
UC Berkeley
UC Berkeley Previously Published Works

Title
Control Improvisation.

Permalink
https://escholarship.org/uc/item/602857vk

Authors
Fremont, Daniel J
Donzé, Alexandre
Seshia, Sanjit A

Publication Date
2017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/602857vk
https://escholarship.org
http://www.cdlib.org/


Reactive Control Improvisation

Daniel J. Fremont and Sanjit A. Seshia

University of California, Berkeley, USA
{dfremont, sseshia}@berkeley.edu

Abstract. Reactive synthesis is a paradigm for automatically building correct-
by-construction systems that interact with an unknown or adversarial environ-
ment. We study how to do reactive synthesis when part of the specification of
the system is that its behavior should be random. Randomness can be useful, for
example, in a network protocol fuzz tester whose output should be varied, or a
planner for a surveillance robot whose route should be unpredictable. However,
existing reactive synthesis techniques do not provide a way to ensure random be-
havior while maintaining functional correctness. Towards this end, we generalize
the recently-proposed framework of control improvisation (CI) to add reactiv-
ity. The resulting framework of reactive control improvisation provides a natural
way to integrate a randomness requirement with the usual functional specifica-
tions of reactive synthesis over a finite window. We theoretically characterize
when such problems are realizable, and give a general method for solving them.
For specifications given by reachability or safety games or by deterministic finite
automata, our method yields a polynomial-time synthesis algorithm. For vari-
ous other types of specifications including temporal logic formulas, we obtain a
polynomial-space algorithm and prove matching PSPACE-hardness results. We
show that all of these randomized variants of reactive synthesis are no harder in
a complexity-theoretic sense than ordinary reactive synthesis.

1 Introduction

Many interesting programs, including protocol handlers, task planners, and concurrent
software generally, are open systems that interact over time with an external environ-
ment. Synthesis of such reactive systems requires finding an implementation that satis-
fies the desired specification no matter what the environment does. This problem, reac-
tive synthesis, has a long history (see [7] for a survey). Reactive synthesis from tempo-
ral logic specifications [18] has been particularly well-studied and is being increasingly
used in applications such as hardware synthesis [3] and robotic task planning [14].

In this paper, we investigate how to synthesize reactive systems with random be-
havior: in fact, systems where being random in a prescribed way is part of their specifi-
cation. This is in contrast to prior work on stochastic games where randomness is used
to model uncertain environments or randomized strategies are merely allowed, not re-
quired. Solvers for stochastic games may incidentally produce randomized strategies to
satisfy a functional specification (and some types of specification, e.g. multi-objective
queries [4], may only be realizable by randomized strategies), but do not provide a gen-
eral way to enforce randomness. Unlike most specifications used in reactive synthesis,
our randomness requirement is a property of a system’s distribution of behaviors, not
of an individual behavior. While probabilistic specification languages like PCTL [11]
can capture some such properties, the simple and natural randomness requirement we



study here cannot be concisely expressed by existing languages (even those as power-
ful as SGL [2]). Thus, randomized reactive synthesis in our sense requires significantly
different methods than those previously studied.

However, we argue that this type of synthesis is quite useful, because introducing
randomness into the behavior of a system can often be beneficial, enhancing variety,
robustness, and unpredictability. Example applications include:

– Synthesizing a black-box fuzz tester for a network service, we want a program that
not only conforms to the protocol (perhaps only most of the time) but can generate
many different sequences of packets: randomness ensures this.

– Synthesizing a controller for a robot exploring an unknown environment, random-
ness provides a low-memory way to increase coverage of the space. It can also help
to reduce systematic bias in the exploration procedure.

– Synthesizing a controller for a patrolling surveillance robot, introducing random-
ness in planning makes the robot’s future location harder to predict.

Adding randomness to a system in an ad hoc way could easily compromise its cor-
rectness. This paper shows how a randomness requirement can be integrated into the
synthesis process, ensuring correctness as well as allowing trade-offs to be explored:
how much randomness can be added while staying correct, or how strong can a specifi-
cation be while admitting a desired amount of randomness?

To formalize randomized reactive synthesis we build on the idea of control improvi-
sation, introduced in [6], formalized in [9], and further generalized in [8]. Control im-
provisation (CI) is the problem of constructing an improviser, a probabilistic algorithm
which generates finite words subject to three constraints: a hard constraint that must al-
ways be satisfied, a soft constraint that need only be satisfied with some probability, and
a randomness constraint that no word be generated with probability higher than a given
bound. We define reactive control improvisation (RCI), where the improviser generates
a word incrementally, alternating adding symbols with an adversarial environment. To
perform synthesis in a finite window, we encode functional specifications and environ-
ment assumptions into the hard constraint, while the soft and randomness constraints
allow us to tune how randomness is added to the system. The improviser obtained by
solving the RCI problem is then a solution to the original synthesis problem.

The difficulty of solving reactive CI problems depends on the type of specification.
We study several types commonly used in reactive synthesis, including reachability
games (and variants, e.g. safety games) and formulas in the temporal logics LTL and
LDL [17,5]. We also investigate the specification types studied in [8], showing how the
complexity of the CI problem changes when adding reactivity. For every type of speci-
fication we obtain a randomized synthesis algorithm whose complexity matches that of
ordinary reactive synthesis (in a finite window). This suggests that reactive control im-
provisation should be feasible in applications like robotic task planning where reactive
synthesis tools have proved effective.

In summary, the main contributions of this paper are:

– The reactive control improvisation (RCI) problem definition (Sec. 3);

– The notion of width, a quantitative generalization of “winning” game positions that
measures how many ways a player can win from that position (Sec. 4);



– A characterization of when RCI problems are realizable in terms of width, and an
explicit construction of an improviser (Sec. 4);

– A general method for constructing efficient improvisation schemes (Sec. 5);
– A polynomial-time improvisation scheme for reachability/safety games and deter-

ministic finite automaton specifications (Sec. 6);
– PSPACE-hardness results for many other specification types including temporal

logics, and matching polynomial-space improvisation schemes (Sec. 7).

Finally, Sec. 8 summarizes our results and gives directions for future work.

2 Background

2.1 Notation

Given an alphabet Σ, we write |w| for the length of a finite word w ∈ Σ∗, λ for the
empty word, Σn for the words of length n, and Σ≤n for ∪0≤i≤nΣi, the set of all words
of length at most n. We abbreviate deterministic/nondeterministic finite automaton by
DFA/NFA, and context-free grammar by CFG. For an instance X of any such formal-
ism, which we call a specification, we write L(X ) for the language (subset of Σ∗) it
defines (note the distinction between a language and a representation thereof). We view
formulas of Linear Temporal Logic (LTL) [17] and Linear Dynamic Logic (LDL) [5]
as specifications using their natural semantics on finite words (see [5]).

We use the standard complexity classes #P and PSPACE, and the PSPACE-complete
problem QBF of determining the truth of a quantified Boolean formula. For back-
ground on these classes and problems see for example [1].

Some specifications we use as examples are reachability games [15], where play-
ers’ actions cause transitions in a state space and the goal is to reach a target state.
We group these games, safety games where the goal is to avoid a set of states, and
reach-avoid games combining reachability and safety goals [19], together as reach-
ability/safety games (RSGs). We draw reachability games as graphs in the usual way:
squares are adversary-controlled states, and states with a double border are target states.

2.2 Synthesis Games

Reactive control improvisation will be formalized in terms of a 2-player game which
is essentially the standard synthesis game used in reactive synthesis [7]. However, our
formulation is slightly different for compatibility with the definition of control impro-
visation, so we give a self-contained presentation here.

Fix a finite alphabet Σ. The players of the game will alternate picking symbols from
Σ, building up a word. We can then specify the set of winning plays with a language
over Σ. To simplify our presentation we assume that players strictly alternate turns and
that any symbol from Σ is a legal move. These assumptions can be relaxed in the usual
way by modifying the winning set appropriately.

