
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Software for prediction and estimation with applications to high-dimensional genomic and
epidemiologic data

Permalink
https://escholarship.org/uc/item/600946rx

Author
Ritter, Stephan Johannes

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/600946rx
https://escholarship.org
http://www.cdlib.org/

Software for Prediction and Estimation with Applications to High-Dimensional Genomic
and Epidemiologic Data

by

Stephan Johannes Ritter

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Biostatistics

and the Designated Emphasis

in

Computational Science and Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alan E. Hubbard, Chair
Professor Sandrine Dudoit

Professor John M. Colford, Jr.

Fall 2013

	

1

Abstract

Software for Prediction and Estimation with Applications to High-Dimensional Genomic
and Epidemiologic Data

by

Stephan Johannes Ritter

Doctor of Philosophy in Biostatistics

Designated Emphasis in Computational Science and Engineering

University of California, Berkeley

Professor Alan E. Hubbard, Chair

Three add-on packages for the R statistical programming environment (R Core Team,
2013) are described, with simulations demonstrating performance gains and applications to
real data. Chapter 1 describes the relaxnet package, which extends the glmnet package with
relaxation (as in the relaxed lasso of Meinshausen, 2007). Chapter 2 describes the widenet
package, which extends relaxnet with polynomial basis expansions. Chapter 3 describes the
multiPIM package, which takes a causal inference approach to variable importance analysis.
Section 3.7 describes an analysis of data from the PRospective Observational Multicenter
Major Trauma Transfusion (PROMMTT) study (Rahbar et al., 2012; Hubbard et al., 2013),
for which the multiPIM package is used in conjunction with the relaxnet and widenet
packages to estimate variable importances.

i

Contents

Contents i

List of Figures iv

List of Tables vi

Acknowledgements vii

1 relaxnet: Extending the glmnet R Package with Relaxation 1
1.1 Introduction . 1

1.1.1 Motivation . 1
1.1.2 Chapter overview . 1

1.2 Overview of penalized regression and some associated R packages 2
1.2.1 The linear regression setting, OLS and ridge regression 2
1.2.2 Subset selection . 3
1.2.3 The lasso . 3
1.2.4 The elastic net . 3
1.2.5 The relaxed lasso . 4
1.2.6 Extensions to generalized linear models and package glmnet 6
1.2.7 Advantages of the relaxnet package 6

1.3 The relaxnet R package . 7
1.3.1 Main function: relaxnet . 7
1.3.2 Functions for cross-validation: cv.relaxnet and cv.alpha.relaxnet 8
1.3.3 Options for parallel execution . 9
1.3.4 Predict, summary and print methods 9
1.3.5 Example . 10

1.4 Simulations . 11
1.4.1 Simulation 1: Continuous outcome, uncorrelated predictors 11
1.4.2 Simulation 2: Binary outcome, uncorrelated predictors 16
1.4.3 Simulation 3: Continuous outcome, correlated predictors 23
1.4.4 Using simulation 1 to compare running time of the relaxnet function

with that of relaxo . 28

ii

1.5 Cross-validation with leukemia data . 28
1.6 Discussion . 29

2 widenet: An R Package and Machine Learning Algorithm Combining
Regularization with Polynomial Basis Expansions 32
2.1 Introduction . 32

2.1.1 Motivation . 32
2.1.2 Chapter overview . 33

2.2 Previous approaches . 33
2.2.1 The deletion/substitution/addition algorithm and the DSA R package 33
2.2.2 MARS and the polspline R package 34
2.2.3 The polywog R package . 35

2.3 The widenet R package . 35
2.3.1 Main function: widenet . 35
2.3.2 Options for parallel execution . 36
2.3.3 Predict, summary and print methods 36
2.3.4 Memory use . 37
2.3.5 Example . 37

2.4 Simulation . 39
2.5 Cross-validation with benzene data . 43
2.6 Discussion . 44

3 multiPIM: A Causal Inference Approach to Variable Importance Analysis 46
3.1 Introduction . 46

3.1.1 Motivation . 46
3.1.2 Chapter overview . 48

3.2 Statistical methodology . 48
3.2.1 Data structure and parameter of interest 48
3.2.2 Estimators . 50
3.2.3 Properties of the estimators . 52
3.2.4 Super learner and recommendations for estimation of nuisance param-

eters . 52
3.2.5 Inference . 53

3.3 The multiPIM R Package . 54
3.3.1 Input and output . 54
3.3.2 Adjustment Set and the adjust.for.other.As argument 55
3.3.3 Rebuilding of models used to estimate Q(0,W) 55
3.3.4 Implementation of super learner . 56
3.3.5 Default binary outcome candidates 56
3.3.6 Default continuous outcome candidates 57
3.3.7 Alternative regression methods and other user options 58
3.3.8 multiPIMboot function . 59

iii

3.3.9 Statistical recommendations and effects on computation time 60
3.3.10 Summary method and example . 60

3.4 Simulation . 63
3.4.1 Simulated Data . 63
3.4.2 Estimators . 63
3.4.3 Results . 64

3.5 Analysis of data from the western collaborative group study 64
3.5.1 Study background . 64
3.5.2 Description of data . 65
3.5.3 Estimator used . 67
3.5.4 Results . 67

3.6 Study on water contact and schistosomiasis infection 70
3.6.1 Study background . 70
3.6.2 Description of data . 70
3.6.3 The analysis . 71

3.7 PROMMTT trauma study . 71
3.7.1 Study background . 72
3.7.2 Description of data and the analysis 72
3.7.3 Results . 74

3.8 Discussion . 75

Bibliography 76

A Help File for relaxnet Function 83

B Help File for widenet Function 86

C Help File for multiPIM Function 89

iv

List of Figures

1.1 Relaxed lasso example . 5
1.2 Prediction performance for simulation 1, p = 100 13
1.3 Prediction performance for simulation 1, p = 1000 13
1.4 Median number of false positives for simulation 1, p = 100 14
1.5 Median number of false positives for simulation 1, p = 1000 14
1.6 Median number of true positives for simulation 1, p = 100 15
1.7 Median number of true positives for simulation 1, p = 1000 15
1.8 Probability histograms for simulation 2 . 17
1.9 Mean test set misclassification rate for simulation 2, q = 10 and c = 2 19
1.10 Mean test set misclassification rate for simulation 2, q = 10 and c = 8 19
1.11 Mean test set log likelihood for simulation 2, q = 10 and c = 2 20
1.12 Mean test set log likelihood for simulation 2, q = 10 and c = 8 20
1.13 Median number of false positives for simulation 2, q = 10 and c = 2 21
1.14 Median number of false positives for simulation 2, q = 10 and c = 8 21
1.15 Median number of true positives for simulation 2, q = 10 and c = 2 22
1.16 Median number of true positives for simulation 2, q = 10 and c = 8 22
1.17 Median number of false positives for simulation 2, q = 100 23
1.18 Relative mean of test set mean squared error for simulation 3, ρ = 0.25 25
1.19 Relative mean of test set mean squared error for simulation 3, ρ = 0.95 26
1.20 Relative mean of test set mean squared error for simulation 3, ρ = 0.99 26
1.21 Median of false positives for simulation 3, ρ = 0.95 27
1.22 Median of true positives for simulation 3, ρ = 0.95 27
1.23 Relaxnet timings . 28

2.1 Running time of DSA is supracubic in maxsize 34
2.2 Prediction performance for widenet simulation 41
2.3 Relative prediction performance of widenet methods 41
2.4 Mean of true positives for widenet simulation 42
2.5 Mean of false positives for widenet simulation 42
2.6 ROC curves for benzene data cross-validation 45

3.1 Simulation results: TMLE estimator vs. G-computation estimator 64

v

3.2 Bootstrap cumulative standard deviations for WCGS exposure variables 68
3.3 Bootstrap distributions of parameter estimates for each WCGS exposure variable. 69

vi

List of Tables

1.1 Results for leukemia data cross-validation . 29
1.2 Set of genes found by relaxnet for leukemia data 30

2.1 Memory requirements for widenet . 37
2.2 Timings and final model size for benzene data 44

3.1 Summary information for the five binary exposure variables used in the WCGS
analysis. 66

3.2 Correlation matrix for all variables used in the WCGS analysis 66
3.3 WCGS multiPIMboot results table . 67
3.4 Results for schisto analysis. The tool washing and rice planting variables remain

significant after Bonferroni adjustment. 72
3.5 Descriptions of variables used for PROMMTT analysis 73
3.6 Candidates chosen by the super learner for PROMMTT analysis 73
3.7 Results for PROMMTT analysis . 74

vii

Acknowledgments

There are many people who have helped get me to the point of being able to complete this
dissertation. I would like to start by thanking my primary advisor, Alan Hubbard, for his
continuous support and encouragement throughout my graduate carreer. I would also like to
thank Jack Colford, Sandrine Dudoit, Nick Jewel, Steve Selvin, Phil Spector and Mark van
der Laan for serving on committees and for the teaching and guidance they have provided;
and Sharon Norris and Burke Bundy for much appreciated support throughout this process.

I would like to thank the Group in Biostatistics, the Graduate Division and the National
Institute of Environmental Health Sciences for their financial support.

I would also like to acknowledge the many people who have contributed to the open source
software projects which have been vital to my work. For example, this dissertation was
typeset using LATEX(http://www.latex-project.org), Sweave (Leisch, 2002) and style files
maintained by Paul Vojta in the Math department (http://math.berkeley.edu/~vojta/
ucbthesis) and from the Journal of Statistical Software (http://www.jstatsoft.org/
style).

To fellow students, friends and family: thank you for your company, encouragement, and
insights. I would especially like to thank my parents, Maria and Hans Georg, my brother
Thomas, and finally my wife Anya for their unconditional love and support.

http://www.latex-project.org
http://math.berkeley.edu/~vojta/ucbthesis
http://math.berkeley.edu/~vojta/ucbthesis
http://www.jstatsoft.org/style
http://www.jstatsoft.org/style

1

Chapter 1

relaxnet: Extending the glmnet R
Package with Relaxation

1.1 Introduction

1.1.1 Motivation

As stated by Zou and Hastie (2005), two important properties of a prediction algorithm are
accuracy of its predictions and interpretability of the final model. A good way to keep a model
easily interpretable is to restrict the predictions to linear combinations of the inputs. In a
high dimensional context, such as genomic experiments where the inputs might be expression
levels of up to thousands of genes, generating an interpretable model will need to involve
parsimony, for example by restricting the predictions to be based on only a certain subset of
the inputs. Methods of this type are the subject of this chapter, and the goal is to provide
software which addresses the concerns of prediction accuracy and model interpretability,
while at the same time providing computational efficiency and reasonable running times.

1.1.2 Chapter overview

Section 1.2 gives a brief review of penalized regression and associated R packages. Section 1.3
describes the components of the relaxnet package in detail. In Section 1.4, simulations using
3 different data generating models are described. Section 1.5 reports the results of a cross-
validation analysis using a genomic data set with a binary leukemia sub-class outcome (Golub
et al., 1999). The chapter closes with a discussion in Section 1.6.

CHAPTER 1. RELAXNET 2

1.2 Overview of penalized regression and some

associated R packages

1.2.1 The linear regression setting, OLS and ridge regression

In the standard multiple linear regression setting we have p predictors, x1, . . . , xp, each of
length n, and a response y (also length n) which is estimated as a linear combination of the
x’s, plus an intercept:

ŷ = β̂0 + β̂1x1 + · · ·+ β̂pxp

If we let X be the n by p+ 1 matrix containing first a column of 1’s followed by the xj’s, for
j = 1, . . . , p, and let β = (β0, β1, . . . , βp), then the residual sum of squares is given by

RSS(β) = (y −Xβ)T (y −Xβ).

The Ordinary Least Squares (OLS) estimate of β is the minimizer of the RSS:

β̂OLS = (XTX)−1XTy.

This estimator enjoys many nice statistical properties (see for example Freedman, 2005,
ch. 3), however, in the case of predictors which are strongly correlated, the estimates may
become unstable and the prediction accuracy may suffer. Hoerl and Kennard (1970) in-
troduced L2 penalized (ridge) regression as a way to overcome this problem. β is instead
estimated as:

β̂ridge = (XTX + λI)−1XTy

where λ ≥ 0 is a tuning parameter and I is the p by p identity. This estimator sacrifices
a little bias in exchange for lower variance, which can lead to improvements in prediction
accuracy over the OLS estimator, especially for the case of highly correlated predictors. The
general effect is to “shrink” the βj’s towards zero relative to the OLS estimates, with the
degree of shrinkage depending on the value of λ. The ridge solution may also be expressed
in the Lagrangian form as:

β̂ = argminβ RSS(β) + λP (β), (1.1)

P ridge(β) =

p∑
j=1

β2
j .

For ridge regression, P (β) is the L2 penalty. Note that the intercept has been left out of the
penalty (it is “unpenalized”).

Returning to the issues of parsimony and high-dimensional data, both OLS and ridge
regression have disadvantages here. OLS can not even be applied successfully to data with

CHAPTER 1. RELAXNET 3

p > n as the solution is not unique. Also, for the case of p < n, OLS will assign a nonzero
value to each βj, leading to a lack of parsimony and poor interpretability. While ridge
regression will generate a solution when p > n, it also lacks a parsimony property and will
also assign a nonzero value to each βj, including in the p > n case.

1.2.2 Subset selection

As a way of addressing the parsimony issue, many different “subset selection” methods were
proposed. These select, by various criteria and algorithms, only a certain subset of the
predictors to include in the final model (see Miller, 2002). However, due to the discrete
nature of the selection, these methods suffer from instability and high variance, and many
are computationally infeasible when p is even moderately high.

1.2.3 The lasso

A breakthrough was achieved when Tibshirani (1996) introduced the lasso, or least absolute
shrinkage and selection operator. As the name suggests, this method both shrinks the
coefficients, and also selects predictors by shrinking some coefficients all the way to zero,
providing a nice balance between ridge regression and subset selection. The Lagrangian
formulation of the lasso is the same as equation 1.1, only now the penalty is an L1 norm:

P lasso(β) =

p∑
j=1

|βj|.

As a convex problem, solving the lasso was tractable even for high-dimensional data, but
had to be done separately for each value of the regularization parameter. This changed when
Efron et al. (2004) realized that the lasso was a variation on a more general procedure they
termed Least Angle Regression, or LARS, and that the entire lasso regularization path could
be computed with the same computational complexity as an OLS fit. An R package, lars
(Hastie and Efron, 2012), implementing the method was released on the Comprehensive R
Archive Network (CRAN).

Lasso also has some disadvantages, as described in Zou and Hastie (2005). Unlike ridge
regression, lasso selects at most n predictors when p > n. It saturates. Also, ridge regression
often has better performance when correlations between predictors are high. In addition,
lasso tends to arbitrarily select only one out of a set of highly correlated predictors, and leave
the rest out of the model entirely.

1.2.4 The elastic net

Zou and Hastie (2005) proposed a second compromise to address these issues, this time
between the lasso and ridge regression. Their “elastic net” mixes the L1 and L2 penalties:

CHAPTER 1. RELAXNET 4

P elnet(β) = (1− α)
1

2

p∑
j=1

β2
j + α

p∑
j=1

|βj|. (1.2)

With 0 < α < 1.1 α = 0 corresponds to the ridge penalty and α = 1 to the lasso. Another
compromise between lasso and ridge regression would be to use the penalty

P (β) =

p∑
j=1

|βj|q, (1.3)

with 1 < q < 2. This corresponds to a subclass of the bridge estimators (Frank and Friedman,
1993; Fu, 1998). This class of penalties is also convex, however, as pointed out by Zou and
Hastie (2005), using this type of penalty does not result in any variable selection, as all
predictors are kept in the model. The elastic net penalty, like the lasso, does result in
variable selection as well as shrinkage. Unlike the lasso, it does not saturate and may select
up to p predictors in the p > n case, and it also exhibits the “grouping effect,” meaning that
the coefficients for highly correlated predictors will have similar profiles, i.e., they will shrink
along similar paths. The lasso tends to choose one predictor from the group and set the rest
to zero (Zou and Hastie, 2005).

Using an elastic net penalty instead of the lasso may lead to improvements in prediction
accuracy as well as in selection of predictors, especially when the predictors are highly cor-
related. However, one of the advantages of the lasso for high-dimensional problems, namely
the sparsity of the final model, is diminished by using the elastic net. For a given value of
λ, the sparsity of the elastic net solution decreases as α decreases from 1 to 0, so the elastic
net solutions tend to be less sparse (fewer coefficients equal to zero) than the corresponding
lasso solution.

Many researchers have explored the question of the accuracy of model selection by the
lasso, i.e., whether the predictors which truly contribute to the outcome are in fact selected
by the procedure. This work is reviewed by Peter Bühlmann in his comments on Tibshirani
(2011). One of his conclusions is that “two-stage procedures such as the adaptive lasso
(Zou, 2006) or the relaxed lasso (Meinshausen, 2007) are very useful [for removing false
positives].” The adaptive lasso is a modification of the lasso in which each coefficient may
be penalized differently using adaptively chosen weights. This has also been extended to the
elastic net penalized models (Zou and Zhang, 2009). Here I will focus on the relaxed lasso
of Meinshausen (2007).

1.2.5 The relaxed lasso

Meinshausen (2007) proposed the relaxed lasso as a way to overcome the slow convergence
rate of the lasso for sparse, high-dimensional data. The relaxed lasso also leads to sparser

1In the help files for the glmnet R package (Friedman et al., 2010), α is called the “elastic net mixing
parameter.” Note that the formulation of the elastic net penalty in equation 1.2 is as given in Friedman et al.
(2010), and is slightly different from that in the original paper.

CHAPTER 1. RELAXNET 5

models than standard lasso. The set of relaxed lasso solutions, indexed by the parameters λ
and φ, is a super set of the set of lasso solutions:

β̂relaxed = argminβ

1

n

n∑
i=1

(yi − xTi {β · 1Mλ
})2 + φλ

p∑
j=1

|βj|. (1.4)

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

L1 Norm

C
oe

ffi
ci

en
ts

0 3 6 8

A

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

L1 Norm

C
oe

ffi
ci

en
ts

0 1 1 1 1

B

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

L1 Norm

C
oe

ffi
ci

en
ts

0 1 2 2 2 2

C

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

L1 Norm

C
oe

ffi
ci

en
ts

0 1 2 3 3 3 3

D

Figure 1.1: Relaxed lasso example. The data are from Stamey et al. (1989), made available
through the ElemStatLearn R package (Hastie et al., 2009; Halvorsen, 2012). A: Full lasso
coefficient profile. B-D: Coefficient profiles for the first three “relaxed models.” Notice that
the coefficients for the variables present in the relaxed models reach higher values than they
do for the full lasso model.

Here, yi is the ith element of y and xi is the ith row of X, for i = 1, . . . , n; Mλ is the set of
indices corresponding to predictors selected by the lasso at a certain λ value and 1Mλ

is the

CHAPTER 1. RELAXNET 6

indicator function on that set, so that

{β · 1Mλ
}k =

{
0, k 6∈Mλ

βk, k ∈Mλ

(Meinshausen, 2007). One way to find the relaxed lasso solutions is to first find the lasso
solutions for all λ, then run lasso again on each distinct subset of predictors from along the
solution path. This allows the values of the coefficients for these subsets to “relax” back up
from their lasso values, to the values of the OLS solution for just that subset. An example
is given in figure 1.1. An R package implementing the relaxed lasso, relaxo (Meinshausen,
2012), is available on CRAN. This package depends on the lars package.

