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Abstract In this work a multibody collision model, ame-
nable to large-scale computation, is developed to simulate
material removal with particulate flows. This model is deve-
loped by computing momentum exchange to account for dif-
ferent force interactions: (1) particle–particle interaction, (2)
particle–fluid interaction, and (3) particle–surface interac-
tion. For the particle-fluid interaction, a velocity field for
the fluid is assumed to be known, and the drag force on
the particles is computed from this field. In the particle–
surface interaction, the Boussinesq solution for a point load
on an elastic half-space is used along with the von-Mises
yield criterion to determine the amount of material removed.
Employing this model, inverse problems are then constructed
where combinations of the abrasive particle size, the particle
size distribution, the flow velocity, etc., are sought to maxi-
mize the efficiency of the process. A genetic algorithm is
used to treat this inverse problem, and numerical examples
are given to illustrate the overall approach.

Keywords Granular flow · Material removal · CMP

1 Introduction

Recently, several modern applications, primarily driven by
micro- and nanotechnology, have emerged where success-
ful computational modeling of particulate flows is critical.
In this work, we develop a computational strategy for mate-
rial removal by particulate flows. This includes industrial
applications such as sand blasting, abrasive water jet machi-
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ning and chemical mechanical planarization (CMP). Zohdi
[20–23] has dealt with the computational aspects of granular
flows including agglomeration in thermo-chemically reac-
ting media, charge-induced clustering, and particle-fluid sys-
tems. In this work, a similar computational technique is used
and the previous models are extended to include material
removal from a surface. Several researchers have performed
computational studies on material removal by a single par-
ticle. For example, Aquaro and Fontani [1], Aquaro [2], and
Junkar et al. [13]. For the present work, the goal is to track the
trajectories of the particles and the geometry of the surface
over time in an efficient manner. Therefore, a simple material
removal model is developed without resorting to computa-
tional techniques.

While a general framework of material removal by par-
ticulate matter is developed here, a specific example on the
mechanical aspects of CMP will be presented. CMP, which
involves using abrasive particles embedded in a chemically-
reacting fluid to ablate rough small-scale surfaces flat, has
become essential for the success of many micro- and nano-
technologies. During the CMP process a wafer is rotated
about its axis while it is pressed against a polishing pad. A
slurry, composed of nano-sized abrasive particles and che-
micals, is deposited on the pad and the wafer is polished by
the combined action of the slurry particles, slurry chemicals,
and the polishing pad. Perhaps the most widely used empiri-
cal material removal equation is Preston’s Equation for glass
polishing [17],

MRR = Ke PV (1)

where MRR is the material removal rate, P is the applied
pressure, V is the relative velocity between the wafer and
the polishing pad, and Ke is an experimentally determined
coefficient. The main problem with Preston’s equation is that
it depends on the phenomenological parameter Ke. Cook
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[6] addressed this issue by making the assumption that a
spherical particle under uniform load penetrates the surface
and moves along at a velocity V removing glass volume
of dimensions proportional to the penetration depth. Using
this assumption, along with a Hertzian contact model, Cook
derived the equation MRR = PV

2Ew
, where Ew is the Young’s

modulus of the surface being planarized. This model agrees
with Preston’s equation and relates the parameter Ke = 1

2Ew

to the properties of the wafer material.
The above model implies that the abrasives are embed-

ded into the pad and indented into the wafer surface. Beside
these kinds of two-body based models, models which assume
that the abrasive particles float in the slurry and impact the
wafer surface from time to time have also been developed, for
example, the model proposed by Su [18]. This is the approach
taken in this work where the focus is on material removal by
flowing abrasive particles, which corresponds to the hydro-
dynamical contact mode in CMP. Only some of the classical
models for CMP were discussed here, for comprehensive
reviews of CMP the reader is referred to Luo and Dornfeld
[16] and Li [15]. The general approach taken in this work is
to use simple models, and parameters, for each component
of the overall model, that are justified alone. The response of
the entire system, which could be somewhat complicated, is
an outcome of the sub-models.

2 Mathematical formulation

Particulate material removal processes usually involve nume-
rous interactions between the individual components. In this
model the following interactions are considered: particle–
particle, particle–fluid, and particle–surface interactions.
Once these interactions are modeled the position of each par-
ticle is determined from the equations of motion

mi r̈i = �
p−p
i + �

p− f
i + �

p−s
i (2)

where mi is the mass of particle i , ri is the position of particle
i , and �

p−p
i , �

p− f
i , and �

p−s
i are the forces on particle

i due to the particle–particle, particle–fluid, and particle–
surface interactions respectively. In the following sections
the models for each individual interaction will be introduced.