Finite words: While reactive synthesis is usually considered over infinite words,
in this paper we focus on synthesis in a finite window, as it is unclear how best to
generalize our randomness requirement to the infinite case. This assumption is not too
restrictive, as solutions of bounded length are adequate for many applications. In fuzz



testing, for example, we do not want to generate arbitrarily long files or sequences of
packets. In robotic planning, we often want a plan that accomplishes a task within a cer-
tain amount of time. Furthermore, planning problems with liveness specifications can
often be segmented into finite pieces: we do not need an infinite route for a patrolling
robot, but can plan within a finite horizon and replan periodically. Replanning may even
be necessary when environment assumptions become invalid. At any rate, we will see
that the bounded case of reactive control improvisation is already highly nontrivial.

As a final simplification, we require that all plays have length exactly n ∈ N. To
allow a range [m,n] we can simply add a new padding symbol to Σ and extend all
shorter words to length n, modifying the winning set appropriately.

Definition 2.1. A history h is an element of Σ≤n, representing the moves of the game
played so far. We say the game has ended after h if |h| = n; otherwise it is our turn
after h if |h| is even, and the adversary’s turn if |h| is odd.

Definition 2.2. A strategy is a function σ : Σ≤n ×Σ→ [0, 1] such that for any history
h ∈ Σ≤n with |h| < n, σ(h, ·) is a probability distribution over Σ. We write x← σ(h)
to indicate that x is a symbol randomly drawn from σ(h, ·).

Since strategies are randomized, fixing strategies for both players does not uniquely
determine a play of the game, but defines a distribution over plays:

Definition 2.3. Given a pair of strategies (σ, τ), we can generate a random play π ∈
Σn as follows. Pick π0 ← σ(λ), then for i from 1 to n − 1 pick πi ← τ(π0 . . . πi−1)
if i is odd and πi ← σ(π0 . . . πi−1) otherwise. Finally, put π = π0 . . . πn−1. We write
Pσ,τ (π) for the probability of obtaining the play π. This extends to a set of plays X ⊆
Σn in the natural way: Pσ,τ (X) =

∑
π∈X Pσ,τ (π). Finally, the set of possible plays is

Πσ,τ = {π ∈ Σn | Pσ,τ (π) > 0}.

The next definition is just the conditional probability of a play given a history, but
works for histories with probability zero, simplifying our presentation.

Definition 2.4. For any history h = h0 . . . hk−1 ∈ Σ≤n and word ρ ∈ Σn−k, we
write Pσ,τ (ρ|h) for the probability that if we assign πi = hi for i < k and sample
πk, . . . , πn−1 by the process above, then πk . . . πn−1 = ρ.

3 Problem Definition

3.1 Motivating Example

Consider synthesizing a planner for a surveillance drone operating near another, poten-
tially adversarial drone. Discretizing the map into the 7x7 grid in Fig. 1 (ignoring the
depicted trajectories for the moment), a route is a word over the four movement direc-
tions. Our specification is to visit the 4 circled locations in 30 moves without colliding
with the adversary, assuming it cannot move into the 5 highlighted central locations.

Existing reactive synthesis tools can produce a strategy for the patroller ensuring
that the specification is always satisfied. However, the strategy may be deterministic,
so that in response to a fixed adversary the patroller will always follow the same route.
Then it is easy for a third party to predict the route, which could be undesirable, and is
in fact unnecessary if there are many other ways the drone can satisfy its specification.



Fig. 1. Improvised trajectories for a patrolling drone (solid) avoiding an adversary (dashed). The
adversary may not move into the circles or the square.

Reactive control improvisation addresses this problem by adding a new type of
specification to the hard constraint above: a randomness requirement stating that no
behavior should be generated with probability greater than a threshold ρ. If we set (say)
ρ = 1/5, then any controller solving the synthesis problem must be able to satisfy the
hard constraint in at least 5 different ways, never producing any given behavior more
than 20% of the time. Our synthesis algorithm can in fact compute the smallest ρ for
which synthesis is possible, yielding a controller that is maximally-randomized in that
the system’s behavior is as close to a uniform distribution as possible.

To allow finer tuning of how randomness is introduced into the controller, our defi-
nition also includes a soft constraint which need only be satisfied with some probability
1− ε. This allows us to prefer certain safe behaviors over others. In our drone example,
we require that with probability at least 3/4, we do not visit a circled location twice.

These hard, soft, and randomness constraints form an instance of our reactive con-
trol improvisation problem. Encoding the hard and soft constraints as DFAs, our algo-
rithm (Sec. 6) produced a controller achieving the smallest realizable ρ = 2.2× 10−12.
We tested the controller using the PX4 autopilot [16] to refine the generated routes into
control actions for a drone simulated in Gazebo [13] (videos and code are available
online [10]). A selection of resulting trajectories are shown in Fig. 1 (the remainder in
Appendix A): starting from the triangles, the patroller’s path is solid, the adversary’s
dashed. The left run uses an adversary that moves towards the patroller when possible.
The right runs, with a simple adversary moving in a fixed loop, illustrate the randomness
of the synthesized controller.

3.2 Reactive Control Improvisation

Our formal notion of randomized reactive synthesis in a finite window is a reactive
extension of control improvisation [8,9], which captures the three types of constraint
(hard, soft, randomness) seen above. We use the notation of [8] for the specifications
and languages defining the hard and soft constraints:

Definition 3.1 ([8]). Given hard and soft specifications H and S of languages over Σ,
an improvisation is a word w ∈ L(H)∩Σn. It is admissible if w ∈ L(S). The set of all
improvisations is denoted I , and admissible improvisations A.
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Fig. 2. The hard specification DFA H in our running example. The soft specification S is the
same but with only the shaded states accepting.

Running Example. We will use the following simple example throughout the paper:
each player may increment (+), decrement (−), or leave unchanged (=) a counter which
is initially zero. The alphabet is Σ = {+,−,=}, and we set n = 4. The hard speci-
fication H is the DFA in Fig. 2 requiring that the counter stay within [−2, 2]. The soft
specification S is a similar DFA requiring that the counter end at a nonnegative value.

Then for example the word ++== is an admissible improvisation, satisfying both
hard and soft constraints, and so is in A. The word +−=− on the other hand satisfies
H but not S, so it is in I but not A. Finally, +++− does not satisfy H, so it is not an
improvisation at all and is not in I .

A reactive control improvisation problem is defined by H, S, and parameters ε
and ρ. A solution is then a strategy which ensures that the hard, soft, and randomness
constraints hold against every adversary. Formally, following [8,9]:

Definition 3.2. Given an RCI instance C = (H,S, n, ε, ρ) with H, S, and n as above
and ε, ρ ∈ [0, 1] ∩Q, a strategy σ is an improvising strategy if it satisfies the following
requirements for every adversary τ :

Hard constraint: Pσ,τ (I) = 1
Soft constraint: Pσ,τ (A) ≥ 1− ε
Randomness: ∀π ∈ I , Pσ,τ (π) ≤ ρ.

If there is an improvising strategy σ, we say that C is realizable. An improviser for C is
then an expected-finite time probabilistic algorithm implementing such a strategy σ, i.e.
whose output distribution on input h ∈ Σ≤n is σ(h, ·).

Definition 3.3. Given an RCI instance C = (H,S, n, ε, ρ), the reactive control impro-
visation (RCI) problem is to decide whether C is realizable, and if so to generate an
improviser for C.

Running Example. Suppose we set ε = 1/2 and ρ = 1/2. Let σ be the strategy which
picks + or − with equal probability in the first move, and thenceforth picks the action
which moves the counter closest to ±1 respectively. This satisfies the hard constraint,
since if the adversary ever moves the counter to ±2 we immediately move it back. The
strategy also satisfies the soft constraint, since with probability 1/2 we set the counter to
+1 on the first move, and if the adversary moves to 0 we move back to +1 and remain
nonnegative. Finally, σ also satisfies the randomness constraint, since each choice of
first move happens with probability 1/2 and so no play can be generated with higher
probability. So σ is an improvising strategy and this RCI instance is realizable.

We will study classes of RCI problems with different types of specifications:



Definition 3.4. If HSPEC and SSPEC are classes of specifications, then the class of
RCI instances C = (H,S, n, ε, ρ) where H ∈ HSPEC and S ∈ SSPEC is denoted
RCI (HSPEC, SSPEC). We use the same notation for the decision problem associated
with the class, i.e., given C ∈ RCI (HSPEC, SSPEC), decide whether C is realizable. The
size |C| of an RCI instance is the total size of the bit representations of its parameters,
with n represented in unary and ε, ρ in binary.