1.2.6 Extensions to generalized linear models and package glmnet

So far I have discussed penalization methods for linear models, but there has also been
work to extend these methods to generalized linear models (Nelder and Wedderburn, 1972;
McCullagh and Nelder, 1989). For example, Park and Hastie (2007) published a LARS-like
solution path algorithm for L1 penalized generalized linear models. They also released an
associated R package, glmpath (Park and Hastie, 2013).

A major computational breakthrough was achieved with the release of the glmnet R
package by Friedman et al. (2010). Inspired by recent work, reviewed in their paper, on
applying cyclical coordinate descent methods to the lasso, they developed efficient algorithms
for solving penalized regression problems, for linear as well as generalized linear models, and
for lasso, ridge and elastic net penalties, along a grid of values of the regularization parameter
λ. Solutions for previous λ values are used as warm starts for the following values, and in
some cases computing an entire path can be faster than finding the solution at a single point
(Friedman et al., 2010). Timings in the paper show the method to be faster than competing
R packages, especially for large data sets, for both linear and generalized linear models. The
underlying Fortran code has two variants to handle either a dense or a sparse matrix of
predictors. The function cv.glmnet is provided to perform v-fold cross-validation to select
λ by one of two different rules: the min rule for selecting λ chooses that value with the
minimum cross-validated error, while the 1se rule chooses the highest value of λ whose error
is within one standard error of the minimum error. This leads to more parsimonious models
since the amount of shrinkage is greater for higher λ values. However, in section 1.4 it will
be shown that the prediction accuracy may be much worse when the 1se rule is applied vs.
the min rule.

1.2.7 Advantages of the relaxnet package

The relaxnet package takes advantage of the existing glmnet package (Friedman et al.,
2010), in order to provide relaxed lasso functionality for generalized linear models. Applying
relaxation to glmnet models offers several advantages over glmnet alone:

CHAPTER 1. RELAXNET 7

• Prediction error may be reduced when the data generating distribution is truly sparse,
while the error will stay similar to that for the non-relaxed model otherwise

• The resulting model will usually be sparser, with a smaller false positive rate. This is
true for a wide range of underlying true levels of sparsity of the data generating model
(see Section 1.4)

• Applying relaxation to elastic net penalized models can be especially effective, since
the prediction accuracy improvements of elastic net over pure lasso may be retained
without sacrificing the sparsity of the final model (i.e. one keeps the false positive rate
low). As shown in Section 1.4.3, for the case of a sparse data-generating model with
small correlated groups of truly contributing predictors, combining relaxation with the
elastic net penalty can result in significant additional improvements in prediction error
on top of the improvement due to using just relaxed lasso

The fact that relaxnet is based on glmnet offers several advantages over the relaxo package,
which is based on the lars package:

• As discussed above, glmnet is based on a very efficient algorithm coded in Fortran, while
lars is based on an earlier algorithm and is coded entirely in R. relaxnet therefore has a
considerable speed advantage over relaxo, especially for when the number of predictors
is large (see Section 1.4.4)

• relaxnet works for generalized linear models as well as linear models. The idea of
applying relaxation to L1 penalized generalized linear models was discussed in Mein-
shausen (2007, section 2.2). So far only linear (family = "gaussian") and and binary
outcome logistic (family = "binomial") models have been implemented for relaxnet

• relaxnet allows application of elastic net penalties in addition to the lasso penalty

1.3 The relaxnet R package

1.3.1 Main function: relaxnet

The arguments to the main function, relaxnet, are as follows:

relaxnet(x, y, family = c("gaussian", "binomial"),

nlambda = 100,

alpha = 1,

relax = TRUE,

relax.nlambda = 100,

relax.max.vars = min(nrow(x), ncol(x)) * 0.8,

lambda = NULL,

CHAPTER 1. RELAXNET 8

relax.lambda.index = NULL,

relax.lambda.list = NULL,

...)

The arguments x, y, family, nlambda, alpha, and lambda are as for the glmnet function,
the main function from the glmnet package. x and y are the matrix of predictors and the
outcome vector, family specifies whether a linear model or a logistic model will be fit,
nlambda specifies the length of the sequence of λ values to use, i.e., the fineness of the grid
of λ values. alpha is the elastic net mixing parameter, α (the default of 1 means that the
lasso penalty is used by default), and lambda is used to override the default mechanism for
choosing λ values.

relaxnet calls glmnet once, passing these arguments, in order to fit the main glmnet

model. Then the matrix of coefficients, beta, of the resulting object is examined in order
to determine all of the distinct subsets of the predictors on which to fit relaxed models.
Then glmnet is run again on each of these subsets, but this time passing in relaxnet’s
relax.nlambda argument instead of nlambda.

The relax argument can be set to FALSE, which turns off relaxation and causes relaxnet
to behave similarly to glmnet. The relax.lambda.index and relax.lambda.list argu-
ments, (as well as the lambda argument) are meant primarily for use by the cross-validation
function, cv.relaxnet, in order to ensure that all the tuning parameters match up between
the different cross-validation folds.

Due to the fact that the lasso solution is found along a discrete grid of λ values, relaxnet
may not necessarily compute the entire set of relaxed lasso solutions. Relaxation will be ap-
plied to each subset from along the glmnet solution path, but this may not necessarily include
all of the subsets from the complete lasso solution. In practice, this does not significantly
effect the performance of relaxnet when comparing it with the relaxo function from the
relaxo package (see Section 1.4.1). The relax.max.vars argument can be used to set a
maximum number of variables above which relaxed models will not be fit. This can be useful
to save computation time.

1.3.2 Functions for cross-validation: cv.relaxnet and
cv.alpha.relaxnet

The cv.relaxnet function, which is based on glmnet’s cv.glmnet function, allows the user
to perform v-fold cross-validation to select tuning parameters for a relaxnet model. It takes all
the arguments that relaxnet takes, with the addition of the nfolds and foldid arguments.
nfolds specifies the value of v (number of “folds”) and foldid can optionally be used to
specify exactly how the observations should be divided into folds, (as for the cv.glmnet

function).
While the cv.relaxnet function optimizes over the values of lambda for both the main

and the relaxed models, the cv.alpha.relaxnet function can be used to in addition optimize

CHAPTER 1. RELAXNET 9

over a set of values for α. This function simply calls cv.relaxnet once for each value in it’s
alpha argument, which should be a vector of α values.

v-fold Cross-validation has been proven to be an effective method for selecting among
candidate learners (Van Der Laan and Dudoit, 2003), and in order to encourage users to
make aggressive use of cross-validation for selecting tuning parameters, we provide options
for parallelizing the execution.

1.3.3 Options for parallel execution

Both the cv.relaxnet and the cv.alpha.relaxnet functions have a multicore argument
which allows for the execution to be parallelized using the multicore functionality from R’s
parallel package (R Core Team, 2013). For cv.relaxnet, the parallelization is over cross-
validation folds, while for cv.alpha.relaxnet, it is over the values of alpha. Internally, in
order to allow reproducibility of results, the random number generator (RNG) type is set to
”L’Ecuyer-CMRG” and the mclapply function is called with mc.preschedule = TRUE. The
mc.seed argument is used to set the RNG seed prior to execution. For optimum load balanc-
ing, it is helpful for the relevant parameter (either the nfolds argument, for cv.relaxnet,
or the length of the alpha argument, for cv.alpha.relaxnet) to be a multiple of the numer
of cores to be used (as given by the mc.cores argument).

1.3.4 Predict, summary and print methods

Rounding out the relaxnet package are predict, summary and print methods. There is a
separate predict methods for each of the three types of objects resulting from calls to the
three functions mentioned in the previous two sections. As for predict.glmnet, what is
returned depends on the type argument:

• type = "link" - returns the linear predictors for family = "binomial" models and
the fitted values for family = "gaussian" models

• type = "response" - returns the predicted probabilities for family = "binomial"

models and the fitted values for family = "gaussian" models

• type = "coefficients" - returns the values of the coefficients, including the intercept

• type = "nonzero" - returns a vector containing the names of the predictors selected
by the model (i.e., those that had nonzero coefficients)

• type = "class" (family = "binomial" only) - returns the predicted class

The predict methods also take the argument which.model, with which the user can specify
whether the predictions should come from the main glmnet model, or from one of the relaxed
models. For predict.cv.glmnet and predict.cv.alpha.glmnet, the default is to use that
model which “won” the cross-validation.

CHAPTER 1. RELAXNET 10

Finally, there are print and summary methods for class "relaxnet" objects which print
a brief summary showing the number of variables in each relaxed model as well as the time
taken to fit the model.

1.3.5 Example

In this section we run a small example in order to demonstrate the use and output of
the cv.relaxnet function. First we load the relaxnet package and generate a 100 by 200
predictor matrix of standard normal variates:

R> library("relaxnet")

R> n <- 100

R> p <- 200

R> set.seed(23)

R> x <- matrix(rnorm(n * p), n, p)

The predictor matrix must have unique column names:

R> colnames(x) <- paste("x", 1:ncol(x), sep = "")

Next we generate an outcome which depends only on the first five predictors, plus a standard
normal error term:

R> y <- rowSums(x[, 1:5]) + rnorm(nrow(x))

Now we run cv.relaxnet:

R> cv.result <- cv.relaxnet(x, y)

We can see which columns of x were chosen for the final model by calling predict.cv.relaxnet

with type = "nonzero":

R> predict(cv.result, type = "nonzero")[[1]]

[1] 1 2 3 4 5 73

We can also look at the same result for just the main glmnet model, without relaxation.
First for the min rule...

R> drop(predict(cv.result$relaxnet.fit$main.glmnet.fit,

+ type = "nonzero",

+ s = cv.result$main.lambda.min))[[1]]

CHAPTER 1. RELAXNET 11

[1] 1 2 3 4 5 9 10 15 19 33 51 54 59 61 66 67

[17] 73 96 116 126 136 145 147 153 161 163 167 169 179 192 195

...and the 1se rule:

R> predict(cv.result$relaxnet.fit$main.glmnet.fit,

+ type = "nonzero",

+ s = cv.result$main.lambda.1se)[[1]]

[1] 1 2 3 4 5 15 73 116 126 136 167 179

We see that the cv.relaxnet model results in fewer false positives than glmnet alone. To see
the actual values of the nonzero coefficients, we call predict with type = "coefficients":

R> coefs <- drop(predict(cv.result, type = "coef"))

R> coefs[coefs != 0]

(Intercept) x1 x2 x3 x4

0.1573491 0.8805052 0.8535547 1.1733494 1.1282360

x5 x73

0.8494066 -0.2547877

1.4 Simulations

For each of the three types of data-generating models in the simulations described in this
section, different parameters were varied in order to explore many different aspects of how
relaxnet models behave and to compare them with other methods.

1.4.1 Simulation 1: Continuous outcome, uncorrelated predictors

The first simulated model used a continuous outcome and uncorrelated predictors. The
purpose of this simulation was to demonstrate that relaxnet behaves similarly to relaxo when
α = 1, and to replicate the results of Meinshausen (2007) showing the improvements that can
be achieved by applying relaxation when the model is truly sparse and high-dimensional. The
n by p predictor matrix X consisted of independent standard normal variates, with sample
size, n, held constant at 250 while the number of predictors, p, was varied, with 4 different
values: 100, 200, 500 and 1000. The number of predictors actually contributing to the
outcome, q, was held constant at 10, with the coefficients being randomly generated, only
once, uniformly from the interval (−1, 1). This resulted in the following coefficient values
(rounded to two decimal spaces): 0.15, -0.55 -0.34, 0.42, 0.64, -0.15, 0.93, 0.96, 0.68 and 0.99.
These are the first ten elements of the vector β, with all following elements equal to zero.
The elements of the outcome vector were generated as

CHAPTER 1. RELAXNET 12

yi ∼ xTi β + εi

with xi being the vector made up of the elements of the ith row of X, and

εi ∼ N(0, σ2),

for i = 1, . . . , n. The standard deviation of the error term, σ, was varied, taking on the
following values: 0.25, 0.5, 1, 2, 4. Each condition was repeated 100 times with different
simulated data sets. All evaluation of the prediction performance of the different methods
was done using a single separately generated test set with n = 10,000.

The methods which were compared in this simulation were as follows:

• glmnetMin: this method implements a standard lasso estimator using 10-fold cross-
validation with cv.glmnet’s min rule to select λ

• glmnet1se: like the previous method, but using the 1se rule to select λ (see Section 1.2.6
for an explanation of min rule vs. 1se rule)

• relaxnet: the relaxed lasso implemented using the cv.relaxnet function from the
relaxnet package

• relaxo: relaxed lasso implemented using the cvrelaxo function from the relaxo package

• lmTrue: This is the “cheating” method, for comparison. Only the truly contributing
predictors (the first ten) are entered into a standard linear model using R’s lm function.
The noise predictors are ignored

Note that the first four methods all use the lasso penalty (α = 1) and 10-fold cross-validation
to select tuning parameters. The benefits of combining relaxation with an elastic net penalty
(0 < α < 1) are explored in simulation 3 (Section 1.4.3).

Figures 1.2 and 1.3 (on page 13) show the prediction performance measures for all meth-
ods. The measure used is the mean over the 100 repetitions of the test set mean squared
error, relative to the mean for the glmnetMin method. Figure 1.2 shows the results for
p = 100, while Figure 1.3 shows the results for p = 1000. The results for p = 200 and
p = 500 were similar and are not shown. As expected, the performance of the relaxnet and
relaxo methods is quite similar, and they both outperform the glmnetMin method, especially
at the higher levels of the signal to noise ratio (lower values of σ). At the lowest level of
signal to noise ratio (highest σ value), these methods have similar performance to the glm-
netMin method. This is in line with what was found by Meinshausen (2007). At the lowest
values of σ, the performance for these methods approaches the performance of the reference
method, lmTrue. The glmnet1se method is the clear loser with respect to the other methods
included, consistently having in the range of 20-60% worse performance than the glmnetMin
method. The main differences between p = 100 and p = 1000 are that the difference in rel-
ative performance between glmnetMin and the three better performing methods increases (as

CHAPTER 1. RELAXNET 13

0.
0

0.
5

1.
0

1.
5

σ (log scaling)

re
la

tiv
e

m
ea

n
of

 te
st

 s
et

 M
S

E

0.25 0.50 1.00 2.00 4.00

● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
● ●

●

●

●

●

●

glmnetMin
glmnet1se
relaxnet
relaxo
lmTrue

Figure 1.2: Prediction performance for simulation 1, p = 100. All values are plotted relative
to the mean for the standard cross-validated lasso estimator (glmnetMin method).

0.
0

0.
5

1.
0

1.
5

σ (log scaling)

re
la

tiv
e

m
ea

n
of

 te
st

 s
et

 M
S

E

0.25 0.50 1.00 2.00 4.00

● ● ● ● ●

●
● ● ●

●

●

● ●

●

●

●

● ●

●

●

● ● ● ●
●

●

●

●

●

●

glmnetMin
glmnet1se
relaxnet
relaxo
lmTrue

Figure 1.3: Prediction performance for simulation 1, p = 1000. All values are plotted relative
to the mean for the standard cross-validated lasso estimator (glmnetMin method).

CHAPTER 1. RELAXNET 14

0
5

10
15

20
25

σ (log scaling)

m
ed

ia
n

nu
m

be
r

of
 fa

ls
e

po
si

tiv
es

0.25 0.50 1.00 2.00 4.00

●

●

●

●

●

● ●
●

●

●●
● ●

● ●

● ● ●
● ●

●

●

●

●

glmnetMin
glmnet1se
relaxnet
relaxo

Figure 1.4: Median number of false positives for simulation 1, p = 100.

0
10

20
30

40
50

σ (log scaling)

m
ed

ia
n

nu
m

be
r

of
 fa

ls
e

po
si

tiv
es

0.25 0.50 1.00 2.00 4.00

●

●

●

●

●
●

●

●
●

●● ● ● ●
●

● ● ● ●

●

●

●

●

●

glmnetMin
glmnet1se
relaxnet
relaxo

Figure 1.5: Median number of false positives for simulation 1, p = 1000.

CHAPTER 1. RELAXNET 15

0
2

4
6

8
10

σ (log scaling)

m
ed

ia
n

nu
m

be
r

of
 tr

ue
 p

os
iti

ve
s

0.25 0.50 1.00 2.00 4.00

● ● ●

●

●

● ●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

glmnetMin
glmnet1se
relaxnet
relaxo

Figure 1.6: Median number of true positives for simulation 1, p = 100. There were 10 truly
contributing predictors. The values for relaxnet are partially occluded by those for relaxo.

0
2

4
6

8
10

σ (log scaling)

m
ed

ia
n

nu
m

be
r

of
 tr

ue
 p

os
iti

ve
s

0.25 0.50 1.00 2.00 4.00

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

glmnetMin
glmnet1se
relaxnet
relaxo

Figure 1.7: Median number of true positives for simulation 1, p = 1000. There were 10 truly
contributing predictors. The values for relaxnet are fully occluded by those for relaxo.

CHAPTER 1. RELAXNET 16

expected due to the increase in the dimensionality) while the difference between glmnetMin
and glmnet1se decreases.

Figures 1.4 and 1.5 (on page 14) show the median number of false positives over the
100 repetitions for the first four methods. False positives are predictors which do not truly
contribute to the outcome, but which are assigned a nonzero coefficient in the final model
for a given method. Figure 1.4 shows the results for p = 100, while Figure 1.5 shows the
results for p = 1000. Again, as expected, the behavior of the relaxnet and relaxo methods is
quite similar. They both result in much fewer false positives than the glmnetMin method.
The glmnet1se method definitely improves on the glmnetMin method for this category. It is
comforting that the trend for relaxo and relaxnet is a decreasing number of false positives
as σ decreases, while for the glmnetMin and glmnet1se methods, the trend seems to be the
opposite.

Figures 1.6 and 1.7 (on page 15) show the median number of true positives for the first
four methods. True positives are predictors which do truly contribute to the outcome, and
are included in the final model with a nonzero coefficient. Figure 1.6 shows the results for
p = 100, while Figure 1.7 shows the results for p = 1000.
There is apparently a small price to be paid in terms of finding the truly contributing
predictors when applying relaxation. In simulation 3 it will be shown that this effect can be
somewhat counteracted by using the elastic net penalty instead of the lasso penalty. Also,
now we see that the apparent improvement in number of false positives for the glmnet1se
method over the relaxed lasso methods for the highest σ value is balanced by a corresponding
decline in the number of true positives vs. the relaxed lasso methods at this σ value. For such
low levels of signal to noise ratio, the glmnet1se method simply isn’t able to find many of
the correct predictors. For p = 1000, the median number of true positives for the glmnet1se
method at σ = 4 was 0, implying that in more than half of the repetitions (actual number:
63 out of 100 repetitions), not a single truly contributing predictor was included in the final
model.

1.4.2 Simulation 2: Binary outcome, uncorrelated predictors

The second simulation used a binary outcome with uncorrelated predictors. The purpose
of this simulation was to compare the performance of relaxnet with other methods in the
logistic regression setting, and to explore the effect of varying the level of sparsity of the true
model. As for simulation 1, the n by p predictor matrix, X, was generated from independent
standard normal variates. For this simulation, the sample size n was varied and took on the
following values: 125, 250, 500, 1000, 2000, 4000. The number of predictors, p, was held
constant at 1000. The number of predictors actually contributing to the outcome, q, was set
at either 10, or 100, in order to compare an extremely sparse model to an only moderately
sparse one. The coefficients, β, were again randomly generated, drawn uniformly from the
interval (−1, 1).

