
UC San Diego
Technical Reports

Title
Optimizing the Knapsack Problem

Permalink
https://escholarship.org/uc/item/6034x9r2

Author
Landa, Leo

Publication Date
2004-04-02

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6034x9r2
https://escholarship.org
http://www.cdlib.org/

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 1

Leo Landa

Optimizing the Knapsack Problem

1 Foreword ... 2
2 Acknowledgements ... 2
3 Introduction ... 2

3.1 Note ... 3
4 Intuition.. 3

4.1 Definitions and assumptions .. 3
4.2 The goal ... 5

5 Gain... 5
5.1 The definition and meaning.. 5
5.2 Gain improvements .. 6

6 Threads ... 8
6.1 Definition .. 8
6.2 Thread independence .. 9
6.3 Dynamic nature of threads ... 9
6.4 Threads and MVI.. 10
6.5 Thread 0... 10
6.6 Thread (0 + wx) mod w1.. 10
6.7 Thread (T + wx) mod w1 ... 11
6.8 Thread basics: linking .. 11
6.9 Calculating gain in threads... 11
6.10 Algorithm, take one .. 12

7 Chains ... 13
7.1 The reason for misses.. 13
7.2 Definition of chains... 14
7.3 Max usage number for items.. 14
7.4 Chain analysis.. 15
7.5 Chain 0... 15
7.6 Chain X .. 15

8 Possibility analysis .. 16
8.1 Examples of an impossibility .. 16
8.2 Possibility tracking.. 16

9 Neighbors.. 16
10 The algorithm... 18
11 Examples... 19

11.1 Case 1.. 19
11.2 Case 2.. 19
11.3 Case 3.. 20

12 Conclusions ... 21
12.1 Algorithm characteristics .. 21
12.2 Further improvements .. 21

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 2

1 Foreword
This report was written in December of 2002, as a term paper in professor
T.C.Hu’s “Interesting Algorithms” class (CSE 203A at UCSD, Fall quarter of
2002). It took some time and additional research to reignite the interest in the
results in this report, which led to its being registered as a technical report with
UCSD in April, 2004. However, the content presented is still the same as it was
in 2002.

Since 2002, only the following changes were made:

• The author’s name was changed from Lev Landa to Leo Landa, due to an
official change of name;

• The author’s e-mail was changed from llanda@cs.ucsd.edu to
leo@leolan.com; both are valid, the latter should simply be considered the
primary address;

• This foreword and acknowledgements section were written;

• The index page was updated to reflect the change in section numbers and
page numbers due to the foreword and acknowledgements.

2 Acknowledgements
It is impossible to overestimate the contribution of UCSD professor T.C.Hu to this
report’s being written and published. Professor T.C.Hu’s magnificent lectures in
several courses have given me the knowledge, desire, inspiration, and
consistency to perform enough research to culminate in this report. Furthermore,
professor T.C.Hu’s involvement after the report was written is the only reason for
the report to be published – without his never-ending support and additional
research (in collaboration with professor M.T.Shing), this report would never see
the light of day.

3 Introduction

The one-dimension unlimited-supply integer knapsack problem can be
formulated as follows:

Given an unlimited number of items of several types, each one
characterized by its integer weight and integer value, and a knapsack of
limited total capacity for weight, find a combination of items whose total
weight does not exceed the knapsack capacity while yields the maximum
total value.

It is known from previous research that for large enough knapsack capacities
(boundaries), a trend will become obvious: every solution to the problem of
boundary b will be a combination of solution to (b-wi) and the item i, given that
item i is characterized by highest “density”, or v/w ratio. The proof of this fact is
beyond the scope of the paper.

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 3

This essentially means that the table of knapsack solutions, mapping boundaries
to maximum achievable weight will become predictable and “periodic” (the
differences between integer solutions and continuous solutions will repeat with a
period equal to the weight of the most valuable item). This makes it possible to
skip solving the knapsack problem for big enough boundaries, but rather
calculate the result directly (fast) using previous knowledge.

However, the problem arises – what boundary is big enough?

This paper will go hunting for the answer.

3.1 Note

There should be clear distinction between two types of goals that could be
sought while hunting for the magic boundary.

One would be enough information to produce the solution to the given knapsack
problem for any boundary. Let’s call this a general knapsack problem.

Another would be enough information to produce the solution for a particular
boundary. Let’s call it a particular knapsack problem.

As we shall see later on, these two problems are related, but not the same.
However, the hunt is on for both.

