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Abstract

In this work, we use question answering as a general frame-
work for studying how eye movements in reading reflect the
reader’s goals, how they are pursued, and the extent to which
they are achieved. We leverage fine-grained annotations of task-
critical textual information to perform a detailed comparison
of eye movements in information-seeking and ordinary reading
regimes. We further examine how eye movements during in-
formation seeking relate to question answering behavior. We
find that reading times, saccade patterns and sensitivity to the
linguistic properties of the text are all strongly and systemati-
cally conditioned on the reading task, and further interact with
question answering behavior. The observed reading patterns
are consistent with a rational account of cognitive resource
allocation during task-based reading.

Keywords: eye movements, reading, question answering

Introduction
It has long been established that eye movements in reading con-
tain rich information on how readers comprehend language on
a moment-by-moment basis (Just & Carpenter, 1980; Rayner,
1998). However, the exact relations between eye movements
in reading and language comprehension are still far from well
understood. Furthermore, the large majority of eye movements
research examined ordinary reading, in which the reader is
not given a specific goal beyond general comprehension of
the text. Such research leaves out many daily situations in
which readers are guided by concrete goals with respect to the
text. These goals often involve seeking specific information of
interest, and can influence eye movement patterns in reading.
An account of goal driven reading has therefore been acknowl-
edged as being essential for developing general models for eye
movements in reading (Radach & Kennedy, 2004).

Here, we take a step in this direction by proposing a general
framework for studying how readers’ goals influence their
reading patterns in naturalistic reading. We operationalize a
goal as seeking an answer to a question about the text. Using
this framework we follow Hahn & Keller (2023) and Malmaud
et al. (2020) and examine two reading regimes, an information-
seeking “Hunting” regime in which the question is presented
to participants prior to reading the passage, and an ordinary
reading “Gathering” regime where participants are presented
with the question only after having read the passage. Our study
provides a fine-grained characterization of the similarities and
differences in reading patterns between these two regimes,
examining reading times, regressive saccades, and response

to linguistic characteristics of the text as participants progress
through the passage.

Our analyses are enabled by OneStopGaze (Malmaud et al.,
2020), a broad coverage eye movements in reading dataset
with 269 participants reading text passages and answering
multiple choice reading comprehension questions about them.
A key characteristic of OneStopGaze is the underlying textual
annotations. The annotations structure answer choices by
degree of reading comprehension and tie them to their textual
support (Berzak et al., 2020). Importantly, the annotations
mark the Critical Span: the part of the text which contains
the relevant information for answering the question correctly.
We center our analysis on the resulting division between task-
critical information, and the information that precedes and
follows it. Overall, the textual annotations enable analyses
of the relations between eye movements, reading goals, and
reading comprehension behavior, which has thus far been
limited using existing eye movement datasets.

Our analyses yield the following key conclusions:

1. In information seeking reading regimes readers engage dif-
ferently with both task relevant and task irrelevant infor-
mation compared to ordinary reading, exhibiting highly
strategic and cognitive resource efficient reading patterns.

2. The extent to which (1) holds diminishes when readers are
not successful in solving the reading comprehension task.

These results inform our understanding of task-based reading,
as well as the relation between eye movements in reading and
reading comprehension.

