activities, though, and were calculated purely to provide relative comparisons between contaminants on a mass/activity basis. The uncertainty in calculations of contaminant masses/activities could be caused by the lack of information on the spatial distribution of contaminant concentrations within a plume. For example, using the entire plume volumes (rather than the volume occupied by a particular contaminant) and maximum contaminant concentrations (the maximum concentration exceeds real values at the plume edges), which are listed in the database, we are likely to overestimate the contaminant mass/activity.

## S2. Corroboration of the GWD (2003) data using the LBNL Records

To assess the reliability of the GWD, we compared the LBNL records entered in the GWD (2003) with those from LBNL's Environmental Restoration Program (ERP) database, including the number of plumes, contaminant groups, contaminants in each plume, and maximum concentrations (LBNL, 2000, 2002, 2003). We found that the records in the GWD generally match the ERP records from the time period from the 4<sup>th</sup> Quarter of Federal Fiscal Year 2001 (July 1<sup>st</sup>, 2001) through the 4<sup>th</sup> Quarter of Federal Fiscal Year 2002 (September 30<sup>th</sup>, 2002). This comparison also indicates an accurate data entry (for this period) to the GWD. We found that the plume areas in the GWD generally match the actual areas determined at the LBNL sites. However, the plume volumes in the GWD and calculated using the actual LBNL aquifer thickness and porosity data are different by a factor from 1/8 to 3.

To assess the degree of overestimating the calculated contaminant masses/activities, using the assumption of an evenly contaminant distribution over the entire plume volume, we used the results of observations of the chlorinated hydrocarbons at the Old Town plume of LBNL (LBNL, 2000). We estimated that individual chlorinated hydrocarbons occurred in 1% to 89% of the total plume area, with a median value of approximately 20%. We determined that the higher the contaminant concentration relative to other contaminants, the higher the proportion of the plume occupied by the contaminant. The analysis of the Old Town plume at LBNL indicates that the assumption of the evenly distributed contaminant concentrations over the entire plume may be applicable for the high contaminant concentrations, but is likely to lead to the overestimation of the mass of lower concentration contaminants by a factor from 100 to 200-400.

#### Literature cited in Section S2

- LBNL, 2000. Draft Final RCRA Facility Investigation Report, Environmental Restoration Program, Lawrence Berkeley National Laboratory, Berkeley, California, September 2000.
- LBNL, 2002. Quarterly Progress Report, 2<sup>nd</sup> Quarter Fiscal Year 2002 (January 1 to March 31, 2002 for the LBNL Hazardous Waste Facility Permit, Lawrence Berkeley National Laboratory, Berkeley, California, August 2002.
- LBNL, 2003. Quarterly Progress Report, 2<sup>nd</sup> Quarter Fiscal Year 2003 (January 1 to March 31, 2002 for the LBNL Hazardous Waste Facility Permit, Lawrence Berkeley National Laboratory, Berkeley, California, August 2003.

# S3. Multiple Factor Analysis and *k*-means Clustering of the Groundwater Plumes

The groups of plume characteristics were classified as main or supplementary for the MFA. The basic analysis included the following 5 groups of groundwater plume characteristics (see Table S1):

- Group 1. Identification of the presence (identified as 1) or absence (identified as 0) of contaminant groups.
- Group 2. Two categories of data are included in this group:
  - (a) Number of contaminant groups (Ngr) that are present at the site, and
  - (b) Contamination severity index (Sv), which we defined depending on the severity of contamination and complexity of remediation:
    - 1-sulfates (SO<sub>4</sub>) and/or nitrates (NO<sub>3</sub>), 2-CVOCs and/or fuels (Fl), 4-explosives (Expl), 8-tritium (H3), and 16-metals (M) and/or radioisotopes (RI).
- Group 3. Plume volumes (Vol), which are expressed as log10 of the plume volume (given in gallons),
- Group 4. Plume depths (Dp) and velocities (Vel), which are expressed as log10 of the plume depth (ft) and velocity (ft/yr), and
- Group 5. Climatic conditions, which were identified as dry or moist, using the identifiers 1 and 2, respectively (according to the map of DOE's climate zones—

  <a href="http://www.energycodes.gov/implement/pdfs/color\_map\_climate\_zones\_Mar03.pdf">http://www.energycodes.gov/implement/pdfs/color\_map\_climate\_zones\_Mar03.pdf</a>
  Groups 1, 2, and 3 are considered the main plume characteristics, and the Groups 4 and 5 are supplementary ones. Table S12 summarizes data groups used in the MFA calculations. In addition to the aforementioned analysis of 5 basic groups of plume characteristics, we also analyzed the carbon tetrachloride (CT) concentrations.

The CT data were presented as a ratio of its concentration in groundwater to the MCL. The results of the MFA and cluster analysis are summarized in Table S13 and Figure S9 for basic plume characteristics. The correlation matrix of the quantitative variables shows the overall low correlation between the various plume characteristics (Tables S13c). The correlation coefficient between the number of contaminant groups and the severity index is 0.583 for 124 plumes used for the analysis of the basic plume characteristics. From the results of the MFA, the variability of the basic plume characteristics can mostly be described by the first four factors (their cumulative variability is about 70%) (Figure S10a).

Table S13g and Figure S10b provide the contributions of different groups of data to the multiple factors. The contaminant severity and the number of contaminant groups provide a major contribution to the 1<sup>st</sup> factor. The types of contaminant groups and CT concentrations provide the major contribution to the 2<sup>nd</sup> factor. The contribution of the supplementary data (climate and plume depth and velocity) is insignificant. The 1<sup>st</sup> factor is mostly related to the presence of radioactive contaminants, and the 2<sup>nd</sup> factor is mostly related to the presence of sulfates, and to a lesser degree the presence of nitrates and metals.

The relationships between the groups of variables can be performed using the  $L_g$  and RV coefficients. The  $L_g$  coefficient is defined as the scalar product between the matrices associated with each group; the Lg of 0 corresponds to no relationship between the groups, and it increases when the relationship between the groups becomes stronger. The RV coefficient is defined as the quotient of the  $L_g$  coefficient and is determined as the product of the norms of the matrices associated with each group; the RV coefficients vary from 0 (no relationship between the groups) to 1 (a strong relationship between the groups) (Greenacre and Blasius. 2006). The strongest relationship is, as expected, between the types of contaminant groups and the contamination severity. The relationships between contaminant groups and the plume depth/velocity, and contaminant groups and climate are weak, and there is no a significant relationship with the plume volume. The k-means analysis was conducted using the first four factors of the MFA for the basic plume characteristics. The plumes classified into 5 clusters as given in Tables S13h,i.

As an example of the MFA and the cluster analysis using the concentration data, we analyzed the CT concentrations combined with the aforementioned 5 groups of basic plume characteristics. The CT data were presented as a ratio of CT concentration in groundwater to the MCL of CT. The CT group was identified as a main and quantitative group of data. The results of the MFA and *k*-means analysis including the CT concentration data are shown in Table S14 and Figure S11. The variability of basic plume characteristics and CT concentrations can be mostly described by the first three factors—cumulative variability exceeds 70% (Table S14d and Figure S11a). The correlation coefficient between the number of contaminant groups and the severity index 0.563 for 26 plumes used in the analysis of CT concentrations. The best correlation is between the plume depths and groundwater velocity. The correlation between the CT concentration and basic plume characteristics is low. Based on the *k*-means analysis of the first three factors of the MFA for the basic plume characteristics combined with CT concentration data, the plumes are classified into 5 clusters as given in Tables S14g,h.

#### Literature cited in Section S3

Greenacre and Blasius. 2006. Multiple Correspondence Analysis and Related Methods, Chapman & Hall/CRC Statistics in the Social and Behavioral Science. Volume 1.

Table S1. Data used in the MFA and cluster analysis of groundwater plume characteristics (see abbreviations at the bottom of the table)

| Plume name                    | Plume code | VOCs | FI  | Evnl | Mŧ   | НЗ           | RI  | SO4 | NO3  | Mar    | Sv       | Vol   | Dp           | Vel  | CI | CCI4 |
|-------------------------------|------------|------|-----|------|------|--------------|-----|-----|------|--------|----------|-------|--------------|------|----|------|
| Albuquerque Inhalation        | riume code | VOCS | • • | Lxbi | IVIL | ı            | IXI | 304 | 1403 | ivgi   | 30       | VOI   | υþ           | V CI | O  | CCIT |
|                               |            |      |     |      |      |              |     |     |      |        |          |       |              |      |    |      |
| Toxicology Laboratory -       | 44         | 0    |     | 0    | ^    | 0            | _   | 4   | 0    |        |          | 7.50  | 0.40         | 4.04 | 4  |      |
| Lagoon                        | 11         | 0    | 0   | 0    | 0    | 0            | 0   | 1   | 0    | 1      | 1        | 7.59  | 2.19         | 1.94 | 1  |      |
| Albuquerque Inhalation        |            |      |     |      |      |              |     |     |      |        |          |       |              |      |    |      |
| Toxicology Laboratory -       |            | _    |     | _    | _    | _            |     |     | _    |        |          |       |              |      |    |      |
| Diesel                        | 12         | 0    | 1   | 0    | 0    | 0            |     | 0   | 0    | 1      | 2        | 5.88  | 2.19         | 1.94 | 1  |      |
| Ambrosia Lake                 | 133        | 0    | 0   | 0    | 1    | 0            | 1   | 0   | 1    | 3      | 16       |       | 2.00         | 1.18 | 1  |      |
| Amchitka - Long Shot          | 8          | 0    | 0   | 0    | 1    | 1            | 1   | 0   | 0    | 3      | 16       |       | 3.36         | 1.00 | 2  |      |
| Amchitka- Milrow              | 9          | 0    | 0   | 0    | 1    | 1            | 1   | 0   | 0    | 3      | 16       |       | 3.60         | 1.00 | 2  |      |
| Amchitka - Cannikin           | 10         | 0    | 0   | 0    | 1    | 1            | 1   | 0   | 0    | 3      | 16       |       | 3.77         | 1.00 | 2  |      |
| Argonne Lab - 317             | 6          | 1    | 0   | 0    | 0    | 0            | 0   | 0   | 0    | 1      | 2        | 6.95  | 1.54         | 1.57 | 1  |      |
| Argonne Lab - 319             | 7          | 1    | 0   | 0    | 0    | 1            | 0   | 0   | 0    | 2      | 8        | 6.60  | 1.30         | 1.57 | 1  |      |
| Ashtabula                     | 134        | 1    | 0   | 0    | 1    | 0            | 1   | 1   | 1    | 5      | 16       | 6.18  | 1.48         | 0.60 | 2  |      |
| BNL - OU V VOC                | 13         | 1    | 0   | 0    | 1    | 1            | 0   | 0   | 0    | 3      | 16       | 7.58  | 2.18         | 2.48 | 2  |      |
|                               |            |      |     |      |      |              |     |     |      |        |          |       |              |      |    |      |
| BNL -Sr90 - Chemical Holes    | 14         | 0    | 0   | 0    | 0    | 0            | 1   | 0   | 0    | 1      | 16       | 7.22  | 1.48         | 1.40 | 2  |      |
| BNL -HFBR Tritium             | 15         | 1    | 0   | 0    | 0    | 1            | 0   | 0   | 0    | 2      | 8        | 6.95  | 1.70         | 2.48 | 2  |      |
| BNL -OUT VOC                  | 178        | 1    | 0   | 0    | 0    | 1            | 1   | 0   | 0    | 3      | 16       | 8.77  | 1.30         | 2.48 | 2  |      |
| BNL -OU I/IV VOC              | 179        | 1    | 0   | 0    | 0    | 1            | 0   | 0   | 0    | 2      | 8        | 7.47  | 1.85         | 2.48 | 2  |      |
| BNL -Sr-90 - BGGR             | 180        | 1    | 0   | 0    | 0    | 0            | 1   | 0   | 0    | 2      | 16       | 8.65  | 1.78         | 1.40 | 2  |      |
| BNL -Sr-90 Former HWMF        | 181        | 1    | 0   | 0    | 0    | 1            | 1   | 0   | 0    | 3      |          | 8.86  | 1.30         | 1.40 | 2  |      |
| BNL -OU VI VOC                | 189        | 1    | 0   | 0    | 0    | 0            | 0   | 0   | 0    | 1      | 2        | 8.30  | 1.95         | 2.48 | 2  |      |
| BNL -Sr-90 Waste              | 100        |      | -   | - 0  |      |              |     |     |      |        |          | 0.50  | 1.55         | 2.70 |    |      |
| Concentration Facility        | 190        | 1    | 0   | 0    | 0    | 1            | 1   | 0   | 0    | 3      | 16       | 8.53  | 1.48         | 1.40 | 2  |      |
| BNL -OU III VOC               | 190        | 1    | 0   | 0    | 0    | _ <u></u>    | 0   | 0   | 0    | 2      | 8        | 9.73  | 1.70         | 2.48 | 2  |      |
| Canonsburg                    |            | 0    | _   | 0    | 1    | 0            | 1   | 0   | 0    |        | -        |       |              | 2.40 |    |      |
| Central Nevada Test Area      | 135<br>16  |      | 0   | _    | 1    | 1            | 1   |     | 0    | 3      | 16<br>16 | 7.77  | 1.30<br>3.51 | 2.00 | 2  |      |
|                               |            | 0    | 0   | 0    |      |              |     | 0   | _    |        |          | 8.30  |              | 2.00 |    |      |
| Durango                       | 136        | 0    | 0   | 0    | 1    | 0            | 1   | 0   | 0    | 2      | 16       | 7.73  | 2.00         | 4 70 | 1  |      |
| ETEC-1, FSDF                  | 17         | 1    | 1   | 0    | 1    | 1            | 1   | 0   | 0    | 5      | 16       | 7.48  | 2.48         | 1.70 | 1  |      |
| ETEC-2, Bldg. 56 Landfill     | 18         | 1    | 0   | 0    | 1    | 0            | 1   | 0   | 0    | 3      | 16       | 10.54 | 2.48         | 1.70 | 1  |      |
| ETEC-3, RMHF                  | 19         | 1    | 0   | 0    | 1    | 1            | 1   | 0   | 0    | 4      | 16       | 10.41 | 2.36         | 1.70 | 1  |      |
| Falls City                    | 137        | 0    | 0   | 0    | 1    | 0            | 1   | 0   | 1    | 3      | 16       |       | 2.30         | 2.30 | 2  |      |
| Fernald-Great Miami Aquifer   | 138        | 1    | 0   | 0    | 1    | 0            | 1   | 0   | 1    | 4      | 16       | 9.30  |              | 3.00 | 2  |      |
| Gasbuggy                      | 20         | 0    | 0   | 0    | 1    | 1            | 1   | 0   | 0    | 3      | 16       | 10.30 | 3.63         | 0.00 | 1  |      |
| Gnome-Coach                   | 21         | 0    | 0   | 0    | 1    | 1            | 1   | 0   | 0    | 3      | 16       | 8.60  | 3.08         | 2.00 | 1  |      |
|                               |            |      |     |      |      |              |     |     |      |        |          |       |              |      |    |      |
| Grand Junction Project Office | 141        | 0    | 0   | 0    | 1    | 0            | 1   | 0   | 0    | 2      | 16       | 9.00  |              |      | 1  |      |
| Grand Junction (UMTRA)        | 142        | 0    | 0   | 0    | 1    | 0            | 1   | 0   | 0    | 2      | 16       | 7.64  | 1.70         |      | 1  |      |
| Green River                   | 143        | 0    | 0   | 0    | 1    | 0            | 1   | 0   | 1    | 3      | 16       | 7.40  | 1.48         | 2.48 | 1  |      |
| Gunnison                      | 144        | 0    | 0   | 0    | 1    | 0            | 1   | 0   | 0    | 2      | 16       | 6.00  | 2.00         | 2.30 | 1  |      |
| Hanford - 100-HR-3 (H)        | 22         | 0    | 0   | 0    | 1    | 1            | 1   | 0   | 1    | 4      | 16       | 6.18  | 2.00         | 3.70 | 1  |      |
| Hanford - 100-HR-3 (D/DR      |            |      |     |      |      |              |     |     |      |        |          |       |              |      |    |      |
| Area)                         | 23         | 0    | 0   | 0    | 1    | 1            | 0   | 1   | 0    | 3      | 16       | 6.00  | 2.00         | 3.70 | 1  |      |
| Hanford - 100-KR-4            | 24         | 0    | 0   | 0    | 1    | 1            |     | 0   | 1    | 4      |          | 7.00  | 2.00         | 3.70 | 1  |      |
| Hanford - 100-NR-2            | 25         | 0    |     | 0    | 1    | 1            |     | 1   | 1    |        | 16       | 6.60  |              | 3.70 |    |      |
| Hanford - 200-UP-1            | 26         | 1    |     | 0    | 0    |              |     | 0   | 1    | 4      |          | 5.95  | 2.40         | 3.00 |    | 130  |
| Hanford - 200-ZP-1            | 27         | 1    |     | 0    | 0    | 1            | 1   | 0   | 1    | 4      |          | 5.70  |              |      | _  | 6900 |
| Hanford - 100-BC-5            | 28         | 0    |     | 0    | 1    | <del>_</del> | _   | 0   | 1    | 4      | _        | 5.13  |              | 2.30 |    | 3000 |
| Hanford - 200-BP-5            | 29         | 0    |     | 0    | 0    | 1            | 1   | 0   | 1    | 3      |          | 5.13  | 2.40         | 3.07 | 1  |      |
| Hanford - 300-FF-5            | 30         | 1    | _   | 0    | 0    | 1            | 1   | 0   | 1    | 4      |          | 5.88  | 2.00         | 3.70 |    |      |
| Hanford - 100-FR-3            | 31         | 1    | 0   | 0    | 1    | _ <u>'</u>   | 1   | 0   | 1    | 5      | _        | 7.94  | 2.00         | 3.22 |    |      |
|                               |            |      | _   | -    |      | 1            |     | 0   |      | 5<br>4 | _        |       |              |      |    |      |
| Hanford - 200-PO-1            | 32         | 0    | _   | 0    | 1    |              | 1   | _   | 1    |        | 16       | 7.85  | 2.40         | 3.00 |    |      |
| INL - WAG-1                   | 33         | 1    | 0   | 0    | 0    | 1            | 1   | 0   | 0    | 3      |          | 7.47  | 2.32         | 3.30 | _  |      |
| INII MAAAAAA                  |            |      | 0   | 0    | 1    | 1            | 0   | 0   | 0    | 2      | 16       | 7.55  | 1.90         | 3.30 | 1  |      |
| INL - WAG-2                   | 34         | 0    |     |      |      |              |     |     | _    |        |          |       |              |      |    |      |
| INL - WAG-3                   | 35         | 0    | 0   | 0    | 0    | 1            | 1   | 0   | 0    | 2      | 16       | 8.39  | 2.65         | 3.30 | 1  |      |
|                               |            |      | 0   |      |      |              |     |     | _    | 3      | 16       |       |              |      | 1  | 6    |