4 Intuition

4.1 Definitions and assumptions

For every knapsack problem examined, let us define the following variables and
terms:

• N – the number of types of items available;

• wi – the weight of item of type i;

• vi – the value of item of type i;

• Density – a real number denoting the ratio between the value and the
weight of a certain type of item;

• pi – the density of items of type i;

• b – the boundary (knapsack capacity);

Let us also always distinguish the item with the highest density. To make notation
easy, let us always label the types of items in such a way that the type with index
1 is the one with highest density. In case of ties between two types, we will
always pick the type with the smallest weight. Further ties will mean exact same

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 4

types of items, so will consider them the same. We shall call that type “Most
Valuable Type”. We shall call items of that type “Most Valuable Item”, or “MVI”.

• theta – the difference between a continuous solution (which is always
b v1 / w1) and integer solution;

• General stop point – the smallest value of b, such that for any boundary
larger than b the solution is a combination of the solution to (b – w1) and
one MVI.

Let us also formulate the assumptions about the knapsack problem. These have
been proven previously and will be considered axioms in this paper:

1. For any knapsack problem, if the optimal solution for certain b contains at
least one item of type x, then if that item is removed from the solution, the
remainder is the optimal solution for (b – wx). This stems from the
dynamic programming nature of the knapsack problem.

2. For large enough boundaries b, the solution will consist of the solution to
(b – w1) and one MVI.

3. Any particular knapsack problem can be solved using dynamic
programming, utilizing a table of size N by b. Let us call such a table
general dynamic table. The whole purpose of the paper is to provide
solutions to knapsack problems without building such a table, because
this table is too big to be built for certain large enough boundaries (it also
takes too much time – the whole purpose of this research is to reduce the
time needed to solve knapsack problems).

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 5

4.2 The goal

Consider a certain knapsack problem, in which the weight of MVI is 10. Consider
that the problem at hand is to find a solution for a boundary of 10,000,000,000.

It is obvious that there is no need to analyze the items any further. It is clear that
10,000,000,000 divides 10, the weight of MVI, without remainder, which means
that the solution will consist only of MVI. 1,000,000,000 of them to be exact.

This simple example illustrates for some particular knapsack problems it not
necessary to know the general stop point. Some more insight into the problem
should reveal some more details about the knapsack problem that would render
the general stop point not necessary for certain types of problems.

However, the concept “general stop point is necessary to produce solution to any
particular knapsack problem without general dynamic table” is already
compromised.

Therefore, our quest for solution as stated should NOT be the quest for the
general stop point, because that information is not sufficient. However, our
solution should shed light on what a general stop point is. In other words, our
goal is bigger.

5 Gain

In order to organize the workings of the periodic knapsack table, we need to
define a concept that will help in analyzing it. The concept of theta does not seem
to be the best way of quantifying the “quality” of a solution, so we will introduce a
different one – gain.

5.1 The definition and meaning

The concept of theta is good, because it gives some insight into the periodic
nature of the knapsack problem. The periodic repetition of thetas is a necessary
(but not sufficient) condition for general stop point.

However, thetas are not very intuitive. They are real numbers, which are hard to
use in an integer problem. So, instead of the concept of theta, we shall use the
concept of gain:

For any solution of a knapsack problem and a boundary b, yielding total value of
V, the gain is defined as follows:

 gain = V – (b – bmodw1) v1 / w1

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 6

For example, if b is 24, w1 is 10, v1 is 7, and V is 17, then:

 gain = 17 – (24 - 24mod10) 7 / 10 = 17 – 14 = 3

The intuitive meaning of gain is as follows – it is the numerical difference
between two solutions of the problem for a given boundary: the one with all the
items, and the one with only MVI. Hence the term “gain” – it is an “improvement”
over solutions consisting of MVI only.

It is clear that it is possible to derive the value of gain from the value of theta, and
vice versa. They both are essentially the measure of the quality of the solution
(the smaller the theta, the better the solution; the larger the gain, the better the
solution). But from this point on we shall use gain only.

Let us also call the gain of any optimal solution for some boundary as optimal
gain.

5.2 Gain improvements

From the definition of gain we can conclude the following:

Lemma 1. For any two solution candidates of any knapsack problem for any
boundary the better solution will always have higher gain.

It is simple: the gain is essentially the difference between the solution and MVI-
only solution, hence the if one gain is better than another we have:

 Gain1 > Gain2
 V1 – VMVI > V2 – VMVI
 V1 > V2

Lemma 2. For any knapsack boundary, the optimal solution is the one with the
highest possible gain.