The elements of the outcome vector were generated as

CHAPTER 1. RELAXNET 17

yi ∼ Bernoulli(expit(
c
√
q
xTi β)),

where expit refers to the inverse logit function:

expit(α) = logit−1(α) =
1

1 + e−α
.

The parameter c serves as a substitute for the concept of a signal to noise ratio in the logistic
regression context. c was varied, taking on the following values: 2, 4, 6, 8. The effect of
including the factor c√

q
is to standardize the distribution of the probabilities from which the

bernoulli variates (y) are generated across the two different values of q. This is shown in
Figure 1.8. The number of repetitions was decreased as the sample size increased, starting
with 400 repetitions for each condition for n = 125, and going down to 50 repetitions for each
condition for the three highest sample sizes. Again, prediction performance was evaluated
based on a separate test set with n = 10, 000.

0.0 0.4 0.8

0
10

0
20

0
30

0

0.0 0.4 0.8

0
10

0
20

0
30

0

0.0 0.4 0.8

0
10

0
20

0
30

0

0.0 0.4 0.8

0
10

0
20

0
30

0

0.0 0.4 0.8

0
10

0
20

0
30

0

0.0 0.4 0.8

0
10

0
20

0
30

0

0.0 0.4 0.8

0
10

0
20

0
30

0

0.0 0.4 0.8

0
10

0
20

0
30

0
q = 10

q = 100

c = 2 c = 4 c = 6 c = 8

Figure 1.8: Histograms showing approximate distribution of y-generating probabilities for
simulation 2, for the different values of the parameters c and q. The data set from which
these plots were generated had n = 1000. The horizontal axes show probabilities, while the
vertical axes show frequencies.

The methods applied for this simulation were:

• glmnetMin: L1 (lasso) regularized logistic regression with 10-fold cross-validation. Uses
the min rule to select λ

CHAPTER 1. RELAXNET 18

• glmnet1se: like the previous method, but uses the 1se rule to select λ

• relaxnet: L1 (lasso) regularized logistic regression with relaxation and 10-fold cross-
validation, implemented using the cv.relaxnet function from the relaxnet package

• randomForest: binary outcome random forests implemented using the randomForest

function from package randomForest (Liaw and Wiener, 2002)

• glmTrue: Similar to lmTrue method from simulation 1, only this method uses logistic
regression implemented using R’s glm function. Only the truly contributing predictors
are entered into the model and the noise predictors are ignored

Figures 1.9 and 1.10 show the mean test set misclassification rate for q = 10, with c = 2
and c = 8 respectively. Figures 1.11 and 1.12 show the mean test set log likelihood for
the same parameter values. The three penalized methods all perform much better than
random forest for this data generating distribution, and their performance approaches that
of the glmTrue reference method for the higher sample sizes. In terms of misclassification
performance, the glmnet1se method appears to be a slight disadvantage vs. the glmnetMin
and relaxnet methods for the lower sample sizes when c = 2 (Figure 1.11). On the other
hand, relaxnet and glmnet1se appear to have a slight advantage over glmnetMin in terms of
misclassification for c = 8 (Figure 1.12), perhaps connected with having fewer false positives.
The log likelihood results show a greater differentiation among the three penalized methods,
with relaxnet the clear winner and glmnet1se the clear loser. Similarly to simulation 1,
relaxnet shows greater improvement over the other methods for higher“signal” (higher values
of c). The comparatively poor performance of randomForest may be due to the fact that
the other methods are geared towards exactly this type of truly logistic data-generating
distribution, as well as the fact that the performance of randomForest can be poor for very
sparse data-generating models (Hastie et al., 2009, Section 15.3.4).

Figures 1.13 and 1.14 show the median number of false positives for q = 10, with c = 2
and c = 8 respectively. In simulation 1, false positives increased for the glmnetMin method
with decreasing standard deviation of the error term. Now we see that the false positives
are increasing with increasing sample size, and with the signal parameter, c. False positives
are also higher for the glmnet1se method with c = 8 than with c = 2. The relaxnet method
consistently keeps false positives at a low level.

Figures 1.15 and 1.16 show the median number of true positives for the same parameter
values. Again we see that there is a small price to be paid for keeping the false positives low
in terms of the ability of the glmnet1se and the relaxnet methods to find the true positives.

In summary for the q = 10 condition, the gains in prediction accuracy resulting from
applying relaxation are not as pronounced as they were in simulation 1 with a continuous
outcome. However, there are clear gains in the false positive rate, with only very small losses
in true positives.

CHAPTER 1. RELAXNET 19

0.
1

0.
2

0.
3

0.
4

0.
5

sample size, n (log scaling)

m
ea

n
m

is
cl

as
si

fic
at

io
n

ra
te

125 250 500 1000 2000 4000

●

●

●

●
● ●

●

●

●

●
● ●

●

●

●

●
● ●

●

●

●

●

●

●

●
● ● ● ● ●●

●

●

●

●

glmnetMin
glmnet1se
relaxnet
randomForest
glmTrue

Figure 1.9: Mean test set misclassification rate for simulation 2, with q = 10 and c = 2

0.
1

0.
2

0.
3

0.
4

0.
5

sample size, n (log scaling)

m
ea

n
m

is
cl

as
si

fic
at

io
n

ra
te

125 250 500 1000 2000 4000

●

●

●
● ● ●

●

●

●
● ● ●

●

●

●
● ● ●

●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

glmnetMin
glmnet1se
relaxnet
randomForest
glmTrue

Figure 1.10: Mean test set misclassification rate for simulation 2, with q = 10 and c = 8

CHAPTER 1. RELAXNET 20

−
70

00
−

66
00

−
62

00
−

58
00

sample size, n (log scaling)

m
ea

n
lo

g
lik

el
ih

oo
d

125 250 500 1000 2000 4000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
● ● ●

●

●

●

●

●

glmnetMin
glmnet1se
relaxnet
randomForest
glmTrue

Figure 1.11: Mean test set log likelihood for simulation 2, with q = 10 and c = 2

−
60

00
−

40
00

sample size, n (log scaling)

m
ea

n
lo

g
lik

el
ih

oo
d

125 250 500 1000 2000 4000

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●
●

●
●

●

●
● ● ● ●

●

●

●

●

●

glmnetMin
glmnet1se
relaxnet
randomForest
glmTrue

Figure 1.12: Mean test set log likelihood for simulation 2, with q = 10 and c = 8

CHAPTER 1. RELAXNET 21

0
10

20
30

40

sample size, n (log scaling)

m
ed

ia
n

nu
m

be
r

of
 fa

ls
e

po
si

tiv
es

125 250 500 1000 2000 4000

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●
● ● ●

●

●

●

glmnetMin
glmnet1se
relaxnet

Figure 1.13: Median number of false positives for simulation 2, with q = 10 and c = 2

0
20

40
60

80
12

0

sample size, n (log scaling)

m
ed

ia
n

nu
m

be
r

of
 fa

ls
e

po
si

tiv
es

125 250 500 1000 2000 4000

●

●

●

●

●
●

●

●

● ●
●

●

● ● ● ● ● ●

●

●

●

glmnetMin
glmnet1se
relaxnet

Figure 1.14: Median number of false positives for simulation 2, with q = 10 and c = 8

CHAPTER 1. RELAXNET 22

0
2

4
6

8
10

sample size, n (log scaling)

m
ed

ia
n

nu
m

be
r

of
 tr

ue
 p

os
iti

ve
s

125 250 500 1000 2000 4000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

glmnetMin
glmnet1se
relaxnet

Figure 1.15: Median number of true positives for simulation 2, with q = 10 and c = 2

0
2

4
6

8
10

sample size, n (log scaling)

m
ed

ia
n

nu
m

be
r

of
 tr

ue
 p

os
iti

ve
s

125 250 500 1000 2000 4000

●

●

●

● ● ●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

glmnetMin
glmnet1se
relaxnet

Figure 1.16: Median number of true positives for simulation 2, with q = 10 and c = 8

CHAPTER 1. RELAXNET 23

0
50

10
0

15
0

ns[c(1, length(ns))]

125 250 500 1000 2000 4000

● ●
●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

●

●

●

glmnetMin
glmnet1se
relaxnet

c = 2

0
50

15
0

ns[c(1, length(ns))]

c(
m

in
, m

ax
)

125 250 500 1000 2000 4000

●
●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●
●

c = 4
0

10
0

20
0

125 250 500 1000 2000 4000

●
●

●

●

●

●

● ●

●

●

●
●

● ●

● ●

●
●

c = 6

0
10

0
20

0
30

0

c(
m

in
, m

ax
)

125 250 500 1000 2000 4000

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

c = 8

Figure 1.17: Median number of false positives for simulation 2, q = 100 (moderately sparse
model). All four values of c are shown. The horizontal axes show sample size, n, with log
scaling.

The prediction accuracy gains were even less pronounced for q = 100 (data not shown),
however, there was an interesting trend in the false positives as c was varied, shown in
Figure 1.17. The median number of false positives for relaxnet tends to be right in between
those for glmnetMin and glmnet1se for lower sample sizes, with a downward trend starting
at a certain point which decreases with increasing c. The low false positive levels at the
higher sample sizes correspond to very low rates of the relaxnet cross-validation procedure
choosing a solution from the main glmnet model (i.e. most often it was one of the relaxed
models which resulted in the minimum cross-validated risk). So we see that even for only
moderately sparse models, it is worth applying relaxation in order to reduce false positives,
and that the reduction works especially well for higher sample sizes and higher levels of
“signal” (when most y-generating probabilities are close to 0 or 1).

1.4.3 Simulation 3: Continuous outcome, correlated predictors

The third simulation was inspired by example 4 from Zou and Hastie (2005). As for simu-
lation 1, the outcome was continuous. Only the first 15 predictors truly contributed to the
outcome, and these were generated in three groups of 5 predictors each. Each of the three
groups was generated independently as multivariate normal with within-group pairwise cor-
relation ρ, which was varied with the following values: 0, 0.25, 0.5, 0.75, 0.9, 0.95, 0.98 and
0.99. The rest of the predictors were generated as independent standard normal variates,
with a total of p = 500 predictors including the first 15. As for simulation 1, the sample size,

CHAPTER 1. RELAXNET 24

n, was held constant at 250, while the standard deviation of the error term was varied. The
coefficient vector β consisted of the following values:

βj = 1, j = 1, . . . , 15

βj = 0, j = 16, . . . , 500.

The elements of the outcome were generated as

yi ∼ xTi β + εi

with

εi ∼ N(0, σ2).

for i = 1, . . . , n. σ, was varied, taking on the following values: 0.1, 0.25, 0.5, 1, 3, 6, 10, 15.
Each condition was repeated 200 times, and the sample size for the test data set on which
all performance was evaluated was 5000.

The methods which were compared were as follows:

• glmnetMinAlpha1, glmnet1seAlpha1, relaxnetAlpha1, lmTrue: These methods corre-
spond to the glmnetMin, glmnet1se and lmTrue methods from simulation 1

• glmnetMinCValpha: elastic net with cross-validation on the value of α, the elastic net
mixing parameter. No relaxation

• relaxnetCValpha: relaxnet with cross-validation on the value of α, using the
cv.alpha.relaxnet function

The values of α used in the cross-validation for the final two methods were: 0.1, 0.3, 0.5, 0.7
and 0.9.

Figures 1.18, 1.19, and 1.20 show the relative mean of test set mean squared error for
simulation 3, with ρ = 0.25, ρ = 0.95, and ρ = 0.99 respectively. Again, the values are
relative to the means for the standard lasso estimator, glmnetMinAlpha1. We see that, once
again, the 1se rule for choosing λ results in consistently worse performance than the min rule
(red line vs. solid black line). There is clearly an improvement due to applying relaxation
(relaxnetAlpha1 method, green line), and there is an additional improvement from applying
an elastic net penalty in addition to relaxation (relaxnetCValpha method, blue line). The
addition improvement seems to increase with increasing correlation. It is interesting to note
that there does not seem to be much improvement for the elastic net method without relax-
ation (glmnetMinCValpha, orange line) vs. the standard lasso method, unless the correlation
is at a very high level (ρ = 0.99, Figure 1.20). The difference between the elastic net penalty
and the lasso penalty relaxed methods becomes apparent at much lower levels of correlation.
A possible reason for this difference is the high dimensionality of the predictor matrix and

CHAPTER 1. RELAXNET 25

the sparsity of the data generating distribution for this simulation. Due to this, the elastic
net method without relaxation (glmnetMinCValpha) is at a disadvantage vs. the relaxed
elastic net method (relaxnetCValpha). At high levels of correlation and high σ values, the
relaxed methods even beat the lmTrue reference method, which is likely effected negatively
by the high correlations.

Figures 1.21 and 1.22 show the median of false positives and true positives, respectively,
for simulation 3 with ρ = 0.95. At this level of correlation, the relaxed methods do very well,
with median 0 false positives across the board. It can be seen that the non-relaxed methods
start to have many false positives at the higher σ values, with the elastic net method having
a slight disadvantage vs. the lasso-penalized method for this category. In Figure 1.22, we see
that the disadvantage of relaxnet with respect to finding the true positives is almost erased
for the relaxnetCValpha method, which is very competitive with the glmnetMinCValpha
method for this performance measure. This is likely a manifestation of the grouping effect
for the elastic net penalty.

0.
0

0.
5

1.
0

1.
5

2.
0

σ (log scaling)

re
la

tiv
e

m
ea

n
of

 te
st

 s
et

 M
S

E

0.1 0.25 0.5 1 3 6 10 15

● ● ● ● ● ● ● ●
●

●
● ● ● ●

●

●

● ● ● ● ● ● ● ●●

●
●

●

●

●

● ●

●

●
● ●

●

●

●
●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

glmnetMinAlpha1
glmnet1seAlpha1
glmnetMinCValpha
relaxnetAlpha1
relaxnetCValpha
lmTrue

Figure 1.18: Relative mean of test set mean squared error for simulation 3, ρ = 0.25

CHAPTER 1. RELAXNET 26

0.
0

0.
5

1.
0

1.
5

2.
0

σ (log scaling)

re
la

tiv
e

m
ea

n
of

 te
st

 s
et

 M
S

E

0.1 0.25 0.5 1 3 6 10 15

● ● ● ● ● ● ● ●
●

●

●
● ●

● ●

●

● ●
● ● ●

●
● ●●

●

● ●

● ●
●

●

●

●

● ●

● ●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

glmnetMinAlpha1
glmnet1seAlpha1
glmnetMinCValpha
relaxnetAlpha1
relaxnetCValpha
lmTrue

Figure 1.19: Relative mean of test set mean squared error for simulation 3, ρ = 0.95

0.
0

0.
5

1.
0

1.
5

2.
0

σ (log scaling)

re
la

tiv
e

m
ea

n
of

 te
st

 s
et

 M
S

E

0.1 0.25 0.5 1 3 6 10 15

● ● ● ● ● ● ● ●
●

●

● ●
●

●
● ●

●

● ●
●

●
● ● ●

●
●

●

●

●
●

●

●

●

●

● ● ● ● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

glmnetMinAlpha1
glmnet1seAlpha1
glmnetMinCValpha
relaxnetAlpha1
relaxnetCValpha
lmTrue

Figure 1.20: Relative mean of test set mean squared error for simulation 3, ρ = 0.99

CHAPTER 1. RELAXNET 27

0
5

10
15

20

σ (log scaling)

m
ed

ia
n

of
 fa

ls
e

po
si

tiv
es

0.10 0.25 0.50 1.00 3.00 6.00 15.00

● ●

●

● ●

●
●

●

● ● ● ● ● ● ● ●● ●

●
●

●

●

●

●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●

●

●

●

●

glmnetMinAlpha1
glmnet1seAlpha1
glmnetMinCValpha
relaxnetAlpha1
relaxnetCValpha

Figure 1.21: Median of false positives for simulation 3, ρ = 0.95. The values for the relaxne-
tAlpha1 method are occluded by those for the relaxnetCValpha method.

0
5

10
15

σ (log scaling)

m
ed

ia
n

of
 tr

ue
 p

os
iti

ve
s

0.10 0.25 0.50 1.00 3.00 6.00 15.00

● ● ● ●

●

●

●

●

● ● ● ●

●

●

●

●

● ● ● ● ●

●

●

●

● ● ● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

glmnetMinAlpha1
glmnet1seAlpha1
glmnetMinCValpha
relaxnetAlpha1
relaxnetCValpha

Figure 1.22: Median of true positives for simulation 3, ρ = 0.95

CHAPTER 1. RELAXNET 28

1.4.4 Using simulation 1 to compare running time of the
relaxnet function with that of relaxo

In order to compare the running time of the relaxnet function with that of the relaxo

function, the data generating model from simulation 1 was used, but the number of predic-
tors, p, was varied, with 6 different values ranging between 500 and 20,000. The number
of repetitions was decreased with increasing number of predictors, from 600 repetitions at
p = 500, down to 100 repetitions at p = 20, 000. The sample size, n, was held constant at
250. Figure 1.23 shows the relative timings (mean time for relaxo divided by mean time for
relaxnet). The mean time for 20,000 predictors was 123 seconds for relaxo, while it was
only 2.78 seconds for relaxnet, a speedup of 44.2X (only the base version of each function
was run, there was no cross-validation).

0 5000 10000 15000 20000

0
10

20
30

40
50

number of predictors (p)

re
la

tiv
e

ru
nn

in
g

tim
e

●
●

●

●

●

●

Figure 1.23: Relative timings: mean time for relaxo divided by mean time for relaxnet.
The sample size, n, was held constant at 250.

1.5 Cross-validation with leukemia data

In order to compare the performance of relaxnet to other methods on a real data set, a
cross-validation analysis was run using the microarray data from Golub et al. (1999). The
data consisted of a total of 72 observations on 7129 genes, with a binary outcome indicating
whether the leukemia type was acute lymphoblastic leukemia or acute myeloid leukemia.
(In the paper the observations are split into a training set of size 38 and a validation set
of size 34, but for the purposes of this analysis, the two sets were pooled.) The methods

CHAPTER 1. RELAXNET 29

applied to this classification problem were the same methods as for simulation 2, except that
10 values of α were used in the cross-validation, instead of 5, for the glmnetCValpha and
the relaxnetCValpha methods. The values were: 0.1, 0.2, . . . , 0.9 and 1. An external level
of cross-validation was applied, with v = 12 folds, and this was repeated with 10 separate
splits of the data into 12 folds. Each method was also run once on the full data set of 72
observations. The results are shown in Table 1.1.

Clearly the best performing methods (those which gave the least number of misclassifi-
cations) are glmnetMinCValpha, relaxnetCValpha and randomForest. Among these three,
relaxnetCValpha has the advantage of having resulted in the most simple model, with the
classification being dependent on only 36 of the genes. In contrast, the glmnetCValpha
method chose 452 genes. Here we again see the advantage of mixing relaxation with the
elastic net penalty. The performance advantage of elastic net has been retained, without
sacrificing the sparsity of the final model.

