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1 Foreword 
This report was written in December of 2002, as a term paper in professor 
T.C.Hu’s “Interesting Algorithms” class (CSE 203A at UCSD, Fall quarter of 
2002). It took some time and additional research to reignite the interest in the 
results in this report, which led to its being registered as a technical report with 
UCSD in April, 2004. However, the content presented is still the same as it was 
in 2002. 
 
Since 2002, only the following changes were made: 

• The author’s name was changed from Lev Landa to Leo Landa, due to an 
official change of name; 

• The author’s e-mail was changed from llanda@cs.ucsd.edu to 
leo@leolan.com; both are valid, the latter should simply be considered the 
primary address; 

• This foreword and acknowledgements section were written; 

• The index page was updated to reflect the change in section numbers and 
page numbers due to the foreword and acknowledgements. 

2 Acknowledgements 
It is impossible to overestimate the contribution of UCSD professor T.C.Hu to this 
report’s being written and published. Professor T.C.Hu’s magnificent lectures in 
several courses have given me the knowledge, desire, inspiration, and 
consistency to perform enough research to culminate in this report. Furthermore, 
professor T.C.Hu’s involvement after the report was written is the only reason for 
the report to be published – without his never-ending support and additional 
research (in collaboration with professor M.T.Shing), this report would never see 
the light of day. 

3 Introduction 
 
The one-dimension unlimited-supply integer knapsack problem can be 
formulated as follows: 
 

Given an unlimited number of items of several types, each one 
characterized by its integer weight and integer value, and a knapsack of 
limited total capacity for weight, find a combination of items whose total 
weight does not exceed the knapsack capacity while yields the maximum 
total value. 

 
It is known from previous research that for large enough knapsack capacities 
(boundaries), a trend will become obvious: every solution to the problem of 
boundary b will be a combination of solution to (b-wi) and the item i, given that 
item i is characterized by highest “density”, or v/w ratio. The proof of this fact is 
beyond the scope of the paper.  
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This essentially means that the table of knapsack solutions, mapping boundaries 
to maximum achievable weight will become predictable and “periodic” (the 
differences between integer solutions and continuous solutions will repeat with a 
period equal to the weight of the most valuable item). This makes it possible to 
skip solving the knapsack problem for big enough boundaries, but rather 
calculate the result directly (fast) using previous knowledge. 
 
However, the problem arises – what boundary is big enough? 
 
This paper will go hunting for the answer. 
 

3.1 Note 

 
There should be clear distinction between two types of goals that could be 
sought while hunting for the magic boundary.  
 
One would be enough information to produce the solution to the given knapsack 
problem for any boundary. Let’s call this a general knapsack problem. 
 
Another would be enough information to produce the solution for a particular 
boundary. Let’s call it a particular knapsack problem. 
 
As we shall see later on, these two problems are related, but not the same. 
However, the hunt is on for both. 

4 Intuition 

4.1 Definitions and assumptions 

 
For every knapsack problem examined, let us define the following variables and 
terms: 

• N – the number of types of items available; 

• wi – the weight of item of type i; 

• vi – the value of item of type i; 

• Density – a real number denoting the ratio between the value and the 
weight of a certain type of item; 

• pi – the density of items of type i; 

• b – the boundary (knapsack capacity); 
 
Let us also always distinguish the item with the highest density. To make notation 
easy, let us always label the types of items in such a way that the type with index 
1 is the one with highest density. In case of ties between two types, we will 
always pick the type with the smallest weight. Further ties will mean exact same 
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types of items, so will consider them the same. We shall call that type “Most 
Valuable Type”. We shall call items of that type “Most Valuable Item”, or “MVI”. 
 

• theta – the difference between a continuous solution (which is always  
b v1 / w1) and integer solution; 

• General stop point – the smallest value of b, such that for any boundary 
larger than b the solution is a combination of the solution to (b – w1) and 
one MVI. 

 
Let us also formulate the assumptions about the knapsack problem. These have 
been proven previously and will be considered axioms in this paper: 
 

1. For any knapsack problem, if the optimal solution for certain b contains at 
least one item of type x, then if that item is removed from the solution, the 
remainder is the optimal solution for (b – wx). This stems from the 
dynamic programming nature of the knapsack problem. 

