
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Numerical simulations of incompressible multi-phase fluid flows with environmental
applications

Permalink
https://escholarship.org/uc/item/6017004g

Author
Binswanger, Adam

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6017004g
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Numerical simulations of incompressible multi-phase fluid
flows with environmental applications

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Applied Mathematics

by

Adam Lewis Binswanger

Committee in charge:

Shilpa Khatri, Chair

Maxime Theillard, Co-Chair

Francois Blanchette

Dustin Kleckner

2024

All chapters © 2024 Adam Lewis Binswanger

The dissertation of Adam Lewis Binswanger is approved, and it
is acceptable in quality and form for publication on microfilm and
electronically:

(Francois Blanchette)

(Dustin Kleckner)

(Maxime Theillard, Co-Chair)

(Shilpa Khatri, Chair)

University of California, Merced

2024

iii

iv

TABLE OF CONTENTS

Signature Page . iii

List of Figures . viii

List of Tables . xiv

Acknowledgements . xv

Curriculum Vitae . xvi

Abstract . xxi

Chapter 1 Introduction . 1
1.1 Model equations for rising oil droplets in density stratified flows 3

Chapter 2 Rising oil droplets in stratification 6
2.1 Model equations . 8
2.2 Numerical method . 9
2.3 Comparison with experiment 9

Chapter 3 Investigation of interfacial forces . 14
3.1 Net force acting on droplet . 14
3.2 Identification of interfacial forces 15
3.3 Derivation of Poisson jump problems 15
3.4 Preliminary results of droplet in homogeneous and stratified fluids 18

3.4.1 Homogeneous ambient 18
3.4.2 Sharp two layer stratified ambient 20

3.5 Conclusions . 21

Chapter 4 Stable nodal projection methods . 23
4.1 Background . 25

4.1.1 Projection method . 25
4.1.2 Adaptive mesh refinement 25
4.1.3 Interface representation 26
4.1.4 Storage of computational variables 26

4.2 Nodal numerical method for single-phase flow 28
4.2.1 Model equations . 29

v

4.2.2 Computational grids 30
4.2.3 General Projection Method 30
4.2.4 Stable collocated projection operator 32
4.2.5 Numerical method . 32

4.3 Conclusions . 34

Chapter 5 Stable nodal projection method for two-phase fluid flows 36
5.1 Governing equations of incompressible two-phase fluid flow . . 36
5.2 Numerical method overview 37
5.3 Interfacial and boundary convergence conditions 40
5.4 Convergence criteria . 40
5.5 Interface representation . 40

5.5.1 Level-Set method . 41
5.5.2 Reference map method 42
5.5.3 Coupled method . 43

5.6 Sampling and data structures 45
5.6.1 Collocated nodal grid layout 46

5.7 Viscosity step: temporal discretization 47
5.7.1 Phase accounting SLBDF 47
5.7.2 Local temporal limiter 48
5.7.3 Time step restriction 50

5.8 Viscosity step: spatial discretization 50
5.8.1 Coupled Jump Solver 51
5.8.2 Discretization in 2D 52
5.8.3 Boundary conditions on the domain boundary 55
5.8.4 Treatment of the velocity jump condition 56
5.8.5 Coupled jump solver convergence results 56

5.9 Projection and pressure guess steps 57
5.9.1 Single value finite volume Poisson jump solver 57
5.9.2 Pressure guess . 59
5.9.3 Projection . 59
5.9.4 Pressure reconstruction 62

5.10 Conclusions . 63

Chapter 6 Numerical method verification and validation 64
6.1 Analytic vortex . 64
6.2 Parasitic currents . 66
6.3 Oscillating bubble . 68

vi

6.4 Dynamics and deformations of rising bubbles 69
6.4.1 Single rising bubble in 2D 71
6.4.2 Rising bubbles in 3D 73
6.4.3 Rising bubbles past complex geometries 81

6.5 Conclusions . 87

Chapter 7 Conclusion . 89

Bibliography . 90

Appendix A Appendix for Chapter 4 . 98
A.1 Proof: divergence is negative transpose of gradient 98

vii

LIST OF FIGURES

Figure 1.1: Schematic of a single droplet rising through the transition thickness h
between two constant density layers, with the densities of the lower
and upper layers denoted ρl and ρu, respectively (ρl > ρu). The
entrainment of denser fluid around the droplet is shown. Figure from
[43]. 2

Figure 1.2: Problem schematic where the densities in each phase are denoted by
ρ± and the viscosities in each phase are denoted by µ±. The interface
Γ has a curvature κ and interfacial tension γ. 3

Figure 2.1: Simulation of rising oil droplet in sharp two layer stratification. A
2D slice of the 3D simulation is shown, with the color representing
the density in the ambient fluid. The lower-layer density depicted in
red is ρl = 1.1 g/cm3 and the upper-layer density depicted in blue is
ρu = 1 g/cm3. Here, the density and viscosity of the droplet are ρd =
0.9972 g/cm3 and µd = 0.098 g/(cm · s), respectively. Additionally,
the Reynolds number in the lower layer is Re = 370. The entrainment
of density from the lower layer is depicted. 10

Figure 2.2: Comparison between the shadowgraph of a simulation (left) and the
corresponding experiment (right) as the droplet travels through the
transition region. The parameters in the simulation were set to be
equal to those in the experiment, where the lower-layer density is
ρl = 1.1 g/cm3 and the upper-layer density is ρu = 1 g/cm3. Here,
the density and viscosity of the droplet are ρd = 0.9972 g/cm3 and
µd = 0.098 g/(cm · s), respectively, and the Reynolds number in the
lower layer is Re = 370. 11

Figure 2.3: Droplet rising vertical position vs time, comparison between
experiment (red) and simulation (blue). 12

Figure 2.4: Droplet rising vertical velocity vs time, comparison between
experiment (red) and simulation (blue). 13

Figure 3.1: Pressure decomposition (orange) compared to the full pressure (blue)
for a droplet rising in a homogeneous flow. In this case, the interfacial
forces due to pressure were computed for the pressure decomposition
and for the full pressure for the comparison. 19

viii

Figure 3.2: Forces acting on a rising droplet in homogeneous flow vs time. The
interfacial forces due to the pressure decomposition are shown as solid
lines, and the remaining forces and net force are shown as dashed lines. 19

Figure 3.3: Buoyancy force per volume vs time (blue) with a smoothed curve
(red). This additionally accounts for the lower layer hydrostatic
pressure. The vertical black line signifies the time at which the droplet
enters the transition region from the lower layer. 20

Figure 3.4: Viscous, remaining inertial, and interfacial tension forces per volume
vs time (circles) along with smoothed curves (solid lines). The vertical
black line signifies the time at which the droplet enters the transition
region from the lower layer. 21

Figure 4.1: MAC grid layout on a quadtree grid in 2D. The red circles represent
the x-direction velocity, u, the grey circles represent the y-direction
velocity, v, and the blue squares represent the pressure, p. 27

Figure 4.2: Computational domain shown in two dimensions. The fluid domain,
Ω−, is enclosed by the domain boundary, ∂Ω, and the interface, Γ.
Fluid properties, ρ and µ, are constant throughout the fluid domain.
An arbitrary solid domain, Ω+ is shown as a shaded region. 29

Figure 4.3: (a) Highly non-graded quadtree grid, (b) Example of fully collocated
quadtree grid. The velocity components and pressure are stored at the
nodes, represented in red. 30

Figure 4.4: Outline of the single-phase flow algorithm for the construction of the
solution un+1 at time tn+1 from the solution un at the previous time
step tn. 33

Figure 5.1: Problem schematic where the density in each phase is denoted by ρ±

and the viscosity in each phase is denoted by µ±. The interface Γ has
a curvature κ, normal n, and interfacial tension γ. 37

Figure 5.2: Outline of the algorithm for the construction of the solution
(ϕn+1,un+1) at time tn+1 from the solution (ϕn,un) at the previous
time step tn. 39

Figure 5.3: Level-set representation of interface Γ as contour of level-set function
ϕ, which separates the domain into Ω− and Ω+ in 2D [9]. 41

Figure 5.4: Schematic of the effect of the motion map χ and the reference map ξ
in mapping points x0 ∈ B0 and x ∈ B(t) between each other [9]. The
deformation of the domain here is due to the advecting velocity u. . . 43

ix

Figure 5.5: Schematic of the volume-preserving correction to the reference map.
We assume that at some given time the maps (χ∗, ξ∗) are not volume-
preserving due to numerical errors. These maps are corrected into a
volume-preserving pair (χ, ξ) by composition with the diffeomorphism
γ [68]. 45

Figure 5.6: Collocated nodal grid in 2D: the velocity components, pressure,
Hodge variable, level-set function, and reference map are all stored at
the nodes () of the grid. 47

Figure 5.7: Rapid blow up of the SLBDF scheme for 1D advection with no
viscosity and a sharply peaked initial profile. The left plot shows the
solution at the initial time and the right plot shows the solution at a
later time after blow up has occured. 49

Figure 5.8: Control volume Cij near the interface Γ in the two dimensional case. . 52
Figure 5.9: Finite difference discretization on quadtree grids. Here, node n0 has

no direct neighbor to the right, and thus a ghost node nr () must be
constructed using the existing neighboring nodes (). Standard central
discretizations can then be constructed using this ghosted
neighborhood [14]. 53

Figure 5.10: Representation of the Quadtree grid of Ω and the interface Γ (shown
in black), for the example given in Eqs. (5.111) and (5.112) to show
the stability of the collocated projection operator. 61

Figure 5.11: Difference between successive projections of an incompressible field,
with different boundary conditions on the Hodge variable. 62

Figure 6.1: Representation of the quadtree discretization of Ω and the interface Γ
(shown in orange). 65

Figure 6.2: Convergence results for the parasitic currents example: interface
location error (left) and velocity L1 error (right) for increasing level of
refinement. 68

Figure 6.3: Oscillating bubble radius in x direction vs time with increasing max
level. The green line represents the predicted exponential decay of the
bubble in 3D. 69

Figure 6.4: Oscillating bubble velocity profile at times of expansion and
contraction. The colormap shows the horizontal velocity u at time of
expansion (left) and vertical velocity v at time of contraction (right).
The bubble interface is represented in black. 70

x

Figure 6.5: Rising velocity of 2D Bhaga Weber case (d) [12], with increasing max
level and min level of 4 (left) and relative mass loss of 2D Bhaga Weber
case (d) [12], with increasing max level and min level of 4 (right).
Negative relative mass loss indicates a gain in mass. 71

Figure 6.6: Velocity magnitude |u| and interface shape at final time of simulation
for 2D rising bubble, Bhaga Weber case (d) [12] with increasing max
level of refinement. Top left has a maximum level of 10, top right has
a maximum level of 11, and bottom has a maximum level of 12. A
subset around the bubble of the adaptive grid is also shown for each
case. The initial bubble has a diameter of 1 cm. 72

Figure 6.7: Final bubble shapes and interior flow fields corresponding to
examples 2(a–d) from Bhaga and Weber [12]. The streamlines are
colored according to the magnitude of the apparent velocity |ua|, or
velocity of the fluid in the reference frame of the rising bubble. Each
bubble was initialized with a diameter of 1 cm. For clarity, each
bubble is displayed sliced in half. 74

Figure 6.8: Final bubble shapes and interior flow fields corresponding to examples
2(e), 2(g), and 2(h) from Bhaga and Weber [12]. The streamlines are
colored according to the magnitude of the apparent velocity |ua|, or
velocity of the fluid in the reference frame of the rising bubble. Each
bubble was initialized with a diameter of 1 cm. For clarity, each bubble
is displayed sliced in half. 75

Figure 6.9: Time evolution of the instantaneous shape and apparent exterior flow
for example 2(e) from Bhaga and Weber [12]. The flow streamlines in
the suspending fluid are colored by the vorticity magnitude |∇ × u|.
The bubble was initialized with a diameter of 1 cm. 76

Figure 6.10: Time evolution of the instantaneous shape and apparent velocity for
example 2(h) from Bhaga and Weber [12]. The streamlines are
colored by the magnitude of the apparent velocity |ua|. The bubble
was initialized with a diameter of 1 cm. 77

Figure 6.11: Time evolution of the instantaneous shape and apparent velocity for
example 2(f) from Bhaga and Weber [12]. The streamlines are colored
by the magnitude of the apparent velocity |ua|. The max level of this
simulation is 12. The bubble was initialized with a diameter of 1 cm.
For clarity, each bubble is displayed sliced in half. 79

xi

Figure 6.12: Instantaneous shape and apparent velocity for example 2(f) from
Bhaga and Weber [12] at time t = 0.861 s, the first time step at which
the tip of the bubble begins to break apart. The full bubble is shown
(left) along with a zoomed in view of the tip beginning to break apart
(right). The streamlines are colored by the magnitude of the apparent
velocity |ua|. The max level of this simulation is 12. For clarity, the
full bubble is displayed sliced in half. 80

Figure 6.13: Vertical slice in 2D for example 2(f) from Bhaga and Weber [12] at
time t = 0.861 s, the first time step at which the tip of the bubble begins
to break apart. The full slice is shown (left) along with a zoomed in
view of the tip beginning to break apart (right). The adaptive grid is
shown and the slice is colored by the velocity magnitude |u|. The max
level of this simulation is 12. 81

Figure 6.14: Instantaneous shape and apparent velocity for example 2(f) from
Bhaga and Weber [12] at a later time of t = 1.3 s, after the tip has
fully broken apart (left). For clarity, the bubble is displayed sliced in
half. The streamlines are colored by the magnitude of the apparent
velocity |ua|. The instantaneous shape of the full bubble is also shown
(right), depicting the full breakup of the bubble’s tip. The max level of
this simulation is 12. 82

Figure 6.15: Time evolution of the instantaneous shape for example 2(f) from
Bhaga and Weber [12] for later times after the initial breakup of the
tip. The max level of this simulation is 11. 82

Figure 6.16: Final configuration in a 3D simulation of a collection of 20 rising
bubbles with random initial positions and sizes. We visualize the flow
field through streamlines of the velocity, colored by its magnitude |u|.
We show two regions, (a) and (b), zoomed in to further illustrate the
complex flow structure in regions featuring multiple bubbles close to
one another. 83

Figure 6.17: Time evolution of the shape and adaptive octree grid for a case (d)
bubble from Bhaga and Weber [12] in a flow with a flow obstruction
featuring a converging conical section and a narrow pipe. For clarity,
the flow obstruction is displayed sliced in half. The droplet is shown to
maintain its volume as it rises through the complex flow geometry. Five
time steps labeled (a) − (e) are identified with boxes and highlighted
in figure 6.18. 84

Figure 6.18: Zoomed in time steps from figure 6.17. 85

xii

Figure 6.19: The relative mass loss of the rising bubble of the example shown in
figure 6.17. The five time steps shown in more detail from figure 6.18
are identified with labeled plot markers. 85

Figure 6.20: Time evolution of the velocity magnitude |u| shown in a slice in the
vertical direction for a case (d) bubble from Bhaga and Weber [12] in
a flow with a flow obstruction featuring a converging conical section
and a narrow pipe. 86

xiii

LIST OF TABLES

Table 5.1: Convergence of coupled jump solver in 3D. 57
Table 5.2: Convergence of single value finite volume Poisson jump solver in 3D. . 58

Table 6.1: Convergence of analytic vortex at the final time with and without the
local temporal limiter. 66

Table 6.2: Convergence of parasitic currents at the final time. The interface
location error is computed within a band of ∆x close to the interface. . . 67

Table 6.3: Convergence of period of oscillation. The 3D theoretical prediction is
3.629. 69

Table 6.4: Rising bubbles in 3D: dimensionless parameters associated with the
Bhaga Weber cases (a) - (h). 73

Table 6.5: Rising bubbles in 3D: parameters and measurements associated with the
Bhaga Weber cases (a) - (h). The rising velocity is measured at the final
time at the front tip of the bubble. 78

xiv

ACKNOWLEDGEMENTS

The material in this dissertation is based upon work supported by the National Science
Foundation under Grant No. DMS-1840265, the University of California, Merced through
the Chancellor’s Graduate Fellowship, and the National GEM Consortium through the
GEM Fellowship.

I would first like to thank my advisors, Dr. Shilpa Khatri and Dr. Maxime Theillard, for
all their guidance, mentorship, and constant support over the past several years. I have
learned so much about how to find joy and purpose in research through working with you.

I would like to thank my other committee members, Dr. Francois Blanchette and Dr.
Dustin Kleckner, for your insights and participation with my research.

I would like to thank all of my friends at UC Merced for their kindness, friendship, and
support over the years.

Finally, I would like to thank my parents, Lewis and Catherine Binswanger, for all of their
love and support. None of this would have been possible without you.

xv

Adam L. Binswanger

School of Natural Sciences
5200 N Lake Rd, University of California, Merced

Merced, CA 95343, USA

720-315-2294
abinswanger@ucmerced.edu

Research Interests

Computational Science, Computational Fluid Dynamics, Numerical Analysis, High-Performance
Computing, Multi-Phase Flow, Renewable Energy

Education

University of California, Merced

• Ph.D., Applied Mathematics, August 2019 – December 2024 (expected).

• Advisors: Shilpa Khatri, Maxime Theillard

• Thesis: Numerical Simulations of Incompressible Multi-Phase Fluid Flows with Environmental
Applications.

University of Colorado Boulder

• M.S., Applied Mathematics, 2018 – 2019.

• Advisor: Mark Hoefer

• M.S. Thesis: Nonclassical, Oblique Dispersive Shock Waves in Steady Shallow Water Flows.

• B.S., Applied Mathematics, 2014 – 2019. (Concurrent B.S./M.S. Program)

Technical skills

C++, Python, Git Version Control, Linux, MATLAB, Object-Oriented Programming, Parallel
Computing, AMReX, PeleLMeX, Mathematica, Microsoft Excel, Visual Basic for Applications

Publications

1. Adam L. Binswanger, Matthew Blomquist, Scott R. West, Shilpa Khatri, and Maxime
Theillard. A Stable Nodal Projection Method for Two-Phase Flows, in preparation, (2024).

2. Matthew Blomquist, Scott R. West, Adam L. Binswanger, and Maxime Theillard. Stable
Nodal Projection Method on Octrees Grids, Journal of Computational Physics, Volume 499,
(2024).

3. Adam L. Binswanger, Mark A. Hoefer, Boaz Ilan, and Patrick Sprenger,Whitham Modulation
Theory for Generalized Whitham Equations and a General Criterion for Modulational Instability,
Studies in Applied Mathematics, Volume 147, Issue 2, (2021).

1

xvi

Research Experience

National Renewable Energy Laboratory

• Graduate Summer Intern Summers 2023, 2022

• Mentors: Marcus Day, Sreejith Nadakkal Appukuttan

Khatri Lab, University of California, Merced

• Graduate Research Assistant August 2019 – Present

Mathematical, Applied, and Computational Sciences (MACS) Group,
University of California, Merced, Maxime Theillard

• Graduate Research Assistant August 2019 – Present

Dispersive Hydrodynamics Laboratory, University of Colorado Boulder,
Mark Hoefer

• Graduate/Undergraduate Research Assistant January 2017 – August 2019

Presentations at Professional Meetings

2024

1. Adam L. Binswanger, Matthew Blomquist, Scott R. West, Shilpa Khatri, and Maxime
Theillard. Sharp, stable, and collocated numerical simulation of incompressible, multi-phase
fluid flows. 77th Annual Meeting of the American Physical Society Division of Fluid Dynamics,
Salt Lake City, Utah, November 24 – 26, 2024.

2. Adam L. Binswanger, Matthew Blomquist, Scott R. West, Shilpa Khatri, and Maxime
Theillard. Sharp, stable, and collocated numerical simulation of incompressible, multi-phase
fluid flows, poster. SIAM Northern and Central California Sectional Conference (NCC24),
Merced, CA, October 9 – 11, 2024.

2023

1. Adam L. Binswanger, Matthew Blomquist, Scott R. West, Shilpa Khatri, and Maxime
Theillard. Sharp, stable, and collocated numerical simulation of incompressible, multi-phase
fluid flows. 76th Annual Meeting of the American Physical Society Division of Fluid Dynamics,
Washington, D.C., November 18 – 21, 2023.

2022

1. Adam Binswanger and Marc Day. Validation of exascale combustion code for the simulation
of an internal combustion engine. Rocky Mountain Fluid Mechanics Research Symposium
2022, Boulder, CO, August 9, 2022.

2021

1. Adam Binswanger, De Zhen Zhou, Dustin Kleckner, Maxime Theillard, and Shilpa Khatri.
Numerical simulations of oil droplets rising in a sharply stratified fluid. 74th Annual Meeting
of the American Physical Society Division of Fluid Dynamics, Phoenix, AZ, November 21 –
23, 2021.

2

xvii

2020

1. Adam Binswanger, De Zhen Zhou, Joshua Roe, Tracy Mandel, Dustin Kleckner, Maxime
Theillard, and Shilpa Khatri. Numerical simulations of oil droplets rising in a sharply stratified
fluid. 73rd Annual Meeting of the American Physical Society Division of Fluid Dynamics,
Chicago, IL, November 22 – 24, 2020.

2. Adam Binswanger, Mark Hoefer, Boaz Ilan, and Patrick Sprenger. Whitham modulation
theory for generalized Whitham equations and a general criterion for modulational instability.
SIAM Northern States Section Student Chapters Conference, Utah State University, Logan,
Utah, October 16 – 18, 2020.

2019

1. Adam Binswanger, Patrick Sprenger, and Mark Hoefer. Oblique Dispersive Shock Waves
in Steady Shallow Water Flows. IMACS International Conference on Nonlinear Evolution
Equations and Wave Phenomena: Computation and Theory, University of Georgia, Athens,
GA, April 17 – 19, 2019.

2. Adam Binswanger. Oblique Dispersive Shock Waves in Steady Shallow Water Flows. SIAM
Front Range Applied Mathematics Student Conference 2019, Denver, CO, March 2, 2019.

2018

1. Adam Binswanger, Patrick Sprenger, and Mark Hoefer. Experimental Investigation of
Oblique Dispersive Shock Waves in Supercritical Shallow Water Flow. 71st Annual Meeting of
the American Physical Society Division of Fluid Dynamics, Atlanta, GA, November 18 – 20,
2018.

2. Adam Binswanger. Experimental Investigation of Oblique Dispersive Shock Waves in Supercritical
Shallow Water Flow. Rocky Mountain Fluid Mechanics Research Symposium 2018, Boulder,
CO, August 13 – 14, 2018.

3. Adam Binswanger and Maxwell Lambek. Stationary Oblique Dispersive Shock Waves in
Supercritical Shallow Water Flow. SIAM Front Range Applied Mathematics Student Conference
2018, Denver, CO, March 3, 2018.

2017

1. Adam Binswanger, Maxwell Lambek, Patrick Sprenger, and Mark Hoefer. Experimental
Investigation of Dispersive Shock Waves in Shallow Water, poster. 70th Annual Meeting of
the American Physical Society Division of Fluid Dynamics, Denver, CO, November 19 – 21,
2017.

Invited Presentations

2024

1. Adam Binswanger. Collocated numerical simulations of incompressible fluid flows with
environmental applications. Dispersive Hydrodynamics Laboratory Group Meeting, Boulder,
CO, February 20, 2024.

Internal Presentations

2024

1. Adam Binswanger. Numerical Simulations of Incompressible Multi-Phase Fluid Flows with
Environmental Applications. UC Merced Energy and the Environment Seminar, Merced, CA,

3

xviii

November 8, 2024.

2. Adam Binswanger. Numerical Simulations of Incompressible Multi-Phase Fluid Flows with
Environmental Applications. UC Merced Scientific Computing and Data Science Seminar,
Merced, CA, October 16, 2024.

3. Adam Binswanger. Collocated numerical simulations of incompressible fluid flows. UC
Merced Scientific Computing and Data Science Seminar, Merced, CA, April 3, 2024.

4. Adam Binswanger. Collocated numerical simulations of incompressible fluid flows with
environmental applications. UC Merced Energy and the Environment Seminar, Merced, CA,
March 8, 2024.

2023

1. Adam Binswanger. Stable nodal projection method on quadtree grids for incompressible,
multi-phase fluid flows. UC Merced Energy and the Environment Seminar, Merced, CA,
October 6, 2023.

2. Adam Binswanger. Stable nodal projection method on quadtree grids for incompressible,
multi-phase fluid flows. UC Merced Scientific Computing and Data Science Seminar, Merced,
CA, September 7, 2023.

2022

1. Adam Binswanger. Numerical simulations of incompressible two-phase flows. UC Merced
Energy and the Environment Seminar, Merced, CA, April 15, 2022.

2. Adam Binswanger. Numerical simulations of incompressible two-phase flows. UC Scientific
Computing and Data Science Seminar, Merced, CA, March 10, 2022.

2021

1. Adam Binswanger. Numerical simulations of oil droplets rising in a homogeneous fluid. UC
Merced Energy and the Environment Seminar, Merced, CA, September 17, 2021.

2. Adam Binswanger. Numerical simulations of oil droplets rising in a sharply stratified fluid.
UC Merced Energy and the Environment Seminar, Merced, CA, April 9, 2021.

2020

1. Adam Binswanger. Numerical simulations of oil droplets rising in a sharply stratified fluid.
UC Merced Energy and the Environment Seminar, Merced, CA, September 4, 2020.

2019

1. Adam Binswanger. Non-classical, Oblique Dispersive Shock Waves in Steady Shallow Water
Flows. UC Merced Energy and the Environment Seminar, Merced CA, September 27, 2019.

Workshops and Reading Groups

2024

• San Diego Supercomputer Center HPC and Data Science Summer Institute 2024, August 5 –
9, 2024.

– Attended session on Parallel Computing using MPI and OpenMP

– Attended session on GPU Computing and Programming

4

xix

2021

• University of California, Merced Applied Mathematics Department Deep Dive into: Deep
Learning Reading Group, September 2021 – December 2021.

Fellowships

• National GEM Consortium Fellowship 2022

• University of California, Merced Chancellor’s Graduate Fellowship 2019 - 2023

Teaching Experience

University of California, Merced

• Teaching Assistant, Math 023: Vector Calculus (Spring 2024).

• Teaching Assistant, Math 022: Calculus II for Physical Sciences and Engineering (Spring 2023,
Fall 2023).

• Teaching Assistant, Math 131: Numerical Methods for Scientists and Engineers (Spring 2020,
Fall 2020).

• Teaching Assistant, Math 125: MATH 125: Intermediate Differential Equations (Fall 2019).

University of Colorado Boulder

• Teaching Assistant, APPM 2360: Introduction to Differential Equations with Linear Algebra
(Spring 2019).

• Teaching Assistant, APPM 2350: Calculus 3 for Engineers (Fall 2018).

Service

Yosemite Fluids Conference, 2024

• Organizing committee member August 2023 – April 2024

University of California, Merced Graduate Student Association

• Treasurer August 2023 – Present

• Applied Mathematics Delegate and Delegate Assembly Chair August 2020 – May 2021

University of California, Merced

• Applied Mathematics Summer Bridge 2024 Diagnostic Preliminary Exam Lead July 2024

• Graduate Peer Mentor in the Department of Applied Mathematics August 2021 – May
2022

Professional Memberships

• Society for Industrial and Applied Mathematics

• American Physical Society

5

xx

ABSTRACT OF THE DISSERTATION

Numerical simulations of incompressible multi-phase fluid flows with environmental
applications

by Adam Lewis Binswanger
Doctor of Philosophy in Applied Mathematics

University of California Merced, 2024

Committee Chair: Shilpa Khatri

Droplets and particles are a physical feature of many atmospheric and oceanic systems.
For example, the Deepwater Horizon oil spill in 2010 resulted in large plumes being
trapped as they rose through stratified layers in the Gulf of Mexico. To begin
understanding how and why these plumes became trapped, we produce numerical
simulations of a single oil droplet rising in a stratified ambient flow and develop a force
decomposition model to characterize surface forces acting on the droplet. Following this,
we shift towards the development of numerical methods capable of simulating
incompressible flow. We develop a novel collocated projection method for simulating
incompressible multi-phase fluid flows in two and three dimensions. This method uses a
modified pressure correction projection to solve the Navier-Stokes equations for the fluid
flow. The fluid solver employs an adaptive mesh refinement strategy using non-graded
octree/quadtree grids and a finite volume discretization for the viscosity and projection
operators. The moving interface between phases is captured using a coupled level
set-reference map method, which provides a sharp representation of the interface position.
This method and solver are highly adaptable to multi-physics applications due to their
simplified code structure and second order accuracy. We demonstrate its capabilities
through a variety of density and surface tension driven multi-phase flows, including high
fidelity simulations of single and multiple rising bubbles facing weak and strong surface
deformations, as well as, flow of rising bubbles past solid obstructions.

xxi

Chapter 1
Introduction

Rising droplets and bubbles in stratified fluids, fluids featuring gradients in density and
temperature, are a physical feature of many atmospheric and oceanic systems [42]. Such
systems are vital to understanding important environmental processes. Some processes,
including oil spills in the ocean [20, 35, 59, 44], fine particle pollution in the atmosphere
[71], and settling marine snow [53], are important to understand in order to mitigate and
prevent global environmental crises.

Oil spills in the ocean are characterized by plumes of oil rising out from a well in the
deep ocean. The interaction between these oil plumes and the density variation in the ocean
greatly affects the dynamics of rising. During the Deepwater Horizon Oil Spill of 2010,
a significant amount of oil became trapped in intrusion layers caused by the presence of
density gradients, instead of quickly rising to the surface as would be naively expected
due to the oil being lighter than all the surrounding ocean water [44]. It is necessary to
understand the dynamics underlying the interaction between the rising oil plume and the
density stratification that led to this trapping phenomenon to understand why it occurred.
This problem is an example of multi-scale dynamics that occur in environmental systems
that feature interactions of droplets and particles and a density stratified ambient.

The rising plume escaping from the underwater well in an oil spill can be thought of
as a collection of individual oil droplets, as well as other agents such as surfactants. Thus,
both an individual droplet as well as multiple droplets’ interactions with the density varying
ocean should be considered. This is an example of a multi-phase fluid flow: a fluid flow in
which multiple immiscible fluids interact with one another.

In order to begin studying this problem, we first consider the dynamics of a single
rising oil droplet as it rises through a sharp, two-layer density stratification, in which two
miscible fluids of constant density are layered on top of each other with a transition region
in between, see figure 1.1. In the experiment, the droplet experienced a tremendous

1

2

slowdown and entrainment of fluid as it passed from the higher density lower layer fluid
through the region of density stratification and into the lower density upper layer fluid
[43]. In this dissertation, I focus on mathematically modeling and computational
simulations of a single droplet with the intention to extend this work to multiple droplets
in the future.

