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PROTOCOL OPEN

A protocol integrating remote patient monitoring patient
reported outcomes and cardiovascular biomarkers
Chrisandra Shufelt1, Eldin Dzubur2, Sandy Joung1, Garth Fuller2, Kelly N. Mouapi1,3, Irene Van Den Broek1,3, Mayra Lopez2,
Shivani Dhawan1, Corey W. Arnold4, William Speier4, Mitra Mastali1,3, Qin Fu1,3, Jennifer E. Van Eyk1,3, Brennan Spiegel2 and
C. Noel Bairey Merz 1*

We describe the protocol, design, and methodology of the Prediction, Risk, and Evaluation of Major Adverse Cardiac Events (PRE-
MACE) study as a multicomponent remote patient monitoring in cardiology. Using biosensor, biomarkers, and patient-reported
outcomes in participants with stable ischemic heart disease, the PRE-MACE study is designed to measure cross-sectional
correlations and establish the ability of remote monitoring to predict major adverse cardiovascular event (MACE) biomarkers and
incident MACE at baseline and 12-month follow-up. It will further assess the adherence and cost-effectiveness of remote
monitoring and blood sampling over the initial months. Despite medication and lifestyle changes, patients with cardiovascular
disease can experience MACE due to undertreatment, poor adherence, or failure to recognize clinical or biochemical changes that
presage MACE. Identifying patients using remote monitoring to detect MACE forerunners has potential to improve outcomes, avoid
MACE, and reduce resource utilization. Data collection will include: (1) continuous remote monitoring using wearable biosensors; (2)
biomarker measurements using plasma and at-home micro-sampling blood collection; and (3) patient-reported outcomes to
monitor perceived stress, anxiety, depression, and health-related quality of life. Two hundred participants will be followed for
90 days with a subset (n= 80) monitored for 180 days. All participants will be followed up for MACE at 12 months.The PRE-MACE
study will utilize remote monitoring with biosensors, biomarkers, and patient-reported outcomes to identify intermediate
biomarkers of MACE in patients with stable ischemic heart disease. If shown to be effective, this intervention can be utilized
between health visits to predict MACE and reduce financial impact of MACE.
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INTRODUCTION
Ischemic heart disease (IHD) is the leading cause of death in the
United States in men and women across all ethnicities.1 Although
lifestyle risk factors associated with IHD such as smoking, physical
inactivity, poor nutrition, and obesity are well understood,
interventions designed to induce behavior changes suffer from
poor adherence and behavior substitutions. For individuals
already diagnosed with IHD, secondary prevention focuses on
controlling blood pressure, cholesterol, and often diabetes, which
is managed within the confines of a health care provider’s clinical
setting. Furthermore, algorithmic tools to predict cardiovascular
events, such as the atherosclerosis cardiovascular disease risk
calculator that considers age, sex, race, blood cholesterol, blood
pressure, diabetes, and smoking status, are often only performed
in hospital or clinic visits. Identifying early markers predictive for
those individuals that are at an increased risk for developing
cardiovascular events between visits to capture day-to-day or
month-to-month changes in symptomology, biochemical biomar-
kers, or psychosocial behavior may potentially prevent cata-
strophic situations, improve access to care, and reduce resource
utilization.
With advances in digital medicine, there are now opportunities

to perform continuous remote patient monitoring of health
outcomes using experience sampling methodologies such as
patient-reported outcomes (PROs) and ambulatory physiological
measures such as heart-rate and activity, both to improve

ecological validity and obtain continuous insight of participants
in real-time situations.2,3 The acceptance and availability of
consumer-grade biosensors with clinical capabilities continue to
improve, driven by advancements in technology and reduction in
cost to patients. However, despite a trend toward ubiquity of
health-sensing devices among consumers, the voluntary contribu-
tion of collected information to medical records remains challen-
ging, even among health systems with dedicated smartphone
applications.4 In one large-scale initiative inviting patients to share
personal fitness tracker data with their providers, only 0.8% of
patients opted to connect their wearable data to the electronic
health record.4 Self-reported outcomes and passive sensors may
not provide a complete clinical profile of a patient as compared to
biomarkers. Moreover, the predictive ability of passive data may
be limited by small sample size at the participant level, as a result
of relatively infrequent events.
Circulating biochemical biomarkers also play an important role