The identifiers and descriptions of the 36 genes found by relaxnet are listed in table 1.2.
21 of the 36 are part of the set of 50 which were found by Golub et al. (1999) to have the
highest correlation with the outcome and formed the basis for their predictor.

misclassified for each data split final
method 1 2 3 4 5 6 7 8 9 10 αmin model size
glmnetMinAlpha1 3 3 5 4 5 4 4 3 5 3 26
glmnet1seAlpha1 8 8 9 8 8 6 5 6 7 9 18
glmnetMinCValpha 2 2 2 2 2 2 2 2 2 2 0.1 452
relaxnetAlpha1 5 4 8 6 5 5 4 7 5 6 9
relaxnetCValpha 2 2 2 2 2 3 2 2 2 2 0.2 36
randomForest 3 1 1 1 2 2 2 1 1 3

Table 1.1: Results for leukemia data cross-validation. The main section shows the number
of observations (out of 72) which were misclassified for each data split (this is the cross-
validated error). αmin is the value of α chosen by the (internal) cross-validation procedure
when the method was run on the full data set. Final model size is the number of predictors
remaining in the final model (those whose coefficients were nonzero), also for the run on the
full data set.

1.6 Discussion

In agreement with Meinshausen (2007), we have shown that the relaxed lasso can outper-
form the lasso with sparse, high dimensional data, and that it reduces the number of false
positives. Cross-validating the lasso using the 1se rule for choosing λ is another way to re-
duce false positives, but as we have shown, this also has a large negative effect on prediction

CHAPTER 1. RELAXNET 30

identifier Description
Y08612 nucleoporin 88kDa
M13690 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1
U82759 Not Found
M31211 myosin, light chain 6B, alkali, smooth muscle and non-muscle
S50223 zinc finger protein 22
Y07604 NME/NM23 nucleoside diphosphate kinase 4
M28170 CD19 molecule
M23197 CD33 molecule
D49950 interleukin 18 (interferon-gamma-inducing factor)
J05243 spectrin, alpha, non-erythrocytic 1
X85116 stomatin
M84371 CD19 molecule
M65214 transcrptn. factor 3 (E2A immunoglbln. enhancer binding factors E12/E47)
M31523 transcrptn. factor 3 (E2A immunoglbln. enhancer binding factors E12/E47)
HG1612 Not Found
M16038 v-yes-1 Yamaguchi sarcoma viral related oncogene homolog
M22960 cathepsin A
U22376 v-myb myeloblastosis viral oncogene homolog (avian)
X95735 zyxin
U50136 leukotriene C4 synthase
M55150 fumarylacetoacetate hydrolase (fumarylacetoacetase)
L09209 amyloid beta (A4) precursor-like protein 2
M92287 cyclin D3
M33680 CD81 molecule
X59417 proteasome (prosome, macropain) subunit, alpha type, 6
M63138 cathepsin D
U05259 CD79a molecule, immunoglobulin-associated alpha
M27891 cystatin C
M19507 myeloperoxidase
M84526 complement factor D (adipsin)
X17042 serglycin
U46499 microsomal glutathione S-transferase 1
M96326 azurocidin 1
Y00787 interleukin 8
M11147 ferritin, light polypeptide
X14008 lysozyme

Table 1.2: The set of genes found by relaxnet for the leukemia data.

CHAPTER 1. RELAXNET 31

accuracy, and for the case of very low signal to noise ratios, the 1se rule performs worse than
the relaxed lasso in terms of selecting the truly contributing predictors (true positives). We
have shown that the relaxnet package has similar performance to the relaxo package when
the lasso penalty (α = 1) is applied, but is more computationally efficient. In addition,
we have shown that it can be very effective to combine relaxation and elastic net penalties.
When there are high correlations among predictors, the elastic net penalties result in better
prediction accuracy. Applying relaxation counteracts the reduction of sparsity brought about
by using an elastic net penalty instead of the lasso, while retaining the gains in prediction
accuracy. The relaxnet package provides a multicore option, allowing the user to parallelize
execution over cross-validation folds or parameter (α) values, thereby reducing running times.

One drawback of the relaxnet approach is that the predictions are restricted to linear
combinations of the predictors. In real data settings, the model is rarely truly linear, and
thus more flexible modeling approaches can be helpful. One such approach is described in
Chapter 2. The approach described in this chapter is also not particularly useful if the
goal is to obtain measures of variable importance for each predictor. Chapter 3 describes
an approach to variable importance based on nonparametric, causal inference methodology
(van der Laan and Rose, 2011).

32

Chapter 2

widenet: An R Package and Machine
Learning Algorithm Combining
Regularization with Polynomial Basis
Expansions

2.1 Introduction

2.1.1 Motivation

This chapter describes the widenet R package, which extends the glmnet (Friedman et al.,
2010) and relaxnet (see Chapter 1) R packages with polynomial basis expansions. The
main function, widenet, allows the user to select an order of basis expansion, and will run
relaxnet in order to select a subset of basis functions following expansion of the basis to
the given order. If more than one order is specified, cross-validation will be used to select
the order in addition to the relaxnet tuning parameters. In order to accommodate high
dimensional data, the option is provided to prescreen the predictors, and the screening takes
place separately within cross-validation folds. In addition, a multicore option for parallelizing
the computation over cross-validation folds is provided.

The polynomial basis expansions serve the purpose of increasing the size of the statis-
tical model, in order to remain somewhat more nonparametric than purely linear methods
such as least squares, lasso and relaxnet. Methods such as widenet and DSA, the dele-
tion/substitution/addition algorithm (described in Section 2.2.1) provide a middle ground
between the linear methods and more fully nonparametric methods such as random forests
(Breiman, 2001; Liaw and Wiener, 2002). The nonparametric methods are fully geared to-
wards prediction, and are not very useful from an explanation standpoint, when one would
like to have some understanding of how the predictor variables are contributing to the out-
come. Linear methods, on the other hand, give intuitive explanation, since the contribution

CHAPTER 2. WIDENET 33

of each predictor is given by a single number. However, linear methods may be very bi-
ased if the model is not truly linear. widenet avoids these extremes and settles somewhere
in the middle, remaining flexible to nonlinearities in the data, but returning a relatively
interpretable final model.

Due to the fact that polynomial basis expansion leads to a high-dimensional problem with
potentially high correlations between columns of the predictor matrix, the relaxnet method
is ideally suited for selecting the final subset of the basis functions. relaxnet combines
elastic net penalties with relaxation in order to take advantage of improved performance in
the case of correlated predictors, without sacrificing the sparsity of the final model. False
positives (basis functions selected to be in the final model which do not truly contribute to
the outcome) are kept at a low level (see Chapter 1).

2.1.2 Chapter overview

In Section 2.2 we review some previous approaches to regression with an expanded basis. In
Section 2.3 we describe the components of the widenet package in more detail. In Section 2.4
we describe the results of a simulation in which widenet is compared to other methods. In
Section 2.5 we report on a cross-validation data analysis using data from a study on gene
expression effects of benzene exposure (McHale et al., 2011). We close with a discussion in
Section 2.6.

2.2 Previous approaches

2.2.1 The deletion/substitution/addition algorithm and the DSA

R package

The deletion/substitution/addition algorithm (DSA; Sinisi and van der Laan, 2004) defines
a method for doing a sequential search through subsets of candidate model elements using
deletion, substitution and addition moves. Sinisi and van der Laan (2004) originally applied
it to polynomial basis functions, and here I will focus on this application, but it has also
been applied to partitioning by Molinaro et al. (2010), in a context similar to classification
and regression trees (Breiman, 1984). Neugebauer and Bullard (2010) provide an R package,
DSA, implementing the DSA with polynomial basis expansions.

The DSA package works by expanding the predictors into polynomial terms based on two
parameters which define the maximum order of interaction (maxorderint) and the maximum
sum of powers (maxsumofpow) of the expanded basis functions. The DSA algorithm is applied
and does a sequential search through subsets of basis functions, fitting a new model at each
step and evaluating the model fit in order to determine the next step. The search ends when
the maximum model size (maxsize) has been reached. Finally, cross-validation is used in
order to choose from among the models at each model size which had minimum prediction
error.

CHAPTER 2. WIDENET 34

DSA does not restrict candidate models to those which are “nested”, i.e. it is allowed to
have a model with high order terms, the elements of which are not included as lower order
terms. For example, the term x1 : x2 may be in the model even though neither x1 nor x2
appears as a first order term. DSA will often find some linear combination of a small subset
of high order terms which ends up having very good prediction performance.

Since it is basically a subset selection procedure, DSA suffers from high variance due to
the discrete nature of the selection procedure as described in Section 1.2.2. An additional
disadvantage is that the running time increases dramatically with increasing number of
predictors and increasing values of the tuning parameters maxorderint, maxsumofpow and
maxsize. In particular, Figure 2.1 shows that the running time of the DSA function is
supracubic in the value of maxsize. This is a substantial disadvantage since it means that it
may not be feasible for the user to allow for less sparse models which have a higher number
of truly contributing terms. In addition, the fact that the bulk of the running time goes into
the sequential search through subsets of basis functions means that the algorithm is not easy
to parallelize.

value of maxsize parameter (log scaling)

ru
nn

in
g

tim
e

in
 s

ec
on

ds
 (

lo
g

sc
al

in
g)

5 6 8 10 12 15 20 30

0.
1

1.
0

10
.0

10
0.

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●p = 10 slope = 3.21
p = 15 slope = 3.35
p = 25 slope = 3.33
p = 40 slope = 3.41
p = 60 slope = 3.37

Figure 2.1: The running time of DSA is supracubic in maxsize. Plot shows mean running
time over 10 repetitions on a log-log plot. Slopes are those of the dotted lines connecting
the first and final data points at each value of p.

2.2.2 MARS and the polspline R package

Prior to the introduction of the DSA, the multivariate adaptive regression spline (MARS)
procedure was developed by Friedman (1991). It is based on basis functions made up of linear
splines. Later, Stone et al. (1997) and Kooperberg et al. (1997) extended this procedure with

CHAPTER 2. WIDENET 35

polynomials. Their algorithms are implemented by the functions polyclass and polymars

from the polspline R package (Kooperberg, 2010). Unlike DSA, these functions require
“nested” models, in that the lower-order terms on which higher order basis functions depend
must be in the model before the higher order terms are allowed. This reduces the flexibility
of the procedure.

2.2.3 The polywog R package

Kenkel and Signorino (2013) provide the polywog R package, which combines polynomial
basis expansion with oracle model selection using either the adaptive lasso of Zou (2006) or
the smoothly clipped absolute deviation penalty of Fan and Li (2001). This package provides
functionality similar to the widenet package, however, there are certain disadvantages:

• It does not allow specification of elastic net penalties

• There is no option to prescreen variables separately within cross-validation folds

• The polywog function applies a QR factorization after the basis expansion in order
to screen out colinear predictors. A side effect of this is that the final design matrix
must be of full column rank, i.e. it may not have more columns than rows. Columns
in excess of the number of rows are discarded

These last two disadvantages, in particular, make the polywog package unsuitable for higher-
dimensional data. Considering that expanding the predictors out to the third order results
in on the order of a cubing of the original number of predictors, the QR factorization greatly
restricts the dimension of the data for which this method will be appropriate.

2.3 The widenet R package

2.3.1 Main function: widenet

The arguments to the main function of the widenet package are as follows:

widenet(x, y, family = c("gaussian", "binomial"),

order = 1:3,

alpha = 1,

nfolds = 10,

foldid,

screen.method = c("none", "cor", "ttest"),

screen.num.vars = 50,

multicore = FALSE,

mc.cores,

mc.seed = 123,

CHAPTER 2. WIDENET 36

...)

x is the matrix of predictors, y is the outcome vector, and family specifies whether the model
should be linear or logistic. order specifies the order of basis expansion. If there is more than
one element, cross-validation is used to select among the different orders. Similarly, alpha
specifies the elastic net mixing parameter to be applied, and if this is a vector with more than
one element, the value will be selected by cross-validation. nfolds and foldid determine
how the data will be split up for v-fold cross-validation. With the screen.method argument,
the user may specify a method to use for prescreening predictors, or that no screening should
be done. screen.method = "cor" uses bivariate correlations with the outcome to screen
predictors, while screen.method = "ttest" uses t-tests. If a screening method is selected,
the screening will be done separately within cross-validation folds. screen.num.vars deter-
mines the number of predictor variables to be “screened in” or kept within each fold. The
function returns an object of class "widenet".

2.3.2 Options for parallel execution

The arguments multicore, mc.cores and mc.seed control the parallel execution. If
multicore = TRUE, the execution will be parallelized over the cross-validation folds using
the multicore functionality from R’s parallel package (R Core Team, 2013). mc.cores speci-
fies the number of processors/cores to use, and mc.seed allows the specification of a random
seed for reproducibility.

2.3.3 Predict, summary and print methods

The predict.widenet method allows predictions to be made from class "widenet" objects.
The method has arguments with which one may specify the values of order and alpha for
which one would like the predictions to be made. The default values, however, are those
values which resulted in the minimum cross-validated risk (i.e., those which “won” the cross-
validation). The summary.widenet and print.widenet methods allow for the printing of
a summary of the result, which shows the minimum cross-validated risk for each value of
order and lambda.

CHAPTER 2. WIDENET 37

n p#=#50 p#=#100 p#=#200 p#=#300 p#=#500 p#=#1000 p#=#2000
50 20#kB 40#kB 80#kB 120#kB 200#kB 400#kB 800#kB
100 40#kB 80#kB 160#kB 240#kB 400#kB 800#kB 1.6#MB
200 80#kB 160#kB 320#kB 480#kB 800#kB 1.6#MB 3.2#MB
500 200#kB 400#kB 800#kB 1.2#MB 2#MB 4#MB 8#MB
1000 400#kB 800#kB 1.6#MB 2.4#MB 4#MB 8#MB 16#MB
5000 2#MB 4#MB 8#MB 12#MB 20#MB 40#MB 80#MB
10000 4#MB 8#MB 16#MB 24#MB 40#MB 80#MB 160#MB

50 530#kB 2.1#MB 8.1#MB 18#MB 50#MB 200#MB 800#MB
100 1.1#MB 4.1#MB 16#MB 36#MB 100#MB 400#MB 1.6#GB
200 2.1#MB 8.2#MB 32#MB 73#MB 200#MB 800#MB 3.2#GB
500 5.3#MB 21#MB 81#MB 180#MB 503#MB 2#GB 8#GB
1000 11#MB 41#MB 160#MB 360#MB 1#GB 4#GB 16#GB
5000 53#MB 206#MB 812#MB 1.8#GB 5#GB 20#GB 80#GB
10000 106#MB 412#MB 1.6#GB 3.6#GB 10#GB 40#GB 160#GB

50 9.4#MB 71#MB 550#MB 1.8#GB 8.4#GB 67#GB 530#GB
100 19#MB 140#MB 1.1#GB 3.7#GB 17#GB 130#GB 1.1#TB
200 37#MB 280#MB 2.2#GB 7.3#GB 34#GB 270#GB 2.1#TB
500 94#MB 710#MB 5.5#GB 18#GB 84#GB 670#GB 5.3#TB
1000 190#MB 1.4#GB 11#GB 37#GB 170#GB 1.3#TB 11#TB
5000 937#MB 7.1#GB 55#GB 180#GB 840#GB 6.7#TB 53#TB
10000 1.9#GB 14#GB 110#GB 370#GB 1.7#TB 13#TB 110#TB

order#=#1

order#=#2

order#=#3

Table 2.1: Memory requirements for widenet by matrix size and order of basis expansion.
Assumes a dense matrix of doubles.

2.3.4 Memory use

For large predictor matrices, the widenet function may require a substantial amount of
memory. The maximum order of basis expansion is 3, but even at this level, the amount of
memory required to store the design matrix is significantly greater than that for the unex-
panded predictors. Table 2.1 shows memory requirements for matrices of different dimensions
before and after basis expansion.

2.3.5 Example

In this section we give a small example demonstrating the use and output of the widenet

function. First we load the widenet package and generate a 500 by 5 predictor matrix of
independent standard normal variates:

R> library("widenet")

R> n <- 500

R> p <- 5

R> set.seed(23)

R> x <- matrix(rnorm(n*p), n, p)

The predictor matrix must have unique column names:

CHAPTER 2. WIDENET 38

R> colnames(x) <- paste("x", 1:ncol(x), sep = "")

Next we generate an outcome based on truly contributing basis functions of order 1 and 2,
plus a standard normal error term:

R> y <- x[, 1] + x[, 2] + x[, 3] * x[, 4] + x[, 5]^2 + rnorm(n)

Now we run widenet. The default is to run all three orders from 1 to 3. We will use three
different α values which will be cross-validated against each other.

R> widenet.result <- widenet(x, y, family = "gaussian",

+ alpha = c(0.1, 0.5, 0.9))

Now we display the results. We call summary.widenet and print the nonzero coefficients for
the final chosen model:

R> summary(widenet.result)

The call was:

widenet(x = x, y = y, family = "gaussian", alpha = c(0.1, 0.5, 0.9))

The minimum cross-validated risk by order and alpha value:

order

alpha 1 2 3

0.1 4.200071 1.038802 1.027527

0.5 4.186725 1.053491 1.026082

0.9 4.182633 1.049731 1.038028

The total time taken to fit this model was:

[1] 8.94

seconds.

R> coefs <- drop(predict(widenet.result, type = "coef"))

R> coefs[coefs != 0]

(Intercept) x1 x2 x3:x4 I(x5^2)

0.05942064 0.91541366 0.98333529 1.09731775 0.96212394

widenet has found all of the truly contributing basis functions. Further inspection reveals
which part of the model gave the minimum cross-validated risk:

CHAPTER 2. WIDENET 39

R> order.min <- widenet.result[["which.order.min"]]

R> order.min

[1] "3"

R> alpha.min <- widenet.result[["which.alpha.min"]]

R> alpha.min

[1] 0.5

R> order.min.index <- which(widenet.result$order == order.min)

R> order.min.index

[1] 3

R> alpha.min.index <- which(widenet.result$alpha == alpha.min)

R> alpha.min.index

[1] 2

R> min.cv.relaxnet.fit <-

+ widenet.result$cv.relaxnet.results[[order.min.index]][[alpha.min.index]]

R> min.cv.relaxnet.fit$which.model.min

[1] 3

The third relaxed model from the cv.relaxnet run with order = 3 and alpha = 0.5 gave
the minimum cross-validated risk.

2.4 Simulation

In order to compare the performance and basis function selection behavior of widenet with
other methods, a simulation was run in which the data generating model depended on a small
number of terms of different orders. The predictor matrix X was given dimension n = 250
by p = 100 and generated from independent standard normal variates. The outcome was
continuous, with the elements of the outcome vector being generated as

yi ∼ xi1 + xi2 + xi1x
2
i2/2 + x3i1/4 + εi

where xij is the element of X from the ith row and the jth column, and

εi ∼ N(0, σ2).

CHAPTER 2. WIDENET 40

The standard deviation of the error term, σ, was varied, taking on the following values: 0.1,
0.25, 0.5, 1, 3, 6, 10. The truly contributing basis functions were x1, x2, x1 : x22, and x31. Each
condition was repeated 200 times with a separately generated data set, and all evaluation of
prediction performance was done using a test set of size n = 5000.