Figure 1.1: Schematic of a single droplet rising through the transition thickness h between
two constant density layers, with the densities of the lower and upper layers denoted ρl and
ρu, respectively (ρl > ρu). The entrainment of denser fluid around the droplet is shown.
Figure from [43].

In environmental systems such as oil spills, experiments can be costly, difficult to
perform, and limited in the quantities of interest that can be measured. In these scenarios,
computational simulations are an integral tool because they allow for the flexibility to
study a wide range of parameters and quantitatively measure any relevant quantity of
interest that is necessary to fully understand and interpret the present dynamics. Since
these problems are multi-scale and involve complex physical dynamics, the numerical
methods used for these computational simulations must be accurate and efficient.

We began this investigation by modeling a single rising oil droplet as an
incompressible multi-phase flow and validating this model using the numerical method for
simulating incompressible two-phase flow developed in [69]. We produced simulations
that share both qualitative and quantitative agreement with data from the experiment
conducted in [43]. These simulations are featured in chapter 2. However, this numerical
method was limited in its ability to accurately resolve the forces present on the oil droplet
when moving through a stratified ambient, necessitating the use of a different numerical

3

method with a higher order of accuracy. We developed a novel numerical method for
simulating incompressible multi-phase fluid flow that we believe is capable of accurately
simulating rising oil droplets in density stratified flows, and that is highly adaptable to
studying other similar multi-physics applications. The details of this numerical method
and its validation are described in chapters 5 and 6. This method is an extension of a
similar method for simulating single phase fluid flow, which is described in chapter 4. We
aim to do a full numerical investigation of oil droplets in the future using the new
numerical method.

1.1 Model equations for rising oil droplets in density
stratified flows

We consider a domain Ω consisting of two fluid phases: Ω+ the droplet phase and Ω−

the fluid phase. The two phases are separated by an interface Γ, upon which there is a
curvature κ and interfacial tension γ, see figure 1.2. The fluid velocity and pressure are

Figure 1.2: Problem schematic where the densities in each phase are denoted by ρ± and
the viscosities in each phase are denoted by µ±. The interface Γ has a curvature κ and
interfacial tension γ.

modeled by the incompressible Navier-Stokes equations with the Boussinesq
approximation, given by

ρ0

(
∂u
∂t

+ u · ∇u
)

= −∇p+ µ∆u + ρg ∀x ∈ Ω \ Γ, (1.1)

4

∇ · u = 0 ∀x ∈ Ω \ Γ, (1.2)

where u(x, t) is the fluid velocity, p(x, t) is the pressure, g is the acceleration due to gravity,
ρ(x, t) is the density, and µ is the viscosity. The density ρ0 is a constant value in each
phase, and is defined as the density of the droplet in Ω+ and an average of the density in
Ω−. Equations (1.1) and (1.2) represent conservation of momentum and mass, respectively.
Due to the presence of the interface Γ, the model for fluid velocity and pressure has the
following interface jump conditions

[[u]] = 0 ∀x ∈ Γ, (1.3)
[[σ · n − pn]] = γκn ∀x ∈ Γ, (1.4)

where [[χ]] = χ+ − χ− is the jump of the quantity χ across the interface Γ, γ is the
coefficient of interfacial tension, κ is the curvature of the interface Γ, n is the outward
facing normal vector, and σ = µ

(
∇u + ∇uT

)
is the viscous stress tensor. These jump

conditions represent the continuity of velocity across the interface and the jump in stress
due to interfacial tension, respectively.

Additionally, because the density in Ω− features a density gradient, we model the
variable density in Ω− with the following advection-diffusion equation

∂ρ

∂t
+ u · ∇ρ = Dρ∆ρ ∀x ∈ Ω−, (1.5)

where Dρ is the diffusion coefficient. This diffusion coefficient is chosen in practice to be
on the order of Dρ ≈ 10−5 cm2/s, as this is the diffusion coefficient of salt in water. In
practice, this is smaller than the numerical diffusion of the method used to solve Eq. (1.5),
but this is not an issue because we expect the effects of advection to primarily drive the
evolution of the density field in the ambient fluid over time.

Equations (1.1)-(1.5) are nonlinear vector equations that involve solving for multiple,
coupled variables, and feature jump conditions connecting the two fluid phases. This
makes solving this set of equations numerically challenging. Projection methods [22] are
a widely used class of numerical methods that numerically solve the Navier-Stokes
equations (1.1)-(1.5) in a splitting approach in which the momentum equation Eq. (1.1) is
solved first and then corrected to account for the divergence free condition Eq. (1.2). The
numerical method [69] that we began this investigation with is a modified pressure
correction projection method, which handles the jump conditions Eqs. (1.3) and (1.4)
through an iterative approach. Similarly, the novel numerical method we developed during
this work, presented in chapter 5, is also a type of modified pressure correction projection
method.

Given that multi-phase fluid flows model systems with complex dynamics that occur
across a range of relevant scales, adaptive mesh refinement (AMR) must be employed as

5

part of the numerical method to ensure computational efficiency. The method that we
developed uses adaptive octree/quadtree grids [55] in 3D and 2D, respectively, as the
AMR strategy. With projection methods specifically, one primary concern that must be
addressed is the storage location of all computational variables on the computational grid.
Staggered grids, such as the widely used Marker and Cell (MAC) grid [30], which stagger
the storage locations of the velocity components and pressure, are often preferred because
they can be readily shown to be stable, even on adaptive grids, see for example [69]. The
method we developed instead collocates all computational variables at the nodes of the
computational grid. In doing so, we derive a nodal projection operator that is used to
project the velocity field found from solving the momentum equation Eq. (1.1) into the
divergence free space. This choice allows us to obtain a higher order of accuracy and is
shown to be numerically stable under a range of boundary conditions, though the
projection into the space of divergence free velocity fields is only approximate.

This dissertation is organized as follows: In chapter 2, we present the comparison
between simulations of rising oil droplets in a sharply density stratified flow produced
using the numerical method from [69] and the experimental data of [43]. In chapter 3, we
introduce a novel model for the decomposition of surface forces acting on the rising oil
droplet and present preliminary results of this model using the method of [69]. In chapter
4 we given an overview of the nodal projection operator that is the foundation of our
numerical method for simulating incompressible two-phase flow and summarize the
numerical method for incompressible single phase flow that our two-phase flow method
extends. Chapter 5 is a thorough overview of all details of the numerical method for
simulating incompressible two-phase flow, and chapter 6 details the verification and
validation of this method.

Chapter 2
Rising oil droplets in stratification

In this work, I developed a framework to computationally study a single rising oil
droplet as it rises through a sharp, two-layer density stratified fluid, as described in figure
1.1. This framework involves computing the velocity and pressure of the oil and ambient
fluid, by numerically solving Eqs. (1.1)-(1.5), as the droplet travels through a region of
density stratified fluid. Then we use the velocity and pressure to compute several
interfacial forces that dictate the effect of stratification on the droplet’s rising behavior.

This problem was studied experimentally at UC Merced in [43], where time scales of
the entrainment process were quantified for a range of experimental parameters, such as
Reynolds numbers ranging from 5.4 - 1060. While these experiments were able to
quantify aspects of the process of entrainment and slowdown as the droplet passes through
the transition region, quantities such as forces and energies were not capable of being
measured. To further the investigation of this experiment, I use numerical simulations to
capture the experiment in a framework where all numerical quantities are available and
capable of being used to solve for relevant forces and energies. The primary goal of my
investigation has been to use simulations to measure and understand the forces that play
the largest roles in driving droplet entrainment and slowdown.

The subject of the rising and settling of particles, drops, and bubbles in homogeneous
density and density stratified fluids has been an area of active experimental and
computational research. The incorporation of density stratification in particular has led to
numerous studies into how to quantify the effects of stratification on rising and settling by
means of decomposing the effects of stratification into multiple, distinct forces. Some
experimental investigations include [32], where settling and rising spheres were studied in
density homogeneous flows and the vortex shedding and wake structure were investigated
in a range of moderate Reynolds number regimes and [74, 6], where the terminal drop rise
velocity of several types of droplets including toluene and n-butanol in water were

6

7

studied. These studies helped establish the general velocity profiles of rising and settling
particles and drops present in regimes in the absence of any density stratification.

In addition, there have been experimental studies that focused on the increased
complexity that density stratification adds to the rising and settling dynamics of solid
particles. In [61], the gravitational settling of solid particles in a two layer density
stratification demonstrated that particles experience an additional drag force and
deceleration due to stratification. Similary, [73] also found that settling particles passing
through a two layer stratification region reach a velocity minimum as the particle exits
from the density transition region. This phenomenon was also observed in [1], in which
settling spheres were studied in a strongly stratified two layer regime, where the
stratification forces were also observed to have caused a reversal in the sphere’s direction
of motion. Finally, settling spheres in low Reynolds number, or Stokes flow, regimes with
both two layer and linear stratification were studied in [77, 19, 45], quantifying the
entrainment in this additionally physically relevant regime. Finally, [43] studied rising oil
droplets in a sharp two layer density stratification. They quantified two timescales
describing the droplet’s delay, as well as estimations on stratification forces contributing
to the delay. It is this experiment that this work aims to further through numerical
simulations.

There similarly exists a comparable body of numerical studies of rising and settling
particles, spheres, and drops in both homogeneous and density stratified fluids. In [5], the
wake dynamics of very light rising spheres under buoyancy in a density homogeneous
flow were studied. Both [6, 11] featured numerical investigations into the rising of
n-butanol droplets in density homogeneous water, which agreed with corresponding
experimental investigations. For drops in density stratified fluids, [7] observed that the
drag coefficient of settling spherical drops was enhanced in linearly stratified flows under
a range of Froude numbers. This study also considered sharp two-layer stratified fluids,
and saw a similar drag enhancement. The study [58], also in a linearly stratified flow,
observed an increase in drag in a low Reynolds number regime due to stratification and
inertial forces. Finally, [13] considered simulations of oil droplets in two layer
stratification, and found that Marangoni forces, forces arising due to surface tension
gradients, also play a significant role in stratification induced drag enhancement.

In this chapter, I give an overview of the means by which the model equations are
numerically solved and show validation of the simulations with available experimental
data. In chapter 3 of this dissertation, interfacial forces are identified and solved for using
a decomposition of the pressure field corresponding to distinct physical effects such as
viscosity and buoyancy. While this decomposition proved capable of solving for distinct
interfacial forces over time, a preliminary numerical investigation in both a homogeneous
and stratified ambient yielded noisy and inaccurate results that were not sufficient to

8

perform a full investigation on the role of each force in driving droplet entrainment. This
limitation in accuracy inspired the development of a novel numerical method to solve
Eqs. (1.1)-(1.5) that has a higher order of accuracy, the subject of chapters 4 - 6 of this
dissertation.

2.1 Model equations
As previously stated, the velocity, pressure, and density field of a single rising oil

droplet in stratification are modeled using Eqs. (1.1)-(1.5). The momentum equation (1.1)
has been simplified using the Boussinesq approximation to have any variable density
effects be considered only in the external body forces. This approximation is valid for
density variations in the ambient fluid that are near the range of 5 − 10% [60], which is
true in the experiments these simulations are modeling.

To focus more closely on the interfacial effects that are induced by density stratification,
we rewrite these equations by rescaling the pressure to remove the lower layer hydrostatic
pressure, phydrostatic = ρlgyy, where gy is the non-zero component of the acceleration due
to gravity, y is the coordinate in the rising direction, and ρl is the lower-layer density. We
define the rescaled pressure p̃ as

p̃ = p− ρlgyy. (2.1)

As such, Eq. (1.1) can be written in terms of p̃ as

1
ρ0

∇p̃ = −
(
∂u
∂t

+ u · ∇u
)

+ µ

ρ0
∆u + (ρ− ρl)

ρ0
g, (2.2)

with corresponding jump conditions at the interface

[[u]] = 0 ∀x ∈ Γ, (2.3)
[[σ · n − p̃n]] = γκn ∀x ∈ Γ, (2.4)

We also define a rescaled density profile, ρ̃,

ρ̃ = ρ− ρl. (2.5)

As such, we can write Eq. (2.2) as

1
ρ0

∇p̃ = −
(
∂u
∂t

+ u · ∇u
)

+ µ

ρ0
∆u + ρ̃

ρ0
g. (2.6)

9

Finally, we note the wall boundary conditions for u and p̃,
∂u
∂n

= 0 y = Ymax, (2.7a)

u = 0 ∀x ∈ ∂Ω : y ̸= Ymax, (2.7b)

p̃ = 0 y = Ymax, (2.8a)
∂p̃

∂n
= 0 ∀x ∈ ∂Ω : y ̸= Ymax, (2.8b)

where we consider the boundary of the domain to be ∂Ω = [Xmin, Xmax] × [Ymin, Ymax] ×
[Zmin, Zmax].

2.2 Numerical method
The model equations, Eqs. (2.3)-(2.8), are solved using the numerical method

presented in [69]. This numerical method is a pressure correction projection method on
adaptive octree grids, which uses a staggered Marker and Cell (MAC) grid for storing the
computational variables. The details of this numerical method will be elucidated on
further in chapter 5, as the new numerical method developed in this dissertation is based
on this method. The primary difference between these methods is the grid on which
computational variables are stored and the number of interpolations required due to the
new grid layout. In short, these numerical methods solve the incompressible two-phase
Navier-Stokes equations Eqs. (1.1)-(1.4) through a splitting approach where the
momentum equation Eq. (1.1) is solved first and then corrected to account for the
divergence free condition Eq. (1.2). The advection is treated explicitly and diffusion is
treated implicitly. The adaptive octree grid is refined in areas near the interface and where
there are high variations in density, velocity, and vorticity.

Additionally, the interface between oil and water, Γ, is represented using the level-set
method [48] as the zero-contour of an auxiliary function ϕ. The details of how this level set
function is advanced in time are also explained further in chapter 5, although this method
does not use the volume preserving projection to the reference map that is incorporated in
the new numerical method.

2.3 Comparison with experiment
Using the numerical method of [69], several comparisons between simulations and

experiments were performed. Shown in figure 2.1 is an image from a 3D simulation of a

10

2D slice of the density field in the ambient fluid surrounding a droplet that is passing
through the transition region. This figure demonstrates that the simulation captures the
entrainment of higher density fluid as the droplet passes from the lower layer to the upper
layer. Shown in figure 2.2 is a comparison between the shadowgraph of a simulation and

Figure 2.1: Simulation of rising oil droplet in sharp two layer stratification. A 2D slice of
the 3D simulation is shown, with the color representing the density in the ambient fluid.
The lower-layer density depicted in red is ρl = 1.1 g/cm3 and the upper-layer density
depicted in blue is ρu = 1 g/cm3. Here, the density and viscosity of the droplet are
ρd = 0.9972 g/cm3 and µd = 0.098 g/(cm · s), respectively. Additionally, the Reynolds
number in the lower layer is Re = 370. The entrainment of density from the lower layer is
depicted.

experiment. The shadowgraph is a quantity computed as ∇2ρ̃, and is used to visualize the
drop’s wake structure. Though the simulation does not fully capture the unsteady nature of
the wake structure far from the drop, it does capture the near drop wake fairly close to
experiment. Additionally, we note that this unsteadiness could be better captured with the
addition of some sort of destabilization mechanism or symmetry breaking in the model.

Shown in figures 2.3 and 2.4 are a comparison between the droplet’s vertical position
and velocity over time. We observe some agreement with the experiment, in particular
with capturing the trends in the rising velocity. In both the experiment and simulation, we
observe that the droplet rises with an asymptotic rising velocity in the lower layer,

11

Figure 2.2: Comparison between the shadowgraph of a simulation (left) and the
corresponding experiment (right) as the droplet travels through the transition region. The
parameters in the simulation were set to be equal to those in the experiment, where the
lower-layer density is ρl = 1.1 g/cm3 and the upper-layer density is ρu = 1 g/cm3. Here,
the density and viscosity of the droplet are ρd = 0.9972 g/cm3 and µd = 0.098 g/(cm · s),
respectively, and the Reynolds number in the lower layer is Re = 370.

12

experiences a tremendous drop in velocity as it travels through the transition region,
reaches a velocity minimum shortly after entering the upper layer, and finally accelerates
until achieving an asymptotic rising velocity in the upper layer. While our simulations
produced similar orders of magnitude in position and velocity compared with the
experiment, there is a noticeable discrepancy between the two results. We believe that this
is due to limitations in the model itself, as, for example, we do not model the asymmetry
in the wake that was observed in the experiment shown in figure 2.2. Nevertheless, these
comparisons demonstrate validation of the mathematical model and of the numerical
method itself in being able to reproduce the velocity trends observed and measured in the
experiments.

Figure 2.3: Droplet rising vertical position vs time, comparison between experiment (red)
and simulation (blue).

13

Figure 2.4: Droplet rising vertical velocity vs time, comparison between experiment (red)
and simulation (blue).

Chapter 3
Investigation of interfacial forces

In this chapter, we present a model for the interfacial forces impacting a rising oil
droplet as it rises through a region of density stratified ambient fluid. Inspired by the
work of [78], this model is a force decomposition model, obtained from decomposing
the fluid pressure into distinct components that each derive from a physical effect such as
the gravitational force and interfacial tension and that are all impacted by the presence of
density stratification. We present a preliminary numerical investigation of this model using
the model and numerical method [69] presented in chapter 2, in both a homogeneous and
stratified ambient.

There have been several studies focused on quantifying the multiple forces that arise
in stratified flows in order to understand the role each plays on rising and settling particle
and droplet drag enhancement. In [23], a distinct stratification force on settling spheres
was identified in a linearly stratified flow due to vorticity resulting from baroclinic torque,
present due to a misalignment of density and pressure gradients. This work was expanded
on in [78], in which a force decomposition was proposed including an additional buoyant
entrainment force and a force due to baroclinic torque. This force decomposition approach
serves as the inspiration for the force decomposition model presented in this chapter.

3.1 Net force acting on droplet
The net force acting on the droplet is the sum of body forces plus the drag force,

Fnet = ρdgV + Fdrag, (3.1)

14

15

where ρd and V are the density and volume of the droplet, respectively, and

Fdrag =
∫

Γ
n · (−(p̃+ ρlgyy))I + µ

(
∇u + ∇uT

)
)dS, (3.2)

where I is the identity matrix. Then as such, the net force is given as

Fnet = ρdgV +
∫

Γ
n · (−(p̃+ ρlgy)I + µ

(
∇u + ∇uT

)
)dS. (3.3)

And we can simplify this by integrating the hydrostatic pressure term and obtain

Fnet = (ρd − ρl)gV +
∫

Γ
n · (−p̃ I + µ

(
∇u + ∇uT

)
)dS. (3.4)

Then Eq. (3.4) can be used to compute the net force on the droplet. We wish to split up
the integral term in Eq. (3.4) by decomposing p̃ into multiple components that represent
different physical effects.

3.2 Identification of interfacial forces
Considering Eqs. (2.6), (2.3), and (2.4), we note that there are four distinct effects

comprising the pressure: buoyancy effects due to terms containing ρ̃g, viscous effects due
to terms containing µ, interfacial tension effects due to terms containing γ, and remaining
inertial effects due to the remaining terms. This approach is similar to [78] but now in the
context of drops and interfacial tension forces instead of solid spheres. This observation
allows us to decompose the rescaled pressure as

p̃ = pµ + pρ + pu + pγ , (3.5)

where pµ is the pressure due to viscous effects, pρ is the pressure due to buoyant effects,
pγ is the pressure due to interfacial tension effects, and pu is the pressure due to remaining
inertial effects.

3.3 Derivation of Poisson jump problems
Given the pressure decomposition Eq. (3.5), we now wish to derive a set of equations

to solve for each component, allowing us to isolate each and study their relative effects on
droplet entrainment over time. Poisson problems can be derived for each pressure term by

16

first taking the divergence of Eq. (2.2) and applying the divergence free condition ∇·u = 0,
resulting in

1
ρ0

∆p̃ = − (∇ · (u · ∇u)) + 1
ρ0

(
∂

∂y
ρ̃

)
gy. (3.6)

We can also take the dot product of Eq. (2.6) with the normal vector n and obtain

1
ρ0

∇p̃ · n = −
(
∂u
∂t

+ u · ∇u
)

· n + µ

ρ0
∆u · n + ρ̃

ρ0
g · n. (3.7)

We will use Eq. (3.7) to determine the jump conditions for the pressure when x ∈ Γ. In
addition, we note that the jump condition Eq. (2.4) can be re-written as

[[p̃]] = [[n · σ · n]] − γκ. (3.8)

Then using Eqs. (3.6), (3.7), and (2.8) we define the Poisson problems as

1
ρ0

∆pµ = 0 (3.9a)

[[pµ]] = [[n · σ · n]] ∀x ∈ Γ, (3.9b)[[
1
ρ0

n · ∇pµ

]]
=
[[
µ

ρ0
∆u · n

]]
∀x ∈ Γ, (3.9c)

pµ = 0 y = Ymax, (3.9d)
∂pµ

∂n
= 0 ∀x ∈ ∂Ω : y ̸= Ymax, (3.9e)

1
ρ0

∆pρ = 1
ρ0

(
∂

∂y
ρ̃

)
gy (3.10a)

[[pρ]] = 0 ∀x ∈ Γ, (3.10b)[[
1
ρ0

n · ∇pρ

]]
=
[[
ρ

ρ0
n · g

]]
∀x ∈ Γ, (3.10c)

pρ = 0 y = Ymax, (3.10d)
∂pρ

∂n
= 0 ∀x ∈ ∂Ω : y ̸= Ymax, (3.10e)

17

1
ρ0

∆pu = − (∇ · (u · ∇u)) (3.11a)

[[pu]] = 0 ∀x ∈ Γ, (3.11b)[[
1
ρ0

n · ∇pu

]]
= 0 ∀x ∈ Γ, (3.11c)

pu = 0 y = Ymax, (3.11d)
∂pu

∂n
= 0 ∀x ∈ ∂Ω : y ̸= Ymax, (3.11e)

1
ρ0

∆pγ = 0 (3.12a)

[[pγ]] = −γκ ∀x ∈ Γ, (3.12b)[[
1
ρ0

n · ∇pγ

]]
= 0 ∀x ∈ Γ, (3.12c)

pγ = 0 y = Ymax, (3.12d)
∂pγ

∂n
= 0 ∀x ∈ ∂Ω : y ̸= Ymax. (3.12e)

Eq. (3.9) is for the viscous pressure, Eq. (3.10) is for the buoyancy pressure, Eq. (3.11)
is for the remaining inertial pressure, and Eq. (3.12) is for the interfacial tension pressure.
We note that in Eq. (3.10c), the flux jump is in ρ and not in ρ̃ due to the fact that the jump
in ρl is zero. We also note in Eq. (3.11c) the flux jump is zero due to continuity of u across
Γ.

Additionally, we have another viscous force,

Fvisc,2 =
∫

Γ
n · (µ

(
∇u + ∇uT

)
)dS, (3.13)

though this force is not due to the pressure, but rather the velocity field alone. The
individual forces are computed by integrating the pressure components over the interface,
as

Fµ =
∫

Γ
n · (−pµI)dS, (3.14)

Fρ =
∫

Γ
n · (−pρI)dS, (3.15)

Fu =
∫

Γ
n · (−puI)dS, (3.16)

18

Fγ =
∫

Γ
n · (−pγI)dS. (3.17)

As such, the net interfacial force (the net force from Eq. (3.4) minus the first term) can be
computed as

FI,net =
∫

Γ
n · (−(pµ + pρ + pu + pγ)I)dS +

∫
Γ

n · (µ
(
∇u + ∇uT

)
)dS. (3.18)

3.4 Preliminary results of droplet in homogeneous and
stratified fluids

Using the Poisson problems Eqs. (3.9)-(3.12), interfacial forces were computed using
pressure components for a droplet in a homogeneous ambient and a droplet in a sharp
two layer density stratified ambient. The numerical method used to solve these Poisson
problems is the Poisson solver described in chapter 5.9.1.

3.4.1 Homogeneous ambient
To verify the accuracy of the Poisson jump problems Eqs. (3.9)-(3.12) as a

decomposition of the full pressure, first a comparison between the sum of the pressure
components and the full pressure was performed in a homogeneous ambient fluid. This
comparison is shown in figure 3.1, and aside from deviations at early times at the start of
the simulation, the pressure decomposition matches fairly well with the full pressure,
demonstrating that the Poisson jump problems were formulated correctly in the constant
density ambient fluid configuration. The discrepancy between the full pressure and the
sum of the pressure components is explained by limitations in accurately computing terms
in Eqs. (3.9)-(3.12) that involve multiple derivatives of u, as u is obtained from a first
order accurate numerical method.

A full force investigation was additionally performed on a drop rising in a homogeneous
flow, shown in figure 3.2. In this figure, interfacial forces from the pressure decomposition
are shown with solid lines, and the remaining forces and net force are shown with dashed
lines. In this scenario, the droplet rises until it reaches a terminal velocity, and thus rises
until it has zero net force. This is correctly demonstrated in the simulation (see dashed red
line). This also demonstrates the capability of the individual forces to be studied over the
course of a simulation.

19

Figure 3.1: Pressure decomposition (orange) compared to the full pressure (blue) for a
droplet rising in a homogeneous flow. In this case, the interfacial forces due to pressure
were computed for the pressure decomposition and for the full pressure for the comparison.

Figure 3.2: Forces acting on a rising droplet in homogeneous flow vs time. The interfacial
forces due to the pressure decomposition are shown as solid lines, and the remaining forces
and net force are shown as dashed lines.

20

3.4.2 Sharp two layer stratified ambient
Finally, the force decomposition is applied to a simulation of a drop rising in a sharp

two layer density stratification, with the same parameters as the case shown in figures 2.1
and 2.2. Equations (3.9)-(3.12) are solved and the resulting forces per volume are shown
in figures (3.3) and (3.4). Note that the buoyant force is shown with a full, unscaled
pressure with the lower layer hydrostatic pressure still present. While the resulting
buoyant force is reasonable and matches the expected behavior while the droplet is in the
lower layer, the remaining forces are extremely noisy and likely quite inaccurate, even in
the lower layer. We believe again that this noise and inaccuracy is due to the velocity field
not being obtained in manner that allows for accurate calculations of its second
derivatives, given that the velocity field is computed using the first order accurate method
[69]. While these inaccuracies were more manageable in the constant density ambient
fluid case shown in section 3.4.1, the droplet experiences far more dramatic changes in its
velocity when in the presence of density stratification. As a result, there is a much greater
need in the fully density stratified case to accurately compute the inertial and viscous
effects modeled through two derivatives of the velocity field. Attempts to remedy this
noisy and inaccurate behavior proved to be insufficient, leading to the realization that we
should use a different numerical method with higher accuracy in the velocity field to solve
the model equations Eqs. (1.1)-(1.2). The velocity field and its derivatives are the primary
tool needed to compute these remaining forces, as seen in Eqs. (3.9) and (3.11), and thus
need to be computed with the highest accuracy possible. A novel numerical method that
fits this criteria is the focus of the rest of this dissertation.

Figure 3.3: Buoyancy force per volume vs time (blue) with a smoothed curve (red). This
additionally accounts for the lower layer hydrostatic pressure. The vertical black line
signifies the time at which the droplet enters the transition region from the lower layer.

21

Figure 3.4: Viscous, remaining inertial, and interfacial tension forces per volume vs time
(circles) along with smoothed curves (solid lines). The vertical black line signifies the time
at which the droplet enters the transition region from the lower layer.

3.5 Conclusions
In this project, we successfully modeled and numerically simulated an oil droplet

rising in a sharp two layer stratification. These simulations were validated against
available experimental data, and show both qualitative and some quantitative agreement.
From this starting point, we developed a model for forces acting on the surface of the
droplet as it rises through the region of density stratification. We validated this model
using a rising oil droplet in a homogeneous ambient layer without the effects of density
stratification. However, when applied to a case with density stratification, limitations in
the accuracy of the numerical method used led to an inability to perform a full
quantification of the relative effects of each interfacial force on droplet slowdown and
entrainment.

To address these limitations, we develop a new numerical method for simulating
incompressible two-phase flow that shares similarities with the method [69] but is an order
of accuracy higher in the velocity. With this method implemented and validated for
examples featuring a constant density flow, the future direction for this work first begins
with an incorporation of density stratification to this method. Following this, the
validation tests shown in chapter 2 will be performed to ensure that these simulations still
match the behavior of the experiment. After, the same analysis will be performed on
interfacial forces as outlined in this chapter, with efforts made to further tune the

22

numerical method to produce the most accurate interfacial forces possible. Past studies [7,
58, 13] show that stratification induces additional interfacial forces that enhance the drag
on rising and settling particles, and this future direction will allow us to quantify these
interfacial forces on the rising drop.

Another direction of future work is the incorporation of additional forces that were not
included in the model Eqs. (1.1)-(1.5). For example, the study [13] found that the
Marangoni effect plays a significant role in drag enhancement on rising and settling
particles. Incorporating the Marangoni effect into the model involves an additional term in
the jump condition Eq. (1.4), which will need to be addressed with additions to the
numerical method.

Chapter 4
Stable nodal projection methods

The primary challenge with numerically solving the incompressible Navier-Stokes
equations, Eqs. (1.1) and (1.2) is the coupling between the conservation of mass and
momentum, given by the incompressibility constraint on the velocity field, Eq. (1.2), that
must be satisfied at all times. Multi-phase fluid flow additionally provides the challenge of
mathematically representing the interface, tracking its evolution, and in capturing the
discontinuity in quantities between the distinct fluid phases across the interface, see figure
1.2.

Given that multi-phase fluid flows are the focal point of numerous applications in
environmental, biological, and industrial applications, the development of numerical
methods to simulate the multi-phase incompressible Navier-Stokes equations has been an
area of tremendous research. Peskin’s immersed boundary method [49], originally
developed for simulating blood flow in the heart, was first used to simulate incompressible
multiphase fluid flow with a front tracking method in [70, 72] and with the level-set
method in [65, 64]. The level-set approach was also coupled with the volume of fluid
method in [63, 62] to improve mass conservation. These methods handle the discontinuity
in quantities across the interface through the use of numerical δ-functions, which leads to
an artificial smearing of quantities across the interface due to numerical diffusion.

Sharp capturing methods, methods that treat the interface as having zero thickness,
have been developed to improve the capturing of the discontinuity in quantities across the
interface. The immersed interface method was developed by [39] to improve on the
immersed boundary method as a sharp interface capturing method. This method was
originally applied to solving the incompressible Stokes equations [38] and the Navier
Stokes equations [37, 40] with fluids that have identical densities and viscosities. Later,
this method was generalized for the Stokes equations to account for discontinuous
viscosities with an augmented variable approach. This approach has also shown success in

23

24

handling non-smooth velocities and pressures for the Navier-Stokes equations [66, 67],
but has had less work developed regarding the handling of discontinuous densities.