2.1 Particle–particle interaction

The contact interaction between the grains is computed
through a balance of linear momentum in the normal direc-
tion. For grain i , the balance of linear momentum in the direc-
tion from the center of particle i to the center of particle j

(ni j ) is given by

mivin(t) − δt I n +
t+δt∫

t

Eindt = mivin(t + δt) (3)

where t corresponds to the time immediately before the par-
ticles come into contact, δt is the impact duration time,
t + δt corresponds to the time immediately after the col-
lision occurs, δt I n = ∫ t+δt

t Indt , and Ein = Ei · ni j , where
Ei is the sum of external forces acting on particle i . In this
case I n ≥ 0 is interpreted to be the average normal impulsive
force. Similarly, for grain j , the balance of linear momentum
in the normal contact direction gives

m jv jn(t) + δt I n +
t+δt∫

t

E jndt = m jv jn(t + δt), (4)

where E jn = E j · ni j and E j is the sum of external forces
acting on particle j . In order to solve for the velocities after
impact an estimate for the coefficient of restitution, e, must
be provided. The coefficient of restitution is defined as

e =
∫ t+δt

t+δt1
Indt∫ t+δt1

t Indt
. (5)

It is important to realize that, in reality, the phenomenological
parameter e depends on the severity of the impact velocity.
For extensive experimental data, see Goldsmith [10].

The balance of momentum for both grains can be divided
into a compression phase, occurring in the time interval (t, t+
δt1), and a recovery phase, occurring in the time interval
(t + δt1, t + δt). For the compression phase the balance of
momentum for grains i and j in the normal direction is

mivin(t) −
t+δt1∫

t
Indt +

t+δt1∫
t

Eindt = mivcn

m jv jn(t) +
t+δt1∫

t
Indt +

t+δt1∫
t

E jndt = m jvcn

, (6)

where vcn is a common velocity for both grains, since their
relative velocity in the normal direction vanishes at time
t + δt1. Similarly, for the recovery phase, the balance of
momentum for grains i and j in the normal direction is

mivcn −
t+δt∫

t+δt1

Indt +
t+δt∫

t+δt1

Eindt = mivin(t + δt)

m jvcn +
t+δt∫

t+δt1

Indt +
t+δt∫

t+δt1

E jndt = m jv jn(t + δt)

. (7)

Using Eqs. 5, 6, and 7, the coefficient of restitution can be
written as

e = v jn(t + δt) − vin(t + δt) + ∆i j (t + δt1, t + δt)

vin(t) − v jn(t) + ∆i j (t, t + δt1)
, (8)
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where ∆i j (t + δt1, t + δt) = 1
mi

∫ t+δt
t+δt1

Eindt − 1
m j

∫ t+δt
t+δt1

E jndt and ∆i j (t, t+δt1) = 1
mi

∫ t+δt1
t Eindt− 1

m j

∫ t+δt1
t E jn

dt . Using Eqs. 3, 4, and 8 the normal impulse is given
by

I nδt = (1 + e)mi m j

mi + m j

[
vin(t) − v jn(t)

+ 1

m j

t+δt1∫

t

Eindt − 1

mi

t+δt1∫

t

E jndt

⎤
⎦ .

(9)

As an approximation, Eq. 3 can be discretized in time, with
time step ∆t , giving the following equation

mivin(t) − I nδt + Einδt ≈ mivin(t + ∆t) (10)

where δt << ∆t and Einδt = ∫ t+δt
t Eindt . Equation 2 can

now be rewritten as

mi
vin(t + ∆t) − vin(t)

∆t
≈ − I nδt

∆t
+ Einδt

∆t
(11)

noting that mi
vin(t+∆t)−vin(t)

∆t is a difference formula for
mi v̇in , then the normal contact contribution of particle–
particle interaction force can be defined as

�c
i = − I nδt

∆t
ni j . (12)

The particle–particle interactions also include a contribu-
tion due to frictional interactions between particles during
collisions. To incorporate the friction force the relative tan-
gential velocities between particles i and j are computed as
follows

v j t (t) − vi t (t) = (v j (t) − vi (t))

−((v j (t) − vi (t)) · ni j )ni j . (13)