| Kansas Plant - Blue River   | 38       | 1   | 1             | 0 | 0 | 0          | 0 | 0 | 0 | 2      | 2             | 7.77         | 1.48         | 3.48         | 2 |      |
|-----------------------------|----------|-----|---------------|---|---|------------|---|---|---|--------|---------------|--------------|--------------|--------------|---|------|
| Kansas Plant - Indian Creek | 39       | 1   | 0             | 0 | 0 | 0          | 0 | 0 | 0 | 1      | 2             | 5.83         | 1.60         | 3.06         | 2 |      |
| Lakeview                    | 145      | 0   |               | 0 | 1 | 0          | 0 | 1 | 0 | 2      | 16            | 6.88         | 1.60         | 2.30         | 1 |      |
| LBNL - B-51/64              | 41       | 1   | 1             | 0 | 1 | 0          | 0 | 0 | 0 | 3      | 16            | 8.14         | 1.00         |              | 1 | 12   |
| LBNL - B-71                 | 42       | 1   | 0             | 0 | 0 | 0          | 0 | 0 | 0 | 1      | 2             | -            | 1.30         | 1.00         | 1 |      |
| LBNL - B-7E                 | 42       | 0   |               | 0 | 0 | 0          | 0 | 0 | 0 | 1      | 2             | 8.31<br>6.53 | 1.40         | 1.00         | 1 |      |
| LBNL - Old Town             | 43       | 1   | 1             | 0 | 0 | 0          | 0 | 0 | 0 | 2      | 2             | 8.08         | 1.48         | 1.00         | 1 | 3422 |
| LBNL - B-75                 |          |     | $\rightarrow$ | - |   | 1          |   |   | _ |        | $\rightarrow$ |              | _            |              | 1 | 3422 |
| LBNL - B-73                 | 45<br>46 | 1   | -             | 1 | 0 | 0          | 0 | 0 | 0 | 3<br>1 | 8             | 8.05<br>7.80 | 1.48<br>1.08 | 1.70<br>1.70 | 1 |      |
| LBNL - B-37                 | 46       | 1   | $\overline{}$ | 0 | 0 | 0          | 0 | 0 | 0 | 1      | 2             | 8.29         | 1.48         | 1.00         | 1 |      |
| LBNL - Test Lab/Central Lab | 41       | - 1 | U             | U | U | U          | U | U | U | - !    |               | 0.29         | 1.40         | 1.00         | - |      |
| Area                        | 226      | 1   | o             | o | 0 | 0          | 0 | 0 | 0 | 1      | 2             | 7.52         | 1.08         | 1.70         | 1 |      |
| LBNL - B-51L                | 220      | 1   | 1             | 0 | 0 | 0          | 0 | 0 | 0 | 2      | 2             | 6.67         | 1.08         | 1.70         | 1 |      |
| LBNL - B-76 Area            | 228      | 1   | 1             | 0 | 0 | 1          | 0 | 0 | 0 | 3      | 8             |              | 1.30         | 1.70         | 1 |      |
| LLNL -TFA-1B                | 48       | 1   | -             | 0 | 1 | 0          | 0 | 1 | 0 | 3      |               | 7.84<br>7.14 | 2.10         |              | 1 |      |
| LUNL -TFB-1B                | 40       | 1   | 0             | 0 | 1 | 0          | 0 | 0 | 0 | 2      | 16            | 7.14         | 1.90         | 1.85         | 1 | 2    |
| LLNL-TFC-SE-1B              | -        |     | 0             | _ | 1 | 0          | - |   | - |        |               | -            |              |              |   |      |
| LLNL -TFD-W-1B              | 50<br>51 | 1   | 0             | 0 | 1 | 0          | 0 | 0 | 0 | 2      | 16            | 7.62         | 1.95         | 1.85         | 1 |      |
| LLNL -TFE-E-2               | 51<br>52 | 1   | 0             | 0 | 0 | 1          | 0 | 1 | 1 | 3<br>4 | 16<br>8       | 7.03         | 1.78<br>2.00 | 1.78<br>1.85 | 1 |      |
| LLNL -TF5475N-3A            | 53       | 1   |               | 0 | 0 | _ <u>'</u> | 0 | 0 | 0 | 2      | 8             | 7.47         | 1.98         | 1.60         | 1 | 27   |
| LLNL -TF5475-S-3A           | 54       | 1   | 0             | - | 0 | 1          | 0 | 0 | 0 | 2      |               | 7.24         | 2.02         |              | 1 | 14   |
| LLNL-TFG-1B                 | 55<br>55 | 1   | -             | 0 | 1 | _ <u>'</u> | 0 | 0 | 0 | 3      | 8<br>16       | 6.87         | 2.02         | 1.60<br>1.85 | 1 | 14   |
| LLNL -B292-1B               | 56       | 0   | -             | 0 | 0 | 1          | 0 | 0 | 0 | 1      | 8             | 6.86         | 1.70         |              | 1 |      |
| LLNL -T5475-2               | 57       | 1   | 0             | 0 | 1 | 1          | 0 | 1 | 0 | 4      | 16            | 7.63         | 2.00         | 1.85         | 1 | 3    |
| LLNL -TF518-5               | 58       | 1   | -             | 0 | 1 | 1          | 0 | 1 | 1 | 5      | 16            | 7.65         | 2.00         | 1.85         | 1 | 150  |
| LLNL-TFA-2                  | 192      | 1   |               | 0 | 1 | 0          | 0 | 1 | 0 | 3      | 16            | 7.32         | 2.02         | 1.85         | 1 | 130  |
| LLNL -TFA-3A                | 193      | 1   |               | 0 | 1 | 0          | 0 | 1 | 1 | 4      | 16            | 6.05         | 2.16         | 1.65         | 1 | 3    |
| LLNL -TFB-2                 | 194      | 1   | 0             | 0 | 1 | 0          | 0 | 1 | 1 | 4      | 16            | 6.92         | 2.20         | 1.85         | 1 | 2    |
| LLNL -TFC-1B-TCE            | 195      | 1   |               | 0 | 1 | 0          | 0 | 1 | 1 | 4      | 16            | 7.97         | 1.95         | 1.85         | 1 |      |
| LLNL -TFD-NE-2              | 196      | 1   | 0             | 0 | 0 | 0          | 0 | 1 | 0 | 2      | 2             | 7.43         | 2.13         | 1.78         | 1 |      |
| LLNL -TFD-ETC-N-2           | 197      | 1   | 0             | 0 | 0 | 0          | 0 | 1 | 1 | 3      | 2             | 6.61         | 1.98         | 1.85         | 1 | 10   |
| LLNL -TFD-SE-2              | 198      | 1   | 0             | 0 | 0 | 0          | 0 | 1 | 1 | 3      | 2             | 7.65         | 2.02         | 1.85         | 1 |      |
| LLNL -TFD-NE-3A             | 199      | 1   |               | 0 | 0 | 0          | 0 | 1 | 0 | 2      | 2             | 7.17         | 2.15         | 1.78         | 1 |      |
| LLNL -TFD-ETC-S-3A          | 200      | 1   | _             | 0 | 0 | 0          | 0 | 1 | 1 | 3      | 2             | 6.63         | 2.06         | 1.70         | 1 | 1    |
| LLNL -TFD-S-3A              | 201      | 1   | 0             | 0 | 1 | 0          | 0 | 1 | 1 | 4      | 16            | 6.97         | 2.19         | 1.70         | 1 |      |
| LLNL -TFD-ETC-N-3A/3B       | 202      | 1   |               | 0 | 0 | 0          | 0 | 1 | 0 | 2      | 2             | 9.87         | 2.08         | 1.70         | 1 | 89   |
| LLNL -TFD-3B                | 203      | 1   | -             | 0 | 0 | 1          | 0 | 1 | 1 | 4      | 8             | 7.80         | 2.18         | 1.70         | 1 | 8    |
| LLNL -TFD-HEL-3B            | 204      | 1   | 0             | 0 | 0 | 0          | 0 | 1 | 1 | 3      | 2             | 8.93         | 2.08         | 1.48         | 1 | 22   |
| LLNL -TFD-HEL-4             | 205      | 1   | 0             | 0 | 1 | 0          | 0 | 1 | 1 | 4      | 16            | 7.65         | 2.10         | 1.85         | 1 | 7    |
| LLNL -TFD-SE-4              | 206      | 1   | -             | 0 | 0 | 0          | 0 | 1 | 1 | 3      | 2             | 7.07         | 2.15         | 1.85         | 1 | 1    |
| LLNL -TFD-5                 | 207      | 1   | 0             | 0 | 0 | 0          | 0 | 1 | 1 | 3      | 2             | 5.43         | 2.32         | 1.78         | 1 | 1    |
| LLNL -TFD-SE-5              | 208      | 1   | 0             | 0 | 0 | 0          | 0 | 1 | 1 | 3      | 2             | 9.59         | 2.24         | 1.85         | 1 |      |
| LLNL -TFD-S-5               | 209      | 1   | 0             | 0 | 0 | 0          | 0 | 1 | 1 | 3      | 2             | 6.65         | 2.33         | 1.85         | 1 |      |
| LLNL -TFE-2                 | 210      | 1   | 0             | 0 | 0 | 0          | 0 | 0 | 0 | 1      | 2             | 7.83         | 2.00         | 1.78         | 1 |      |
| LLNL -B419-3A               | 211      | 1   | 0             | 0 | 0 | 1          | 0 | 1 | 1 | 4      | 8             | 5.27         | 2.02         | 1.60         | 1 | 61   |
| LLNL -TFE-SW-3B             | 212      | 1   | -             | 0 | 1 | 1          | 0 | 1 | 1 | 5      | 16            | 6.61         | 2.18         |              | 1 | 4    |
| LLNL -B419-3B               | 213      | 1   |               | 0 | 0 | 0          | 0 | 1 | 0 | 2      | 2             | 6.97         | 2.06         |              | 1 |      |
| LLNL -TFE-E-4               | 214      | 1   | -             | 0 | 1 | 1          | 0 | 1 | 1 | 5      | -             | 7.37         | 2.15         | 1.85         | 1 | 13   |
| LLNL -TF518-Perched         | 215      | 1   | -             | 0 | 0 | 0          | 0 | 1 | 1 | 3      |               | 6.70         | 1.52         |              | 1 |      |
| LLNL -TF5475-5              | 216      | 1   | 0             | 0 | 1 | 1          | 0 | 1 | 1 | 5      | 16            | 6.85         | 2.10         | 1.40         | 1 | 10   |
| LLNL -TFC-N-1B              | 217      | 1   | 0             | 0 | 1 | 0          | 0 | 1 | 0 | 3      | 16            | 6.00         | 1.95         | 1.85         | 1 |      |
| LLNL -TFG-S-1B              | 218      | 1   |               | 0 | 1 | 1          | 0 | 1 | 0 | 4      |               | 6.30         | 2.02         | 1.78         | 1 |      |
| LLNL -TFD-ETC-S-2           | 219      | 1   | 0             | 0 | 0 | 0          | 0 | 1 | 1 | 3      | 2             | 7.00         | 2.00         | 1.85         | 1 | 3    |