Another example of a sharp capturing method is the ghost fluid method, originally
developed in [24]. This method preserves the sharpness of quantities across the interface in
the normal direction, but still leads to the smearing of quantities in the tangential direction.
This method was used to simulate incompressible multi-phase flow in [34, 62] using the
projection method of [22] to solve for the fluid velocity.

There has been a variety of approaches developed focusing on ways to correctly enforce
the jump conditions at the interface. One example is the virtual node method, originally
developed in [8, 31] and used for simulating incompressible flow in [4, 57], which takes
on a monolithic approach and discretizes the mass and momentum equations together to
solve for velocity and pressure and uses an embedded boundary approach to represent the
interface. Another example is the gauge method, used in methods such as [56, 18], where
the jump conditions are reformulated as auxiliary and gauge variables.

Level-set based methods have also been developed using a variety of strategies to
capture the sharpness of quantities across the interface. One example is the numerical
method of [69], which uses a modified pressure correction projection method with an
iterative correction procedure to preserve sharpness and ensure that jump conditions were
properly satisfied. This method is the basis for the method presented here, and was used to
produce the results presented in chapters 2 and 3. Another recent example is the method
of [21], which uses a fully implicit treatment of the jump conditions.

I developed a numerical method that is capable of simulating the multi-phase
incompressible Navier-Stokes equations Eqs. (1.1)-(1.3) with higher accuracy in the
velocity field, to be able to study applications such as rising oil droplets in stratified flows.
This is a projection method where all of the computational variables are collocated at the
nodes of the computational mesh, instead of using the more common staggered grid
layout. This avoids numerous expensive interpolations between different grid locations,
avoids needing an iterative correction step that introduces additional error, and allows for
the use of a more accurate nodal solver, similar to the supra-convergent solver [47], during
the projection operation step. Even though this fully collocated projection is not a true
projection, it is stable and approaches a true projection; if iterated a sufficient number of
times.

This chapter is organized as follows: First, I present an overview on the background of
the various components of this numerical method. Next, I describe a projection numerical
method for single-phase incompressible fluid flow that is entirely collocated. This method
was developed primarily by fellow graduate students Matt Blomquist and Scott West,
though I contributed to the conceptualization of this method, in particular to the structure
of the collocated projection operator. This numerical method is the subject of a

25

publication [14], on which I serve as a contributing author. This method and the collocated
projection operator in particular that it features forms the basis of the collocated projection
method that I developed for multi-phase fluid flow, which is the subject of chapter 5.

4.1 Background

4.1.1 Projection method
Fractional step or splitting methods are among the most common methods used to

solve the incompressible Navier-Stokes equations. The chief example is the projection
method, first proposed by Chorin [22], in which the momentum equation (1.1) is solved
first and the mass equation (1.2) is later enforced by projecting the solution of the
momentum equation into the space of divergence free velocities. Care must be taken when
selecting the boundary conditions for each step of this splitting, and past studies, such as
the class of projection methods known as Gauge Methods, have found choices on the
boundary conditions to lead to fully second order methods for the velocity and pressure
[18].

Another class of projection methods is approximate projection methods [3], in which
the discrete gradient and divergence operators do not lead to a true projection into the
space of divergence free velocity fields. Instead, the projected velocity field only has
approximately zero divergence to second order in the mesh spacing. This approach allows
for velocity components to be collocated, allowing for easier implementation of higher
order upwinding time-stepping schemes, enabling the numerical method to achieve
second order convergence in both space and time. The approach we take is a type of
approximate projection method, in which the projection step is not a true projection
discretely, but converges to one under repeated iteration. We select boundary conditions
for the splitting steps by an iterative correction procedure.

4.1.2 Adaptive mesh refinement
In addition, because of the inherent multi-scale nature of multi-phase incompressible

fluid flows, adaptive mesh refinement (AMR) is used in order to achieve computational
efficiency. One of the earliest examples of AMR is the Block Structure AMR [10], where
finer grids are adaptively placed over a coarse grid covering the domain. Block Structure
AMR is popular in simulating the Navier-Stokes equations because each of the separately
layered grids are allowed to be uniform, simplifying the construction of discretization
methods.

26

Another popular technique is the use of octree/quadtree grids [55], which have been
used in numerous numerical methods for simulating both single and multi-phase
incompressible fluid flows [51, 29, 69]. Octree/quadtree grids are refined by recursively
splitting computational cells into four (2D) or eight (3D) equally sized smaller cells. In
Block Structure AMR, all quantities are defined on multiple grids that are synchronized
for consistency, whereas in octree/quadtree grids, all quantities are defined on a single
grid. In this work, we choose to use octree/quadtree grids to incorporate AMR into our
method, as they are straightforward to work with given the need to only handle quantities
on a single grid.

4.1.3 Interface representation
Additionally, when simulating incompressible fluid flow a choice needs to be made

about how to simulate the irregular geometries that represent solid objects or moving
interfaces. One common technique for handling the representation of moving irregular
geometries are Front Tracking methods [27], in which the flow field is discretized on a
stationary grid and the interface is explicitly represented by a separate, unstructured grid
that moves through the stationary grid. This technique has been used very successfully in
many applications [72], but has the drawback of required an additional unstructured grid
to couple with the flow grid.

Another widely used method for tracking an interface sharply is the Level-Set method
[48], in which irregular geometries are tracked through the advection of an implicit, higher
dimensional level-set function which is discretized on the same grid as the fluid. The
Level-Set method is widely used to simulate incompressible fluid flows [29, 69], but has
inherent mass loss issues. The mass loss issue has been mitigated through coupling the
level-set method with the Reference Map method [50, 2, 76], a method in which advection
of a quantity of interest is achieved through considering the deformation of the entire
computational domain rather than the single quantity itself. We choose to not only use a
coupled Level-Set/Reference Map [9] in this work for interface representation, but also
incorporate an additional, volume-preserving projection of the reference map to improve
volume conservation [68], see section 5.5. In this way, we capture the sharpness of
quantities across the interface and preserve volume well without needing an additional
grid to track the evolution of the interface.

4.1.4 Storage of computational variables
Finally, when using a projection method, consideration must be given on where

computational variables are stored on the computational mesh, in particular, the velocities,

27

pressure, and any intermediate variables used to project the momentum equation velocity
into the space of divergence free velocities. Analytically, the gradient operator is equal to
the negative transpose of the divergence operator (i.e. ∇ = −∇T·). For a detailed proof of
this property, see Appendix A. If this is also true for the chosen discrete gradient operator,
G, and the discrete divergence operator, D, (i.e. G = −DT), then the projection step will
also be stable at the discrete level. On a uniform Cartesian grid, this property is not
satisfied if all variables are collocated and standard central differencing is used to
discretize the gradient and divergence operations, and this construction is in fact unstable.
As such, a staggered grid or Marker and Cell (MAC) grid [30] is often used, where
velocities are stored at cell faces and the pressure at the cell centers. In this layout, the
chosen discrete divergence can be shown to be the negative transpose of the chosen
discrete gradient (G = −DT), as has been shown in numerous works such as in [30] on
uniform Cartesian grids and in [29, 69] on adaptive octree/quadtree grids. A figure of the
MAC grid layout on a quadtree grid is shown in figure 4.1.

Figure 4.1: MAC grid layout on a quadtree grid in 2D. The red circles represent the x-
direction velocity, u, the grey circles represent the y-direction velocity, v, and the blue
squares represent the pressure, p.

The MAC grid does introduce some challenges, particularly when applied to
octree/quadtree grids. Constructing differential operators that satisfy the negative
transpose property is a highly non-trivial process on non-uniform grids. For example, in
[29], the authors developed a stable projection method for the incompressible
Navier-Stokes equations on octree/quadtree grids with the MAC grid layout. This layout
led to the need for a Voronoi-based Finite-Volume approach to deal with the spatial
discretization of the momentum equation and expensive Least Squares interpolations for
the temporal discretization of the momentum equation. Expensive interpolations are

28

needed in order to perform calculations between quantities stored at different locations,
which can introduce error as well as increase computational cost. This method was later
generalized to simulate multi-phase fluid flows in [69], the method used to present
preliminary results in chapter 2 of this dissertation.

Other studies have found success using different storage approaches than the MAC grid.
For example, in [28] a different staggered grid layout was developed and used in which the
pressure was stored at the nodes and velocity stored at the cell faces. This layout had several
advantages over the standard MAC grid such as allowing for finite difference methods to
be used given the better alignment of the pressure and velocity components. Others have
found success with using a fully collocated approach, such as in [46], in which the authors
created an orthogonal projection operator entirely defined on nodes, which was shown to
be stable. This method also produced second order accuracy in the velocity field as it was
able to take advantage of a supra-convergent solver [47] during the projection operation
step. However, their method only allowed for the boundary condition of the velocity in the
normal direction being zero, limiting the number of applications that could be simulated.

In this work, we wish to develop a numerical method that can produce more accurate
velocity fields than our existing method [69] in order to be able to fully study rising oil
droplets in stratified flows. To this end, we choose to instead collocate all of our variables
at the nodes of the computational domain, instead of utilizing the MAC grid layout. This
choice is made to create a numerical method with higher accuracy in the velocity field and
a considerably simplified implementation.

4.2 Nodal numerical method for single-phase flow
The content of this section has been published in Blomquist, M., West, S. R.,

Binswanger, A. L., & Theillard, M. (2024). Stable nodal projection method on octree
grids. Journal of Computational Physics, 499, 112695. https://doi.org/10.1016/
j.jcp.2023.112695

Here, I summarize the contributions I made on the development of a collocated
projection method to simulate the single-phase incompressible Navier-Stokes equations.
This is a project that I collaborated on with fellow graduate students Matt Blomquist and
Scott West. As they were developing this method, I was simultaneously developing the
extension of this method to multi-phase fluid flows, which is the subject of chapters 5 - 6.
My contribution to this project was assisting in the development of the collocated
projection operator, as it its the same for both single and multi-phase formulations and in
writing, editing, and providing feedback as a contributing author for the publication [14]

29

Figure 4.2: Computational domain shown in two dimensions. The fluid domain, Ω−, is
enclosed by the domain boundary, ∂Ω, and the interface, Γ. Fluid properties, ρ and µ, are
constant throughout the fluid domain. An arbitrary solid domain, Ω+ is shown as a shaded
region.

on this method.
This numerical method served as the foundation on which the collocated multi-phase

projection method was established, and the methods and results developed in this work
were extended to multi-phase flow in chapters 5-6.

4.2.1 Model equations
We consider a fluid flow in a computational domain Ω = Ω+ ∪ Ω− ⊂ R2,3 whose

dynamics are modeled by the incompressible Navier-Stokes equations

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ µ∆u + f ∀x ∈ Ω−, (4.1)

∇ · u = 0 ∀x ∈ Ω−, (4.2)

where u is the fluid velocity, p is the pressure, ρ is the constant density, µ is the constant
viscosity, and f are external forces such as the gravitational force. By convention, the
Navier-Stokes equations (4.1)-(4.2) are specifically solved in the subdomain Ω−, see figure
4.2. We denote the boundary of Ω− by Γ and the boundary of the computational domain Ω
by ∂Ω.

Additionally, we consider a no slip boundary condition for any solid object placed in

30

the flow, denoted mathematically as

u = u|Γ ∀x ∈ Γ, (4.3)

where u|Γ is equal to the velocity of the solid object.

4.2.2 Computational grids
The equations presented here will be solved on non-graded adaptive octree/quadtree

grids. In an adaptive octree/quadtree grid, each cell is split recursively as desired into
either four cells in a quadtree or eight cells in an octree. The number of times a cell is split
is called its level. In a non-graded tree, there are no restrictions on the differences in level
between adjacent cells [55].

On the octree/quadtree grids, all computational variables, namely the velocity
components and pressure, will be fully collocated and stored at the nodes of the grid. An
example of a highly non-graded quadtree grid along with a schematic of where variables
are stored is shown in figure 4.3.

Figure 4.3: (a) Highly non-graded quadtree grid, (b) Example of fully collocated quadtree
grid. The velocity components and pressure are stored at the nodes, represented in red.

4.2.3 General Projection Method
In this section, the general steps of the projection method [22] are detailed, as this

numerical method for incompressible single-phase fluid flow is constructed as an
approximate projection method.

31

The projection method is a fractional-step scheme for solving Eqs. (4.1) and (4.2). In
the first step, referred to in this work as the viscosity step, we advance the velocity field un

at time step tn to an intermediate velocity field u∗ by solving the momentum equation
Eq. (4.1), where the pressure term is omitted. The viscosity step, using a second order,
semi-implicit, Semi-Lagrangian, Backward Difference Formula scheme, has u∗

constructed as the solution of

ρ

(
α

u∗ − un
d

∆tn
+ β

un
d − un−1

d

∆tn−1

)
= µ∆u∗ + f , (4.4)

where α and β are coefficients given in terms of time steps tn and tn−1, ∆tn = tn+1 − tn
and ∆tn−1 = tn − tn−1, un

d and un−1
d are the velocities un and un−1 (u at time steps tn and

tn−1) evaluated at the departure points xn
d and xn−1

d respectively, which are the departure
points that follow to un+1 at the point xn+1 if the corresponding characteristic is traced
back in time from tn+1 to tn and tn−1. The details of this temporal discretization will be
elaborated on in chapter 5.

The next step of the projection method is to take the intermediate velocity u∗ and
project it onto the divergence-free space to enforce the incompressibility condition
Eq. (4.2). This step is referred to as the projection step. This is done by first using the
Helmholtz-Hodge decomposition to separate the intermediate velocity into curl-free and
divergence-free components as

u∗ = un+1 + ∇Φ (4.5)

where un+1 is the divergence-free velocity field at time tn+1 and Φ is the Hodge variable.
Taking the divergence of Eq. (4.5) and using the fact that un+1 is divergence free, we obtain
a Poisson equation for the Hodge variable,

∆Φ = ∇ · u∗. (4.6)

This Poisson equation is solved for Φ and the divergence-free velocity un+1 at time tn+1 is
recovered as

un+1 = u∗ − ∇Φ. (4.7)

We note that Eq. (4.7) can be rewritten as an operator applied to u∗,

un+1 =
(
I − ∇∆−1∇·

)
u∗. (4.8)

Thus, we define the general projection operator P as,

P = I − ∇∆−1∇ · . (4.9)

32

4.2.4 Stable collocated projection operator
In the numerical methods presented in this work, the discrete collocated projection

operator PN is defined as

PN = I − GNL−1
N DN , (4.10)

where GN , DN , and LN are the discrete nodal gradient, divergence, and Laplacian
operators, respectively, constructed using standard central differences [14, 47]. This
operator is used to perform the projection step in the numerical methods presented in this
work.

As we established in our manuscript [14], the discrete collocated projection operator
PN is not actually a true projection. This is due to the fact that the composition of the
discrete nodal divergence and gradient operators is not equivalent to the discrete nodal
Laplacian operator (i.e. DNGN ̸= LN). As a result,

P2
N = (I − GNL−1

N DN)(I − GNL−1
N DN) (4.11)

= I − 2GNL−1
N DN + GNL−1

N DNGNL−1
N DN ̸= PN .

However, if the operator PN is applied to a velocity field u iteratively as

lim
k→∞

Pk
Nu, (4.12)

then it was shown that PN dampens all compressible modes of u and keeps only the
incompressible ones, meaning that the collocated projection operator PN converges to a
true projection when iterated sufficiently many times [14]. In practice, we found that only
a handful of projections, generally fewer than 10, were enough to produce accurate results
in a range of validation examples.

Furthermore, in our manuscript [14], we prove the stability of the collocated projection
analytically on uniform grids with periodic boundary conditions, and numerically on
adaptive grids for a range of other boundary conditions. The stability of the collocated
projection operator in the context of two-phase flow will be explored later in chapter 5.

4.2.5 Numerical method
The numerical method is a fully collocated approximate projection method where the

viscosity and projection steps are successively iterated until the prescribed boundary
conditions on u are sufficiently satisfied on the velocity at the next time step, un+1, and
where the projection step is itself successively iterated until the compressible modes are
sufficiently removed from the velocity computed in the viscosity step. We use the

33

projection method presented in section 4.2.3 with the iterative approach shown in section
4.2.4 to carry out the projection step Eq. (4.8). The interface representing objects in the
domain is expressed as a level-set function. The algorithm used to construct the solution
un+1 at time tn+1 from the solution un at time tn is described in figure 4.4.

1 – Initialization
Initialize the corrective velocity boundary condition c as the final one from the previous iteration.

2 – Repeat until
∥∥un+1 − u|Γ

∥∥
∞

< ϵo

2a – Viscosity step
Compute the intermediate velocity field u∗ as the numerical solution of

ρ
Du∗

Dt
= µ△u∗ + f ∀x ∈ Ω−/Γ, (4.13)

u∗ = u|Γ + c ∀x ∈ Γ, (4.14)

Initialize un+1 = u∗

2b – Projection step

Repeat until convergence by iterating in p ,
∥∥un+1

p − PN un+1
p

∥∥
∞

< ϵi

∥∥un+1
p

∥∥
∞

Project the velocity field

un+1
p+1 = PN un+1

p (4.15)

By computing the Hodge variable Φp as the solution of

∆Φp = ∇ · un+1
p ∀x ∈ Ω−/Γ, (4.16)

∇Φp · n = 0 ∀x ∈ Γ, (4.17)

and using it to project the intermediate velocity on the divergence-free space:

un+1
p+1 = un+1

p − ∇Φp. (4.18)

Compute the new correction
c = c − ω

(
un+1 − u|Γ

)
3 – Update

Adapt the mesh to un+1 and update all the variables accordingly.

Figure 4.4: Outline of the single-phase flow algorithm for the construction of the solution
un+1 at time tn+1 from the solution un at the previous time step tn.

We advance our our velocity field from un to un+1 using a standard two step projection
method. In the viscosity step, we compute the intermediate velocity field, u∗, using a
semi-Lagrangian Backward Difference Formula scheme for the temporal integration of the

34

momentum equation where the viscous terms are treated implicitly. The details of this
discretization are described in chapter 5, as this discretization is shared between the single-
phase and multi-phase numerical methods.

In the projection step, we repeatedly apply our nodal projection operator until the
stopping criteria ∥∥∥un+1 − PNun+1

∥∥∥
∞
< ϵi

∥∥∥un+1
∥∥∥

∞
, (4.19)

where ϵi is a small, positive number, is satisfied, or a predefined maximum number of
iterations, Kmax, has been reached. Typically, we choose ϵi = 10−3, set Kmax = 5, and
only need a few iterations to reach convergence.

To ensure that un+1 satisfies the prescribed boundary conditions on u, we iterate the
viscosity and projection steps using a boundary correction procedure. In general, the
boundary conditions of un+1 will not satisfy the prescribed boundary conditions on u,
such as Eq. (4.3), because un+1 is constructed entirely from u∗ and ∇Φ, as seen in
Eq. (4.7). To satisfy the correct boundary conditions on un+1, we choose the boundary
conditions on u∗ to be the prescribed boundary conditions on u plus a corrective velocity
c, shown in Eq. (4.14). This corrective velocity c is initialized at t = 0 as c = 0 and as the
final c from the previous time step for later times, and at each time step is updated for
every iteration of the viscosity and projection steps. The corrective velocity c is updated as

c = c − ω
(
un+1 − u|Γ

)
, (4.20)

where ω ∈ (0, 1). It is designed so that when the correction reaches convergence, the
boundary condition on the solid object is satisfied (i.e. un+1 = u on Γ). The parameter
ω controls the convergence rate and must be chosen in the range 0 < ω < 1. Similar
corrections are performed on the wall of the computational domain ∂Ω. Typically, we
terminate the outer iterations when the error in the interface’s velocity (∥un+1 − u|Γ∥∞) is
less than ϵo = 10−3.

4.3 Conclusions
I contributed to the development of a novel projection method for the simulation of

single-phase incompressible flows in arbitrary domains using quad/octrees, where all of
the variables are collocated at the grid nodes. By design, our collocated projection
operator is an iterative procedure. If it exists, the limit of this iterated procedure is the
canonical projection on the incompressible space. This numerical method achieves second
order accuracy and through our validation is shown to be a competitive computational
fluid dynamics tool for studying complex fluid flows. We extended this method to

35

incompressible two-phase flow as part of the project presented in chapter 5, in order to
have a method capable of studying rising oil droplets in density stratified flows.

Chapter 5
Stable nodal projection method for
two-phase fluid flows

In this chapter, I present a fully collocated nodal projection method to solve the
multi-phase incompressible Navier-Stokes equations. This numerical method extends the
approach presented in chapter 4 to multi-phase fluid flow. This numerical method is
specifically designed for simulating two-phase flow, though it is generalizable to more
than two fluid phases.

5.1 Governing equations of incompressible two-phase
fluid flow

We consider a domain Ω consisting of two incompressible, immiscible, Newtonian fluid
phases: Ω+ and Ω−, each with a respective constant density ρ± and constant viscosity µ±.
The two phases are separated by an interface Γ, upon which there is a curvature κ and
interfacial tension γ. Here, the ± superscript denotes the fluid phase. A schematic of this
problem domain is given in figure 5.1. The fluid velocity and pressure are modeled by the
incompressible Navier-Stokes equations

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ ∇ · σ + f ∀x ∈ Ω \ Γ, (5.1)

∇ · u = 0 ∀x ∈ Ω \ Γ, (5.2)

36

37

Figure 5.1: Problem schematic where the density in each phase is denoted by ρ± and the
viscosity in each phase is denoted by µ±. The interface Γ has a curvature κ, normal n, and
interfacial tension γ.

where u is the fluid velocity, p is the pressure, f are external forces, σ = µ
(
∇u + ∇uT

)
is the stress tensor, ρ is the density, and µ is the viscosity. The first equation Eq. (5.1)
represents conservation of momentum and the second Eq. (5.2) represents conservation
of mass. Jump conditions representing continuity of the velocity and traction across the
interface are defined as

[[u]] = 0 ∀x ∈ Γ, (5.3)
[[σ · n − pn]] = γκn + q ∀x ∈ Γ, (5.4)

where [[χ]] = χ+−χ− is the jump of the quantity χ across the interface Γ, γ is the coefficient
of interfacial tension, κ is the curvature of the interface Γ, n is the outward facing normal
vector, and q are any additional interfacial stresses.

5.2 Numerical method overview
The two-phase numerical method presented in this section can be seen as a

generalization of the method presented in chapter 4 to multiple fluid phases. We collocate
all computational variables at the grid nodes and use adaptive quad/octree grids, as in
section 4.2.2.

This approach is a traditional pressure correction projection method [22], where at
every step a pressure guess needs to be constructed and the viscosity and projection steps

38

are iterated until the interface jump conditions and wall boundary conditions are satisfied
within a desired tolerance. The projection step is a fully collocated approximate nodal
projection, where the projection step is itself successively iterated until the compressible
modes are sufficiently removed from the intermediate velocity computed during the
viscosity step.

The interface Γ is represented as the zero contour of the scalar level-set function ϕ(x),
where ϕ is a signed distance function with the following convention

Γ = {x ∈ Ω : ϕ(x) = 0}, (5.5)
Ω− = {x ∈ Ω : ϕ(x) < 0}, (5.6)
Ω+ = {x ∈ Ω : ϕ(x) > 0}, (5.7)

see figure 5.1. The level-set function ϕ can be differentiated to compute the normal vector
n and the curvature κ.

The algorithm used to construct the solution (ϕn+1,un+1) at time tn+1 from the
solution (ϕn,un) at time tn is shown in figure 5.2, and each step of this method will be
elaborated on further. In the description of each step of the numerical method, wall
boundary conditions on the boundary of the domain ∂Ω will be given for each quantity
being solved for. Generically, these boundary conditions will be denoted as B(·).

In the following sections, we integrate the nodal projection operator into a general
framework for solving the incompressible two-phase Navier-Stokes equations. We begin
by giving an overview of the convergence criteria used for the iterations present in the
numerical method. Next, we present an overview of the interface representation method
we employ as part of the numerical method, followed by an overview of the adaptive mesh
refinement strategy used. Subsequent sections then discuss details of the viscosity,
pressure guess, and projection steps of the numerical method.

39

(0) Initialization of the corrective terms
Initialize the corrective velocity jump X0.

(1) Pressure guess
Construct the pressure guess p̃ as the solution of the Poisson problem

∆p̃ = 0 ∀x ∈ Ω \ Γ, (5.8)[[
p̃
]]

= −γκ − q · n ∀x ∈ Γ, (5.9)[[1
ρ

∇p̃ · n
]]

= 0 ∀x ∈ Γ. (5.10)

(2) Repeat until convergence by iterating in k ,
∥∥un+1

k+1 − un+1
k

∥∥
∞

< ϵo

2a – Viscosity step
Compute the intermediate velocity field u∗

k as the solution of

ρ
Du∗

k

Dt
= ∇ ·

(
µ
(

∇u∗
k + (∇u∗

k)T
))

− ∇p̃ + f ∀x ∈ Ω/Γ, (5.11)[[
u∗

k

]]
= Xk ∀x ∈ Γ, (5.12)[[(

∇u∗
k + (∇u∗

k)T
)

· n
]]

= q − n(q · n) ∀x ∈ Γ. (5.13)

2b – Projection step
Initialize the velocity to be projected un+1

p = u∗
k .

Repeat until convergence by iterating in p ,
∥∥un+1

p − PN un+1
p

∥∥
∞

< ϵi

∥∥un+1
p

∥∥
∞

Project the velocity field

un+1
p+1 = PN un+1

p (5.14)

By computing the Hodge variable Φp as the solution of

∆Φp = ∇ · un+1
p ∀x ∈ Ω/Γ, (5.15)

[[ρΦp]] = 0 ∀x ∈ Γ, (5.16)

[[∇Φp · n]] = 0 ∀x ∈ Γ, (5.17)

and using it to project the intermediate velocity on the divergence-free space:

un+1
p+1 = un+1

p − ∇Φp. (5.18)

Compute the new correction Xk+1 from the above velocity

Xk+1 = Xk − ω
[[

un+1
k

]]
, 0 < ω < 1. (5.19)

(3) Interface evolution
Construct the new level set ϕn+1 and the new reference map ξn+1 from the reference map ξn and un+1 by
solving Eqs. (5.34), (5.35), and (5.37).

(4) Update
Adapt the mesh to ϕn+1 and un+1 and update all the variables accordingly.

Figure 5.2: Outline of the algorithm for the construction of the solution (ϕn+1,un+1) at
time tn+1 from the solution (ϕn,un) at the previous time step tn.

40

5.3 Interfacial and boundary convergence conditions
The corrective term Xk as seen in Eq. (5.12) is used to correctly satisfy the continuity

of velocity across the interface in un+1. It is iterated such that

lim
k→∞

[[
un+1

k

]]
= 0. (5.20)

The iteration is initialized at t = 0 as X0 = 0 and as the final Xk from the previous time
step for later times, and at each time step is updated for every iteration of the viscosity and
projection steps. The iteration procedure on Xk is

Xk+1 = Xk − ω
[[

un+1
k

]]
, (5.21)

where ω is a small, strictly positive constant. This iteration choice was shown in [69] to
converge to the correct jump condition Eq. (5.3) as k → ∞ for any ω ∈ (0, 1). We do not
need an additional correction on the stress jump Eq. (5.13) like was included in [69] due to
our full treatment of the stress tensor in the Navier-Stokes momentum equation Eq. (5.1).

Additionally, during this iteration process, the boundary conditions of u∗ are
continually updated and corrected in the same way as the single-phase flow method 4.4 as

B(u∗
k) = B(un+1

k) + c, (5.22)

where the corrective velocity c is computed as in Eq. (4.20).

5.4 Convergence criteria
We end the iteration of the successive viscosity and projection steps when the

convergence criteria ∥∥∥un+1
k+1 − un+1

k

∥∥∥
∞
< ϵo, (5.23)

is fulfilled. In this case, ϵo is a small positive number, in practice typically taken to be ϵo =
10−3. This convergence criteria will be satisfied when Xk+1 ≈ Xk, as then the velocity
jump condition should be satisfied within a desired tolerance, as opposed to the single-
phase flow method 4.4, which terminates its iteration when the wall boundary condition is
satisfied within a desired tolerance.

5.5 Interface representation
In this numerical method, we handle the interface representation between the two fluid

phases using the Coupled Level-Set Reference Map Method [9], as well as the improved
Volume Preserving Reference Map correction [68].

41

5.5.1 Level-Set method
As previously stated, the interface Γ is represented as the zero contour of the scalar

level-set function ϕ(x), where ϕ is a signed distance function with the following convention

Γ = {x ∈ Ω : ϕ(x) = 0}, (5.24)
Ω− = {x ∈ Ω : ϕ(x) < 0}, (5.25)
Ω+ = {x ∈ Ω : ϕ(x) > 0}, (5.26)

see figure 5.3. The level-set function ϕ can be differentiated to compute the normal vector

Figure 5.3: Level-set representation of interface Γ as contour of level-set function ϕ, which
separates the domain into Ω− and Ω+ in 2D [9].

n and the curvature κ as

n = ∇ϕ
|∇ϕ|

, κ = ∇ · n = ∇ ·
(

∇ϕ
|∇ϕ|

)
. (5.27)

To ensure that ϕ is unique, ϕ is chosen to be a signed-distance function

|∇ϕ| = 1. (5.28)

Then given an advecting velocity that is the solution to the incompressible Navier-Stokes
equation Eqs. (5.1) - (5.4), the position of the interface can be tracked in time by solving
the advection initial value problem

∂ϕ

∂t
+ u · ∇ϕ = 0 t ≥ 0, ∀x ∈ Ω, (5.29a)

ϕ(t = 0,x) = ϕ0(x) ∀x ∈ Ω, (5.29b)

42

where ϕ0(x) is the initial level-set function at t = 0. As this advection is carried out, the
level-set function can gradually lose the signed distance property (5.28) due to numerical
error, and so the level-set function must be reinitialized by solving the reinitialization
equation for a sufficient number of fictitious τ time steps:

∂ϕ

∂τ
+ sign(ϕ)(|∇ϕ| − 1) = 0 ∀x ∈ Ω. (5.30)

As a result of the inherent numerical errors that accumulate through the advection and
reinitialization procedures, the level-set method is not conservative of mass, which can
pose significant issues when using it to resolve long time dynamics of interface driven
flows like the oil droplets in density stratified flows of chapter 2. As such, we choose to
use a Coupled Level-Set Reference Map Method to address this mass loss issue by instead
using a reference map to handle interface advection.