Finally, a synthesis algorithm in our context takes a specification in the form of
an RCI instance and produces an implementation in the form of an improviser. This
corresponds exactly to the notion of an improvisation scheme from [8]:

Definition 3.5 ([8]). A polynomial-time improvisation scheme for a class P of RCI
instances is an algorithm S with the following properties:

Correctness: For any C ∈ P , if C is realizable then S(C) is an improviser for C, and
otherwise S(C) = ⊥.

Scheme efficiency: There is a polynomial p : R → R such that the runtime of S on
any C ∈ P is at most p(|C|).

Improviser efficiency: There is a polynomial q : R→ R such that for every C ∈ P , if
G = S(C) 6= ⊥ then G has expected runtime at most q(|C|).

The first two requirements simply say that the scheme produces valid improvisers in
polynomial time. The third is necessary to ensure that the improvisers themselves are
efficient: otherwise, the scheme might for example produce improvisers running in time
exponential in the size of the specification.

A main goal of our paper is to determine for which types of specifications there exist
polynomial-time improvisation schemes and thus polynomial-time reactive control im-
provisation algorithms. While we do find such algorithms for important classes of spec-
ifications, we will also see that determining the realizability of an RCI instance is often
PSPACE-hard. Therefore we also consider polynomial-space improvisation schemes,
defined as above but replacing time with space.

4 Existence of Improvisers

4.1 Width and Realizability

The most basic question in reactive synthesis is whether a specification is realizable. In
randomized reactive synthesis, the question is more delicate because the randomness
requirement means that it is no longer enough to ensure some property regardless of
what the adversary does: there must be many ways to do so. Specifically, there must be
at least 1/ρ improvisations if we are to generate each of them with probability at most
ρ. Furthermore, at least this many improvisations must be possible given an unknown
adversary: even if many exist, the adversary may be able to force us to use only a single
one. We introduce a new notion of the size of a set of plays that takes this into account.

Definition 4.1. The width of X ⊆ Σn is W (X) = maxσ minτ |X ∩Πσ,τ |.

The width counts how many distinct plays can be generated regardless of what the
adversary does. Intuitively, a “narrow” game — one whose set of winning plays has
small width — is one in which the adversary can force us to choose among only a few
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Fig. 3. Synthesis game for our running example. States are labeled with the widths of I (left) and
A (right) given a history ending at that state.

winning plays, while in a “wide” one we always have many safe choices available. Note
that which particular plays can be generated depends on the adversary: the width only
measures how many can be generated. For example, W (X) = 1 means that a play in X
can always be generated, but possibly a different element ofX for different adversaries.

Running Example. Figure 3 shows the synthesis game for our running example: paths
ending in circled or shaded states are plays in I orA respectively (ignore the state labels
for now). At left, the bold arrows show the 4 plays in I possible against the adversary
that moves away from 0, and down at 0. This shows W (I) ≤ 4, and in fact 4 plays are
possible against any adversary, soW (I) = 4. Similarly, at right we see thatW (A) = 1.

It will be useful later to have a relative version of width that counts how many plays
are possible from a given position:

Definition 4.2. Given a set of plays X ⊆ Σn and a history h ∈ Σ≤n, the width of X
given h is W (X|h) = maxσ minτ |{π | hπ ∈ X ∧ Pσ,τ (π|h) > 0}|.

This is a direct generalization of “winning” positions: if X is the set of winning plays,
then W (X|h) counts the number of ways to win from h.

We will often use the following basic properties of W (X|h) without comment (for
this proof, and the details of later proof sketches, see Appendix B). Note that (3)–(5)
provide a recursive way to compute widths that we will use later, and which is illustrated
by the state labels in Fig. 3.

Lemma 4.1. For any set of plays X ⊆ Σn and history h ∈ Σ≤n:

1. 0 ≤W (X|h) ≤ |Σ|n−|h|;
2. W (X|λ) = W (X);
3. if |h| = n, then W (X|h) = 1h∈X ;
4. if it is our turn after h, then W (X|h) =

∑
u∈ΣW (X|hu);

5. if it is the adversary’s turn after h, then W (X|h) = minu∈ΣW (X|hu).

Now we can state the realizability conditions, which are simply that I and A have
sufficiently large width. In fact, the conditions turn out to be exactly the same as those
for non-reactive CI except that width takes the place of size [9].



Theorem 4.1. The following are equivalent:

(1) C is realizable.
(2) W (I) ≥ 1/ρ and W (A) ≥ (1− ε)/ρ.
(3) There is an improviser for C.

Running Example. We saw above that our example was realizable with ε = ρ = 1/2,
and indeed 4 = W (I) ≥ 1/ρ = 2 and 1 = W (A) ≥ (1− ε)/ρ = 1. However, if we put
ρ = 1/3 we violate the second inequality and the instance is not realizable: essentially,
we need to distribute probability 1− ε = 1/2 among plays in A (to satisfy the soft con-
straint), but since W (A) = 1, against some adversaries we can only generate one play
in A and would have to give it the whole 1/2 (violating the randomness requirement).

The difficult part of the Theorem is constructing an improviser when the inequal-
ities (2) hold. Despite the similarity in these conditions to the non-reactive case, the
construction is much more involved. We begin with a general overview.

4.2 Improviser Construction: Discussion

Our improviser can be viewed as an extension of the classical random-walk reduction
of uniform sampling to counting [20]. In that algorithm (which was used in a similar
way for DFA specifications in [8,9]), a uniform distribution over paths in a DAG is
obtained by moving to the next vertex with probability proportional to the number of
paths originating at it. In our case, which plays are possible depends on the adversary,
but the width still tells us how many plays are possible. So we could try a random
walk using widths as weights: e.g. on the first turn in Fig. 3, picking +, −, and = with
probabilities 1/4, 2/4, and 1/4 respectively. Against the adversary shown in Fig. 3, this
would indeed yield a uniform distribution over the four possible plays in I .

However, the soft constraint may require a non-uniform distribution. In the running
example with ε = ρ = 1/2, we need to generate the single possible play in A with
probability 1/2, not just the uniform probability 1/4 . This is easily fixed by doing the
random walk with a weighted average of the widths of I and A: specifically, move to
position h with probability proportional to αW (A|h) + β(W (I|h)−W (A|h)). In the
example, this would result in plays in A getting probability α and those in I \A getting
probability β. Taking α sufficiently large, we can ensure the soft constraint is satisfied.

Unfortunately, this strategy can fail if the adversary makes more plays available
than the width guarantees. Consider the game on the left of Fig. 4, where W (I) = 3
and W (A) = 2. This is realizable with ε = ρ = 1/3, but no values of α and β yield
improvising strategies, essentially because an adversary moving fromX toZ breaks the
worst-case assumption that the adversary will minimize the number of possible plays
by moving to Y . In fact, this instance is realizable but not by any memoryless strategy.
To see this, note that all such strategies can be parametrized by the probabilities p and
q in Fig. 4. To satisfy the randomness constraint against the adversary that moves from
X to Y , both p and (1− p)q must be at most 1/3. To satisfy the soft constraint against
the adversary that moves from X to Z we must have pq+ (1− p)q ≥ 2/3, so q ≥ 2/3.
But then (1− p)q ≥ (1− 1/3)(2/3) = 4/9 > 1/3, a contradiction.

To fix this problem, our improvising strategy σ̂ (which we will fully specify in
Algorithm 1 below) takes a simplistic approach: it tracks how many plays in A and I
are expected to be possible based on their widths, and if more are available it ignores
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Fig. 4. Reachability games where a naı̈ve random walk, and all memoryless strategies, fail (left)
and where no strategy can optimize either ε or ρ against every adversary simultaneously (right).

them. For example, entering state Z fromX there are 2 ways to produce a play in I , but
since W (I|X) = 1 we ignore the play in I \ A. Extra plays in A are similarly ignored
by being treated as members of I \A. Ignoring unneeded plays may seem wasteful, but
the proof of Theorem 4.1 will show that σ̂ nevertheless achieves the best possible ε:

Corollary 4.1. C is realizable iff W (I) ≥ 1/ρ and ε ≥ εopt ≡ max(1 − ρW (A), 0).
Against any adversary, the error probability of Algorithm 1 is at most εopt.