in predicting risk of cardiovascular events and should be
considered alongside remote monitoring of PROs and biometrics.
Among the important biomarkers for potential MACE prediction
are high sensitivity C-reactive protein (hsCRP), N-terminal pro-
brain natriuretic peptide (NT-proBNP), and ultra-high sensitivity
cardiac-specific Troponin I (u-hs-cTnI).5 Furthermore, the use of
micro-sampling devices to collect small volumes of blood
remotely away from health care facilities could provide additional
circulating biomarker information in a semi-continuous manner,
expanding the capacity of remote patient monitoring beyond
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biometrics and psychometrics to now include home-based
biochemical sampling.6

Funded by the California Initiative for the Advancement of
Precision Medicine (CIAPM), a State-wide public program designed
to spur pragmatic precision medicine research for common
diseases, the Prediction, Risk, and Evaluation of Major Adverse
Cardiac Events (PRE-MACE) study is a multimethod, longitudinal,
prospective cohort study design in 200 patients with stable IHD.
This study is designed to evaluate feasibility regarding adherence
and pilot with regard to value using remote monitoring with
biosensors, biomarkers, and PROs. The overall goals of the study
are: (1) measure cross-sectional correlations between established
major adverse cardiovascular event (MACE) intermediate biomar-
kers; (2) explore the longitudinal ability of remote physiological
and biochemical monitoring to predict changes in MACE
intermediate biomarkers; (3) explore the ability of remote
monitoring and biomarkers to predict incident MACE at baseline
and over 12-month follow-up; (4) carry out discovery proteomics
and lipidomics to expand potential circulating predictive MACE
biomarkers, and (5) estimate the cost-effectiveness and budget
impact of remote monitoring for potential MACE biomarkers and
MACE itself. Here, we describe the protocol design and
methodology of the PRE-MACE study as an exemplar of a
multicomponent remote patient monitoring study in cardiology.

DISCUSSION
Despite lifesaving medications, such as cholesterol-lowering
statins, blood pressure medications, intensive antiplatelet therapy,
and revascularization strategies, many stable IHD patients
progress to MACE due to undertreatment, poor adherence to
treatment, or failure to recognize clinical or biochemical changes
that occur prior to MACE in order to deploy intervention. Patients
with stable IHD may also develop precursor myocardial injury that
is not easily detected with standard monitoring yet may progress
to MACE if not recognized, leading to potentially fatal outcomes. If
remote monitoring and predictive markers are able to identify
subtle signals that predict MACE, then more precise, timely, and
cost-effective interventions can be deployed to improve out-
comes, avoid catastrophic events, improve care access for large
outpatient populations, and reduce resource utilization.
The PRE-MACE study is designed to evaluate feasibility

regarding adherence and pilot remote monitoring with biosen-
sors, biomarkers, and PROs. This study will collect foundational
data to answer fundamental questions about the predictive
validity of remote monitoring for MACE and provide preliminary
data for future studies. It will be a next-generation digital health
monitoring protocol that leverages advances in mobile health
technologies, including remote monitoring of wearable bio-
metrics, app-based psychometrics, and home-based biochemical
biomarker collection. Using a combination of a wearable activity
tracker, an FDA-cleared remote ECG monitor, a smartphone app
for PRO monitoring, and the Mitra® home microsampling device
coupled to apolipoprotein quantification, this protocol seeks to
expand the capabilities of digital health in an effort to find “signals
in the noise” that may presage MACE. Although the study is
focused on stable IHD, we view it as a model for conducting
population-based precision health remote monitoring research for
any chronic disease.
In addition, the success of digital health will depend not only on

improving efficacy and effectiveness of care, but also ensuring
cost-effective healthcare delivery. Modern digital health protocols
should, where possible, consider health economic considerations
early in the process of designing and testing new technologies
and devices. Of note, the State of California requires health
economic modeling among all grant recipients under its CIAPM
program. For the current protocol, we will formally project the
cost-effectiveness and budget impact of future remote patient