5.5.2 Reference map method
The Reference map method [33, 9] handles the advection of quantities in a given

domain by a deforming field through an invertible mapping between the initial domain
and the domain at a future time. We consider the advection of a scalar quantity ψ under
the velocity u given by the following initial value problem

∂ψ

∂t
+ u · ∇ψ = 0 t ≥ 0, ∀x ∈ Ω, (5.31a)

ψ(t = 0,x) = ψ0(x) ∀x ∈ Ω, (5.31b)

the same as in Eq. (5.29). The Reference Map method works by deforming the entire
computational domain by the advecting velocity u and tracking the mapping from the
deformed domain at a future time t > 0 back to the initial domain with an invertible
reference map [33, 9]. A schematic of this method is shown in figure 5.4.

We consider the original, undeformed domain at t = 0 to be B0 ∈ R2,3 and the future,
deformed domain to be B(t) ∈ R2,3. The mapping that takes any point x0 ∈ B0 and maps
it to its corresponding point x(t) ∈ B(t) is called the motion map, defined

x(t) = χ(t,x0), t ≥ 0, x0 ∈ B0. (5.32)

The reference map, denoted as ξ(t,x), is the inverse of the motion map, and maps any point
x(t) ∈ B(t) to its corresponding point x0 ∈ B0,

x0 = ξ(t,x(t)), t ≥ 0, x ∈ B(t). (5.33)

43

Figure 5.4: Schematic of the effect of the motion map χ and the reference map ξ in mapping
points x0 ∈ B0 and x ∈ B(t) between each other [9]. The deformation of the domain here
is due to the advecting velocity u.

In the reference map framework, quantities are advected by advecting the reference map
itself by solving the following advection equation initial value problem

∂ξ

∂t
+ u · ∇ξ = 0, ∀t ≥ 0, ∀x ∈ B(t), (5.34)

ξ(t = 0,x) = x, x ∈ B0. (5.35)

With the reference map obtained, we can solve for the advection of any scalar quantity ψ
also advected by the velocity u by plugging the reference map into the initial condition as

ψ(t,x) = ψ0(ξ(t,x)), t ≥ 0, x ∈ B(t). (5.36)

5.5.3 Coupled method
In the Coupled Level-Set Reference Map method, the level-set function ϕ is advected

using the reference map, following the procedure outlined in Eqs. (5.34)-(5.36) [9]. The
initial domain B0 and the deformed domain B(t) are both chosen to be the computational
domain at the corresponding time t ≥ 0, and the level-set function at time t ≥ 0 is evaluated
as

ϕ(t,x) = ϕ0(ξ(t,x)), t ≥ 0, x ∈ B(t). (5.37)

44

In order for the Reference Map method to work, the motion map χ and thus the reference
map ξ must be bijective. It is possible, especially for large deformations due to u [33], for
ξ to gradually lose its bijectivity due to numerical error. As such, a restarting procedure is
performed if ξ is shown to be losing bijectivity. The following criteria based on the gradient
of ξ is evaluated at each time step in a user-defined region around the interface to see if ξ
has lost bijectivity [9]:

max
{∥∥∥∥∥ ∇ξx

∥ξx∥∞
· ∇ξy

∥ξy∥∞

∥∥∥∥∥
∞
,

∥∥∥∥∥ ∇ξx

∥ξx∥∞
· ∇ξz

∥ξz∥∞

∥∥∥∥∥
∞
,

∥∥∥∥∥ ∇ξy

∥ξy∥∞
· ∇ξz

∥ξz∥∞

∥∥∥∥∥
∞

}
> cos (θcrit),

(5.38)
where ξx, ξy, and ξz are the components of ξ and θcrit ∈

[
0, π

2

]
is an arbitrary user-defined

critical angle. If there is a particular time tc where the restarting criteria is met, then the
following restarting procedure is performed

ϕ0(x) = R(ϕ0(ξ(tc,x))), ξ(tc,x) = x, x ∈ B(tc), (5.39)

where R(·) denotes the reinitialization of ϕ0, performed by solving Eq. (5.30). In practice,
far fewer reinitializations are needed in this coupled method than when directly advecting
the level-set function per Eq. (5.29), resulting in better mass conservation [9].
Reinitialization of the level-set function only needs to be done during the restarting
process, as opposed to every time step when directly advecting the level-set function, and
when reinitialization does take place, only 20 reinitialization iterations are used in the
coupled method compared to 50 in the direct level-set method.

Volume-preserving projection

In addition, our numerical method uses a volume-preserving correction to the coupled
method [9]. Due to numerical error, we assume that the reference map, now defined as
ξ∗ and its inverse, defined as the motion map χ∗, do not preserve volume. The volume-
preserving projection method [68] measures the deviation of the reference map, solved for
in Eqs. (5.34) and (5.35), from a volume-preserving map and uses a correction to project the
reference and motion map pairing into the space of volume-preserving diffeomorphisms.

This projection is done through composing χ∗ and ξ∗ with a diffeomorphism γ such
that

χ(x0) = γ(χ∗(x0)), det(χ(x0)) = 1 ∀x0 ∈ B0, (5.40)

and
ξ(x) = ξ∗(γ−1(x)), det(ξ(x)) = 1 ∀x ∈ B, (5.41)

where B is the deformed domain at any specified t > 0. The determinant criteria in
Eqs. (5.40) and (5.41) hold at any given point in the domain for a volume-preserving map

45

[68]. To ensure that this projection does not impact the bijectivity of the reference map,
the correction is only imposed in a thin user-defined shell S around the interface. It was
shown in [68] using variational calculus that the correction to the reference map γ−1 is
computed as

γ−1(x) = x − ∇λ, (5.42)

where λ satisfies the Poisson problem

−∆λ = 1 − det(∇ξ∗) ∀x ∈ S, (5.43)
λ = 0 ∀x ∈ ∂S, (5.44)

where ξ∗ is the unprojected reference map that is the solution to Eqs. (5.34) and (5.35). A
schematic detailing the volume-preserving method is shown in figure 5.5. This additional
correction further improves the volume conservation of the interface representation in our
numerical method.

Figure 5.5: Schematic of the volume-preserving correction to the reference map. We
assume that at some given time the maps (χ∗, ξ∗) are not volume-preserving due to
numerical errors. These maps are corrected into a volume-preserving pair (χ, ξ) by
composition with the diffeomorphism γ [68].

5.6 Sampling and data structures
Our numerical method is implemented on non-graded octree (3D) and quadtree (2D)

grids. The computational grid is initialized as a single root cell that represents the entire

46

computational domain and is split into eight (3D) or four (2D) children cells. These
children cells are then split in the same manner based on user-specified splitting criteria,
with the splitting process continuing recursively on new cells until the splitting criteria are
fulfilled.

As was done in previous studies [69, 14, 46, 29], the mesh is dynamically refined
near the fluid-fluid interfaces and in areas of high velocity or vorticity gradients. At each
iteration, we recursively apply all chosen splitting criteria at each cell.

For adaptive mesh refinement near the fluid-fluid interfaces, we split each cell C if the
following criterion is met

min
n∈nodes(C)

|ϕ(n)| ≤ B · Lip(ϕ) · diag(C) and level(C) ≤ maxlevel, (5.45)

where Lip(ϕ) is an upper estimate of the minimal Lipschitz constant of the level-set
function ϕ, diag(C) is the length of the diagonal of cell C, B is the user-specified width of
the uniform band around the interface, where finer resolution is desired, and maxlevel is the
user-specified maximum grid level. Since the level set used to create the mesh will be
reinitialized and |∇ϕ| = 1, we use Lip(ϕ) = 1.2.

The refinement based criterion for areas of high velocity gradients is the following

min
n∈nodes(C)

diag(C) · ∥∇u(n)∥
∥u∥∞

≥ TV and level(C) ≤ maxV , (5.46)

where TV is the user-specified threshold on the velocity gradient and maxV is the maximum
grid level allowed for velocity gradient-based refinement. We typically choose the velocity
gradient-based refinement maximum level maxV to be one level lower than the maximum
grid level maxlevel due to the most significant dynamics occuring near the interface.

Finally, we ensures that a minimum resolution of minlevel is maintained through the
following refinement criterion:

level(C) ≤ minlevel. (5.47)

If none of these criteria are met, we merge C by removing all its descendants.

5.6.1 Collocated nodal grid layout
In figure 5.6 we illustrate the grid layout of all quantities of interest for the numerical

method (velocity and the Hodge variable) on adaptive quad/octree grids. Like in our
numerical method for incompressible single-phase flow [14], we collocate all quantities at
the nodes of our computational grid. This results in a stable, approximate projection
method that achieves second order convergence in the velocity.

47

(a)
<latexit sha1_base64="Jl4SrqGNbdHkt7uQMWp5nDKkZng=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWy3bRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LRzNNmB/hSPKQUzRWeqji5aBccWvuAmSdeDmpQI7moPzVH8Y0jZg0VKDWPc9NjJ+hMpwKNiv1U80SpBMcsZ6lEiOm/Wxx6oxcWGVIwljZkoYs1N8TGUZaT6PAdkZoxnrVm4v/eb3UhDd+xmWSGibpclGYCmJiMv+bDLli1IipJUgVt7cSOkaF1Nh0SjYEb/XlddK+qnluzbuvVxpuHkcRzuAcquDBNTTgDprQAgojeIZXeHOE8+K8Ox/L1oKTz5zCHzifP4NBjTg=</latexit><latexit sha1_base64="Jl4SrqGNbdHkt7uQMWp5nDKkZng=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWy3bRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LRzNNmB/hSPKQUzRWeqji5aBccWvuAmSdeDmpQI7moPzVH8Y0jZg0VKDWPc9NjJ+hMpwKNiv1U80SpBMcsZ6lEiOm/Wxx6oxcWGVIwljZkoYs1N8TGUZaT6PAdkZoxnrVm4v/eb3UhDd+xmWSGibpclGYCmJiMv+bDLli1IipJUgVt7cSOkaF1Nh0SjYEb/XlddK+qnluzbuvVxpuHkcRzuAcquDBNTTgDprQAgojeIZXeHOE8+K8Ox/L1oKTz5zCHzifP4NBjTg=</latexit><latexit sha1_base64="Jl4SrqGNbdHkt7uQMWp5nDKkZng=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWy3bRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LRzNNmB/hSPKQUzRWeqji5aBccWvuAmSdeDmpQI7moPzVH8Y0jZg0VKDWPc9NjJ+hMpwKNiv1U80SpBMcsZ6lEiOm/Wxx6oxcWGVIwljZkoYs1N8TGUZaT6PAdkZoxnrVm4v/eb3UhDd+xmWSGibpclGYCmJiMv+bDLli1IipJUgVt7cSOkaF1Nh0SjYEb/XlddK+qnluzbuvVxpuHkcRzuAcquDBNTTgDprQAgojeIZXeHOE8+K8Ox/L1oKTz5zCHzifP4NBjTg=</latexit><latexit sha1_base64="Jl4SrqGNbdHkt7uQMWp5nDKkZng=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWy3bRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LRzNNmB/hSPKQUzRWeqji5aBccWvuAmSdeDmpQI7moPzVH8Y0jZg0VKDWPc9NjJ+hMpwKNiv1U80SpBMcsZ6lEiOm/Wxx6oxcWGVIwljZkoYs1N8TGUZaT6PAdkZoxnrVm4v/eb3UhDd+xmWSGibpclGYCmJiMv+bDLli1IipJUgVt7cSOkaF1Nh0SjYEb/XlddK+qnluzbuvVxpuHkcRzuAcquDBNTTgDprQAgojeIZXeHOE8+K8Ox/L1oKTz5zCHzifP4NBjTg=</latexit>

(b)
<latexit sha1_base64="Quv2Fcn5ZgCKHKELAy04iMjmwgg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTcPI4inME5VMGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCExo05</latexit><latexit sha1_base64="Quv2Fcn5ZgCKHKELAy04iMjmwgg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTcPI4inME5VMGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCExo05</latexit><latexit sha1_base64="Quv2Fcn5ZgCKHKELAy04iMjmwgg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTcPI4inME5VMGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCExo05</latexit><latexit sha1_base64="Quv2Fcn5ZgCKHKELAy04iMjmwgg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVSDy0G54tbcBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLU2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66R9VfPcmndfrzTcPI4inME5VMGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCExo05</latexit>

(c)
<latexit sha1_base64="53iJhaP4ZW9a5QxjaC6LELhiq5Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVTZ5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddK+qnluzbuvVxpuHkcRzuAcquDBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP4ZLjTo=</latexit><latexit sha1_base64="53iJhaP4ZW9a5QxjaC6LELhiq5Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVTZ5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddK+qnluzbuvVxpuHkcRzuAcquDBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP4ZLjTo=</latexit><latexit sha1_base64="53iJhaP4ZW9a5QxjaC6LELhiq5Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVTZ5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddK+qnluzbuvVxpuHkcRzuAcquDBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP4ZLjTo=</latexit><latexit sha1_base64="53iJhaP4ZW9a5QxjaC6LELhiq5Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoiBT0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVTZ5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddK+qnluzbuvVxpuHkcRzuAcquDBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP4ZLjTo=</latexit>

Figure 5.6: Collocated nodal grid in 2D: the velocity components, pressure, Hodge
variable, level-set function, and reference map are all stored at the nodes () of the grid.

5.7 Viscosity step: temporal discretization
We choose to treat the advective terms in the Navier-Stokes momentum equation

Eq. (5.11) explicity and the diffusive terms implicitly. This allows us to employ different
strategies for the temporal and spatial discretizations. In this section, we discuss the
temporal discretization of the Navier-Stokes momentum equation Eq. (5.11).

5.7.1 Phase accounting SLBDF
The left hand side of Eq. (5.11) is discretized using a combination of a second order

Semi-Lagrangian (SL) method with a second order Backward Difference Formula (BDF)
scheme [41, 29, 69] with adaptive time steps. This SLBDF scheme leads to the following
discretization of the the momentum equation Eq. (5.11):

ρ

(
α

u∗ − un
d

∆tn
+ β

un
d − un−1

d

∆tn−1

)
= −∇p̃+ ∇ ·

(
µ
(
∇u∗ + (∇u∗)T

))
+ f , (5.48)

where ∆tn = tn+1 − tn and ∆tn−1 = tn − tn−1 are the adaptive time steps and where

α = 2∆tn + ∆tn−1

∆tn + ∆tn−1
, β = − ∆tn

∆tn + ∆tn−1
. (5.49)

The terms un
d and un−1

d are the velocities un and un−1 evaluated at the departure points xn
d

and xn−1
d respectively, which are the departure points that follow to un+1 at the point xn+1

if the corresponding characteristic is traced back in time from tn+1 to tn and tn−1. We find

48

the departure points xn
d and xn−1

d through the backward RK2 scheme

x̂ = xn+1 − ∆tn
2 un+1(xn+1), (5.50)

û =
(

1 + ∆tn
2∆tn−1

)
un(x̂) − ∆tn

2∆tn−1
un−1(x̂), (5.51)

xn
d = xn+1 − ∆tnû, (5.52)

and

x̂ = xn+1 − ∆tnun(xn+1), (5.53)
û = un+1(x̂), (5.54)

xn−1
d = xn+1 − (∆tn + ∆tn−1)û. (5.55)

The interpolations of the velocity fields at the interpolation points are done using a stable
weighed essentially non-oscillatory (WENO) scheme, maintaining a second order accurate
discretization.

We use the improved trajectory reconstruction formulated in our nodal projection
method for single phase flows [14] and replace the un+1 in Eqs. (5.50)-(5.55) with the
expansion

un+1(xn+1) = un(xn+1) + ∆tn
∆tn−1

(
un(xn+1) − un−1(xn+1)

)
+ O(∆t2), (5.56)

instead of simply using un to represent the unknown un+1.
We additionally note that care is taken to ensure that for each point xn+1, the fluid

phase that xn+1 belongs to is checked and the corresponding velocity field is used for un

to construct the intermediate points x̂. The procedure is also done to ensure that once each
x̂ is computed, its corresponding fluid phase is checked and the the corresponding velocity
field is used for un to construct the departure points xn

d and xn−1
d . This phase accounting

is done by taking into account the value of the level set function at all evaluation points
and using the corresponding velocity field depending on if the level set function at each
evaluation point is positive or negative.

5.7.2 Local temporal limiter
Although the semi-Lagrangian and second order backward difference formula schemes

are unconditionally stable independently, it is not true that the SLBDF scheme presented
above is also unconditionally stable for all fields u, see [16, 15] and the references therein.

49

For our work, we use quadratic interpolation in the construction of our finite difference
and finite volume stencils, which can introduce spurious oscillations in regions of high
curvature, leading to instabilities. For a means of visualizing this, consider the example of
advection in 1D with no viscosity and a sharply peaked initial profile. The SLBDF scheme
applied to this scenario rapidly blows up, as shown in figure 5.7.

0 5 10 15 20 25
1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
#1021

Figure 5.7: Rapid blow up of the SLBDF scheme for 1D advection with no viscosity and
a sharply peaked initial profile. The left plot shows the solution at the initial time and the
right plot shows the solution at a later time after blow up has occured.

However, the first order Semi-Lagrangian Backward Difference Formula discretization
of the momentum equation:

ρ

(
un+1 − un

d

∆tn

)
= −∇p̃+ ∇ ·

(
µ
(
∇un+1 + (∇un+1)T

))
+ f , (5.57)

is unconditionally stable [75]. As such, to avoid a potential instability, we included the
ability to use a local limiter which drops the SLBDF scheme to first order should it appear
that the velocity at a particular node on the computational grid at the current time would be
unstable under the second order SLBDF scheme.

The criteria that the local limiter uses in 2D is as follows. Given Eq. (5.48), the
following quantity is computed for each velocity component

SLu =
(

1 − β

α

∆tn
∆tn−1

)
un

d − β

α

∆tn
∆tn−1

un−1
d . (5.58)

After this, a check is made to see if any of these quantities exceeds the maximum or is
smaller than the minimum of the velocity at the departure points, i.e.

if SLu > MAX(un
d ,un−1

d) or if SLu < MIN(un
d ,un−1

d). (5.59)

50

If this criteria is met for a particular velocity component at that particular node, then the
discretization used for that component at that node is the first order scheme Eq. (5.57)
to ensure stability. In practice, this temporal limiter is a crucial element in ensuring the
robustness of our solver, and is used at nodes near the interface in cases where significant
deformation of the interface occurs (see chapter 6 for examples of rising bubbles in 3D
where the local temporal limiter is used to maintain numerical stability).

5.7.3 Time step restriction
For the momentum equation Eq. (5.11), following the numerical method [69], the time

step restriction we use is the following

∆t ≤ ∆tmax = MIN(∆tCFL,∆tGV). (5.60)

The first term in Eq. (5.60) is from the CFL condition, that being

∆tCFL = c0∆x
max ∥u∥∞

, (5.61)

where c0 is the pre-set CFL number and ∆x is the smallest spatial grid size on the entire
quad/octree grid. Given that our method uses a Semi-Lagrangian method for handling
advection, the CFL number c0 in general can be chosen larger than 1. The second term in
Eq. (5.60) is the generalization of the time step restriction of Galusinski and Vigneaux [26]
presented in [69], that being

∆tGV = c1µ∆x
γ

+

√√√√(c1µ∆x
γ

)2

+ c2
ρ∆x3

2πγ , (5.62)

where c1 and c2 are constant pre-set coefficients that typically are set such that 0 < c1, c2 <
1. This time step restriction is a generalization of the Brackbill stability condition [17],
which is the time scale necessary to resolve capillary wave propagation. We also multiply
the maximum allowable time step ∆tmax from Eq. (5.60) by a coefficient tGV, referred to as
the GV coefficient, and obtain a time step ∆t = tGV∆tmax. To ensure numerical stability,
we restrict tGV ∈ (0, 1], though for some examples we may choose a GV coefficient larger
than 1 and still maintain stability (see chapter 6).

5.8 Viscosity step: spatial discretization
In this section, we discuss the implicit treatment of the diffusive terms in the Navier-

Stokes momentum equation Eq. (5.11). We use a finite volume discretization to treat the
stress tensor.

51

5.8.1 Coupled Jump Solver
With the explicit terms computed in Eq. (5.48), we are left with needing to solve for u∗.

This equation can be posed as a Helmholtz type equation of the form

ηv − ∇ · σ = r ∀x ∈ Ω \ Γ, (5.63)

[[v]] = k ∀x ∈ Γ, (5.64)
[[σ · n]] = h ∀x ∈ Γ, (5.65)

where
σ = µ

(
∇v + (∇v)T

)
, (5.66)

η = ρα

∆tn
, (5.67)

and u∗ is replaced with v for readability. The right-hand side r is equal to the previous
right-hand side for Eq. (5.11) plus the explicit temporal terms computed in the viscosity
step. The jump conditions k and h are equal to the jump conditions in Eqs. (5.12) and
(5.13).

To solve Eqs. (5.63)-(5.65), we use a finite volume discretization, which enables us to
handle points near the interface with ease and to ensure second order accuracy at the walls
if a Neumann boundary condition is present on u. We consider a control volume Cijk (Cij

in 2D), a cube (square in 2D) centered at the node (i,j,k) ((i,j) in 2D) on the computational
mesh. An example of a control volume in 2D with a uniform grid near an interface is shown
in figure 5.8. We integrate Eq. (5.63) over the control volume and obtain∫

Cijk

ηvdV −
∫

Cijk

∇ · σdV =
∫

Cijk

rdV . (5.68)

The Divergence Theorem is then applied to rewrite this equation as∫
Cijk

ηvdV −
∫

∂Cijk

σ · ndS =
∫

Cijk

rdV , (5.69)

where ∂Cijk represents the boundary of cell Cijk. If the cell crosses the interface Γ, then
this can further be rewritten by splitting the integrals into parts corresponding to the two
fluid phases Ω± as∫

C+
ijk

ηvdV +
∫

C−
ijk

ηvdV −
∫

∂C+
ijk

σ ·ndS−
∫

∂C−
ijk

σ ·ndS =
∫

C+
ijk

rdV +
∫

C−
ijk

rdV . (5.70)

52

Figure 5.8: Control volume Cij near the interface Γ in the two dimensional case.

Additionally, because the interface Γ crosses Cijk, the surface integral terms are rewritten
using the stress jump condition Eq. (5.65) as

−
∫

∂C+
ijk

σ ·ndS−
∫

∂C−
ijk

σ ·ndS = −
∫

∂C+
ijk

\Γ
σ ·ndS−

∫
∂C−

ijk
\Γ
σ ·ndS−

∫
Γ

hdS. (5.71)

From this point, the derivatives present in Eq. (5.71) need to be approximated. The details
of how this discretization is done will be fully explained in 2D, as the discretization in 3D
is a relatively straightforward generalization.

5.8.2 Discretization in 2D
To discretize the integrals of Eq. (5.71), we begin by splitting these up along the four

walls of the control volume Cij: R,L, T,B (right, left, top, and bottom)∫
∂C±

ij \Γ
=
∫

R±\Γ
+
∫

L±\Γ
+
∫

T ±\Γ
+
∫

B±\Γ
. (5.72)

The derivatives present in Eq. (5.71) are present in the stress tensor σ found in Eq. (5.66).
To handle the derivatives present in the ∇v term in σ, a standard, second order central
difference formula is used. However, in the case of adaptive octree/quadtree grids, the
direct neighbor to the center node may not exist in a particular direction. To handle this, we
follow [47] and define ghost values of desired nodal quantities at T-junctions to circumvent
the lack of direct neighbor. These ghost values are constructed using a third order accurate
interpolation scheme. An example of this scenario is shown in figure 5.9. Here, node n0

53

does not have a direct neighbor to the right, so we introduce a ghost node nr on the face
delimited by nodes nrt and nrb. For any nodal quantity ϕ, sampled at the existing nodes,
we can calculate a third-order accurate ghost value ϕr using the information at n0, at its
direct neighbors in all three other directions (i.e. nl, nt, nb), and at the neighboring nodes
nrt and nrb as

ϕr = rbϕrt + rtϕtb

rt + rb

− rtrb

t+ b

(
ϕt − ϕ0

t
− ϕ0 − ϕb

b

)
. (5.73)

`
<latexit sha1_base64="tB9fW3EsOI6dk/2GMqeebudcBUg=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgacmK7ba3ghePFWwrtEvJptM2NJtdkqxQlv4FLx4U8eof8ua/MdtWUNEHA4/3ZpiZFyaCa0PIh1NYW9/Y3Cpul3Z29/YPyodHHR2nikGbxSJWdyHVILiEtuFGwF2igEahgG44vcr97j0ozWN5a2YJBBEdSz7ijJpc6oMQg3KFuNW659cItsSvNkgtJ/VqwyfYc8kCFbRCa1B+7w9jlkYgDRNU655HEhNkVBnOBMxL/VRDQtmUjqFnqaQR6CBb3DrHZ1YZ4lGsbEmDF+r3iYxGWs+i0HZG1Ez0by8X//J6qRnVg4zLJDUg2XLRKBXYxDh/HA+5AmbEzBLKFLe3YjahijJj4ynZEL4+xf+TzoXrEde7uaw08SqOIjpBp+gcechHTXSNWqiNGJqgB/SEnp3IeXRenNdla8FZzRyjH3DePgGJpI52</latexit><latexit sha1_base64="tB9fW3EsOI6dk/2GMqeebudcBUg=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgacmK7ba3ghePFWwrtEvJptM2NJtdkqxQlv4FLx4U8eof8ua/MdtWUNEHA4/3ZpiZFyaCa0PIh1NYW9/Y3Cpul3Z29/YPyodHHR2nikGbxSJWdyHVILiEtuFGwF2igEahgG44vcr97j0ozWN5a2YJBBEdSz7ijJpc6oMQg3KFuNW659cItsSvNkgtJ/VqwyfYc8kCFbRCa1B+7w9jlkYgDRNU655HEhNkVBnOBMxL/VRDQtmUjqFnqaQR6CBb3DrHZ1YZ4lGsbEmDF+r3iYxGWs+i0HZG1Ez0by8X//J6qRnVg4zLJDUg2XLRKBXYxDh/HA+5AmbEzBLKFLe3YjahijJj4ynZEL4+xf+TzoXrEde7uaw08SqOIjpBp+gcechHTXSNWqiNGJqgB/SEnp3IeXRenNdla8FZzRyjH3DePgGJpI52</latexit><latexit sha1_base64="tB9fW3EsOI6dk/2GMqeebudcBUg=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgacmK7ba3ghePFWwrtEvJptM2NJtdkqxQlv4FLx4U8eof8ua/MdtWUNEHA4/3ZpiZFyaCa0PIh1NYW9/Y3Cpul3Z29/YPyodHHR2nikGbxSJWdyHVILiEtuFGwF2igEahgG44vcr97j0ozWN5a2YJBBEdSz7ijJpc6oMQg3KFuNW659cItsSvNkgtJ/VqwyfYc8kCFbRCa1B+7w9jlkYgDRNU655HEhNkVBnOBMxL/VRDQtmUjqFnqaQR6CBb3DrHZ1YZ4lGsbEmDF+r3iYxGWs+i0HZG1Ez0by8X//J6qRnVg4zLJDUg2XLRKBXYxDh/HA+5AmbEzBLKFLe3YjahijJj4ynZEL4+xf+TzoXrEde7uaw08SqOIjpBp+gcechHTXSNWqiNGJqgB/SEnp3IeXRenNdla8FZzRyjH3DePgGJpI52</latexit><latexit sha1_base64="tB9fW3EsOI6dk/2GMqeebudcBUg=">AAAB63icdVBNSwMxEM3Wr1q/qh69BIvgacmK7ba3ghePFWwrtEvJptM2NJtdkqxQlv4FLx4U8eof8ua/MdtWUNEHA4/3ZpiZFyaCa0PIh1NYW9/Y3Cpul3Z29/YPyodHHR2nikGbxSJWdyHVILiEtuFGwF2igEahgG44vcr97j0ozWN5a2YJBBEdSz7ijJpc6oMQg3KFuNW659cItsSvNkgtJ/VqwyfYc8kCFbRCa1B+7w9jlkYgDRNU655HEhNkVBnOBMxL/VRDQtmUjqFnqaQR6CBb3DrHZ1YZ4lGsbEmDF+r3iYxGWs+i0HZG1Ez0by8X//J6qRnVg4zLJDUg2XLRKBXYxDh/HA+5AmbEzBLKFLe3YjahijJj4ynZEL4+xf+TzoXrEde7uaw08SqOIjpBp+gcechHTXSNWqiNGJqgB/SEnp3IeXRenNdla8FZzRyjH3DePgGJpI52</latexit>

t
<latexit sha1_base64="HJRzZXWmeOFEDU3Tf9mTBe5D4Ng=">AAAB6HicdVDLSgNBEJz1GeMr6tHLYBA8LbNisskt4MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8ubfOJtEUNGChqKqm+4uPxFcaUI+rLX1jc2t7cJOcXdv/+CwdHTcUXEqGbRZLGLZ86kCwSNoa64F9BIJNPQFdP3pde5370EqHke3epaAF9JxxAPOqDZSSw9LZWJXao5bJdgQt1In1ZzUKnWXYMcmC5TRCs1h6X0wilkaQqSZoEr1HZJoL6NScyZgXhykChLKpnQMfUMjGoLyssWhc3xulBEOYmkq0nihfp/IaKjULPRNZ0j1RP32cvEvr5/qoOZlPEpSDRFbLgpSgXWM86/xiEtgWswMoUxycytmEyop0yabognh61P8P+lc2g6xndZVuYFXcRTQKTpDF8hBLmqgG9REbcQQoAf0hJ6tO+vRerFel61r1mrmBP2A9fYJXHaNMw==</latexit><latexit sha1_base64="HJRzZXWmeOFEDU3Tf9mTBe5D4Ng=">AAAB6HicdVDLSgNBEJz1GeMr6tHLYBA8LbNisskt4MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8ubfOJtEUNGChqKqm+4uPxFcaUI+rLX1jc2t7cJOcXdv/+CwdHTcUXEqGbRZLGLZ86kCwSNoa64F9BIJNPQFdP3pde5370EqHke3epaAF9JxxAPOqDZSSw9LZWJXao5bJdgQt1In1ZzUKnWXYMcmC5TRCs1h6X0wilkaQqSZoEr1HZJoL6NScyZgXhykChLKpnQMfUMjGoLyssWhc3xulBEOYmkq0nihfp/IaKjULPRNZ0j1RP32cvEvr5/qoOZlPEpSDRFbLgpSgXWM86/xiEtgWswMoUxycytmEyop0yabognh61P8P+lc2g6xndZVuYFXcRTQKTpDF8hBLmqgG9REbcQQoAf0hJ6tO+vRerFel61r1mrmBP2A9fYJXHaNMw==</latexit><latexit sha1_base64="HJRzZXWmeOFEDU3Tf9mTBe5D4Ng=">AAAB6HicdVDLSgNBEJz1GeMr6tHLYBA8LbNisskt4MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8ubfOJtEUNGChqKqm+4uPxFcaUI+rLX1jc2t7cJOcXdv/+CwdHTcUXEqGbRZLGLZ86kCwSNoa64F9BIJNPQFdP3pde5370EqHke3epaAF9JxxAPOqDZSSw9LZWJXao5bJdgQt1In1ZzUKnWXYMcmC5TRCs1h6X0wilkaQqSZoEr1HZJoL6NScyZgXhykChLKpnQMfUMjGoLyssWhc3xulBEOYmkq0nihfp/IaKjULPRNZ0j1RP32cvEvr5/qoOZlPEpSDRFbLgpSgXWM86/xiEtgWswMoUxycytmEyop0yabognh61P8P+lc2g6xndZVuYFXcRTQKTpDF8hBLmqgG9REbcQQoAf0hJ6tO+vRerFel61r1mrmBP2A9fYJXHaNMw==</latexit><latexit sha1_base64="HJRzZXWmeOFEDU3Tf9mTBe5D4Ng=">AAAB6HicdVDLSgNBEJz1GeMr6tHLYBA8LbNisskt4MVjAuYByRJmJ73JmNkHM7NCWPIFXjwo4tVP8ubfOJtEUNGChqKqm+4uPxFcaUI+rLX1jc2t7cJOcXdv/+CwdHTcUXEqGbRZLGLZ86kCwSNoa64F9BIJNPQFdP3pde5370EqHke3epaAF9JxxAPOqDZSSw9LZWJXao5bJdgQt1In1ZzUKnWXYMcmC5TRCs1h6X0wilkaQqSZoEr1HZJoL6NScyZgXhykChLKpnQMfUMjGoLyssWhc3xulBEOYmkq0nihfp/IaKjULPRNZ0j1RP32cvEvr5/qoOZlPEpSDRFbLgpSgXWM86/xiEtgWswMoUxycytmEyop0yabognh61P8P+lc2g6xndZVuYFXcRTQKTpDF8hBLmqgG9REbcQQoAf0hJ6tO+vRerFel61r1mrmBP2A9fYJXHaNMw==</latexit>n`