Thus, if any improviser can achieve an error probability ε, ours does. We could ask
for a stronger property, namely that against each adversary the improviser achieves the
smallest possible error probability for that adversary. Unfortunately, this is impossible
in general. Consider the game on the right in Fig. 4, with ρ = 1. Against the adversary
which always moves up, we can achieve ε = 0 with the strategy that at P moves to Q.
We can also achieve ε = 0 against the adversary that always moves down, but only with
a different strategy, namely the one that at P moves to R. So there is no single strategy
that achieves the optimal ε for every adversary. A similar argument shows that there
is also no strategy achieving the smallest possible ρ for every adversary. In essence,
optimizing ε or ρ in every case would require the strategy to depend on the adversary.

4.3 Improviser Construction: Details

Our improvising strategy, as outlined in the previous section, is shown in Algorithm 1.
We first compute α and β, the (maximum) probabilities for generating elements of A
and I \ A respectively. As in [8], we take α as large as possible given α ≤ ρ, and
determine β from the probability left over (modulo a couple corner cases).

Next we initialize mA and mI , our expectations for how many plays in A and I
respectively are still possible to generate. Initially these are given by W (A) and W (I),
but as we saw above it is possible for more plays to become available. The function
PARTITION handles this, deciding which mA (resp., mI ) out of the available W (A|h)
(W (I|h)) plays we will use. The behavior of PARTITION is defined by the following
lemma; its proof (in Appendix B) greedily takes the first mA possible plays in A under
some canonical order and the first mI −mA of the remaining plays in I .

Lemma 4.2. If it is our turn after h ∈ Σ≤n, andmA,mI ∈ Z satisfy 0 ≤ mA ≤ mI ≤
W (I|h) and mA ≤W (A|h), there are integer partitions

∑
u∈Σm

A
u and

∑
u∈Σm

I
u of

mA and mI respectively such that 0 ≤ mA
u ≤ mI

u ≤ W (I|hu) and mA
u ≤ W (A|hu)

for all u ∈ Σ. These are computable in poly-time given oracles forW (I|·) andW (A|·).

Finally, we perform the random walk, moving from position h to hu with (unnor-
malized) probability tu, the weighted average described above.



Algorithm 1 the strategy σ̂
1: α← min(ρ, 1/W (A)) (or 0 instead if W (A) = 0)
2: β ← (1− αW (A))/(W (I)−W (A)) (or 0 instead if W (I)−W (A) = 0)
3: mA ←W (A), mI ←W (I)
4: h← λ
5: while the game is not over after h do
6: if it is our turn after h then
7: mA

u ,m
I
u ← PARTITION(mA,mI , h) . returns values for each u ∈ Σ

8: for each u ∈ Σ, put tu ← αmA
u + β(mI

u −mA
u )

9: pick u ∈ Σ with probability proportional to tu and append it to h
10: mA ← mA

u , mI ← mI
u

11: else
12: the adversary picks u ∈ Σ given the history h; append it to h

return h
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Fig. 5. A run of Algorithm 1, labeling states with corresponding widths of I (left) and A (right).

Running Example. With ε = ρ = 1/2, as beforeW (A) = 1 andW (I) = 4 so α = 1/2
and β = 1/6. On the first move, mA and mI match W (A|h) and W (I|h), so all
plays are used and PARTITION returns (W (A|hu),W (I|hu)) for each u ∈ Σ. Looking
up these values in Fig. 5, we see (mA

=,m
I
=) = (0, 2) and so t(=) = 2β = 1/3.

Similarly t(+) = α = 1/2 and t(−) = β = 1/6. We choose an action according to
these weights; suppose =, so that we update mA ← 0 and mI ← 2, and suppose the
adversary responds with =. From Fig. 5,W (A| ==) = 1 andW (I| ==) = 3, whereas
mA = 0 and mI = 2. So PARTITION discards a play, say returning (mA

u ,m
I
u) = (0, 1)

for u ∈ {+,=} and (0, 0) for u ∈ {−}. Then t(+) = t(=) = β = 1/6 and t(−) = 0.
So we pick + or = with equal probability, say +. If the adversary responds with +, we
get the play ==++, shown in bold on Fig. 5. As desired, it satisfies the hard constraint.

The next few lemmas establish that σ̂ is well-defined and in fact an improvis-
ing strategy, allowing us to prove Theorem 4.1. Throughout, we write mA(h) (resp.,
mI(h)) for the value ofmA (mI ) at the start of the iteration for history h. We also write
t(h) = αmA(h) + β(mI(h)−mA(h)) (so t(hu) = tu when we pick u).

Lemma 4.3. If W (I) ≥ 1/ρ, then σ̂ is a well-defined strategy and Pσ̂,τ (I) = 1 for
every adversary τ .



Proof (sketch). An easy induction on h shows the conditions of Lemma 4.2 are always
satisfied, and that t(h) is always positive since we never pick a u with tu = 0. So∑
u tu = t(h) > 0 and σ̂ is well-defined. Furthermore, t(h) > 0 implies mI(h) > 0,

so for any h ∈ Πσ̂,τ we have 1h∈I = W (I|h) ≥ mI(h) > 0 and thus h ∈ I . ut

Lemma 4.4. If W (I) ≥ 1/ρ, then Pσ̂,τ (A) ≥ min(ρW (A), 1) for every τ .

Proof (sketch). Because of the αmA(h) term in the weights t(h), the probability of
obtaining a play in A starting from h is at least αmA(h)/t(h) (as can be seen by induc-
tion on h in order of decreasing length). Then since mA(λ) = W (A) and t(λ) = 1 we
have Pσ̂,τ (A) ≥ αW (A) = min(ρW (A), 1). ut

Lemma 4.5. If W (I) ≥ 1/ρ, then Pσ̂,τ (π) ≤ ρ for every π ∈ Σn and τ .

Proof (sketch). If the adversary is deterministic, the weights we use for our random
walk yield a distribution where each play π has probability either α or β (depending
on whether mA(π) = 1 or 0). If the adversary assigns nonzero probability to multiple
choices this only decreases the probability of individual plays. Finally, since W (I) ≥
1/ρ we have α, β ≤ ρ. ut

Proof (of Theorem 4.1). We use a similar argument to that of [8].

(1)⇒(2) Suppose σ is an improvising strategy, and fix any adversary τ . Then ρ|Πσ,τ ∩
I| =

∑
π∈Πσ,τ∩I ρ ≥

∑
π∈I Pσ,τ (π) = Pσ,τ (I) = 1, so |Πσ,τ ∩ I| ≥ 1/ρ. Since

τ is arbitrary, this implies W (I) ≥ 1/ρ. Since A ⊆ I , we also have ρ|Πσ,τ ∩A| =∑
π∈Πσ,τ∩A ρ ≥

∑
π∈A Pσ,τ (π) = Pσ,τ (A) ≥ 1 − ε, so |Πσ,τ ∩ A| ≥ (1 − ε)/ρ

and thus W (A) ≥ (1− ε)/ρ.
(2)⇒(3) By Lemmas 4.3 and 4.5, σ̂ is well-defined and satisfies the hard and ran-

domness constraints. By Lemma 4.4, Pσ̂,τ (A) ≥ min(ρW (A), 1) ≥ 1 − ε, so
σ̂ also satisfies the soft constraint and thus is an improvising strategy. Its transi-
tion probabilities are rational, so it can be implemented by an expected finite-time
probabilistic algorithm, which is then an improviser for C.

(3)⇒(1) Immediate. ut

Proof (of Corollary 4.1). The inequalities in the statement are equivalent to those of
Theorem 4.1(2). By Lemma 4.4, we have Pσ̂,τ (A) ≥ min(ρW (A), 1). So the error
probability is at most 1−min(ρW (A), 1) = εopt. ut

5 A Generic Improviser

We now use the construction of Sec. 4 to develop a generic improvisation scheme usable
with any class of specifications SPEC supporting the following operations:

Intersection: Given specs X and Y , find Z such that L(Z) = L(X ) ∩ L(Y).
Width Measurement: Given a specification X , a length n ∈ N in unary, and a history

h ∈ Σ≤n, compute W (X|h) where X = L(X ) ∩ Σn.

Efficient algorithms for these operations lead to efficient improvisation schemes:



Theorem 5.1. If the operations on SPEC above take polynomial time (resp. space), then
RCI (SPEC, SPEC) has a polynomial-time (space) improvisation scheme.