This is essentially Lemma 1 as applied to all solutions.

Lemma 3. If the optimal solution of knapsack problem for some boundary b has
gain of G, then the optimal solution of knapsack problem for boundary (b + w1)
has gain of at least G.

The proof is simple. If there is some solution for boundary b, then by adding one
MVI to it we get a solution to (b + w1) whose gain is exactly G:

 G = S1 – VMVI1 = S1 – (b – bmodw1) v1 / w1
 G2 = S2 – VMVI2 = (S2) – ((b2 – (b2modw1)) v1 / w1

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 7

 = (S1 + v1) – ((b + w1 – ((b + w1)modw1) v1 / w1
 = (S1 + v1) – (b + w1 – b modw1) v1 / w1
 = (S1 + v1) – ((b – b modw1) v1 / w1 + v1)
 = S1 – (b – bmodw1) v1 / w1
 = G

Combining this result with Lemma 2, we conclude that Lemma 3 is correct.

Lemma 4. For any boundary b, the optimal gain is bound by the real value
(bmodw1)v1/w1.

This comes from the concept of density. The density of any solution is the total
achieved value over total weight. It is a linear combination of densities of the
items present in a solution. Since the MVI has the highest density, the density of
the solution cannot be higher than the density of MVI. That in turn means that the
gain on a MVI-only solution has to no more dense than the gain of continuous
solution, so the maximum achievable gain cannot be higher than the difference of
boundaries (covered by integer solution and MVI-only solution) times the density
of MVI.

There are two important implications to this Lemma, which are discussed later
(Implications 1 and 2).

Lemma 5. For every infinite set of optimal solutions of the knapsack problem
corresponding to the infinite set of all boundaries b such that bmodw1 is the same,
the gain keeps improving until it reaches some maximum value, and that value
remains constant for the rest of boundaries in the set.

This comes directly from Lemmas 3 and 4: every gain of the set (except for the
first one) is at least as high as the previous one (Lemma 3), and at the same time
is upward-bound by a certain constant value (Lemma 4), which is the same for all
boundaries in the set (by definition of the set).

So, from now on, we see that gains for certain solutions are somewhat grouped
together. Every group (set of boundaries respective gains) has its own starting
value of gain, which keeps improving as the boundary grows, until it reaches a
certain maximum (note that the gain may stay the same for a while before it
continues growing). Once that maximum is reached, gain stays the same for all
remaining boundaries in the set.

Let us give a term to that value:

• Thread stop point – the minimal value of b in the thread that has the
maximum possible gain of the thread.

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 8

Lemma 6. For any general knapsack problem, the table of mapping of
boundaries to optimal gains reflects a general increase in the values of gains,
until gains for all groups stabilize; A general stop point is the point of last gain
change; From that point on the gains are predictable: for any b the gain is the
same as the gain of (b – w1).

This is essentially Lemma 5 applied to all sets/groups. However, it should be
obvious by now that the whole table of knapsack boundaries to solutions and
gains is not only periodic from some point on, but that every period consists of
one member of different groups. There are w1 such groups corresponding to w1
possible values of bmodw1. Further analysis of the knapsack problem has to be
based on those groups, which we shall formalize for ease of use.

6 Threads

So, having recognized the group nature of the knapsack solutions, and having
observed the periodic nature of each of those groups (yielding the periodic nature
of the whole table), we can try to formalize those groups to ease further analysis.

6.1 Definition

Let us introduce the concept of thread:

• Thread – an infinite set of all boundaries b for a given knapsack problem,
such that bmodw1 is constant and the same for a thread.

• Thread constant – the value of bmodw1 for all values of b in a thread, which
is the same for all b in the thread by construction of the thread.

So, every thread has its own constant, and that constant is different in all
threads.

How many threads are there? Well, how many constants are there? Exactly w1.

Do all constants belong to some thread? Yes.

Why don’t we number the threads? Let’s. Let us number the threads from 0 to
(w1 – 1), and consider thread with index T to be the thread whose constant is T.

However, notice two important implications.

Implication 1. If the knapsack were not integer, but rather real, then this
argument regarding the densities would be flawed. It means that real-numbered
weights may yield a thread that never stabilizes – but rather keeps improving its
gain. The upper gain bound would be unachievable, but the thread may try to get
infinitely close to it. It may require an infinite supply of item types (to be
addressed later).