2. For large enough boundaries b, the solution will consist of the solution to 
(b – w1) and one MVI. 

3. Any particular knapsack problem can be solved using dynamic 
programming, utilizing a table of size N by b. Let us call such a table 
general dynamic table. The whole purpose of the paper is to provide 
solutions to knapsack problems without building such a table, because 
this table is too big to be built for certain large enough boundaries (it also 
takes too much time – the whole purpose of this research is to reduce the 
time needed to solve knapsack problems). 
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4.2 The goal 

 
Consider a certain knapsack problem, in which the weight of MVI is 10. Consider 
that the problem at hand is to find a solution for a boundary of 10,000,000,000.  
 
It is obvious that there is no need to analyze the items any further. It is clear that 
10,000,000,000 divides 10, the weight of MVI, without remainder, which means 
that the solution will consist only of MVI. 1,000,000,000 of them to be exact. 
 
This simple example illustrates for some particular knapsack problems it not 
necessary to know the general stop point. Some more insight into the problem 
should reveal some more details about the knapsack problem that would render 
the general stop point not necessary for certain types of problems.  
 
However, the concept “general stop point is necessary to produce solution to any 
particular knapsack problem without general dynamic table” is already 
compromised. 
 
Therefore, our quest for solution as stated should NOT be the quest for the 
general stop point, because that information is not sufficient. However, our 
solution should shed light on what a general stop point is. In other words, our 
goal is bigger. 
 

5 Gain 
 
In order to organize the workings of the periodic knapsack table, we need to 
define a concept that will help in analyzing it. The concept of theta does not seem 
to be the best way of quantifying the “quality” of a solution, so we will introduce a 
different one – gain. 

5.1 The definition and meaning 

 
The concept of theta is good, because it gives some insight into the periodic 
nature of the knapsack problem. The periodic repetition of thetas is a necessary 
(but not sufficient) condition for general stop point. 
 
However, thetas are not very intuitive. They are real numbers, which are hard to 
use in an integer problem. So, instead of the concept of theta, we shall use the 
concept of gain: 
 
For any solution of a knapsack problem and a boundary b, yielding total value of 
V, the gain is defined as follows: 
 
 gain = V – (b – bmodw1) v1 / w1 
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For example, if b is 24, w1 is 10, v1 is 7, and V is 17, then: 
 
 gain = 17 – (24 - 24mod10) 7 / 10 = 17 – 14 = 3 
 
The intuitive meaning of gain is as follows – it is the numerical difference 
between two solutions of the problem for a given boundary: the one with all the 
items, and the one with only MVI. Hence the term “gain” – it is an “improvement” 
over solutions consisting of MVI only. 
 
It is clear that it is possible to derive the value of gain from the value of theta, and 
vice versa. They both are essentially the measure of the quality of the solution 
(the smaller the theta, the better the solution; the larger the gain, the better the 
solution). But from this point on we shall use gain only. 
 
Let us also call the gain of any optimal solution for some boundary as optimal 
gain. 

5.2 Gain improvements 

 
From the definition of gain we can conclude the following: 
 
Lemma 1. For any two solution candidates of any knapsack problem for any 
boundary the better solution will always have higher gain. 
 
It is simple: the gain is essentially the difference between the solution and MVI-
only solution, hence the if one gain is better than another we have: 
 
 Gain1 > Gain2 
 V1 – VMVI > V2 – VMVI 
 V1 > V2 
 
Lemma 2. For any knapsack boundary, the optimal solution is the one with the 
highest possible gain. 
 
This is essentially Lemma 1 as applied to all solutions. 
 
Lemma 3. If the optimal solution of knapsack problem for some boundary b has 
gain of G, then the optimal solution of knapsack problem for boundary (b + w1) 
has gain of at least G. 
 
The proof is simple. If there is some solution for boundary b, then by adding one 
MVI to it we get a solution to (b + w1) whose gain is exactly G: 
 
 G = S1 – VMVI1  = S1 – (b – bmodw1) v1 / w1 
 G2 = S2 – VMVI2  = (S2) – ( (b2 – (b2modw1) ) v1 / w1  
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    = (S1 + v1) – ((b + w1 – ( (b + w1)modw1) v1 / w1 
    = (S1 + v1) – (b + w1 – b modw1) v1 / w1 
    = (S1 + v1) – ((b – b modw1) v1 / w1 + v1 ) 
    = S1 – (b – bmodw1) v1 / w1 
    = G 
 
Combining this result with Lemma 2, we conclude that Lemma 3 is correct. 
 
Lemma 4. For any boundary b, the optimal gain is bound by the real value 
(bmodw1)v1/w1. 
 