<latexit sha1_base64="IUsKXryPubpEgi7+ZieJlFEUq08=">AAAB7nicdVBNS8NAEN34WeNX1aOXxSp4CptQsMeCF48V7Ae0oWy2k3bpZhN2N0IJ/RFePCji1d/jzX/jto2gog8GHu/NMDMvygTXhpAPZ219Y3Nru7Lj7u7tHxxWj447Os0VgzZLRap6EdUguIS24UZAL1NAk0hAN5peL/zuPSjNU3lnZhmECR1LHnNGjZW6rhwOQIhhtUa8uh/4AcHEI0tYUg8aJGhgv1RqqERrWH0fjFKWJyANE1Trvk8yExZUGc4EzN1BriGjbErH0LdU0gR0WCzPneMLq4xwnCpb0uCl+n2ioInWsySynQk1E/3bW4h/ef3cxI2w4DLLDUi2WhTnApsUL37HI66AGTGzhDLF7a2YTaiizNiEXBvC16f4f9IJPJ94/m291jwv46igU3SGLpGPrlAT3aAWaiOGpugBPaFnJ3MenRfnddW65pQzJ+gHnLdP7aePNA==</latexit><latexit sha1_base64="IUsKXryPubpEgi7+ZieJlFEUq08=">AAAB7nicdVBNS8NAEN34WeNX1aOXxSp4CptQsMeCF48V7Ae0oWy2k3bpZhN2N0IJ/RFePCji1d/jzX/jto2gog8GHu/NMDMvygTXhpAPZ219Y3Nru7Lj7u7tHxxWj447Os0VgzZLRap6EdUguIS24UZAL1NAk0hAN5peL/zuPSjNU3lnZhmECR1LHnNGjZW6rhwOQIhhtUa8uh/4AcHEI0tYUg8aJGhgv1RqqERrWH0fjFKWJyANE1Trvk8yExZUGc4EzN1BriGjbErH0LdU0gR0WCzPneMLq4xwnCpb0uCl+n2ioInWsySynQk1E/3bW4h/ef3cxI2w4DLLDUi2WhTnApsUL37HI66AGTGzhDLF7a2YTaiizNiEXBvC16f4f9IJPJ94/m291jwv46igU3SGLpGPrlAT3aAWaiOGpugBPaFnJ3MenRfnddW65pQzJ+gHnLdP7aePNA==</latexit><latexit sha1_base64="IUsKXryPubpEgi7+ZieJlFEUq08=">AAAB7nicdVBNS8NAEN34WeNX1aOXxSp4CptQsMeCF48V7Ae0oWy2k3bpZhN2N0IJ/RFePCji1d/jzX/jto2gog8GHu/NMDMvygTXhpAPZ219Y3Nru7Lj7u7tHxxWj447Os0VgzZLRap6EdUguIS24UZAL1NAk0hAN5peL/zuPSjNU3lnZhmECR1LHnNGjZW6rhwOQIhhtUa8uh/4AcHEI0tYUg8aJGhgv1RqqERrWH0fjFKWJyANE1Trvk8yExZUGc4EzN1BriGjbErH0LdU0gR0WCzPneMLq4xwnCpb0uCl+n2ioInWsySynQk1E/3bW4h/ef3cxI2w4DLLDUi2WhTnApsUL37HI66AGTGzhDLF7a2YTaiizNiEXBvC16f4f9IJPJ94/m291jwv46igU3SGLpGPrlAT3aAWaiOGpugBPaFnJ3MenRfnddW65pQzJ+gHnLdP7aePNA==</latexit><latexit sha1_base64="IUsKXryPubpEgi7+ZieJlFEUq08=">AAAB7nicdVBNS8NAEN34WeNX1aOXxSp4CptQsMeCF48V7Ae0oWy2k3bpZhN2N0IJ/RFePCji1d/jzX/jto2gog8GHu/NMDMvygTXhpAPZ219Y3Nru7Lj7u7tHxxWj447Os0VgzZLRap6EdUguIS24UZAL1NAk0hAN5peL/zuPSjNU3lnZhmECR1LHnNGjZW6rhwOQIhhtUa8uh/4AcHEI0tYUg8aJGhgv1RqqERrWH0fjFKWJyANE1Trvk8yExZUGc4EzN1BriGjbErH0LdU0gR0WCzPneMLq4xwnCpb0uCl+n2ioInWsySynQk1E/3bW4h/ef3cxI2w4DLLDUi2WhTnApsUL37HI66AGTGzhDLF7a2YTaiizNiEXBvC16f4f9IJPJ94/m291jwv46igU3SGLpGPrlAT3aAWaiOGpugBPaFnJ3MenRfnddW65pQzJ+gHnLdP7aePNA==</latexit>

nt
<latexit sha1_base64="NJO7lt/UehNuwhge/6erKZxXbjM=">AAAB63icdVDLSgMxFM34rOOr6tJNsAquhkwtbZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz7QgqeuDC4Zx7ufeeMOFMG4Q+nLX1jc2t7dKOu7u3f3BYPjru6jhVhHZIzGPVD7GmnEnaMcxw2k8UxSLktBfOrnO/d0+VZrG8M/OEBgJPJIsYwSaXXDkyo3IFeTW/Xm3WIfLQEpbUqlcNH0G/UCqgQHtUfh+OY5IKKg3hWOuBjxITZFgZRjhduMNU0wSTGZ7QgaUSC6qDbHnrAl5YZQyjWNmSBi7V7xMZFlrPRWg7BTZT/dvLxb+8QWqiZpAxmaSGSrJaFKUcmhjmj8MxU5QYPrcEE8XsrZBMscLE2HhcG8LXp/B/0q16PvL821qldV7EUQKn4AxcAh80QAvcgDboAAKm4AE8gWdHOI/Oi/O6al1zipkT8APO2yfNLI37</latexit><latexit sha1_base64="NJO7lt/UehNuwhge/6erKZxXbjM=">AAAB63icdVDLSgMxFM34rOOr6tJNsAquhkwtbZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz7QgqeuDC4Zx7ufeeMOFMG4Q+nLX1jc2t7dKOu7u3f3BYPjru6jhVhHZIzGPVD7GmnEnaMcxw2k8UxSLktBfOrnO/d0+VZrG8M/OEBgJPJIsYwSaXXDkyo3IFeTW/Xm3WIfLQEpbUqlcNH0G/UCqgQHtUfh+OY5IKKg3hWOuBjxITZFgZRjhduMNU0wSTGZ7QgaUSC6qDbHnrAl5YZQyjWNmSBi7V7xMZFlrPRWg7BTZT/dvLxb+8QWqiZpAxmaSGSrJaFKUcmhjmj8MxU5QYPrcEE8XsrZBMscLE2HhcG8LXp/B/0q16PvL821qldV7EUQKn4AxcAh80QAvcgDboAAKm4AE8gWdHOI/Oi/O6al1zipkT8APO2yfNLI37</latexit><latexit sha1_base64="NJO7lt/UehNuwhge/6erKZxXbjM=">AAAB63icdVDLSgMxFM34rOOr6tJNsAquhkwtbZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz7QgqeuDC4Zx7ufeeMOFMG4Q+nLX1jc2t7dKOu7u3f3BYPjru6jhVhHZIzGPVD7GmnEnaMcxw2k8UxSLktBfOrnO/d0+VZrG8M/OEBgJPJIsYwSaXXDkyo3IFeTW/Xm3WIfLQEpbUqlcNH0G/UCqgQHtUfh+OY5IKKg3hWOuBjxITZFgZRjhduMNU0wSTGZ7QgaUSC6qDbHnrAl5YZQyjWNmSBi7V7xMZFlrPRWg7BTZT/dvLxb+8QWqiZpAxmaSGSrJaFKUcmhjmj8MxU5QYPrcEE8XsrZBMscLE2HhcG8LXp/B/0q16PvL821qldV7EUQKn4AxcAh80QAvcgDboAAKm4AE8gWdHOI/Oi/O6al1zipkT8APO2yfNLI37</latexit><latexit sha1_base64="NJO7lt/UehNuwhge/6erKZxXbjM=">AAAB63icdVDLSgMxFM34rOOr6tJNsAquhkwtbZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz7QgqeuDC4Zx7ufeeMOFMG4Q+nLX1jc2t7dKOu7u3f3BYPjru6jhVhHZIzGPVD7GmnEnaMcxw2k8UxSLktBfOrnO/d0+VZrG8M/OEBgJPJIsYwSaXXDkyo3IFeTW/Xm3WIfLQEpbUqlcNH0G/UCqgQHtUfh+OY5IKKg3hWOuBjxITZFgZRjhduMNU0wSTGZ7QgaUSC6qDbHnrAl5YZQyjWNmSBi7V7xMZFlrPRWg7BTZT/dvLxb+8QWqiZpAxmaSGSrJaFKUcmhjmj8MxU5QYPrcEE8XsrZBMscLE2HhcG8LXp/B/0q16PvL821qldV7EUQKn4AxcAh80QAvcgDboAAKm4AE8gWdHOI/Oi/O6al1zipkT8APO2yfNLI37</latexit>

nr
<latexit sha1_base64="B6VtTXH4JOc4E847+q/TMbrAhgw=">AAAB63icdVDLSgMxFM34rOOr6tJNsAquhkwtbZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz7QgqeuDC4Zx7ufeeMOFMG4Q+nLX1jc2t7dKOu7u3f3BYPjru6jhVhHZIzGPVD7GmnEnaMcxw2k8UxSLktBfOrnO/d0+VZrG8M/OEBgJPJIsYwSaXXDlSo3IFeTW/Xm3WIfLQEpbUqlcNH0G/UCqgQHtUfh+OY5IKKg3hWOuBjxITZFgZRjhduMNU0wSTGZ7QgaUSC6qDbHnrAl5YZQyjWNmSBi7V7xMZFlrPRWg7BTZT/dvLxb+8QWqiZpAxmaSGSrJaFKUcmhjmj8MxU5QYPrcEE8XsrZBMscLE2HhcG8LXp/B/0q16PvL821qldV7EUQKn4AxcAh80QAvcgDboAAKm4AE8gWdHOI/Oi/O6al1zipkT8APO2yfKJI35</latexit><latexit sha1_base64="B6VtTXH4JOc4E847+q/TMbrAhgw=">AAAB63icdVDLSgMxFM34rOOr6tJNsAquhkwtbZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz7QgqeuDC4Zx7ufeeMOFMG4Q+nLX1jc2t7dKOu7u3f3BYPjru6jhVhHZIzGPVD7GmnEnaMcxw2k8UxSLktBfOrnO/d0+VZrG8M/OEBgJPJIsYwSaXXDlSo3IFeTW/Xm3WIfLQEpbUqlcNH0G/UCqgQHtUfh+OY5IKKg3hWOuBjxITZFgZRjhduMNU0wSTGZ7QgaUSC6qDbHnrAl5YZQyjWNmSBi7V7xMZFlrPRWg7BTZT/dvLxb+8QWqiZpAxmaSGSrJaFKUcmhjmj8MxU5QYPrcEE8XsrZBMscLE2HhcG8LXp/B/0q16PvL821qldV7EUQKn4AxcAh80QAvcgDboAAKm4AE8gWdHOI/Oi/O6al1zipkT8APO2yfKJI35</latexit><latexit sha1_base64="B6VtTXH4JOc4E847+q/TMbrAhgw=">AAAB63icdVDLSgMxFM34rOOr6tJNsAquhkwtbZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz7QgqeuDC4Zx7ufeeMOFMG4Q+nLX1jc2t7dKOu7u3f3BYPjru6jhVhHZIzGPVD7GmnEnaMcxw2k8UxSLktBfOrnO/d0+VZrG8M/OEBgJPJIsYwSaXXDlSo3IFeTW/Xm3WIfLQEpbUqlcNH0G/UCqgQHtUfh+OY5IKKg3hWOuBjxITZFgZRjhduMNU0wSTGZ7QgaUSC6qDbHnrAl5YZQyjWNmSBi7V7xMZFlrPRWg7BTZT/dvLxb+8QWqiZpAxmaSGSrJaFKUcmhjmj8MxU5QYPrcEE8XsrZBMscLE2HhcG8LXp/B/0q16PvL821qldV7EUQKn4AxcAh80QAvcgDboAAKm4AE8gWdHOI/Oi/O6al1zipkT8APO2yfKJI35</latexit><latexit sha1_base64="B6VtTXH4JOc4E847+q/TMbrAhgw=">AAAB63icdVDLSgMxFM34rOOr6tJNsAquhkwtbZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz7QgqeuDC4Zx7ufeeMOFMG4Q+nLX1jc2t7dKOu7u3f3BYPjru6jhVhHZIzGPVD7GmnEnaMcxw2k8UxSLktBfOrnO/d0+VZrG8M/OEBgJPJIsYwSaXXDlSo3IFeTW/Xm3WIfLQEpbUqlcNH0G/UCqgQHtUfh+OY5IKKg3hWOuBjxITZFgZRjhduMNU0wSTGZ7QgaUSC6qDbHnrAl5YZQyjWNmSBi7V7xMZFlrPRWg7BTZT/dvLxb+8QWqiZpAxmaSGSrJaFKUcmhjmj8MxU5QYPrcEE8XsrZBMscLE2HhcG8LXp/B/0q16PvL821qldV7EUQKn4AxcAh80QAvcgDboAAKm4AE8gWdHOI/Oi/O6al1zipkT8APO2yfKJI35</latexit>

nrt
<latexit sha1_base64="HsTcmXJ0MQ8jxp1tiuq5krHZ1to=">AAAB73icdVBNS8NAEJ3Urxq/qh69LFbBU0lqaXssePFYwX5AG8Jmu2mXbjZxdyOU0D/hxYMiXv073vw3btsIKvpg4PHeDDPzgoQzpR3nwyqsrW9sbhW37Z3dvf2D0uFRV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Grh9+6pVCwWt3qWUC/CY8FCRrA2Ut8WfiZ9PfdLZadSc+vVZh05FWcJQ2rVy4brIDdXypCj7Zfeh6OYpBEVmnCs1MB1Eu1lWGpGOJ3bw1TRBJMpHtOBoQJHVHnZ8t45OjfKCIWxNCU0WqrfJzIcKTWLAtMZYT1Rv72F+Jc3SHXY9DImklRTQVaLwpQjHaPF82jEJCWazwzBRDJzKyITLDHRJiLbhPD1KfqfdKsV16m4N7Vy6yyPowgncAoX4EIDWnANbegAAQ4P8ATP1p31aL1Yr6vWgpXPHMMPWG+fHZCP7A==</latexit><latexit sha1_base64="HsTcmXJ0MQ8jxp1tiuq5krHZ1to=">AAAB73icdVBNS8NAEJ3Urxq/qh69LFbBU0lqaXssePFYwX5AG8Jmu2mXbjZxdyOU0D/hxYMiXv073vw3btsIKvpg4PHeDDPzgoQzpR3nwyqsrW9sbhW37Z3dvf2D0uFRV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Grh9+6pVCwWt3qWUC/CY8FCRrA2Ut8WfiZ9PfdLZadSc+vVZh05FWcJQ2rVy4brIDdXypCj7Zfeh6OYpBEVmnCs1MB1Eu1lWGpGOJ3bw1TRBJMpHtOBoQJHVHnZ8t45OjfKCIWxNCU0WqrfJzIcKTWLAtMZYT1Rv72F+Jc3SHXY9DImklRTQVaLwpQjHaPF82jEJCWazwzBRDJzKyITLDHRJiLbhPD1KfqfdKsV16m4N7Vy6yyPowgncAoX4EIDWnANbegAAQ4P8ATP1p31aL1Yr6vWgpXPHMMPWG+fHZCP7A==</latexit><latexit sha1_base64="HsTcmXJ0MQ8jxp1tiuq5krHZ1to=">AAAB73icdVBNS8NAEJ3Urxq/qh69LFbBU0lqaXssePFYwX5AG8Jmu2mXbjZxdyOU0D/hxYMiXv073vw3btsIKvpg4PHeDDPzgoQzpR3nwyqsrW9sbhW37Z3dvf2D0uFRV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Grh9+6pVCwWt3qWUC/CY8FCRrA2Ut8WfiZ9PfdLZadSc+vVZh05FWcJQ2rVy4brIDdXypCj7Zfeh6OYpBEVmnCs1MB1Eu1lWGpGOJ3bw1TRBJMpHtOBoQJHVHnZ8t45OjfKCIWxNCU0WqrfJzIcKTWLAtMZYT1Rv72F+Jc3SHXY9DImklRTQVaLwpQjHaPF82jEJCWazwzBRDJzKyITLDHRJiLbhPD1KfqfdKsV16m4N7Vy6yyPowgncAoX4EIDWnANbegAAQ4P8ATP1p31aL1Yr6vWgpXPHMMPWG+fHZCP7A==</latexit><latexit sha1_base64="HsTcmXJ0MQ8jxp1tiuq5krHZ1to=">AAAB73icdVBNS8NAEJ3Urxq/qh69LFbBU0lqaXssePFYwX5AG8Jmu2mXbjZxdyOU0D/hxYMiXv073vw3btsIKvpg4PHeDDPzgoQzpR3nwyqsrW9sbhW37Z3dvf2D0uFRV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Grh9+6pVCwWt3qWUC/CY8FCRrA2Ut8WfiZ9PfdLZadSc+vVZh05FWcJQ2rVy4brIDdXypCj7Zfeh6OYpBEVmnCs1MB1Eu1lWGpGOJ3bw1TRBJMpHtOBoQJHVHnZ8t45OjfKCIWxNCU0WqrfJzIcKTWLAtMZYT1Rv72F+Jc3SHXY9DImklRTQVaLwpQjHaPF82jEJCWazwzBRDJzKyITLDHRJiLbhPD1KfqfdKsV16m4N7Vy6yyPowgncAoX4EIDWnANbegAAQ4P8ATP1p31aL1Yr6vWgpXPHMMPWG+fHZCP7A==</latexit>

nrb
<latexit sha1_base64="pjnieP8PnK4oDJ76r7EEG3G5mjo=">AAAB73icdVBNS8NAEJ3Urxq/qh69LFbBU0lqaXssePFYwX5AG8Jmu2mXbjZxdyOU0D/hxYMiXv073vw3btsIKvpg4PHeDDPzgoQzpR3nwyqsrW9sbhW37Z3dvf2D0uFRV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Grh9+6pVCwWt3qWUC/CY8FCRrA2Ut8Wfib9YO6Xyk6l5tarzTpyKs4ShtSqlw3XQW6ulCFH2y+9D0cxSSMqNOFYqYHrJNrLsNSMcDq3h6miCSZTPKYDQwWOqPKy5b1zdG6UEQpjaUpotFS/T2Q4UmoWBaYzwnqifnsL8S9vkOqw6WVMJKmmgqwWhSlHOkaL59GISUo0nxmCiWTmVkQmWGKiTUS2CeHrU/Q/6VYrrlNxb2rl1lkeRxFO4BQuwIUGtOAa2tABAhwe4AmerTvr0XqxXletBSufOYYfsN4+AQI2j9o=</latexit><latexit sha1_base64="pjnieP8PnK4oDJ76r7EEG3G5mjo=">AAAB73icdVBNS8NAEJ3Urxq/qh69LFbBU0lqaXssePFYwX5AG8Jmu2mXbjZxdyOU0D/hxYMiXv073vw3btsIKvpg4PHeDDPzgoQzpR3nwyqsrW9sbhW37Z3dvf2D0uFRV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Grh9+6pVCwWt3qWUC/CY8FCRrA2Ut8Wfib9YO6Xyk6l5tarzTpyKs4ShtSqlw3XQW6ulCFH2y+9D0cxSSMqNOFYqYHrJNrLsNSMcDq3h6miCSZTPKYDQwWOqPKy5b1zdG6UEQpjaUpotFS/T2Q4UmoWBaYzwnqifnsL8S9vkOqw6WVMJKmmgqwWhSlHOkaL59GISUo0nxmCiWTmVkQmWGKiTUS2CeHrU/Q/6VYrrlNxb2rl1lkeRxFO4BQuwIUGtOAa2tABAhwe4AmerTvr0XqxXletBSufOYYfsN4+AQI2j9o=</latexit><latexit sha1_base64="pjnieP8PnK4oDJ76r7EEG3G5mjo=">AAAB73icdVBNS8NAEJ3Urxq/qh69LFbBU0lqaXssePFYwX5AG8Jmu2mXbjZxdyOU0D/hxYMiXv073vw3btsIKvpg4PHeDDPzgoQzpR3nwyqsrW9sbhW37Z3dvf2D0uFRV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Grh9+6pVCwWt3qWUC/CY8FCRrA2Ut8Wfib9YO6Xyk6l5tarzTpyKs4ShtSqlw3XQW6ulCFH2y+9D0cxSSMqNOFYqYHrJNrLsNSMcDq3h6miCSZTPKYDQwWOqPKy5b1zdG6UEQpjaUpotFS/T2Q4UmoWBaYzwnqifnsL8S9vkOqw6WVMJKmmgqwWhSlHOkaL59GISUo0nxmCiWTmVkQmWGKiTUS2CeHrU/Q/6VYrrlNxb2rl1lkeRxFO4BQuwIUGtOAa2tABAhwe4AmerTvr0XqxXletBSufOYYfsN4+AQI2j9o=</latexit><latexit sha1_base64="pjnieP8PnK4oDJ76r7EEG3G5mjo=">AAAB73icdVBNS8NAEJ3Urxq/qh69LFbBU0lqaXssePFYwX5AG8Jmu2mXbjZxdyOU0D/hxYMiXv073vw3btsIKvpg4PHeDDPzgoQzpR3nwyqsrW9sbhW37Z3dvf2D0uFRV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Grh9+6pVCwWt3qWUC/CY8FCRrA2Ut8Wfib9YO6Xyk6l5tarzTpyKs4ShtSqlw3XQW6ulCFH2y+9D0cxSSMqNOFYqYHrJNrLsNSMcDq3h6miCSZTPKYDQwWOqPKy5b1zdG6UEQpjaUpotFS/T2Q4UmoWBaYzwnqifnsL8S9vkOqw6WVMJKmmgqwWhSlHOkaL59GISUo0nxmCiWTmVkQmWGKiTUS2CeHrU/Q/6VYrrlNxb2rl1lkeRxFO4BQuwIUGtOAa2tABAhwe4AmerTvr0XqxXletBSufOYYfsN4+AQI2j9o=</latexit>

nb
<latexit sha1_base64="G4rVERaG/x6iGK81C4Ptz7X0g+Y=">AAAB63icdVBNS8NAEJ34WetX1aOXxSp4CkkbaL0VvHisYD+gDWWz3bRLN5uwuxFK6F/w4kERr/4hb/4bN20EFX0w8Hhvhpl5QcKZ0o7zYa2tb2xubZd2yrt7+weHlaPjropTSWiHxDyW/QArypmgHc00p/1EUhwFnPaC2XXu9+6pVCwWd3qeUD/CE8FCRrDOpbIYBaNK1bE9171qesixnSUM8Wr1RqOO3EKpQoH2qPI+HMckjajQhGOlBq6TaD/DUjPC6aI8TBVNMJnhCR0YKnBElZ8tb12gC6OMURhLU0Kjpfp9IsORUvMoMJ0R1lP128vFv7xBqsOmnzGRpJoKsloUphzpGOWPozGTlGg+NwQTycytiEyxxESbeMomhK9P0f+kW7Ndx3ZvvWrrvIijBKdwBpfgQgNacANt6ACBKTzAEzxbkfVovVivq9Y1q5g5gR+w3j4BvoiN8g==</latexit><latexit sha1_base64="G4rVERaG/x6iGK81C4Ptz7X0g+Y=">AAAB63icdVBNS8NAEJ34WetX1aOXxSp4CkkbaL0VvHisYD+gDWWz3bRLN5uwuxFK6F/w4kERr/4hb/4bN20EFX0w8Hhvhpl5QcKZ0o7zYa2tb2xubZd2yrt7+weHlaPjropTSWiHxDyW/QArypmgHc00p/1EUhwFnPaC2XXu9+6pVCwWd3qeUD/CE8FCRrDOpbIYBaNK1bE9171qesixnSUM8Wr1RqOO3EKpQoH2qPI+HMckjajQhGOlBq6TaD/DUjPC6aI8TBVNMJnhCR0YKnBElZ8tb12gC6OMURhLU0Kjpfp9IsORUvMoMJ0R1lP128vFv7xBqsOmnzGRpJoKsloUphzpGOWPozGTlGg+NwQTycytiEyxxESbeMomhK9P0f+kW7Ndx3ZvvWrrvIijBKdwBpfgQgNacANt6ACBKTzAEzxbkfVovVivq9Y1q5g5gR+w3j4BvoiN8g==</latexit><latexit sha1_base64="G4rVERaG/x6iGK81C4Ptz7X0g+Y=">AAAB63icdVBNS8NAEJ34WetX1aOXxSp4CkkbaL0VvHisYD+gDWWz3bRLN5uwuxFK6F/w4kERr/4hb/4bN20EFX0w8Hhvhpl5QcKZ0o7zYa2tb2xubZd2yrt7+weHlaPjropTSWiHxDyW/QArypmgHc00p/1EUhwFnPaC2XXu9+6pVCwWd3qeUD/CE8FCRrDOpbIYBaNK1bE9171qesixnSUM8Wr1RqOO3EKpQoH2qPI+HMckjajQhGOlBq6TaD/DUjPC6aI8TBVNMJnhCR0YKnBElZ8tb12gC6OMURhLU0Kjpfp9IsORUvMoMJ0R1lP128vFv7xBqsOmnzGRpJoKsloUphzpGOWPozGTlGg+NwQTycytiEyxxESbeMomhK9P0f+kW7Ndx3ZvvWrrvIijBKdwBpfgQgNacANt6ACBKTzAEzxbkfVovVivq9Y1q5g5gR+w3j4BvoiN8g==</latexit><latexit sha1_base64="G4rVERaG/x6iGK81C4Ptz7X0g+Y=">AAAB63icdVBNS8NAEJ34WetX1aOXxSp4CkkbaL0VvHisYD+gDWWz3bRLN5uwuxFK6F/w4kERr/4hb/4bN20EFX0w8Hhvhpl5QcKZ0o7zYa2tb2xubZd2yrt7+weHlaPjropTSWiHxDyW/QArypmgHc00p/1EUhwFnPaC2XXu9+6pVCwWd3qeUD/CE8FCRrDOpbIYBaNK1bE9171qesixnSUM8Wr1RqOO3EKpQoH2qPI+HMckjajQhGOlBq6TaD/DUjPC6aI8TBVNMJnhCR0YKnBElZ8tb12gC6OMURhLU0Kjpfp9IsORUvMoMJ0R1lP128vFv7xBqsOmnzGRpJoKsloUphzpGOWPozGTlGg+NwQTycytiEyxxESbeMomhK9P0f+kW7Ndx3ZvvWrrvIijBKdwBpfgQgNacANt6ACBKTzAEzxbkfVovVivq9Y1q5g5gR+w3j4BvoiN8g==</latexit>