Related Work
Task-based reading has been studied using two broad ap-
proaches which we refer to as procedural-based and content-
based. Both approaches can be thought of as providing the
reader with a prompt prior to reading the target text. The first
approach consists of tasks that specify a reading procedure,
and are typically not derived directly from the specific con-
tent of the text. As such, they are often general, and widely
applicable across texts. At the same time, this approach is
limited in the range of tasks, with most studies focusing on
a small number of canonical tasks. A key early study within
this framework is Just et al. (1982), who compared ordinary
reading, skimming, and speed reading with respect to reading
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speed, fixation durations, and reading comprehension perfor-
mance. J. Kaakinen & Hyönä (2010) compared ordinary read-
ing to proofreading. Among others, the proofreading regime
was characterized by shorter saccades, longer fixations, and
larger word length and word frequency effects. Schotter et al.
(2014) also compared ordinary reading to proofreading, and
similarly found larger frequency effects in proofreading. They
further observed larger predictability effects when proofread-
ing involves real but unintended words, the identification of
which requires contextual integration. Rayner & Raney (1996)
examined differences between ordinary reading and searching
through the text for a target word, and found no frequency
effects in the latter. Several studies have also examined eye
movements during human linguistic annotation, often used
for generating training data for Natural Language Processing
(NLP) tools, such as annotation of named entities (Tomanek
et al., 2010; Tokunaga et al., 2017) and semantic relations
(Hollenstein et al., 2021, 2022).

In the second line of research, which we extend, tasks are
derived more explicitly from the content of the text. In this ap-
proach, tasks are constrained in that they have to be specific to
a given text, but can vary otherwise, allowing the possibility to
incorporate a large number of tasks within and across studies.
In this framework, differences in reading patterns were found
when readers were asked to take different perspectives on a
given text (J. K. Kaakinen et al., 2002), with longer fixation
times on perspective-relevant than perspective-irrelevant infor-
mation. Rothkopf & Billington (1979) examined task-based
reading where participants are given a set of learning goals,
formulated as reading comprehension questions. They found
more and longer fixations on task-relevant than task-irrelevant
text, and overall shorter reading times than in ordinary reading.
Our findings are generally consistent with these results.

Our work is closest to Hahn & Keller (2023) and Malmaud
et al. (2020) who examine how eye movements are conditioned
on a single reading comprehension question. Hahn & Keller
(2023) collected eye-tracking data for materials from the CNN
and Daily Mail corpus which contains questions whose answer
is a named entity (Hermann et al., 2015). They demonstrate
that reading times on the named entity which is the correct
answer to the question are longer if participants are shown the
question before reading the passage as compared to ordinary
reading. Malmaud et al. (2020) generalize this experimen-
tal setup using the OneStopQA corpus (Berzak et al., 2020),
which has arbitrary questions whose answer can be inferred
from a well-defined span in the text, called the Critical Span,
as mentioned above. Differently from ordinary reading, when
participants are shown the question before reading the passage,
mean word reading times were found to be longer within the
Critical Span than outside it. Further, consistent with findings
by Rothkopf & Billington (1979) and Hahn & Keller (2023),
the overall reading time in the Hunting condition was found to
be shorter than in the Gathering condition, driven by shorter
reading times outside the Critical Span.

We extend the work of Malmaud et al. (2020) in a number

of ways. First, while in their work only participants who an-
swered the question correctly were analyzed, here we analyze
all the available data. We further perform a finer-grained split
than the inside versus outside the Critical Span division done
in Malmaud et al. (2020), distinguishing between the region
before the Critical Span and after it. Further, we examine a
wider variety of eye movement measures, including saccade
based information, and analyze how reading patterns evolve as
a function of the word position in the passage. Importantly, we
include analyses that examine the sensitivity of reading times
to linguistic characteristics of the text. This aspect is key for
understanding the relation between reading and cognitive state,
but has thus far not been examined in the context of task-based
reading. Finally, we analyze how task conditioning interacts
with reading comprehension. The combination of these factors
provides a substantially more detailed picture of the way in
which eye movement dynamics in task-based reading unfold
over time and how they relate to reading comprehension.

Experimental Setup and Data
We use OneStopQA (Berzak et al., 2020), a multiple-choice
reading comprehension dataset that comprises 30 Guardian
articles from the OneStopEnglish corpus (Vajjala & Lučić,
2018). Each article is available in three difficulty levels, of
which two are used in the eye-tracking experiment described
below: Advanced (the original Guardian article) and a sim-
plified Elementary version. Each article has 4-7 paragraphs,
each annotated with three multiple-choice reading compre-
hension questions. In total, the textual data consists of 162
paragraphs, corresponding to 972 unique paragraph–level–
question triplets.