This comes from the concept of density. The density of any solution is the total 
achieved value over total weight. It is a linear combination of densities of the 
items present in a solution. Since the MVI has the highest density, the density of 
the solution cannot be higher than the density of MVI. That in turn means that the 
gain on a MVI-only solution has to no more dense than the gain of continuous 
solution, so the maximum achievable gain cannot be higher than the difference of 
boundaries (covered by integer solution and MVI-only solution) times the density 
of MVI. 
 
There are two important implications to this Lemma, which are discussed later 
(Implications 1 and 2). 
 
Lemma 5. For every infinite set of optimal solutions of the knapsack problem 
corresponding to the infinite set of all boundaries b such that bmodw1 is the same, 
the gain keeps improving until it reaches some maximum value, and that value 
remains constant for the rest of boundaries in the set. 
 
This comes directly from Lemmas 3 and 4: every gain of the set (except for the 
first one) is at least as high as the previous one (Lemma 3), and at the same time 
is upward-bound by a certain constant value (Lemma 4), which is the same for all 
boundaries in the set (by definition of the set). 
 
So, from now on, we see that gains for certain solutions are somewhat grouped 
together. Every group (set of boundaries respective gains) has its own starting 
value of gain, which keeps improving as the boundary grows, until it reaches a 
certain maximum (note that the gain may stay the same for a while before it 
continues growing). Once that maximum is reached, gain stays the same for all 
remaining boundaries in the set. 
 
Let us give a term to that value: 
 

• Thread stop point – the minimal value of b in the thread that has the 
maximum possible gain of the thread. 
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Lemma 6. For any general knapsack problem, the table of mapping of 
boundaries to optimal gains reflects a general increase in the values of gains, 
until gains for all groups stabilize; A general stop point is the point of last gain 
change; From that point on the gains are predictable: for any b the gain is the 
same as the gain of (b – w1). 
 
This is essentially Lemma 5 applied to all sets/groups. However, it should be 
obvious by now that the whole table of knapsack boundaries to solutions and 
gains is not only periodic from some point on, but that every period consists of 
one member of different groups. There are w1 such groups corresponding to w1 
possible values of bmodw1. Further analysis of the knapsack problem has to be 
based on those groups, which we shall formalize for ease of use. 

6 Threads 
 
So, having recognized the group nature of the knapsack solutions, and having 
observed the periodic nature of each of those groups (yielding the periodic nature 
of the whole table), we can try to formalize those groups to ease further analysis.  

6.1 Definition 

 
Let us introduce the concept of thread: 
 

• Thread – an infinite set of all boundaries b for a given knapsack problem, 
such that bmodw1 is constant and the same for a thread.  

• Thread constant – the value of bmodw1 for all values of b in a thread, which 
is the same for all b in the thread by construction of the thread. 

 
So, every thread has its own constant, and that constant is different in all 
threads.  
 
How many threads are there? Well, how many constants are there? Exactly w1. 
 
Do all constants belong to some thread? Yes. 
 
Why don’t we number the threads? Let’s. Let us number the threads from 0 to 
(w1 – 1), and consider thread with index T to be the thread whose constant is T. 
 
However, notice two important implications. 
 
Implication 1. If the knapsack were not integer, but rather real, then this 
argument regarding the densities would be flawed. It means that real-numbered 
weights may yield a thread that never stabilizes – but rather keeps improving its 
gain. The upper gain bound would be unachievable, but the thread may try to get 
infinitely close to it. It may require an infinite supply of item types (to be 
addressed later). 
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Implication 2. If the number of types of items is not limited by some number, but 
the weights and values are integer, then any thread will still stabilize. The reason 
is simple – gain is an integer number that can improve discreetly by multiples of 
one. It also has a minimum value (0) and an upper bound that depends on MVI 
only. Therefore, the number of “steps” to an optimal gain within each thread is 
fixed. This means that optimal gain exists and is achievable, and the point of 
achieving that gain is the thread stop point. 
 

6.2 Thread independence 

 
Notice, that our first intuition is already explained: In case of MVI weight of 10 
and boundary of 10,000,000,000 the thread that the boundary belongs to is 
thread 0, whose constant is zero, which means that no improvements in the gain 
are possible from the initial value of the gain. The initial value of the gain (first 
member of the thread is b of 0) is 0. Therefore, the solution to that boundary 
consists only of MVI, and the gain of that solution is also 0. 
 
So far – so good. 
 
We can also realize that the table will become fully periodic once every single 
thread has stabilized – i.e. the gains in each thread has reached the optimal 
value. Hence, the general stop point for any knapsack problem is the maximum 
value of thread stop points for all threads of the problem. This essentially shows 
the difference between a particular knapsack problem and general knapsack 
problem: the first one requires knowledge about one thread’s stop point, while 
the second one requires all thread stop points. 
 