The methods which were compared in this simulation were as follows:

• widenetCValpha: this method used the widenet function, with the default value for
order, in other words the order of either 1, 2, or 3 was chosen by cross-validation.
In addition, the α value of either 0.1, 0.3, 0.5, 0.7, or 0.9 was also chosen by cross-
validation. screen.method was set to "cor" and screen.num.vars was set to 20

• widentAlphax: this represents six separate methods, for six different values of α. The
widenet function was used, with cross validation on three levels of the order of basis
expansion, but instead of cross-validating to select α, it was kept constant at one of
the following values: 0.1, 0.3, 0.5, 0.7, 0.9 or 1. Screening was used with the same
parameter values as for the widenetCValpha method

• DSA: this method used the DSA function from the DSA package, with no pre-screening,
maxorderint = 3, maxsumofpow = 3, and maxsize = 5

• DSAscreen: this also used the DSA function with the same parameters, but for this
method, 20 of the predictors were screened in (using the bivariate correlation with the
outcome) prior to running DSA. Note that the DSA function does not allow screening
separately within cross-validation folds

• randomForest: the randomForest function from the package randomForest (Liaw and
Wiener, 2002) was used with the default options

• lmTrue: this method used R’s built-in lm function to run a linear model using the
actual basis functions which truly contribute to the outcome, for reference

The results of the simulation are shown in Figures 2.2 through 2.5. Figure 2.2 shows
the performance (mean of test set mean squared error) for a subset of the methods. Fig-
ure 2.3 compares all of the widenet methods by showing their performance relative to the
widenetAlpha1 method. Figures 2.4 and 2.5 show the mean number of true and false pos-
itives, respectively, for the DSA methods and a subset of the widenet methods. Unlike
the DSA methods and the randomForest method, the performance of the widenetCValpha
method approaches that of the lmTrue reference method at the lower values of σ. The
DSA methods and the randomForest method both do poorly compared to the widenetCVal-
pha method. For randomForest, this is again likely to be due to the sparsity of the model
(see Section 1.4.2). Both of the DSA methods also do poorly in terms of true positives,
i.e. they are not able to consistently find all the true basis functions, as seen in Figure 2.4.
This accounts for the poor performance of the DSA methods. The performance of most of the

CHAPTER 2. WIDENET 41

0
1

2
3

4
5

6
7

σ (log scaling)

m
ea

n
of

 te
st

 s
et

 M
S

E

0.1 0.25 0.5 1 3 6 10

● ● ● ●

●

●

●

● ● ● ●

●

●

●

● ● ●
●

●

●

●

● ● ●
●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

widenetCValpha
DSA
DSAscreen
randomForest
lmTrue

Figure 2.2: Prediction performance for the widenet simulation. Values are means of test set
mean squared error over the 200 repetitions. The performance of the other widenet methods
was similar to widenetCValpha and is shown in the next figure.

0.
5

1.
0

1.
5

2.
0

2.
5

σ (log scaling)

re
la

tiv
e

m
ea

n
of

 te
st

 s
et

 M
S

E

0.1 0.25 0.5 1 3 6 10

●
● ●

●

●
● ●

●

●

●

●

●

●
●

●

●
● ● ● ● ●

●
● ●

●

●
●

●
●

●
●

●

●
● ●● ● ●

●

●
● ●● ● ● ● ● ● ●

●

●

●

●

●

●

●

widenetCValpha
widenetAlpha0.1
widenetAlpha0.3
widenetAlpha0.5
widenetAlpha0.7
widenetAlpha0.9
widenetAlpha1

Figure 2.3: Relative prediction performance for the widenet methods. All values are plotted
relative to the mean for the widenetAlpha1 method.

CHAPTER 2. WIDENET 42

0
1

2
3

4

σ (log scaling)

m
ea

n
of

 tr
ue

 p
os

iti
ve

s

0.1 0.25 0.5 1 3 6 10

● ● ● ●

●

●

●

● ● ● ●

●

●

●

● ● ● ●

●

●

●

● ● ●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

widenetCValpha
widenetAlpha0.1
widenetAlpha1
DSA
DSAscreen

Figure 2.4: Mean of true positives for widenet simulation. There were four truly contributing
basis functions.

0
5

10
15

σ (log scaling)

m
ea

n
of

 fa
ls

e
po

si
tiv

es

0.1 0.25 0.5 1 3 6 10

● ● ● ●

●

●

●

● ●
●

●

●

●

●

● ●
● ●

●

●

●

● ● ● ● ● ● ●
●

● ● ● ● ● ●

●

●

●

●

●

widenetCValpha
widenetAlpha0.1
widenetAlpha1
DSA
DSAscreen

Figure 2.5: Mean of false positives for widenet simulation. Each additional basis function
that had a nonzero coefficient in the final model but did not truly contribute to the outcome
was counted as a false positive.

CHAPTER 2. WIDENET 43

widenetAlphax methods was similar to that for the widenetCValpha method, with the excep-
tion of the widenetAlpha0.1 method, which had much worse performance at the lower levels
of σ. Looking at Figure 2.5, we see that this method also had a much higher number of false
positives at these σ values, which may account for its poor performance relative to the other
widenet methods. The level of correlation among the truly contributing basis functions (in
the range of 0.5-0.8, pairwise, for the terms x1, x1 : x22, and x31) was apparently high enough
to cause problems for the two DSA methods in finding all of the true basis functions, but
not high enough to create a significant performance advantage for elastic net penalties over
the lasso penalty within the widenet methods.

2.5 Cross-validation with benzene data

In this section we compare the performance of widenet with that of DSA and random-
Forest using data from a study of occupational benzene exposure in factory workers (Lan
et al., 2004; Vermeulen et al., 2004; McHale et al., 2011). The subjects worked in three
clothes-manufacturing factories near Tianjin, China. For this analysis, a cross-validation
was performed using data from 59 workers with low levels of benzene exposure (<1ppm),
along with 42 workers from the control, unexposed group. The binary outcome consisted of
the class label, exposed or unexposed. Each subject had had the expression levels of 22,177
genes assessed by microarray analysis (McHale et al., 2011), and the expression measures
made up the predictor matrix. The following methods were compared:

• widenetOrder2Screen250: The widenet function was used, with order set to both
order 1 and order 2; cross-validation on five α values: 0.1, 0.3, 0.5, 0.7 and 0.9;
screen.method = "ttest" and screen.num.vars = 250

• widenetOrder3Screen50: Like the previous method, only with order set to do all three
orders, 1, 2 and 3, and screen.num.vars set to 50.

• DSAorder2Screen100: First 100 genes were screened in using t-tests, then DSA was
run using maxorderint = 2, maxsumofpow = 2 and maxsize = 6

• DSAorder3Screen40: Like the previous method, only 40 genes were screened instead
of 100, and maxorderint and maxsumofpow were set to 3

• randomForest: This method used the randomForest function from the randomForest
package, with the default options

An outside level of 10-fold cross-validation was performed, and the resulting cross-validated
predicted probabilities were used to draw ROC curves, shown in Figure 2.6. We see that
although the randomForest method had the highest area under the curve (AUC) overall, the
widenet methods were not far behind, and both of the widenet methods did better than the
two DSA methods. It seems that for both widenet and DSA, there was a slight advantage

CHAPTER 2. WIDENET 44

of expanding the basis all the way to order 3, instead of just order 2, even though the order
3 methods had fewer genes to work with.

Finally, each method was also run on the entire data set with the timings being recorded
and the final model examined for model size. The results are shown in Table 2.2. Note that
the widenet methods were run using multicore processing on 4 cores. Despite the fact that
each widenet method had to be repeated for each of the 5 separate α values, the timings
for the widenet method were not excessively longer than those for the other methods. It
must also be considered that, for the DSA methods, the maxsize argument was set to only
6, meaning that these methods would not have been able to find solutions containing more
than 6 basis functions. As shown in figure 2.1, setting the maxsize argument at a higher
level may have significantly increased the running time of the DSA methods.

method running,time,(s) final,model,size
widenetOrder2Screen250 113.9 7
widenetOrder3Screen50 172.1 22
DSAorder2Screen100 40.1 1
DSAorder3Screen40 30.9 3
randomForest 26.6

Table 2.2: Timings and final model size for run on the full benzene data set. Model size
gives the number of basis functions and does not include the intercept.

2.6 Discussion

In this chapter we have introduced the widenet R package. Like the DSA package, widenet
uses polynomial basis expansions in order to keep the statistical model larger than for purely
linear methods. However, widenet has several advantages over DSA:

• As shown in Sections 2.4 and 2.5, the prediction accuracy of widenet is very competitive
with that of DSA

• With widenet it is not necessary to specify a maxsize argument. The algorithm is
adaptive to the level of sparsity of the true model. The running time of DSA is highly
dependent on the value of the maxsize argument

• While most of the running time for DSA goes into a sequential search through basis
functions, widenet is based mainly on cross-validation and is therefore more easily
parallelizable than DSA

CHAPTER 2. WIDENET 45

• widenet is based on glmnet and relaxnet, which are well suited to high-dimensional
problems with p >> n. In addition, widenet allows for screening the predictors sepa-
rately within cross-validation folds. Cross-validating after applying screening has been
shown to lead to over-fitting (Cawley and Talbot, 2010)

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

widenetOrder2Screen250, AUC = 0.833
widenetOrder3Screen50, AUC = 0.849
DSAorder2Screen100, AUC = 0.791
DSAorder3Screen40, AUC = 0.818
randomForest, AUC = 0.887

Figure 2.6: ROC curves for benzene data cross-validation. The area under the curve (AUC)
for each method is shown in the legend.

Non-parametric methods such as randomForest are hard to beat when it comes to pre-
diction accuracy. Nevertheless, we have shown a case where the model is very sparse and
widenet outperforms randomForest (simulation in Section 2.4). Also, the final model re-
turned by widenet is much more interpretable than that for randomForest.

46

Chapter 3

multiPIM: A Causal Inference
Approach to Variable Importance
Analysis

Note: A portion of this material has appeared previously in my master’s thesis (Ritter, 2011),
and it has been submitted as an article that is currently being reviewed by the Journal of
Statistical Software (Ritter et al., submitted). This material is being included here with
permission from the graduate division and from the coauthors.

3.1 Introduction

3.1.1 Motivation

In most observational epidemiological studies, the investigators are interested in determining
the independent association between one or more exposure variables and an outcome of
interest, which requires adjustment for potentially confounding variables. Typically, and
especially when the study is one of the first to be done in a certain field, there is little or
no a priori knowledge of which variables are “important.” Thus, a wide net is cast, many
variables are measured, and a multivariate regression model is built in an effort to adjust for
confounding. The supposed effects of each exposure variable are read off from the estimated
coefficients of this model, and statistical inference (confidence intervals or p values) is based
on the standard error associated with each coefficient.

However, the interpretation of the model coefficients as the causal effects, and the infer-
ence obtained, are only valid if the model used in the analysis 1) closely approximates the
true model and 2) has been specified a priori, without any feedback from the data. Unfortu-
nately, these two conditions are somewhat mutually exclusive. Since there is rarely any real,
a priori, knowledge of the true form of the relationships between the variables, the only way
that one can hope to specify the model accurately is through a feedback cycle of multiple

CHAPTER 3. MULTIPIM 47

candidate models which are tested against the data and modified accordingly. Usually only
a very small space of possible models can be searched by this ad hoc method. Thus, there
is not much chance that the final model selected will closely approximate the true model.
An incorrectly specified model will result in biased estimates of the adjusted associations.
Failure to account for using feedback from the data in the analysis will typically result in
artificially low standard errors. The likely result is a misleading, narrow confidence interval
(or low p-value) around a biased estimate.

Even more problematic is the fact that the parameter used may depend on the model
selected, and thus on the data. For example, for one realization of the data, the informal
model selection may result in no interaction terms with the variable of interest, and thus
only one measure of association would be reported. However, for another realization of the
data, the procedure may choose a multiplicative interaction term in the final model, and in
this case the researcher would report two measures of the adjusted association, for the two
different levels of the presumed effect modifier. In this scenario, the concept of a sampling
distribution of an estimator, which forms the basis for inference, breaks down.

van der Laan (2006) has proposed a solution to the problems outlined above. He takes
a causal inference approach, and suggests that the first step is to decide on a real-valued
parameter of interest (the variable importance measure). Then an efficient and robust es-
timator of this parameter can be derived using estimating equation methodology (van der
Laan and Robins, 2003) or targeted maximum likelihood (van der Laan and Rubin, 2006;
van der Laan and Rose, 2011). This estimator is then applied to each variable in turn,
instead of estimating a single, global regression model.

The whole data analysis can be specified a priori, and one can still optimize the model
selection by making aggressive use of modern machine learning algorithms to estimate the
nuisance parameters of the model. These algorithms will data-adaptively search a large
model space, and thereby, hopefully, come up with a reasonable approximation to the true
data-generating distribution. By turning this entire multi-step procedure into an a priori
specified black box, one can harness the power of aggressive computing to obtain consistent
estimates with honest inference.

Other approaches to variable importance analysis are provided by R packages such as
randomForest (Liaw and Wiener, 2002) and caret (Kuhn et al., 2011; Kuhn, 2008). While
these approaches also make use of modern machine learning methods, most of them are based
on assessing changes in the risk function, while the approach of van der Laan (2006) is a
type of adjusted mean inspired by causal inference (though the general targeted maximum
likelihood approach can also be adapted to estimation of the risk function itself). This has
several additional advantages that are not shared by these other approaches. For example,
the choice of the parameter of interest can be tailored to the specific problem, and since
the method is not tied to a specific learning algorithm, one can combine several arbitrary
algorithms in a super learner in order to estimate nuisance parameters (see Section 3.2).

CHAPTER 3. MULTIPIM 48

3.1.2 Chapter overview

In this chapter, we will introduce the package multiPIM, written for the R statistical comput-
ing environment (R Core Team, 2013), and available for download from the Comprehensive R
Archive Network (CRAN, http://cran.r-project.org/package=multiPIM)1. multiPIM
performs variable importance analysis by fitting multiple Population Intervention Models
(PIMs, Hubbard and van der Laan, 2008) to a data set with possibly many exposures (or
treatments) of interest and possibly many outcomes of interest. In Section 3.2, we summarize
the statistical properties of PIMs, describing in particular the procedure for their estimation
using data-adaptive machine learning algorithms. In Section 3.3, we go into more detail
about multiPIM and its functions. Section 3.4 describes a simulation which demonstrates
the benefit of using a double robust estimator. In Section 3.5 and Section 3.6, we report on
reanalyses of data from the Western Collaborative Group Study (WCGS, Rosenman et al.,
1966, 1975) and from a study of water contact and schistosomiasis infection (Spear et al.,
2004; Sudat et al., 2010). Section 3.6 (schistosomiasis example) includes the code for running
the analysis. In Section 3.7 we report on a variable importance analysis for the PRospective
Observational Multicenter Major Trauma Transfusion (PROMMTT) study (Rahbar et al.,
2012; Hubbard et al., 2013). We close with a discussion in Section 3.8.

3.2 Statistical methodology

The approach for estimating PIMs was presented by Hubbard and van der Laan (2008), and
is also described in Young (2007) and Young et al. (2009). We summarize the main points
here.

3.2.1 Data structure and parameter of interest

Let us assume that we have an observed data structure

O = (Y,A,W) ∼ P0,

where Y is an outcome (which may be either binary or continuous), A is a binary exposure
or treatment variable, W may be a vector of possible confounders of the effect of A on Y ,
and P0 is the data-generating distribution. The parameter of interest is

ψ(P0) = ψ = EW [E(Y |A = 0,W)− E(Y |W)]

= EW [E(Y |A = 0,W)]− E(Y).

This parameter is a type of attributable risk; it compares the overall mean of the outcome to
the mean for a target group (defined by A = 0), averaged over strata of W . The hypothetical
full data is given by

1As of this writing, the current version is 1.3-1

http://cran.r-project.org/package=multiPIM

CHAPTER 3. MULTIPIM 49

X = (Y0, Y,W) ∼ PX ,

where Y0 is the counterfactual outcome for A = 0, i.e., the outcome as it would be under
universal application of treatment A = 0. The causal analogue to ψ(P0) is

ψ(PX) = EW [E(Y0|W)− E(Y |W)]

= E[Y0 − Y].

There are certain assumptions under which ψ(P0) = ψ(PX). The assumptions are:

1. Time ordering assumption: W preceded A and A preceded Y in time. More gener-
ally, the data-generating distribution conforms to a specific nonparametric structural
equation model (Pearl, 2000).

2. Consistency assumption: The observed data structure, O, is a missing data structure
on X (van der Laan and Robins, 2003).

3. There is no unmeasured confounding, or, equivalently, A is conditionally independent
of Y0, given W (van der Laan and Robins, 2003).

4. The experimental treatment assignment (ETA) assumption or positivity assumption:
the probability that A is zero, given W , is bounded away from zero, or Pr(A =
0|W) > 0. This is a relaxed version of the ETA assumption, which for certain other
parameters requires a positive probability of having each of the treatment levels over
the distribution of W in the target population (van der Laan and Robins, 2003; Messer
et al., 2010).

If these four assumptions hold, and the relevant models are estimated consistently, ψ can
be thought of as an actual causal effect of A on Y . More specifically, it can be thought of
as measuring the hypothetical effect of an intervention in which everyone in the population
is made to be like the members of the target group. For example, if the target group
corresponds to “unexposed”, then ψ would be the effect, on the overall mean of the outcome,
of eliminating the exposure entirely. However, even if some of these assumptions do not hold,
ψ may still be an interesting and worthwhile parameter to pursue. In this case, it can still
be thought of as a type of variable importance (van der Laan, 2006), and thus as a good way
of quantifying the (W -adjusted) level of association between A and Y .

The term attributable risk has had several slightly different meanings in the epidemio-
logical literature, and some authors prefer the term attributable fraction (e.g., Greenland
and Drescher 1993). For the case of a binary outcome, our parameter, ψ, is like a causal
(W -adjusted) and sign-reversed version of what Gordis (2004) calls the “attributable risk in
the total population”:

CHAPTER 3. MULTIPIM 50

(
Incidence in

total population

)
−

 Incidence in
nonexposed group
(background risk)

 (3.1)

(Gordis, 2004, Formula 12.3). In Section 3.5 below we will calculate a “naive attributable
risk,” (naive since it is bivariate only and does not account for confounding) as the difference
between the mean of the binary coronary heart disease outcome for an unexposed group and
the overall mean of the outcome.

The goal of this work is to create an automated algorithm for estimating ψ for data
sets with potentially many outcomes (Y ’s) and many exposures (A’s) of interest, as well as
potentially high dimensional W.

3.2.2 Estimators

Two general classes of estimators are available for estimating ψ: plug-in maximum likelihood-
type estimators and estimating equation estimators. In the multiPIM package, we have im-
plemented two estimators from each class. The estimator to be used is specified by supplying
the estimator argument to the multiPIM or multiPIMboot functions.

Estimating equation approaches

The estimating equation estimators available in the multiPIM package are the inverse-
probability-of-censoring-weighted (IPCW) estimator, and its doubly-robust extension (DR-
IPCW). These estimators are derived in Hubbard and van der Laan (2008), and the deriva-
tions are based on the approach described in van der Laan and Robins (2003).

Let O1, O2, . . . , On be independent and identically distributed observations of O, with
Oi = (Yi, Ai,Wi), i ∈ {1, 2, . . . , n}. An IPCW estimator is given by

ψ̂IPCWn =
1

n

n∑
i=1

[(
I(Ai = 0)

gn(0|Wi)
− 1

)
Yi

]
, (3.2)

and the corresponding DR-IPCW estimator is given by

ψ̂DR−IPCWn =
1

n

n∑
i=1

[(
I(Ai = 0)

gn(0|Wi)
− 1

)
Yi −

(
I(Ai = 0)

gn(0|Wi)
− 1

)
Qn(0,Wi)

]
. (3.3)

gn(0|W) and Qn(0,W) are estimates of the nuisance parameters, g(0|W) and Q(0,W), re-
spectively. g(a|W) is the probability of having treatment level A = a given covariates W
(also known as the treatment mechanism or propensity score), and thus g(0|W) is the prob-
ability of being in the target treatment group (the group defined by A = 0) given observed
covariates W, or P (A = 0|W). Similarly, Q(a,W) is the mean value of the outcome, Y, given

CHAPTER 3. MULTIPIM 51

treatment level A = a and covariates W, and thus Q(0,W) is the mean value of Y, given
treatment level A = 0, and given the observed level of covariates W, or E[Y |A = 0,W].