| LINL Site 300 - CGSA  Sep 1 0 0 0 0 0 0 0 1 2 7,30 1,30 3,00 1  LINL Site 300 - BB34 Core  60 1 0 0 0 0 0 0 0 1 2 2 7,30 1,30 3,00 1  LINL Site 300 - PI16 Landfill 61 1 0 1 0 1 0 0 0 0 0 0 1 2 2 7,00 1,30 2,57 1  LINL Site 300 - PI16 Landfill 61 1 0 0 1 0 0 0 0 0 1 1 2 2 7,00 1,30 2,57 1  LINL Site 300 - PI16 Landfill 61 1 0 0 1 0 0 0 0 0 1 1 2 2 7,00 1,30 2,57 1  LINL Site 300 - PI16 Landfill 61 1 0 0 1 0 0 0 0 0 1 1 2 2 7,00 1,30 2,57 1  LINL Site 300 - PI16 Landfill 61 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1  LINL Site 300 - BB50 64 0 0 0 0 0 0 1 1 0 0 1 3 16 10,00 1,30 2,57 1  LINL Site 300 - BB50 64 0 0 0 0 0 0 1 1 0 0 1 3 16 10,00 1,30 2,57 1  LINL Site 300 - BB50 64 0 0 0 0 0 0 0 0 0 1 3 1 0 10,00 2,77 1  LINL Site 300 - BB50 65 1 0 0 0 0 0 0 0 0 0 1 3 1 0 10,00 2,77 1  LINL Site 300 - BB50 66 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 2 2 200 2,57 1  LINL Site 300 - BB50 66 1 0 0 0 0 0 0 0 0 1 1 2 2 4 9,41 1,40 2,00 1  LINL Site 300 - BB51 69 0 0 0 0 0 0 0 0 0 1 1 2 4 9,41 1,40 2,00 1  LINL Site 300 - BB51 1 0 0 0 0 0 0 0 0 1 1 2 4 9,41 1,40 2,00 1  LINL Site 300 - BB51 2 0 0 0 0 0 0 0 0 0 0 1 2 2 8,76 1,30 30 1  LINL Site 300 - BE50 8 2 2 0 0 0 1 0 0 0 0 0 0 0 1 2 2 8,76 1,30 30 1  LINL Site 300 - BE50 8 2 2 0 0 0 1 0 0 0 0 0 0 0 1 2 2 8,76 1,30 30 1  LINL Site 300 - BE50 8 2 2 0 0 0 1 0 0 0 0 0 0 0 0 1 2 2 8,76 1,30 30 1  LINL Site 300 - BE50 8 2 2 0 0 0 1 0 0 0 0 0 0 0 0 1 2 2 8,76 1,30 30 1  LINL Site 300 - BE50 8 2 2 0 0 0 1 0 0 0 0 0 0 0 0 1 2 2 8,76 1,30 30 1  LINL Site 300 - BE50 8 2 2 0 0 0 1 0 0 0 0 0 0 0 0 1 2 2 8,76 1,30 30 1  LINL Site 300 - BE50 8 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0 1 2 2 8,76 1,30 30 1  LINL Site 300 - BE50 8 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                      |                                 |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------|----|---|---|-----|-----|---------------|---|-----|---|---------------|-------------|------|---------------|---------------|----|
| LINL Site 300 - B834 Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| Area 60 1 0 0 0 0 0 0 0 1 2 2 7.00 1.30 2.57 1  LLNL Site 300 - Pit 6 Landfill 61 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 4 8 7.18 1.40 2.00 1  LLNL Site 300 - Pit 6 Landfill 61 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0  |                                 | 59   | 1  | 0 | 0 | 0   | 0   | 0             | 0 | 0   | 1 | 2             | 7.30        | 1.30 | 3.00          | 1             |    |
| LINL Site 300 - PIE GLANDHIII 61 1 0 1 1 0 1 1 0 1 1 0 1 1 4 8 7.18 1.40 3.00 1 1  LINL Site 300 - HEPA B815 62 1 0 0 0 0 0 0 1 1 2 2 6 6.83 1.40 2.00 1 1  LINL Site 300 - PIE 3835 63 1 0 1 1 0 1 1 0 1 1 5 16 6 6.60 1.00 2.27 1 1  LINL Site 300 - PIE 3835 63 1 0 0 1 0 0 1 1 0 1 1 0 1 1 3 16 1 0 0 1.00 1.18 2.57 1 1  LINL Site 300 - B830 63 65 61 1 0 1 1 0 0 1 1 1 0 0 1 3 16 1 0 0 1.18 2.57 1 1  LINL Site 300 - B830 63 65 61 1 0 1 1 0 0 0 0 0 0 0 1 3 1 1 0 0 1.18 2.57 1 1  LINL Site 300 - B801 64 1 0 0 0 0 0 0 0 0 0 1 2 1 7.77 1.70 2.57 1 1  LINL Site 300 - B801 7 1 8 7 1 1 1 0 0 0 0 0 0 0 0 1 1 2 7.77 1.70 2.57 1 1  LINL Site 300 - B801 8 1 0 0 0 0 0 0 0 0 0 0 1 1 2 7.77 1.70 2.57 1 1  LINL Site 300 - B801 8 1 0 0 0 0 0 0 0 0 0 0 1 1 2 7.77 1.70 2.57 1 1  LINL Site 300 - B801 8 1 0 0 0 0 0 0 0 0 0 0 1 1 2 7.77 1.70 2.57 1 1  LINL Site 300 - B801 8 1 0 0 0 0 0 0 0 0 0 0 1 1 2 4 9.41 1.40 2.00 1 1  LINL Site 300 - B801 8 1 0 0 0 0 0 0 0 0 0 1 1 2 4 9.41 1.40 2.00 1 1  LINL Site 300 - B801 8 1 0 0 0 0 0 0 0 0 0 0 1 1 2 4 9.41 1.40 2.00 1 1  LINL Site 300 - B801 8 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 8 6.70 1.18 3.08 1 1  LINL Site 300 - FEFA Bum 9 221 1 0 0 0 0 0 0 0 0 0 1 2 4 7.78 1.70 2.57 1 1  LINL Site 300 - FEFA Bum 9 222 1 0 1 0 0 0 0 0 0 0 1 2 4 7.78 1.70 2.57 1  LINL Site 300 - FEFA Bum 9 222 1 0 1 0 0 0 0 0 0 0 0 1 2 4 7.78 1.70 2.57 1  LINL Site 300 - FEFA Bum 9 222 1 0 1 0 0 0 0 0 0 0 0 0 1 2 2 8 7.70 1.70 2.57 1  LINL Site 300 - FEFA Bum 9 2 2 1 0 1 0 0 0 0 0 0 0 0 0 1 2 2 8 7.70 1.70 2.57 1  LINL Site 300 - FEFA Bum 9 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| LINL Site 300 - PIE PA B815 62 1 0 0 0 0 0 0 1 1 2 2 6.83 1.40 2.00 1 1 LINL Site 300 - PIE 3A5 63 1 0 1 0 1 0 0 1 1 0 1 1 5 16 6.60 1.00 1.227 1 1 LINL Site 300 - B830 64 0 0 0 0 0 1 1 0 0 1 1 3 16 10.00 1.82 2.57 1 1 LINL Site 300 - B834 65 1 0 0 1 0 0 0 0 0 1 1 3 16 10.00 1.83 2.57 1 1 LINL Site 300 - B834 65 1 0 0 1 0 0 0 0 0 0 0 1 3 1 4 10.00 1.30 2.57 1 1 LINL Site 300 - B834 66 1 0 0 0 0 0 0 0 0 0 0 1 2 2 7.77 1.77 2.57 1 1 LINL Site 300 - B835 1 68 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 7.77 1.77 2.57 1 1 LINL Site 300 - B835 1 68 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 7.77 1.77 2.57 1 1 LINL Site 300 - B835 1 68 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 9.41 1.40 2.00 1 1 LINL Site 300 - B835 1 68 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 9.41 1.40 2.00 1 1 LINL Site 300 - B835 1 68 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 9.41 1.40 2.00 1 1 LINL Site 300 - B835 1 LINL Site | Area                            | 60   | 1  | 0 | 0 | 0   | 0   | 0             | 0 | 1   | 2 | 2             | 7.00        | 1.30 | 2.57          | 1             |    |
| LINL Site 300 - PIE PA B815 62 1 0 0 0 0 0 0 1 1 2 2 6.83 1.40 2.00 1 1 LINL Site 300 - PIE 3A5 63 1 0 1 0 1 0 0 1 1 0 1 1 5 16 6.60 1.00 1.227 1 1 LINL Site 300 - B830 64 0 0 0 0 0 1 1 0 0 1 1 3 16 10.00 1.82 2.57 1 1 LINL Site 300 - B834 65 1 0 0 1 0 0 0 0 0 1 1 3 16 10.00 1.83 2.57 1 1 LINL Site 300 - B834 65 1 0 0 1 0 0 0 0 0 0 0 1 3 1 4 10.00 1.30 2.57 1 1 LINL Site 300 - B834 66 1 0 0 0 0 0 0 0 0 0 0 1 2 2 7.77 1.77 2.57 1 1 LINL Site 300 - B835 1 68 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 7.77 1.77 2.57 1 1 LINL Site 300 - B835 1 68 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 7.77 1.77 2.57 1 1 LINL Site 300 - B835 1 68 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 9.41 1.40 2.00 1 1 LINL Site 300 - B835 1 68 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 9.41 1.40 2.00 1 1 LINL Site 300 - B835 1 68 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 9.41 1.40 2.00 1 1 LINL Site 300 - B835 1 LINL Site |                                 |      | _  |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| LINL Site 300 - Pits 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LLNL Site 300 - Pit 6 Landfill  | 61   | 1  | 0 | 1 | 0   | 1   | 0             | 0 | 1   | 4 | 8             | 7.18        | 1.40 | 3.00          | 1             |    |
| LINL Site 300 - Pits 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LINI Cita 200 LIEDA DO45        | 00   |    |   |   | •   | _   | _             | • |     | _ |               | 0.00        | 4 40 | 0.00          |               |    |
| LINL Site 300 - 8850   64   0   0   0   0   1   1   0   1   3   16   10.00   11.8   2.57   7    LINLS (18) 300 - 8854   66   1   0   1   0   0   0   0   0   1   3   4   10.00   103   2.57   7    LINLS (18) 300 - 8832   66   1   0   1   0   0   0   0   0   1   2   4   10.00   10.0   2.57   1    LINLS (18) 300 - 8833   88   1   0   0   0   0   0   0   0   1   2   7   170   2.57   1    LINLS (18) 300 - 8833   88   1   0   0   0   0   0   0   0   1   2   2   4   9.41   1.40   2.00   2.57   1    LINLS (18) 300 - 8851   10   0   0   0   0   0   0   0   1   2   4   9.41   1.40   2.00   1    LINLS (18) 300 - 6854   10   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |      |    | - |   |     |     | -             |   |     |   |               |             |      |               |               |    |
| LINL Site 300 - 8834 65 1 0 1 1 0 0 0 0 1 3 4 1 000 1.0 2.57 1 LINL Site 300 - 8830 F18 67 1 0 0 0 0 0 0 0 0 1 3 4 1 000 0.78 2.57 1 LINL Site 300 - 8801/P18 67 1 0 0 0 0 0 0 0 0 0 1 2 7.77 1.70 2.57 1 LINL Site 300 - 8831 68 1 0 0 0 0 0 0 0 0 1 2 7.77 1.70 2.57 1 LINL Site 300 - 8831 68 1 0 0 0 0 0 0 0 0 0 1 2 7.77 1.70 2.57 1 LINL Site 300 - 8851 69 0 0 0 0 0 0 0 0 0 0 0 1 2 7.77 1.70 2.57 1 LINL Site 300 - 8851 69 0 0 0 0 0 0 0 0 0 0 0 1 2 4 9.41 1.40 2.00 1 1 LINL Site 300 - 8851 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 8 8.76 1.30 3.00 1 LINL Site 300 - 8854 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 8 8.76 1.30 3.00 1 LINL Site 300 - 8858 69 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 8 8.76 1.30 3.00 1 LINL Site 300 - 8858 69 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 4 7.78 1.70 2.57 1 LINL Site 300 - PIt 1 Landfill 223 0 0 0 1 0 0 0 0 0 0 1 2 4 7.78 1.70 2.57 1 LINL Site 300 - PIt 2 Landfill 224 0 0 0 0 0 0 0 0 0 1 2 4 7.78 1.70 2.57 1 LINL Site 300 - PIt 2 Landfill 224 0 0 0 0 0 0 0 0 0 1 2 4 7.78 1.70 2.57 1 LINL Site 300 - 8830 2.55 1 0 0 1 0 1 0 0 0 0 1 1 1 6 6.70 1.70 2.57 1 LINL Site 300 - 8830 2.55 1 0 0 1 0 1 0 0 0 0 0 1 1 1 6 6.70 1.70 2.57 1 LINL Site 300 - 8830 2.55 1 0 0 1 0 1 0 1 0 0 0 0 1 1 1 6 6.70 1.70 2.57 1 LINL Site 300 - 8830 2.55 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |      |    | - |   |     |     |               | - |     |   |               |             |      |               |               |    |
| LINL. Site 300 - B832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |      |    | _ |   |     |     |               |   |     |   |               |             |      |               | _             |    |
| LINL Site 300 - B801/PIR 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| LINL Site 300 - B835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |      |    | - |   |     |     |               | - |     | - |               |             |      | -             | _             |    |
| LINL Site 300 - B851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |      |    | _ |   |     |     |               | - |     |   |               |             |      |               |               |    |
| Lagoons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LLNL Site 300 - B851            |      |    | - | - |     |     |               | - | -   |   |               |             | _    |               |               |    |
| LINL Site 300 - CGSA Nonthern Plume 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LLNL Site 300 - HEPA HE         |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| Northern Plume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lagoons                         | 70   | 0  | 0 | 1 | 0   | 0   | 0             | 0 | 1   | 2 | 4             | 9.41        | 1.40 | 2.00          | 1             |    |
| LINL Site 300 - EGSA Debris Burial Trenches  221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LLNL Site 300 - CGSA            |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| Burial Trenches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 220  | 1  | 0 | 0 | 0   | 0   | 0             | 0 | 0   | 1 | 2             | 8.76        | 1.30 | 3.00          | 1             |    |
| LENL Site 300 - HEPA Burn Pit 222 1 0 1 0 1 0 0 0 0 1 3 4 7.70 1.96 2.00 1  LLNL Site 300 - Pit 1 Landfill 223 0 0 0 1 0 0 0 0 1 1 3 4 7.70 1.96 2.00 1  LLNL Site 300 - Pit 2 Landfill 224 0 0 0 0 0 0 0 0 1 1 1 1 6.70 1.70 2.57 1  LLNL Site 300 - B830 225 1 0 0 1 0 0 0 0 1 1 3 4 8.28 0.78 2.57 1  LLNL Site 300 - B830 225 1 0 0 1 0 1 0 0 0 0 1 1 3 4 8.28 0.78 2.57 1  LLNL Site 300 - B830 225 1 0 0 1 1 0 0 0 0 1 1 3 4 8.28 0.78 2.57 1  LLNL Site 300 - B830 225 1 0 0 1 1 0 1 0 1 3 4 8.28 0.78 2.57 1  LLNL Site 300 - B830 225 1 0 0 1 1 1 1 1 0 0 1 1 3 4 8.28 0.78 2.57 1  LLNL Site 300 - B830 225 1 0 0 1 1 1 1 1 0 0 1 1 3 16 2.88 0.78 2.57 1  LLNL Site 300 - B830 225 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LLNL Site 300 - EGSA Debris     |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| Pit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | 221  | 1  | 0 | 0 | 0   | 0   | 0             | 0 | 0   | 1 | 2             | 6.70        | 1.18 | 3.08          | 1             |    |
| LLNI Site 300 - Pirt Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |      |    |   |   |     |     |               |   |     |   |               | _           |      |               |               |    |
| LINI. Site 300 - Pit 2 Landfill  224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pit                             | 222  | 1  | 0 | 1 | 0   | 0   | 0             | 0 | 1   | 3 | 4             | 7.70        | 1.95 | 2.00          | _1            |    |
| LINI. Site 300 - Pit 2 Landfill  224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LINI Site 200 Bit 11            | 222  | _  | _ |   | _   | _   |               | _ |     | _ |               | 7 70        | 4 70 | 2 5 -         | ار            |    |
| LINL Site 300 - B830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LLINE Site 300 - Pit 1 Landfill | 223  | 0  | 0 | 1 | 0   | 0   | 0             | 0 | 1   | 2 | 4             | 7.78        | 1.70 | 2.57          | _1            |    |
| LINL Site 300 - B830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LINI Sito 200 Bit 0 L = = = #5" | 004  | _  | _ |   | •   | _   | _             | _ |     | _ |               | 6.70        | 1 70 | 2.57          | ار            |    |
| Lios Alamos National Laboratory (TA-16 - Deep Groundwater Only)  40 0 0 1 1 1 1 1 0 0 1 5 16 2.88 2.39 1 Maybell 146 0 0 0 0 1 0 1 0 1 1 3 16 2.00 1 1 Maybell 147 0 0 0 1 1 0 1 1 3 16 2.00 1 1 Mamisburg Project - OU 1 Mainisburg Project - OU 1 Mainisburg Project - OU 1 Mainisburg Project - Tribium 150 1 0 0 0 1 1 0 0 0 2 8 9.81 1.40 2.18 2 Mainisburg Project - Tribium 150 1 0 0 0 1 1 0 0 0 2 8 9.81 1.40 2.18 2 Mainisburg Project - Tribium 150 1 0 0 0 1 1 0 0 0 0 2 8 1.40 2.18 2 Mainisburg Project - Tribium 150 1 0 0 0 0 1 1 0 0 0 2 8 1.40 2.18 2 Mainisburg Project - Tribium 150 1 0 0 0 0 1 1 0 0 0 2 8 1.40 2.18 2 Mainisburg Project - Tribium 150 1 0 0 0 0 1 1 0 0 0 2 8 1.40 2.18 2 Mainisburg Project - Tribium 150 1 0 0 0 0 1 1 0 0 0 2 8 1.40 2.18 2 Monticello Remedial Action Project 148 0 0 0 1 0 1 0 0 0 2 8 1.40 2.18 2 Monticello Remedial Action Project 149 0 0 0 0 1 0 1 0 0 0 2 16 1.70 1 Monument Valley 149 0 0 0 0 0 0 0 0 1 1 1 2 1 1 1.90 2.08 1 Naturita 152 0 0 0 1 0 1 0 1 0 0 2 16 2.00 1.30 1 Naturita 152 0 0 0 1 0 1 0 1 0 0 2 16 2.00 1.30 1 Naw Rifle 72 0 0 0 1 1 0 1 0 1 0 1 2 1 0 2.00 1.30 1 Naw Rifle 72 0 0 0 0 1 0 1 0 1 0 0 2 16 3.30 1 NTS - Frenchman Flat 73 0 0 0 0 1 1 1 0 0 2 2 16 3.20 1 1 NTS - West Pahute Mesa 74 0 0 0 0 0 1 1 1 0 0 2 2 16 3.20 1 1 NTS - Valled Mesa 76 0 0 0 0 0 1 1 1 0 0 2 2 16 3.20 1 1 NTS - Central Pahute Mesa 76 0 0 0 0 1 1 1 0 0 0 2 16 3.20 1 1 NTS - Central Pahute Mesa 76 0 0 0 0 1 1 1 0 0 0 2 16 3.20 1 1 NTS - Rainer 178 1 0 0 0 1 1 1 0 0 0 2 16 8.90 2.00 2 2 0 GRNL - Central 78 1 1 0 0 1 1 1 0 0 0 2 16 8.90 2.00 2 2 0 GRNL - Frem Film Plant 84 1 1 0 0 0 0 0 1 1 1 0 0 2 16 8.90 2.00 3.00 2 0 GRNL - Sentral 84 1 1 0 0 0 0 0 0 1 1 0 0 2 16 8.40 2.00 3.00 2 0 GRNL - EFT P Main Plant 84 1 1 0 0 0 0 0 0 1 1 0 0 2 16 8.40 2.00 2.56 2 Paducah Plant - Group 155 1 0 0 0 0 0 1 1 0 0 0 2 16 8.41 2.00 2.56 2 Paducah Plant - World Wo |                                 |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| Laboratory (TA-16 - Deep Groundwater Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 225  | Į. | U | I | 0   | - 0 | U             | U | - 1 | 3 | 4             | 0.20        | 0.78 | 2.57          |               |    |
| Groundwater Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |      |    |   |   |     |     |               |   |     |   |               |             |      |               | 1             |    |
| Maybell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , ,                             | 40   | 0  | ٥ | 1 | 1   | 1   | 1             | 0 | 1   | 5 | 16            |             | 2 88 | 2 30          | 1             |    |
| Mexican Hat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 7,                            |      |    | _ |   |     |     |               |   |     |   | -             |             |      | 2.55          |               |    |
| Miamisburg Project - Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |      |    | _ | _ |     |     |               |   |     |   |               |             | 2.00 |               |               |    |
| Miamisburg Project - Well 411 Area  139 1 0 0 0 1 1 0 0 0 2 8 14.40 2  Miamisburg Project - Tritium 150 1 0 0 0 1 1 0 0 0 3 16 1.40 2  Miamisburg Project - Tritium Monument Valley VOCs 151 1 0 0 0 0 1 1 0 0 0 2 16 1.40 2  Miamisburg Project - Tributary Valley VOCs 151 1 0 0 0 0 1 0 0 0 2 8 1.40 2  Miamisburg Project - Tributary Valley VOCs 151 1 0 0 0 0 1 0 0 0 2 8 1.40 2  Monticello Remedial Action Project 148 0 0 0 0 1 0 1 0 0 0 2 16 1.70 1  Monument Valley 149 0 0 0 0 0 1 0 1 0 0 0 2 16 2.00 1.30 1  New Rifle 72 0 0 0 0 1 0 1 0 0 0 2 16 2.00 1.30 1  New Rifle 72 0 0 0 0 1 1 0 0 0 2 16 2.00 1.30 1  NTS - Frenchman Flat 73 0 0 0 0 1 1 0 0 0 2 16 3.30 1  NTS - Vucca Flat NTS - Central Pahute Mesa 74 0 0 0 0 0 1 1 0 0 0 2 16 3.30 1  NTS - Central Pahute Mesa 76 0 0 0 0 0 1 1 0 0 0 2 16 3.30 1  NTS - Central Pahute Mesa 77 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1  NTS - Remer  Mesa/Shoshone Mesa 153 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1  NTS - Remer  Mesa/Shoshone Mesa 153 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1  NTS - Remer  Mesa/Shoshone Mesa 153 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1  NTS - Remer  Mesa/Shoshone Mesa 153 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1  NTS - Remer  Mesa/Shoshone Mesa 153 0 0 0 0 0 1 1 0 0 0 2 16 3.20 0 0 1 1 0 0 0 2 16 3.20 0 0 0 0 0 0 1 1 0 0 0 2 16 3.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Miamisburg Project - OU 1       |      |    |   |   |     |     |               |   |     |   |               | 9.81        | 1.40 | 2.18          |               |    |
| Miamisburg Project - Tribium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Miamisburg Project - Well       |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| Miamisburg Project Tributary Valley VOCs 151 1 0 0 0 0 1 0 0 0 2 8 1.40 2.18 2  Monticello Remedial Action Project 148 0 0 0 0 1 0 1 0 0 0 2 16 1.70 1  Monument Valley 149 0 0 0 0 0 1 0 1 0 0 2 16 2.00 1.30 1  Naturita 152 0 0 0 0 1 0 1 0 1 0 0 2 16 2.00 1.30 1  New Rifle 72 0 0 0 0 1 0 1 0 1 0 1 3 16 2.90 1  NTS - Frenchman Flat 73 0 0 0 0 0 1 1 0 0 0 2 16 3.30 1  NTS - West Pahute Mesa 74 0 0 0 0 0 1 1 0 0 0 2 16 3.30 1  NTS - West Pahute Mesa 75 0 0 0 0 0 1 1 0 0 0 2 16 3.30 1  NTS - Climax Mine 77 0 0 0 0 0 1 1 0 0 0 2 16 3.30 1  NTS - Climax Mine 77 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1  NTS - Rainer Mesa/Shoshone Mesa 153 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1  NTS - Rainer Mesa/Shoshone Mesa 153 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1  NTS - Climax Mine 77 0 0 0 0 0 1 1 0 0 0 2 16 3.20 2  ORNL - Central 78 1 0 0 0 1 1 1 0 0 0 2 16 3.20 2  ORNL - Central 78 1 0 0 0 0 0 1 1 1 0 0 0 2 16 8.80 2.00 3.00 2  ORNL - Central 78 1 0 0 0 0 0 1 1 1 0 0 0 2 16 8.90 2.00 3.00 2  ORNL - West 80 0 0 0 0 0 1 1 0 0 0 2 16 8.90 2.00 3.00 2  ORNL - First Miner 10 0 0 0 0 1 1 0 0 0 2 16 8.90 2.00 3.00 2  ORNL - First Miner 11 0 0 0 0 0 0 1 1 0 0 0 2 16 8.90 2.00 3.00 2  ORNL - Bear Creek Valley 81 1 0 0 0 0 1 1 0 0 1 3 16 9.00 2.70 3.00 2  ORNL - Bear Creek Valley 83 1 0 0 0 0 0 1 0 0 1 0 0 1 2 16 8.46 2.00 2.00 3.00 2  ORNL - ETTP Main Plant 84 1 1 0 0 0 0 0 1 0 0 1 2 16 8.46 2.00 2.56 2  Paducah Plant - GW OU (NW Plume) 155 1 0 0 0 0 0 1 0 0 0 2 16 8.46 2.00 2.56 2  Paducah Plant - GW OU (SW Plume) 156 1 0 0 0 0 0 1 0 0 0 3 16 8.70 2.43 2.00 1  Pantex Plant - Northeast On- site Perched Aquifer 87 1 0 1 1 0 0 0 0 3 16 7.66 2.42 2.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                  | 411 Area                        | 139  | 1  | 0 | 0 | 0   | 1   | 0             | 0 | 0   | 2 | 8             |             | 1.40 |               | 2             |    |
| Miamisburg Project Tributary Valley VOCs 151 1 0 0 0 0 1 0 0 0 2 8 1.40 2.18 2  Monticello Remedial Action Project 148 0 0 0 0 1 0 1 0 0 0 2 16 1.70 1  Monument Valley 149 0 0 0 0 0 1 0 1 0 0 2 16 2.00 1.30 1  Naturita 152 0 0 0 0 1 0 1 0 1 0 0 2 16 2.00 1.30 1  New Rifle 72 0 0 0 0 1 0 1 0 1 0 1 3 16 2.90 1  NTS - Frenchman Flat 73 0 0 0 0 0 1 1 0 0 0 2 16 3.30 1  NTS - West Pahute Mesa 74 0 0 0 0 0 1 1 0 0 0 2 16 3.30 1  NTS - West Pahute Mesa 75 0 0 0 0 0 1 1 0 0 0 2 16 3.30 1  NTS - Climax Mine 77 0 0 0 0 0 1 1 0 0 0 2 16 3.30 1  NTS - Climax Mine 77 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1  NTS - Rainer Mesa/Shoshone Mesa 153 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1  NTS - Rainer Mesa/Shoshone Mesa 153 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1  NTS - Climax Mine 77 0 0 0 0 0 1 1 0 0 0 2 16 3.20 2  ORNL - Central 78 1 0 0 0 1 1 1 0 0 0 2 16 3.20 2  ORNL - Central 78 1 0 0 0 0 0 1 1 1 0 0 0 2 16 8.80 2.00 3.00 2  ORNL - Central 78 1 0 0 0 0 0 1 1 1 0 0 0 2 16 8.90 2.00 3.00 2  ORNL - West 80 0 0 0 0 0 1 1 0 0 0 2 16 8.90 2.00 3.00 2  ORNL - First Miner 10 0 0 0 0 1 1 0 0 0 2 16 8.90 2.00 3.00 2  ORNL - First Miner 11 0 0 0 0 0 0 1 1 0 0 0 2 16 8.90 2.00 3.00 2  ORNL - Bear Creek Valley 81 1 0 0 0 0 1 1 0 0 1 3 16 9.00 2.70 3.00 2  ORNL - Bear Creek Valley 83 1 0 0 0 0 0 1 0 0 1 0 0 1 2 16 8.46 2.00 2.00 3.00 2  ORNL - ETTP Main Plant 84 1 1 0 0 0 0 0 1 0 0 1 2 16 8.46 2.00 2.56 2  Paducah Plant - GW OU (NW Plume) 155 1 0 0 0 0 0 1 0 0 0 2 16 8.46 2.00 2.56 2  Paducah Plant - GW OU (SW Plume) 156 1 0 0 0 0 0 1 0 0 0 3 16 8.70 2.43 2.00 1  Pantex Plant - Northeast On- site Perched Aquifer 87 1 0 1 1 0 0 0 0 3 16 7.66 2.42 2.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| Tributary Valley VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 150  | 1  | 0 | 0 | 0   | 1   | 1             | 0 | 0   | 3 | 16            |             | 1.40 |               | 2             |    |
| Monticello Remedial Action Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · ,                             |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 151  | 1  | 0 | 0 | 0   | 1   | 0             | 0 | 0   | 2 | 8             |             | 1.40 | 2.18          | 2             |    |
| Monument Valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| Naturita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                               |      |    |   |   |     |     |               |   |     |   |               |             |      |               | $\overline{}$ |    |
| New Rifle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |      |    |   | _ |     |     |               |   |     |   |               |             |      |               |               |    |
| NTS - Frenchman Flat 73 0 0 0 0 0 1 1 1 0 0 0 2 16 3.30 1 1 NTS - West Pahute Mesa 74 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1 1 NTS - Yucca Flat 75 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1 1 NTS - Central Pahute Mesa 76 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1 1 NTS - Central Pahute Mesa 77 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1 1 NTS - Climax Mine 77 0 0 0 0 0 1 1 0 0 0 2 16 3.20 1 1 NTS - Climax Mine NTS - Rainer NEsa/Shoshone Mesa 153 0 0 0 0 1 1 0 0 0 2 16 3.20 1 1 NTS - Central Resa/Shoshone Mesa 153 0 0 0 0 1 1 1 0 0 0 2 16 3.20 1 1 NTS - Central Resa/Shoshone Mesa 153 0 0 0 0 1 1 1 0 0 0 2 16 3.20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |      |    | - | _ |     |     |               |   |     |   | $\overline{}$ |             |      | 1.30          | _             |    |
| NTS - West Pahute Mesa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |      |    | _ |   |     |     |               |   |     |   | -             |             |      |               | -             |    |
| NTS - Yucca Flat  75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |      | _  | - | _ |     |     |               |   |     |   | -             |             |      | $\overline{}$ |               |    |
| NTS - Central Pahute Mesa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |      |    | _ |   |     |     | $\overline{}$ | _ | _   |   |               |             |      |               | -             |    |
| NTS - Climax Mine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |      |    | _ |   |     |     |               |   |     |   |               |             |      | -             | -             |    |
| NTS - Rainer Mesa/Shoshone Mesa  153 0 0 0 1 1 0 0 1 1 0 0 2 16 1.48 1.48 1 0 RNL - Central 78 1 0 0 1 1 1 0 0 0 2 16 7.85 2.00 3.00 2 0 RNL East 79 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |      |    | - | - |     |     |               | - | -   |   | $\overline{}$ |             |      |               |               |    |
| Mesa/Shoshone Mesa         153         0         0         0         1         1         0         0         2         16         1.48         1.48         1           ORNL - Central         78         1         0         0         1         1         0         0         4         16         7.85         2.00         3.00         2           ORNL East         79         1         1         0         0         0         0         0         2         2         7.84         2           ORNL West         80         0         0         0         0         1         1         0         0         2         16         8.90         2.00         2         0         0         0         2         16         8.90         2.00         2         0         0         0         1         1         0         0         0         1         1         0         0         0         1         1         0         0         0         1         0         0         1         0         0         0         1         0         0         1         0         0         0         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |      |    | Ť |   |     |     |               |   |     |   |               |             | 0.20 |               | Ť             |    |
| ORNL - Central         78         1         0         0         1         1         1         0         0         4         16         7.85         2.00         3.00         2           ORNL East         79         1         1         0         0         0         0         0         0         2         2         7.84         2           ORNL Sear Creek Valley         81         1         0         0         0         1         1         0         0         2         2         7.84         2         2         0         0         2         0         0         0         0         0         0         0         0         1         1         0         0         0         1         1         0         0         0         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td>153</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>2</td> <td>16</td> <td></td> <td>1.48</td> <td>1.48</td> <td>1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 153  | 0  | 0 | 0 | 0   | 1   | 1             | 0 | 0   | 2 | 16            |             | 1.48 | 1.48          | 1             |    |
| ORNL West         80         0         0         0         1         1         0         0         2         16         8.90         2.00         2           ORNL - Melton Valley         81         1         0         0         0         1         1         0         0         3         16         7.35         2.00         3.00         2         30           ORNL - Y-12         82         1         1         0         1         0         1         5         16         9.00         2.70         3.00         2           ORNL - Bear Creek Valley         83         1         0         0         0         1         0         1         5         16         9.00         2.70         3.00         2           ORNL - ETTP Main Plant         84         1         1         0         0         0         1         0         0         3         16         4.70         1.48         0.00         2           ORNL - ETTP Main Plant         84         1         1         0         0         0         0         0         1         2         7.15         1.48         2.00         2           ORNL - ETTP Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ORNL - Central                  |      |    |   | 0 |     |     |               | 0 | 0   |   |               | 7.85        |      |               |               |    |
| ORNL - Melton Valley         81         1         0         0         1         1         0         0         3         16         7.35         2.00         3.00         2         30           ORNL - Y-12         82         1         1         0         1         0         1         5         16         9.00         2.70         3.00         2           ORNL - Bear Creek Valley         83         1         0         0         0         1         0         1         3         16         9.00         2.00         3.00         2           ORNL - ETTP Main Plant         84         1         1         0         0         1         0         0         3         16         7.80         1.30         2.00         2           ORNL - ETTP Main Plant         84         1         1         0         0         1         0         0         3         16         7.80         1.30         2.00         2           ORNL - ETTP Main Plant         86         1         0         0         0         0         0         0         1         2         7.15         1.48         2.00         2         1         1 <td< td=""><td>ORNL East</td><td>79</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>2</td><td>2</td><td>7.84</td><td></td><td></td><td>2</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ORNL East                       | 79   | 1  | 1 | 0 | 0   | 0   | 0             | 0 | 0   | 2 | 2             | 7.84        |      |               | 2             |    |
| ORNL - Y-12         82         1         1         0         1         0         1         5         16         9.00         2.70         3.00         2           ORNL - Bear Creek Valley         83         1         0         0         0         1         0         1         3         16         9.00         2.70         3.00         2           ORNL - ETTP Main Plant         84         1         1         0         0         1         0         0         3         16         7.80         1.30         2.00         2           ORNL - ETTP K-27         85         1         0         0         0         1         0         0         3         16         4.70         1.48         0.00         2           ORNL - ETTP 1070-A         86         1         0         0         0         0         0         0         0         1         2         7.15         1.48         2.00         2           ORNL - ETTP 1070-A         86         1         0         0         0         0         0         1         2         7.15         1.48         2.00         2           ORNL - ETTP 1070-A         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ORNL West                       | 80   | 0  | 0 | 0 |     |     | 1             | 0 | 0   | 2 | 16            | 8.90        | 2.00 |               |               |    |
| ORNL - Bear Creek Valley         83         1         0         0         0         1         0         1         3         16         9.00         2.00         3.00         2           ORNL - ETTP Main Plant         84         1         1         0         0         1         0         0         3         16         7.80         1.30         2.00         2           ORNL - ETTP Main Plant         84         1         1         0         0         1         0         0         3         16         7.80         1.30         2.00         2           ORNL - ETTP Main Plant         86         1         0         0         0         1         0         0         3         16         4.70         1.48         0.00         2           ORNL - ETTP 1070-A         86         1         0         0         0         0         0         0         1         2         7.15         1.48         2.00         2           ORNL - ETTP 1070-A         86         1         0         0         0         0         0         0         1         2         7.15         1.48         1.00         2         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 81   | 1  | 0 | 0 | 0   | 1   | 1             | 0 | 0   | 3 | 16            | 7.35        | 2.00 | 3.00          | 2             | 30 |
| ORNL - ETTP Main Plant         84         1         1         0         0         1         0         0         3         16         7.80         1.30         2.00         2           ORNL - ETTP K-27         85         1         0         0         1         1         0         0         3         16         4.70         1.48         0.00         2           ORNL - ETTP 1070-A         86         1         0         0         0         0         0         0         1         2         7.15         1.48         2.00         2           Old Riffe         154         0         0         0         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| ORNL - ETTP K-27         85         1         0         0         1         1         0         0         3         16         4.70         1.48         0.00         2           ORNL - ETTP 1070-A         86         1         0         0         0         0         0         0         1         2         7.15         1.48         2.00         2           Old Rifle         154         0         0         0         1         0         1         3         16         1.48         1.48         1           Paducah Plant - GW OU (NW         Plume)         155         1         0         0         0         1         0         0         2         16         5.86         2.00         2.56         2           Paducah Plant - GW OU (NE         156         1         0         0         0         1         0         0         2         16         8.46         2.00         2.56         2           Paducah Plant - GW OU (SW         157         1         0         0         0         1         0         0         2         16         8.41         2.00         2.56         2           Patter Plant - Northeast Onsite Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |      |    |   |   |     |     |               | - |     |   |               |             |      |               | 2             |    |
| ORNL - ETTP 1070-A         86         1         0         0         0         0         0         0         0         0         1         2         7.15         1.48         2.00         2           Old Rifle         154         0         0         0         1         0         1         3         16         1.48         1.48         1           Paducah Plant - GW OU (NW         155         1         0         0         0         1         0         0         2         16         5.86         2.00         2.56         2           Paducah Plant - GW OU (NE         156         1         0         0         0         1         0         0         2         16         8.46         2.00         2.56         2           Paducah Plant - GW OU (SW         157         1         0         0         0         1         0         0         2         16         8.46         2.00         2.56         2           Pantex Plant - Northeast Onsite Perched Aquifer         87         1         0         1         1         0         0         0         3         16         8.70         2.43         2.00         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |      |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
| Old Riffe         154         0         0         0         1         0         1         3         16         1.48         1.48         1           Paducah Plant - GW OU (NW<br>Plume)         155         1         0         0         0         1         0         0         2         16         5.86         2.00         2.56         2           Paducah Plant - GW OU (NE<br>Plume)         156         1         0         0         0         1         0         0         2         16         8.46         2.00         2.56         2           Paducah Plant - GW OU (SW<br>Plume)         157         1         0         0         0         1         0         0         2         16         8.46         2.00         2.56         2           Pantex Plant - Northeast Onsite Perched Aquifer         87         1         0         1         0         0         0         0         3         16         8.70         2.43         2.00         1           Pantex Plant - Southeast Onsite Perched Aquifer         88         1         0         1         0         0         0         3         16         7.66         2.42         2.00         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |      |    | _ |   |     |     |               |   |     |   | $\overline{}$ |             |      |               |               |    |
| Paducah Plant - GW OU (NW Plume) 155 1 0 0 0 0 1 0 0 2 16 5.86 2.00 2.56 2 Paducah Plant - GW OU (NE Plume) 156 1 0 0 0 0 1 0 0 2 16 8.46 2.00 2.56 2 Paducah Plant - GW OU (SW Plume) 157 1 0 0 0 0 1 0 0 2 16 8.41 2.00 2.56 2 Paducah Plant - Northeast Onsite Perched Aquifer 87 1 0 1 1 0 0 0 0 3 16 8.70 2.43 2.00 1 Pantex Plant - Southeast Onsite Perched Aquifer 88 1 0 1 1 0 0 0 0 3 16 7.66 2.42 2.00 1 Pantex Plant - On-site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |      |    |   | _ |     |     | - 1           | - | -   |   |               | 7.15        |      |               |               |    |
| Plume   155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | 154  | 0  | 0 | 0 | 1   | 0   | 1             | 0 | 1   | 3 | 16            |             | 1.48 | 1.48          | _1            |    |
| Paducah Plant - GW OU (NE Plume) 156 1 0 0 0 1 0 0 2 16 8.46 2.00 2.56 2 Paducah Plant - GW OU (SW Plume) 157 1 0 0 0 0 1 0 0 2 16 8.41 2.00 2.56 2 Pantex Plant - Northeast Onsite Perched Aquifer 87 1 0 1 1 0 0 0 0 3 16 8.70 2.43 2.00 1 Pantex Plant - Southeast Onsite Perched Aquifer 88 1 0 1 1 0 0 0 0 3 16 7.66 2.42 2.00 1 Pantex Plant - On-site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                               |      |    | _ |   | _   | _   | ارا           | _ | _   | _ |               | <b>5</b> 00 | 0.00 | 0.50          |               |    |
| Plume   156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | 155  | 1  | 0 | 0 | 0   | 0   | 1             | 0 | 0   | 2 | 16            | 5.86        | 2.00 | 2.56          | 2             |    |
| Paducah Plant - GW OU (SW Plume) 157 1 0 0 0 0 1 0 0 2 16 8.41 2.00 2.56 2 Pantex Plant - Northeast Onsite Perched Aquifer 87 1 0 1 1 0 0 0 0 3 16 8.70 2.43 2.00 1 Pantex Plant - Southeast Onsite Perched Aquifer 88 1 0 1 1 0 0 0 0 3 16 7.66 2.42 2.00 1 Pantex Plant - On-site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | 450  |    | _ |   | ^   | 0   | 4             | 0 | 0   |   | 1.0           | 0.46        | 2.00 | 2 5 6         |               |    |
| Plume) 157 1 0 0 0 0 1 0 0 2 16 8.41 2.00 2.56 2  Pantex Plant - Northeast Onsite Perched Aquifer 87 1 0 1 1 0 0 0 0 3 16 8.70 2.43 2.00 1  Pantex Plant - Southeast Onsite Perched Aquifer 88 1 0 1 1 0 0 0 0 0 3 16 7.66 2.42 2.00 1  Pantex Plant - On-site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                               | 156  | 1  | U | U | U   | U   | 1             | U | U   | 2 | 16            | 8.46        | 2.00 | ∠.56          |               |    |
| Pantex Plant - Northeast Onsite Perched Aquifer 87 1 0 1 1 0 0 0 0 3 16 8.70 2.43 2.00 1  Pantex Plant - Southeast Onsite Perched Aquifer 88 1 0 1 1 0 0 0 0 3 16 7.66 2.42 2.00 1  Pantex Plant - On-site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | `                               | 1.57 | 1  | _ | 0 | 0   | ^   | 4             | 0 | 0   | 2 | 16            | Q /1        | 2 00 | 2 56          | 2             |    |
| site Perched Aquifer     87     1     0     1     1     0     0     0     3     16     8.70     2.43     2.00     1       Pantex Plant - Southeast Onsite Perched Aquifer     88     1     0     1     1     0     0     0     0     3     16     7.66     2.42     2.00     1       Pantex Plant - On-site     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 137  |    | U | U | - 0 |     | -             | U | U   |   | 10            | 0.41        | 2.00 | 2.50          |               |    |
| Pantex Plant - Southeast Onsite Perched Aquifer 88 1 0 1 1 0 0 0 0 3 16 7.66 2.42 2.00 1 Pantex Plant - On-site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 97   | 1  | n | 1 | 1   | 0   | n             | Ω | 0   | 3 | 16            | 8 70        | 2 43 | 2 00          | 1             |    |
| site Perched Aquifer         88         1         0         1         1         0         0         0         3         16         7.66         2.42         2.00         1           Pantex Plant - On-site         Image: Control of the control                                                                                                                                                                                         |                                 | - 37 | '  | - | ' |     | U   | J             | U | U   | J | 10            | 5.70        | 2.70 |               | $\dashv$      | +  |
| Pantex Plant - On-site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |      |    | _ | 1 | 1   | 0   | n             | O | O   | 3 | 16            | 7 66        | 2.42 | 2.00          | 1             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 88   |    |   |   |     |     |               |   |     |   |               |             |      |               |               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | site Perched Aquifer            | 88   | ı  | 0 | • |     |     |               |   |     |   |               |             |      |               |               |    |