Furthermore, since threads may stabilize independently of each other (i.e. stop 
points are in different places of the table), it is not necessarily necessary to build 
up an entire table of mappings of boundaries to solutions for boundaries from 0 
to general stop point. Once some particular thread stop point has been reached, 
the rest of the values for that thread can be filled out without calculation. This 
means that the calculation of the general stop point’s solution does not 
necessarily mean calculating all solutions to the general stop point. It may be 
less work. 
 
So, our problems reduces to finding thread stop points for all threads. 

6.3 Dynamic nature of threads 

 
It is important that we observe a certain fact. 
 
The problem of finding thread stop points is itself a dynamic programming 
problem. We may consider the solution to the problem stated for N items to be 
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based on the solution to the problem stated for (N – 1) items, with the last item 
attempting to improve optimal gains in each thread. If it does improve an optimal 
gain in some thread, then that thread’s stop point may change in either direction. 
If it does not improve the gain, the thread’s stop point may still change 
(decrease). However, the thread’s optimal gain will never be reduced in quality 
by the new item. 
 
Right away we can almost envision a table of threads versus items, and try to fit 
all information in it. However, it is not exactly clear how to do that yet. 
 

6.4 Threads and MVI 

 
Notice that for an easy case of one type of item available each thread becomes 
very clear. The gain for all the threads is zero, since MVI cannot improve gain on 
itself. This may as well be a starting point for building a table. 
 

6.5 Thread 0 

 
Also notice that thread 0, having a gain of 0, cannot be improved. That thread 
has an upper bound on the gain (which is 0), and that 0 is achieved right away 
for b of 0. Therefore, no addition of any item will ever change the make-up of the 
solutions to boundaries in thread 0 – every item other than MVI will be used 
exactly 0 times. 
 

6.6 Thread (0 + wx) mod w1 

 
Now consider thread ( (0 + wx) mod w1 ). How many items of type x may each 
solution to that thread have?  
 
May it have none? Yes, it may. Items may be non-used if their densities are bad 
enough. 
 
May have one? Yes, it may. It will essentially mean that the solution will consist 
of the solution for some boundary in thread 0 (which would be MVI only) and one 
item of type x. 
 
May it have two? No, it may not. Because if it had two items, then following 
Axiom 1 the subsolution of that problem with one of items x removed would 
contain item x. However, it is thread 0, which is made up of MVI only. So, this 
thread would never, ever, never-never-ever have two items of type x. 
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6.7 Thread (T + wx) mod w1 

 
So, from this on we can make the same argument for thread ((0 + 2 wx) mod w1) – 
it will never have more than two items. And so forth, using mathematical 
induction – thread ((T + wx) mod w1) may have one more item x than thread T, but 
no more than that. 
 

6.8 Thread basics: linking 

 
Essentially, this gives rise to “linking” threads with respect to a particular item:  
 

1. We always know that thread ((T + wx) mod w1) may have one more item x 
than thread T, but no more than that; 

2. We always know that thread 0 does not have any non-MVI items. 
 

6.9 Calculating gain in threads 

 
Suppose we try to probe the gain for a solution for some boundary that contains 
some item x (solution 2, for some thread t2). It means that the solution would be 
based on the subsolution (solution 1, for some thread t1). If we know that 
subsolution’s parameters, we can find out the new gain. Observe: 
 
 gain2  = S2 – (b2 – (b2)modw1) v1 / w1 

 

 
Define b0 and S0: 
 
 b0 := b1 – (b1)modw1 

S0 := b0 v1 / w1 
 
Considering: 
 

(b0)modw1  = 0    (by definition of b0) 
 t1   = (b1)modw1   (by definition of threads) 
 t2   = (b2)modw1   (by definition of threads) 
 b1  = (b0 + (b1)modw1) = b0 + t1 (by definition of b0) 
 b2  = b1 + wx = b0 + t1 + wx (by construction of b2) 
 S1  = S0 + gain1   (by definitions of gain and S0) 
 S2   = S1 + vx = S0 + gain1 + vx (by construction of S2) 

 

Hence: 
 
 gain2  = S2 – (b2 – (b2)modw1) v1 / w1 

  = (S0 + gain1 + vx) – ((b0 + t1 + wx) – (b0 + t1 + wx)modw1) v1 / w1  
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= (S0 + gain1 + vx) – ((b0 + t1 + wx) – (t1 + wx)modw1) v1 / w1 
= (S0 + gain1 + vx) – (b0 ) v1 / w1 + ((t1 + wx) – (t1 + wx)modw1) v1 / w1 

= (S0 + gain1 + vx) – S0 – ((t1 + wx) – (t1 + wx)modw1) v1 / w1 

= (gain1 + vx) – ((t1 + wx) – (t1 + wx)modw1) v1 / w1 
 

So, the formula is: 
 
 gain2  = (gain1 + vx) – ((t1 + wx) – (t1 + wx)modw1) v1 / w1 

 
What’s the significance? The significance is that this formula does not rely on b0, 
but rather on thread information only. 
It means that we can accumulate knowledge about threads without actually 
considering the boundaries at all. 