These nuisance parameters usually need to be estimated from the data. Since A is
binary, g(0|W) can be estimated using some form of regression with which one can predict
the class probabilities for a binary outcome. The estimate, gn(0|W), is taken as the predicted
probability of being in the class given by A = 0, for a subject with covariates W. Q(0,W)
can be estimated by regressing Y on A and W. The estimate, Qn(0,W), can be found by
using this regression model to predict on a new data set for which every element of A is set
to zero, but W stays the same. The type of regression which should be used for building
this model depends on whether Y is a binary or continuous variable.

Plug-in estimators

multiPIM also makes available two plug-in estimators: the graphical computation (G-
computation) estimator (Robins, 1986, 2000; van der Laan and Rubin, 2006), and the tar-
geted maximum likelihood estimator (TMLE, van der Laan and Rubin, 2006; van der Laan
and Rose, 2011).

The G-computation estimator is given by

ψ̂G−COMP = Ê[Y0]− Ê[Y]

=
1

n

n∑
i=1

[
Q0
n(0,Wi)

]
− Ȳ .

It is referred to as "G-COMP" in the package (e.g., estimator = "G-COMP"). Greenland
and Drescher (1993) proposed an estimator that would encompass this parameter in the
context of parametric logistic regression.

For the case of continuous Y , the TMLE is given by

ψ̂TMLE = Ê[Y0]− Ê[Y]

=
1

n

n∑
i=1

[
Q1
n(0,Wi)

]
− Ȳ

=
1

n

n∑
i=1

[
Q0
n(0,Wi) + ε̂Z(0,W)

]
− Ȳ .

Here, Ȳ = 1
n

∑n
i=1 Yi, Q

0
n(0,W) is an initial estimate of Q(0,W), and Q1

n(0,W) is an
updated estimate that has targeted bias reduction for ψ. The updating is done by fitting a
linear regression: Y is regressed on a “clever covariate” with no intercept and with Q0

n(A,W)
(the fitted values from the model used for Q(0,W)) as offset (Rose and van der Laan, 2011a).

The clever covariate is given by

CHAPTER 3. MULTIPIM 52

Z(A,W) =
I(A = 0)

gn(A|W)

and ε̂ is the estimated coefficient for this covariate.
For the case of binary Y , the updating is done by logistic regression, the offset is

logit(Q0
n(A,W)), and

Ê[Y0] =
1

n

n∑
i=1

expit
(

logit
(
Q0
n(0,Wi)

)
+ ε̂Z(0,W)

)
.

where expit refers to the inverse logit function:

expit(α) = logit−1(α) =
1

1 + e−α
.

An article about another R package for targeted maximum likelihood estimation, tmle,
has recently appeared (Gruber and van der Laan, 2012). This package is also available on
CRAN, and implements a TMLE for the marginal additive effect of a binary point treatment.
It also calculates estimates of the risk ratio and odds ratio for binary outcomes, and can be
used to estimate controlled direct effects and the parameter of a marginal structural model.

3.2.3 Properties of the estimators

The IPCW estimator will be consistent if g(0|W) is estimated consistently, and the G-
Computation estimator will be consistent if Q(0,W) is estimated consistently. The DR-
IPCW estimator and the TMLE are both based on the efficient influence curve for the
semiparametric model, and as a result, they have the double robustness property (meaning
that that they will be consistent if either g(0|W) or Q(0,W) is estimated consistently), and
they are asymptotically locally efficient (Hubbard and van der Laan, 2008; van der Laan and
Robins, 2003; van der Laan and Rose, 2011). As a plug-in estimator, the TMLE has the
advantage that the parameter estimate is guaranteed to fall in the natural range, assuming
that an appropriate estimate of Q(0,W) is used. For additional advantages of TMLE over
other estimators, see Rose and van der Laan (2011b).

3.2.4 Super learner and recommendations for estimation of
nuisance parameters

Since the consistency of the estimators is dependent upon consistent estimation of the nui-
sance parameters, it is worthwhile to devote some statistical and computational effort to
this estimation. Thus, the multiPIM package makes use of the super learner (Sinisi et al.,
2007; van der Laan et al., 2007; Polley et al., 2011; see also Breiman, 1996). The super
learner is a data-adaptive meta learner which can be used to do prediction of binary or

CHAPTER 3. MULTIPIM 53

continuous outcomes. The form of the super learner implemented in the multiPIM package
uses v-fold cross-validation to select the best from among a set of “candidate learners” (Sinisi
et al., 2007). This form is also known as the “discrete” super learner. In the more recent
super learner algorithm, the final predictor is a weighted combination of the learners in the
“library” (Polley et al., 2011). The candidate learners may normally be any arbitrary re-
gression method or machine learning algorithm which maps the values of a set of predictors
into an outcome value. In the multiPIM package, we have implemented a small set of can-
didates. Most of these rely on separate R packages, which are also available on CRAN. The
user can select from among these candidates in building a super learner to estimate g(0|W)
or Q(0,W). This will be described in greater detail in Section 3.3.

Theoretical results have shown that, asymptotically, the super learner performs as well
as the so-called oracle selector, which always chooses the best-performing candidate (the
level of performance of a candidate is measured by a specific loss function; Sinisi et al.,
2007; van der Laan et al., 2007). Since it is usually the case that the data-generating
distributions are unknown, combining many different candidates using a super learner (and
thereby searching a very large model space) should reduce the bias of gn(0|W) and Qn(0,W).
Thus we recommend using the super learner for estimation of nuisance parameters. However,
there is an exception to this rule when using the TMLE. As a consequence of the bias
reduction step (the updating of Qn(0,W) with the clever covariate), using a very agressive
algorithm to estimate g(0|W) may cause empirical ETA violations, which could result in
biased parameter estimates (Petersen et al., 2011). Thus super learning is not recommended
for estimating g(0|W) when using the TMLE. Since TMLE is the default estimator in the
multiPIM package, we have set the default method for estimating g(0|W) to be main terms
logistic regression (see Section 3.3).

A more elegant solution to this problem is to use a sequence of increasingly non-parametric
estimates of g(0|W). This is the collaborative targeted maximum likelihood estimator
(van der Laan and Gruber, 2010; Gruber and van der Laan, 2011). However, this esti-
mator has not yet been implemented for the population intervention parameter we are using
here.

3.2.5 Inference

One can show that the four estimators described above are asymptotically linear, with asymp-
totically normal sampling distributions under very general conditions (van der Laan and
Robins, 2003; Zheng and van der Laan, 2011). Two methods of estimating the variance
are available in the multiPIM package. The “plug-in” estimates are based on the influence
curve (van der Laan and Robins, 2003; this method is not available for the G-Computation
estimator). Specifically, if IC(O; P̂) is the plug-in estimate of the influence curve (where
estimates of the relevant parts of P0 are represented by P̂), then the plug-in standard error
is

CHAPTER 3. MULTIPIM 54

σ̂plug−in =

√
ˆV ar(IC(O; P̂))

n
.

For example, note from Equation 3.2 and Equation 3.3 in Section 3.2.2, that the IPCW
and DR-IPCW estimators are both expressed as means over a certain vector. To get the
plug-in standard error for each of these estimators, take the standard deviation over this
vector instead of the mean, and divide by

√
n.

The preferred method for estimating the variance is to use the bootstrap (Efron, 1979).
The bootstrap method is more robust, however it of course requires much more computation
time. We note that the plug-in (influence curve-based) estimates of the variance for the
IPCW estimator in particular tend to be overly conservative (van der Laan et al., 2003).

3.3 The multiPIM R Package

The multiPIM package consists of two main functions, two methods, and four character
vectors. The multiPIM function provides the main variable importance analysis functional-
ity. The multiPIMboot function can be used to bootstrap the multiPIM function and get
bootstrap standard errors for the parameter estimates. There is a summary method for the
class "multiPIM" objects which are returned by the functions multiPIM and multiPIMboot,
and a print method for the summary objects. Finally, the elements of the four character
vectors (all.bin.cands, default.bin.cands, all.cont.cands and default.cont.cands)
represent the regression methods/machine learning algorithms which are available for esti-
mating the nuisance parameters g(0|W) and Q(0,W) (see Section 3.3.5 and Section 3.3.6),
and are meant to be passed in as arguments to multiPIM and multiPIMboot.

3.3.1 Input and output

The arguments to the multiPIM function are as follows:

multiPIM(Y, A, W = NULL,

estimator = c("TMLE", "DR-IPCW", "IPCW", "G-COMP"),

g.method = "main.terms.logistic", g.sl.cands = NULL,

g.num.folds = NULL, g.num.splits = NULL,

Q.method = "sl", Q.sl.cands = "default",

Q.num.folds = 5, Q.num.splits = 1,

Q.type = NULL,

adjust.for.other.As = TRUE,

truncate = 0.05,

return.final.models = TRUE,

na.action,

check.input = TRUE,

CHAPTER 3. MULTIPIM 55

verbose = FALSE,

extra.cands = NULL,

standardize = TRUE,

...)

The main input to the multiPIM function is in the form of three data frames: W, A and Y.
Each of these data frames may contain multiple columns. The data frame A should contain
binary (0/1) exposure variables, and Y should contain outcome variables. W is optional.
If supplied, it should contain covariate variables which the user wishes to include in the
adjustment set, but for which he/she is not interested in estimating a variable importance.
The function calculates one estimate of ψ for each exposure-outcome pair. That is, if A(j)

is the jth of J exposure variables (i.e., the jth of J columns of A) and if Y (k) is the kth of
K outcome variables (i.e., the kth of K columns of Y), then JK estimates, ψ̂j,k, of ψ will be
calculated, one for each pair (A(j), Y (k)) such that j ∈ {1, 2, . . . , J} and k ∈ {1, 2, . . . , K}.

3.3.2 Adjustment Set and the adjust.for.other.As argument

With the adjust.for.other.As argument, the user can control which variables are kept
in the adjustment set in calculating the estimate, ψ̂j,k, for each pair, (A(j), Y (k)). If
adjust.for.other.As is TRUE, the other columns of the data frame A, i.e., all A(j∗) such
that j∗ 6= j, will be included in the adjustment set. That is, in the notation of Section 3.2,
they will be included as members of W , and thus will be included, along with the columns
of the data frame W, as possible covariates to select from in building the models from which
g(0|W) and Q(0,W) are estimated. If adjust.for.other.As is set to FALSE, the other
columns of A will not be included in the adjustment set. In this case, the data frame W must
be supplied. If W is supplied, the variables it contains will be included in the adjustment set
for all models, no matter the value of adjust.for.other.As.

3.3.3 Rebuilding of models used to estimate Q(0,W)

When multiPIM is run, it builds only one model per exposure variable (column of A), from
which g(0|W) is estimated. The estimate of g(0|W) based on each model is then used in the
calculation of each of the parameter estimates which involves the corresponding exposure
variable. However, this is not the case for the models from which Q(0,W) is estimated.
The model for a specific outcome variable is rebuilt each time the effect of a new exposure
variable is being calculated. One property of some of the machine learning algorithms used
as candidates for the super learner is that they may drop certain covariate variables from the
model. In order to ensure the smoothness of the sampling distribution of the estimator, the
relevant exposure variable is forced back in to any model for Q(0,W) from which it has been
dropped (see Section 3.3.5 and Section 3.3.6 and see also Zheng and van der Laan, 2011).
Thus, one such model must be built per exposure-outcome pair.

CHAPTER 3. MULTIPIM 56

3.3.4 Implementation of super learner

As mentioned in Section 3.2.4, the preferred method for estimating the nuisance parameters
is to use a super learner with many candidates (with the exception of estimating g(0|W)
when using the TMLE). The implementation of the super learner in the multiPIM package
uses v-fold cross-validation to select the best from among a set of candidate learners. All
exposure variables in A must be binary, and thus only binary outcome regression methods are
implemented for use in building a super learner to estimate g(0|W). However, the outcome
variables in Y may be binary or continuous, and thus some continuous outcome regression
methods/machine learning algorithms are implemented as well, in order to be used in a
super learner for estimating Q(0,W). The performance of candidates in a binary outcome
super learner is evaluated using the negative log likelihood loss function. The performance of
candidates in a continuous outcome super learner is evaluated using the mean squared error
loss function. The following two sections describe the default candidate algorithms which
have been implemented.

3.3.5 Default binary outcome candidates

The default binary outcome super learner candidates are given by the vector
default.bin.cands:

default.bin.cands <- c("polyclass", "penalized.bin", "main.terms.logistic")

The point of making this vector, and the vectors all.bin.cands, default.cont.cands,
and all.cont.cands available to the user is so that they (or subsets of their elements)
may be passed to the multiPIM and multiPIMboot functions as the arguments g.method,
Q.method, g.sl.cands or Q.sl.cands. This is the mechanism whereby the user may specify
which regression methods should be used in building models to estimate g(0|W) and Q(0,W).

Polyclass candidate

This super learner candidate uses the function polyclass from the R package polspline
(Kooperberg et al., 1997; Stone et al., 1997; Kooperberg, 2010). polyclass fits linear splines
and their tensor products using a model selection process guided by the Akaike information
criterion (Kooperberg et al., 1997).

Since there is a possibility with this algorithm that certain variables may be dropped
from the model, the implementation is slightly different for the case when this candidate is
being used to estimate Q(0,W) vs. when it is being used to estimate g(0|W). In order to
make sure that the relevant exposure variable stays in the model when estimating Q(0,W)
(see Section 3.3.3), the object returned by polyclass is inspected to see if the relevant
variable is a member of the basis functions selected. If it is not, a second, logistic regression
model is fit using the predictions from the polyclass model as a covariate, along with the
relevant exposure variable which was dropped from the polyclass model. In order to stay

CHAPTER 3. MULTIPIM 57

somewhat flexible, an interaction term between the exposure variable and the predictions
from polyclass is also included in this logistic model. Thus, this secondary logistic model
has the form

logit
(
Q∗k(A

(j),W ∗)
)

= β0 + β1A
(j) + β2 logit

(
Q̂0
k(A

(j),W ∗)
)

+ β3A
(j) logit

(
Q̂0
k(A

(j),W ∗)
)
,

where W ∗ depends on the value of the adjust.for.other.As argument, Q̂0
k(A

(j),W ∗) are
the predictions from a polyclass model for which the outcome was Y (k), and the β’s are
regression coefficients. Note that this model contains the original polyclass model as a
submodel (just set β2 = 1 and β0, β1, β3 = 0).

After both the polyclass and the logistic model have been fit, prediction on a new data
set is done by first getting the polyclass model’s predictions on this new data, and then
predicting on these new predictions using the logistic model.

Penalized candidate

The second binary outcome candidate, named "penalized.bin" to distinguish it from the
continuous outcome version, is based on the penalized function from the R package penal-
ized (Goeman, 2010, 2011). This function performs regressions with either L1 (lasso) or L2
(ridge) penalties, or with a combination of the two. The implementation of this candidate
in the multiPIM function uses only an L1 penalty. The value of the penalty is chosen using
the profL1 function, also from package penalized. With profL1, cross-validation is carried
out on ten possible values of the L1 penalty. The values range from zero to the minimum
value which would cause all coefficients to shrink to zero.

When estimating g(0|W), all columns of W (and, depending on adjust.for.other.As,
possibly all other columns of A besides the one actually being modeled) are put into the
penalized model as penalized main terms. However, when estimating Q(0,W), in order
to prevent shrinking of its coefficient to zero, the relevant exposure variable is added to the
model as an unpenalized covariate.

Main terms logistic candidate

The final binary outcome candidate uses the function glm from the package stats (R Core
Team, 2013) to build a main terms logistic regression model. Since glm does not drop
any covariates, it is not necessary to change the implementation for when Q(0,W) is being
estimated vs. when g(0|W) is being estimated.

3.3.6 Default continuous outcome candidates

The default continuous outcome super learner candidates are given by the vector
default.cont.cands:

CHAPTER 3. MULTIPIM 58

default.cont.cands <- c("polymars", "lars", "main.terms.linear")

Since the exposure variables are always binary, continuous outcome candidates are always
used for estimating Q(0,W), and never for g(0|W). Thus, they must always allow for the
forcing of variables into the model.

Polymars candidate

The polymars candidate uses the polymars function, from package polspline. This function
is similar to the polyclass function, but it can be used for modeling a continuous outcome
instead of a categorical outcome. Another difference between the two functions is that
the polymars function has a mechanism for forcing specific variables into the model. This
mechanism is used in the polymars candidate, and thus no extra regression model needs to
be built in order to force the exposure variable back into the model in case it is dropped.

Lars candidate

This candidate is based on the function lars from the package lars (Efron et al., 2004; Hastie
and Efron, 2011). lars performs least angle regression, a variant of the lasso. For the lars

candidate, the function cv.lars is used to cross-validate on a grid of possible points on the
solution path. If the final lars model has a coefficient of 0 for the relevant exposure variable,
a secondary linear regression model is fit using the exposure variable and the predictions from
the lars model as covariates, similarly to the logistic regression model described above for
the polyclass candidate (see Section 3.3.5).

Main terms linear candidate

The "main.terms.linear" candidate uses the function lm from the package stats to fit a
main-terms-only linear regression model. Again, since no covariates are dropped by this
method, no secondary forcing model is necessary.

3.3.7 Alternative regression methods and other user options

In addition to the default candidates mentioned above, there are several optional candidates
which can be added to super learners. For both binary and continuous outcomes, there is a
candidate based on the rpart function from package rpart (Therneau et al., 2010; Breiman,
1984). There is also a continuous outcome version of the penalized candidate. The user
of the multiPIM function may also use any of the super learner candidates mentioned as
a stand-alone regression method for estimating g(0|W) or Q(0,W). This can be done by
specifying the g.method or Q.method arguments as the the name of the desired candidate.
The user may also supply one or more arbitrary, self-implemented, regression methods, ei-
ther to add to a super learner as candidates, or to use as stand-alone regression methods.
This makes it possible to use the more recent version of the super learner, which has been

CHAPTER 3. MULTIPIM 59

implemented in the CRAN package SuperLearner (Polley and van der Laan, 2011). An-
other recommended learner which can be added as a user-supplied candidate/method is
the Deletion/Substitution/Addition algorithm (the DSA package, Neugebauer and Bullard,
2010; Sinisi and van der Laan, 2004). The mechanism for specifying user-supplied candi-
dates/methods is via the extra.cands argument and is fully documented in the Candidates
help file:

> ?Candidates

The user may also choose:

• How many “folds” and splits to use for the v-fold cross-validation in the super learner
(the defaults are 5 and 1, respectively)

• Whether and at which value to truncate (from below) gn(0|W) in order to avoid insta-
bility of the estimator (the default is to truncate at 0.05)

3.3.8 multiPIMboot function

The multiPIMboot function can be used instead of the multiPIM function when the user
wishes to use bootstrapping to calculate standard errors. multiPIMboot will run multiPIM

once on the original data set, then sample with replacement from the rows of the data and
rerun multiPIM the desired number of times on resampled data sets. All arguments to
multiPIM are also available for multiPIMboot, and these have the same defaults. Additional
arguments are:

• times, for specifying the number of bootstrap replicates

• id, to identify clusters and perform a clustered bootstrap

• multicore, mc.num.jobs, and mc.seed for running the bootstrap on multiple processor
cores from a single R session. This requires the parallel package, which is distributed
with R as of version 2.14.0. Previous versions of multiPIM relied on the multicore and
rlecuyer packages for this functionality (Urbanek, 2011; Sevcikova and Rossini, 2009).