Proof. Given an instance C = (H,S, n, ε, ρ) in RCI (SPEC, SPEC), we first apply inter-
section to H and S to obtain A ∈ SPEC such that L(A) ∩ Σn = A. Since intersection
takes polynomial time (space), A has size polynomial in |C|. Next we use width mea-
surement to compute W (I) = W (L(H) ∩ Σn|λ) and W (A) = W (L(A) ∩ Σn|λ). If
these violate the inequalities in Theorem 4.1, then C is not realizable and we return ⊥.
Otherwise C is realizable, and σ̂ above is an improvising strategy. Furthermore, we can
construct an expected finite-time probabilistic algorithm implementing σ̂, using width
measurement to instantiate the oracles needed by Lemma 4.2. Determining mA(h) and
mI(h) takesO(n) invocations of PARTITION, each of which is poly-time relative to the
width measurements. These take time (space) polynomial in |C|, since H and A have
size polynomial in |C|. As mA,mI ≤ |Σ|n, they have polynomial bitwidth and so the
arithmetic required to compute tu for each u ∈ Σ takes polynomial time. Therefore the
total expected runtime (space) of the improviser is polynomial. ut

Note that as a byproduct of testing the inequalities in Theorem 4.1, our algorithm
can compute the best possible error probability εopt given H, S, and ρ (see Corollary
4.1). Alternatively, given ε, we can compute the best possible ρ.

We will see below how to efficiently compute widths for DFAs, so Theorem 5.1
yields a polynomial-time improvisation scheme. If we allow polynomial-space schemes,
we can use a general technique for width measurement that only requires a very weak
assumption on the specifications, namely testability in polynomial space:

Theorem 5.2. RCI (PSA, PSA) has a polynomial-space improvisation scheme, where
PSA is the class of polynomial-space decision algorithms.

Proof (sketch). We apply Theorem 5.1, computing widths recursively using Lemma 4.1,
(3)–(5). As in the PSPACE QBF algorithm, the current path in the recursive tree and
required auxiliary storage need only polynomial space. ut

6 Reachability Games and DFAs

Now we develop a polynomial-time improvisation scheme for RCI instances with DFA
specifications. This also provides a scheme for reachability/safety games, whose win-
ning conditions can be straightforwardly encoded as DFAs.

Suppose D is a DFA with states V , accepting states T , and transition function δ :
V × Σ → V . Our scheme is based on the fact that W (L(D)|h) depends only on
the state of D reached on input h, allowing these widths to be computed by dynamic
programming. Specifically, for all v ∈ V and i ∈ {0, . . . , n} we define:

C(v, i) =


1v∈T i = n

minu∈Σ C(δ(v, u), i+ 1) i < n ∧ i odd∑
u∈Σ C(δ(v, u), i+ 1) otherwise.

Running Example. Figure 6 shows the values C(v, i) in rows from i = n downward.
For example, i = 2 is our turn, soC(1, 2) = C(0, 3)+C(1, 3)+C(2, 3) = 1+1+0 = 2,
while i = 3 is the adversary’s turn, so C(−3, 3) = min{C(−3, 4)} = min{0} = 0.
Note that the values in Fig. 6 agree with the widths W (I|h) shown in Fig. 5.
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Fig. 6. The hard specification DFAH in our running example, showing howW (I|h) is computed.

Lemma 6.1. For any history h ∈ Σ≤n, writing X = L(D) ∩ Σn we have W (X|h) =
C(D(h), |h|), where D(h) is the state reached by running D on h.

Proof. We prove this by induction on i = |h| in decreasing order. In the base case i = n,
we have W (X|h) = 1h∈X = 1D(h)∈T = C(D(h), n). Now take any history h ∈ Σ≤n

with |h| = i < n. By hypothesis, for any u ∈ Σ we haveW (X|hu) = C(D(hu), i+1).
If it is our turn after h, thenW (X|h) =

∑
u∈ΣW (X|hu) =

∑
u∈Σ C(D(hu), i+1) =

C(D(h), i) as desired. If instead it is the adversary’s turn after h, then W (X|h) =
minu∈ΣW (X|hu) = minu∈Σ C(D(hu), i+ 1) = C(D(h), i) again as desired. So by
induction the hypothesis holds for any i. ut

Theorem 6.1. RCI (DFA, DFA) has a polynomial-time improvisation scheme.

Proof. We implement Theorem 5.1. Intersection can be done with the standard product
construction. For width measurement we compute the quantities C(v, i) by dynamic
programming (from i = n down to i = 0) and apply Lemma 6.1. ut

7 Temporal Logics and Other Specifications

In this section we analyze the complexity of reactive control improvisation for speci-
fications in the popular temporal logics LTL and LDL. We also look at NFA and CFG
specifications, previously studied for non-reactive CI [8], to see how their complexities
change in the reactive case.

For LTL specifications, reactive control improvisation is PSPACE-hard because this
is already true of ordinary reactive synthesis in a finite window (we suspect this has been
observed but could not find a proof in the literature).

Theorem 7.1. Finite-window reactive synthesis for LTL is PSPACE-hard.

Proof (sketch). Given a QBF φ = ∃x∀y . . . χ, we can view assignments to its vari-
ables as traces over a single proposition. In polynomial time we can construct an LTL
formula ψ whose models are the satisfying assignments of χ. Then there is a winning
strategy to generate a play satisfying ψ iff φ is true. ut

Corollary 7.1. RCI (LTL, Σ∗) and RCI (Σ∗, LTL) are PSPACE-hard.



This is perhaps disappointing, but is an inevitable consequence of LTL subsuming
Boolean formulas. On the other hand, our general polynomial-space scheme applies
to LTL and its much more expressive generalization LDL:

Theorem 7.2. RCI (LDL, LDL) has a polynomial-space improvisation scheme.

Proof. This follows from Theorem 5.2, since satisfaction of an LDL formula by a finite
word can be checked in polynomial time (e.g. by combining dynamic programming on
subformulas with a regular expression parser). ut

Thus for temporal logics polynomial-time algorithms are unlikely, but adding random-
ization to reactive synthesis does not increase its complexity.

The same is true for NFA and CFG specifications, where it is again PSPACE-hard
to find even a single winning strategy:

Theorem 7.3. Finite-window reactive synthesis for NFAs is PSPACE-hard.

Proof (sketch). Reduce from QBF as in Theorem 7.1, constructing an NFA accepting
the satisfying assignments of χ (as done in [12]). ut

Corollary 7.2. RCI (NFA, Σ∗) and RCI (Σ∗, NFA) are PSPACE-hard.

Theorem 7.4. RCI (CFG, CFG) has a polynomial-space improvisation scheme.

Proof. By Theorem 5.2, since CFG parsing can be done in polynomial time. ut

Since NFAs can be converted to CFGs in polynomial time, this completes the picture
for the kinds of CI specifications previously studied. In non-reactive CI, DFA specifica-
tions admit a polynomial-time improvisation scheme while for NFAs/CFGs the CI prob-
lem is #P-equivalent [8]. Adding reactivity, DFA specifications remain polynomial-
time while NFAs and CFGs move up to PSPACE.

8 Conclusion

In this paper we introduced reactive control improvisation as a framework for modeling
reactive synthesis problems where random but controlled behavior is desired. RCI pro-
vides a natural way to tune the amount of randomness while ensuring that safety or other
constraints remain satisfied. We showed that RCI problems can be efficiently solved in
many cases occurring in practice, giving a polynomial-time improvisation scheme for
reachability/safety or DFA specifications. We also showed that RCI problems with spec-
ifications in LTL or LDL, popularly used in planning, have the PSPACE-hardness typ-
ical of bounded games, and gave a matching polynomial-space improvisation scheme.
This scheme generalizes to any specification checkable in polynomial space, including
NFAs, CFGs, and many more expressive formalisms. Table 1 summarizes these results.

These results show that, at a high level, finding a maximally-randomized strategy
using RCI is no harder than finding any winning strategy at all: for specifications yield-
ing games solvable in polynomial time (respectively, space), we gave polynomial-time
(space) improvisation schemes. We therefore hope that in applications where ordinary
reactive synthesis has proved tractable, our notion of randomized reactive synthesis will



Table 1. Complexity of the reactive control improvisation problem for various types of hard and
soft specifications H, S. Here PSPACE indicates that checking realizability is PSPACE-hard,
and that there is a polynomial-space improvisation scheme.