First it is assumed that particle i and j stick on contact. For
this case the particles have the same velocity, vct , after the
collision. The balance of linear momentum for particle i can
then be written as

mivi t (t) − δt I f + δt Eit = mivct , (14)

where δt I f = ∫ t+δt
t I f dt and δt Eit = ∫ t+δt

t Ei · tdt , so
that I f is interpreted to be the average frictional force for the
collision and Eit is the average external force in the tangential
direction (t = v j t −vi t

‖v j t −vi t ‖ ) over the impact period. Likewise,
the balance of linear momentum for particle j can then be
written as

m jv j t (t) + δt I f + δt E jt = m jvct . (15)

Equations 14 and 15 involve two unknowns I f and vct , the
quantity of interest I f is given by

I f =
(

Eit
mi

− E jt
m j

)
δt + vi t (t) − v j t (t)(

1
mi

+ 1
m j

)
δt

. (16)

In Eq. 16 I f is computed under the assumption that no slip
occurs. The validity of this assumption is now checked, if

|I f | > µs |I n|, (17)

where µs is the static coefficient of friction, then slip occurs
and the magnitude of the force due to friction is given by
µd‖�c

i ‖, where µd is the dynamic coefficient of friction. In
summary, the friction force in the particle–particle interac-
tions is given by

�
f
i =

{ |I f |δt
∆t t if |I f | ≤ µs |I n|

µd‖�c
i ‖t if |I f | > µs |I n| (18)

and the particle–particle interaction force is given by

�
p−p
i = �c

i + �
f
i . (19)

2.2 Particle–fluid interaction

The interaction force between an individual particle and the
surrounding fluid is due to the drag induced by the flow
around a particle. The characteristics of the flow can be deter-
mined using computational fluid dynamics (e.g., using finite
difference, finite volume, or finite element methods). Howe-
ver, in this simple simulation the velocity field of the slurry
is assumed to be known, and the drag force on the particles is
calculated from this field. In order to determine the force that
the fluid exerts on the particles an effective drag coefficient,
CD , is used. This coefficient is generally determined from
experiments for an object of a given shape and for varying
flow conditions. The drag coefficient is defined as

CD = D
1
2ρ‖u − vi‖2 A

(20)

where D is the magnitude of the drag force on the object, ρ

is the density of the fluid, u is the velocity of the flow at the
center of particle i , vi is the velocity of particle i , and A is
the projected area of the object in the plane perpendicular to
the flow. The drag coefficient is a function of the Reynolds
number Re = ρUd

µ
, where µ is the viscosity of the fluid and,

for a spherical object, d is the diameter. One possible way to
represent the drag coefficient for a sphere is with a piecewise
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definition, as a function of the Reynolds number (Chow [5]):

CD=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

24
Re if 0 < Re ≤ 1

24
Re0.646 if 1 < Re ≤ 400
0.5 if 400 < Re ≤ 3 × 105
0.000366Re0.4275 if 3 × 105 < Re ≤ 2 × 106
0.18 if 2 × 106 < Re < ∞

.

(21)

The particle–fluid interaction for particle i is then given by

�
p− f
i = D u − vi

‖u − vi‖ . (22)

2.3 Particle–surface interaction

The particle–surface interaction includes the particle surface
impact force along with material removal from the surface.
The material that is removed from the surface is assumed to
be carried away by the particle, so that during the impact the
mass of the particle increases. This is the material removal
mechanism that is considered in this derivation; however, it
is also possible that the material is carried away by the fluid
after the particle has removed it from the surface. Since the
mass of the particle changes this must be taken into account
in the linear momentum balance. The rate of change of linear
momentum for particle i is given by

L̇i = mi v̇i + ṁi vi = � tot
i (23)

where � tot
i is the total external force acting on the particle

which includes the force from the impact as well as any other
external forces such as the drag force. Integrating Eq. 23 from
time t to t + δt and taking the inner product with the normal
to the wafer surface, n, the following momentum balance for
particle i in the normal impact direction is derived,

mi (t)vin(t) + δt I n + δt Ein

=
t+δt∫

t

ṁivindt + mi (t + δt)vin(t + δt) (24)

where δt Ein = ∫ t+δt
t Ei ·n and as before δt I n = ∫ t+δt

t Indt .
Notice that the mass of particle i is now a function of time.
Making the assumption that all of the mass is picked up at the
time t + δt1, which corresponds to the time when the normal
velocity of particle i is zero, then the rate of change of mass
can be described by the function ṁi = ∆mδ(t − (t + δt1))
where ∆m is the total increase in mass and δ(·) is the dirac
delta function, this is illustrated in Fig. 1. The term in Eq. (24)
involving ṁi is given by,

t+δt∫

t

ṁivindt =
t+δt∫

t

∆mδ(t − (t + δt1))vindt

= ∆mvin(t + δt1) = 0

(25)