6.10 Algorithm, take one 

 
What is the minimal information we want to know? The optimal gain values for 
each thread. 
 
What else do we want to know? What is the minimum value of boundary b for 
which it happens. 
 
What are we waiting for? Nothing. 
 
Let’s define the table F of items versus threads. Let us build some tables in such 
a way that cell F(x,t) tells us all the information we need to know about thread t, if 
items 1 through x are allowed to be used. 
 
What information are we going to store in the tables?  
 
First of all, the gain of that thread. Let’s denote that value as F(x,t); 
 
Second of all, the minimum boundary value b, for which that gain happens. Let’s 
denote that value as B(x,t); 
 
What do we know right away?  
 

1. For any t the value F(0,t) is equal to 0; 
2. For any t the value B(0,t) is equal to t; 

 
What happens when we try add a new item, x? 
 
First of all, adding it cannot spoil the gains of the solution for (x – 1), so we can fill 
that row out with values from row (x – 1). 
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Second of all, adding it will not change the gain for thread 0, so we may leave 
that alone. 
 
Third of all, we can start from thread 0, make thread steps of wx, and improve the 
table as follows: 
 

1. let t := 0 
2. let old_t := t 
3. let t := (t + wx)mod w1 
4. If (t = 0) 

4.1. stop 
5. let g := (F(x,old_t) + vx) – ((old_t + wx) – (old_t + wx)modw1) v1 / w1 
6. if( g < F(x,t) )  

6.1. goto 2  
7. if( g > F (x,t) )  

7.1. let F(x,t) := g 
7.2. let B(x,t) := B(x,old_t) + wx 
7.3. goto 2 

8. if( B(x,t) + wx < B(x,t) ) // item improves min. boundary 
8.1. let B(x,t) := B(x,old_t) + wx 

9. goto 2 
 
This algorithm will fill out one row of the matrix – figuring out how item x affects 
all threads. It is almost what we want. 
 
One – we have to add the processing of MVI – first row; 
Two – we have to loop existing algorithm over all remaining items; 
Three – we have to add a step that copies the previous row to the current one 
before we process the current one; 
Four – we have to figure out what happens in case of a miss. 
 

7 Chains 
 
It seems that in all the logic above we have missed an interesting fact – that 
while analyzing the effect of a particular item on a knapsack we just might miss 
some threads. This chapter addresses this issue. 
 

7.1 The reason for misses 

Why are misses possible in the first place? 
 
Consider the case of an item of weight 4, while there are 8 threads. If we analyze 
that item, we would start with thread 0, then move on to thread 4, then to thread 
0 again, and so forth. Meanwhile, the solution to thread 5 may just consist of that 
item and the solution to thread 1! 
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So, why does this happen, in general? Turns out the explanation is quite simple. 
 
From group theory (or whatever the appropriate math section it is), we know, that 
if two numbers X and Y are mutually prime (that is, their GCD is 1), then the set 
of values of { XmodY, 2XmodY, …, YXmodY } will consist of all the members of the 
set { 0, 1, …, Y-1 }. Both sets are of the same size, so the first set will consist of 
non-repeating numbers. 
 
Essentially, our first draft of the algorithm does exactly that – goes through the 
first set of numbers. But in case when the greatest common divisor of the number 
of threads (which is the weight of MVI) and the weight of the item in question, 
then it will cover only a part of the threads – the ones whose value mod that GCD 
is zero. 
 

7.2 Definition of chains 

 
Essentially, if you think about it, if we start from thread 1 and continue with the 
process, we will get the same number of items as if we start with thread 0. Those 
sets of numbers are non-intersecting. We need a term for such a set of numbers, 
and that term will be: chain. 
 
A Chain for item with weight w and t threads is a set of all numbers X between 0 
and (t – 1), such that for all X in the set the value of Xmodt is the same. That 
number will distinguish the chains – so, “chain 2” will mean that the number is 2. 
 