| Pinellas Plant (1)                                   | 158      | 1        | 0  | 0   | 0 |          |   | 0 | 0      | 1   | 2       |                                                  |      |      | 2  |     |
|------------------------------------------------------|----------|----------|----|-----|---|----------|---|---|--------|-----|---------|--------------------------------------------------|------|------|----|-----|
| Pinellas Plant (2)                                   | 159      | 0        | _  | 0   | 0 |          |   |   | 1      | 0   |         |                                                  |      |      | 2  |     |
| Pinellas Plant (3)                                   | 160      | 1        | 0  | 0   | 0 | 0        | 0 | 0 | 0      | 1   | 2       |                                                  |      |      | 2  |     |
| Portsmouth Plant - 5 Unit                            |          |          |    |     | _ | _        |   | _ | _      |     |         |                                                  |      |      |    |     |
| Plume                                                | 91       | 1        | 0  | 0   | 0 | 0        |   | 0 | 0      | 1 2 | 2       |                                                  | 1.00 | 1.56 | 2  |     |
| Portsmouth Plant - X-749 Portsmouth Plant - X-740    | 92<br>93 | 1        | 0  | 0   | 0 | 0        |   | 0 | 0      | 1   | 16<br>2 |                                                  | 1.00 | 1.86 | 2  |     |
| Portsmouth Plant - X701B                             | 93       | 1        | 0  | 0   | 0 | 0        |   | 0 | 0      | 2   | 16      |                                                  | 1.00 | 1.86 | 2  |     |
| Portsmouth Plant - 7 Unit                            | 34       |          | U  | 0   | U | - 0      | - | U | U      |     | 10      |                                                  | 1.00 | 1.00 |    |     |
| Plume                                                | 95       | 1        | 0  | 0   | 0 | 0        | 1 | 0 | 0      | 2   | 16      |                                                  | 1.00 | 2.82 | 2  |     |
| Portsmouth Plant - X-120                             | 96       | 1        | 0  | 0   | 0 | 0        |   | 0 | 0      | 1   | 2       |                                                  | 1.00 | 1.56 | 2  |     |
| Project Shoal                                        | 97       | 0        | 0  | 0   | 1 | 1        |   | 0 | 0      | 3   | 16      |                                                  | 3.08 | 2.00 | 1  |     |
| Rio Blanco                                           | 102      | 0        | 0  | 0   | 1 | 1        | 1 | 0 | 0      | 3   | 16      |                                                  | 3.77 | 1.00 | 1  |     |
| Riverton                                             | 164      | 0        | 0  | 0   | 1 | 0        | 1 | 1 | 0      | 3   | 16      |                                                  | 2.00 | 2.48 | 1  |     |
| Rocky Flats - Mound Plume                            | 98       | 1        | 0  | 0   | 0 | 0        | 1 | 0 | 0      | 2   | 16      | 9.08                                             | 1.00 | 1.48 | 1  |     |
|                                                      |          |          |    |     |   |          |   |   |        |     |         |                                                  |      |      |    |     |
| Rocky Flats - East Trenches                          | 99       | 1        | 0  | 0   | 0 | 0        |   | 0 | 0      | 1   | 2       | 8.46                                             | 1.00 | 1.48 | 1  |     |
| Rocky Flats - Solar Ponds                            | 100      | 0        | _  | 0   | 0 | 0        |   | 0 | 1      | 2   | 16      | 7.55                                             |      | 1.48 | 1  |     |
| Rocky Flats - 903 Pad                                | 101      | 1        | 0  | 0   | 0 | 0        | 0 | 0 | 0      | 1   | 2       | 7.60                                             |      | 1.48 | 1  |     |
| Rocky Flats - 881 Hillside                           | 404      |          |    |     | • |          |   |   | •      |     |         |                                                  |      |      |    | 1   |
| Drum Storage Area<br>Rocky Flats - Carbon            | 161      | 1        | 0  | 0   | 0 | 0        | 0 | 0 | 0      | 1   | 2       |                                                  |      |      | 1  |     |
| Tetrachoride Spill                                   | 162      | 1        | 0  | 0   | 0 | 0        | 0 | 0 | 0      | 1   | 2       |                                                  |      |      | 1  | ,   |
| Totachoride Ophii                                    | 102      | '        | U  | U   | U | U        | U | U | U      | - 1 |         |                                                  |      |      |    |     |
| Rocky Flats - Industrial Area                        | 163      | 1        | 0  | 0   | 0 | 0        | 0 | 0 | 0      | 1   | 2       |                                                  |      |      | 1  | ,   |
| Rocky Flats - Rulison                                | 103      | 0        | _  | 0   | 1 | 1        | 1 | 0 | 0      | 3   | 16      |                                                  | 3.93 | 1.00 | 1  |     |
| Rocky Flats - Alluvial                               | 104      | 0        | _  | 0   | 1 | 1        |   | 0 | 0      | 2   | 16      |                                                  | 1.60 | 0.48 | 1  |     |
|                                                      |          |          |    |     |   |          |   |   |        |     |         |                                                  | - 1  |      |    |     |
| Rocky Flats - Salt Lake City                         | 165      | 0        | 0  | 0   | 1 | 0        | 1 | 0 | 0      | 2   | 16      |                                                  | 1.70 | 2.23 | 1  |     |
| Rocky Flats - Fuel Oil Spill                         | 169      | 0        | 1  | 0   | 0 | 0        |   | 0 | 0      | 1   | 2       |                                                  | 2.70 |      | 1  |     |
| Rocky Flats - Navy Landfill                          | 188      | 1        | 0  | 0   | 0 | 0        | 0 | 0 | 0      | 1   | 2       |                                                  | 3.70 | 0.00 | 1  | 1   |
| Rocky Flats - Chemical                               |          |          |    |     |   |          |   |   |        |     |         |                                                  |      |      |    | 1   |
| Waste Landfill (ChWLF)                               | 105      | 1        | 0  | 0   | 0 | 0        |   | 0 | 0      | 1   | 2       |                                                  | 2.70 |      | 1  |     |
| Rocky Flats - Tijeras Arroyo                         | 106      | 1        | 0  | 0   | 0 | 0        |   | 0 | 0      | 1   | 2       |                                                  | 2.51 |      | 1  |     |
| Rocky Flats - TA5                                    | 107      | 1        | 0  | 0   | 0 | 0        |   | 0 | 0<br>1 | 1   | 2       |                                                  | 2.70 | 0.00 | 1  |     |
| Rocky Flats - Canyons<br>SRS - A-Area Burning/Rubble | 187      | 0        | 1  | 0   | 0 | 0        | U | 0 | 1      | 2   | 2       |                                                  | 2.51 | 0.00 | 1  |     |
| Pits                                                 | 109      | 1        | 0  | 0   | 0 | 0        | 0 | 0 | 0      | 1   | 2       | 6.90                                             | 2.11 | 2.48 | 2  |     |
| 1 113                                                | 103      | '        | -  | - 0 |   |          | 0 | 0 |        |     |         | 0.30                                             | 2.11 | 2.40 | _  |     |
| SRS - A/M Area Groundwater                           | 110      | 1        | 0  | 0   | 1 | 0        | 0 | 0 | 0      | 2   | 16      | 7.59                                             | 2.60 | 2.79 | 2  |     |
| SRS - C Area Burning/Rubble                          |          |          | Ť  | Ů   |   | Ť        |   |   |        | _   |         | 7.00                                             | 2.00 | 2 0  | ī  |     |
| Pits                                                 | 111      | 1        | 0  | 0   | 0 | 0        | 0 | 0 | 0      | 1   | 2       |                                                  | 1.78 | 3.78 | 2  | 1   |
| SRS - C-Area Groundwater                             |          |          |    |     |   |          |   |   |        |     |         |                                                  |      |      |    |     |
| Operable Unit                                        | 112      | 1        | 0  | 0   | 0 | 1        | 0 | 0 | 0      | 2   | 8       |                                                  | 1.85 | 3.78 | 2  |     |
| SRS - CMP Pits                                       | 113      | 1        | _  | 0   | 0 | 0        |   |   | 0      | 1   | 2       |                                                  | 1.85 | 2.00 | 2  | 810 |
| SRS - D-Area Groundwater                             | 114      | 1        | 0  | 0   | 1 | 1        | 1 | 1 | 1      | 6   | 16      |                                                  | 0.70 | 2.70 | 2  |     |
| SRS - D-Area Oil Seepage                             |          |          | ١. |     | _ |          |   | _ | _      | _   |         |                                                  |      |      |    | 1   |
| Basin                                                | 115      | 1        | 1  | 0   | 0 | 0        | 0 | 0 | 0      | 2   | 2       |                                                  | 1.60 | 1.78 | _2 |     |
| SRS - F Area Seepage                                 | 116      | _        |    |     | 4 | 1        | , |   | 4      |     | 16      |                                                  | 0.00 | 2.56 | _  |     |
| SRS - H Area Seepage                                 | 116      | U        | 0  | 0   | 1 | 1        | 1 | 0 | 1      | 4   | 16      |                                                  | 0.00 | 3.56 | -2 |     |
| Basins                                               | 117      | 1        | 0  | 0   | 1 | 1        | 1 | 0 | 1      | 5   | 16      |                                                  | 0.00 | 3.56 | 2  |     |
| Buomo                                                |          |          |    |     | • |          | • | - |        | Ŭ   |         |                                                  | 0.00 | 0.00 | -  |     |
| SRS - Central Shops GW OU                            | 118      | 1        | 0  | 0   | 0 | 0        | 0 | 0 | 0      | 1   | 2       |                                                  | 1.78 |      | 2  |     |
| SRS - K Area Burning/Rubble                          | _        |          |    |     |   |          |   |   |        |     |         |                                                  |      |      |    |     |
| Pit                                                  | 119      | 1        | 0  | 0   | 0 | 0        | 0 | 0 | 0      | 1   | 2       |                                                  | 1.70 | 1.70 | 2  | 1   |
| SRS - K Area Goundwater                              |          |          |    |     |   |          |   |   |        |     |         |                                                  |      |      |    |     |
| Operable Unit                                        | 120      | 1        | 0  | 0   | 0 | 1        | 0 | 0 | 0      | 2   | 8       |                                                  | 1.70 | 1.70 | 2  |     |
| SRS - L Area Burning/Rubble                          |          |          |    |     |   |          |   |   |        |     |         |                                                  |      |      |    |     |
| Pit                                                  | 121      | 1        | 0  | 0   | 0 | 0        | 0 | 0 | 0      | 1   | 2       |                                                  | 1.54 | 1.70 | 2  | 13  |
| SRS - L Area Southern                                | 400      |          |    |     |   | ١.       |   |   | •      | _   |         |                                                  |      |      |    |     |
| Groundwater                                          | 122      | 1        | 0  | 0   | 0 | 1        | 0 | 0 | 0      | 2   | 8       |                                                  | 1.78 | 2.18 | 2  | 14  |
| SRS - Miscellaneous<br>Chemical Basin                | 400      |          |    | 0   | 0 | _        | 0 | 0 | 0      | 1   | 2       |                                                  | 2 25 | 270  | ٦  | ,   |
| SRS - Mixed Waste                                    | 123      | 1        | 0  | U   | U | 0        | U | U | U      | 1   |         | <del>                                     </del> | 2.35 | 2.79 | 2  |     |
| Management Facility                                  |          |          |    |     |   |          |   |   |        |     |         |                                                  |      |      |    | ,   |
| Northeast Plume                                      | 124      | 1        | 0  | 0   | 0 | 1        | 0 | 0 | 0      | 2   | 8       |                                                  | 1.78 | 3.56 | 2  |     |
| SRS - Mixed Waste                                    | 124      | <u> </u> | -  | J   | J | <u> </u> |   |   | J      |     | 0       |                                                  | 1.70 | 0.00 |    |     |
| Management Facility                                  |          |          |    |     |   |          |   |   |        |     |         |                                                  |      |      |    |     |
| Northwest Plume                                      | 125      | 1        | 0  | 0   | 0 | 1        | 0 | 0 | 0      | 2   | 8       |                                                  | 1.78 | 3.56 | 2  | ,   |
| SRS - Mixed Waste                                    |          |          |    |     |   |          |   |   |        |     |         |                                                  |      |      |    |     |
| Management Facility                                  |          |          |    |     |   |          |   |   |        |     |         |                                                  |      |      |    | ,   |
| Southeast Plume                                      | 126      | 1        | 0  | 0   | 0 | 1        | 1 | 0 | 0      | 3   | 16      |                                                  | 1.78 | 3.56 | 2  |     |
|                                                      |          |          |    |     |   |          |   | _ |        |     |         |                                                  | _    |      | _  |     |