Each question has four answers which belong to four answer
types ordered by degree of comprehension, and are further tied
to manually annotated spans in the passage. A is the correct
answer, with support in the Critical Span. Note that while the
Critical Span contains the information essential for answering
the question correctly, it does not contain the correct answer
in verbatim form. B corresponds to a miscomprehension of
the Critical Span. C refers to another part of the text outside
the Critical Span. D has no textual support. The average
paragraph length in the textual data is 109 words, 32 of which
belong to the Critical Span.

Eye movements data were collected by Malmaud et al.
(2020) from 269 native English speakers using an EyeLink
1000 Plus eye tracker (SR Research) at a sampling rate of
1000Hz. Each participant read 10 articles comprising 54 para-
graphs from both Advanced and Elementary levels and an-
swered a comprehension question about each paragraph in one
of two between-subjects question answering conditions: Hunt-
ing or Gathering. Differently from the Gathering condition, in
the Hunting condition participants were shown the question
(without the answers) prior to reading the paragraph. Except
for this difference, the experimental materials and procedure
were identical across conditions. See Malmaud et al. (2020)
for further details on the eye-tracking experiment. Overall,

937



0 0.5 1
0

50

100

150

200

250

300

0 0.5 1 0 0.5 1

Before Critical Span After

To
ta

l F
ix

at
io

n 
D

ur
at

io
n 

(m
s)

Hunting Gathering

Figure 1: Total Fixation Duration. The x axis represents
normalized word position within the corresponding interest
area. Curves are GAM fits with random effects for subjects
and paragraphs, with 95% confidence intervals. Bars represent
per-word interest area averages with 95% confidence intervals.

the eye movements data consists of 7,344 Hunting trials and
7,180 Gathering trials, where a trial is a single response to a
reading comprehension question after having read the para-
graph.

Information-Seeking versus Ordinary Reading
We characterize differences in eye movement patterns between
information-seeking and ordinary reading using two types of
information. The first is standard fixation and saccade based
measures. The second is the sensitivity of reading times to the
linguistic characteristics of the text. Both types of analyses
take advantage of the Critical Span annotations to divide each
passage into three interest areas: Before, Inside, and After
the Critical Span. This division reflects our expectation that
task-driven reading behavior may be manifested differently
before and after encountering and processing task-critical in-
formation. We analyze the reading patterns across the three
interest areas and the Hunting and Gathering conditions.

Eye Movement Measures
We first characterize eye movements by examining the follow-
ing eye movement measures:

• Total Fixation Duration (TF): the sum of all the fixation
durations on the word.

• Regression Rate (RR): Number of saccades per word to an
earlier part of the paragraph, considering only words that
were fixated at least once.

While TF focuses on aggregated fixations, RR provides com-
plementary information from the sequence of saccades. The
Supplemental Material (SM)1 includes analyses for additional
measures, including Skip Rate, first pass First Fixation (FF),
Gaze Duration (GD), and number of fixations.

1https://osf.io/3gyv9/
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Figure 2: Regression Rate. Number of backward saccades
per word with 95% confidence intervals. Each bar is split to
regressions from the word that land within the current interest
area, and regressions that cross to preceding interest areas.

We calculate interest area averages of TF times from a
mixed effects model2 applied to each combination of interest
area (Before, Inside, After) and reading condition (Hunting,
Gathering). To obtain a finer grained view of reading dynamics
throughout the paragraph, we further trace these measures as
a function of word position within each interest area. We
do so using General Additive Models (GAMs), which can fit
non-linear relationships between predictors and responses.3

To account for differences in interest area lengths across items,
we normalize word positions to be between 0 (beginning of
interest area) and 1 (end of interest area) within each item.