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 9

Implication 2. If the number of types of items is not limited by some number, but
the weights and values are integer, then any thread will still stabilize. The reason
is simple – gain is an integer number that can improve discreetly by multiples of
one. It also has a minimum value (0) and an upper bound that depends on MVI
only. Therefore, the number of “steps” to an optimal gain within each thread is
fixed. This means that optimal gain exists and is achievable, and the point of
achieving that gain is the thread stop point.

6.2 Thread independence

Notice, that our first intuition is already explained: In case of MVI weight of 10
and boundary of 10,000,000,000 the thread that the boundary belongs to is
thread 0, whose constant is zero, which means that no improvements in the gain
are possible from the initial value of the gain. The initial value of the gain (first
member of the thread is b of 0) is 0. Therefore, the solution to that boundary
consists only of MVI, and the gain of that solution is also 0.

So far – so good.

We can also realize that the table will become fully periodic once every single
thread has stabilized – i.e. the gains in each thread has reached the optimal
value. Hence, the general stop point for any knapsack problem is the maximum
value of thread stop points for all threads of the problem. This essentially shows
the difference between a particular knapsack problem and general knapsack
problem: the first one requires knowledge about one thread’s stop point, while
the second one requires all thread stop points.

Furthermore, since threads may stabilize independently of each other (i.e. stop
points are in different places of the table), it is not necessarily necessary to build
up an entire table of mappings of boundaries to solutions for boundaries from 0
to general stop point. Once some particular thread stop point has been reached,
the rest of the values for that thread can be filled out without calculation. This
means that the calculation of the general stop point’s solution does not
necessarily mean calculating all solutions to the general stop point. It may be
less work.

So, our problems reduces to finding thread stop points for all threads.

6.3 Dynamic nature of threads

It is important that we observe a certain fact.

The problem of finding thread stop points is itself a dynamic programming
problem. We may consider the solution to the problem stated for N items to be

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 10

based on the solution to the problem stated for (N – 1) items, with the last item
attempting to improve optimal gains in each thread. If it does improve an optimal
gain in some thread, then that thread’s stop point may change in either direction.
If it does not improve the gain, the thread’s stop point may still change
(decrease). However, the thread’s optimal gain will never be reduced in quality
by the new item.

Right away we can almost envision a table of threads versus items, and try to fit
all information in it. However, it is not exactly clear how to do that yet.

6.4 Threads and MVI

Notice that for an easy case of one type of item available each thread becomes
very clear. The gain for all the threads is zero, since MVI cannot improve gain on
itself. This may as well be a starting point for building a table.

6.5 Thread 0

Also notice that thread 0, having a gain of 0, cannot be improved. That thread
has an upper bound on the gain (which is 0), and that 0 is achieved right away
for b of 0. Therefore, no addition of any item will ever change the make-up of the
solutions to boundaries in thread 0 – every item other than MVI will be used
exactly 0 times.

6.6 Thread (0 + wx) mod w1

Now consider thread ((0 + wx) mod w1). How many items of type x may each
solution to that thread have?

May it have none? Yes, it may. Items may be non-used if their densities are bad
enough.

May have one? Yes, it may. It will essentially mean that the solution will consist
of the solution for some boundary in thread 0 (which would be MVI only) and one
item of type x.

May it have two? No, it may not. Because if it had two items, then following
Axiom 1 the subsolution of that problem with one of items x removed would
contain item x. However, it is thread 0, which is made up of MVI only. So, this
thread would never, ever, never-never-ever have two items of type x.

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 11

6.7 Thread (T + wx) mod w1

So, from this on we can make the same argument for thread ((0 + 2 wx) mod w1) –
it will never have more than two items. And so forth, using mathematical
induction – thread ((T + wx) mod w1) may have one more item x than thread T, but
no more than that.

6.8 Thread basics: linking

Essentially, this gives rise to “linking” threads with respect to a particular item:

1. We always know that thread ((T + wx) mod w1) may have one more item x
than thread T, but no more than that;

2. We always know that thread 0 does not have any non-MVI items.

6.9 Calculating gain in threads

Suppose we try to probe the gain for a solution for some boundary that contains
some item x (solution 2, for some thread t2). It means that the solution would be
based on the subsolution (solution 1, for some thread t1). If we know that
subsolution’s parameters, we can find out the new gain. Observe:

 gain2 = S2 – (b2 – (b2)modw1) v1 / w1

Define b0 and S0:

 b0 := b1 – (b1)modw1

S0 := b0 v1 / w1

Considering:

(b0)modw1 = 0 (by definition of b0)
 t1 = (b1)modw1 (by definition of threads)
 t2 = (b2)modw1 (by definition of threads)
 b1 = (b0 + (b1)modw1) = b0 + t1 (by definition of b0)
 b2 = b1 + wx = b0 + t1 + wx (by construction of b2)
 S1 = S0 + gain1 (by definitions of gain and S0)
 S2 = S1 + vx = S0 + gain1 + vx (by construction of S2)

Hence:

 gain2 = S2 – (b2 – (b2)modw1) v1 / w1

 = (S0 + gain1 + vx) – ((b0 + t1 + wx) – (b0 + t1 + wx)modw1) v1 / w1

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 12

= (S0 + gain1 + vx) – ((b0 + t1 + wx) – (t1 + wx)modw1) v1 / w1
= (S0 + gain1 + vx) – (b0) v1 / w1 + ((t1 + wx) – (t1 + wx)modw1) v1 / w1

= (S0 + gain1 + vx) – S0 – ((t1 + wx) – (t1 + wx)modw1) v1 / w1

= (gain1 + vx) – ((t1 + wx) – (t1 + wx)modw1) v1 / w1

So, the formula is:

 gain2 = (gain1 + vx) – ((t1 + wx) – (t1 + wx)modw1) v1 / w1

What’s the significance? The significance is that this formula does not rely on b0,
but rather on thread information only.
It means that we can accumulate knowledge about threads without actually
considering the boundaries at all.

6.10 Algorithm, take one

What is the minimal information we want to know? The optimal gain values for
each thread.

What else do we want to know? What is the minimum value of boundary b for
which it happens.

What are we waiting for? Nothing.

Let’s define the table F of items versus threads. Let us build some tables in such
a way that cell F(x,t) tells us all the information we need to know about thread t, if
items 1 through x are allowed to be used.

What information are we going to store in the tables?

First of all, the gain of that thread. Let’s denote that value as F(x,t);

Second of all, the minimum boundary value b, for which that gain happens. Let’s
denote that value as B(x,t);

What do we know right away?

1. For any t the value F(0,t) is equal to 0;
2. For any t the value B(0,t) is equal to t;

What happens when we try add a new item, x?

First of all, adding it cannot spoil the gains of the solution for (x – 1), so we can fill
that row out with values from row (x – 1).

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 13

Second of all, adding it will not change the gain for thread 0, so we may leave
that alone.

Third of all, we can start from thread 0, make thread steps of wx, and improve the
table as follows:

1. let t := 0
2. let old_t := t
3. let t := (t + wx)mod w1
4. If (t = 0)

4.1. stop
5. let g := (F(x,old_t) + vx) – ((old_t + wx) – (old_t + wx)modw1) v1 / w1
6. if(g < F(x,t))

6.1. goto 2
7. if(g > F (x,t))

7.1. let F(x,t) := g
7.2. let B(x,t) := B(x,old_t) + wx
7.3. goto 2

8. if(B(x,t) + wx < B(x,t)) // item improves min. boundary
8.1. let B(x,t) := B(x,old_t) + wx

9. goto 2

This algorithm will fill out one row of the matrix – figuring out how item x affects
all threads. It is almost what we want.

One – we have to add the processing of MVI – first row;
Two – we have to loop existing algorithm over all remaining items;
Three – we have to add a step that copies the previous row to the current one
before we process the current one;
Four – we have to figure out what happens in case of a miss.

7 Chains

It seems that in all the logic above we have missed an interesting fact – that
while analyzing the effect of a particular item on a knapsack we just might miss
some threads. This chapter addresses this issue.

7.1 The reason for misses

Why are misses possible in the first place?

Consider the case of an item of weight 4, while there are 8 threads. If we analyze
that item, we would start with thread 0, then move on to thread 4, then to thread
0 again, and so forth. Meanwhile, the solution to thread 5 may just consist of that
item and the solution to thread 1!

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 14

So, why does this happen, in general? Turns out the explanation is quite simple.

From group theory (or whatever the appropriate math section it is), we know, that
if two numbers X and Y are mutually prime (that is, their GCD is 1), then the set
of values of { XmodY, 2XmodY, …, YXmodY } will consist of all the members of the
set { 0, 1, …, Y-1 }. Both sets are of the same size, so the first set will consist of
non-repeating numbers.

Essentially, our first draft of the algorithm does exactly that – goes through the
first set of numbers. But in case when the greatest common divisor of the number
of threads (which is the weight of MVI) and the weight of the item in question,
then it will cover only a part of the threads – the ones whose value mod that GCD
is zero.