1t

m

dm/dt

vn

∆ m

t

t+δ

t+δ t

Fig. 1 The material is assumed to be removed at the instant t + δt1

where the right hand side is true because vin(t + δt1) = 0
since the surface is not moving. Equation 24 can now be
rewritten as

mi (t)vin(t) + δt I n + δt Ein = mi (t + δt)vin(t + δt). (26)

The balance of linear momentum can now be split into the
compression phase which occurs in the time interval (t, t +
δt1) and the recovery phase which occurs in the time interval
(t + δt1, t + δt):

mi (t)vin(t) +
t+δt1∫

t
Indt +

t+δt1∫
t

Eindt = 0

t+δt∫
t+δt1

Indt +
t+δt∫

t+δt1

Eindt = mi (t + δt)vin(t + δt),
(27)

where mi (t + δt) = mi (t) + ∆m. Using the definition given
in Eq. 5, the coefficient of restitution is given by

e = (mi (t) + ∆m)vin(t + δt) − ∫ t+δt
t+δt1

Eindt

−mi (t)vin(t) − ∫ t+δt1
t Eindt

. (28)

Using Eqs. 26 and 28, the velocity of particle i in the normal
direction after impact is

vin(t + δt) = 1

mi (t) + ∆m

⎡
⎢⎣

t+δt∫

t+δt1

Eindt

−e

⎛
⎝mi (t)vin(t) +

t+δt1∫

t

Eindt

⎞
⎠

⎤
⎥⎦ . (29)
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With vin(t + δt) known the average normal impulsive force
is computed as

I n = (mi (t) + ∆m)vin(t + δt) − mi (t)vin(t)

δt
− Ein . (30)

Note that setting ∆m = 0 corresponds to the mechanism
where the fluid carries away the material. Similar to the inter-
action force for the particle–particle contact given in the pre-
vious section, the particle–surface interaction force is given
by

�
p−s
i = δt I n

∆t
n. (31)

In order to determine this interaction force the amount of
material removed from the wafer, ∆m, must be determined.
A method for computing the amount of material removed is
given in the following section.

2.4 Material removal

There have been numerous studies on spalling and abrasion.
For classical examples of particle abrasion models see Finnie
[8] and Bitter [3,4]. Figure 2 indicates the stress distribution
under a typical particle. In [11], it is shown experimentally
that an area similar to the envelope represented by the dashed
line in Fig. 2 is removed from contact stresses in ceramic
materials. In this section, a model based on this experimental
observation is derived. First, the linear elasticity result for a
point load on a half-space (Boussinesq solution see [12]) is
used. Knowing the stress state in the material near the point
of impact, the depth of indentation into the wafer surface
can be estimated. This is done by using the von-Mises yield
criterion to determine the region where the yield stress of the
material is exceeded. The stress components in the material
near the point load are given by

σr = P

2π

(
(1 − 2ν)

(
1

r2 − z

γ r2

)
− 3zr2

γ 5

)

σθ = − P

2π
(1 − 2ν)

(
1

r2 − z

γ r2 − z

γ 3

)

σz = −3P

2π

z3

γ 5

τr z = −3P

2π

r z2

γ 5

(32)

where γ = √
r2 + z2 and τrθ , τzθ = 0. The coordinates

(r, θ, z) are shown in Fig. 2 where the point load P is applied
at the origin. In this model P is taken to be the average
normal impulse force, Īn , which is determined from Eqs. 29
and 30 for the particle–surface interaction force. In order to
determine the region where plastic deformation occurs, the

xp

θ

r

P

z

Fig. 2 Region where yield stress is exceeded for a point load on a half
space

δh

xp

R

Fig. 3 Spherical cap of material assumed to be removed from the wafer
surface

von-Mises yield criterion is used. The criterion is given by

2σ̄ 2 = (σr − σθ )
2 + (σθ − σz)