|                                       |                                |          |      |          |         | _        | _        |          |     |   |    |      |      |   |  |
|---------------------------------------|--------------------------------|----------|------|----------|---------|----------|----------|----------|-----|---|----|------|------|---|--|
| South Valley Plume                    | 108                            | 1        | 0    | 0        | 0       |          |          |          | 0   | 1 | 2  | 2.38 | 3.74 | 1 |  |
| Spook                                 | 170                            | 0        | 0    | 0        | 1       | 0        |          |          | 1   | 3 | 16 | 2.60 |      | 2 |  |
| Tuba City                             | 171                            | 0        | 0    | 0        | 0       |          |          |          | 1   | 3 | 16 |      | 0.00 | 1 |  |
| Weldon Project - Quarry               | 172                            | 0        | 0    | 1        | 0       | 0        | 1        | 0        | 0   | 2 | 16 |      | 0.00 | 2 |  |
| Weldon Project - Chemical             |                                |          |      |          |         |          |          |          |     |   |    |      |      |   |  |
| Plant (exposives)                     | 173                            | 0        | 0    | 1        | 0       | 0        | C        | 0        | 1   | 2 | 4  |      | 0.00 | 2 |  |
| Weldon Project - Chemical             |                                |          |      |          |         |          |          |          |     |   |    |      |      |   |  |
| Plant (VOC)                           | 174                            | 1        | 0    | 0        | 0       | 0        | 0        | 0 0      | 0   | 1 | 2  |      | 0.00 | 2 |  |
| Weldon Project - Chemical             |                                |          |      |          |         |          |          |          |     |   |    |      |      |   |  |
| Plant (Uranium East)                  | 175                            | 0        | 0    | 0        | 0       | 0        | 1        | I 0      | 0   | 1 | 16 | 2.85 | 1.78 | 2 |  |
| Weldon Project - Chemical             |                                |          |      |          |         |          |          |          |     |   |    |      |      |   |  |
| Plant (Uranium West)                  | 176                            | 0        | 0    | 0        | 0       | 0        | 1        | 0        | 0   | 1 | 16 | 1.30 |      | 2 |  |
| Weldon-North Plateau Plume            | 172                            | 0        | 0    | 0        | 0       | 1        | l 1      | 0        | 0   | 2 | 16 |      |      | 2 |  |
| Stanford Center - Former              | 172                            | 0        |      | 0        | - 0     |          | <u> </u> | 0        | U   |   | 10 |      |      |   |  |
| Hazardous Waste Storage               |                                |          |      |          |         |          |          |          |     |   |    |      |      |   |  |
| Area                                  | 400                            | 1        | 0    | 0        | _       | _        | lo       | 0 0      | _   | 1 | 2  |      |      | 1 |  |
| Stanford Center - Former              | 183                            | 1        | U    | U        | 0       | 0        | U        | 0        | 0   | 1 |    |      |      | 1 |  |
|                                       |                                |          |      |          |         |          |          |          |     |   |    |      |      |   |  |
| Solvent Underground Storage Tank Area | 404                            |          | _    |          | _       |          | L        |          | _   |   | _  |      |      |   |  |
|                                       | 184                            | 1        | 0    | 0        | 0       | 0        | 0        | 0        | 0   | 1 | 2  |      |      | 1 |  |
| Stanford Center - Plating             | 405                            |          | _    |          | _       |          | L        |          | _   |   | _  |      |      |   |  |
| Shop Area<br>Stanford Center - Test   | 185                            | 1        | 0    | 0        | 0       | 0        | 0        | 0        | 0   | 1 | 2  |      |      | 7 |  |
| Lab/Central Lab Area                  |                                |          |      |          |         | ١.       | ١.       |          |     |   |    |      |      |   |  |
| Lab/Central Lab Alea                  | 186                            | 1        | 0    | 0        | 0       | 0        | 0        | 0        | 0   | 1 | 2  |      | 1.90 | 1 |  |
|                                       |                                |          |      |          |         |          |          |          |     |   |    |      |      |   |  |
| Notes:                                |                                |          |      |          |         |          | L        |          |     |   |    |      |      |   |  |
| Ngr                                   | Number of conta                | aminant  | gro  | ups      |         |          | _        | ıels     |     |   |    |      |      |   |  |
| Sv                                    | Severity index                 |          |      |          |         | <u> </u> | _        | plosive  | s   |   |    |      |      |   |  |
| Vol                                   | log10 of plume v               |          |      |          |         | _        |          | etals    |     |   |    |      |      |   |  |
| Dp                                    | Log10 of plume depth (in feet) |          |      |          |         |          |          | itium    |     |   |    |      |      |   |  |
| Vel                                   | log10 of ground                | vater ve | loci | ty (in f |         |          |          | dioisoto | pes |   |    |      |      |   |  |
| CI                                    | Climate index                  |          |      |          |         |          | _        | ulfate   |     |   |    |      |      |   |  |
| CCI4                                  | Ration of Carbon               | n Tet co | nce  | ntratio  | n to th | NO3      | Nit      | trates   |     |   |    |      |      |   |  |

Table S2. Frequency of occurrence of contaminant groups in groundwater plumes (total number of plumes in the GWD is 221). The contaminant groups are sorted according to the frequency of their occurrence.

| Contaminant Groups | Plumes<br>surveyed for<br>specific<br>contaminant<br>groups | Number and % of plumes with specific contaminant groups |
|--------------------|-------------------------------------------------------------|---------------------------------------------------------|
| CVOCs              | 175                                                         | 147 (84%)                                               |
| Tritium            | 164                                                         | 84 (51%)                                                |
| Isotopes           | 196                                                         | 92 (47%)                                                |
| Nitrates           | 155                                                         | 71 (46%)                                                |
| Metals             | 177                                                         | 76 (43%)                                                |
| Sulfate            | 139                                                         | 44 (32%)                                                |
| Fuel               | 146                                                         | 16 (11%)                                                |
| Explosives         | 146                                                         | 15 (10%)                                                |

Table S3. Ranking of plumes with binary association of contaminant groups (given as a percent of plumes identified for both groups). Mixed wastes are in bold.

| Percent | Contamina  | int groups |
|---------|------------|------------|
| 35%     | CVOCs      | Tritium    |
| 31%     | Tritium    | Isotopes   |
| 30%     | CVOCs      | Nitrate    |
| 28%     | Metals     | Isotopes   |
| 26%     | VOCs       | Sulfate    |
| 24%     | CVOCs      | Isotopes   |
| 24%     | Metals     | Nitrate    |
| 24%     | CVOCs      | Metals     |
| 23%     | Isotopes   | Nitrate    |
| 23%     | Metals     | Tritium    |
| 22%     | Sulfate    | Nitrate    |
| 19%     | Tritium    | Nitrate    |
| 17%     | Metals     | Sulfate    |
| 10%     | Tritium    | Sulfate    |
| 7%      | Explosives | Nitrate    |
| 7%      | CVOCs      | Fuel       |
| 6%      | CVOCs      | Explosives |
| 5%      | Isotopes   | sulfate    |
| 3%      | Fuel       | Isotopes   |
| 3%      | Explosives | Metals     |
| 3%      | Fuel       | Metals     |
| 3%      | Explosives | tritium    |
| 2%      | Fuel       | Nitrate    |
| 2%      | Fuel       | Tritium    |
| 2%      | Explosives | Isotopes   |
| 1%      | Fuel       | Sulfate    |
| 0%      | Fuel       | Explosives |
| 0%      | Explosives | Sulfate    |

Table S4. Ternary, quaternary, and quinary combinations of contaminant groups in groundwater plumes. The most frequent contaminant groups are shown in bold.

|                     | CVOCs | Fuels  | Explosives | Metals | Tritium   | Isotopes | Sulfates | Nitrates | Number of contaminant groups |
|---------------------|-------|--------|------------|--------|-----------|----------|----------|----------|------------------------------|
|                     |       |        |            |        |           |          |          |          |                              |
|                     |       |        |            | (a) T  | Ternary   |          |          |          |                              |
| Number<br>of plumes | 40 3  |        | 7          | 30     | 29        | 37       | 18       | 28       | 192                          |
| Frequency (%%)      | 20.8  | 1.6 3. | 6          | 15.6   | 15.1      | 19.3     | 9.4 14   | .6       | 100                          |
|                     |       |        |            | (b) Qı | ıaternary |          |          |          |                              |
| Number<br>of plumes | 18 0  |        | 1          | 19     | 17        | 15       | 12       | 22       | 104                          |
| Frequency (%%)      | 17.3  | 0.0 1. | 0          | 18.3   | 16.3      | 14.4 11  | .5       | 21.2     | 100                          |
|                     |       |        |            | (c) (  | Quinary   |          |          |          |                              |
| Number<br>of plumes | 10 2  |        | 2          | 10     | 9         | 7        | 5        | 10       | 55                           |
| Frequency (%%)      | 18.2  | 3.6 3. | 6          | 18.2   | 16.4      | 12.7 9.  | 1        | 18.2     | 100                          |

Table S5. Occurrence of individual contaminants in contaminated groups
(a) Chlorinated hydrocarbons (number of plumes is 147)

| VOCs                                                     | TCE  | PCE  | DCE  | СТ   | ۸C   | DCA | ТСА | Chloro-form | CVOC (undivided) | Freon | chloride | carbon disulfide | chlor-ethane | dibromide |
|----------------------------------------------------------|------|------|------|------|------|-----|-----|-------------|------------------|-------|----------|------------------|--------------|-----------|
| Number of plumes with a specific compound                | 127  | 70   | 36   | 35   | 18   | 12  | 10  | 8           | 7                | 6     | 2        | 1                | 1            | 1         |
| Frequency of occurrence among other CVOCs compounds      | 38.0 | 21.0 | 10.8 | 10.5 | 5.4  | 3.6 | 3.0 | 2.4         | 2.1              | 1.8   | 0.6      | 0.3              | 0.3          | 0.3       |
| Frequency of occurrence in CVOCs contaminated plumes (%) | 86.4 | 47.6 | 24.5 | 23.8 | 12.2 | 8.2 | 6.8 | 5.4         | 4.8              | 4.1%  | 1.4      | 0.7              | 0.7          | 0.7       |
| Frequency of occurrence in all plumes (%)                | 57.5 | 31.7 | 16.3 | 15.8 | 8.1  | 5.4 | 4.5 | 3.6         | 3.2              | 2.7   | 0.9      | 0.5              | 0.5          | 0.5       |

# (b) Fuel or fuel components (number of plumes is 16)

|                                                         | _       | _      | _        | _    | _       |         |         | _   |                        |       |
|---------------------------------------------------------|---------|--------|----------|------|---------|---------|---------|-----|------------------------|-------|
| Fuel                                                    | benzene | diesel | jet fuel | MTBE | toluene | benzene | benzene | gas | methylnapht-<br>halene | other |
| Number of plumes with a specific fuel compound          | 7       | 7      | 2        | 2    | 2       | 1       | 1       | 1   | 1                      | 1     |
| Frequency of occurrence among other fuel compounds (%)  | 29.2    | 29.2   | 8.3      | 8.3  | 8.3     | 4.2     | 4.2     | 4.2 | 4.2                    | 4.2   |
| Frequency of occurrence in fuel contaminated plumes (%) | 43.8    | 43.8   | 12.5     | 12.5 | 12.5    | 6.3     | 6.3     | 6.3 | 6.3                    | 6.3   |
| Frequency of occurrence in all plumes (%)               | 3.2     | 3.2    | 0.9      | 0.9  | 0.9     | 0.5     | 0.5     | 0.5 | 0.5                    | 0.5   |

# (c) Explosives (number of plumes is 15)

| Explosives                                                   | Per-chlorate | DNT  | HMX  | RDX  | TNB  | L    | Tertyl |
|--------------------------------------------------------------|--------------|------|------|------|------|------|--------|
| Number of plumes with a specific explosive compound          | 9            | 5    | 5    | 4    | 4    | 3    | 1      |
| Frequency of occurrence among other explosive compounds (%)  | 29.0         | 16.1 | 16.1 | 12.9 | 12.9 | 9.7  | 3.2    |
| Frequency of occurrence in explosive contaminated plumes (%) | 60.0         | 33.3 | 33.3 | 26.7 | 26.7 | 20.0 | 6.7    |
| Frequency of occurrence in all plumes (%)                    | 4.1          | 2.3  | 2.3  | 1.8  | 1.8  | 1.4  | 0.5    |