7.2 Definition of chains

Essentially, if you think about it, if we start from thread 1 and continue with the
process, we will get the same number of items as if we start with thread 0. Those
sets of numbers are non-intersecting. We need a term for such a set of numbers,
and that term will be: chain.

A Chain for item with weight w and t threads is a set of all numbers X between 0
and (t – 1), such that for all X in the set the value of Xmodt is the same. That
number will distinguish the chains – so, “chain 2” will mean that the number is 2.

How many chains will there be for every item? Exactly the GCD of the item’s
weight and the number of threads.

7.3 Max usage number for items

It is clear that the algorithm will traverse each of the chains completely, provided
that there is a good starting point (first thread to analyze).

But this fact of chaining brings up an interesting fact. We know that any item of
weight w can be used no more than w1–1, since if it is used w1 times, they take
the volume of w1w, which, when occupied by w items of the MVI, will yield a
better value, due to the maximum density of the MVI.

But the concept of chaining can restrict that number further. Using the Greatest
Common Divisor of w1 and w (let’s denote it as g), we can say

that the number of times the item is used is bound by w1w/g – 1. Because if the

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 15

Lemma 7. The number of times a non-MVI item of weight w is used is bound by
w1/g – 1, where g is the greatest common divisor of w and w1.

Consider the opposite case – when there are some w1/g items of weight w there;
they occupy the volume of w1w/g, which, when occupied by w/g items of the MVI,
will yield a better value, due to the maximum density of the MVI.

7.4 Chain analysis

For every item, the number of chains is different.

While considering each item, we shall have to determine the number of chains,
and analyze each chain separately.

To analyze a chain, it is enough to find a good starting point – a point before any
potential w1/g – 1 points that may use the item.

7.5 Chain 0

Chain 0 is the one that starts with thread 0. It is quite simple, really – all the
analysis of it has been done before. We know that no non-MVI item will ever be
used for thread 0, so we go through the rest of the threads in the chain in the
right order (there just happens to be w1/g – 1 of them).

7.6 Chain X

For any non-zero chain life gets trickier.

We don’t have a nice starting point – a thread that will never ever use the item. It
does exist for every scenario, but I just failed to provide a general way of finding
it.

And we DO need it, because a solution utilizing the item may be based on a
good solution to the previous considered thread that also uses that item; so if that
previous thread is not updated yet, the one in question may just fail to be
updated at all.

So, in order to analyze arbitrary threads, we are going to cheat. We shall make a
double pass through the items in a chain. Then, if we start with some thread that
should be updated based on the previous thread, which is not updated yet, then
during the second pass that “previous” one will be ready.

Two passes are enough – because, essentially, at some point we shall hit the
good “starting” thread, then the rest of the threads. Of course, about half of the
work is going to be extra, but we just don’t know ahead of time which parts it is
going to be.

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 16

Plus, a double pass is still linear time with respect to w1.

In order to be completely specific, we are going to consider 2w1/g – 1 threads,
starting with any one! Why do we not need all 2w1/g threads? Because we don’t
really need a “double” pass, we just need our sequence to have a subsequence
starting with some unknown thread and containing all threads in the chain – so
one thread may just be the last of the first pass and the first of the second pass.

In other words, combining the analysis of chain 0 and chain X, we conclude that
we know how many threads we have to consider in each chain in order to
completely reflect the effect of a particular item. For chain 0 it is w1/g – 1 threads,
for all other chains it is 2w1/g – 1.

8 Possibility analysis
Possibility analysis deals with hunting for an answer whether an optimal solution
for a particular thread has anything to do with that particular thread.

8.1 Examples of an impossibility

Consider a knapsack problem involving one type of item only, whose weight is
10. Obviously, there are ten threads, and each thread’s gain is zero. However,
the solution for thread 5 (which, in this case, deals with boundaries of 5, 15, 25,
etc.) will always occupy smaller volumes (in this case, 0, 10, 20, etc.), which
means that the actual volumes in the thread are not “achievable”.

8.2 Possibility tracking

It is quite easy to track it.

First of all, we know that zero is achievable.

Second of all, any solution based on a subsolution is as achievable as the
subsolution.

That is enough.

9 Neighbors
Consider a certain solution for thread t, which is non-zero. Suppose that its gain
is worse than the gain for its smaller neighbor, thread t–1. What does it mean? It
means that using the solution from t–1 as a solution for t is better – just not
achievable for t.

Should we track for it? Not really.