Based on our experience with two different quad-core systems, the factor of speedup when
multicore = TRUE is close to the number of (physical) cores used, which is not surprising
since bootstrapping is embarrassingly parallel. Note that the single run of multiPIM on
the original data is done first in serial, before multicore’s parallel function sends multiple
bootstrap jobs to the cores. Thus the CPU usage will not hit 100% of all cores until the first
run is complete.

In order to improve reproducibility of parallel runs when multicore = TRUE, the random
number generator type is automatically set using

CHAPTER 3. MULTIPIM 60

> RNGkind("L'Ecuyer-CMRG")

This causes R to use an implementation of the generator described by L’Ecuyer et al.
(2002), which allows using different and reproducible streams within each parallel thread of
execution.

3.3.9 Statistical recommendations and effects on computation
time

Most of the computation time spent when running the multiPIM function goes into fitting the
models from which g(0|W) and Q(0,W) are estimated. Also, assuming the same options are
used, the multiPIMboot function will take much longer to run than the multiPIM function,
since it just repeatedly calls the multiPIM function. Thus, three very effective ways of
reducing the computation time are to:

1. Use plug-in standard errors by running multiPIM instead of multiPIMboot

2. Use the IPCW estimator, which requires estimating only g(0|W), and not Q(0,W)
(unlike the two double robust estimators, TMLE and DR-IPCW)

3. Do not use super learning, but instead use methods which require very little computa-
tion time, such as main terms linear and main terms logistic regression

However, for maximal robustness and accuracy of inference, it is recom-
mended to use multiPIMboot with the default arguments (bootstrap standard
errors, TMLE estimator, super learning to estimate Q(0,W)). The multicore func-
tionality has been added as a way to reduce the time required to run this full bootstrap
analysis.

Using the bootstrap instead of plug-in standard errors will have the greatest effect on
running time. If bootstrap is just not feasible, it is recommended to run multiPIM with
the TMLE estimator. Additional fine tuning of the running time can be done by using
the summary method (see next section) to see which super learner candidates are using
the most computation time. The computation time of the super learner depends on which
candidates are included and on the number of splits and “folds” used for cross-validation.
Using a single split and 5 folds should be adequate in most cases, but it may be safer to
use a higher number of folds, such as 10, especially if the data set has only a few hundred
observations. Increasing the number of splits beyond one may also improve the accuracy of
the cross-validation candidate selection mechanism (Molinaro et al., 2005).

3.3.10 Summary method and example

Both the multiPIM and the multiPIMboot functions return objects of class "multiPIM". We
have written a summary method which can be called on these objects in order to generate

CHAPTER 3. MULTIPIM 61

numerical summaries of the statistical results (as well as a breakdown of where the compu-
tation time was spent). The method uses the parameter estimates and standard errors to
calculate test statistics and unadjusted as well as Bonferroni-adjusted p values, and allows
for easy and customizable printing of tables showing these results. We demonstrate this by
running an example which has been adapted from the help file for the multiPIM function:

R> library("multiPIM")

R> num.columns <- 3

R> num.obs <- 250

R> set.seed(23)

We generate a data frame containing random binary data to use as exposure variables:

R> A <- as.data.frame(matrix(rbinom(num.columns*num.obs, 1, .5),

+ nrow = num.obs, ncol = num.columns))

Next we generate outcomes based on the exposures, by starting with random noise and
adding multiples of the exposure variables:

R> Y <- as.data.frame(matrix(rnorm(num.columns*num.obs),

+ nrow = num.obs, ncol = num.columns))

R> for(i in 1:num.columns)

+ Y[, i] <- Y[, i] + i * A[, i]

Next we make sure that the two data frames have unique names, then run multiPIM on
them and run summary on the resulting object:

R> names(A) <- paste("A", 1:num.columns, sep = "")

R> names(Y) <- paste("Y", 1:num.columns, sep = "")

R> result <- multiPIM(Y, A)

R> summary(result)

The call was:

multiPIM(Y = Y, A = A)

Results for the exposure "A1" vs the outcomes listed on the left:

outcome param.estimate stand.error test.stat p.val p.val.bon.adj

Y1 -0.57198 0.08182 6.9911 2.727e-12 2.455e-11

Y2 0.02413 0.06810 0.3544 7.231e-01 1.000e+00

Y3 -0.03655 0.06482 0.5639 5.728e-01 1.000e+00

CHAPTER 3. MULTIPIM 62

Results for the exposure "A2" vs the outcomes listed on the left:

outcome param.estimate stand.error test.stat p.val p.val.bon.adj

Y1 -0.008016 0.06724 0.1192 9.051e-01 1.000e+00

Y2 -0.935624 0.08708 10.7444 6.298e-27 5.668e-26

Y3 -0.029830 0.05764 0.5176 6.048e-01 1.000e+00

Results for the exposure "A3" vs the outcomes listed on the left:

outcome param.estimate stand.error test.stat p.val p.val.bon.adj

Y1 0.04203 0.07485 0.5615 5.744e-01 1.000e+00

Y2 0.11055 0.06871 1.6090 1.076e-01 9.685e-01

Y3 -1.57871 0.11371 13.8832 8.012e-44 7.211e-43

Total time for main multiPIM run:

2.002508 seconds

Breakdown by g vs. Q modeling:

method seconds %.of.total

g modeling main.terms.logistic 0.01794 0.8958

Q modeling sl 1.94518 97.1374

Total time for Q model super learner cross validation (x-val):

1.804895 seconds

Breakdown by candidate:

seconds %.of.Q.x-val.time

polymars 0.3634 20.132

lars 1.2915 71.553

main.terms.linear 0.1358 7.522

Notice that for the pairs A[, i] vs. Y[, i], i = 1 to 3, the adjusted p values get
progressively lower, since Y[, i] is i * A[, i] plus noise. However, off-diagonal p values
are higher since there is no dependence of Y[, i] on A[, j] when i 6= j. There is a
corresponding trend in the actual parameter estimates, which get progressively more negative
for the diagonal (A[, i] vs. Y[, i], i = 1 to 3) exposure-outcome pairs.

CHAPTER 3. MULTIPIM 63

The breakdown of the computation time shows that most of the time goes into the super
learning for the Q model, most of this Q modeling time is being spent on the lars candidate.

3.4 Simulation

In order to demonstrate the benefit of using a double robust estimator, we compared the
TMLE to the G-Computation estimator in a simulation. The complete R script which runs
the simulation can be found in the supplements to this paper.

3.4.1 Simulated Data

The data consisted of four covariate variablesW = (W (1),W (2),W (3),W (4)), a single exposure
variable A and a single outcome variable Y . W was generated as multivariate normal with
mean vector µ = (0, 0, 0, 0) and covariance matrix

Σ =

1 0.2 0.2 0.2

0.2 1 0.2 0.2
0.2 0.2 1 0.2
0.2 0.2 0.2 1

A was generated from a logistic model based on W , with

Ai ∼ Bernoulli(expit(βW T
i)),

where β = (0.2, 0.2, 0.2, 0.2) and Wi = (W
(1)
i ,W

(2)
i ,W

(3)
i ,W

(4)
i). We made the data generat-

ing model for Y more complex:

Yi = W
(1)
i W

(2)
i +W

(3)
i W

(4)
i + Ai

[
(W

(1)
i)2 + (W

(2)
i)2 + (W

(3)
i)2 + (W

(4)
i)2

]
+ error,

with the errors i.i.d. Normal(µ = 0, σ2 = 4), and with (W
(j)
i)2 equal to the square of W

(j)
i ,

for j = 1, 2, 3, 4.
Data sets were generated with sample sizes, n, evenly spaced on the log scale between

100 and 250,000, with one data set per value of n.

3.4.2 Estimators

To get estimates of ψ, we ran the multiPIM function twice on each data set, once with
estimator = "TMLE" and once with estimator = "G-COMP". Nuisance parameters were
estimated using main terms logistic regression for g(0|W) (TMLE only) and main terms
linear regression for Q(0,W). Thus the model for g(0|W) was correctly specified, while the
model for Q(0,W) was misspecified.

CHAPTER 3. MULTIPIM 64

−2
.4

−2
.2

−2
.0

−1
.8

−1
.6

sample size (log scaling)

pa
ra

m
et

er
 e

st
im

at
e

100 250 500 1000 2500 5000 10000 25000 50000 250000

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●●

●

●
●●●●

●
●

●
●●●

●
●

●●
●

●
●●●

●

●

truth = −2.0
TMLE
G−Computation

Figure 3.1: Simulation results. The TMLE estimates are centered around the true parameter
value, while the G-Computation estimates are slightly biased.

3.4.3 Results

The results are shown in Figure 3.1. It is clear that there is some bias towards zero in the
G-Computation estimates. This is due to the misspecified model for Q(0,W). The TMLE
estimator uses the same biased estimates of Q(0,W) as the G-Computation estimator, but
thanks to the double robustness and the fact that g(0|W) is being estimated using the correct
model, the TMLE estimates stay centered around the true parameter value. The variability
of the two estimators appears to be similar throughout the range of sample sizes.

3.5 Analysis of data from the western collaborative

group study

3.5.1 Study background

The Western Collaborative Group Study (WCGS) is a prospective study on coronary heart
disease (CHD) which began in 1960 (Rosenman et al., 1966). The subjects were males,
aged 39-59 at the start of follow-up, who were employed in several different corporations in

CHAPTER 3. MULTIPIM 65

California. The main goal of the study was to assess a possible effect of behavior type on
incidence of CHD. After psychological testing, subjects were classified as having either of
two behavior types, A or B. Type A is characterized by, among other qualities, “excessive
drive, aggressiveness, and ambition”, while type B is characterized by having fewer of these
qualities or having them in lesser extents (Rosenman et al., 1966).

3.5.2 Description of data

The data set has been included as part of the multiPIM package and can be loaded with

R> data("wcgs")

The data analyzed represent a follow-up experience of 8.5 years (through 1969, Rosenman
et al., 1975). The original subject enrollment count at the start of the study was 3524.
However, subjects were later excluded for the following reasons: not being in the correct age
range at intake, having CHD already manifest at intake, working for one specific corporation
which pulled itself out of the study, or being lost to follow up for various reasons (Rosenman
et al., 1975). This left 3154 subjects whose data was available for analysis. Since 12 of
these subjects had missing values for one of the variables to be used in the analysis, these
12 subjects were also removed from the analysis for a final n = 3142. Of these final 3142
subjects, 257 (8.2%) had a CHD event.

Variables present in this data set include baseline covariates such as height and weight,
the type A/B behavior pattern, total cholesterol levels, systolic and diastolic blood pressure,
and smoking history (number of cigarettes smoked per day). Also present is the binary
outcome variable indicating whether a CHD event occurred within the follow-up period.

The multiPIM function requires the exposure variables to be binary. Thus, they were
dichotomized as follows:

• typeAB: This is just the behavior pattern variable with type A coded as 1 (exposed),
and type B coded as 0 (unexposed). Thus the target group is type B behavior, in the
sense that the resulting parameter estimate, ψ̂, can be thought of as an attributable
risk which compares the level of the outcome in the entire population to the level for
those with type B behavior.

• chol: The total cholesterol, dichotomized with a cutoff point of 240. The target group
is therefore those with total cholesterol less than 240.

• cigs: This was coded as 1 for smokers (anyone who smokes 1 or more cigarettes per
day) and 0 for non-smokers. Thus, the target group is non-smokers.

• highBP: Instead of having two highly correlated cholesterol variables, this single vari-
able was coded as 1 (or exposed) if either diastolic blood pressure was greater than 90,
or systolic blood pressure was greater than 140, and coded as 0 otherwise. Thus, the
target group consists of individuals for whom neither measure is elevated.

CHAPTER 3. MULTIPIM 66

• bmi: First the body mass index (BMI) was calculated by dividing weight in kg by the
square of height in m2. Then this variable was dichotomized using a cutoff point of
BMI = 25. Anything greater than 25 was coded as 1 and anything less than 25 as 0.
Thus, the target group is those with BMI less than 25.

These five variables were passed to the multiPIMboot function as the data frame A. Summary
statistics for these exposure variables are given in Table 3.1.

unexposed proportion prop. unexp. prop. exp. naive
group exposed with CHD with CHD attr. risk

typeAB type B 0.504 0.051 0.112 -0.0311
chol < 240 0.343 0.057 0.129 -0.0247
cigs < 1/day 0.476 0.060 0.106 -0.0223
highBP D<90 & S<140 0.212 0.070 0.126 -0.0119
bmi < 25 0.411 0.073 0.095 -0.0089

Table 3.1: Summary information for the five binary exposure variables used in the analysis.
The first column states the characteristic that defines the unexposed group; D: diastolic
blood pressure; S: systolic blood pressure; prop. unexp./exp. with CHD: proportion of
unexposed/exposed with CHD; naive attr. risk: naive attributable risk – this is just the
value in the 3rd column minus the overall disease rate of 0.082 (8.2%)

age typeAB chol cigs highBP bmi chd
age 1.00 0.09 0.10 0.00 0.12 0.02 0.12
typeAB 1.00 0.02 0.06 0.07 0.03 0.11
chol 1.00 0.08 0.10 0.04 0.12
cigs 1.00 -0.02 -0.10 0.09
highBP 1.00 0.17 0.08
bmi 1.00 0.04
chd 1.00

Table 3.2: Correlation matrix for all variables used in the analysis.

Also present in the data set was a variable giving the subjects’ age in years. This variable
was included in the analysis by being passed to multiPIMboot as the single-column data
frame W. As stated above, ages ranged from 39-59 at the start of follow-up. Table 3.2 shows
the correlation matrix for all variables used in the analysis.

CHAPTER 3. MULTIPIM 67

3.5.3 Estimator used

The multiPIMboot function was run using the default estimator (TMLE) and the default
methods for estimating nuisance parameters: main terms logistic regression for g(0|W),
super learning using the default binary outcome candidates (see Section 3.3.5) for the initial
estimate of Q(0,W). The adjust.for.other.As argument (see Section 3.3.2) was also kept
at its default value of TRUE. The call to multiPIMboot was made as follows (for complete
script see the supplements):

R> boot.result <- multiPIMboot(Y, A, W, times = 2000, multicore = TRUE,

+ mc.num.jobs = 8, verbose = TRUE)

The elapsed time for running this job on a quad core iMac was about 4.6 hours.

3.5.4 Results

Table 3.3 shows the results of running the multiPIMboot function on the WCGS data. Three
of the five exposure variables were found to have a significant effect on the CHD outcome
after Bonferroni adjustment of p values. These were: A or B behavior type, cholesterol level,
and cigarette smoking status. Since the outcome is binary, the parameter estimates (first
column of Table 3.3), are on the scale of a proportion. For example, if one accepts the
validity of the causal assumptions enumerated in Section 3.2.1, then the parameter estimate
for the variable typeAB implies that if type A behavior were eliminated from the population
and everyone was made to have behavior type B, the incidence of CHD would be reduced
by about 2.7 percentage points (recall that 8.2% of the sample had an incident CHD event).

ψ̂TMLE σ̂plug−in σ̂boot T p pBonferroni

typeAB -0.0271 0.0051 0.0051 5.33 9.66E-08 4.83E-07
chol -0.0201 0.0042 0.0042 4.78 1.76E-06 8.78E-06
cigs -0.0210 0.0048 0.0049 4.28 1.90E-05 9.50E-05
highBP -0.0074 0.0031 0.0030 2.43 0.015 0.076
bmi -0.0055 0.0044 0.0044 1.25 0.210 1.0

Table 3.3: Results of running the multiPIMboot function on the WCGS data. ψ̂TMLE: pa-
rameter estimates; σ̂plug−in: plug-in standard errors (from the influence curve); σ̂boot: boot-
strap standard errors; T : test statistic (calculated using σ̂boot); p: unadjusted, two-sided
p value from comparison of T with the standard normal distribution function; pBonferroni:
Bonferroni-adjusted p value.

Comparison of Table 3.3 with Table 3.1 shows that the adjusted parameter estimates
(first column of Table 3.3) are all less than the naive estimates (final column of Table 3.1).

CHAPTER 3. MULTIPIM 68

Some of the apparent effect is being “adjusted out.” Also, the standard errors decrease
with decreasing proportion exposed. For example, the lowest bootstrap standard error,
0.0030, is for the variable highBP, for which the proportion exposed was the lowest of all
five exposure variables (0.212). Since the target group is the unexposed, low proportions of
exposed subjects correspond to high proportions of subjects in the target group, and since
the groups being compared are the entire sample vs. the target group, it makes sense that
high proportions in the target group correspond with low standard errors.

It is also interesting to note that the maximum off-diagonal value in the correlation matrix
(Table 3.2), which was 0.17, corresponds to the correlation between the variables bmi and
highBP. These are the two variables for which the results were insignificant after Bonferroni
adjustment. It is possible that the effect measurements for each of these two variables
may have been diluted since the other of the two was also included in the adjustment set.
Also, it seems promising that the sum of the (adjusted) parameter estimates (0.0811) is
approximately equal to the overall disease rate of 8.2%.

Figure 3.2 and Figure 3.3 provide some evidence for the validity of the bootstrap variance
estimation procedure. The cumulative standard errors plotted in Figure 3.2 all appear to
converge well before the 2000th bootstrap replicate, and the histograms in Figure 3.3 indicate
that there were no glaring irregularities in the bootstrap distributions of the parameter
estimates.

0 500 1000 1500 2000

0.
00

2
0.

00
6

0.
01

0

bootstrap replicate number

cu
m

ul
at

iv
e

st
an

da
rd

 d
ev

ia
tio

n

Figure 3.2: Cumulative standard deviations of the bootstrap parameter estimates for all five
exposure variables.

CHAPTER 3. MULTIPIM 69

boot.result$boot.param.array[, i, 1]

−0.05 −0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

typeAB

0
50

0

boot.result$boot.param.array[, i, 1]

−0.05 −0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

chol

0
50

0

boot.result$boot.param.array[, i, 1]

−0.05 −0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

cigs

0
50

0

boot.result$boot.param.array[, i, 1]

−0.05 −0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

highBP

0
50

0

boot.result$boot.param.array[, i, 1]

−0.05 −0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

bmi

0
50

0

bootstrap parameter estimates

fr
eq

ue
nc

y

Figure 3.3: Histograms showing bootstrap distributions of parameter estimates for each
exposure variable. Dashed vertical lines show actual parameter estimates. There were 2000
bootstrap replicates.

CHAPTER 3. MULTIPIM 70

3.6 Study on water contact and schistosomiasis

infection

In this section we provide more example code, using data which was collected as part of the
study by Spear et al. (2004), and revisited by Sudat et al. (2010). This data has also been
included as part of the multiPIM package and can be loaded with

R> data("schisto")

3.6.1 Study background

The study was conducted in a rural area in Sichuan Province, China, to which schistoso-
miasis is endemic. In November, villagers from 20 villages surrounding Qionghai Lake were
interviewed about their activities over the past 7 months that brought them into contact
with water. At the end of the infection season, stool sampling and analysis were carried out
to determine which of the villagers had become infected.