n0
<latexit sha1_base64="77GtjRIMDeTCh5qqU55sspxv7dw=">AAAB6nicdVBNSwMxEJ31s9avqkcvwSp4WrKu2h4LXjxWtB/QLiWbZtvQbHZJskIp/QlePCji1V/kzX9j2q6gog8GHu/NMDMvTAXXBuMPZ2l5ZXVtvbBR3Nza3tkt7e03dZIpyho0EYlqh0QzwSVrGG4Ea6eKkTgUrBWOrmZ+654pzRN5Z8YpC2IykDzilBgr3coe7pXK2PV937usIOziOSzxLzy/6iEvV8qQo94rvXf7Cc1iJg0VROuOh1MTTIgynAo2LXYzzVJCR2TAOpZKEjMdTOanTtGJVfooSpQtadBc/T4xIbHW4zi0nTExQ/3bm4l/eZ3MRNVgwmWaGSbpYlGUCWQSNPsb9bli1IixJYQqbm9FdEgUocamU7QhfH2K/ifNM9fDrndzXq4d53EU4BCO4BQ8qEANrqEODaAwgAd4gmdHOI/Oi/O6aF1y8pkD+AHn7RMxnI2j</latexit><latexit sha1_base64="77GtjRIMDeTCh5qqU55sspxv7dw=">AAAB6nicdVBNSwMxEJ31s9avqkcvwSp4WrKu2h4LXjxWtB/QLiWbZtvQbHZJskIp/QlePCji1V/kzX9j2q6gog8GHu/NMDMvTAXXBuMPZ2l5ZXVtvbBR3Nza3tkt7e03dZIpyho0EYlqh0QzwSVrGG4Ea6eKkTgUrBWOrmZ+654pzRN5Z8YpC2IykDzilBgr3coe7pXK2PV937usIOziOSzxLzy/6iEvV8qQo94rvXf7Cc1iJg0VROuOh1MTTIgynAo2LXYzzVJCR2TAOpZKEjMdTOanTtGJVfooSpQtadBc/T4xIbHW4zi0nTExQ/3bm4l/eZ3MRNVgwmWaGSbpYlGUCWQSNPsb9bli1IixJYQqbm9FdEgUocamU7QhfH2K/ifNM9fDrndzXq4d53EU4BCO4BQ8qEANrqEODaAwgAd4gmdHOI/Oi/O6aF1y8pkD+AHn7RMxnI2j</latexit><latexit sha1_base64="77GtjRIMDeTCh5qqU55sspxv7dw=">AAAB6nicdVBNSwMxEJ31s9avqkcvwSp4WrKu2h4LXjxWtB/QLiWbZtvQbHZJskIp/QlePCji1V/kzX9j2q6gog8GHu/NMDMvTAXXBuMPZ2l5ZXVtvbBR3Nza3tkt7e03dZIpyho0EYlqh0QzwSVrGG4Ea6eKkTgUrBWOrmZ+654pzRN5Z8YpC2IykDzilBgr3coe7pXK2PV937usIOziOSzxLzy/6iEvV8qQo94rvXf7Cc1iJg0VROuOh1MTTIgynAo2LXYzzVJCR2TAOpZKEjMdTOanTtGJVfooSpQtadBc/T4xIbHW4zi0nTExQ/3bm4l/eZ3MRNVgwmWaGSbpYlGUCWQSNPsb9bli1IixJYQqbm9FdEgUocamU7QhfH2K/ifNM9fDrndzXq4d53EU4BCO4BQ8qEANrqEODaAwgAd4gmdHOI/Oi/O6aF1y8pkD+AHn7RMxnI2j</latexit><latexit sha1_base64="77GtjRIMDeTCh5qqU55sspxv7dw=">AAAB6nicdVBNSwMxEJ31s9avqkcvwSp4WrKu2h4LXjxWtB/QLiWbZtvQbHZJskIp/QlePCji1V/kzX9j2q6gog8GHu/NMDMvTAXXBuMPZ2l5ZXVtvbBR3Nza3tkt7e03dZIpyho0EYlqh0QzwSVrGG4Ea6eKkTgUrBWOrmZ+654pzRN5Z8YpC2IykDzilBgr3coe7pXK2PV937usIOziOSzxLzy/6iEvV8qQo94rvXf7Cc1iJg0VROuOh1MTTIgynAo2LXYzzVJCR2TAOpZKEjMdTOanTtGJVfooSpQtadBc/T4xIbHW4zi0nTExQ/3bm4l/eZ3MRNVgwmWaGSbpYlGUCWQSNPsb9bli1IixJYQqbm9FdEgUocamU7QhfH2K/ifNM9fDrndzXq4d53EU4BCO4BQ8qEANrqEODaAwgAd4gmdHOI/Oi/O6aF1y8pkD+AHn7RMxnI2j</latexit>

b
<latexit sha1_base64="VIu2IGEHoFAGqUj06mRi31KTzsk=">AAAB6HicdVDLSgNBEJyNrxhfUY9eBoPgaZk10SS3gBePCZgHJEuYnfQmY2YfzMwKYckXePGgiFc/yZt/42wSQUULGoqqbrq7vFhwpQn5sHJr6xubW/ntws7u3v5B8fCoo6JEMmizSESy51EFgofQ1lwL6MUSaOAJ6HrT68zv3oNUPApv9SwGN6DjkPucUW2kljcsloh96RCnSjCxK/U6IWWcKeXqVQ07NlmghFZoDovvg1HEkgBCzQRVqu+QWLsplZozAfPCIFEQUzalY+gbGtIAlJsuDp3jM6OMsB9JU6HGC/X7REoDpWaBZzoDqifqt5eJf3n9RPs1N+VhnGgI2XKRnwisI5x9jUdcAtNiZghlkptbMZtQSZk22RRMCF+f4v9J58J2iO20KqUGXsWRRyfoFJ0jB1VRA92gJmojhgA9oCf0bN1Zj9aL9bpszVmrmWP0A9bbJx4JjQk=</latexit><latexit sha1_base64="VIu2IGEHoFAGqUj06mRi31KTzsk=">AAAB6HicdVDLSgNBEJyNrxhfUY9eBoPgaZk10SS3gBePCZgHJEuYnfQmY2YfzMwKYckXePGgiFc/yZt/42wSQUULGoqqbrq7vFhwpQn5sHJr6xubW/ntws7u3v5B8fCoo6JEMmizSESy51EFgofQ1lwL6MUSaOAJ6HrT68zv3oNUPApv9SwGN6DjkPucUW2kljcsloh96RCnSjCxK/U6IWWcKeXqVQ07NlmghFZoDovvg1HEkgBCzQRVqu+QWLsplZozAfPCIFEQUzalY+gbGtIAlJsuDp3jM6OMsB9JU6HGC/X7REoDpWaBZzoDqifqt5eJf3n9RPs1N+VhnGgI2XKRnwisI5x9jUdcAtNiZghlkptbMZtQSZk22RRMCF+f4v9J58J2iO20KqUGXsWRRyfoFJ0jB1VRA92gJmojhgA9oCf0bN1Zj9aL9bpszVmrmWP0A9bbJx4JjQk=</latexit><latexit sha1_base64="VIu2IGEHoFAGqUj06mRi31KTzsk=">AAAB6HicdVDLSgNBEJyNrxhfUY9eBoPgaZk10SS3gBePCZgHJEuYnfQmY2YfzMwKYckXePGgiFc/yZt/42wSQUULGoqqbrq7vFhwpQn5sHJr6xubW/ntws7u3v5B8fCoo6JEMmizSESy51EFgofQ1lwL6MUSaOAJ6HrT68zv3oNUPApv9SwGN6DjkPucUW2kljcsloh96RCnSjCxK/U6IWWcKeXqVQ07NlmghFZoDovvg1HEkgBCzQRVqu+QWLsplZozAfPCIFEQUzalY+gbGtIAlJsuDp3jM6OMsB9JU6HGC/X7REoDpWaBZzoDqifqt5eJf3n9RPs1N+VhnGgI2XKRnwisI5x9jUdcAtNiZghlkptbMZtQSZk22RRMCF+f4v9J58J2iO20KqUGXsWRRyfoFJ0jB1VRA92gJmojhgA9oCf0bN1Zj9aL9bpszVmrmWP0A9bbJx4JjQk=</latexit><latexit sha1_base64="VIu2IGEHoFAGqUj06mRi31KTzsk=">AAAB6HicdVDLSgNBEJyNrxhfUY9eBoPgaZk10SS3gBePCZgHJEuYnfQmY2YfzMwKYckXePGgiFc/yZt/42wSQUULGoqqbrq7vFhwpQn5sHJr6xubW/ntws7u3v5B8fCoo6JEMmizSESy51EFgofQ1lwL6MUSaOAJ6HrT68zv3oNUPApv9SwGN6DjkPucUW2kljcsloh96RCnSjCxK/U6IWWcKeXqVQ07NlmghFZoDovvg1HEkgBCzQRVqu+QWLsplZozAfPCIFEQUzalY+gbGtIAlJsuDp3jM6OMsB9JU6HGC/X7REoDpWaBZzoDqifqt5eJf3n9RPs1N+VhnGgI2XKRnwisI5x9jUdcAtNiZghlkptbMZtQSZk22RRMCF+f4v9J58J2iO20KqUGXsWRRyfoFJ0jB1VRA92gJmojhgA9oCf0bN1Zj9aL9bpszVmrmWP0A9bbJx4JjQk=</latexit>

r
<latexit sha1_base64="iQMy4bbsE57N3qbrBsoZO40oxGM=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgaZk10SS3gBePCZgHJEuYncwmY2YfzMwKYckXePGgiFc/yZt/42wSQUULGoqqbrq7vFhwpTH+sHJr6xubW/ntws7u3v5B8fCoo6JEUtamkYhkzyOKCR6ytuZasF4sGQk8wbre9Drzu/dMKh6Ft3oWMzcg45D7nBJtpJYcFkvYvnSwU8UI25V6HeMyypRy9aqGHBsvUIIVmsPi+2AU0SRgoaaCKNV3cKzdlEjNqWDzwiBRLCZ0Ssasb2hIAqbcdHHoHJ0ZZYT8SJoKNVqo3ydSEig1CzzTGRA9Ub+9TPzL6yfar7kpD+NEs5AuF/mJQDpC2ddoxCWjWswMIVRycyuiEyIJ1Sabggnh61P0P+lc2A62nVal1ECrOPJwAqdwDg5UoQE30IQ2UGDwAE/wbN1Zj9aL9bpszVmrmWP4AevtEzZJjRk=</latexit><latexit sha1_base64="iQMy4bbsE57N3qbrBsoZO40oxGM=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgaZk10SS3gBePCZgHJEuYncwmY2YfzMwKYckXePGgiFc/yZt/42wSQUULGoqqbrq7vFhwpTH+sHJr6xubW/ntws7u3v5B8fCoo6JEUtamkYhkzyOKCR6ytuZasF4sGQk8wbre9Drzu/dMKh6Ft3oWMzcg45D7nBJtpJYcFkvYvnSwU8UI25V6HeMyypRy9aqGHBsvUIIVmsPi+2AU0SRgoaaCKNV3cKzdlEjNqWDzwiBRLCZ0Ssasb2hIAqbcdHHoHJ0ZZYT8SJoKNVqo3ydSEig1CzzTGRA9Ub+9TPzL6yfar7kpD+NEs5AuF/mJQDpC2ddoxCWjWswMIVRycyuiEyIJ1Sabggnh61P0P+lc2A62nVal1ECrOPJwAqdwDg5UoQE30IQ2UGDwAE/wbN1Zj9aL9bpszVmrmWP4AevtEzZJjRk=</latexit><latexit sha1_base64="iQMy4bbsE57N3qbrBsoZO40oxGM=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgaZk10SS3gBePCZgHJEuYncwmY2YfzMwKYckXePGgiFc/yZt/42wSQUULGoqqbrq7vFhwpTH+sHJr6xubW/ntws7u3v5B8fCoo6JEUtamkYhkzyOKCR6ytuZasF4sGQk8wbre9Drzu/dMKh6Ft3oWMzcg45D7nBJtpJYcFkvYvnSwU8UI25V6HeMyypRy9aqGHBsvUIIVmsPi+2AU0SRgoaaCKNV3cKzdlEjNqWDzwiBRLCZ0Ssasb2hIAqbcdHHoHJ0ZZYT8SJoKNVqo3ydSEig1CzzTGRA9Ub+9TPzL6yfar7kpD+NEs5AuF/mJQDpC2ddoxCWjWswMIVRycyuiEyIJ1Sabggnh61P0P+lc2A62nVal1ECrOPJwAqdwDg5UoQE30IQ2UGDwAE/wbN1Zj9aL9bpszVmrmWP4AevtEzZJjRk=</latexit><latexit sha1_base64="iQMy4bbsE57N3qbrBsoZO40oxGM=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgaZk10SS3gBePCZgHJEuYncwmY2YfzMwKYckXePGgiFc/yZt/42wSQUULGoqqbrq7vFhwpTH+sHJr6xubW/ntws7u3v5B8fCoo6JEUtamkYhkzyOKCR6ytuZasF4sGQk8wbre9Drzu/dMKh6Ft3oWMzcg45D7nBJtpJYcFkvYvnSwU8UI25V6HeMyypRy9aqGHBsvUIIVmsPi+2AU0SRgoaaCKNV3cKzdlEjNqWDzwiBRLCZ0Ssasb2hIAqbcdHHoHJ0ZZYT8SJoKNVqo3ydSEig1CzzTGRA9Ub+9TPzL6yfar7kpD+NEs5AuF/mJQDpC2ddoxCWjWswMIVRycyuiEyIJ1Sabggnh61P0P+lc2A62nVal1ECrOPJwAqdwDg5UoQE30IQ2UGDwAE/wbN1Zj9aL9bpszVmrmWP4AevtEzZJjRk=</latexit>

rb
<latexit sha1_base64="XtBAu5SzRSgkT4NIsUWYBpBXM88=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB05LVattbwYvHivYD2qVk02wbms0uSVYopT/BiwdFvPqLvPlvzLYVVPTBwOO9GWbmBYng2mD84eRWVtfWN/Kbha3tnd294v5BS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB+Crz2/dMaR7LOzNJmB+RoeQhp8RY6Vb1g36xhN0LD3sVjLBbrtUwPkeZcl65rCLPxXOUYIlGv/jeG8Q0jZg0VBCtux5OjD8lynAq2KzQSzVLCB2TIetaKknEtD+dnzpDJ1YZoDBWtqRBc/X7xJREWk+iwHZGxIz0by8T//K6qQmr/pTLJDVM0sWiMBXIxCj7Gw24YtSIiSWEKm5vRXREFKHGplOwIXx9iv4nrTPXw653Uy7V0TKOPBzBMZyCBxWowzU0oAkUhvAAT/DsCOfReXFeF605ZzlzCD/gvH0CpemN7g==</latexit><latexit sha1_base64="XtBAu5SzRSgkT4NIsUWYBpBXM88=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB05LVattbwYvHivYD2qVk02wbms0uSVYopT/BiwdFvPqLvPlvzLYVVPTBwOO9GWbmBYng2mD84eRWVtfWN/Kbha3tnd294v5BS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB+Crz2/dMaR7LOzNJmB+RoeQhp8RY6Vb1g36xhN0LD3sVjLBbrtUwPkeZcl65rCLPxXOUYIlGv/jeG8Q0jZg0VBCtux5OjD8lynAq2KzQSzVLCB2TIetaKknEtD+dnzpDJ1YZoDBWtqRBc/X7xJREWk+iwHZGxIz0by8T//K6qQmr/pTLJDVM0sWiMBXIxCj7Gw24YtSIiSWEKm5vRXREFKHGplOwIXx9iv4nrTPXw653Uy7V0TKOPBzBMZyCBxWowzU0oAkUhvAAT/DsCOfReXFeF605ZzlzCD/gvH0CpemN7g==</latexit><latexit sha1_base64="XtBAu5SzRSgkT4NIsUWYBpBXM88=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB05LVattbwYvHivYD2qVk02wbms0uSVYopT/BiwdFvPqLvPlvzLYVVPTBwOO9GWbmBYng2mD84eRWVtfWN/Kbha3tnd294v5BS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB+Crz2/dMaR7LOzNJmB+RoeQhp8RY6Vb1g36xhN0LD3sVjLBbrtUwPkeZcl65rCLPxXOUYIlGv/jeG8Q0jZg0VBCtux5OjD8lynAq2KzQSzVLCB2TIetaKknEtD+dnzpDJ1YZoDBWtqRBc/X7xJREWk+iwHZGxIz0by8T//K6qQmr/pTLJDVM0sWiMBXIxCj7Gw24YtSIiSWEKm5vRXREFKHGplOwIXx9iv4nrTPXw653Uy7V0TKOPBzBMZyCBxWowzU0oAkUhvAAT/DsCOfReXFeF605ZzlzCD/gvH0CpemN7g==</latexit><latexit sha1_base64="XtBAu5SzRSgkT4NIsUWYBpBXM88=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB05LVattbwYvHivYD2qVk02wbms0uSVYopT/BiwdFvPqLvPlvzLYVVPTBwOO9GWbmBYng2mD84eRWVtfWN/Kbha3tnd294v5BS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB+Crz2/dMaR7LOzNJmB+RoeQhp8RY6Vb1g36xhN0LD3sVjLBbrtUwPkeZcl65rCLPxXOUYIlGv/jeG8Q0jZg0VBCtux5OjD8lynAq2KzQSzVLCB2TIetaKknEtD+dnzpDJ1YZoDBWtqRBc/X7xJREWk+iwHZGxIz0by8T//K6qQmr/pTLJDVM0sWiMBXIxCj7Gw24YtSIiSWEKm5vRXREFKHGplOwIXx9iv4nrTPXw653Uy7V0TKOPBzBMZyCBxWowzU0oAkUhvAAT/DsCOfReXFeF605ZzlzCD/gvH0CpemN7g==</latexit>

rt
<latexit sha1_base64="io+NEDZ9secN+C/IEonOlTFRw2o=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB05LVattbwYvHivYD2qVk02wbms0uSVYopT/BiwdFvPqLvPlvzLYVVPTBwOO9GWbmBYng2mD84eRWVtfWN/Kbha3tnd294v5BS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB+Crz2/dMaR7LOzNJmB+RoeQhp8RY6Vb1Tb9Ywu6Fh70KRtgt12oYn6NMOa9cVpHn4jlKsESjX3zvDWKaRkwaKojWXQ8nxp8SZTgVbFbopZolhI7JkHUtlSRi2p/OT52hE6sMUBgrW9Kgufp9YkoirSdRYDsjYkb6t5eJf3nd1IRVf8plkhom6WJRmApkYpT9jQZcMWrExBJCFbe3IjoiilBj0ynYEL4+Rf+T1pnrYde7KZfqaBlHHo7gGE7BgwrU4Roa0AQKQ3iAJ3h2hPPovDivi9acs5w5hB9w3j4BwTGOAA==</latexit><latexit sha1_base64="io+NEDZ9secN+C/IEonOlTFRw2o=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB05LVattbwYvHivYD2qVk02wbms0uSVYopT/BiwdFvPqLvPlvzLYVVPTBwOO9GWbmBYng2mD84eRWVtfWN/Kbha3tnd294v5BS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB+Crz2/dMaR7LOzNJmB+RoeQhp8RY6Vb1Tb9Ywu6Fh70KRtgt12oYn6NMOa9cVpHn4jlKsESjX3zvDWKaRkwaKojWXQ8nxp8SZTgVbFbopZolhI7JkHUtlSRi2p/OT52hE6sMUBgrW9Kgufp9YkoirSdRYDsjYkb6t5eJf3nd1IRVf8plkhom6WJRmApkYpT9jQZcMWrExBJCFbe3IjoiilBj0ynYEL4+Rf+T1pnrYde7KZfqaBlHHo7gGE7BgwrU4Roa0AQKQ3iAJ3h2hPPovDivi9acs5w5hB9w3j4BwTGOAA==</latexit><latexit sha1_base64="io+NEDZ9secN+C/IEonOlTFRw2o=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB05LVattbwYvHivYD2qVk02wbms0uSVYopT/BiwdFvPqLvPlvzLYVVPTBwOO9GWbmBYng2mD84eRWVtfWN/Kbha3tnd294v5BS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB+Crz2/dMaR7LOzNJmB+RoeQhp8RY6Vb1Tb9Ywu6Fh70KRtgt12oYn6NMOa9cVpHn4jlKsESjX3zvDWKaRkwaKojWXQ8nxp8SZTgVbFbopZolhI7JkHUtlSRi2p/OT52hE6sMUBgrW9Kgufp9YkoirSdRYDsjYkb6t5eJf3nd1IRVf8plkhom6WJRmApkYpT9jQZcMWrExBJCFbe3IjoiilBj0ynYEL4+Rf+T1pnrYde7KZfqaBlHHo7gGE7BgwrU4Roa0AQKQ3iAJ3h2hPPovDivi9acs5w5hB9w3j4BwTGOAA==</latexit><latexit sha1_base64="io+NEDZ9secN+C/IEonOlTFRw2o=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB05LVattbwYvHivYD2qVk02wbms0uSVYopT/BiwdFvPqLvPlvzLYVVPTBwOO9GWbmBYng2mD84eRWVtfWN/Kbha3tnd294v5BS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB+Crz2/dMaR7LOzNJmB+RoeQhp8RY6Vb1Tb9Ywu6Fh70KRtgt12oYn6NMOa9cVpHn4jlKsESjX3zvDWKaRkwaKojWXQ8nxp8SZTgVbFbopZolhI7JkHUtlSRi2p/OT52hE6sMUBgrW9Kgufp9YkoirSdRYDsjYkb6t5eJf3nd1IRVf8plkhom6WJRmApkYpT9jQZcMWrExBJCFbe3IjoiilBj0ynYEL4+Rf+T1pnrYde7KZfqaBlHHo7gGE7BgwrU4Roa0AQKQ3iAJ3h2hPPovDivi9acs5w5hB9w3j4BwTGOAA==</latexit>

Figure 5.9: Finite difference discretization on quadtree grids. Here, node n0 has no direct
neighbor to the right, and thus a ghost node nr () must be constructed using the existing
neighboring nodes (). Standard central discretizations can then be constructed using this
ghosted neighborhood [14].

This approach requires solving a linear system for every component of the velocity field
v at once because the ∇vT term in the stress tensor σ removes the ability to decouple the
velocity components. This results in several cross-coupling terms that require an additional
approach to discretize. The full Helmholtz system Eq. (5.71) has two components in 2D,
those being

−
∫

∂C+
ij\Γ

µ (2uxN1 + (vx + uy)N2) dS−
∫

∂C−
ij \Γ

µ (2uxN1 + (vx + uy)N2) dS−
∫

Γ
h1dS,

(5.74)

54

and

−
∫

∂C+
ij\Γ

µ ((uy + vx)N1 + 2vyN2) dS −
∫

∂C−
ij \Γ

µ ((uy + vx)N1 + 2vyN2) dS −
∫

Γ
h2dS,

(5.75)
where u = (u, v)T, h = (h1, h2)T, and n = (N1, N2)T. In Eq. (5.74), the vx term here
represents a coupling of the velocity component v with the velocity component u. The vx

terms here are non-zero at the top and bottom walls of the cell Cij . In Eq. (5.75), the uy

term represents a coupling of the velocity component u with the velocity component v.
The uy terms here are non-zero on the left and right walls of the cell Cij . These
cross-coupling terms are more challenging to discretize because they are derivatives in the
direction orthogonal to the normal of the face of the control volume that they are defined
at.

The discretization of these cross-coupling terms is handled through averaging
derivatives in neighboring quadrants. Each node nij has four neighboring quadrants. The
vx terms across the top and bottom walls of the control volume Cij are discretized through
averaging the vx derivatives in either the upper or lower right and left neighboring
quadrants depending on if the discretization is being performed on the top or bottom wall,
respectively. These averages are also weighted by the area of their respective quadrant.
For example, given the setup in figure 5.8, the discretization of vx on the top wall of the
control volume is

vx|T = WL

2

(
vi−1,j+1 − vi,j+1

∆xL

+ vi−1,j − vi,j

∆xL

)
+ WR

2

(
vi,j+1 − vi+1,j+1

∆xR

+ vi,j − vi+1,j

∆xR

)
+ O

(
∆x2

)
, (5.76)

where ∆xL and ∆xR are the lengths of the left and right quadrants, respectively. The
weights WL and WR are defined as

WL = Area(CR)
Area(CR) + Area(CL) , WR = Area(CL)

Area(CR) + Area(CL) , (5.77)

where CL and CR are the left and right quadrants, respectively. A similar procedure is done
for discretizing the uy terms on the left and right walls of the control volume. For example,
given the setup in figure 5.8, the discretization of uy on the right wall of the control volume
is

uy|R = WT

2

(
ui,j+1 − ui,j

∆yT

+ ui+1,j+1 − ui+1,j

∆yT

)

+ WB

2

(
ui,j − ui,j−1

∆yB

+ ui+1,j − ui+1,j−1

∆yB

)
+ O

(
∆y2

)
, (5.78)

55

where ∆yT and ∆yB are the lengths of the top and bottom quadrants, respectively. The
weights WT and WB are defined as

WT = Area(CB)
Area(CT) + Area(CB) , WB = Area(CT)

Area(CT) + Area(CB) , (5.79)

where CT and CB are the top and bottom quadrants, respectively. We note that the two
quadrants used for the averaging need not be unique, as is the case for the node n0 in
figure 5.9, where the top and bottom neighboring quadrants of the right wall of the control
volume are the same. The remaining terms in ∇vT are handled through the same second
order central difference scheme used for those in ∇v.

This coupled approach is much more easily achievable in this fully collocated numerical
method because all of the velocity components are stored at the same location. In a MAC
grid layout, this is challenging due to the different velocity components being stored at
adjacent faces. By solving the viscosity step in this coupled approach, we are able to solve
Eqs. (5.11)-(5.13) without needing an additional iterative correction on the stress jump
condition (5.13), as was needed in [69].

5.8.3 Boundary conditions on the domain boundary
As previously stated, the boundary conditions for u∗ are

B(u∗) = B(un+1) + c. (5.80)

The wall boundary condition B(un+1) can be either Dirichlet or Neumann which
respectively can be expressed as

B(un+1) = u|∂Ω, (5.81)

B(un+1) = (∇u · n)|∂Ω. (5.82)

In the case of a Dirichlet boundary condition, we also prescribe a Dirichlet boundary
condition for u∗ as

u∗|∂Ω = u|∂Ω + c. (5.83)

In the case of a Neumann boundary condition, we also prescribe a Neumann boundary
condition for u∗, that being

(∇u∗ · n)|∂Ω = (∇u · n)|∂Ω. (5.84)

56

5.8.4 Treatment of the velocity jump condition
While the flux jump h is treated naturally by the finite volume discretization as is seen

in Eq. (5.71), the actual velocity jump k needs to be treated with a different approach. We
handle the velocity jump by extending it to the entire domain. We introduce the extension
k̃ of k to the entire domain such that k̃ satisfies

ηk̃ − µ−∇ · (∇k̃) = 0 ∀x ∈ Ω−, (5.85)

k̃ = 0 ∀x ∈ Ω+, (5.86)

k̃ = k ∀x ∈ Γ. (5.87)

We introduce the function ψ = v − k̃ which by Eqs. (5.63), (5.64) and (5.85) satisfies

ηψ − ∇ · σ̃ = r̃ ∀x ∈ Ω \ Γ, (5.88)
[[ψ]] = 0 ∀x ∈ Γ, (5.89)

[[σ̃ · n]] = h −
[[
σk̃ · n

]]
∀x ∈ Γ, (5.90)

where

r̃ = r − µ−∇ · ((∇k̃)T), (5.91)

σ̃ = µ
(
∇ψ + (∇ψ)T

)
, (5.92)

σk̃ = µ
(
∇k̃ + (∇k̃)T

)
. (5.93)

The jump extension k̃ is solved for using the supra-convergent Poisson equation solver [47]
on Eqs. (5.85)-(5.87), which is second order accurate in both the solution and its gradient.
Then, ψ is solved for using the method of section 5.8. However, given that the right hand
side of r̃ in Eq. (5.91) contains two derivatives of k̃, the solution ψ to Eq. (5.88) will
in general be first order accurate. In practice, for small velocity jumps k, this does not
significantly impact the overall order of convergence for the coupled jump solver.

5.8.5 Coupled jump solver convergence results
The convergence of the coupled jump solver in 3D with test solution

u− = cos (x) sin (z), u+ = cos (x) sin (z) + z2, (5.94)
v− = sin (y) cos (x), v+ = sin (y) cos (x) + xy, (5.95)

w− = sin (xy), w+ = sin (xy) + y sin (x), (5.96)

57

and viscosities of µ− = 1 and µ+ = 0.5, test domain of [−1, 1]3, and interface represented
by the level set function ϕ = x2 + y2 + z2 − 0.522 is shown in table 5.1. We observe
convergence between first and second order, as expected given how the solution jump
condition is treated.

Level (max:min) u L∞ error Order v L∞ error Order w L∞ error Order
3:1 0.0411 - 0.0521 - 0.0383 -
4:2 0.0116 1.82 0.0161 1.69 0.0128 1.58
5:3 0.0117 -0.0118 0.0101 0.680 0.0103 0.313
6:4 4.11e-3 1.51 3.80e-3 1.41 4.56e-3 1.17
7:5 1.44e-3 1.51 1.40e-3 1.44 1.91e-3 1.25

Table 5.1: Convergence of coupled jump solver in 3D.

5.9 Projection and pressure guess steps
In this section, we discuss the procedures by which the pressure guess, step 1 in figure

5.2, and projection, step 2b in figure 5.2, steps are performed. Both steps require solving
a Poisson problem with jump conditions and both are treated using the same Poisson jump
solver that uses a finite volume discretization, similar to that of the coupled jump solver of
section 5.8.1. Additionally, we demonstrate numerical evidence of the stability of the nodal
projection operator for two-phase flow.

We use the particular pressure guess shown here as this was shown in [69] to enable
the use of the less restrictive time step constraint given in Eq. (5.62). This pressure guess
resolves capillary effects before the viscosity step, something that is not applicable in our
single-phase flow method 4.4.

5.9.1 Single value finite volume Poisson jump solver
The Poisson problems Eq. (5.8) and Eq. (5.15) are solved using a single valued finite

volume discretization of the Poisson equation with jump conditions. This discretization
is identical to how the non cross-coupling terms were handled in the coupled jump solver
presented in section 5.8.1, including how the control volumes are constructed, how the
discretization matrix is built, and how the jump conditions are handled.

58

We test the convergence of this solver by solving the following Poisson problem for
u(x, y, z) with jump conditions

ηu− µ∆u = r ∀x ∈ Ω \ Γ, (5.97)

[[u]] = k ∀x ∈ Γ, (5.98)
[[∇u · n]] = h ∀x ∈ Γ. (5.99)

We select the test solution

u− = xy + xy2, u+ = cos (z) sin (y), (5.100)

with η = 0, viscosities of µ− = 10 and µ+ = 1, in a test domain of [−2, 2]3, and with
the interface represented by the level set function ϕ = x2 + y2 + z2 − 0.58892. The
right-hand side r is defined as the exact right-hand sided needed for the test solution to
satisfy the Poisson equation and the jump conditions k and h are defined as the exact jump
conditions for the given test solution Eq. (5.100). The convergence of the L∞ error for this
test example is shown in table 5.2. We observe second order convergence for this example.

Level (max:min) ||u||∞ error Order
3:1 0.0239 -
4:2 0.1762 -2.88
5:3 0.0810 1.12
6:4 0.0174 2.22
7:5 3.69e-3 2.23

Table 5.2: Convergence of single value finite volume Poisson jump solver in 3D.

59

5.9.2 Pressure guess
In the pressure guess step, a pressure guess p̃ is solved for as the pressure induced by

the jump in interfacial forces across the interface

∆p̃ = 0 ∀x ∈ Ω \ Γ (5.101a)
[[p̃]] = −γκ− q · n ∀x ∈ Γ, (5.101b)[[

1
ρ

n · ∇p̃
]]

= 0 ∀x ∈ Γ, (5.101c)

B(p̃) = 0 ∀x ∈ ∂Ω. (5.101d)
(5.101e)

The wall boundary condition B(p̃) are homogeneous and can be either Dirichlet or
Neumann which respectively can be expressed for x ∈ ∂Ω as

p̃ = 0, (5.102)

(∇p̃ · n)|∂Ω = 0. (5.103)

We solve for the pressure guess p̃ using the solver described in section 5.9.1.