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 17

There are two cases to explore.

Case one is when the temporary neighbor solution is used, but some other item
type’s analysis changes it later on to an achievable solution. Well, if some
solution is clearly better than another, it does not matter whether the one kicked
out was achievable or not, and what was it based on. The new solution is
achievable – which means there is a clear way to hit the volumes specified by the
thread.

Case two is when the neighbor solution is actually kept. Well, in that case the
neighbor solution is made up of some items, which were “kept” at the appropriate
stages in the algorithm. However, that same algorithm is going to try those items
for the thread in question as well – it just will be marked as unachievable,
because the very first contributing thread will be other than zero.

This idea is a bit non-intuitive, but clears up a bit when you exercise the
algorithm.

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 18

10 The algorithm
So, having done all the research, we come up with the following algorithm. For
any given knapsack problem involving N types of items of weights w1, w2, …, wN
and values v1, v2, …, vN, do the following:

1. Identify MVI – the item with the greatest ratio of v/w and the smallest
w; Swap item 1 with that item, so that index 1 refers to MVI;

2. let F(1,0) := 0
3. let B(1,0) := 0
4. let P(1,0) := true
5. for t := 1 .. w1 – 1

5.1. let F(1,t) := 0
5.2. let B(1,t) := t
5.3. let P(1,t) := false

6. for x := 2 .. N
6.1. for t := 0 .. w1 – 1

6.1.1. let F(x,t) := F(x–1,t)
6.1.2. let B(x,t) := F(x–1,t)
6.1.3. let P(x,t) := F(x–1,t)

6.2. let number_of_chains := gcd(w1, wx)
6.3. for chain := 0 .. number_of_chains–1

6.3.1. if chain = 0
6.3.1.1. let number_of_tries := w1 / number_of_chains – 1

6.3.2. else
6.3.2.1. let number_of_tries := 2w1 / number_of_chains – 1

6.3.3. let last_thread := chain
6.3.4. let thread := (last_thread + wx) mod w1
6.3.5. for try := 1 .. number_of_tries

6.3.5.1. let g := (F(x,last_thread) + vx) –
 ((last_thread + wx) – (last_thread + wx)modw1) v1 / w1

6.3.5.2. if g < F(x,thread)
6.3.5.2.1. go to step 6.3.5.5

6.3.5.3. if g > F(x,thread)
6.3.5.3.1. let F(x,thread) := g
6.3.5.3.2. let B(x,thread) := B(x,last_thread) + wx
6.3.5.3.3. let P(x,thread) := P(x,last_thread)
6.3.5.3.4. go to step 6.3.5.5

6.3.5.4. if B(x,thread) + wx < B(x,thread)
6.3.5.4.1. let B(x,thread) := B(x,last_thread) + wx
6.3.5.4.2. let P(x,thread) := P(x,last_thread)

6.3.5.5. let last_thread := thread
6.3.5.6. let thread := (last_thread + wx) mod w1

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 19

At the end of this algorithm, the values of B(N,0), B(N,1), …, B(N,w1) will contain
the stop conditions for threads 0, 1, …, w1–1 respectively. The largest of them
will be the GENERAL STOP CONDITION. The values of F(N,0), F(N,0), …,
F(N,w1) will contain the gains of the optimal solutions for those threads. The
values of P(N,0), P(N,1), …, P(N,w1) will contain the possibility of those solutions
– i.e. whether the optimal solutions for those threads actually hits the prescribed
boundaries (in case of true) or is less than them (in case of false).

11 Examples

It is quite tiresome to trace the whole algorithm for example cases, so I shall
demonstrate the algorithm’s results for some particular examples.

11.1 Case 1

Let there be three types of items of weights 7, 5, 1 and values 10, 7, 1
respectively. The algorithm produces the following values:

B(3,0)=0 F(3,0)=0 P(3,0)=true
B(3,1)=1 F(3,1)=1 P(3,1)=true
B(3,2)=2 F(3,2)=2 P(3,2)=true
B(3,3)=10 F(3,3)=4 P(3,3)=true
B(3,4)=11 F(3,4)=5 P(3,4)=true
B(3,5)=5 F(3,5)=7 P(3,5)=true
B(3,6)=6 F(3,6)=8 P(3,6)=true

Hence, general stop point is 11.

Among other things, we can read from these results that for every large enough
B such that Bmod7 is 3 the value of gain will be 4 (i.e. the solution value will be
(10(B – Bmod7) / 7) + 4, and the minimum boundary for which it will happen is 10.