2 + (σz − σr )
2

+ 6(τ 2
rθ + τ 2

θ z + τ 2
r z), (33)

and it states that the material yields when σ̄ ≥ σy , where σy

is the yield stress of a material as determined from a tension
test. Figure 2 shows a representative failure envelope (region
inside the solid line) that is seen when the Von Mises yield
criterion is used. It is not expected that all of the material
inside the envelope is removed in the collision, in this model
it is assumed that the amount of material removed is the
region inside the dotted line in Fig. 2. In order to determine
the size of this region the length x p is derived by setting z = 0
in Eq. 32 and substituting into Eq. 33, giving

x p =
[√

3P(1 − 2ν)

2πσy

]1/2

. (34)

The region in the dotted line in Fig. 2 is a spherical cap
from a sphere with radius R, this is shown in Fig. 3. It is
now assumed that the radius of the spherical cap is the same
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as the radius the particle that collided with the wafer surface
(R = di/2). With this assumption in place the indentation
depth δh is given by

δh = R −
√

R2 − x2
p. (35)

The volume contained in the spherical cap is Vcap = 1
6πδh

(3x2
p +δh2), given this quantity the amount of material remo-

ved from the wafer surface is

∆m = 1

6
πρsδh(3x2

p + δh2) (36)

where ρs is the density of the surface material material.

3 Algorithms

3.1 Temporal discretization and iterative solution

In this section an iterative solution scheme using the impli-
cit Euler method with fixed point iterations is described. A
first order integration scheme is used since the collisions
(particle–particle and particle–surface) limit the accuracy of
the method to first order (the overlap in a collision is of order
dt). For the first order system ẏ = f , the implicit Euler
scheme is given by yL+1 = yL + ∆t f (yL+1), where the
superscripts L and L +1 correspond to the times t and t +∆t
respectively. Using Eq. 2 and the definition of the implicit
Euler method above, the velocity and position of particle i
can be discretized as

ṙL+1
i = ṙL

i + ∆t� tot
i (rL+1

j )

rL+1
i = rL

i + ∆t ṙL+1
i

. (37)

Substituting the lower equation into the top equation, the final
form is derived as

rL+1
i = ∆t2

mi
� tot

i (rL+1
j ) + rL

i + ∆t ṙL
i (38)

To solve Eq. 38 an iterative scheme must be used. One possible
solution scheme is Newton’s method; however, the tangent
matrix may not be easy to form due to the lack of smoothness
of the trajectories of the particles. This lack of smoothness
is produced by the impacts of particles with other particles
or surfaces. Another option is to use a fixed point iteration
which usually converges at a slower rate but is expected to
be more robust. Using this choice, an algorithm to adapt the
time step size in order to keep the system stable, can also be
derived. In order to solve Eq. 38 with a fixed point iteration,
it is written as

rL+1,k+1
i = ∆t2

mi
� tot

i

(
rL+1,k

j

)
+ rL

i + ∆t ṙL
i (39)

where k indicates the iteration count. Zohdi [20] shows that
the error at iteration k can be bounded by ‖ek‖ ≤ ηk‖e0‖,

where η ∝ E I G(∆t2

mi
� tot

i ) ∝ ∆t2

mi
. Therefore, the fixed point

iteration is guaranteed to converge when η < 1, implying
that the method converges as long as the time step size is
small enough. If convergence is slow within a time step, the
time step can be reduced to increase the rate of convergence;
however, it is desirable that the time step-sizes are maximized
in order to reduce the computation time. Using the rate of
convergence of the fixed point iteration, an adaptive time
stepping scheme can be derived by approximating η as

η ≈ S(∆t)p (40)

where S is a constant, using this approximation the error at
iteration k is approximated as

‖ek‖ ≈ (S(∆t)p)k‖e0‖. (41)

The goal is to meet an error tolerance in exactly a preset
number of iterations, which leads to following equation,

TOL ≈ (S(∆ttol)
p)kd ‖e0‖. (42)

where TOL is the preset tolerance and kd is the desired num-
ber of iterations for convergence. Given Eqs. 41 and 42, the
time step size needed to achieve convergence in kd iterations
is approximated as

∆ttol =

⎛
⎜⎜⎝

(
Tol
e0

) 1
pkd

(
ek

e0

) 1
pk

⎞
⎟⎟⎠ ∆t (43)

so that when the iteration does not converge in the desired
number of iterations the new time step size can be computed
from the previous time step size used. If the solution does
converge in less than kd iterations then the time step size for
the next time step can be computed to achieve convergence in
the desired number of iterations. When this occurs the method
computes a larger time step size for the next time step. It is
important that the time step size does not increase above
a point where collisions are missed or the truncation error
becomes too large. For this reason, a maximum time step
size ∆t lim is chosen to ensure that the physics of the process
are not lost in the numerical discretization.1 A description of
the time stepping scheme is given in the following list.