monitoring programs that assess physiological and biochemical
signals for stable IHD. These hypothesis-generating models will
incorporate data from the study itself, including costs and
consequences of the remote monitoring program, and couple
the results with evidence from the literature to estimate the
potential cost-effectiveness of the program under varying
scenarios and budget constraints. This process will ultimately
help health systems and policymakers to determine whether to
support future programs and will assist researchers in identifying
threshold for cost-effectiveness.
This State-sponsored CIAPM project will generate a wide range

of data across wearable biometric, app-based psychometric, and
home-based biochemical biomarker platforms. This protocol will
serve as the foundation for future publications emanating from
the study. It is also our hope that publishing this protocol as a
standalone document offers a model for conducting multi-
disciplinary digital health research across diverse data collection
platforms.

METHODS/DESIGN
Recruitment and inclusion/exclusion criteria
Participants with stable IHD and intermediate risk for MACE,
defined as an annualized MACE risk of 10–13%,7 will be recruited
from a large, academic hospital-based cardiac rehabilitation
center, a tertiary care women’s heart center, and physician
referral. Additional recruitment strategies will include using pre-
existing research registries of patients with stable IHD. Inclusion
criteria include: 18 years of age or older, current diagnosis or
history of ischemic heart disease, owning or having access to a
smartphone or device, and willing to return for required follow-up
visits. Exclusion criteria include: symptoms or signs of acute
coronary syndrome and/or heart failure (Class III/Class IV), planned
revascularization or valve surgery, comorbidity that precludes 12-
month survival, or history of psychiatric disorders or substance
abuse. An “intermediate” risk group is selected because they
account for the majority of MACE, compared to the less frequent
“high” risk participants who are typically monitored and treated by
existing strategies, and the “low” risk participants who represent a
lower population burden. All participants will provide signed
informed consent for baseline evaluations and follow-up by using
forms and procedures in accordance with institutional guidelines
and approved by the institutional review board.
The study will recruit 200 participants based on sample size

calculation for the aims 1 and 2 analyses featuring multivariable
linear regression, treating the predictor variables as fixed. The
Stata 13 program with the powerreg commend was used to
power the study around F-tests of whether the β’s for PROs,
remote patient monitoring data, and biomarkers are simulta-
neously zero while controlling for confounding variables. Setting
alpha to 0.0001 and seeking 80% power to detect an improve-
ment in R-squared of 0.025 when comparing existing models to
models augmented by study data.

Remote patient activity monitoring
During a baseline visit, participants will be provided a Fitbit
Charge 2 device (Fitbit Inc., San Francisco, CA, USA), a wrist-worn
device that tracks heart rate and activity along with in-person
training. Monitoring with the Fitbit will be continuous, only
interrupted by bathing, swimming, other activities involving
water, or charging the device. The Fitbit Charge 2 is a consumer
device with an embedded tri-axial accelerometer to track activity
and a photoplethysmography (PPG) sensor to detect active heart
rate and resting heart rate.8 PPG and accelerometry are also used
to determine, whether an individual is asleep and whether or not
they are actively wearing the device. Fitbit data will be
continuously synced and uploaded into the Fitabase system
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which staff will track for return of results and compliance. When
noted, study staff will contact the participant to query compliance.
Given the motivated population, we anticipate a target compli-
ance of over 80%. Previously published data has revelated over
90% compliance with the Fitbit device using this population.9 A
subset of n= 80 (40%) participants will be enrolled in an extension
cohort, which will include an additional 90-day monitoring period
using biosensors, biomarkers, and patient-reported outcomes for a
total of 6 months.
A subset (153, 77%) of participants will also receive the AliveCor

KardiaMobile device (AliveCor, Mountain View, CA) and will be
asked to monitor a rhythm electrocardiogram stripe weekly or if
they experience any cardiac symptoms. AliveCor KardiaMobile is
an FDA-cleared, single-channel electrocardiogram rhythm strip
that detects the presence of atrial fibrillation and normal sinus
rhythm.10 Participants may record symptoms experienced during
the session through a smartphone application, while simulta-
neously placing index fingers on the electrodes of the device for
30 seconds. The AliveCor KardiaMobile emits a high-frequency
signal containing the heart rhythm data that is detected by the
AliveCor smartphone application. This information is then
transmitted to AliveCor and interpreted using machine learning
algorithms and communicated back to the participant as either
normal or potentially abnormal heart rhythm. The AliveCor
KardiaMobile device has been validated in clinical populations
diagnosed with arrhythmias.11 Table 1 provides an overview of
testing, data collection, and frequency of the PRE-MACE protocol.