# (d) Metals (number of plumes is 70)

| METALS                                           | Ċ    | Mo   | Se   | As   | Pb   | Hg  | Mn  | PO  | ïZ  | Ba  | >   |
|--------------------------------------------------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|
| Number of plumes with specific metals            | 42   | 16   | 13   | 9    | 7    | 6   | 6   | 5   | 4   | 3   | 3   |
| Occurrence with other metals                     | 33.3 | 12.7 | 10.3 | 7.1  | 5.6  | 4.8 | 4.8 | 4.0 | 3.2 | 2.4 | 2.4 |
| Occurrence<br>in metal<br>contaminated<br>plumes | 60.0 | 22.9 | 18.6 | 12.9 | 10.0 | 8.6 | 8.6 | 7.1 | 5.7 | 4.3 | 4.3 |
| Occurrence in all plumes                         | 19.0 | 7.2  | 5.9  | 4.1  | 3.2  | 2.7 | 2.7 | 2.3 | 1.8 | 1.4 | 1.4 |

| METALS                                  | Во  | Co  | Н   | Mg* | A   | Be  | Cu  | Zn  |
|-----------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Number of plumes with specific metals   | 2   | 2   | 2   | 2   | 1   | 1   | 1   | 1   |
| Occurrence with other metals            | 1.6 | 1.6 | 1.6 | 1.6 | 0.8 | 0.8 | 0.8 | 0.8 |
| Occurrence in metal contaminated plumes | 2.9 | 2.9 | 2.9 | 2.9 | 1.4 | 1.4 | 1.4 | 1.4 |
| Occurrence in all plumes                | 0.9 | 0.9 | 0.9 | 0.9 | 0.5 | 0.5 | 0.5 | 0.5 |

# (e) Radioactive isotopes (number of plumes is 98)

| Radionuclides                           | n    | Sr   | Тс   | *   | Ra  | Th* | Cs* | Gross Alpha | Am** | Carbon 14** | *°OO | Pu* | Gross Beta | other* |
|-----------------------------------------|------|------|------|-----|-----|-----|-----|-------------|------|-------------|------|-----|------------|--------|
| Number of plumes                        | 44   | 24   | 16   | 8   | 4   | 4   | 3   | 3           | 1    | 1           | 1    | 1   | 1          | 1      |
| Occurrence with other radionuclides     | 39.3 | 21.4 | 14.3 | 7.1 | 3.6 | 3.6 | 2.7 | 2.7         | 0.9  | 0.9         | 0.9  | 0.9 | 0.9        | 0.9    |
| Occurrence in plumes with radionuclides | 44.9 | 24.5 | 16.3 | 8.2 | 4.1 | 4.1 | 3.1 | 3.1         | 1.0  | 1.0         | 1.0  | 1.0 | 1.0        | 1.0    |
| Occurrence in all plumes                | 19.9 | 10.9 | 7.2  | 3.6 | 1.8 | 1.8 | 1.4 | 1.4         | 0.5  | 0.5         | 0.5  | 0.5 | 0.5        | 0.5    |

 $\begin{tabular}{ll} Table S6. Types and ranking of plumes with binary combinations of individual contaminants. Mixed waste is in bold. \\ \end{tabular}$ 

| Co-contai                          | minants                                        | Percent of identified plumes |  |  |  |  |  |  |  |
|------------------------------------|------------------------------------------------|------------------------------|--|--|--|--|--|--|--|
| Chlorina                           | Chlorinated Hydrocarbons – Nitrate and Sulfate |                              |  |  |  |  |  |  |  |
| TCE                                | nitrate                                        | 28%                          |  |  |  |  |  |  |  |
| TCE                                | sulfate                                        | 25%                          |  |  |  |  |  |  |  |
| PCE                                | sulfate                                        | 20%                          |  |  |  |  |  |  |  |
| PCE                                | nitrate                                        | 17%                          |  |  |  |  |  |  |  |
| Chlorinated Hydrocarbons – Tritium |                                                |                              |  |  |  |  |  |  |  |
| TCE                                | TCE tritium 29%                                |                              |  |  |  |  |  |  |  |
| PCE                                | PCE tritium 21%                                |                              |  |  |  |  |  |  |  |
| Ch                                 | nlorinated                                     | Hydrocarbons – Metals        |  |  |  |  |  |  |  |
| TCE                                | Cr                                             | 20%                          |  |  |  |  |  |  |  |
| PCE                                | Cr                                             | 16%                          |  |  |  |  |  |  |  |
|                                    | Radio                                          | pisotopes-Nitrate            |  |  |  |  |  |  |  |
| Tritium                            | Nitrate                                        | 19%                          |  |  |  |  |  |  |  |
| Uranium                            | Nitrate                                        | 17%                          |  |  |  |  |  |  |  |
|                                    | Metals-Sulfate                                 |                              |  |  |  |  |  |  |  |
| Cr                                 | Cr Sulfate 18%                                 |                              |  |  |  |  |  |  |  |
|                                    | S                                              | ulfate-Nitrate               |  |  |  |  |  |  |  |
| Sulfate                            | Nitrate                                        | 22%                          |  |  |  |  |  |  |  |

Table S7. Summary of statistics of plume volumes (volumes are gallons).

Total number of plumes is 134.

| Mean                     | 1.15E+09 |
|--------------------------|----------|
| Standard Error           | 3.81E+08 |
| Median                   | 3.53E+07 |
| Mode                     | 1.00E+06 |
| Standard Deviation       | 4.41E+09 |
| Sample Variance          | 1.94E+19 |
| Kurtosis                 | 3.53E+01 |
| Skewness                 | 5.63E+00 |
| Range                    | 3.50E+10 |
| Minimum                  | 5.00E+04 |
| Maximum                  | 3.50E+10 |
| Confidence Level (95.0%) | 7.53E+08 |

 $\label{eq:conditional} Table~S8.~Statistics~of~maximum~activities~(pCi/L)~of~tritium~and~radioisotopes~in~groundwater~plumes$ 

|                               | T        |          |          |          |
|-------------------------------|----------|----------|----------|----------|
| Statistical values            | Tritium  | Sr       | Тс       | U        |
| Standard Error                | 1.61E+09 | 4997291  | 1247321  | 933.2892 |
| Minimum                       | 15       | 8        | 25       | 1        |
| 1 <sup>st</sup> quartile (Q1) | 1820     | 35.75    | 311.5    |          |
| Median (Q2)                   | 18400    | 483      | 3798.5   | 201      |
| Mean                          | 1.62E+09 | 5054433  | 1298130  |          |
| 3 <sup>rd</sup> quartile (Q3) | 219000   | 5393.5   | 48000    |          |
| Maximum                       | 1E+11    | 1E+08    | 20000000 | 12400    |
| IQR                           | 217180   | 5357.75  | 47688.5  |          |
| Q1-3IQR                       | -649720  | -16037.5 | -142754  |          |
| Q1-1.5IQR                     | -215360  | -5322    | -47377   |          |
| Q3+1.5IQR                     | 436180   | 10751.25 | 95688.5  |          |
| Q3+3IQR                       | 870540   | 21466.75 | 191065.5 |          |
| Standard Deviation            | 1.27E+10 | 22348563 | 4989284  | 3365.022 |
| Sample Variance               | 1.61E+20 | 4.99E+14 | 2.49E+13 | 11323374 |
| Kurtosis                      | 61.99988 | 19.99709 | 15.9669  | 12.69662 |
| Skewness                      | 7.873997 | 4.471674 | 3.994273 | 3.548152 |
| Range                         | 1E+11    | 99999992 | 19999975 | 12399    |
| Number of occurrences         | 62       | 20       | 16       | 13       |
| Confidence Level(95.0%)       | 3.23E+09 | 10459453 | 2658604  | 2033.462 |

Table S9. Maximum contaminant mass estimates

## (a) Chlorinated hydrocarbons

|                         | Number of plumes with a specific contaminant | Plu         |                                | own concentration<br>volume | All plumes |                           |  |
|-------------------------|----------------------------------------------|-------------|--------------------------------|-----------------------------|------------|---------------------------|--|
| Contaminants            | er of plur<br>ific cont                      | lumes       | I                              | Mass (kg)                   | 1          | Mass (kg)                 |  |
|                         | Numbe<br>a spec                              | % of plumes | Maximum Above regulatory limit |                             | Maximum    | Above regulatory<br>limit |  |
| TCE                     | 127                                          | 74          | 1.67E+07                       | 1.67E+07                    | 2.25E+07   | 2.25E+07                  |  |
| PCE                     | 70                                           | 81          | 6.07E+06                       | 6.07E+06                    | 7.45E+06   | 7.45E+06                  |  |
| СТ                      | 35                                           | 86          | 1.40E+05                       | 1.40E+05                    | 1.63E+05   | 1.63E+05                  |  |
| DCE                     | 36                                           | 69          | 7343                           | 7275                        | 10574      | 1.05E+04                  |  |
| chloroform              | 8                                            | 88          | 1064                           | 4.5                         | 1216       | 5.2                       |  |
| VC                      | 18                                           | 78          | 380.3                          | 379.0                       | 488.9      | 487.3                     |  |
| methylene chloride      | 2                                            | 100         | 71.5                           | 31.9                        | 71.5       | 31.9                      |  |
| TCA                     | 10                                           | 50          | 126.9                          | 114.3                       | 253.8      | 228.5                     |  |
| DCA                     | 12                                           | 75          | 135.6                          | 84.1                        | 180.8      | 112.1                     |  |
| Freon*                  | 6                                            | 100         | 62.2                           |                             | 62.2       |                           |  |
| carbon disulfide        | 1                                            | 100         | 13.5                           | 0.0                         | 13.5       | 0.0                       |  |
| VOC (undivided)**       | 7                                            | 0           |                                |                             |            |                           |  |
| chlorethane**           | 1                                            | 0           |                                |                             |            |                           |  |
| ethylene<br>dibromide** | 1                                            | 0           |                                |                             |            |                           |  |
| Total VOCs              | 334                                          |             | 2.29E+07                       | 2.29E+07                    | 3.01E+07   | 3.01E+07                  |  |

## (b) Fuel and fuel components

| Contaminants       | s with<br>ninant                                | Plumes with I | known concei<br>volume | All plumes                   |           |                              |
|--------------------|-------------------------------------------------|---------------|------------------------|------------------------------|-----------|------------------------------|
|                    | Number of plumes with<br>a specific contaminant | nes           | Mas                    | ss (kg)                      | Mass (kg) |                              |
|                    | Number<br>a specif                              | % of plumes   | Maximum                | Above<br>regulatory<br>limit | Maximum   | Above<br>regulatory<br>limit |
| Diesel*            | 7                                               | 71            | 5.15E+06               |                              | 7.21E+06  |                              |
| gas*               | 1                                               | 100           | 31.23                  |                              | 31.23     |                              |
| Benzene            | 7                                               | 86            | 7.24                   | 6.09                         | 8.45      | 7.1                          |
| dichlorobenzene    | 1                                               | 100           | 1.99                   | 0                            | 1.99      | 0                            |
| MTBE               | 2                                               | 100           | 2.42                   | 1.93                         | 2.4       | 1.9                          |
| Toluene            | 2                                               | 50            | 0.38                   | 0                            | 0.8       | 0                            |
| methylnaphthalene* | 1                                               | 100           | 0.17                   |                              | 0.2       |                              |
| ethylbenzene       | 1                                               | 100           | 0.004                  | 0                            | 0.004     | 0                            |
| jet fuel**         | 2                                               | 0             |                        |                              |           |                              |
| Total fuel         | 24                                              |               | 5147664                |                              | 7206714   |                              |

# (c) Explosives

| Contaminants | s with<br>ninant                                | Plumes with know | All plumes |                              |         |                              |
|--------------|-------------------------------------------------|------------------|------------|------------------------------|---------|------------------------------|
|              | Number of plumes with<br>a specific contaminant | mes              | Ma         | ass (kg)                     | Mass    | s (kg)                       |
|              | Number<br>a specif                              | % of plumes      | Maximum    | Above<br>regulatory<br>limit | Maximum | Above<br>regulatory<br>limit |
| RDX*         | 4                                               | 75               | 20000      |                              | 26666.7 |                              |
| TNB*         | 4                                               | 75               | 8500       |                              | 11333.3 |                              |
| HMX*         | 5                                               | 80               | 4300       |                              | 5375    |                              |
| DNT*         | 5                                               | 40               | 680        |                              | 1700    |                              |
| TNT*         | 3                                               | 67               | 1200       |                              | 1800    |                              |
| perchlorate  | 9                                               | 89               | 460        | 0                            | 517.5   | 0                            |
| tertyl*      | 1                                               | 100              | 2.2        |                              | 2.2     |                              |
| Total        | 31                                              |                  | 35142      |                              | 47395   |                              |

## (d) Metals

|                 | nes with<br>aminant                             |             | Plumes with I<br>centration an |                              | All plumes |                           |  |
|-----------------|-------------------------------------------------|-------------|--------------------------------|------------------------------|------------|---------------------------|--|
| Contaminants    | Number of plumes with<br>a specific contaminant | % of plumes | Mass                           | s (kg)                       | N          | lass (kg)                 |  |
|                 | Numb<br>a spe                                   | % of p      | Maximum                        | Above<br>regulatory<br>limit | Maximum    | Above regulatory<br>limit |  |
| Mg*             | 2                                               | 100         | 647,746                        |                              | 647,746    |                           |  |
| Fe <sup>†</sup> | 2                                               | 100         | 1,941,214                      | 1,940,295                    | 1,941,214  | 1,940,295                 |  |
| Mn <sup>†</sup> | 6                                               | 50          | 128,574                        | 121,686                      | 257,148    | 243,372                   |  |
| Cr              | 39                                              | 100         | 276,486                        | 272,076                      | 276,486    | 272,076                   |  |
| Во              | 2                                               | 100         | 18,054                         | 0                            | 18,054     | 0                         |  |
| Cr-6*           | 3                                               | 1300        | 276,486                        |                              | 21,268     |                           |  |
| Mo*             | 16                                              | 13          | 4,554                          |                              | 36,431     |                           |  |
| Ва              | 3                                               | 100         | 5894                           | 6.9                          | 5893.9     | 6.94                      |  |
| Ni              | 4                                               | 100         | 16955                          | 15227.4                      | 16955.1    | 15227.4                   |  |
| Cu <sup>†</sup> | 1                                               | 100         | 1260                           | 0                            | 1259.7     | 0                         |  |
| Pb              | 7                                               | 71          | 1831                           | 1669.4                       | 2562.8     | 2337.12                   |  |
| As              | 9                                               | 33          | 229.8                          | 79.5                         | 689.3      | 238.47                    |  |
| Ве              | 1                                               | 100         | 1068.9                         | 1056.8                       | 1068.9     | 1056.77                   |  |
| Cd              | 5                                               | 40          | 150.7                          | 116.6                        | 376.6      | 291.45                    |  |
| Co*             | 2                                               | 100         | 131.2                          |                              | 131.2      |                           |  |
| Zn <sup>†</sup> | 1                                               | 100         | 67.5                           | 0                            | 67.5       | 0                         |  |
| Hg              | 6                                               | 83          | 35.2                           | 13.7                         | 42.2       | 16.38                     |  |
| Al**            | 1                                               | 0           |                                |                              |            |                           |  |
| Se**            | 13                                              | 0           |                                |                              |            |                           |  |
| V**             | 3                                               | 0           |                                |                              |            |                           |  |
| Total metals    | 126                                             |             | 3,320,735                      |                              | 3,227,393  |                           |  |

## (e) Nitrates and sulfates

| Contaminants                | s with<br>ninant                                | Plumes with                  | known conce<br>volume | ntration and                 | All p      | lumes                        |
|-----------------------------|-------------------------------------------------|------------------------------|-----------------------|------------------------------|------------|------------------------------|
|                             | Number of plumes with<br>a specific contaminant | of plume<br>ic contan<br>mes |                       | s (kg)                       | Mass (kg)  |                              |
|                             | Number<br>a specif                              | % of plumes                  | Maximum               | Above<br>regulatory<br>limit | Maximum    | Above<br>regulatory<br>limit |
| Nitrates                    | 71                                              | 72                           | 52,605,366            | 52,603,153                   | 73,234,921 | 73,231,840                   |
| Sulfates <sup>†</sup>       | 44                                              | 84                           | 17,926,614            | 16,248,125                   | 21,318,136 | 19,322,095                   |
| Total sulfates and nitrates | 115                                             |                              | 70531980              |                              | 94553057   |                              |

Table S10. Maximum activity estimates for the tritium and other radionuclides

|                        | Number of plumes with<br>a specific contaminant | Plumes      | concentration and<br>me | All plumes                |           |                              |
|------------------------|-------------------------------------------------|-------------|-------------------------|---------------------------|-----------|------------------------------|
| Contaminants           | er of plur<br>ific cont                         | səwn        | Ac                      | tivity (pCi/l)            | Activity  | y (pCi/l)                    |
|                        | Numbe<br>a spec                                 | % of plumes | Maximum                 | Above regulatory<br>limit | Maximum   | Above<br>regulatory<br>limit |
| Tritium                | 84                                              | 60          | 4,784,809 4,779,627     |                           | 8,038,479 | 8,029,774                    |
|                        |                                                 |             | Radioiso                | topes                     |           |                              |
| Тс                     | 16                                              | 81          | 7008.5                  |                           | 8625.85   |                              |
| Sr                     | 24                                              | 63          | 2705.6                  | 2704                      | 180.37    | 4326                         |
| l*                     | 8                                               | 88          | 5.19                    |                           | 6         |                              |
| U                      | 44                                              | 27          | 3.44                    | 3                         | 12.61     | 12                           |
| Cs*                    | 3                                               | 33          | 1.4                     |                           | 4.2       |                              |
| Ra                     | 9                                               | 22          | 0.4                     | 0                         | 1.8       | 2                            |
| Gross Alpha            | 3                                               | 100         | 0.91                    | 0.9                       | 0.91      | 0.9                          |
| Gross Beta             | 1                                               | 100         | 0.6                     | 0.4                       | 0.6       | 0.4                          |
| other (provide names)* | 1                                               | 100         | 0.03                    |                           | 0.03      |                              |
| Pu*                    | 1                                               | 100         | 0.04                    |                           | 0.04      |                              |
| Th*                    | 4                                               | 25          | 0.12                    |                           | 0.48      |                              |
| Co*                    | 1                                               | 100         | 0                       |                           | 0         |                              |
| Am**                   | 1                                               | 0           |                         |                           |           |                              |
| Carbon 14**            | 1                                               | 0           |                         |                           |           |                              |
| Total radionuclides    | 117                                             |             | 9,726                   |                           | 8,833     |                              |

Table S11. Regulatory concentration limits used in calculations of the maximum mass/activity of contaminants in groundwater.