11.2 Case 2

Let there be two types of items of weights 5, 499999 and values 7, 699998
respectively. The algorithm produces the following results:

B(2,0)=0 F(2,0)=0 P(2,0)=true
B(2,1)=1 F(2,1)=0 P(2,1)=false
B(2,2)=1499997 F(2,2)=1 P(2,2)=true
B(2,3)=999998 F(2,3)=3 P(2,3)=true
B(2,4)=499999 F(2,4)=5 P(2,4)=true

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 20

Hence, the general stop point is 1499997. Mind you, this number was found
using the table of size 2 by 5, with constant time of filling out every cell – which
can easily be done by hand.

This particular example shows the usefulness of the algorithm – in just about 10
steps it saved the building of a table of about a million cells, and told us that for
every large enough B such that Bmod5 is 1 the value of gain will be 0 (i.e. the
solution value will be (10(B – Bmod5) / 5) + 0, and the minimum boundary for
which it will happen is 1. It also told us that those solution’s weights will be
smaller than the actual boundaries – since the flag P(2,1) is set to false.

11.3 Case 3

Let there be four types of items of weights 8, 6, 4, 12 and values 20, 12, 9, 30
respectively. The algorithm produces the following results:

B(4,0)=0 F(4,0)=0 P(4,0)=true
B(4,1)=1 F(4,1)=0 P(4,1)=false
B(4,2)=18 F(4,2)=2 P(4,2)=true
B(4,3)=19 F(4,3)=2 P(4,3)=false
B(4,4)=12 F(4,4)=10 P(4,4)=true
B(4,5)=13 F(4,5)=10 P(4,5)=false
B(4,6)=6 F(4,6)=12 P(4,6)=true
B(4,7)=7 F(4,7)=12 P(4,7)=false

Hence, the general stop point is 19.

This particular data is very interesting for a number of reasons. First, the even
weights provide clear cases when boundaries are not achievable (it is not
possible to hit odd boundaries), and the algorithm picks it up correctly. Secondly,
any odd boundary will essentially be a solution to the preceding even one, and
the algorithm picks that up as well. Third, the test data contains two items of the
maximum density (20 to 8 is the same as 30 to 12), and the algorithm still works.
Fourth, it figures out the solution for thread 2 (boundaries of 2, 10, 18, etc.) as a
combination of the second and third item:

For boundary of 10 we use one weight of 6 and one weight of 4, producing value
of 12+9 = 21, which has a gain of 1 to the MVI solution for weight 8 (8/8 = 1, 1x20
= 20, 21-20 = 1). For boundary of 18 we use one weight of 6 and one weight of
12, producing value of 42, which has a gain of 2 to the MVI solution for weight 16
(16/8 = 2, 2x20 = 40, 42 – 40 = 2). For the rest of this thread (26, 34, 42, etc) the
gains don’t get any better.

Leo Landa (leo@leolan.com) Optimizing the Knapsack Problem page 21

12 Conclusions

12.1 Algorithm characteristics

The presented algorithm runs in O(N w1) time, which can be quite smaller than
the actual general stop points (as illustrated in example 2). Besides being quite
fast, it also gives a lot of information about the knapsack table, which may render
even the general stop point unnecessary – if the hunt is for a particular solution,
which belongs to a thread that has a significantly lower stop condition.

12.2 Further improvements

While I doubt that it is possible to beat the upper-bound on the algorithm time, it
is certainly possible to improve certain characteristics of the algorithm by
recognizing an interesting fact.

The algorithm is essentially based on two assumptions:

1. The period of the table is w1, if w1 is the weight of MVI;
2. Thread zero consists of values 0, P, 2P, 3P, where P is the period of

the table (which, in turn, is w1);

And while it is certainly true that the table will be periodic with a period of w1 from
some point on (provided the definition of MVI), the reality may be even more
interesting: the period just may be a factor of w1.

Consider a setup containing two items with the largest density, whose respective
weights are 10 and 15. According to the algorithm, 10 will be a period of the
table, which is true. But 5 will also be a period of the table that will set in at some
point – since starting from 10 any multiple of 5 can be picked using 10 and 15.

So, essentially, the smallest predictable period of the table is actually the
greatest common divisor of the weights of all items whose density is maximum.
This can cut down the tables that the algorithm builds by a factor of that GCD.

However, the algorithm itself will have to be significantly modified to reflect the
change in the two assumptions that it makes.

But it is still very much possible! If I had more time in this semester, I’d even do it!
J