Figure 1 presents interest area averages along with GAM fits
for the relation between TF and word position.4 In the Gath-
ering condition the mean TF times are longer in the Before
area than in the Critical Span (19ms, p < 10−11), and longer
in the Critical Span than in the After area (14ms, p < 10−8).
In the Hunting condition TF times in the Before area are simi-
larly longer than in the After area (20ms, p < 10−11) but cru-
cially are shorter than in the Critical Span (35ms, p < 10−19).
TF times in the Hunting condition are shorter in the Be-
fore area (60ms, p < 10−11) as well as in the After area
(48ms, p < 10−10) compared to the corresponding areas in
the Gathering condition, but are similar across the conditions
inside the Critical Span (p = 0.361).

2T F ∼ 1+(1|sub j)+(1|parag)
3GAM curves are fitted using the mgcv (1.8-41) bam function with

cubic regression splines (Wood, 2004; Wood et al., 2015).
4T F ∼ s(norm_position,bs = ”cr”) + s(sub j,bs =

”re”) + s(sub j,norm_position,bs = ”re”) + s(parag,bs =
”re”)+ s(parag,norm_position,bs = ”re”), where norm_position is
the word’s position in the interest area, normalized to a 0-1 range. In
the absence of visual evidence for non-linearities past the first 15% of
the passage, statistical tests are performed using a linear model: T F ∼
norm_position + (norm_position|sub j) + (norm_position|parag)
for each interest area and condition separately. Dif-
ferences in slopes are tested using the interaction term
norm_position : condition in the following model applied to each
interest area T F ∼ norm_position ∗ condition+ (norm_position ∗
condition|sub j)+(norm_position∗ condition|parag).
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Importantly, when examining the progression of TF times as
a function of word position, we also observe different patterns
of slopes across the reading conditions. In the Gathering
condition, TF times decrease within each of the three interest
areas (p < 10−10) at roughly the same rate across areas. The
Hunting slopes exhibit a different behavior. In the Before area,
TF times in the Hunting condition decrease slower than in
the Gathering condition (p < 10−6). In fact, past the initial
beginning-of-passage rapid decrease in both conditions (first
15% of the Before area) Hunting TF times remain constant
(p = 0.536), while Gathering TF times continue to decrease
(p < 10−7). Inside the Critical Span, Hunting TF times are
also constant (p = 0.053), with a significant interaction across
the conditions (p < 10−5). Finally, in the After area, TF times
decrease faster than in the Gathering condition (p = 0.03). In
short, compared to Gathering TF times which decrease at a
similar rate across all three sections, Hunting TF times are
constant before and within the Critical Span, and decrease
faster after the Critical Span.

The Hunting TF patterns suggest an efficient allocation of
reading times across interest areas, and deployment of infor-
mation seeking strategy which consist of three stages around
task-critical information: seek, solve, and wrap-up. During
the initial seek stage readers look for task relevant information
while engaging in a skimming like behavior marked by short
and constant reading times across word positions. In the solve
stage readers identify and process task-critical information. In
the last stage, the wrap-up, reading times are again shorter
than in ordinary reading and decrease at a faster rate.

In SM Figure 1 we present a word Skip Rate analysis, which
yields a pattern consistent with the TF results. Similar results
are also obtained when examining the number of fixations per
word in SM Figure 2. We note that this pattern is not fully
apparent with early fixation measures which do not aggregate
all the fixation times on a word. The SM presents the above
analysis for the first pass measures FF (SM Figure 3) and GD
(SM Figure 4). In both cases we observe moderately shorter
reading times in the Hunting condition, including the Critical
Span, without by-area differences within either of the two
reading conditions. This suggests that re-reading, especially
of words in the Critical Span, is crucial in task-based reading.
This conclusion is further supported when examining second
and higher pass reading times (SM Figure 5). Not only do
they exhibit similar slope patterns to Figure 1, but differently
from the early measures have comparable reading times in the
Critical Span across the Hunting and Gathering conditions.