Biochemical biomarker monitoring
At baseline (day 0) and exit (day 90) enrolled participants will
complete a venous plasma draw for the MACE intermediate
biomarkers, hsCRP, NT-proBNP, u-hs-cTnI. Both hsCRP and NT-
proBNP will be measured by the Immunochemical Core at Mayo

Clinic on a Cobas c311 (hsCRP) and a Cobas e411 (NT-proBNP)
chemical analyzer (both Roche Diagnostics, Indianapolis. IN).
u-hs-cTnI will be measured using the Quanterix assay (Quanterix
Corporation, Lexington, MA) on the Simoa HD-1 Analyzer, a highly
sensitive and fully automated ELISA platform, in duplicate at the
Cedars-Sinai Protein Quantitation Core.12,13 Any sample with the
percent coefficient of variation (%CV) higher than 20% for u-hs-cTnI
will be repeated with appropriate calibrators and controls.
Remote biochemical biomarker monitoring will occur using the

Mitra® micro-sampling device (Neoteryx, Torrance, CA), an FDA-
listed class 1 device (D254956) that allows remote, longitudinal,
and volumetric blood sample collection using a simple finger
prick.14 The Mitra device has an absorbent polymeric tip that wicks
up a fixed volume (10 µL) of blood and allows sample hetero-
geneity and overcomes hematocrit bias issues associated with
dried blood spots.19 At baseline (day 0) and time of exit (day 90),
four Mitra tips will be filled onsite using the finger prick blood
collection. Participants will be provided two additional kits for
remote blood collection after one month (day 30) and two months
(day 60). At the second onsite visit (day 90) a subset of up to 40
individuals will be provided three additional kits to be returned at
day 120, 150, and 180, while another subset of up to 40 will be
provided one additional day 180 kit. Automated email reminders
or push notifications for home Mitra blood collection (day 30 and
day 60 and for the extended subset, day 120, 150 and 180) will be
sent to participants one day prior to scheduled draw. The option
to obtain blood collection onsite at the hospital with help from the
study staff will be made available to each participant.
Apolipoproteins (A-I, A-II, A-IV, B, C-I, C-II, C-III, E, J), human

serum albumin, and hemoglobin will be extracted, denatured,
reduced, alkylated, and digested from the Mitra tips using a
previously optimized and automated workflow on the Biomek
NXP Workstation (Beckman Coulter).6,15,16 A targeted multiple
reaction monitoring mass spectrometry approach will be used for
protein quantification on the 6500 Triple Quadrupole mass
spectrometer (SCIEX) with stable isotope labeled peptides spiked
into each sample similar to our previous protocols.6,16 (see Table 2
for the qualifier and quantifier peptides).
For a subset of MACE intermediate biomarkers, in-depth

proteomics (>3500 peptides and >450 proteins on a Q-Exactive-
HFX (Thermo Fisher Scientific, San Jose, CA) and lipidomics (1153
lipids on the Lipidyzer™ platform, SCIEX) will be performed on
plasma samples obtained at enrollment and exit. A targeted lipid
panel representing 13 lipid classes (Table 3) will be analyzed using
the Lipidyzer™ platform (SCIEX) which consists of a triple
quadrupole mass spectrometer (5500 Q-trap) with a SelexION™
front end.3 The SelexION™ technology maximizes the correct
identification of isobaric lipids, thus adding an extra level of
specificity. The system has a validated kit composed of multiple
internal standards specifically for each lipid class to allow for
accurate quantification and eliminate quantitative bias. Plasma
lipids will be extracted, processed with internal standards based
on the manufacturer’s protocol, and analyzed by direct infusion
from the auto sampler.17 Lipid concentrations will be determined
by the Lipidyzer software using the ratio of the endogenous lipid
to internal standard.