5.9.3 Projection
In the projection step, the Hodge variable Φ is solved for as the solution to the following

homogeneous, jump Poisson boundary value problem

∆Φ = ∇ · u∗ ∀x ∈ Ω \ Γ (5.104a)
[[ρΦ]] = 0 ∀x ∈ Γ, (5.104b)

[[∇Φ · n]] = 0 ∀x ∈ Γ, (5.104c)
B(Φ) = B(p) ∀x ∈ ∂Ω. (5.104d)

(5.104e)

The wall boundary condition B(Φ) can be either Dirichlet or Neumann which respectively
can be expressed as

B(p) = p|∂Ω, (5.105)

B(p) = (∇p · n)|∂Ω. (5.106)

We arrive at having homogeneous jump conditions for Φ because of our choice of
pressure guess p̃. The wall boundary conditions are taken from the pressure wall boundary

60

conditions. We note that when solving for the Hodge variable Φ, we choose to rescale the
Hodge variable Φ by the density ρ to remove ρ from the jump condition in Eq. (5.104).
We define

Φ = 1
ρ
φ, (5.107)

and arrive at the following Poisson jump problem

1
ρ

∆φ = ∇ · u∗ ∀x ∈ Ω \ Γ (5.108a)

[[φ]] = 0 ∀x ∈ Γ, (5.108b)[[
1
ρ

∇φ · n
]]

= 0 ∀x ∈ Γ, (5.108c)

Once φ is solved for, the rescaling is undone and Φ is used to project u∗ into the divergence
free space. This Poisson boundary value problem is also solved using the nodal single
value finite volume Poisson jump solver from section 5.9.1, which while not fully second
order in both Φ and ∇Φ due to the treatment of the jump condition, still results in second
order convergence of the overall method as will be demonstrated in chapter 6. This was not
achieved in the existing MAC grid solver [69], demonstrating one way in which this nodal
solver achieves higher accuracy in the velocity field.

Once Φ is obtained as the solution to Eq. (5.104), then un+1 is constructed as

un+1 = u∗ − ∇Φ. (5.109)

As was established in our single phase work [14], this projection operation, entirely
collocated at the nodes, is not a true projection, and so we must iterate on this process of
successively projecting the velocity u∗ produced from the viscosity step. We use an
iterative procedure to remove compressible modes through repeated projection,
performing successive projections until∥∥∥un+1 − PNun+1

∥∥∥
∞
< ϵi

∥∥∥un+1
∥∥∥

∞
, (5.110)

or a predefined maximum number of iterations, Kmax, has been reached. Typically, we
choose ϵi = 10−3, set Kmax = 3, and only a few (1 − 3) iterations are required to reach
convergence. This process is detailed in figure 5.2 in Eqs. (5.15)-(5.18).

Stability of the Projection Step

As was established in our single phase work [14], this collocated projection operator is
shown to be stable under iteration for a range of boundary conditions. Here, we demonstrate

61

numerically in 2D that this stability property still holds in a two-phase context when jump
conditions are present.

Using an initially divergence free velocity field, we successively apply the projection
operator to this field and monitor the norm of the variation between the velocity at the
current projection iteration and the previous projection iteration. For a stable operator, this
variation will tend to zero, up to the solver tolerance. For this investigation, the initial
velocity field chosen is

u± = sin(x) cos(y), (5.111)
v± = − cos(x) sin(y), (5.112)

with the interface Γ defined as the zero contour of the level set function

ϕ(x, y) = 0.1 − sin(x) sin(y). (5.113)

Additionally, we consider densities of ρ± = 1 and domain Ω =
[
−π

3 ,
4π
3

]2
. We choose a

Quadtree grid with a minimum level of 4, a maximum level of 8, and choose to refine the
grid near the interface. A picture of this domain is shown in figure 5.10. For the boundary

Figure 5.10: Representation of the Quadtree grid of Ω and the interface Γ (shown in black),
for the example given in Eqs. (5.111) and (5.112) to show the stability of the collocated
projection operator.

condition on the Hodge variable, we consider homogeneous Dirichlet, Neumann, and a

62

combination of Dirichlet and Neumann boundary conditions to demonstrate the robustness
of the collocated projection operation.

The results of this test are shown in Figure 5.11. As expected, the variation in the
norm of the velocity between successive projections decreases to machine precision as we
successively apply our projection operator. For these examples, the tolerance of our linear
solver was set to 10−12. As expected, we see that our collocated projection operator is
numerically stable for all boundary conditions tested. We also note that in practice, only
a small number of iterations (1 − 3) of the projection operator will be used and, as we
show in chapter 6, second order accuracy in the velocity can be achieved with only a single
projection applied.

0 2 4 6 8 10
Projection number (n) #104

10-15

10-10

10-5

jj
ju

n
+

1
jj 1

!
jju

n
jj 1

j

Dirichlet
Neumann
Dirichlet-Neumann

Figure 5.11: Difference between successive projections of an incompressible field, with
different boundary conditions on the Hodge variable.

5.9.4 Pressure reconstruction
In our formulation of the projection method, pressure is never directly computed. If

desired, the pressure p in the numerical method can be reconstructed using the pressure
guess p̃, Hodge variable Φ, and u∗, and follows from the choice of temporal discretization.

63

Following [69], which has an identical procedure on a MAC grid layout, the pressure
reconstruction formula is

p = p̃+ αρ

∆tn
Φ − µ∇ · u∗. (5.114)

5.10 Conclusions
We presented a novel projection method for the simulation of incompressible

two-phase flow in arbitrary domains using quadtrees/octrees, where all of the variables are
collocated at the grid nodes. This method extends our projection method for
incompressible single-phase flow [14] and uses the same collocated projection operator.
This projection operator is an approximate projection that converges to the canonical
projection on the incompressible space when iterated.

Our numerical method discretizes the momentum equation Eq. (5.1) by treating the
advection explicitly and the diffusive terms implicitly. The temporal discretization is a
second order Semi-Lagrangian Backward Difference Formula scheme that is augmented
with a local temporal limiter to ensure numerical stability. The spatial discretization of the
momentum equation is handled with a finite volume scheme that easily treats the full
stress tensor with jump conditions, and a similar single valued finite volume scheme is
used to discretize the projection and pressure guess steps. We verified the convergence of
these finite volume schemes and additionally numerically verified the stability of our
collocated projection operator in the context of two-phase flow across a range of boundary
conditions. In chapter 6, we demonstrate that our solver converges with second order
accuracy and validate its capabilities to simulate applications of multi-phase flow through
several canonical validation examples.

The collocated nodal framework employed by our solver dramatically improves on its
ability to be applied to studying scientific and engineering applications of multi-phase
flows. The collocation of variables simplifies the implementation cost by limiting the
number of data structures needed to store the computational variables, reducing the
number of complex interpolation operations needed in a staggered grid framework, and
allowing for an easier treatment of the stress tensor through the finite volume coupled
jump solver presented in section 5.8. As such, we believe that our solver serves as the
ideal tool for scientists and engineers wishing to develop simulations of multi-phase flow
applications, as well as the best tool for us to simulate the rising oil droplets experiment
presented in chapters 2 and 3, due to the combination of its accuracy and its ease of
implementation.

Chapter 6
Numerical method verification and
validation

In this chapter, we validate our nodal incompressible two-phase Navier-Stokes solver
presented in chapter 5 using several canonical problems in two and three spatial
dimensions. We begin by considering an analytical solution to verify its convergence, then
demonstrate its accuracy with several canonical two-phase flow test cases. We conclude
this chapter by demonstrating the versatility and capabilities of our solver to accurately
simulate numerous rising bubbles and interactions of bubbles with solid flow obstructions.

6.1 Analytic vortex
We verify the convergence of our method by solving Eqs. (5.1)-(5.4) for the following

exact analytical solution

u(x, y, t) = sin (x) cos (y) cos (t), (6.1a)
v(x, y, t) = − cos (x) sin (y) cos (t), (6.1b)

p = 0, (6.1c)
ϕ(x, y) = 0.1 − sin(x) sin(y), (6.1d)

64

65

Figure 6.1: Representation of the quadtree discretization of Ω and the interface Γ (shown
in orange).

for the two-phase incompressible Navier-Stokes equations with an external body force
f±(x, y, t) and interfacial stress q(x, y, t) given by:

f±(x, y, t) = ρ±
(
∂u
∂t

+ u · ∇u
)

− µ±∆u,

q(x, y, t) = −γ∇ · ∇ϕ
|∇ϕ|

+
[[
µ∇u · ∇ϕ

|∇ϕ|

]]
.

This solution is constructed from an analytic solution of the single-phase case.
Additionally, we set the following parameters as:

µ+, ρ+ = 1, µ−, ρ− = 10, γ = 0.1, Ω =
[
−π

3 ,
4π
3

]2
, tfinal = π.

No-slip boundary conditions are imposed on the walls of the computational domain and
the mesh is represented using a quadtree data structure (see Figure 6.1). We note that the
mesh is only refined near the interface location (i.e. no vorticity based refinement). We
perform the computations on a coarse mesh and then recursively produce a mesh where the
min and max level of the quadtree is increased by one. We see in table 6.1 that if we use
SLBDF we get second order convergence in the L∞-norm for the velocity. For quadtree

66

levels up to 7:3, the solution seems to be underresolved and our order of accuracy is far
less than desired. For quadtree levels of 7:3 to 9:5, we do see convergence. With the local
temporal limiter, convergence drops to first order. In both cases, only a single projection
was used, demonstrating that we can obtain second order convergence even with only a
single projection, consistent with what we observed in the nodal projection method for
single phase flows [14].

Without temporal limiter With temporal limiter
Level (max:min) u L∞ error Order u L∞ error Order

4:0 2.71e-01 - 3.25e-01 -
5:1 7.38e-02 1.88 8.48e-02 1.94
6:2 4.57e-02 0.69 4.67e-02 0.86
7:3 5.01e-02 -0.13 4.38e-02 0.09
8:4 1.18e-02 2.08 1.73e-02 1.34
9:5 2.78e-03 2.09 6.23e-03 1.47

Table 6.1: Convergence of analytic vortex at the final time with and without the local
temporal limiter.

6.2 Parasitic currents
In this second example, we consider the canonical example of parasitic or spurious

currents [25, 62, 52]. Parasitic currents are purely artificial flows generated by capillary
effects at the interface, as seen in the stress jump condition in Eq. (5.4). These manifest
because our representation of the curvature is inherently inaccurate due its computation
being through derivatives of the level-set function, Eq. (5.27). This inaccuracy generates a
flow at the interface that can grow and lead to inaccurate velocity profiles near the
interface. Since we are interested in studying applications where the most significant
dynamics happen near the interface, we wish for the parasitic currents that arise in our
numerical method to be bounded in time and ideally converging as the spatial resolution
increases.

To study the magnitude and convergence of parasitic currents, we solve Eqs. (5.1)-(5.4)
with p = 0, f = 0, and q = 0, with the interface given by the zero contour of the level-set
function

ϕ(x, y) =
√
x2 + y2 − 0.003, (6.2)

67

and parameters

ρ+ = 1261, ρ− = 1 µ+ = 1.4746, µ− = 1, γ = 0.05, Ω = [−0.005, 0.005]2. (6.3)

We enforce homogeneous Dirichlet boundary conditions for the velocity on the left and
right computational walls, homogeneous Neumann boundary conditions for the velocity
on the top and bottom walls, and the alternated boundary conditions for the pressure.

For the grid, we consider increasingly refined uniform grids of levels varying from 4 to
8, similar to that in [21]. The resulting L∞-error for interface location and L1-error for the
velocity as functions of time are shown in figure 6.2. We observe second order convergence
in the interface position, which is reasonable given that the error in the interface is largely
driven by the advection of the reference map, which is done using a second order accurate
method. The velocity also converges with values comparable to other studies [69, 25, 62,
21, 52]. Moreover, the capillary velocity ucap, which represents the relevant velocity scale
for capillary effects, scales as

ucap ∼
√
γL

ρ
, (6.4)

where L is the length of the computational domain. Here using L = 0.01 and ρ+ for ρ, we
find

ucap ∼ O(10−4), (6.5)

demonstrating that as we refine the spatial grid, the magnitude of the velocity induced by
the parasitic currents converges to several orders of magnitude smaller than the scale of
velocity relevant to any application featuring interface driven flow, further confirming that
our method is not impacted by the presence of parasitic currents.

Interface location Velocity
Level (max:min) L∞ error Order L1 error Order

4:4 1.47e-05 - 3.86e-07 -
5:5 2.96e-06 2.32 5.93e-08 2.70
6:6 6.92e-07 2.10 7.21e-08 -0.28
7:7 1.73e-07 1.99 1.74e-08 2.05
8:8 5.10e-08 1.76 1.06e-08 0.72

Table 6.2: Convergence of parasitic currents at the final time. The interface location error
is computed within a band of ∆x close to the interface.

68

0 0.1 0.2 0.3 0.4 0.5 0.6
time (s)

10-8

10-6

10-4

jje
rr

(?
)jj

1
4
5
6
7
8

0 0.1 0.2 0.3 0.4 0.5 0.6
time (s)

10-8

10-6

10-4

jje
rr

(u
)jj

1

4
5
6
7
8

Figure 6.2: Convergence results for the parasitic currents example: interface location error
(left) and velocity L1 error (right) for increasing level of refinement.

6.3 Oscillating bubble
Next, we consider the oscillations of an initially spherical bubble around its

equilibrium shape when a perturbation is introduced in its radius. This problem was
originally theoretically studied by Lamb [36], where a perturbation of the radius of an
initially spherical bubble generates capillary forces that produce oscillations which are
eventually dampened by viscous effects. The initially circular bubble is defined in 2D by
the level set function

ϕ(r, θ) = r −
(
R + ϵ

2(3 cos3 θ − 1)
)

, (6.6)

where r is the radial coordinate, θ is the polar angle, R is the initial bubble radius, and
ϵ ≪ 1 is the perturbation to the radius. We set f = 0, q = 0, and use the parameters

µ+ = 0.02, ρ+ = 1, µ+

µ− = ρ+

ρ− = 103, γ = 0.5, R = 1, ϵ = 0.01, Ω = [−1.5, 1.5]2.

(6.7)

We enforce homogeneous Neumann boundary conditions for the velocity on the left and
right computational walls, homogeneous Dirichlet boundary conditions for the velocity on
the top and bottom walls, and the alternated boundary conditions for the pressure.

A minimum level of 4 and an increasing maximum level of from 6 to 9 were used
for the spatial resolution. Shown in figure 6.3 and table 6.3 is the convergence of the x
radius of the bubble vs time. As the maximum level increases, we see that the period of
oscillation converges to the predicted exponential decay in 3D of 3.629. In figure 6.4, the

69

velocity profile for the highest resolution case is shown at a time of expansion and a time
of contraction.

Max level Period of oscillation
6 3.834
7 3.774
8 3.706
9 3.693

Table 6.3: Convergence of period of oscillation. The 3D theoretical prediction is 3.629.

0 1 2 3 4 5
time (s)

1

1.005

1.01

ra
d
iu

s
in

x
d
ir
ec

ti
o
n

6
7
8
9

Figure 6.3: Oscillating bubble radius in x direction vs time with increasing max level. The
green line represents the predicted exponential decay of the bubble in 3D.

6.4 Dynamics and deformations of rising bubbles
The next validation example we consider is the dynamics and deformations of rising

bubbles subject to strong density and surface tension driven deformations. These examples
are inspired by and validated against the experimental Cases a-h of [12]. We consider an
initially spherical bubble suspended in another denser and more viscous fluid, where the
density difference between the two fluids induces a buoyancy force causing the bubble to
rise and deform.

70

Figure 6.4: Oscillating bubble velocity profile at times of expansion and contraction. The
colormap shows the horizontal velocity u at time of expansion (left) and vertical velocity v
at time of contraction (right). The bubble interface is represented in black.

These dynamics are described by three non-dimensional numbers: the Morton, Eotvos
and Reynolds numbers, respectively defined here as

Mo = g(µ−)4

ρ−γ3 , Eo = gd2ρ−

γ
, Re = ρ−Ud

µ− , (6.8)

where U is the asymptotic rising velocity measured at the tip of the drop, g is the
acceleration due to gravity, and d is the initial diameter of the undeformed bubble. The
simulation parameters are constructed from these three numbers. We set the rising
velocity U and undeformed diameter d to 1 and set the remaining parameters as

ρ− = 1,
ρ−

ρ+ = 103, µ− = ρ−

Re
,
µ−

µ+ = 102, γ = (µ−)2

ρ−

√
Eo

Mo
, g = (Mo)ρ−γ3

(µ−)4 . (6.9)

The density and viscosity ratios are chosen to be close to those for air and water. By
setting U = 1, we expect the asymptotic rising velocity of the rising bubbles to be close
to 1. We perform these simulations in a domain of [−16, 16]2 or [−16, 16]3, much larger
than the initial diameter of 1, and initialize the bubble far from the walls to minimize
boundary effects. No-slip boundary conditions are imposed for the velocity on all walls
except for the top wall, where a no-flux boundary condition is imposed, and the pressure

71

boundary conditions are imposed as the inverse of these. All of these simulations were
performed with a minimum grid level of 4, giving a relatively coarse grid away from the
bubble interface. We use the interface based refinement criterion Eq. (5.45) and a vorticity
based refinement criterion Eq. (5.46) with the vorticity tolerance set to TV = 0.01 and
maxV = maxlevel − 1.

6.4.1 Single rising bubble in 2D
To begin, we consider case (d) from [12], where the non-dimensional parameters are

Mo = 266, Eo = 243, Re = 7.77. (6.10)

We perform this investigation in a 2D domain of [−16, 16]2 and consider the convergence
of the bubble’s asymptotic rising velocity and relative mass loss over time with increasing
maximum grid level from 10 to 12. Figure 6.5 shows convergence in the rising velocity to
an asymptotic value around 1, as predicted by the experiment. In figure 6.5, we additionally
see convergence in relative mass loss as the refinement of the grid increases. Figure 6.6
shows the velocity magnitude at the final simulation time for each of these simulations,
showing convergence in the interface shape as well. Though these are 2D simulations,
the interface shape does qualitatively resemble the experiment conducted in this parameter
regime.

0 2 4 6 8 10 12
time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ri
si
n
g

ve
lo

ci
ty

(c
m

=s
)

10
11
12

0 2 4 6 8 10 12
time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

re
la

ti
v
e

m
a
ss

lo
ss

10
11
12

Figure 6.5: Rising velocity of 2D Bhaga Weber case (d) [12], with increasing max level
and min level of 4 (left) and relative mass loss of 2D Bhaga Weber case (d) [12], with
increasing max level and min level of 4 (right). Negative relative mass loss indicates a gain
in mass.

72

Figure 6.6: Velocity magnitude |u| and interface shape at final time of simulation for 2D
rising bubble, Bhaga Weber case (d) [12] with increasing max level of refinement. Top
left has a maximum level of 10, top right has a maximum level of 11, and bottom has a
maximum level of 12. A subset around the bubble of the adaptive grid is also shown for
each case. The initial bubble has a diameter of 1 cm.

73

6.4.2 Rising bubbles in 3D
Single bubble

To perform a more rigorous validation with the experiments of [12], we turn to 3D
simulations of the 8 parameter regimes presented there. These 8 experimental cases are
defined in terms of the dimensionless parameters: Eötvös number (Eo), Morton number
(Mo), and Reynolds number (Re), defined as

Eo = gd2ρ−

γ
, Mo = g(µ−)4

ρ−γ3 , Re = ρ−dU

µ− , (6.11)

where g is the acceleration due to gravity, d is the initial diameter of the bubble, and U is
a characteristic velocity. These parameters are defined as follows for the 8 cases of Bhaga
and Weber [12]. The Eötvös number represents the ratio of gravitational forces to capillary

Case: a b c d e f g h
Eo 8.67 17.7 32.2 243 115 237 339 641
Mo 711 711 8.2 × 10−4 266 4.63 × 10−3 8.2 × 10−4 43.1 43.1
Re 0.078 0.232 55.3 7.77 94 259 18.3 30.3

Table 6.4: Rising bubbles in 3D: dimensionless parameters associated with the Bhaga
Weber cases (a) - (h).

forces, the Morton number is used with the Eötvös number to characterize the shape of the
bubbles, and the Reynolds number represents the ratio of inertial effects to viscous effects.

Figures 6.7 and 6.8 show the final interface shape of the bubbles along with streamlines
of the magnitude of apparent velocity |ua| (velocity in the reference frame of the bubble)
for each experimental case. We observe qualitative agreement with the experiments over
a range of parameter regimes, though we note that the simulated bubbles feature some
roughness along their edges as a result of the limited spatial resolution. While we are
unable to fully resolve the thin film skirts present in cases (e), (g), and (h) in the asymptotic
regime, we still observe the formation of these thin regions as the bubbles rise before the
thin regions disappear due to limitations in resolution. Figures 6.9 and 6.10 demonstrate the
time evolution for cases (e) and (h), respectively, showing our ability to resolve the multiple
configurations these bubbles take on over time. These results are qualitatively consistent
with those presented in other numerical studies [69, 21].

74

Figure 6.7: Final bubble shapes and interior flow fields corresponding to examples 2(a–d)
from Bhaga and Weber [12]. The streamlines are colored according to the magnitude of the
apparent velocity |ua|, or velocity of the fluid in the reference frame of the rising bubble.
Each bubble was initialized with a diameter of 1 cm. For clarity, each bubble is displayed
sliced in half.

75

Figure 6.8: Final bubble shapes and interior flow fields corresponding to examples 2(e),
2(g), and 2(h) from Bhaga and Weber [12]. The streamlines are colored according to the
magnitude of the apparent velocity |ua|, or velocity of the fluid in the reference frame of
the rising bubble. Each bubble was initialized with a diameter of 1 cm. For clarity, each
bubble is displayed sliced in half.

76

Figure 6.9: Time evolution of the instantaneous shape and apparent exterior flow for
example 2(e) from Bhaga and Weber [12]. The flow streamlines in the suspending fluid
are colored by the vorticity magnitude |∇ × u|. The bubble was initialized with a diameter
of 1 cm.

77

Figure 6.10: Time evolution of the instantaneous shape and apparent velocity for example
2(h) from Bhaga and Weber [12]. The streamlines are colored by the magnitude of the
apparent velocity |ua|. The bubble was initialized with a diameter of 1 cm.

78

In table 6.5 we present a quantitative description of these 3D rising bubble simulations. The
final simulation times were chosen as the times when the bubbles reached their asymptotic
shape and rising velocity. For each case, we observe an asymptotic rising velocity close to
1, as expected. Moreover, each case demonstrated a small relative volume loss, which is
measured at the final time as

relative volume loss =
4
3πr

3
0 −

∫
Ω+ dV

4
3πr

3
0

, (6.12)

where r0 is the initial radius of the bubble. This behavior is expected given that the
reference map used to track the interface is projected into the volume preserving space as
part of the interface evolution algorithm. Finally, we present the CFL number and GV
coefficient values used for determining the time step, and see that for most of the cases,
larger time-steps were permissible. For cases (e), (g), and (h), we chose to use a smaller
time-step restriction motivated by the choices made in [21] to ensure that numerical
stability was maintained in these more complex cases. We note that the local temporal
limiter discussed in section 5.7.2 was used for cases (e), (f), and (h) to ensure numerical
stability. These results demonstrate the robustness and power of this numerical method to
be used to simulate density and surface driven flows over a wide range of parameter
regimes.

Case: a b c d e g h
Final time (s) 3 3 6 5 6 4 6

Rising velocity (m/s) 1.16 1.11 1.04 1.08 0.83 0.99 0.9
Relative volume loss 0.2% 0.2% 0.2% 0.19% 0.05% 0.19% 0.05%

Max level 10 10 10 10 11 10 11
CFL number 1 1 1 1 0.25 0.45 0.45

GV coefficient 2 2 2 2 0.3 1 0.3

Table 6.5: Rising bubbles in 3D: parameters and measurements associated with the Bhaga
Weber cases (a) - (h). The rising velocity is measured at the final time at the front tip of the
bubble.

Case (f)

We choose to analyze case (f) separately from the other seven cases, as we observed
considerably different behavior for the time evolution of case (f) compared to other
numerical studies, such as [69]. Figure 6.11 shows the early time evolution of the
instantaneous bubble shape. We observe that the middle section of the bubble becomes

79

incredibly thin as the bubble rises. At simulation time t = 0.861 s, we observe that the tip
of the bubble reaches such a thinning that we reach the limit of our resolution. At this
point, the bubble’s tip begins to break apart, similar to how the thin skirts of cases (e) and
(h) break apart due to limits in resolution. Figure 6.12 shows this particular time step in
3D, and figure 6.13 shows a vertical slice in 2D of this time step, demonstrating the
adaptive grid reaching a point where only a single grid node is resolving the bubble’s tip.
From this point, the tip of the bubble breaks apart and a hole forms in its place. This is
shown in figure 6.14, which depicts the bubble’s instantaneous shape at a later time once
the tip has fully broken apart. Following this, the bubble is shown to undergo significant
topological change as the hole at the tip expands to create three distinct segments at the
top of the bubble, which all later start to break away, as shown in figure 6.15.

Figure 6.11: Time evolution of the instantaneous shape and apparent velocity for example
2(f) from Bhaga and Weber [12]. The streamlines are colored by the magnitude of the
apparent velocity |ua|. The max level of this simulation is 12. The bubble was initialized
with a diameter of 1 cm. For clarity, each bubble is displayed sliced in half.

There are several conclusions to draw from this case. The first is that our solver is
capable of simulating significant topological changes and bubble breakup while
maintaining numerical stability. This demonstrates our capability to resolve complex
hydrodynamics involving considerable interfacial deformations. On the other hand, this
case also highlights several limitations in our solver and computational approach. Case (f)
as defined in [12] has the highest Reynolds number of Re = 259, and thus features the
most momentum out of all of the cases. For each of these simulations, we choose the
bubble’s initial shape to be a sphere and we choose the initial velocity profile to be zero.
In addition, other than gravity and interfacial tension, we do not incorporate any additional
forces into our model. These choices may explain why the end shape of our simulation of

80

Figure 6.12: Instantaneous shape and apparent velocity for example 2(f) from Bhaga and
Weber [12] at time t = 0.861 s, the first time step at which the tip of the bubble begins
to break apart. The full bubble is shown (left) along with a zoomed in view of the tip
beginning to break apart (right). The streamlines are colored by the magnitude of the
apparent velocity |ua|. The max level of this simulation is 12. For clarity, the full bubble is
displayed sliced in half.

case (f) does not appear to resemble the experiment from [12] or past numerical studies
such as [69] and why instead the bubble’s tip becomes incredibly thin and reaches our
resolution limit. Our future goal is to investigate different initial configurations that may
lead to a more realistic terminal bubble shape.

Multiple bubbles

To further illustrate the capabilities of our numerical method, we simulate the flow of
20 rising bubbles with the same parameters as case (d) from [12], initialized in the domain
with random initial positions and sizes. This simulation was performed on an octree grid
with a minimum level of 4 and a maximum level of 10, where the grid was refined in
regions near each bubble and in areas of high vorticity. We show the final configuration
of this example in figure 6.16 and visualize the flow field through streamlines of velocity
centered on each bubble, colored by the velocity magnitude. Here, in the zoomed region
(a), we see an illustration of some asymmetries in the vertical rise of some bubbles due to
the influence of nearby bubbles on the flow. We see that we are able to resolve complex
multi-bubble interactions in regions where bubbles are close to one another, demonstrating
the capability of our solver to effectively handle multi-scale hydrodynamics.

81

Figure 6.13: Vertical slice in 2D for example 2(f) from Bhaga and Weber [12] at time
t = 0.861 s, the first time step at which the tip of the bubble begins to break apart. The full
slice is shown (left) along with a zoomed in view of the tip beginning to break apart (right).
The adaptive grid is shown and the slice is colored by the velocity magnitude |u|. The max
level of this simulation is 12.

6.4.3 Rising bubbles past complex geometries
We conclude this section by simulating a rising bubble in a domain featuring solid flow

obstructions: complex geometries that will remain stationary in the flow as the bubbles rise.
We consider a rising bubble with the parameters of case (d) from Bhaga and Weber [12],
and define solid obstructions using level set functions, as we do for the bubble interfaces.
To treat the solid obstruction, we zero out all velocity fields everywhere in the domain
where the obstruction level set functions are positive.

Shown in figure 6.17 is the time evolution of a single case (d) bubble placed in a flow
with a solid flow obstruction featuring a converging conical section and a narrow pipe
with a diameter half the size of the bubble’s initial diameter. The bubble is shown to
deform and change its shape to fit around the obstruction, and is shown to preserve its
volume, as expected given our interface advection scheme and treatment of the solid
obstruction. Five time steps from this example are highlighted in figure 6.18,
demonstrating how the mesh adapts around the droplet as it changes its velocity and
shape. We additionally highlight the flow field around the bubble in figure 6.20, where we
show the velocity magnitude in a vertical slice at five times shown originally in figure
6.17. To quantify the accuracy of this example, in figure 6.19 we also show the relative
mass loss of the bubble as it rises and deforms through its interactions with the flow
obstruction. We observe excellent conservation of mass with deviations in mass at most

82

Figure 6.14: Instantaneous shape and apparent velocity for example 2(f) from Bhaga and
Weber [12] at a later time of t = 1.3 s, after the tip has fully broken apart (left). For clarity,
the bubble is displayed sliced in half. The streamlines are colored by the magnitude of the
apparent velocity |ua|. The instantaneous shape of the full bubble is also shown (right),
depicting the full breakup of the bubble’s tip. The max level of this simulation is 12.

Figure 6.15: Time evolution of the instantaneous shape for example 2(f) from Bhaga
and Weber [12] for later times after the initial breakup of the tip. The max level of this
simulation is 11.

20% towards the end of the simulation and with most deviations close to zero. This
example demonstrates the ability of our solver to simulate a two-phase flow impinging on
an arbitrary irregular geometry, while maintaining numerical stability and thus illustrates
that our approach can be used in the exploration of complex flow applications that feature
both multi-phase flows and flow past solid obstructions.

83

Figure 6.16: Final configuration in a 3D simulation of a collection of 20 rising bubbles
with random initial positions and sizes. We visualize the flow field through streamlines of
the velocity, colored by its magnitude |u|. We show two regions, (a) and (b), zoomed in to
further illustrate the complex flow structure in regions featuring multiple bubbles close to
one another.

84

Figure 6.17: Time evolution of the shape and adaptive octree grid for a case (d) bubble
from Bhaga and Weber [12] in a flow with a flow obstruction featuring a converging conical
section and a narrow pipe. For clarity, the flow obstruction is displayed sliced in half. The
droplet is shown to maintain its volume as it rises through the complex flow geometry. Five
time steps labeled (a) − (e) are identified with boxes and highlighted in figure 6.18.

85

Figure 6.18: Zoomed in time steps from figure 6.17.