H\S RSG DFA NFA CFG LTL LDL

RSG
poly-time

DFA
NFA
CFG

PSPACE
LTL
LDL

also. In particular, we expect our DFA scheme to be quite practical, and are experiment-
ing with applications in robotic planning. On the other hand, our scheme for temporal
logic specifications seems unlikely to be useful in practice without further refinement.
An interesting direction for future work would be to see if modern solvers for quantified
Boolean formulas (QBF) could be leveraged or extended to solve these RCI problems.
This could be useful even for DFA specifications, as conjoining many simple proper-
ties can lead to exponentially-large automata. Symbolic methods based on constraint
solvers would avoid such blow-up.

We are also interested in extending the RCI problem definition to unbounded or
infinite words, as typically used in reactive synthesis. These extensions, as well as that
to continuous signals, would be useful in robotic planning, cyber-physical system test-
ing, and other applications. However, it is unclear how best to adapt our randomness
constraint to settings where the improviser can generate infinitely many words. In such
settings the improviser could assign arbitrarily small or even zero probability to ev-
ery word, rendering the randomness constraint trivial. Even in the bounded case, RCI
extensions with more complex randomness constraints than a simple upper bound on
individual word probabilities would be worthy of study. One possibility would be to
more directly control diversity and/or unpredictability by requiring the distribution of
the improviser’s output to be close to uniform after transformation by a given function.
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A Patrolling Drone Experiments

As described above, we ran experiments with two adversary strategies: one that moves
towards the patrolling drone whenever possible, and one that moves in a fixed loop.
We ran the improviser four times against each adversary, obtaining the trajectories in
Figures 7 and 8. Animations showing the trajectories over time (and so illustrating that
collisions do not in fact occur) are available online [10]. This site also provides our im-
plementation of the DFA improvisation scheme, and implementations of the specifica-
tions and adversaries used in our drone experiments (as well as an adversary controlled
by the user, so that one can type in actions and see how the improviser responds).

Fig. 7. Improvised trajectories against an adversary which moves toward the patroller when pos-
sible.

Fig. 8. Improvised trajectories against an adversary which moves in a loop.

B Detailed Proofs

We use without comment several basic facts about Pσ,τ (ρ|h), all immediate from its
definition:

Lemma B.1. For any history h ∈ Σ≤n, word ρ ∈ Σn−|h|, and strategies σ, τ :

(1) if |h| = 0, then Pσ,τ (ρ|h) = Pσ,τ (ρ);
(2) if |h| = n, then Pσ,τ (ρ|h) = 1;



(3) if |h| < n, then ρ = uρ′ for some u ∈ Σ, and:
(a) if it is our turn after h, then Pσ,τ (ρ|h) = σ(h, u) · Pσ,τ (ρ′|hu);
(b) if it is the adversary’s turn after h, then Pσ,τ (ρ|h) = τ(h, u) · Pσ,τ (ρ′|hu).

Lemma 4.1. For any set of plays X ⊆ Σn and history h ∈ Σ≤n:

1. 0 ≤W (X|h) ≤ |Σ|n−|h|;
2. W (X|λ) = W (X);
3. if |h| = n, then W (X|h) = 1h∈X ;
4. if it is our turn after h, then W (X|h) =

∑
u∈ΣW (X|hu);

5. if it is the adversary’s turn after h, then W (X|h) = minu∈ΣW (X|hu).

Proof.

1. By definition, W (X|h) = maxσ minτ |{π | hπ ∈ X ∧ Pσ,τ (π|h) > 0}|, so
W (X|h) ≥ 0 trivially. SinceX ⊆ Σn, if hπ ∈ X then π ∈ Σn−|h|. SoW (X|h) ≤
|Σ|n−|h|.

2. W (X|λ) = maxσ minτ |{π |π ∈ X ∧Pσ,τ (π) > 0}| = maxσ minτ |X ∩Πσ,τ | =
W (X).

3. If h ∈ X , then the only word of the form hπ in X is h, with π = λ (and
Pσ,τ (λ|h) = 1 > 0). Otherwise there is no word of the form hπ in X .

4. Since it is our turn, and in particular the game has not ended, every play hπ that
can be generated given history h has the form huπ′ for some u ∈ Σ. So for any
strategies σ and τ we have |{π |hπ ∈ X ∧Pσ,τ (π|h) > 0}| =

∑
u∈Σ |{π′ |huπ′ ∈

X ∧ Pσ,τ (uπ′|h) > 0}| =
∑
u∈Σ |{π′ | huπ′ ∈ X ∧ σ(h, u) · Pσ,τ (π′|hu) > 0}|.

For each u ∈ Σ, let σu be a strategy witnessing W (X|hu). Let σ̃ be a strategy
which on history h picks u ∈ Σ uniformly at random, and on histories prefixed by
hu follows σu (otherwise picking arbitrarily). Then

W (X|h) ≥ min
τ
|{π | hπ ∈ X ∧ Pσ̃,τ (π|h) > 0}|

= min
τ

∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ σ̃(h, u) · Pσ̃,τ (π′|hu) > 0}|

= min
τ

∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ Pσ̃,τ (π′|hu) > 0}|

≥
∑
u∈Σ

min
τ
|{π′ | huπ′ ∈ X ∧ Pσ̃,τ (π′|hu) > 0}|

=
∑
u∈Σ

min
τ
|{π′ | huπ′ ∈ X ∧ Pσu,τ (π′|hu) > 0}|

=
∑
u∈Σ

W (X|hu).

For the other direction, let σ̃ be a strategy witnessing W (X|h), and for each u ∈ Σ
let τu = arg minτ |{π′ | huπ′ ∈ X ∧Pσ̃,τ (π′|hu) > 0}|. Let τ̃ be a strategy which
on histories prefixed by hu follows τu (otherwise picking arbitrarily). Then

W (X|h) ≤ |{π | hπ ∈ X ∧ Pσ̃,τ̃ (π|h) > 0}|



=
∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ σ̃(h, u) · Pσ̃,τ̃ (π′|hu) > 0}|

≤
∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ Pσ̃,τ̃ (π′|hu) > 0}|

=
∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ Pσ̃,τu(π′|hu) > 0}|

≤
∑
u∈Σ

W (X|hu).

5. Since it is the adversary’s turn (and in particular the game has not ended), for any
strategies σ and τ we have |{π |hπ ∈ X ∧Pσ,τ (π|h) > 0}| =

∑
u∈Σ |{π′ |huπ′ ∈

X ∧ Pσ,τ (uπ′|h) > 0}| =
∑
u∈Σ |{π′ | huπ′ ∈ X ∧ τ(h, u) · Pσ,τ (π′|hu) > 0}|.

For each u ∈ Σ, let σu be a strategy witnessing W (X|hu). Let σ̃ be a strategy
which on histories prefixed by hu follows σu (otherwise picking arbitrarily). Then

W (X|h) ≥ min
τ
|{π | hπ ∈ X ∧ Pσ̃,τ (π|h) > 0}|

= min
τ

∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ τ(h, u) · Pσ̃,τ (π′|hu) > 0}|

≥ min
τ

min
u∈Σ
|{π′ | huπ′ ∈ X ∧ Pσ̃,τ (π′|hu) > 0}|

= min
u∈Σ

min
τ
|{π′ | huπ′ ∈ X ∧ Pσu,τ (π′|hu) > 0}|

= min
u∈Σ

W (X|hu).