How many chains will there be for every item? Exactly the GCD of the item’s 
weight and the number of threads. 
 

7.3 Max usage number for items 

It is clear that the algorithm will traverse each of the chains completely, provided 
that there is a good starting point (first thread to analyze). 
 
But this fact of chaining brings up an interesting fact. We know that any item of 
weight w can be used no more than w1–1, since if it is used w1 times, they take 
the volume of w1w, which, when occupied by w items of the MVI, will yield a 
better value, due to the maximum density of the MVI. 
 
But the concept of chaining can restrict that number further. Using the Greatest 
Common Divisor of w1 and w (let’s denote it as g), we can say  
 
 
that the number of times the item is used is bound by w1w/g – 1. Because if the  
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Lemma 7. The number of times a non-MVI item of weight w is used is bound by 
w1/g – 1, where g is the greatest common divisor of w and w1. 
 
Consider the opposite case – when there are some w1/g items of weight w there; 
they occupy the volume of w1w/g, which, when occupied by w/g items of the MVI, 
will yield a better value, due to the maximum density of the MVI. 
 

7.4 Chain analysis 

For every item, the number of chains is different. 
 
While considering each item, we shall have to determine the number of chains, 
and analyze each chain separately. 
 
To analyze a chain, it is enough to find a good starting point – a point before any 
potential w1/g – 1 points that may use the item. 
 

7.5 Chain 0 

Chain 0 is the one that starts with thread 0. It is quite simple, really – all the 
analysis of it has been done before. We know that no non-MVI item will ever be 
used for thread 0, so we go through the rest of the threads in the chain in the 
right order (there just happens to be w1/g – 1 of them). 
 

7.6 Chain X 

For any non-zero chain life gets trickier. 
 
We don’t have a nice starting point – a thread that will never ever use the item. It 
does exist for every scenario, but I just failed to provide a general way of finding 
it.  
 
And we DO need it, because a solution utilizing the item may be based on a 
good solution to the previous considered thread that also uses that item; so if that 
previous thread is not updated yet, the one in question may just fail to be 
updated at all. 
 
So, in order to analyze arbitrary threads, we are going to cheat. We shall make a 
double pass through the items in a chain. Then, if we start with some thread that 
should be updated based on the previous thread, which is not updated yet, then 
during the second pass that “previous” one will be ready. 
 
Two passes are enough – because, essentially, at some point we shall hit the 
good “starting” thread, then the rest of the threads. Of course, about half of the 
work is going to be extra, but we just don’t know ahead of time which parts it is 
going to be. 
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Plus, a double pass is still linear time with respect to w1. 
 
In order to be completely specific, we are going to consider 2w1/g – 1 threads, 
starting with any one! Why do we not need all 2w1/g threads? Because we don’t 
really need a “double” pass, we just need our sequence to have a subsequence 
starting with some unknown thread and containing all threads in the chain – so 
one thread may just be the last of the first pass and the first of the second pass. 
 
In other words, combining the analysis of chain 0 and chain X, we conclude that 
we know how many threads we have to consider in each chain in order to 
completely reflect the effect of a particular item. For chain 0 it is w1/g – 1 threads, 
for all other chains it is 2w1/g – 1. 
 

8 Possibility analysis 
Possibility analysis deals with hunting for an answer whether an optimal solution 
for a particular thread has anything to do with that particular thread. 

8.1 Examples of an impossibility 

Consider a knapsack problem involving one type of item only, whose weight is 
10. Obviously, there are ten threads, and each thread’s gain is zero. However, 
the solution for thread 5 (which, in this case, deals with boundaries of 5, 15, 25, 
etc.) will always occupy smaller volumes (in this case, 0, 10, 20, etc.), which 
means that the actual volumes in the thread are not “achievable”. 

8.2 Possibility tracking 

It is quite easy to track it. 
 
First of all, we know that zero is achievable. 
 
Second of all, any solution based on a subsolution is as achievable as the 
subsolution. 
 
That is enough. 
 

9 Neighbors 
Consider a certain solution for thread t, which is non-zero. Suppose that its gain 
is worse than the gain for its smaller neighbor, thread t–1. What does it mean? It 
means that using the solution from t–1 as a solution for t is better – just not 
achievable for t. 
 
Should we track for it? Not really. 
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There are two cases to explore. 
 
Case one is when the temporary neighbor solution is used, but some other item 
type’s analysis changes it later on to an achievable solution. Well, if some 
solution is clearly better than another, it does not matter whether the one kicked 
out was achievable or not, and what was it based on. The new solution is 
achievable – which means there is a clear way to hit the volumes specified by the 
thread. 
 