Figure 6.19: The relative mass loss of the rising bubble of the example shown in figure
6.17. The five time steps shown in more detail from figure 6.18 are identified with labeled
plot markers.

86

Figure 6.20: Time evolution of the velocity magnitude |u| shown in a slice in the vertical
direction for a case (d) bubble from Bhaga and Weber [12] in a flow with a flow obstruction
featuring a converging conical section and a narrow pipe.

87

6.5 Conclusions
We validated our two-phase nodal Navier-Stokes solver using several canonical two-

and three-dimensional examples. We observe second order convergence, and we
demonstrate the ability to accurately resolve surface tension and density driven flows,
qualitatively and quantitatively matching experimental data on rising bubbles subject to
strong and weak surface deformations. Finally, we demonstrated the capability of our
solver to simulate complex flows of multiple rising bubbles and flow of bubbles rising past
solid flow obstructions, displaying the potential of our solver to study a range of
multi-physics applications.

There are several directions of future work for this project. To start, we wish to expand
the capabilities of our solver to handle variable density flows. This would enable our
solver to study atmospheric and oceanic applications featuring density stratified flows,
such as rising oil droplets [20, 35, 59, 44], fine particle pollution in the atmosphere [71],
and settling marine snow [53]. In addition, we would like to explore applications featuring
non-uniform interfacial tension induced by effects such as the Marangoni effect. Also, we
would like to explore additional approaches to treating the fluid-structure interaction, such
as the approach using reference maps of [54], as this would expand the variety of
applications that our method would be capable of resolving. Finally, we would like to
parallelize our method on a distributed memory framework, given that at present we have
only implemented parallelization on a shared-memory framework. This would enable our
method to take better advantage of high performance computing resources and study a
wider range of multi-physics applications.

For the work presented in this dissertation in particular, we believe that this
incompressible two-phase flow Navier-Stokes solver is better suited to simulating the
rising oil droplets experiment presented in chapters 2 and 3, due to its second order
accuracy. However, at present, we have been unsuccessful in adapting this solver to
simulate the rising oil droplet in a homogeneous ambient flow that was featured in section
3.4.1. When the density and viscosity values from this simulation are used instead of
those featured in the examples of section 6.4.2, we observe far more significant surface
deformations than what was observed in the simulations of chapter 2 and the experiments
[43]. We believe that there is some sort of error in the implementation of our method or a
potential instability that only manifests significantly when the density of the droplet is on
the same order of magnitude as the ambient fluid, as we only validated our method against
the experiments of [12], where the density of the rising bubbles is three orders of
magnitude smaller than the surrounding fluid. Our immediate future work is to investigate
this regime further and correct this issue to ensure that our solver can accurately simulate
rising oil droplets.

88

Once our method is able to successfully simulate rising oil droplets in homogeneous
ambient flows, the next direction for this project is to incorporate the ability to simulate a
variable density ambient with the Boussinesq approximation, as was done for the method
[69], and to re-run the validation simulations presented in chapter 2. Once these validation
simulations are complete, we will then use our nodal method to solve the force
decomposition presented in chapter 3 and perform an investigation into which surface
forces primarily drive the entrainment of the oil droplet as it rises through the region of
density stratification.

Chapter 7
Conclusion

Multi-phase flows are a significant component in many environmental systems,
including atmospheric and oceanic systems featuring rising droplets and bubbles in
stratified fluids. These applications are difficult and costly to fully study in an
experimental manner, necessitating accurate and efficient numerical methods to simulate
models that capture all the relevant multi-scale physics present. Motivated by modeling
and simulating an experimental investigation into rising oil droplets in a density stratified
flow, we developed a novel numerical method to simulate incompressible multi-phase
fluid flow that is highly adaptable to studying a range of environmental applications.

The first project of this dissertation concerned the modeling and simulation of a rising
oil droplet in a sharp two-layer density stratified flow. This problem serves as a means of
isolating and better understanding the dynamics which drive droplet slowdown and
entrainment when rising through regions of density stratification. We modeled the
experiment of this problem with the incompressible multi-phase Navier-Stokes equations
Eqs. (1.1)-(1.4) and simulated this model using the numerical method of [69]. These
simulations showed good qualitative and quantitative agreement with the experiment of
[43], demonstrating that we were able to successfully model this system and develop a
computational framework for further study. To accompany this computational framework,
we developed a model for surface forces impacting the rising droplet based on a
decomposition of the pressure. This model was inspired by similar work for settling solid
spheres in density stratified flows [78]. Despite the ability to capture the rising velocity
trends found in the experiment with our simulations, we found the numerical method to be
limited in its capability to solve our force decomposition model, given it only being a first
order method. Nevertheless, we were able to validate the force decomposition model on a
rising droplet in a homogeneous fluid, leaving future work in applying this model to a
more accurate simulation of density stratified flow. We hope to use this model to quantify

89

90

the relative impact of each of the surface forces we identified in driving droplet slowdown
and entrainment in the region of density stratification.

The second project of this dissertation concerned the development of a numerical
method for solving the incompressible multi-phase Navier-Stokes equations, based on the
method of [69], that achieves second order accuracy through collocated all computational
variables at the nodes of the computational mesh. This method is a projection method that
uses a collocated projection operator, that while only an approximate projection,
converges to the canonical orthogonal projection when iterated. We initially developed
this collocated projection operator for simulating incompressible single-phase flow in
arbitrary domains [14], which we incorporated into a solver for the incompressible
Navier-Stokes equations. This solver has second order accuracy and has a tremendously
lower implementation cost compared to methods that employ staggered grids due to the
collocation of all computational variables simplifying the discretization of the viscosity
and projection operators and reducing the number of interpolations functions needed.
Ultimately, our numerical method for incompressible multi-phase flow is the extension of
our single-phase flow solver. We demonstrated that the nodal projection operator is stable
in two-phase flow and validated our solver using several canonical two- and
three-dimensional two-phase flows. Our solver achieves second order accuracy, is capable
of accurately resolving density and surface tension driven flows, and also features the low
implementation barrier present in our single-phase flow solver, making it an ideal tool for
simulating environmental applications. We hope to continue our study of rising droplets
and bubbles in environmental applications using this new solver, starting with returning to
our preliminary numerical investigation of the rising oil droplet in a sharply stratified flow.

Bibliography

1N. Abaid, D. Adalsteinsson, A. Agyapong, and R. M. McLaughlin, “An internal splash:
Levitation of falling spheres in stratified fluids”, en, Physics of Fluids 16, 1567–1580
(2004).

2D. Adalsteinsson and J. Sethian, “Transport and diffusion of material quantities on
propagating interfaces via level set methods”, en, Journal of Computational Physics 185,
271–288 (2003).

3A. S. Almgren, J. B. Bell, and W. G. Szymczak, “A Numerical Method for the
Incompressible Navier-Stokes Equations Based on an Approximate Projection”, en,
SIAM Journal on Scientific Computing 17, 358–369 (1996).

4D. C. Assêncio and J. M. Teran, “A second order virtual node algorithm for Stokes flow
problems with interfacial forces, discontinuous material properties and irregular
domains”, en, Journal of Computational Physics 250, 77–105 (2013).

5F. Auguste and J. Magnaudet, “Path oscillations and enhanced drag of light rising
spheres”, en, Journal of Fluid Mechanics 841, 228–266 (2018).

6K. Bäumler, M. Wegener, A. Paschedag, and E. Bänsch, “Drop rise velocities and fluid
dynamic behavior in standard test systems for liquid/liquid extraction—experimental and
numerical investigations”, en, Chemical Engineering Science 66, 426–439 (2011).

7M. Bayareh, A. Doostmohammadi, S. Dabiri, and A. M. Ardekani, “On the rising motion
of a drop in stratified fluids”, en, Physics of Fluids 25, 103302 (2013).

8J. Bedrossian, J. H. Von Brecht, S. Zhu, E. Sifakis, and J. M. Teran, “A second order
virtual node method for elliptic problems with interfaces and irregular domains”, en,
Journal of Computational Physics 229, 6405–6426 (2010).

91

https://doi.org/10.1063/1.1687685
https://doi.org/10.1063/1.1687685
https://doi.org/10.1016/S0021-9991(02)00057-8
https://doi.org/10.1016/S0021-9991(02)00057-8
https://doi.org/10.1137/S1064827593244213
https://doi.org/10.1016/j.jcp.2013.04.041
https://doi.org/10.1017/jfm.2018.100
https://doi.org/10.1016/j.ces.2010.11.009
https://doi.org/10.1063/1.4823724
https://doi.org/10.1016/j.jcp.2010.05.002

92

9T. Bellotti and M. Theillard, “A coupled level-set and reference map method for
interface representation with applications to two-phase flows simulation”, en, Journal of
Computational Physics 392, 266–290 (2019).

10M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential
equations”, en, Journal of Computational Physics 53, 484–512 (1984).

11E. Bertakis, S. Groß, J. Grande, O. Fortmeier, A. Reusken, and A. Pfennig, “Validated
simulation of droplet sedimentation with finite-element and level-set methods”, en,
Chemical Engineering Science 65, 2037–2051 (2010).

12D. Bhaga and M. E. Weber, “Bubbles in viscous liquids: shapes, wakes and velocities”,
en, Journal of Fluid Mechanics 105, 61 (1981).

13F. Blanchette and A. M. Shapiro, “Drops settling in sharp stratification with and without
Marangoni effects”, en, Physics of Fluids 24, 042104 (2012).

14M. Blomquist, S. R. West, A. L. Binswanger, and M. Theillard, “Stable nodal projection
method on octree grids”, en, Journal of Computational Physics 499, 112695 (2024).

15K. Boukir, Y. Maday, B. Métivet, and E. Razafindrakoto, “A high-order
characteristics/finite element method for the incompressible navier-stokes equations”,
International Journal for Numerical Methods in Fluids 25, 1421–1454 (1997).

16K. Boukir, Y. Maday, and B. Métivet, “A high order characteristics method for the
incompressible navier—stokes equations”, Computer methods in applied mechanics and
engineering 116, 211–218 (1994).

17J. Brackbill, D. Kothe, and C. Zemach, “A continuum method for modeling surface
tension”, en, Journal of Computational Physics 100, 335–354 (1992).

18D. L. Brown, R. Cortez, and M. L. Minion, “Accurate Projection Methods for the
Incompressible Navier–Stokes Equations”, en, Journal of Computational Physics 168,
464–499 (2001).

19R. Camassa, C. Falcon, J. Lin, R. M. McLAUGHLIN, and N. Mykins, “A first-principle
predictive theory for a sphere falling through sharply stratified fluid at low Reynolds
number”, en, Journal of Fluid Mechanics 664, 436–465 (2010).

20R. Camilli, C. M. Reddy, D. R. Yoerger, B. A. S. Van Mooy, M. V. Jakuba, J. C. Kinsey,
C. P. McIntyre, S. P. Sylva, and J. V. Maloney, “Tracking Hydrocarbon Plume Transport
and Biodegradation at Deepwater Horizon”, en, Science 330, 201–204 (2010).

21H. Cho and M. Kang, “Fully implicit and accurate treatment of jump conditions for two-
phase incompressible Navier–Stokes equations”, en, Journal of Computational Physics
445, 110587 (2021).

https://doi.org/10.1016/j.jcp.2019.05.003
https://doi.org/10.1016/j.jcp.2019.05.003
https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1016/j.ces.2009.11.043
https://doi.org/10.1017/S002211208100311X
https://doi.org/10.1063/1.4704790
https://doi.org/10.1016/j.jcp.2023.112695
https://doi.org/10.1016/0021-9991(92)90240-Y
https://doi.org/10.1006/jcph.2001.6715
https://doi.org/10.1006/jcph.2001.6715
https://doi.org/10.1017/S0022112010003800
https://doi.org/10.1126/science.1195223
https://doi.org/10.1016/j.jcp.2021.110587
https://doi.org/10.1016/j.jcp.2021.110587

93

22A. J. Chorin, “A numerical method for solving incompressible viscous flow problems”,
en, Journal of Computational Physics 2, 12–26 (1967).

23A. Doostmohammadi, S. Dabiri, and A. M. Ardekani, “A numerical study of the
dynamics of a particle settling at moderate Reynolds numbers in a linearly stratified
fluid”, en, Journal of Fluid Mechanics 750, 5–32 (2014).

24R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, “A Non-oscillatory Eulerian
Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)”, en, Journal of
Computational Physics 152, 457–492 (1999).

25M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian, and
M. W. Williams, “A balanced-force algorithm for continuous and sharp interfacial
surface tension models within a volume tracking framework”, en, Journal of
Computational Physics 213, 141–173 (2006).

26C. Galusinski and P. Vigneaux, “On stability condition for bifluid flows with surface
tension: Application to microfluidics”, en, Journal of Computational Physics 227,
6140–6164 (2008).

27J. Glimm, O. McBryan, R. Menikoff, and D. H. Sharp, “Front Tracking Applied to
Rayleigh–Taylor Instability”, en, SIAM Journal on Scientific and Statistical Computing
7, 230–251 (1986).

28P. Gómez, C. Zanzi, J. López, and J. Hernández, “Simulation of high density ratio
interfacial flows on cell vertex/edge-based staggered octree grids with second-order
discretization at irregular nodes”, en, Journal of Computational Physics 376, 478–507
(2019).

29A. Guittet, M. Theillard, and F. Gibou, “A stable projection method for the
incompressible Navier–Stokes equations on arbitrary geometries and adaptive
Quad/Octrees”, en, Journal of Computational Physics 292, 215–238 (2015).

30F. H. Harlow and J. E. Welch, “Numerical Calculation of Time-Dependent Viscous
Incompressible Flow of Fluid with Free Surface”, en, Physics of Fluids 8, 2182 (1965).

31J. L. Hellrung, L. Wang, E. Sifakis, and J. M. Teran, “A second order virtual node
method for elliptic problems with interfaces and irregular domains in three dimensions”,
en, Journal of Computational Physics 231, 2015–2048 (2012).

32M. Horowitz and C. H. K. Williamson, “The effect of Reynolds number on the dynamics
and wakes of freely rising and falling spheres”, en, Journal of Fluid Mechanics 651,
251–294 (2010).

https://doi.org/10.1016/0021-9991(67)90037-X
https://doi.org/10.1017/jfm.2014.243
https://doi.org/10.1006/jcph.1999.6236
https://doi.org/10.1006/jcph.1999.6236
https://doi.org/10.1016/j.jcp.2005.08.004
https://doi.org/10.1016/j.jcp.2005.08.004
https://doi.org/10.1016/j.jcp.2008.02.023
https://doi.org/10.1016/j.jcp.2008.02.023
https://doi.org/10.1137/0907016
https://doi.org/10.1137/0907016
https://doi.org/10.1016/j.jcp.2018.09.043
https://doi.org/10.1016/j.jcp.2018.09.043
https://doi.org/10.1016/j.jcp.2015.03.024
https://doi.org/10.1063/1.1761178
https://doi.org/10.1016/j.jcp.2011.11.023
https://doi.org/10.1017/S0022112009993934
https://doi.org/10.1017/S0022112009993934

94

33K. Kamrin, C. H. Rycroft, and J.-C. Nave, “Reference map technique for finite-strain
elasticity and fluid–solid interaction”, en, Journal of the Mechanics and Physics of Solids
60, 1952–1969 (2012).

34M. Kang, R. P. Fedkiw, and X.-D. Liu, “A Boundary Condition Capturing Method for
Multiphase Incompressible Flow”, Journal of Scientific Computing 15, 323–360 (2000).

35J. D. Kessler, D. L. Valentine, M. C. Redmond, M. Du, E. W. Chan, S. D. Mendes, E. W.
Quiroz, C. J. Villanueva, S. S. Shusta, L. M. Werra, S. A. Yvon-Lewis, and T. C. Weber,
“A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of
Mexico”, en, Science 331, 312–315 (2011).

36H. Lamb, Hydrodynamics (University Press, 1924).
37L. Lee and R. J. LeVeque, “An Immersed Interface Method for Incompressible Navier–

Stokes Equations”, en, SIAM Journal on Scientific Computing 25, 832–856 (2003).
38R. J. LeVeque and Z. Li, “Immersed Interface Methods for Stokes Flow with Elastic

Boundaries or Surface Tension”, en, SIAM Journal on Scientific Computing 18, 709–735
(1997).

39R. J. LeVeque and Z. Li, “The Immersed Interface Method for Elliptic Equations with
Discontinuous Coefficients and Singular Sources”, en, SIAM Journal on Numerical
Analysis 31, 1019–1044 (1994).

40Z. Li and M.-C. Lai, “The Immersed Interface Method for the Navier–Stokes Equations
with Singular Forces”, en, Journal of Computational Physics 171, 822–842 (2001).

41X. Long and C. Chen, “General Formulation of Second-Order Semi-Lagrangian
Methods for Convection-Diffusion Problems”, en, Abstract and Applied Analysis 2013,
1–10 (2013).

42J. Magnaudet and M. J. Mercier, “Particles, Drops, and Bubbles Moving Across Sharp
Interfaces and Stratified Layers”, en, Annual Review of Fluid Mechanics 52, 61–91
(2020).

43T. L. Mandel, D. Z. Zhou, L. Waldrop, M. Theillard, D. Kleckner, and S. Khatri,
“Retention of rising droplets in density stratification”, en, Physical Review Fluids 5,
124803 (2020).

44M. K. McNutt, R. Camilli, T. J. Crone, G. D. Guthrie, P. A. Hsieh, T. B. Ryerson, O.
Savas, and F. Shaffer, “Review of flow rate estimates of the Deepwater Horizon oil spill”,
en, Proceedings of the National Academy of Sciences 109, 20260–20267 (2012).

45R. Mehaddi, F. Candelier, and B. Mehlig, “Inertial drag on a sphere settling in a stratified
fluid”, en, Journal of Fluid Mechanics 855, 1074–1087 (2018).

https://doi.org/10.1016/j.jmps.2012.06.003
https://doi.org/10.1016/j.jmps.2012.06.003
https://doi.org/10.1023/A:1011178417620
https://doi.org/10.1126/science.1199697
https://doi.org/10.1137/S1064827502414060
https://doi.org/10.1137/S1064827595282532
https://doi.org/10.1137/S1064827595282532
https://doi.org/10.1137/0731054
https://doi.org/10.1137/0731054
https://doi.org/10.1006/jcph.2001.6813
https://doi.org/10.1155/2013/763630
https://doi.org/10.1155/2013/763630
https://doi.org/10.1146/annurev-fluid-010719-060139
https://doi.org/10.1146/annurev-fluid-010719-060139
https://doi.org/10.1103/PhysRevFluids.5.124803
https://doi.org/10.1103/PhysRevFluids.5.124803
https://doi.org/10.1073/pnas.1112139108
https://doi.org/10.1017/jfm.2018.661

95

46C. Min and F. Gibou, “A second order accurate projection method for the incompressible
Navier–Stokes equations on non-graded adaptive grids”, en, Journal of Computational
Physics 219, 912–929 (2006).

47C. Min, F. Gibou, and H. D. Ceniceros, “A supra-convergent finite difference scheme for
the variable coefficient Poisson equation on non-graded grids”, en, Journal of
Computational Physics 218, 123–140 (2006).

48S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations”, en, Journal of Computational
Physics 79, 12–49 (1988).

49C. S. Peskin, “Flow patterns around heart valves: A numerical method”, en, Journal of
Computational Physics 10, 252–271 (1972).

50J.-P. Pons, G. Hermosillo, R. Keriven, and O. Faugeras, “Maintaining the point
correspondence in the level set framework”, en, Journal of Computational Physics 220,
339–354 (2006).

51S. Popinet, “Gerris: a tree-based adaptive solver for the incompressible Euler equations
in complex geometries”, en, Journal of Computational Physics 190, 572–600 (2003).

52S. Popinet and S. Zaleski, “A front-tracking algorithm for accurate representation of
surface tension”, International Journal for Numerical Methods in Fluids 30, 775–793
(1999).

53J. Prairie, K. Ziervogel, C. Arnosti, R. Camassa, C. Falcon, S. Khatri, R. McLaughlin, B.
White, and S. Yu, “Delayed settling of marine snow at sharp density transitions driven by
fluid entrainment and diffusion-limited retention”, en, Marine Ecology Progress Series
487, 185–200 (2013).

54C. H. Rycroft and K. Kamrin, “Eulerian method for multiphase interactions of soft solid
bodies in fluids”, (2015).

55H. Samet, “An Overview of Quadtrees, Octrees, and Related Hierarchical Data
Structures”, en, in Theoretical Foundations of Computer Graphics and CAD, edited by
R. A. Earnshaw (Springer Berlin Heidelberg, Berlin, Heidelberg, 1988), pp. 51–68.

56R. Saye, “Implicit mesh discontinuous Galerkin methods and interfacial gauge methods
for high-order accurate interface dynamics, with applications to surface tension
dynamics, rigid body fluid–structure interaction, and free surface flow: Part I”, en,
Journal of Computational Physics 344, 647–682 (2017).

57C. Schroeder, A. Stomakhin, R. Howes, and J. M. Teran, “A second order virtual node
algorithm for Navier–Stokes flow problems with interfacial forces and discontinuous
material properties”, en, Journal of Computational Physics 265, 221–245 (2014).

https://doi.org/10.1016/j.jcp.2006.07.019
https://doi.org/10.1016/j.jcp.2006.07.019
https://doi.org/10.1016/j.jcp.2006.01.046
https://doi.org/10.1016/j.jcp.2006.01.046
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/j.jcp.2006.05.036
https://doi.org/10.1016/j.jcp.2006.05.036
https://doi.org/10.1016/S0021-9991(03)00298-5
https://doi.org/10.3354/meps10387
https://doi.org/10.3354/meps10387
https://doi.org/10.1007/978-3-642-83539-1_2
https://doi.org/10.1016/j.jcp.2017.04.076
https://doi.org/10.1016/j.jcp.2014.01.051

96

58V. A. Shaik and A. M. Ardekani, “Drag, deformation, and drift volume associated with a
drop rising in a density stratified fluid”, en, Physical Review Fluids 5, 013604 (2020).

59S. A. Socolofsky and E. E. Adams, “Multi-phase plumes in uniform and stratified
crossflow”, en, Journal of Hydraulic Research 40, 661–672 (2002).

60E. A. Spiegel and G. Veronis, “On the Boussinesq Approximation for a Compressible
Fluid.”, en, The Astrophysical Journal 131, 442 (1960).

61A. N. Srdić-Mitrović, N. A. Mohamed, and H. J. S. Fernando, “Gravitational settling
of particles through density interfaces”, en, Journal of Fluid Mechanics 381, 175–198
(1999).

62M. Sussman, K. Smith, M. Hussaini, M. Ohta, and R. Zhi-Wei, “A sharp interface method
for incompressible two-phase flows”, en, Journal of Computational Physics 221, 469–505
(2007).

63M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome,
“An Adaptive Level Set Approach for Incompressible Two-Phase Flows”, en, Journal of
Computational Physics 148, 81–124 (1999).

64M. Sussman, E. Fatemi, P. Smereka, and S. Osher, “An improved level set method for
incompressible two-phase flows”, en, Computers & Fluids 27, 663–680 (1998).

65M. Sussman, P. Smereka, and S. Osher, “A Level Set Approach for Computing Solutions
to Incompressible Two-Phase Flow”, en, Journal of Computational Physics 114, 146–159
(1994).

66Z. Tan, D. Le, Z. Li, K. Lim, and B. Khoo, “An immersed interface method for solving
incompressible viscous flows with piecewise constant viscosity across a moving elastic
membrane”, en, Journal of Computational Physics 227, 9955–9983 (2008).

67Z. Tan, D. Le, K. Lim, and B. Khoo, “An Immersed Interface Method for the
Incompressible Navier–Stokes Equations with Discontinuous Viscosity Across the
Interface”, en, SIAM Journal on Scientific Computing 31, 1798–1819 (2009).

68M. Theillard, “A volume-preserving reference map method for the level set
representation”, en, Journal of Computational Physics 442, 110478 (2021).

69M. Theillard, F. Gibou, and D. Saintillan, “Sharp numerical simulation of incompressible
two-phase flows”, en, Journal of Computational Physics 391, 91–118 (2019).

70G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S.
Nas, and Y.-J. Jan, “A Front-Tracking Method for the Computations of Multiphase Flow”,
en, Journal of Computational Physics 169, 708–759 (2001).

https://doi.org/10.1103/PhysRevFluids.5.013604
https://doi.org/10.1080/00221680209499913
https://doi.org/10.1086/146849
https://doi.org/10.1017/S0022112098003590
https://doi.org/10.1017/S0022112098003590
https://doi.org/10.1016/j.jcp.2006.06.020
https://doi.org/10.1016/j.jcp.2006.06.020
https://doi.org/10.1006/jcph.1998.6106
https://doi.org/10.1006/jcph.1998.6106
https://doi.org/10.1016/S0045-7930(97)00053-4
https://doi.org/10.1006/jcph.1994.1155
https://doi.org/10.1006/jcph.1994.1155
https://doi.org/10.1016/j.jcp.2008.08.013
https://doi.org/10.1137/080712970
https://doi.org/10.1016/j.jcp.2021.110478
https://doi.org/10.1016/j.jcp.2019.04.024
https://doi.org/10.1006/jcph.2001.6726

97

71R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pollack, and C. Sagan, “Climate and
Smoke: an Appraisal of Nuclear Winter”, en, Science 247, 166–176 (1990).

72S. O. Unverdi and G. Tryggvason, “A front-tracking method for viscous, incompressible,
multi-fluid flows”, en, Journal of Computational Physics 100, 25–37 (1992).

73L. Verso, M. v. Reeuwijk, and A. Liberzon, “Transient stratification force on particles
crossing a density interface”, en, International Journal of Multiphase Flow 121, 103109
(2019).

74M. Wegener, M. Kraume, and A. R. Paschedag, “Terminal and transient drop rise velocity
of single toluene droplets in water”, en, AIChE Journal, NA–NA (2009).

75D. Xiu and G. E. Karniadakis, “A Semi-Lagrangian High-Order Method for
Navier–Stokes Equations”, en, Journal of Computational Physics 172, 658–684 (2001).

76J.-J. Xu and H.-K. Zhao, “An Eulerian Formulation for Solving Partial Differential
Equations Along a Moving Interface”, Journal of Scientific Computing 19, 573–594
(2003).

77K. Y. Yick, C. R. Torres, T. Peacock, and R. Stocker, “Enhanced drag of a sphere settling
in a stratified fluid at small Reynolds numbers”, en, Journal of Fluid Mechanics 632,
49–68 (2009).

78J. Zhang, M. J. Mercier, and J. Magnaudet, “Core mechanisms of drag enhancement on
bodies settling in a stratified fluid”, en, Journal of Fluid Mechanics 875, 622–656 (2019).

https://doi.org/10.1126/science.11538069
https://doi.org/10.1016/0021-9991(92)90307-K
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103109
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103109
https://doi.org/10.1002/aic.11969
https://doi.org/10.1006/jcph.2001.6847
https://doi.org/10.1023/A:1025336916176
https://doi.org/10.1023/A:1025336916176
https://doi.org/10.1017/S0022112009007332
https://doi.org/10.1017/S0022112009007332
https://doi.org/10.1017/jfm.2019.524

Appendix A
Appendix for Chapter 4

A.1 Proof: divergence is negative transpose of gradient
For a scalar function ψ(x) and a vector field V(x), x ∈ R2,3, the following identity

holds true
∇ · (ψV) = ψ∇ · V + V · ∇ψ, (A.1)

due to the product rule. The adjoint of the linear operator A over an inner product is defined
as the operator A∗ such that

⟨Ax, y⟩ = ⟨x,A∗y⟩, (A.2)

where ⟨·, ·⟩ is the inner product on that space. Then if we have the linear operators
representing the divergence D = ∇· and gradient G = ∇, to show that −G = DT, we
need to show that

⟨Dx, y⟩ = ⟨x,−Gy⟩, (A.3)

where x is a vector field and y is a scalar field, both defined in R2,3, and the inner product
is defined as

⟨x, y⟩ =
∫

Ω
xydV , (A.4)

for Ω ∈ R2,3. We do this by using the identity (A.1) as

⟨Dx, y⟩ =
∫

Ω
(∇·x)ydV =

∫
Ω

∇·(yx)−x ·∇ydV =
∫

Ω
∇·(yx)dV −

∫
Ω

x ·∇ydV (A.5)

Now using the Divergence Theorem, this is rewritten as

⟨Dx, y⟩ =
∫

∂Ω
(yx) · ndS −

∫
Ω

x · ∇ydV , (A.6)

98

99

where ∂Ω is the boundary of Ω and n is the outward facing normal on this boundary. Then
if x and y are given such that the boundary term is zero, we obtain

⟨Dx, y⟩ =
∫

Ω
−x · ∇ydV = ⟨x,−Gy⟩, (A.7)

thus DT = −G. □

	Signature Page
	List of Figures
	List of Tables
	Acknowledgements
	Curriculum Vitae
	Abstract
	Introduction
	Model equations for rising oil droplets in density stratified flows

	Rising oil droplets in stratification
	Model equations
	Numerical method
	Comparison with experiment

	Investigation of interfacial forces
	Net force acting on droplet
	Identification of interfacial forces
	Derivation of Poisson jump problems
	Preliminary results of droplet in homogeneous and stratified fluids
	Homogeneous ambient
	Sharp two layer stratified ambient

	Conclusions

	Stable nodal projection methods
	Background
	Projection method
	Adaptive mesh refinement
	Interface representation
	Storage of computational variables

	Nodal numerical method for single-phase flow
	Model equations
	Computational grids
	General Projection Method
	Stable collocated projection operator
	Numerical method

	Conclusions

	Stable nodal projection method for two-phase fluid flows
	Governing equations of incompressible two-phase fluid flow
	Numerical method overview
	Interfacial and boundary convergence conditions
	Convergence criteria
	Interface representation
	Level-Set method
	Reference map method
	Coupled method

	Sampling and data structures
	Collocated nodal grid layout

	Viscosity step: temporal discretization
	Phase accounting SLBDF
	Local temporal limiter
	Time step restriction

	Viscosity step: spatial discretization
	Coupled Jump Solver
	Discretization in 2D
	Boundary conditions on the domain boundary
	Treatment of the velocity jump condition
	Coupled jump solver convergence results

	Projection and pressure guess steps
	Single value finite volume Poisson jump solver
	Pressure guess
	Projection
	Pressure reconstruction

	Conclusions

	Numerical method verification and validation
	Analytic vortex
	Parasitic currents
	Oscillating bubble
	Dynamics and deformations of rising bubbles
	Single rising bubble in 2D
	Rising bubbles in 3D
	Rising bubbles past complex geometries

	Conclusions

	Conclusion
	Bibliography
	Appendix for Chapter 4
	Proof: divergence is negative transpose of gradient