1 In this case ∆t lim = d̄γ
Vpad

where γ is a parameter, in this case taken
to be γ = 0.01.
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Summary of Time Stepping Scheme:

1. Set k = 0
2. Compute position of particles i = 1 to N :

rL+1
i = ∆t2

mi
� tot

i

(
rL+1

j

)
+ (

rL
i + ∆t ṙL

i

)
3. Compute the error for the kth iteration:

(a) εk
.=

∑n
i=1 ‖rL+1,k

i −rL+1,k−1
i ‖∑n

i=1 ‖rL+1,k
i ‖

(b) Φk
.=

⎛
⎝

(
Tol
e0

) 1
pkd

(
ek

e0

) 1
pk

⎞
⎠

4. If tolerance is met (εk ≤ T O L) and k < kd :
(a) Construct new time step: ∆t = Φk∆t
(b) Select minimum: ∆t = M I N (∆t lim,∆t)
(c) Increment time (t = t + ∆t) and go to (1)

5. If tolerance is not met (εk > T O L) and k = kd :
(a) Construct new time step: ∆t = Φk∆t
(b) Restart at time t and go to (1)

3.2 Parameter optimization

In material removal processes there are a large number of
input parameters which control the quality of the process.
For example these include abrasive quantity, abrasive size,
abrasive size distribution, and many other parameters. The
computational model described in the previous chapters can
be used as a design tool by combining it along with an opti-
mization method in order to find optimal input parameters for
a given desired output. This is achieved by defining a cost
function which can be minimized using some type of opti-
mization algorithm. The cost function can be chosen to opti-
mize different output parameters for example this function
can be chosen to produce a high material removal rate while
minimizing the amount of waste from consumable materials.
Perhaps, the simplest cost function is one which produces the
flattest surface for a given amount of time, for this case the
cost function, Π , is given as

Π =
∑Nnode

i=1 (|zi (t) − zo|)q

∑Nnode
i=1 (|zi (to) − zo|)q

(44)

where zi (t) is the height of node i at time t, zi (to) is the
initial height of node i , and zo is the desired final height for
all of the nodes. Since zo is the same for all of the nodes,
the desired final configuration is a flat surface after the a
material removal process has run for a time t . The exponent
q in Eq. 44 controls the effect of the distribution of the final
peak heights, for example a flat surface with only one large
peak may produce a higher cost than a surface with many
small peaks if q is large, however, if q is small the surface
with many small peaks may have higher cost than the surface
with one large peak.

In order to minimize the cost function, several methods
can be used such as gradient based methods; however, these
methods require that the cost function be differentiable and
in order to guarantee convergence to a global minimum the
cost function must be globally convex. Since the cost function
for these optimization problem is expected to be non-convex
(multiple minima and maxima) and non-differentiable a gene-
tic algorithm can be used to circumvent these difficulties.
Genetic algorithms are insensitive to gradient fluctuations;
therefore, the function is guaranteed to be minimized with
every step. For reviews of these methods, see for example,
Davis [7], Goldberg [9], and Lagaros et al. [14]. The gene-
tic algorithm used here follows the approach taken by Zohdi
[20]. This involves initially generating random populations
of S genetic strings Λi = {Λi

1,Λ
i
2,Λ

i
3, . . . , Λ

i
N } which

contain the N parameters. The parameters chosen must lie
within a chosen parameter space so that the search is limited
to only a feasible region (Λi − ≤ Λi ≤ Λi +). For example
the average diameter of the abrasives will have a lower and
upper limit (d

− ≤ d ≤ d
+

). After generating the original
random populations, the cost function in Eq. 44 is evalua-
ted for each genetic string. The genetic strings are then ran-
ked according to their “fitness”, where the strings with the
lowest cost are the most fit. The genetic strings are combined
to create two new offspring for each pair of parent strings
and the worst performing genetic strings are then elimina-
ted from the population. This process is repeated for several
generations until the cost of the best performing string no
longer decreases. Note that the top performing parent strings
are kept in the population in order to guarantee that the cost
of the most fit genetic string decreases monotonically after
each generation.