To examine this further, we turn to information from sac-
cades, focusing on regressions. Figure 2 presents the number
of regressions per word within each interest area, broken down
by regression landing locations falling into each interest area.
The lower Hunting TF times and higher skip rates in the Be-
fore area are accompanied by a lower Hunting than Gathering
regression rate in this area (p < 10−3). However, despite com-
parable TF times in the Critical Span and lower TF times in the
After area in the Hunting condition, we see a higher Hunting

regression rate in the Critical Span (p = 0.02), and a similar
regression rate in the After area (p = 0.26).

Furthermore, the breakdown of regression landing locations
reveals that the driver of the increased Hunting regression rate
in the Critical Span is a higher rate of regressions that land
within the Critical Span (p = 0.009). Accordingly, compared
to the Gathering condition, regressions that are initiated within
the Critical Span in the Hunting condition are more likely
to land within the Critical Span than to cross to the Before
area (p < 10−3). At the same time, regressions from the
After area are more likely to land in the Critical Span than
to remain in the After area as compared to the Gathering
condition (p < 10−13). Thus, the After area is marked not
only by fast decreasing reading times, but also by a stronger
tendency to return to task-critical information.

The overall pattern of regressions within and across interest
areas suggests that task-driven reading leads to an increased
fraction of regressions landing on task-critical information.
Additionally, in SM Figure 6 we provide the same analysis for
forward saccades, where we see an opposite pattern around
the Critical Span: a larger fraction of Hunting forward sac-
cades from the Before area landing in the Critical Span, and
a smaller fraction of forward saccades from the Critical Span
crossing over to the After area. These patterns are consis-
tent with the seek–solve–wrap-up strategy proposed in the TF
times analysis, and provide a more detailed picture on how it
arises from the sequence of saccades, with the Critical Span
attracting saccades at a higher rate from both the Before and
After areas, and retaining saccades at a higher rate than in the
Gathering condition.

Response to Linguistic Properties of the Text
It has been widely established that word reading times during
ordinary reading are robustly predicted by linguistic properties
of words, in particular by word frequency, predictability, and
word length (Kliegl et al. (2004); Rayner et al. (2004, 2011)
among others). Further, the magnitude of word property ef-
fects on reading times has been linked to the reader’s cognitive
state (Reichle et al., 2010) and language proficiency (Berzak
et al., 2022). However, thus far word property effects have not
been examined in the context of task-based reading.

Here, we examine the extent to which the reader’s sensi-
tivity to linguistic word properties is affected by the reading
task. To this end, we analyze the strength of the response to
frequency, predictability, and word length across the Gathering
and Hunting conditions and interest areas. We quantify word
predictability using surprisal (Hale, 2001; Levy, 2008), de-
fined as − log2(p(word|context)), where context is the textual
content in the paragraph preceding the word. The surprisal val-
ues are obtained from the GPT-2 language model (Radford et
al., 2019; Wolf et al., 2020), whose surprisal values have been
shown to correlate well with reading times (Wilcox et al., 2020;
Heilbron et al., 2022; Shain et al., 2022). For frequency esti-
mates we use unigram surprisal, defined as − log2(p(word)).
We use word frequency counts from Wordfreq (Speer, 2022),
which is based on multiple corpora.Word length is defined as
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Figure 3: Frequency, surprisal, and word length effects on TF
times. Depicted are current word coefficients from a linear
mixed-effects model predicting TF times from these proper-
ties of the current and previous words fitted separately for
each reading condition (Hunting, Gathering) and interest area
(Before, In, After).5 Error bars represent 95% confidence in-
tervals.