Patient reported outcomes (PROs)
In addition to monitoring biochemical biomarkers and wearable
biometrics, we will complement these data streams with patient-
reported outcomes (PROs) collected through a mobile phone
application or web browser using HealthLoop, an electronic
platform capable of administering surveys to patients and
facilitating remote patient monitoring in the form of dashboards
and communication tools for health professionals. Patients will
receive an email reminder the week prior to complete the forms
through push notification if the HealthLoop application installed

Table 1. PRE-MACE protocol data collection

Testing and data collection Frequency over 90-
day period

Remote monitoring

Fitbit Charge 2 Continuous

KardiaMobile AliveCor Weekly

MACE intermediate biomarkers

u-hs-cTnI Day 0 (Baseline), Day 90 (Exit)

NT-proBNP Baseline, Exit

hsCRP Baseline, Exit

Mitra microsampling device
(Apolipoprotein panel: A-I, A-II, A-IV, B,
C-I, C-II, C-III, E, J)

Baseline, Day 30, Day 60, Exit
with subset Day 90 and 120

Proteomics discovery Baseline

Patient reported outcomes

PROMIS questionnaire Baseline, Weekly

Depression Baseline, Weekly

Emotional distress/anxiety Baseline, Weekly

Fatigue Baseline, Weekly

Physical function Baseline, Weekly

Sleep disturbance Baseline, Weekly

Social isolation Baseline, Weekly

Global mental health Baseline, Weekly

Global physical health Baseline, Weekly

Kansas City Cardiomyopathy
Questionnaire (KCCQ)

Baseline, Bimonthly

Seattle Angina Questionnaire (SAQ) Baseline, Monthly
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on their smartphones. PROs to be collected include the following
short-form subscales of the PROMIS® questionnaire:18 depression
(eight items), emotional distress/anxiety (eight items), fatigue
(eight items), physical function (12 items), sleep disturbance (eight
items), social isolation (eight items), global mental health (four
items), and global physical health (four items). The PROMIS
questionnaire subscales query participants about the previous
7 days and will be delivered each week for the duration of the
study. Participants will receive the 12-item Kansas City Cardiomyo-
pathy Questionnaire (KCCQ-12) every other week to generate a
cardiomyopathy summary score and assess cardiomyopathy-
specific physical limitation, symptom frequency, quality of life,
and social limitations.19 Participants will receive the seven-item
Seattle Angina Questionnaire (SAQ-7) every 30 days to create an
angina summary score and angina-specific physical limitations,

symptom frequency, and quality of life.20 At the exit, participants
will be asked about each of the platforms used in a perceived ease
of use survey to evaluated patient engagement and experience.21

Follow up and major adverse cardiovascular events
MACE is defined as all-cause mortality, myocardial infarction,
stroke, and heart failure hospitalizations. Secondary MACE
includes any cardiovascular hospitalization, including revascular-
ization, other treatment and observation for suspected acute
coronary syndrome, transient ischemia attack, or arrhythmia.
Participants will be followed at the 1-year time point by phone to
assess for MACE outcomes that may have occurred after the
monitoring period. If the 1-year follow-up survey is incomplete,
the Social Security Death Registry will be accessed for mortality
information.

Data integration
Data from baseline and exit surveys will be collected in Research
Electronic Data Capture (REDCap) to preserve protected health
information.22 Data from Fitbit Charge 2 devices will be collected
in real-time and synced sporadically with the application installed
on participant's smartphones via Bluetooth. A research-grade
service (Fitabase, San Diego, CA) will be used to retrieve minute-
level data from Fitbit servers from all participants. In addition to
retrieving raw step counts and heart rates each minute, the service
provides epoch-level wear-time and classification of activity into
sedentary, light, moderate, and vigorous activity levels using
proprietary and validated algorithms. The data will be maintained
at minute-level epochs and merged to lower resolutions (e.g., day-
level, week-level) for specific data analyses. Data from the AliveCor
KardiaMobile device will be received as post-processed time-
stamped recordings with diagnostic information that is merged as
a count of use and count of confirmed atrial fibrillation weekly.
Access to readings of raw ECG and voice recordings will occur on a
case-by-case basis, for the purposes of case studies and qualitative
analysis. Data from PROs will be uploaded to HealthLoop after
each survey is completed and scores will be downloaded at the
end of the participants’ enrollment. The Health Measures Scoring
Service will be used to score PROMIS surveys in order to use
population-based t-scores, per scoring manual specifications.
Lower limits of quantification and detection for all biomarker

data will be obtained and reported. Data analysis for the LC-MS/
MS apolipoprotein panel data will be performed with MultiQuant™