Case two is when the neighbor solution is actually kept. Well, in that case the 
neighbor solution is made up of some items, which were “kept” at the appropriate 
stages in the algorithm. However, that same algorithm is going to try those items 
for the thread in question as well – it just will be marked as unachievable, 
because the very first contributing thread will be other than zero. 
 
This idea is a bit non-intuitive, but clears up a bit when you exercise the 
algorithm. 
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10 The algorithm 
So, having done all the research, we come up with the following algorithm. For 
any given knapsack problem involving N types of items of weights w1, w2, …, wN 
and values v1, v2, …, vN, do the following: 
 
 

1. Identify MVI – the item with the greatest ratio of v/w and the smallest 
w; Swap item 1 with that item, so that index 1 refers to MVI; 

2. let F(1,0) := 0 
3. let B(1,0) := 0 
4. let P(1,0) := true 
5. for t := 1 .. w1 – 1 

5.1. let F(1,t) := 0 
5.2. let B(1,t) := t 
5.3. let P(1,t) := false 

6. for x := 2 .. N 
6.1. for t := 0 .. w1 – 1 

6.1.1. let F(x,t) := F(x–1,t) 
6.1.2. let B(x,t) := F(x–1,t) 
6.1.3. let P(x,t) := F(x–1,t) 

6.2. let number_of_chains := gcd(w1, wx) 
6.3. for chain := 0 .. number_of_chains–1 

6.3.1. if chain = 0 
6.3.1.1. let number_of_tries := w1 / number_of_chains – 1 

6.3.2. else 
6.3.2.1. let number_of_tries := 2w1 / number_of_chains – 1 

6.3.3. let last_thread := chain 
6.3.4. let thread := (last_thread + wx) mod w1 
6.3.5. for try := 1 .. number_of_tries 

6.3.5.1. let g := (F(x,last_thread) + vx) – 
    ((last_thread + wx) – (last_thread + wx)modw1) v1 / w1 

6.3.5.2. if g < F(x,thread) 
6.3.5.2.1. go to step 6.3.5.5 

6.3.5.3. if g > F(x,thread) 
6.3.5.3.1. let F(x,thread) := g 
6.3.5.3.2. let B(x,thread) := B(x,last_thread) + wx 
6.3.5.3.3. let P(x,thread) := P(x,last_thread) 
6.3.5.3.4. go to step 6.3.5.5 

6.3.5.4. if B(x,thread) + wx < B(x,thread) 
6.3.5.4.1. let B(x,thread) := B(x,last_thread) + wx 
6.3.5.4.2. let P(x,thread) := P(x,last_thread) 

6.3.5.5. let last_thread := thread 
6.3.5.6. let thread := (last_thread + wx) mod w1 
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At the end of this algorithm, the values of B(N,0), B(N,1), …, B(N,w1) will contain 
the stop conditions for threads 0, 1, …, w1–1 respectively. The largest of them 
will be the GENERAL STOP CONDITION. The values of F(N,0), F(N,0), …, 
F(N,w1) will contain the gains of the optimal solutions for those threads. The 
values of P(N,0), P(N,1), …, P(N,w1) will contain the possibility of those solutions 
– i.e. whether the optimal solutions for those threads actually hits the prescribed 
boundaries (in case of true) or is less than them (in case of false). 
 

11 Examples 
 
It is quite tiresome to trace the whole algorithm for example cases, so I shall 
demonstrate the algorithm’s results for some particular examples. 
 

11.1 Case 1 

Let there be three types of items of weights 7, 5, 1 and values 10, 7, 1 
respectively. The algorithm produces the following values: 
 
B(3,0)=0 F(3,0)=0 P(3,0)=true 
B(3,1)=1 F(3,1)=1 P(3,1)=true 
B(3,2)=2 F(3,2)=2 P(3,2)=true 
B(3,3)=10 F(3,3)=4 P(3,3)=true 
B(3,4)=11 F(3,4)=5 P(3,4)=true 
B(3,5)=5 F(3,5)=7 P(3,5)=true 
B(3,6)=6 F(3,6)=8 P(3,6)=true 
 
Hence, general stop point is 11.  
 
Among other things, we can read from these results that for every large enough 
B such that Bmod7 is 3 the value of gain will be 4 (i.e. the solution value will be 
(10(B – Bmod7) / 7) + 4, and the minimum boundary for which it will happen is 10. 
 