We examine reading time response to word properties using
the coefficients of a linear model which predicts TF times
from current and previous word frequency, surprisal and word
length in each combination of interest area and condition. We
then examine the resulting model coefficients for the current
word, depicted in Figure 3. We observe a pattern of results
consistent with the TF times analysis in Figure 1. Crucially,
differently from the Gathering condition where the responses
to linguistic properties of the text are similar or lower within
the Critical Span compared to the Before and After areas (all
but one case), in the Hunting condition they are higher in the
Critical Span than in the Before and After areas (p < 10−4)6

(with significant interactions across the reading conditions
(p < 10−8 in all cases but one). Critical span response is
similar across the Hunting and Gathering conditions, while
Before and After responses are lower in the Hunting condition
compared to the Gathering condition (p < 10−4). The SM
presents this analysis for the earlier measures FF and GD (SM
Figures 7 and 8 respectively), where again, in line with the
TF results, word property effect differences across reading
conditions and within interest area in the Hunting condition
are attenuated or disappear. This provides further evidence that
differences in text engagement across conditions and interest
areas stem to a large degree from word re-reading.

Overall, these results suggest that the seek–solve–wrap-up
strategy proposed in the context of TF times and regressions
is also manifested in the degree to which reading times are
influenced by the text. Readers are less engaged with the text
in the Before and After Hunting areas compared to the Gather-
ing condition and the Hunting Critical Span. The combination

5T F ∼ f req ∗ len + surp + f reqprev + surpprev + lenprev +
( f req+ surp+ len|sub j)+( f req+ surp+ len|parag). Random ef-
fects structure is simplified due to model convergence issues.

6Statistical tests are performed using a linear model: T F ∼ f req∗
len+ f req∗ span+ len∗ span+ surp∗ span+ f reqprev + surpprev +
lenprev +(span+ f req+ surp+ len|sub j)+ (span+ f req+ surp+
len|parag) for across-span tests and similarly with condition instead
of span for across-condition tests.

of these results with the TF and RR analyses suggests that
the task influences reading patterns and text engagement in a
systematic manner across all three interest areas.

Reading Comprehension Performance
In our final analysis we ask how eye movements in
information-seeking and ordinary reading interact with read-
ing comprehension performance. Thus far we characterized
both regimes using all the experimental trials. However, in
some cases participants do not perform the task successfully,
and choose an incorrect answer to the question. The percent-
age of questions answered correctly is 81.9 in the Gathering
condition and 86.9 in the Hunting condition (p < 10−6). In
Table 1 we further provide a breakdown of all the trials by
reading condition and answer type (A–D), where the answer
types are ordered by degree of comprehension.

Gathering Hunting

A 5,878 (81.9) 6,379 (86.9)
B 723 (10.1) 556 (7.6)
C 391 (5.4) 295 (4.0)
D 188 (2.6) 114 (1.5)
Total 7,180 (100) 7,344 (100.0)

Table 1: Number of trials by condition (Hunting versus Gath-
ering) and answer type. Values in parentheses are percentages.

We focus on the fundamental finding that differently from
the Gathering condition, in the Hunting condition TF times
are longer in the Critical Span than outside it. We examine
the extent to which this behavior interacts with the degree of
success in answering the question. To this end, in Figure 4
we present Hunting TF times within and outside the Critical
Span by answer type for both reading conditions. Focusing on
the Hunting condition, we first note a general trend whereby
reading times in the Critical Span decrease along with the
quality of the answer. At the same time, reading times outside
the Critical Span increase for the answers that are not anchored
in the Critical Span, and are highest for the C answer which
has support outside of the Critical Span.
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Figure 4: Total Fixation Duration by reading condition, chosen
answer (A/B/C/D), and interest area (within versus outside the
Critical Span). Error bars represent 95% confidence intervals.

Importantly, we find that for trials where participants choose
either the correct answer A, or the distractor that represents a
miscomprehension of the Critical Span (B), reading times are
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longer within the Critical Span than outside it (p < 10−34 for
A and p < 10−10 for B). However, in trials where participants
chose the answer that has support outside the Critical Span
(C) this difference is not statistically significant (p = 0.18).
Similarly, when participants chose D, an answer that has no
support in the paragraph, the difference is only marginally
significant (p = 0.049). The TF differences between inside
and outside of the Critical Span are smaller in C and in D when
compared to the difference in the A and B trials (p < 0.05). In
Gathering, we see no evidence for differences in inside versus
outside the Critical Span TF times across answer types.