3.0 software (SCIEX) for the 6500 triple quadrupole mass spectro-
meters and using Pinnacle (Optys Technologies, Boston, MA). The
peak area ratio of each endogenous peptide relative to their
stable-isotope labeled analog will be calculated. Protein results are
reported as the average, normalized, peak area ratio from one
selected proteotypic peptide, whereas the second proteotypic
peptide is used for confirmation. The lipid concentrations
obtained from the Lipidyzer software will be used to determine
differential lipid profiling of lipids species and classes.

PLAN OF ANALYSIS
Aim 1 Goal: to measure cross-sectional correlations between
remote monitoring data and established MACE intermediate
biomarkers, including hsCRP, NT-proBNP, and u-hs-cTnI
To accomplish cross-sectional analyses, we will first calculate
Pearson correlations to describe the bivariate relationships
between each daily-averaged wearable metric (mean daily steps,
miles, calories, active movement, sleep hours, sleep interruptions,
heart rate) over the first week and the first week PRO metrics
(PROMIS® physical function, fatigue, anxiety, depression, sleep
disturbance plus SAQ and KCCQ), each versus baseline MACE
intermediate biomarkers and apolipoproteins.

Table 2. Protein composition measured from the Mitra
microsampling devices

Protein name Abbreviation Peptide sequence used
in assay

Apolipoprotein A-I apoA1 AKPALEDLR

DLATVYVDVLK

Apolipoprotein A-II apoA2 SPELQAEAK?

EQLTPLIK

Apolipoprotein A-IV apoA4 ISASAEELR

LLPHANEVSQK

Apolipoprotein B apoB FPEVDVLTK

TEVIPPLIENR

Apolipoprotein C-I apoC1 TDVSSALD

EWFSETFQK

Apolipoprotein C-II apoC2 TAAQNLYEK

TYLPAVDEK

Apolipoprotein C-III apoC3 DALSSVQESQVAQQAR

GWVTDGFSSLK

Apolipoprotein E apoE LGPLVEQGR

AATVGSLAGQPLQER

Apolipoprotein J
(Clusterin)

CLUS TLLSNLEEAK

IDSLLENDR

Hemoglobin
alpha chain

HBA VGAHAGEYGAELER

FLASVSTVLTSK

Human serum albumin HSA DDNPNLPR

LVNEVTEFAK

Table 3. Lipid classes analyzed by the LipidyzerTM

Lipid class Number of lipid species

Triacyclglycerols (TAG) 502

Diacylglycerols (DAG) 67

Free Fatty Acids (FFA) 28

Cholesterol Esters (CE) 34

Phosphatidylcholines (PC) 161

Phosphatidylethanolamines (PE) 233

Lysophosphatidylcholines (LPC) 28

Lysophosphatidylethanolamines (LPE) 28

Sphingomyelins (SM) 16

Ceramides (CER) 56

Total 1153
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The study will then use generalized linear models (GLMs) to
describe the baseline relationships between both monthly- and
weekly-averaged metrics (PROMIS, SAQ, KCCQ, and ambulatory
physiological measures) with baseline MACE intermediate bio-
markers (hsCRP, NT-proBNP, u-hs-cTnI) and apolipoproteins.
Models will be evaluated for assumptions and data will be
transformed as needed, including standardization to aid in
interpreting results. GLMs will adjust for relevant covariates
including, but not limited to, age, sex, ethnicity, income, and
other comorbidities. Process models such as hidden Markov
models will be used to model the temporal dynamics of biosensor
data over the course of the study. These models will be combined
with machine learning classifiers such as random forests and
support vector machines to predict patient outcomes such as
changes in MACE intermediate biomarkers and PROs. We
hypothesize that subtle but detectable clinical parameters from
remote patient monitoring data and PRO data will correlate with
MACE intermediate biomarkers.