Summary of Genetic Algorithm:

1. Randomly generate population of starting (S) genetic
strings,
Λi = {Λi

1,Λ
i
2,Λ

i
3, . . . , Λ

i
N }, (i = 1, S)

2. Compute the fitness of each string Π(Λi )

3. Rank the genetic strings according to their fitness
4. Mate the nearest pairs of the S strings to produce two

offspring for each pair:
λi = Φ I Λi + (1 − Φ I )Λi+1

λi+1 = Φ I I Λi + (1 − Φ I I )Λi+1,
where (0 ≤ Φ I , Φ I I ≤ 1) are uniformly distributed
random numbers

5. Replace the bottom M strings with new randomly
generated strings while keeping the top K offspring
and the top K = (S − M)/2 parents

6. Repeat steps 2–5 for G generations
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4 Representative example

In this section the results from a polishing simulation are
presented. In this simulation, the particles, which are usually
on the order of hundreds of nanometers in CMP, are assumed
to be floating in a thin layer of fluid between a pad and the
surface. The pad surface is modeled as a rigid plane that
translates horizontally at a given velocity Vpad and moves
vertically downward as the material is removed. From the
relative motion between the pad and the surface, a linear
velocity profile is assumed for the fluid layer. This relative
velocity is on the order of one m/s in CMP.

The simulations are performed over a square region of
dimension D × D with the height determined by the pad and
wafer surfaces. During the simulation, if a particle escapes
from the control volume, the position component is reversed
and the same velocity component is retained. In the polishing
process the topography of the wafer surface is never known
a priori, therefore, in the simulation a randomly generated
wafer surface is used. The first step of the simulation is to
generate this surface, an example of the initial wafer confi-
guration is illustrated in Fig. 4. The surface is generated by
selecting a node on the surface and raising this node and three
adjacent nodes to a height ha , where the four nodes form the
corners of a square, to create an asperity. CMP is commonly
used following etching and deposition processes. During the
etching process, material is removed forming trenches with
nearly vertical walls. In many processes this is followed by
a deposition step in which another material is deposited, for-
ming asperities that are similar in shape to those used in the
simulation. These asperities usually form a structured pat-
tern; however, for this work the interest is on the effect of the
process parameters on an arbitrary surface pattern. For this
reason we use randomly generated asperities. To form the test
surface, the asperities are repeatedly created Na times at ran-
dom positions, where Na is the number of asperities on the
surface. A useful measure in the simulations is the asperity
density, ρa

.= 2Na
Ne

, where Ne is the total number of elements
that make up the surface. This is a measure of the ratio of the
projected area covered by the asperities to the total projected
area. Once the surface is created, N particles are introduced
using a random sequential packing algorithm. In the poli-
shing process the abrasive size is only known as a statistical
distribution, for this reason the minimum and maximum dia-
meters are specified and the diameter of each individual par-
ticle is determined as di = dmin + (dmax − dmin)Φ

I , where
0 ≤ Φ I ≤ 1 is a uniformly distributed random number. The
quantity d̄ = dmin+dmax

2 is defined as the average diameter

and δd
.= dmax−dmin

2d̄
is a measure of the relative deviation in

the distribution of the particle diameters. The initial velocity
of each particle is computed as ṙ = ṙmin + (ṙmax − ṙmin)Φ

I

where once again 0 ≤ Φ I ≤ 1 is determined using a random
number generator. With the initial positions and velocities of

X

Y

Z

Fig. 4 Randomly generated initial configuration of the wafer surface.
The surface is generated by randomly selecting four adjacent nodes that
form the corners of a square and raising them to create an asperity

the particles in place the velocity of the pad, Vpad, is specified
and the simulation is run for a total time T .

Figure 5 shows an example of a typical simulation where
snapshots are taken at equal time intervals. For this example
the following parameters were used: N = 73, d̄ = 0.9 µm,
δd = 0.1, ha = 0.5 µm, Vpad = 1 m/s, D = 20 µm,
ρa = 0.025, and T = 1 s. The vectors on each particle
represent the velocity of the particle at that instant. Notice that
as the surface is planarized the particles move at faster velo-
city since there are no longer obstacles to slow them down.
In order to measure the “flatness” of the surface, Eq. 44,
which was defined for use with the genetic algorithm, is used.
Figure 6 shows how the “flatness” of the surface as the simu-
lation time increases. Notice that at first the surface remains
unchanged as the pad begins to move down towards the wafer
surface. Once the pad is close enough the material is rapidly
removed and Π seems to decrease close to linearly with time.
As Π begins to approach zero the rate of change of Π with
respect to time decreases quickly and Π levels off. After the
surface becomes flat (Π → 0) it is still possible for Π to
increase if the surface is further indented, this corresponds
to surface scratches is the polishing process. Although the
particles move faster when the surface is flat, in general this
does not occur because the vertical component of the particle
velocity is small; therefore, the impact force when a particle
contacts the surface is small.