Following the results of this analysis, in Figure 5 we provide
a split of Figure 1 to answers A/B and C/D in the Hunting
condition, where we see that the pattern of slopes for C/D falls
between Hunting A/B and the Gathering condition. The SM
further contains the analyses from Figure 2 and Figure 3 by
answer type (SM Figures 9 and 10 respectively), suggesting
that the patterns observed in these analyses are similarly driven
by A and B trials, and are attenuated in C and D trials.
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Figure 5: TF times analysis from Figure 1 with Hunting trials
split to A/B and C/D answers.

Discussion
In this work we asked how information seeking reading be-
havior differs from ordinary reading.7 To make progress on
answering this question we leverage a dataset which contains
both ordinary and task-based reading samples, textual anno-
tations for task-critical information, and a structured reading
comprehension component. Combining these sources of in-
formation we find that eye movements in information seeking
regimes are (1) systematically different from ordinary reading,
(2) optimized for the specific task at hand, and (3) interact
with task performance.

7We use the term “ordinary reading” to refer to situations where
the reader is expected to read attentively while not having a specific
goal beyond general comprehension of the text. While we believe that
such situations are common, following the discussion in Huettig &
Ferreira (2022), we acknowledge that the term is somewhat problem-
atic, especially when the experimental setup includes comprehension
questions which are typically not part of our daily experience.

Our analyses provide a fine grained characterization of these
differences through reading times, regressions, response to lin-
guistic properties of the text, and reading comprehension per-
formance. They suggest that in information seeking regimes
the average reader engages with the text in a strategic and
resource efficient manner, which can be broadly divided into
three stages: seek, solve, and wrap-up. In the first stage,
readers look for task-critical information while engaging in a
reading behavior characterized by word position constant and
short reading times and weak responses to linguistic properties
of the text. Once task-critical information is identified, reading
times remain constant, but with similar average reading times
and responses to word properties to ordinary reading, stem-
ming in large part from re-reading of task critical information.
Once readers progress past task-critical information their read-
ing times become again short and now also rapidly decreasing
as the distance from task relevant information grows, with
weak word property responses. However, even at this stage,
task-critical information plays a central role in the reading
dynamics by attracting frequent regressive eye movements.
We further relate reading patterns to reading comprehension
performance. This analysis reveals a correspondence between
higher engagement with task-critical compared to non-critical
information, and reading comprehension behavior. The worse
the readers perform the task, the more attenuated are the infor-
mation seeking effects we find.

Our results are consistent with a rational account of task-
based reading. The seek–solve–wrap-up strategy allows read-
ers to spend less cognitive effort (as reflected in reading times
and word property effects) on task irrelevant information,
while still leading to a higher reading comprehension per-
formance than in ordinary reading. Importantly, standard
computational models of eye movements in reading such as
EZ-Reader (Reichle et al., 2003) and SWIFT (Engbert et al.,
2005) do not directly model information seeking regimes. The
NEAT model by Hahn & Keller (2023) addresses such regimes
but predicts only word level reading times rather the entire
sequence of fixations, and does not model the interplay with
reading comprehension. Our work provides new empirical
results that will inform the development of future fine-grained
computational models for eye movements in reading in both
ordinary and information seeking regimes.

Conclusion

This work sheds new light on the relationships between eye
movements, task-based reading, and reading comprehension.
Overall, we find that readers adjust their behavior to the given
task in an efficient manner consistent with a rational account
of cognitive resource allocation. We further find that reading
behavior around task-critical information is correlated with
question answering behavior. These results will inform future
approaches for tracking cognitive state and reading compre-
hension in real time, and will further guide the development
of computational models for eye movements in reading during
both ordinary and task-driven reading.
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