For the other direction, let σ̃ be a strategy witnessing W (X|h), and define ũ =
arg minu∈ΣW (X|hu), and τũ = arg minτ |{π′ | hũπ′ ∈ X ∧ Pσ̃,τ (π′|hũ) > 0}|.
Let τ̃ be a strategy which on history h picks ũ and on histories prefixed with hũ
follows τũ (otherwise picking arbitrarily). Then

W (X|h) ≤ |{π | hπ ∈ X ∧ Pσ̃,τ̃ (π|h) > 0}|

=
∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ τ(h, u) · Pσ̃,τ̃ (π′|hu) > 0}|

= |{π′ | hũπ′ ∈ X ∧ Pσ̃,τ̃ (π′|hũ) > 0}|
= |{π′ | hũπ′ ∈ X ∧ Pσ̃,τũ(π′|hũ) > 0}|
≤W (X|hũ)

= min
u∈Σ

W (X|hu).

ut

Lemma 4.2. If it is our turn after h ∈ Σ≤n, andmA,mI ∈ Z satisfy 0 ≤ mA ≤ mI ≤
W (I|h) and mA ≤W (A|h), there are integer partitions

∑
u∈Σm

A
u and

∑
u∈Σm

I
u of

mA and mI respectively such that 0 ≤ mA
u ≤ mI

u ≤ W (I|hu) and mA
u ≤ W (A|hu)

for all u ∈ Σ. These are computable in poly-time given oracles forW (I|·) andW (A|·).

Proof. Index the elements of Σ via some canonical order as (uj)0≤j<` for some ` ≥ 1.
We first construct the partition

∑
j<`m

A
j of mA. Find the greatest k ≤ ` such that



∑
j<kW (A|huj) ≤ mA. This is well-defined, since if k = 0 then the sum is zero and

the condition is satisfied. If
∑
j<kW (A|huj) = mA we put mA

j = W (A|huj) for
j < k and mA

j = 0 for j ≥ k. If instead
∑
j<kW (A|huj) < mA we must have k < `,

since
∑
j<`W (A|huj) =

∑
u∈ΣW (A|hu) = W (A|h) ≥ mA. Then by the definition

of k we have
∑
j≤kW (A|huj) > mA, so W (A|huk) > mA −

∑
j<kW (A|huj).

Therefore we put mA
j = W (A|huj) for j < k, mA

k = mA −
∑
j<kW (A|huj), and

mA
j = 0 for j > k.

Now we construct the partition
∑
j<`m

I
j of mI . We do this by partitioning the

difference mI − mA along the same lines as above, then adding back mA
j to ensure

mI
j ≥ mA

j . Let dj = W (I|huj) − mA
j . Since mA

j ≤ W (A|huj) ≤ W (I|huj),
we have dj ≥ 0. Find the greatest k ≤ ` such that

∑
j<k dj ≤ mI − mA. This is

well-defined since if k = 0 the sum is zero, and mI − mA ≥ 0 by assumption. If∑
j<k dj = mI −mA we put mI

j = mA
j + dj for j < k and mI

j = mA
j for j ≥ k.

This clearly satisfies mA
j ≤ mI

j ≤ W (I|huj), and
∑
j<`m

I
j =

∑
j<k(mA

j + dj) +∑
j≥km

A
j =

∑
j<`m

A
j +

∑
j<k dj = mA + (mI −mA) = mI as desired. If instead∑

j<k dj < mI − mA we must have k < `, since
∑
j<` dj =

∑
j<`(W (I|huj) −

mA
j ) =

∑
u∈ΣW (I|hu)−

∑
j<`m

A
j = W (I|h)−mA ≥ mI −mA. Then by the def-

inition of k we have
∑
j≤k dj > mI −mA, so dk > mI −mA −

∑
j<k dj . Therefore

we put mI
j = mA

j +dj for j < k, mI
k = mA

k + (mI −mA−
∑
j<k dj), and mI

j = mA
j

for j > k. Again this satisfies mA
j ≤ mI

j ≤W (I|huj), and
∑
j<`m

I
j =

∑
j<k(mA

j +

dj) + (mA
k + (mI −mA −

∑
j<k dj)) +

∑
j>km

A
j =

∑
j<`m

A
j + (mI −mA) =

mA + (mI −mA) = mI as desired.
These partitions are canonical since the values of k used in each construction are

uniquely determined (and the ordering of Σ is fixed). Also, k may be found by a linear
search from 0 up to `, which has value at most |Σ|. The quantities W (I|huj) all have
polynomial bitwidth (they are bounded above by |Σ|n), so the arithmetic above can be
done in polynomial time. Therefore the total time needed to construct the partitions is
polynomial relative to oracles for W (I|·) and W (A|·). ut

Lemma 4.3. If W (I) ≥ 1/ρ, then σ̂ is a well-defined strategy and Pσ̂,τ (I) = 1 for
every adversary τ .

Proof. First we show by induction on i that for all plays hπ ∈ Πσ̂,τ with |h| = i, we
have:

– 0 ≤ mA(h) ≤ mI(h) ≤ W (I|h) and mA(h) ≤ W (A|h) (so that the partitions
used to define mA(hu) and mI(hu) exist);

– t(h),mI(h) > 0.

In the base case i = 0, we must have h = λ. Then mA(λ) = W (A) ≥ 0 and mI(λ) =
W (I) ≥ 1/ρ > 0. To show t(λ) = 1, there are three cases. If W (A) = 0, then
α = 0 and W (I) − W (A) = W (I) ≥ 1/ρ > 0, so β = 1/W (I) and t(λ) =
βW (I) = 1. If W (I) − W (A) = 0, then β = 0 and W (A) = W (I) ≥ 1/ρ, so
α = 1/W (A) and t(λ) = αW (A) = 1. Otherwise α = min(ρ, 1/W (A)) and β =
(1 − αW (A))/(W (I) −W (A)), so t(λ) = αW (A) + (1 − αW (A)) = 1. Therefore
we always have t(λ) = 1.



Now take any play hπ ∈ Πσ̂,τ with |h| = i < n and suppose the hypothesis holds. If
it is the adversary’s turn after h, then if the adversary outputs u ∈ Σ we have mA(h) =
mA(hu) and mI(h) = mI(hu). So since mA(h) ≤ W (A|h) = minv∈ΣW (A|hv) ≤
W (A|hu) and mI(h) ≤ W (I|h) = minv∈ΣW (I|hv) ≤ W (I|hu), the hypothesis
holds in the next step. If instead it is our turn after h and we output u ∈ Σ, thenmA(hu)
and mI(hu) are given by Lemma 4.2 and 0 ≤ mA(hu) ≤ mI(hu) ≤ W (I|hu) and
mA(hu) ≤W (A|hu) by construction. Furthermore t(hu) > 0, since if t(hu) = 0 then
σ̂ has probability zero to output u, a contradiction. This implies mI(hu) > 0, since if
mI(hu) = 0 then mA(hu) = 0 and so t(hu) = 0. Therefore by induction we always
have 0 ≤ mA(h) ≤ mI(h) ≤W (I|h), mA(h) ≤W (A|h), and t(h),mI(h) > 0.

Now for any history h ∈ Σ≤n after which it is our turn, by construction the quanti-
ties mA(hu) and mI(hu) for u ∈ Σ form partitions of mA(h) and mI(h) respectively.
So

∑
u∈Σ t(hu) =

∑
u∈Σ αm

A(hu)+β(mI(hu)−mA(hu)) = αmA(h)+β(mI(h)−
mA(h)) = t(h) > 0. So σ̂(h, ·) is a probability distribution over Σ, and σ̂ is a well-
defined strategy.

Finally, take any play π ∈ Πσ̂,τ . As shown above we have W (I|π) ≥ mI(π) > 0,
and since |π| = n this implies π ∈ I . Therefore Pσ̂,τ (I) = 1. ut

Lemma 4.4. If W (I) ≥ 1/ρ, then Pσ̂,τ (A) ≥ min(ρW (A), 1) for every τ .

Proof. We prove by induction on i in decreasing order that for all plays hπ ∈ Πσ̂,τ with
|h| = i,

∑
ρ | hρ∈A Pσ̂,τ (ρ|h) ≥ αmA(h)/t(h). In the base case i = n, by Lemma 4.3

we must have h ∈ I , somA(h) ≤ mI(h) ≤W (I|h) = 1. IfmA(h) = 0 the hypothesis
holds trivially. Otherwise mA(h) = 1, so t(h) = α and since mA(h) ≤ W (A|h) we
must have h ∈ A. Therefore, letting ρ = λ we have hρ ∈ A, so Pσ̂,τ (ρ|h) = 1 =
αmA(h)/t(h) and the hypothesis again holds.