| Contaminants       | /L or                  | 90          | Notes                                                                                                                                         |  |  |  |  |  |
|--------------------|------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                    | Limits (µg/L<br>pCi/L) | limit type  |                                                                                                                                               |  |  |  |  |  |
|                    | ш                      | _           |                                                                                                                                               |  |  |  |  |  |
|                    | VOCs                   |             |                                                                                                                                               |  |  |  |  |  |
| PCE/TCE/VC/DCE/    | 5                      | MCL         |                                                                                                                                               |  |  |  |  |  |
|                    |                        |             | PCE and TCE CA VC MCL is 0.5 For 1,1 DCE (most conservative DCE MCL). CA MCL for 1,1-DCE & cis-1,2-DCE is 6. CA MCL for trans- 1,2_DCE is 10. |  |  |  |  |  |
| CT                 | 5                      | MCL         | CA MCL is 0.5                                                                                                                                 |  |  |  |  |  |
| DCE                | 7                      | MCL         |                                                                                                                                               |  |  |  |  |  |
| chloroform         | 80                     | MCL         | for total trihalomethanes applied singly to chloroform                                                                                        |  |  |  |  |  |
| VC                 | 2                      | MCL         |                                                                                                                                               |  |  |  |  |  |
| methylene chloride | 5                      | MCL         | Also called dichloromethane. Same as CA MCL                                                                                                   |  |  |  |  |  |
| TCA                | 200                    | MCL         | Standard for 1,1,1-TCA. Same as CA MCL. CA MCL for 1,1,2-TCA is 5.                                                                            |  |  |  |  |  |
|                    |                        |             | Standard for 1,2-DCA. Same as CA MCL for 1,1-<br>DCA.                                                                                         |  |  |  |  |  |
| DCA                | 5                      | MCL         | CA MCL for 1,2-DCA is 0.5                                                                                                                     |  |  |  |  |  |
| carbon disulfide   | 1600                   | CA RL       | no MCL                                                                                                                                        |  |  |  |  |  |
|                    |                        | Fuel and Fu | rel Components                                                                                                                                |  |  |  |  |  |
| Benzene            | 5                      | MCL         | CA MCL is 1                                                                                                                                   |  |  |  |  |  |
| dichlorobenzene    | 75                     | MCL         | MCL for p-dichlorobenzene (1,4-)CA MCL = 5. MCL for o-dichlorobenzene (1,2-) = 600the same as CA MCL.                                         |  |  |  |  |  |
| MTBE               | 13                     | CA MCL      | no MCL                                                                                                                                        |  |  |  |  |  |
| Toluene            | 1000                   | MCL         | CA MCL is 150.                                                                                                                                |  |  |  |  |  |
| ethylbenzene       | 700                    | MCL         | CA MCL is 300.                                                                                                                                |  |  |  |  |  |
|                    |                        | Ехр         | olosives                                                                                                                                      |  |  |  |  |  |
| perchlorate        | 60                     | CA RL       | no MCL                                                                                                                                        |  |  |  |  |  |
|                    |                        | N           | letals                                                                                                                                        |  |  |  |  |  |
| Fe <sup>†</sup>    | 300                    | SDWS        | CA SDWS is same.                                                                                                                              |  |  |  |  |  |
| Mn <sup>†</sup>    | 50                     | SDWS        | CA SDWS is same.                                                                                                                              |  |  |  |  |  |
| Cr                 | 100                    | MCL         | CA MCL is 50                                                                                                                                  |  |  |  |  |  |
| Во                 | 10000                  | CA RL       | no MCL                                                                                                                                        |  |  |  |  |  |
| Cr-6*              | NA                     |             | Cr-VI is regulated under total Cr MCL.                                                                                                        |  |  |  |  |  |
| Ва                 | 2000                   | MCL         | CA MCL is 1000                                                                                                                                |  |  |  |  |  |

|                       |         |            | T                                                                                         |
|-----------------------|---------|------------|-------------------------------------------------------------------------------------------|
| Ni                    | 100     | CA MCL     | no MCL                                                                                    |
| Cu <sup>†</sup>       | 1000    | SDWS       | CA SDWS is 1000. TT is 1300.                                                              |
| Pb                    | 15      | TT         |                                                                                           |
| As                    | 10      | MCL        | As of 1/23/06. CA MCL is 50 currently                                                     |
| Be                    | 4       | MCL        | same as CA MCL                                                                            |
| Cd                    | 5       | MCL        | same as CA MCL                                                                            |
| Zn <sup>†</sup>       | 5000    | SDWS       | CA SDWS is same.                                                                          |
| Hg                    | 2       | MCL        | MCL for inorganic form. Same as CA MCL.                                                   |
| Al**                  | 200     | CA<br>SDWS | no MCL                                                                                    |
| Se**                  | 50      | MCL        | same as CA MCL                                                                            |
| V**                   | 500     | CA RL      | no MCL                                                                                    |
| Total tritium         | 20,000  | CA MCL     | no MCL                                                                                    |
|                       |         | Radio      | pisotopes                                                                                 |
| Sr                    | 8       | CA MCL     | For Sr-90                                                                                 |
| U                     | 20      | CA MCL     | no MCL on activity basis. U MCL is on mass basis and is utilized in metals group results. |
| Ra                    | 5       | MCL        | same as CA MCL                                                                            |
| Gross Alpha           | 15      | MCL        | same as CA MCL except CA standard is for alpha<br>excluding that<br>from Ra and U.        |
| Gross Beta            | 50      | CA MCL     | MCL is in unites of millirems/year.                                                       |
|                       |         | Sulfates   | and nitrates                                                                              |
| Nitrates              | 10      | MCL        |                                                                                           |
| Sulfates <sup>†</sup> | 250,000 | SDWS       |                                                                                           |
|                       |         |            |                                                                                           |

Table S12. The basic groups of plume characteristics used in the FMA.

| Groups of plume characteristics | Qualitative or quantitative data | Number of data categories | Main (1) or<br>supplementary (0)<br>data |
|---------------------------------|----------------------------------|---------------------------|------------------------------------------|
| Contaminant groups (Cntm)       | Qualitative 8                    |                           | 1                                        |
| Severity index (Sv)             | Quantitative                     | 2                         | 1                                        |
| Plume volume<br>(Vol)           | Quantitative 1                   |                           | 1                                        |
| Depth and<br>Velocity (Dp+V)    | Quantitative 2                   |                           | 0                                        |
| Climate Qualita                 | tive                             | 1                         | 0                                        |

Table S13. Results of multiple factor analysis of groundwater plumes

(a) Descriptive statistics of data groups

|     | Variable | Number of sites *) | Minimum | Maximum | Mean   | Std. deviation |
|-----|----------|--------------------|---------|---------|--------|----------------|
| Ngr |          | 124                | 1.000   | 6.000   | 2.742  | 1.182          |
| Sv  |          | 124                | 1.000   | 16.000  | 10.258 | 6.405          |
| Vol |          | 124                | 4.699   | 10.544  | 7.535  | 1.184          |
| Dp  |          | 124                | 0.778   | 3.627   | 1.888  | 0.504          |
| Vel |          | 124                | 0.000   | 3.699   | 2.130  | 0.732          |

<sup>\*) 124</sup> is the number of sites with all groups of data

(b) Frequences of qualitative groups

| Variabl | le Present-1, Absent- | 0 F | requencies | %      |
|---------|-----------------------|-----|------------|--------|
| VOCs    |                       | 0   | 27         | 21.774 |
|         |                       | 1   | 97         | 78.226 |
| FI      |                       | 0   | 112        | 90.323 |
|         |                       | 1   | 12         | 9.677  |
| Expl    |                       | 0   | 112        | 90.323 |
|         |                       | 1   | 12         | 9.677  |
| Mt      |                       | 0   | 80         | 64.516 |
|         |                       | 1   | 44         | 35.484 |
| H3      |                       | 0   | 73         | 58.871 |
|         |                       | 1   | 51         | 41.129 |
| RI      |                       | 0   | 85         | 68.548 |
|         |                       | 1   | 39         | 31.452 |
| SO4     |                       | 0   | 87         | 70.161 |
|         |                       | 1   | 37         | 29.839 |
| NO3     |                       | 0   | 76         | 61.290 |
|         |                       | 1   | 48         | 38.710 |
| CI      | ·                     | 1   | 98         | 79.032 |
|         |                       | 2   | 26         | 20.968 |

### (c) Correlation matrix - Pearson correlation coefficients

| Variables | Ngr    | Sv     | Vol    | Dp     | Vel    |
|-----------|--------|--------|--------|--------|--------|
| Ngr       | 1      | 0.583  | -0.111 | 0.312  | 0.101  |
| Sv        | 0.583  | 1      | -0.025 | 0.342  | 0.132  |
| Vol       | -0.111 | -0.025 | 1      | -0.035 | -0.101 |
| Dp        | 0.312  | 0.342  | -0.035 | 1      | 0.101  |
| Vel       | 0.101  | 0.132  | -0.101 | 0.101  | 1      |

(d) Burt table of contaminant groups

|                  | VOCs-0 |    | V00cs-1 | FI-O | H-1 | Expl-0     | Expl-1 | M <del>-</del> 0 | M-1 | HB-0 | HB-1 | RI-0 | RI-1 |
|------------------|--------|----|---------|------|-----|------------|--------|------------------|-----|------|------|------|------|
| VOCs-0           |        | 27 | 0       | 23   | 4   | 24         | 3      | 13               | 14  | 12   | 15   | 13   | 14   |
| VOCs-1           |        | 0  | 97      | 89   | 8   | 88         | 9      | 67               | 30  | 61   | 36   | 72   | 25   |
| FI-O             |        | 23 | 89      | 112  | 0   | 100        | 12     | 72               | 40  | 64   | 48   | 77   | 35   |
| FI-1             |        | 4  | 8       | 0    | 12  | 12         | 0      | 8                | 4   | 9    | 3    | 8    | 4    |
| Expl-0           |        | 24 | 88      | 100  | 12  | 112        | 0      | 71               | 41  | 64   | 48   | 74   | 38   |
| Expl-1           |        | 3  | 9       | 12   | 0   | 0          | 12     | 9                | 3   | 9    | 3    | 11   | 1    |
| M <del>-</del> O |        | 13 | 67      | 72   | 8   | 71         | 9      | 80               | 0   | 51   | 29   | 58   | 22   |
| M-1              |        | 14 | 30      | 40   | 4   | 41         | 3      | 0                | 44  | 22   | 22   | 27   | 17   |
| HB0              |        | 12 | 61      | 64   | 9   | 64         | 9      | 51               | 22  | 73   | Q    | 60   | 13   |
| HB-1             |        | 15 | 36      | 48   | 3   | 48         | 3      | 29               | 22  | 0    | 51   | 25   | 26   |
| RI-0             |        | 13 | 72      | 77   | 8   | 74         | 11     | 58               | 27  | 60   | 25   | 85   | 0    |
| RI-1             |        | 14 | 25      | 35   | 4   | 38         | 1      | 22               | 17  | 13   | 26   | 0    | 39   |
| <b>SO4</b> 0     |        | 22 | 65      | 76   | 11  | <i>7</i> 5 | 12     | 62               | 25  | 48   | 39   | 50   | 37   |
| SO41             |        | 5  | 32      | 36   | 1   | 37         | 0      | 18               | 19  | 25   | 12   | 35   | 2    |
| NO3-0            |        | 15 | 61      | 66   | 10  | 72         | 4      | 50               | 26  | 46   | 30   | 53   | 23   |
| NO3-1            |        | 12 | 36      | 46   | 2   | 40         | 8      | 30               | 18  | 27   | 21   | 32   | 16   |

(e) Eigenvalues and percentages of factors

| (1) 3           |      |           |        |        |       |        |        |        |        |         |
|-----------------|------|-----------|--------|--------|-------|--------|--------|--------|--------|---------|
|                 | F1   | F2        | F3     | F4     | F5    | F6     | F7     | F8     | F9     | F10     |
| Eigenvalue      | 1.7  | 18 1.220  | 0.949  | 0.684  | 0.601 | 0.554  | 0.459  | 0.378  | 0.172  | 0.070   |
| Variability (%) | 25.5 | 73 17.853 | 13883  | 10.009 | 8793  | 8 104  | 6.710  | 5.535  | 2512   | 1.031   |
| Cumulative%     | 25.5 | 73 43.426 | 57.308 | 67.317 | 76110 | 84.214 | 90.923 | 96.458 | 98.969 | 100,000 |

### (f) Lgand RV coefficients

Lgcoefficients

| 3    |      |                |       |                   |       |       |
|------|------|----------------|-------|-------------------|-------|-------|
|      | Chtm | S <sub>V</sub> | Vd    | До <del>+</del> V | а     | MFA   |
| Ottm | 313  | 3 0.783        | 0.088 | 0.349             | 0.207 | 2294  |
| S/   | 0.78 | 3 1.070        | 0.008 | 0.139             | 0.026 | 1.065 |
| \/d  | 0.08 | 3 0.008        | 1.000 | 0.010             | 0.010 | 0.627 |
| Dp+V | 0.34 | 0.139          | 0.010 | 1.667             | 0.018 | 0.285 |
| ď    | 0.20 | 7 0.026        | 0.010 | 0.018             | 1.000 | 0.139 |
| MFA  | 229  | 4 1.065        | 0.627 | 0.285             | 0.139 | 2281  |

| RV coefficient | S |
|----------------|---|
|----------------|---|

|       | Chtm |       | S/    | Vd    | Др <del>+</del> V | а     | MFA   |
|-------|------|-------|-------|-------|-------------------|-------|-------|
| Ottm  |      | 1.000 | 0.427 | 0.050 | 0.152             | 0117  | 0.857 |
| Sv Sv |      | 0.427 | 1.000 | 0.008 | 0.104             | 0.025 | 0.682 |
| Vál   |      | 0.050 | 0.008 | 1.000 | 0.008             | 0.010 | 0.415 |
| Dρ+V  |      | 0.152 | 0.104 | 0.008 | 1.000             | 0.014 | 0.146 |
| a     |      | 0.117 | 0.025 | 0.010 | 0.014             | 1.000 | 0.092 |
| MFA   |      | 0.857 | 0.682 | 0.415 | 0.146             | 0.092 | 1.000 |

(g) Correlations between variables and factors

|                 | F1     | F2     | F3     | F4     | F5     | F6     | F7     | F8     | F9     | F10    |
|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Ng              | 0.858  | -0.147 | 0.373  | -0.026 | 0.046  | 0.300  | -0.035 | 0.053  | -0.026 | -0.080 |
| S <sub>v</sub>  | 0.842  | 0.343  | -0.072 | 0.184  | -0.046 | -0.126 | -0.183 | -0.130 | -0.090 | 0.242  |
| Val             | -0.250 | 0.725  | 0.551  | 0.194  | 0.029  | 0.048  | 0.251  | 0.068  | 0.011  | 0014   |
| <del>-</del> Др | 0.430  | 0.000  | 0.006  | 0.168  | -0.006 | -0.218 | 0.186  | 0.046  | -0.054 | -0.177 |
| Vel             | 0.191  | 0.078  | -0.094 | -0.330 | -0.022 | -0.048 | 0.039  | -0.044 | 0.146  | 0.026  |

### (h) Factors corresponding to duster centroids (from k-means clustering)

| Oluster | F1 |       | F2    | F3    | F4    |
|---------|----|-------|-------|-------|-------|
| 1       |    | 0.213 | 0.135 | 0.098 | 0.068 |
| 2       |    | 0.124 | 0.063 | 0.410 | 0.073 |
| 3       |    | 0.701 | 0.070 | 0.064 | 0.034 |
| 4       |    | 0.085 | 0.580 | 0.054 | 0.032 |
| 5       |    | 0.100 | 0.070 | 0.095 | 0.409 |

| (i) Classification of plumes into |           |         |          |          |
|-----------------------------------|-----------|---------|----------|----------|
| Ouster 1                          | Cluster 2 | Ouster3 | Ouster 4 | Ouster 5 |
| 11                                | 12        | 6       | 178      | 29       |
| 13                                | 7         | 134     | 180      | 41       |
| 15                                | 14        | 189     | 181      | 48       |
| 179                               | 144       | 22      | 190      | 49       |
| 191                               | 43        | 24      | 16       | 50       |
| 17                                | 56        | 25      | 18       | 51       |
| 143                               | 195       | 28      | 19       | 57       |
| 23                                | 204       | 31      | 20       | 192      |
| 26                                | 205       | 32      | 21       | 217      |
| 27                                | 208       | 42      | 35       | 61       |
| 30                                | 65        | 47      | 193      | 63       |
| 33                                | 66        | 226     | 197      | 70       |
| 34                                | 225       | 58      | 198      | 222      |
| 36                                | 85        | 210     | 200      | 223      |
| 37                                | 155       | 212     | 206      | 110      |
| 38                                | 87        | 214     | 207      |          |
| 39                                |           | 216     | 209      |          |
| 145                               |           | 59      | 211      |          |
| 44                                |           | 67      | 219      |          |
| 45                                |           | 220     | 64       |          |
| 46                                |           | 221     | 156      |          |
| 227                               |           | 78      | 157      |          |
| 228                               |           | 86      | 98       |          |
| 52                                |           | 99      |          |          |
| 53                                |           | 109     |          |          |
| 54                                |           |         |          |          |
| 55                                |           |         |          |          |
| 194                               |           |         |          |          |
| 196                               |           |         |          |          |
| 199                               |           |         |          |          |
| 201                               |           |         |          |          |
| 202                               |           |         |          |          |
| 203                               |           |         |          |          |
| 213                               |           |         |          |          |
| 218                               |           |         |          |          |
| 60                                |           |         |          |          |
| 62                                |           |         |          |          |
| 224                               |           |         |          |          |
| 71                                |           |         |          |          |
| 81                                |           |         |          |          |
| 82                                |           |         |          |          |
| 83                                |           |         |          |          |
| 84                                |           |         |          |          |
| 88                                |           |         |          |          |
| 90                                |           |         |          |          |

Table S14. Results of multiple factor analysis of groundwater plumes with CCI4 concentrations

(a) Descriptive statistics of data groups

| 1.7      |                |         |          |        |                |
|----------|----------------|---------|----------|--------|----------------|
| Variable | Observations*) | Minimum | Maximum  | Mean   | Std. deviation |
| Ngr      | 26             | 2.000   | 5.000    | 3.423  | 0.987          |
| Sv       | 26             | 2.000   | 16.000   | 10.462 | 6.408          |
| Vol      | 26             | 5.272   | 9.872    | 7.143  | 1.023          |
| CCl4_r   | 26             | 0.200   | 1380.000 | 84.085 | 296.050        |
| Dp       | 26             | 1.000   | 2.778    | 2.069  | 0.311          |
| Vel      | 26             | 1.000   | 3.301    | 1.881  | 0.571          |

<sup>\*) 26</sup> is the number of sites with all groups of data

(b) Frequences of qualitative groups

| Variable | Categories | Frequencies | %       |
|----------|------------|-------------|---------|
| VOCs     | 1          | 26          | 100.000 |
| FI       | 0          | 24          | 92.308  |
|          | 1          | 2           | 7.692   |
| Expl     | 0          | 26          | 100.000 |
| Mt       | 0          | 16          | 61.538  |
|          | 1          | 10          | 38.462  |
| H3       | 0          | 13          | 50.000  |
|          | 1          | 13          | 50.000  |
| RI       | 0          | 22          | 84.615  |
|          | 1          | 4           | 15.385  |
| SO4      | 0          | 9           | 34.615  |
|          | 1          | 17          | 65.385  |
| NO3      | 0          | 9           | 34.615  |
|          | 1          | 17          | 65.385  |
| Cl       | 1          | 25          | 96.154  |
|          | 2          | 1           | 3.846   |

(c) Correlation matrix - Pearson correlation coefficients

| Variables | Ngr    | Sv     | Vol    | CCI4   | Dp     | Vel    |
|-----------|--------|--------|--------|--------|--------|--------|
| Ngr       | 1      | 0.563  | -0.344 | -0.019 | 0.285  | 0.127  |
| Sv        | 0.563  | 1      | -0.160 | 0.042  | 0.127  | 0.373  |
| Vol       | -0.344 | -0.160 | 1      | -0.175 | -0.392 | -0.320 |
| CCI4      | -0.019 | 0.042  | -0.175 | 1      | 0.023  | 0.228  |
| Dp        | 0.285  | 0.127  | -0.392 | 0.023  | 1      | 0.691  |
| Vel       | 0.127  | 0.373  | -0.320 | 0.228  | 0.691  | 1      |

(d) Eigenvalues and percentages of factors

| (,            |        |        |        |        |        |        |        |        |         |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
|               | F1     | F2     | F3     | F4     | F5     | F6     | F7     | F8     | F9      |
| Eigenvalue    | 1.734  | 1.471  | 1.062  | 0.701  | 0.456  | 0.234  | 0.190  | 0.055  | 0.008   |
| Variability ( | 29.336 | 24.887 | 17.963 | 11.860 | 7.716  | 3.951  | 3.220  | 0.928  | 0.139   |
| Cumulative    | 29.336 | 54.224 | 72.187 | 84.047 | 91.762 | 95.713 | 98.933 | 99.861 | 100.000 |