Aim 2 Goal: to measure the longitudinal ability of remote
monitoring data to predict changes in MACE intermediate
biomarkers
We will use generalized linear mixed models (GLMMs) to describe
the baseline and exit relationships between both monthly- and
weekly-averaged metrics and baseline MACE intermediate bio-
markers and apolipoproteins. Violations of assumptions in models
will be handled with transformation, as needed. The GLMMs will
be used to evaluate the longitudinal analyses examining the
relationship between time-varying ambulatory physiological
measurements (e.g., steps), weekly and monthly PROs, and time-
varying intermediate biomarkers. GLMMs will be adjusted for
covariates. We hypothesize that changes in remote patient
monitoring data and PRO data will predict changes in MACE
intermediate biomarkers.

Exploratory Aim 2b: to measure the ability of remote monitoring
with PROs, wearable biometrics, and traditional biomarkers to
predict incident MACE at baseline and over 12 months of patient
follow-up
We anticipate that 10–13% of participants will develop MACE
during the 12-month follow-up. This event rate is limited to fully
power the study for MACE as the primary outcome. As an
exploratory aim, we will use wearable biometrics, PROs, MACE
intermediate biomarkers and apolipoproteins, plus discovery
protein and lipid panels and run data models to identify
multivariable predictors of MACE on a subset of MACE inter-
mediate biomarkers. Through this discovery proteomic and
lipidomic panels, over 450 additional proteins and 1153 lipids
representing a broad systemic response, to inflammation, vascular
reactivity, extra cellular matrix disturbance, kidney function will be
explored. Limits to develop an exploratory composite MACE
prediction index using multivariate modeling will also be
implemented. We will exploit the large-scale multi-omic data to
define potentially underlying molecular mechanisms of MACE
through three methods: (1) using existing knowledge bases to
provide functional annotation, molecular pathways, and protein
interacting partners; (2) using text mining platforms to extract
information from the literature to elucidate links/relationships to
other health conditions and cardiac phenotypes; (3) creating a test
dataset first and then using supervised and unsupervised learning
models to understand multi-omic data relevancy and ability to
predict features of cohort subsets. Using this data, we will run Cox
proportional hazard models to identify multivariable predictors of
MACE. Due to the rarity of MACE, this model may yield infinite
estimates; in that event, we will prepare an alternative model
using the Firth–Cox method. The discriminative power of the final
multivariable MACE prediction composite score will be assessed

by area under the receiver operating characteristic curve (C-
Statistic). By combining PROs, remote patient monitoring data,
and at-home monitoring of known MACE biomarker predictors
from Aims #1–2 plus >500 additional blood proteins representing
a broad systemic response, such as inflammation (e.g., serum
amyloid A), vascular reactivity (e.g., periostin), extra cellular matrix
disturbances (e.g., MMPs), kidney function (e.g., cystatin C), and
lipids (e.g., omega fatty acids), we will develop an exploratory
composite MACE prediction index using multivariable modeling.

Aim 3 Goal: to estimate the cost-effectiveness and budget impact
of remote monitoring for MACE
Digital health innovations should be subjected not only to analysis
of efficacy and effectiveness, but also to analyses of cost-
effectiveness. In this protocol, we will use results from the study
to create hypothesis-generating cost-effectiveness and budget
impact models to estimate the projected costs per life year saved,
and per-member per-month cost of remote monitoring vs. usual
care. Models will feature a time horizon of 5 years and employ
Markov-chains with 1-month cycles. We will use state transition
probabilities derived from a systematic literature review, and
supplement these with remote monitoring prediction estimates
derived from data collected in the study. Estimates of direct health
care costs will assume the health-system perspective and include
immediate and downstream costs associated with disease
progression. Costs of the remote monitoring will be assessed via
a micro-costing and will also account for ongoing support of
particpants by incorporating staff salaries in the health economic
calculation. Finally, we will conduct deterministic and probabilistic
sensitivity analyses using one-way, two-way, and Monte Carlo
approaches. We hypothesize that incremental cost of remote
monitoring will be offset by downstream savings engendered by
early and precise prediction of unexpected and costly MACE in
stable moderate-risk IHD.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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