Now take any play hπ ∈ Πσ̂,τ with |h| = i < n. If h ∈ I then the hypothesis
holds as above. Otherwise if it is the adversary’s turn after h, then mA(h) = mA(hu),
mI(h) = mI(hu), and t(h) = t(hu) for any u ∈ Σ. By hypothesis, for any play
huπ′ ∈ Πσ̂,τ we have

∑
ρ | huρ∈A Pσ̂,τ (ρ|hu) ≥ αmA(hu)/t(hu) = αmA(h)/t(h).

So ∑
ρ | hρ∈A

Pσ̂,τ (ρ|h) =
∑
u∈Σ

∑
ρ′ | huρ′∈A

τ(h, u) · Pσ̂,τ (ρ′|hu)

=
∑
u∈Σ

τ(h, u)
∑

ρ′ | huρ′∈A

Pσ̂,τ (ρ′|hu)

≥
∑
u∈Σ

τ(h, u) · αm
A(h)

t(h)

=
αmA(h)

t(h)

∑
u∈Σ

τ(h, u)

=
αmA(h)

t(h)

as desired. If instead it is our turn after h, then if we output u ∈ Σ we update mA to
mA
u , so mA(hu) = mA

u (h). Then by hypothesis we have
∑
ρ | huρ∈A Pσ̂,τ (ρ|hu) ≥



αmA(hu)/t(hu) = αmA
u (h)/t(hu). So∑

ρ | hρ∈A

Pσ̂,τ (ρ|h) =
∑
u∈Σ

∑
ρ′ | huρ′∈A

σ̂(h, u) · Pσ̂,τ (ρ′|hu)

=
∑
u∈Σ

σ̂(h, u)
∑

ρ′ | huρ′∈A

Pσ̂,τ (ρ′|hu)

≥
∑
u∈Σ

σ̂(h, u) · αm
A
u (h)

t(hu)

= α
∑
u∈Σ

t(hu)

t(h)
· m

A
u (h)

t(hu)

=
α

t(h)

∑
u∈Σ

mA
u (h)

=
αmA(h)

t(h)

again as desired. Therefore by induction this holds for every i, and in particular for
i = 0.

Since every play π ∈ Πσ̂,τ is of the form λπ, noting that t(λ) = 1 as shown in
Lemma 4.3 we have Pσ̂,τ (A) =

∑
π | λπ∈A Pσ̂,τ (π|λ) ≥ αmA(λ)/t(λ) = αW (A) =

min(ρW (A), 1). ut

Lemma 4.5. If W (I) ≥ 1/ρ, then Pσ̂,τ (π) ≤ ρ for every π ∈ Σn and τ .

Proof. We prove by induction on i in decreasing order that for all plays hπ ∈ Πσ̂,τ with
|h| = i, Pσ̂,τ (π|h) ≤ max(α, β)/t(h). In the base case i = n, by Lemma 4.3 we must
have h ∈ I . Then mI(h) = 1, since mI(h) ≤W (I|h) = 1 and mI(h) > 0 if h can be
generated by σ̂ (as shown in Lemma 4.3). So t(h) = αmA(h) + β(1 −mA(h)), and
thus either t(h) = α or t(h) = β (depending on whether mA(h) = 1 or mA(h) = 0).
In either case max(α, β)/t(h) ≥ 1, so Pσ̂,τ (π|h) ≤ max(α, β)/t(h) as desired.

Now take any play hπ ∈ Πσ̂,τ with |h| = i < n. Since |h| < n the play is of the
form huπ′ for some u ∈ Σ, and by hypothesis Pσ̂,τ (π′|hu) ≤ max(α, β)/t(hu). Now
if it is the adversary’s turn after h, then mA(hu) = mA(h) and mI(hu) = mI(h),
so t(hu) = t(h) and therefore Pσ̂,τ (π|h) = τ(h, u) · Pσ̂,τ (π′|hu) ≤ Pσ̂,τ (π′|hu) ≤
max(α, β)/t(hu) = max(α, β)/t(h) as desired. If instead it is our turn after h, then

Pσ̂,τ (π|h) = σ̂(h, u) · Pσ̂,τ (π′|hu)

=
t(hu)

t(h))
· Pσ̂,τ (π′|hu)

≤ t(hu)

t(h)
· max(α, β)

t(hu)

=
max(α, β)

t(h)

again as desired. So by induction the hypothesis holds for every i ∈ {0, . . . , n}, and in
particular for i = 0.



Since every play π ∈ Πσ̂,τ is of the form λπ, we have Pσ̂,τ (π) = Pσ̂,τ (π|λ) ≤
max(α, β)/t(λ) = max(α, β) (as t(λ) = 1). Recall that α = min(ρ, 1/W (A)) ≤ ρ
and β = (1−αW (A))/(W (I)−W (A)), with the convention that α = 0 ifW (A) = 0
and β = 0 ifW (I)−W (A) = 0. If α = ρ, then β = (1−ρW (A))/(W (I)−W (A)) ≤
(1 − ρW (A))/((1/ρ) −W (A)) = ρ. If instead α = 1/W (A), then β = 0. Finally,
if α = 0 then W (A) = 0 and β = 1/W (I) ≤ ρ. So max(α, β) ≤ ρ, and therefore
Pσ̂,τ (π) ≤ ρ for every π ∈ Πσ̂,τ . In fact this holds for all plays π ∈ Σn, since if
π 6∈ Πσ̂,τ then Pσ̂,τ (π) = 0. ut

Theorem 5.2. RCI (PSA, PSA) has a polynomial-space improvisation scheme, where
PSA is the class of polynomial-space decision algorithms.

Proof. We implement the operations required by Theorem 5.1. Intersection is simple:
we run the algorithms X and Y and accept iff both do. The resulting algorithm runs
in polynomial space, since X and Y do, and can be constructed in polynomial space
(indeed, time).

For width measurement, we computeW (X|h) using an arithmetization of the usual
PSPACE algorithm for QBF , replacing ∨ by + at ∃ nodes in the recursive tree and
∧ by min at ∀ nodes. Specifically, if it is our turn after h (corresponding to an ∃
quantifier in a QBF ), we recursively compute W (X|hu) for each u ∈ Σ and return∑
u∈ΣW (X|hu) = W (X|h). If instead it is the adversary’s turn, we again recursively

compute W (X|hu) for each u ∈ Σ but now return minu∈ΣW (X|hu) = W (X|h).
Finally, in the base case |h| = n we have W (X|h) = 1h∈X and so simply invoke
X to determine in polynomial space whether h ∈ X = L(X ) ∩ Σn. As in the QBF
algorithm, the recursive tree has polynomial depth, and since W (X|h) ≤ |Σ|n we need
only polynomial space to remember partial results along the current path through the
tree. So we can compute W (X|h) in polynomial space. ut

Note that for temporal logics, the alphabet Σ is usually the set 2P of all possible
assignments to finitely-many Boolean propositions P , some of which are controlled by
the adversary. Translating specifications in this form to our convention (players alter-
nately picking symbols from a single alphabet, which is more convenient for control
improvisation) is straightforward.

Theorem 7.1. Finite-window reactive synthesis for LTL is PSPACE-hard.

Proof. We show hardness by reduction from QBF . Given a QBF φ with variables
numbered 1, . . . , n, without loss of generality we may assume the quantifiers strictly
alternate starting with ∃ and that the matrix is in conjunctive normal form, consisting
of clauses c1, . . . , cm. We can view an assignment to the variables as a length-n trace
over a single proposition p indicating the truth of the variable corresponding to the
position. Then for each clause ci we can construct an LTL formula ψc whose models of
length n are exactly the assignments satisfying the clause. If ci contains the variables
V + positively and V − negatively, then we put

ψc =
∨

v∈V +

Xv−1p ∨
∨

v∈V −
Xv−1(¬p).

Then putting ψ =
∧
i ψci , the length-nmodels of ψ are exactly the assignments satisfy-

ing the matrix of φ. So we have a winning strategy to generate a play satisfying ψ if and
only if φ is true. Finally, this construction clearly can be done in polynomial time. ut



Theorem 7.3. Finite-window reactive synthesis for NFAs is PSPACE-hard.

Proof. We give a reduction as in Theorem 7.1 from a QBF φ in existential prenex
normal form, but with the matrix in disjunctive normal form. Using the method of [12],
we can construct in polynomial time an NFA N which accepts exactly the satisfying
assignments of the matrix of φ. Then we have a winning strategy to generate a play in
L(N) if and only if φ is true. ut
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