4.1 Parameter optimization

With the polishing simulation described in the previous sec-
tion it is possible to determine qualitative information as a
function of the simulation parameters. However, one is some-
times interested in designing a process to achieve optimal
results. When there are a large number of input parameters,
trial and error experiments become very time consuming.
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Fig. 5 Example of a
representative simulation. The
grayscale map represents the
height of the surface
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Fig. 6 The value of the cost function over time for a representative
simulation

This issue can be alleviated by the use of an optimization
method such as a genetic algorithm. For this example the
input parameters are Vpad, N , d̄, and δd, and the cost func-
tion is given by Eq. 44 where q = 2. Since the size of the
particles is governed by a distribution of random variables as
well as the initial conditions, an ensemble average must be
used to determine the cost for each set of input parameters. It
is usually not known a priori how many samples are needed

to compute the ensemble average to an acceptable tolerance.
Therefore, it is necessary to do these averages in an adaptive
manner. This can be done by computing the average after the
cost of each new sample is computed until the difference in
the average for two consecutive samples is within the desi-
red tolerance. However, a minimum number of samples must
be set before this process is carried out since it is possible
that consecutive samples have similar cost values that are not
representative of the mean. Figure 7 shows the distribution of
the cost values for simulations with the same parameters. For
this particular example it takes approximately 15 samples to
obtain a reasonable ensemble average. Notice that in plot (b)
the distribution is biased to the right since the cost function
can not be negative.

The cost function Π is minimized with respect to the para-
meters Vpad, N , d̄ , and δd. Figure 8 shows how Π for the top
performing genetic string changes after each generation. In
this example each generation consisted of 20 genetic strings.
At each generation four parent strings were kept, four off-
spring were created, and 16 randomly chosen string were
introduced. This process was carried out for ten generations.
Table 1 shows the values for the top ten performing gene-
tic strings. From these results it is concluded that the pad
velocity, number of particles, and particle size play a larger
role than the particle size distribution in the material removal
process. This is evident since the top performing string all
have similar values for Vpad, N ,and d̄, while δd varies over
a wider range.
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Fig. 7 Distribution of Π for samples with the same simulation para-
meters
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Fig. 8 Cost function value for the top performing genetic string in each
generation

Table 1 Top Ten performing genetic strings

Vpad N d̄ δd Π

3.96 73 2.98 × 10−2 0.16 1.03 × 10−2

3.92 74 2.85 × 10−2 0.18 1.49 × 10−2

4.84 72 2.99 × 10−2 4.99 × 10−2 1.97 × 10−2

4.40 73 2.99 × 10−2 8.72 × 10−2 1.98 × 10−2

4.48 73 2.96 × 10−2 9.36 × 10−2 2.00 × 10−2

4.45 73 2.98 × 10−2 9.31 × 10−2 2.02 × 10−2

4.46 73 2.97 × 10−2 8.82 × 10−2 2.95 × 10−2

4.46 73 2.93 × 10−2 5.83 × 10−2 3.14 × 10−2

4.53 70 2.97 × 10−2 1.32 × 10−4 3.98 × 10−2

4.50 72 2.33 × 10−2 3.81 × 10−2 9.00 × 10−2

The pad velocity Vpad is in units of cm/s

5 Conclusions

In this work a method for simulating the material removal
process was developed by employing techniques commonly
used in the simulation of flowing granular materials. This
new simulation technique along with a genetic algorithm
was used to determine the input parameters that optimize
a process in terms of a desired outcome which is specified in
terms of a cost function. This method can be used to obtain
useful results; however, its effectiveness relies on the ability
to accurately simulate the underlying physics of the specific
process. For example, the material removal process or the
fluid flow. In order to improve this simulation, more accurate
physical models must be developed.

In this simulation, the material removal was modeled using
linear elasticity theory in order to predict the stresses in the
material. The plastic zone could then be determined using the
von-Mises yield criterion, and the amount of material remo-
ved was extracted based on this result. While this model is
a useful estimate, a more accurate description may be obtai-
ned using computational methods (Wriggers [19]). While it
would be computationally expensive to solve the contact pro-
blem each time a particle strikes the surface, it may be pos-
sible to determine a priori the amount of material removed in
terms of a few parameters in the form of a computationally
generated library.
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