11.2 Case 2 

Let there be two types of items of weights 5, 499999 and values 7, 699998 
respectively. The algorithm produces the following results: 
 
B(2,0)=0  F(2,0)=0 P(2,0)=true 
B(2,1)=1  F(2,1)=0 P(2,1)=false 
B(2,2)=1499997 F(2,2)=1 P(2,2)=true 
B(2,3)=999998 F(2,3)=3 P(2,3)=true 
B(2,4)=499999 F(2,4)=5 P(2,4)=true 
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Hence, the general stop point is 1499997. Mind you, this number was found 
using the table of size 2 by 5, with constant time of filling out every cell – which 
can easily be done by hand. 
 
This particular example shows the usefulness of the algorithm – in just about 10 
steps it saved the building of a table of about a million cells, and told us that for 
every large enough B such that Bmod5 is 1 the value of gain will be 0 (i.e. the 
solution value will be (10(B – Bmod5) / 5) + 0, and the minimum boundary for 
which it will happen is 1. It also told us that those solution’s weights will be 
smaller than the actual boundaries – since the flag P(2,1) is set to false. 
 

11.3 Case 3 

Let there be four types of items of weights 8, 6, 4, 12 and values 20, 12, 9, 30 
respectively. The algorithm produces the following results: 
 
B(4,0)=0 F(4,0)=0 P(4,0)=true 
B(4,1)=1 F(4,1)=0 P(4,1)=false 
B(4,2)=18 F(4,2)=2 P(4,2)=true 
B(4,3)=19 F(4,3)=2 P(4,3)=false 
B(4,4)=12 F(4,4)=10 P(4,4)=true 
B(4,5)=13 F(4,5)=10 P(4,5)=false 
B(4,6)=6 F(4,6)=12 P(4,6)=true 
B(4,7)=7 F(4,7)=12 P(4,7)=false 
 
Hence, the general stop point is 19. 
 
This particular data is very interesting for a number of reasons. First, the even 
weights provide clear cases when boundaries are not achievable (it is not 
possible to hit odd boundaries), and the algorithm picks it up correctly. Secondly, 
any odd boundary will essentially be a solution to the preceding even one, and 
the algorithm picks that up as well. Third, the test data contains two items of the 
maximum density (20 to 8 is the same as 30 to 12), and the algorithm still works. 
Fourth, it figures out the solution for thread 2 (boundaries of 2, 10, 18, etc.) as a 
combination of the second and third item: 
 
For boundary of 10 we use one weight of 6 and one weight of 4, producing value 
of 12+9 = 21, which has a gain of 1 to the MVI solution for weight 8 (8/8 = 1, 1x20 
= 20, 21-20 = 1). For boundary of 18 we use one weight of 6 and one weight of 
12, producing value of 42, which has a gain of 2 to the MVI solution for weight 16 
(16/8 = 2, 2x20 = 40, 42 – 40 = 2). For the rest of this thread (26, 34, 42, etc) the 
gains don’t get any better. 
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12 Conclusions 

12.1 Algorithm characteristics 

The presented algorithm runs in O(N w1) time, which can be quite smaller than 
the actual general stop points (as illustrated in example 2). Besides being quite 
fast, it also gives a lot of information about the knapsack table, which may render 
even the general stop point unnecessary – if the hunt is for a particular solution, 
which belongs to a thread that has a significantly lower stop condition. 
 

12.2 Further improvements 

While I doubt that it is possible to beat the upper-bound on the algorithm time, it 
is certainly possible to improve certain characteristics of the algorithm by 
recognizing an interesting fact. 
 
The algorithm is essentially based on two assumptions: 

1. The period of the table is w1, if w1 is the weight of MVI; 
2. Thread zero consists of values 0, P, 2P, 3P, where P is the period of 

the table (which, in turn, is w1); 
 
And while it is certainly true that the table will be periodic with a period of w1 from 
some point on (provided the definition of MVI), the reality may be even more 
interesting: the period just may be a factor of w1. 
 
Consider a setup containing two items with the largest density, whose respective 
weights are 10 and 15. According to the algorithm, 10 will be a period of the 
table, which is true. But 5 will also be a period of the table that will set in at some 
point – since starting from 10 any multiple of 5 can be picked using 10 and 15. 
 
So, essentially, the smallest predictable period of the table is actually the 
greatest common divisor of the weights of all items whose density is maximum. 
This can cut down the tables that the algorithm builds by a factor of that GCD. 
 
However, the algorithm itself will have to be significantly modified to reflect the 
change in the two assumptions that it makes.  
 
But it is still very much possible! If I had more time in this semester, I’d even do it! 
J  