(e) Correlations between variables and factors

| (e) Conten | ations between | variables all | u lactors |        |        |        |        |        |       |
|------------|----------------|---------------|-----------|--------|--------|--------|--------|--------|-------|
|            | F1             | F2            | F3        | F4     | F5     | F6     | F7     | F8     | F9    |
| Cntm       | 0.488          | 0.698         | 0.438     | 0.350  | 0.247  | 0.201  | 0.152  | 0.052  | 0.004 |
| Sv         | 0.710          | 0.063         | 0.379     | 0.047  | 0.029  | 0.030  | 0.017  | 0.001  | 0.004 |
| Vol        | 0.523          | 0.048         | 0.225     | 0.041  | 0.157  | 0.002  | 0.004  | 0.001  | 0.000 |
| CCI4       | 0.014          | 0.661         | 0.020     | 0.264  | 0.022  | 0.001  | 0.017  | 0.000  | 0.000 |
| Dp+V       | 0.240          | 0.137         | 0.043     | 0.215  | 0.172  | 0.173  | 0.028  | 0.018  | 0.003 |
| CI         | 0.000          | -0.042        | -0.038    | -0.129 | -0.013 | -0.015 | -0.049 | -0.052 | 0.000 |

## (f) Lg and RV coefficients

#### Lg coefficients:

|      | Cntm  | Sv    | Vol   | CCI4  | Dp+V  | CI    | MFA   |
|------|-------|-------|-------|-------|-------|-------|-------|
| Cntm | 1.785 | 0.611 | 0.194 | 0.185 | 0.661 | 0.193 | 1.601 |
| Sv   | 0.611 | 1.078 | 0.092 | 0.001 | 0.096 | 0.025 | 1.028 |
| Vol  | 0.194 | 0.092 | 1.000 | 0.031 | 0.151 | 0.002 | 0.759 |
| CCI4 | 0.185 | 0.001 | 0.031 | 1.000 | 0.031 | 0.003 | 0.702 |
| Dp+V | 0.661 | 0.096 | 0.151 | 0.031 | 1.033 | 0.096 | 0.542 |
| CI   | 0.193 | 0.025 | 0.002 | 0.003 | 0.096 | 1.000 | 0.128 |
| MFA  | 1.601 | 1.028 | 0.759 | 0.702 | 0.542 | 0.128 | 2.358 |

#### RV coefficients:

|      | Cntm  | Sv    | Vol   | CCI4  | Dp+V  | CI    | MFA   |
|------|-------|-------|-------|-------|-------|-------|-------|
| Cntm | 1.000 | 0.440 | 0.145 | 0.139 | 0.487 | 0.144 | 0.780 |
| Sv   | 0.440 | 1.000 | 0.089 | 0.001 | 0.091 | 0.024 | 0.645 |
| Vol  | 0.145 | 0.089 | 1.000 | 0.031 | 0.149 | 0.002 | 0.494 |
| CCI4 | 0.139 | 0.001 | 0.031 | 1.000 | 0.031 | 0.003 | 0.457 |
| Dp+V | 0.487 | 0.091 | 0.149 | 0.031 | 1.000 | 0.094 | 0.347 |
| CI   | 0.144 | 0.024 | 0.002 | 0.003 | 0.094 | 1.000 | 0.083 |
| MFA  | 0.780 | 0.645 | 0.494 | 0.457 | 0.347 | 0.083 | 1.000 |

## (g) Factors corresponding to cluster centroids (k-means clustering)

| Cluster | F1     | F2     | F3     |
|---------|--------|--------|--------|
| 1       | 1.535  | 1.135  | 0.003  |
| 2       | -1.038 | 0.143  | 1.177  |
| 3       | -1.108 | 0.644  | 0.118  |
| 4       | 1.327  | -0.953 | 0.890  |
| 5       | -0.397 | -0.544 | -1.548 |

### (h) Classification of plumes into 5 clusters (numbers are plume codes given in Table S1)

| Cluster | 1  | 2  | 3   | 4   | 5   |
|---------|----|----|-----|-----|-----|
|         | 26 | 37 | 44  | 57  | 197 |
|         | 27 | 41 | 53  | 58  | 200 |
|         |    | 49 | 54  | 193 | 203 |
|         |    | 81 | 202 | 194 | 204 |
|         |    |    |     | 205 | 206 |
|         |    |    |     | 212 | 207 |
|         |    |    |     | 214 | 211 |
|         |    |    |     | 216 | 219 |

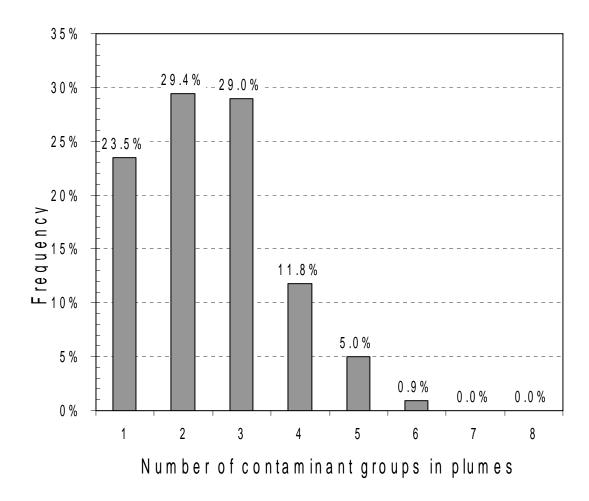
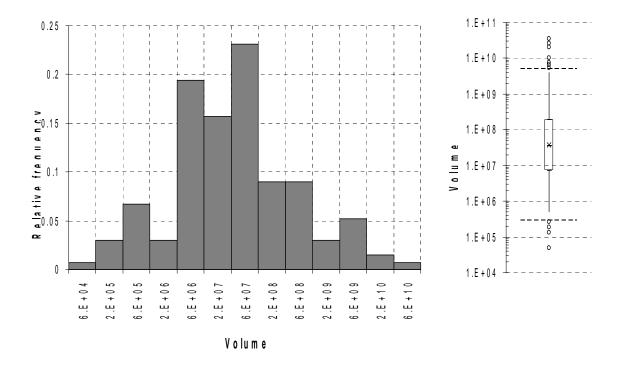
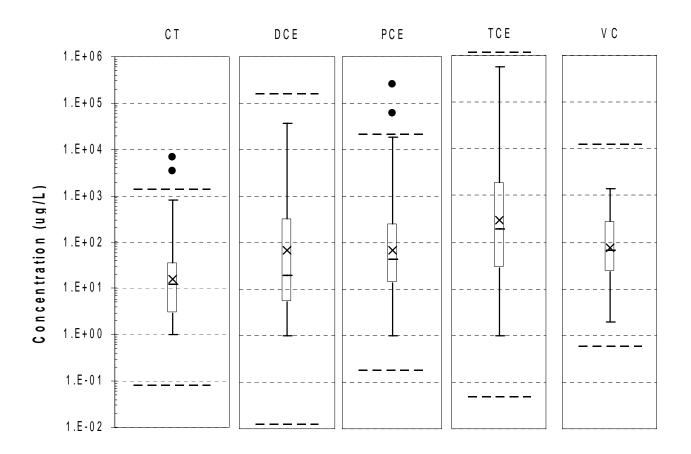
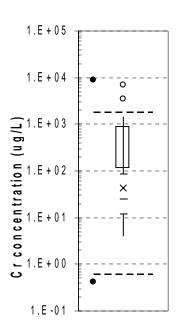
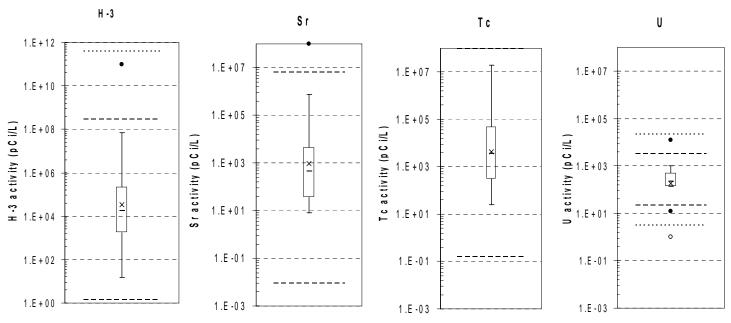



Figure S1. Frequency of occurrence of contaminant groups in groundwater plumes.



Figure S2. (a) Relative frequency of plume volumes: bin values shown are midpoints of log of volume (in  $m^3$ ); (b) Box plot of log plume volumes. The mean is labeled as "x," the median as "-", the whiskers are shown as Q1-1.5(Q3-Q1) and Q3+1.5(Q3-Q1), and the outliers are shown by open circles.


# (a) Chlorinated Hydrocarbons



# (b) Metals and radioisotopes

C r





## (c) Sulfates and nitrates

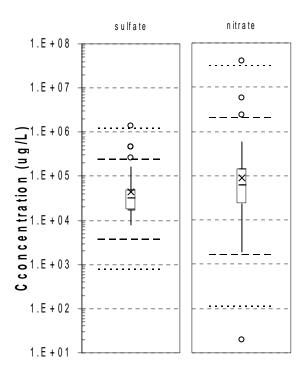



Figure S3. Box-and-whiskers plots of maximum concentrations of contaminants: the mean is shown by a symbol "x", the median by a symbol "-", the whiskers are shown as Q1-1.5(Q3-Q1) and Q3+1.5(Q3-Q1), and the outliers are shown by open circles. Solid circles are minimum and maximum concentrations from Riley and Zachara (1992).

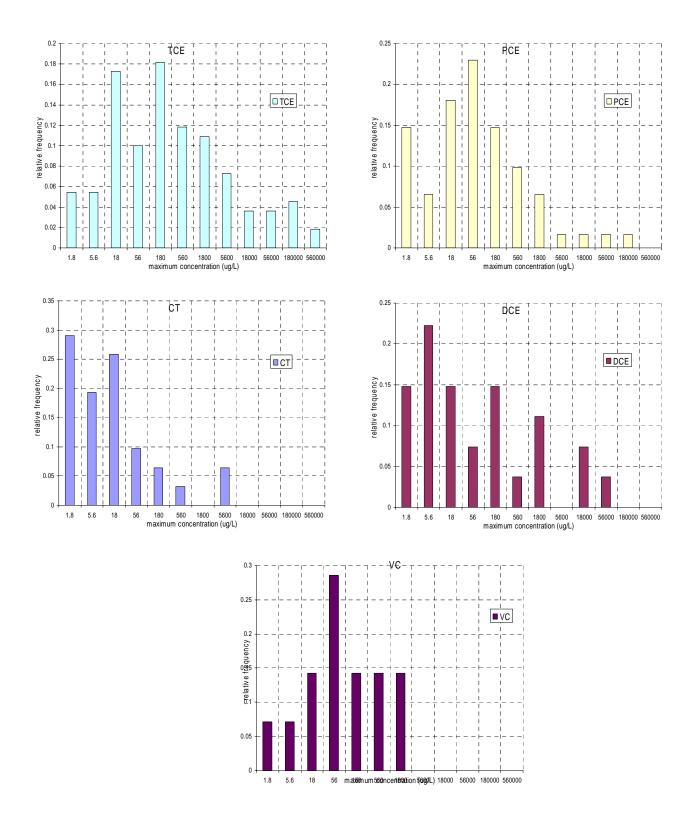



Figure S4. Relative frequency of the maximum concentrations of chlorinated hydrocarbons. Note bin values are midpoints in log space.

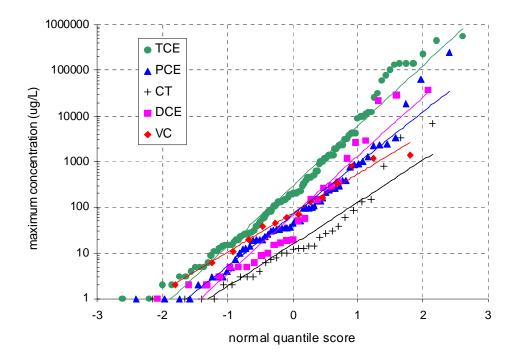



Figure S5. Plots of a normal quantile score vs. maximum concentrations of chlorinated hydrocarbons.

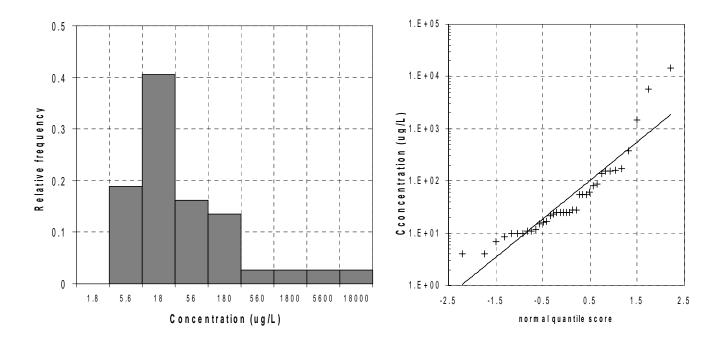



Figure S6. Relative frequency and a normal quantile score vs. maximum Cr concentrations. Bin values are midpoints in log space.

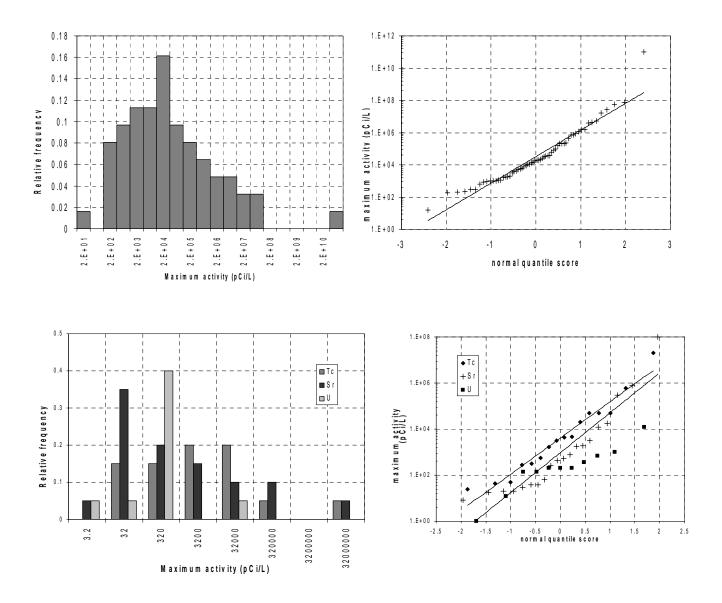



Figure S7. Relative frequency and a normal quantile score vs. maximum  $^3H$ , Sr, Tc, and U concentrations. Bin values are midpoints in log space.

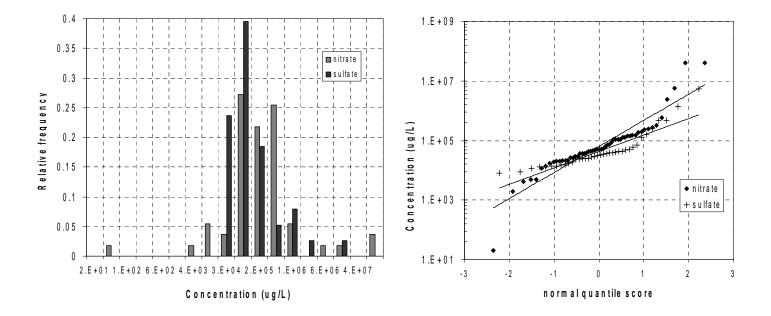



Figure S8. Relative frequency and a normal quantile score vs. maximum concentrations of nitrates and sulfates. Bin values are midpoints in log space.

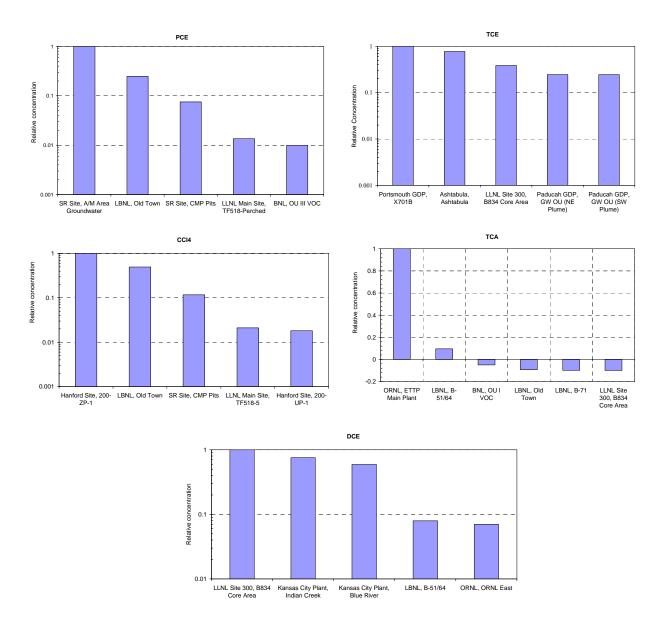



Figure S9. Relative concentration for chlorinated hydrocarbons. Five largest estimates for each contaminant are shown.

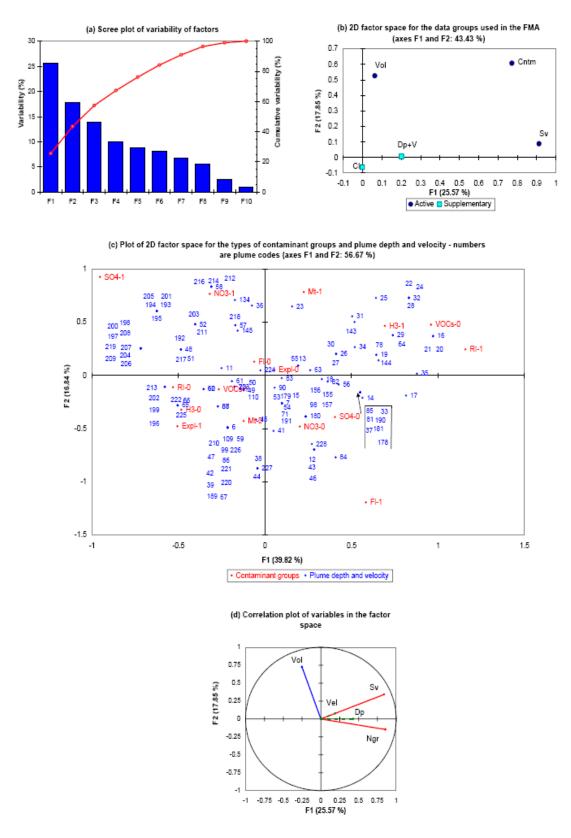



Figure S10. Results of MFA for groundwater plume characteristics (numbers are plume codes - see Table S1)  $\,$ 

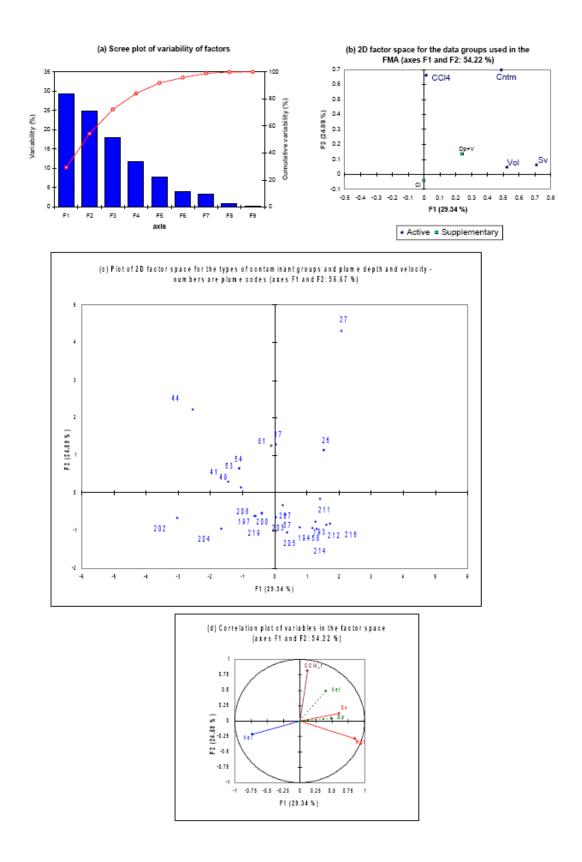



Figure S11. Results of MFA for data groups including CCl4 concentrations

### DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.