3.6.2 Description of data

The schisto data frame contains the following columns:

• Outcome variable

– stoolpos: 1 indicates infected, 0 indicates uninfected

• Exposure variables: these record the amount of water exposure of each subject with
respect to doing the activities listed, during the 7 month period from April through
October

– laundwc: washing clothes or vegetables

– toolwc: washing agricultural tools

– bathewc: washing hands and feet

– swimwc: playing or swimming

– ditchwc: irrigation ditch cleaning and water diverting

– ricepwc: planting rice

– fishwc: fishing

• Covariates

– village: a label for the village

– age.category: 5 different age categories (< 18, 18-29, 30-39, 40-49, 50+)

CHAPTER 3. MULTIPIM 71

We prepare the W, A and Y data frames:

R> W <- data.frame(lapply(schisto[, 9:10], as.factor))

R> A <- schisto[, 2:8]

Y will have only one column, so we need to use drop = FALSE to prevent it from being
turned into a vector:

R> Y <- schisto[, 1, drop = FALSE]

3.6.3 The analysis

If one wishes to keep the information contained in continuous exposure variables when using
them in the adjustment set, multiPIM can be called inside a for loop, with the other columns
of A included as part of W.

To cut down on running time, we use the IPCW estimator and the rpart candidate as a
stand-alone for g.method. This analysis is similar to that performed by Sudat et al. (2010)
and gives similar results. The results are shown in Table 3.4.

R> set.seed(23)

R> num.types <- ncol(A)

R> multiPIM.results <- vector("list", length = num.types)

R> for(i in 1:num.types) {

+ A.current <- A[, i, drop = FALSE]

+ A.current[A.current > 0] <- 1

+ W.current <- cbind(W, A[, -i])

+ multiPIM.results[[i]] <- multiPIM(Y, A.current, W.current,

+ estimator = "IPCW",

+ g.method = "rpart.bin")

+ }

R> results.tab <-

+ t(sapply(multiPIM.results,

+ function(x) summary(x, bf.multiplier = 7)$sum[1,1,]))

R> rownames(results.tab) <- names(A)

R> library("xtable")

R> print(xtable(results.tab), floating = FALSE)

3.7 PROMMTT trauma study

In this section we report on an analysis of data from the PRospective Observational Multi-
center Major Trauma Transfusion (PROMMTT) study (Rahbar et al., 2012; Hubbard et al.,
2013).

CHAPTER 3. MULTIPIM 72

param.estimate stand.error test.stat p.val p.val.bon.adj
laundwc -0.01 0.01 0.77 0.44 1.00

toolwc -0.03 0.01 2.81 0.00 0.03
bathewc 0.03 0.04 0.70 0.48 1.00
swimwc -0.01 0.02 0.75 0.45 1.00
ditchwc -0.02 0.02 0.85 0.40 1.00
ricepwc -0.09 0.03 2.75 0.01 0.04

fishwc 0.00 0.00 0.31 0.75 1.00

Table 3.4: Results for schisto analysis. The tool washing and rice planting variables remain
significant after Bonferroni adjustment.

3.7.1 Study background

Rahbar et al. (2012) describe the study in detail, and we will summarize here. During the
period from July 2009 to October 2010, all trauma patients meeting the criteria for highest
level trauma activation at 10 major US trauma centers were enrolled in the study. Pregnant
patients, prisoners, and anyone younger than age 16 was excluded. There were several other
criteria for exclusion, including death within the first 30 minutes after admission.

3.7.2 Description of data and the analysis

The variables used in the analysis are described in Table 3.5. The outcome variable was
death, and this was considered separately for 4 distinct time intervals following admission:
30 to 90 minutes, 90 to 180 minutes, 180 to 360 minutes, or > 360 minutes. Each interval
was analyzed separately, with only those patients who were still alive at the beginning of
the interval being included in the analysis for that interval. As described in Hubbard et al.
(2013), data was missing for certain variables and this was accounted for using missingness
indicators.

For each variable listed as an exposure variable (A) in Table 3.5, multiPIM was run
with the TMLE estimator, adjusting for all variables listed as W in Table 3.5. The default
method (main.terms.logistic) was used for g.method, but for Q.method, super learning
was used with several candidates. The candidates were: the binary outcome rpart candidate
("rpart.bin"), and three candidates which used the widenet function from the widenet
package (see Chapter 2), with one widenet candidate for each value of the order of basis
expansion, from 1 to 3. Each widenet candidate was run using just the single value of the
order, and they were added to the multiPIM function using the extra.cands mechanism.
Certain continuous exposure variables were dichotomized by taking the lower quartile as the
“unexposed” group and the upper three quartiles as the “exposed.” The variables which were
binary vs. continuous are shown in Table 3.7.

CHAPTER 3. MULTIPIM 73

Variables Description Variable/Type
ageveriel age(W
anticoag history(of(anti2coagulant W
aspirin history(of(aspirin W
bdresed initial(ed(base(deficit(results A
ctubeed chest(tube(A
fastresed fast(results A
fibrresed initial(fibrinogen(results((mg/dl) A
gcsed gcs(total(intial A
glued initia(glucose A
hctresed hematrocrit A
hgbresed initial(ed(hemoglobin(results((g/dl) A
hred1 heart(rate((hr)((initial(ed) A
inrresed initial(inr(results A
intubed intubation A
iss injury(severity(score A,W
ndecomed needle(decompression(A
penetrating penetrating(mechanism(of(injury(W
plasmasum cumulative(plasma(infusions A
pltresed initial(platelet((results(A
pltsum cumulative(platelet(infusions A
racemra race W
RBCsum cumulative(rbc(infusions A
rfviiaed recombinant(factor(viia((rfviia)(A
sbped1 systolic(blood(pressure A
sexel sex W
sked initial(serum(potassium A
snaed initial(serum(sodium A
toured tourniquet A
traxred traction2extremity(traction/external(fixure A

Table 3.5: Descriptions of variables used in the PROMMTT analysis. W: covariates, A:
exposure variables. Source: Hubbard et al. (2013).

candidate #)of)times)chosen)by)super)learner
rpart.bin 11
widenetOrder1 59
widenetOrder2 20
widenetOrder3 2

Table 3.6: Number of times each candidate was chosen by the super learner for the
PROMMTT analysis.

CHAPTER 3. MULTIPIM 74

binary? estimate p"value estimate p"value estimate p"value estimate p"value
bdresed 0.024 7.09E703 71.24E703 0.854 0.023 0.038 0.031 0.155
ctubeed yes 77.22E703 0.102 70.011 0.052 77.13E704 0.799 70.010 0.237
fastresed yes 7.50E704 0.821 72.36E703 0.597 74.25E703 0.300 0.012 0.151
fibrresed 70.010 0.259 0.049 0.081 2.92E703 0.749 0.023 0.604
gcsed 0.022 0.063 5.97E703 0.370 0.011 0.061 0.070 5.73E705
glued 70.011 0.102 78.30E703 0.329 70.012 0.089 70.049 4.29E703
hctresed 0.023 0.061 0.015 0.186 0.011 0.338 78.27E703 0.652
hgbresed 0.022 0.045 0.010 0.301 6.45E703 0.484 70.016 0.370
hred1 72.46E703 0.744 6.52E703 0.500 75.66E704 0.946 0.015 0.484
inrresed 70.012 0.052 70.018 9.27E704 70.016 2.33E703 70.055 4.63E704
intubed yes 75.23E704 0.865 76.80E703 0.069 70.010 6.61E703 78.13E703 0.191
iss 70.014 1.09E703 70.021 4.00E705 70.009 0.283 70.088 5.63E708
ndecomed yes 71.72E703 0.220 6.63E704 0.155 79.36E704 0.374 79.28E704 0.530
plasmasum 76.89E703 0.063 70.020 2.31E704 70.019 1.85E705 70.037 0.024
pltresed 0.044 5.60E705 0.014 0.104 0.012 0.115 0.029 0.145
pltsum 4.54E704 0.788 73.66E703 0.335 78.34E703 0.049 70.020 8.73E703
rbcsum 70.018 1.87E705 70.020 1.59E703 70.013 0.017 70.030 0.025
rfviiaed yes 1.02E704 0.120 3.28E704 3.89E701 7.05E705 0.297 73.26E704 0.845
sbped1 0.019 0.033 74.99E703 0.487 4.45E704 0.952 77.99E703 0.639
sked 3.82E704 0.954 76.24E703 0.356 3.92E703 0.623 70.020 0.181
snaed 75.77E703 0.191 9.00E703 0.308 72.52E703 0.728 73.08E703 0.842
toured yes 74.36E704 0.678 6.62E704 0.014 71.46E703 0.322 1.66E703 0.259
traxred yes 71.11E703 0.444 1.42E704 0.896 71.53E704 0.892 1.72E703 0.521

30790Eminutes 907180Eminutes 1807360Eminutes >E360Eminutes

Table 3.7: Results for variable importance analysis of PROMMTT data. The first col-
umn shows which of the exposure variables were binary and therefore did not need to be
dichotomized. The following columns give the parameter estimates and p-values for the
analyses of the four different time intervals. Note that the p-values are unadjusted.

3.7.3 Results

Table 3.6 shows the number of times each of the candidates was selected by the super learner.
The resulting parameter estimates and p-values are shown in Table 3.7. Notable among these
results is the parameter estimate for pltresed variable, or initial platelet levels. This was one
of the continuous variables which was dichotomized, and it appears that there is a tendancy
towards incrasing probability of death during the first time interval for higher levels of this
variable. Also notable is the cummulative red blood cell infusions, rbcsum, which showed a
significantly decreased probability of death during the first two time intervals.

CHAPTER 3. MULTIPIM 75

3.8 Discussion

The issue of how data can be used to select models and how this should be reflected in the
final inference is extremely important in epidemiology today. Ioannidis (2005), in discussing
“why most published research findings are false”, writes about the detrimental effects of
“flexibility in designs, definitions, outcomes and analytical modes” (page 0698). Leaving
the analyst to make arbitrary choices in the model selection process can lead to bias and
distorted inference. However, while it is desirable to reduce the flexibility of the analyst to
make arbitrary decisions based on the data, it is helpful to make use of automated machine
learning methods which are flexible in that they search a large space of possible models.

One common complaint against the complex models which often result from machine
learning methods is that they lack interpretability. The solution is the use of low dimensional
parameters of interest that have meaningful public health interpretation, and are not tied
directly to the model used for E[Y |A,W]. By divorcing ourselves from the need to return
directly interpretable parameters as coefficients of a regression model, we open the door to
powerful data-adaptive procedures that give hope of consistently estimating the parameter
of interest. The researchers can choose the parameter of the data-generating distribution
that best addresses the scientific question.

multiPIM accomplishes what has been a contradictory goal: it uses flexible modeling,
but still returns asymptotically normal measures of variable importance with robust infer-
ence. An additional benefit, which depends on the validity of the causal assumptions and on
how the target levels for the exposure variables are chosen, is that the returned parameter
estimates have a relevant public health interpretation (they quantify the effect of a hypo-
thetical intervention). Also, since they are on the scale of the outcome, these estimates are
directly comparable across different exposure variables, which will typically be on different
scales. Due to the machine learning approach, no arbitrary a priori specification of the rel-
evant models is required, and a meaningful ranking of relative importance is provided, with
unbiased inference.

Though this is an important first step, there are several ways in which multiPIM could
be improved, such as 1) by targeting the model selection of the treatment mechanism using
a collaborative targeted maximum likelihood estimation approach, 2) by estimating the at-
tributable risk as a smooth function of A = a, so that one will not need to dichotomize at a
target level, and 3) by providing better integration with the SuperLearner and caret pack-
ages, in order to benefit as much as possible from R’s latest machine learning capabilities.
However, multiPIM represents a new way for researchers to harness the power of machine
learning, avoid the bias of arbitrary parametric models, and still get an interpretable measure
of relative variable importance, without the typical pitfalls (highlighted in Ioannidis, 2005),
that plague current exploratory approaches.

76

Bibliography

Breiman L (1984). Classification and Regression Trees. Wadsworth International Group,
Belmont, CA. ISBN 0534980538.

Breiman L (1996). “Stacked Regressions.” Machine Learning, 24(1), 49–64.

Breiman L (2001). “Random forests.” Machine learning, 45(1), 5–32. ISSN 0885-6125.

Cawley GC, Talbot NL (2010). “On Over-Fitting in Model Selection and Subsequent Selec-
tion Bias in Performance Evaluation.” The Journal of Machine Learning Research, 99,
2079–2107.

Efron B (1979). “Bootstrap Methods: Another Look at the Jackknife.” The Annals of
Statistics, 7(1), 1–26.

Efron B, Hastie T, Johnstone I, Tibshirani R (2004). “Least Angle Regression.” The Annals
of Statistics, 32(2), pp. 407–451.

Fan J, Li R (2001). “Variable Selection via Nonconcave Penalized Likelihood and its Oracle
Properties.” Journal of the American Statistical Association, 96(456), 1348–1360.

Frank lE, Friedman JH (1993). “A Statistical View of Some Chemometrics Regression Tools.”
Technometrics, 35(2), 109–135.

Freedman DA (2005). Statistical Models: Theory and Practice. Cambridge University Press.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1.

Friedman JH (1991). “Multivariate Adaptive Regression Splines.” The annals of statistics,
pp. 1–67.

Fu WJ (1998). “Penalized Regressions: The Bridge versus the Lasso.” Journal of computa-
tional and graphical statistics, 7(3), 397–416.

Goeman JJ (2010). “L1 Penalized Estimation in the Cox Proportional Hazards Model.”
Biometrical Journal, 52(1), 70–84.

BIBLIOGRAPHY 77

Goeman JJ (2011). penalized: L1 (Lasso) and L2 (Ridge) Penalized Estimation in GLMs
and in the Cox Model. R package version 0.9-37, URL http://www.msbi.nl/goeman.

Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh
ML, Downing JR, Caligiuri MA, et al. (1999). “Molecular Classification of Cancer: Class
Discovery and Class Prediction by Gene Expression Monitoring.” Science, 286(5439),
531–537.

Gordis L (2004). Epidemiology. 3rd edition. Elsevier.

Greenland S, Drescher K (1993). “Maximum Likelihood Estimation of the Attributable
Fraction from Logistic Models.” Biometrics, 49(3), 865–72.

Gruber S, van der Laan MJ (2011). “C-TMLE of an Additive Point Treatment Effect.” In
van der Laan and Rose (2011), chapter 19.

Gruber S, van der Laan MJ (2012). “tmle: An R Package for Targeted Maximum Likelihood
Estimation.” Journal of Statistical Software, 51(13). URL http://www.jstatsoft.org/

v51/i13.

Halvorsen K (2012). ElemStatLearn: Data sets, functions and examples from the book:
”The Elements of Statistical Learning, Data Mining, Inference, and Prediction” by Trevor
Hastie, Robert Tibshirani and Jerome Friedman. R package version 2012.04-0, URL http:

//CRAN.R-project.org/package=ElemStatLearn.

Hastie T, Efron B (2011). lars: Least Angle Regression, Lasso and Forward Stagewise.
R package version 0.9-8, URL CRAN.R-project.org/package=lars.

Hastie T, Efron B (2012). lars: Least Angle Regression, Lasso and Forward Stagewise. R
package version 1.1, URL http://CRAN.R-project.org/package=lars.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. 2nd edition. Springer-Verlag, New York. ISBN
9780387848570.

Hoerl AE, Kennard RW (1970). “Ridge Regression: Biased Estimation for Nonorthogonal
Problems.” Technometrics, 12(1), 55–67.

Hubbard A, Munoz ID, Decker A, Holcomb JB, Schreiber MA, Bulger EM, Brasel KJ, Fox
EE, del Junco DJ, Wade CE, et al. (2013). “Time-Dependent Prediction and Evaluation
of Variable Importance Using Superlearning in High-Dimensional Clinical Data.” Journal
of Trauma-Injury, Infection, and Critical Care, 75(1), S53–S60.

Hubbard AE, van der Laan MJ (2008). “Population Intervention Models in Causal Inference.”
Biometrika, 95(1), 35–47.

http://www.msbi.nl/goeman
http://www.jstatsoft.org/v51/i13
http://www.jstatsoft.org/v51/i13
http://CRAN.R-project.org/package=ElemStatLearn
http://CRAN.R-project.org/package=ElemStatLearn
CRAN.R-project.org/package=lars
http://CRAN.R-project.org/package=lars

BIBLIOGRAPHY 78

Ioannidis JPA (2005). “Why Most Published Research Findings Are False.” PLoS Medicine,
2(8), e124. doi:10.1371/journal.pmed.0020124.

Kenkel B, Signorino CS (2013). polywog: Bootstrapped Basis Regression with Oracle
Model Selection. R package version 0.3-0, URL http://CRAN.R-project.org/package=

polywog.

Kooperberg C (2010). polspline: Polynomial Spline Routines. R package version 1.1.5, URL
http://CRAN.R-project.org/package=polspline.

Kooperberg C, Bose S, Stone CJ (1997). “Polychotomous Regression.” Journal of the Amer-
ican Statistical Association, 92(437), 117–127.

Kuhn M (2008). “Building Predictive Models in R Using the caret Package.” Journal of
Statistical Software, 28(5), 1–26.

Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A (2011). caret: Classification
and Regression Training. R package version 5.07-001, URL http://CRAN.R-project.org/

package=caret.

Lan Q, Zhang L, Li G, Vermeulen R, Weinberg RS, Dosemeci M, Rappaport SM, Shen M,
Alter BP, Wu Y, et al. (2004). “Hematotoxicity in Workers Exposed to Low Levels of
Benzene.” Science, 306(5702), 1774–1776.

L’Ecuyer P, Simard R, Chen EJ, Kelton WD (2002). “An Object-Oriented Random-Number
Package with Many Long Streams and Substreams.” Operations Research, 50(6), 1073–
1075. doi:10.1287/opre.50.6.1073.358.

Leisch F (2002). “Sweave: Dynamic Generation of Statistical Reports Using Literate Data
Analysis.” In W Härdle, B Rönz (eds.), Compstat 2002 — Proceedings in Compu-
tational Statistics, pp. 575–580. Physica Verlag, Heidelberg. URL http://www.stat.

uni-muenchen.de/~leisch/Sweave.

Liaw A, Wiener M (2002). “Classification and Regression by randomForest.” R News, 2(3),
18–22. URL http://CRAN.R-project.org/doc/Rnews/.

McCullagh P, Nelder JA (1989). Generalized Linear Models, volume 37 of Monographs on
Statistics and Applied Probability. 2nd edition. Chapman and Hall/CRC.

McHale CM, Zhang L, Lan Q, Vermeulen R, Li G, Hubbard AE, Porter KE, Thomas R,
Portier CJ, Shen M, et al. (2011). “Global Gene Expression Profiling of a Population
Exposed to a Range of Benzene Levels.” Environmental Health Perspectives, 119(5), 628.

Meinshausen N (2007). “Relaxed Lasso.” Computational Statistics & Data Analysis, 52(1),
374–393.

http://CRAN.R-project.org/package=polywog
http://CRAN.R-project.org/package=polywog
http://CRAN.R-project.org/package=polspline
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://CRAN.R-project.org/doc/Rnews/

BIBLIOGRAPHY 79

Meinshausen N (2012). relaxo: Relaxed Lasso. R package version 0.1-2, URL http://CRAN.

R-project.org/package=relaxo.

Messer LC, Oakes JM, Mason S (2010). “Effects of Socioeconomic and Racial Residential
Segregation on Preterm Birth: A Cautionary Tale of Structural Confounding.” American
Journal of Epidemiology, 171(6), 664–73. doi:10.1093/aje/kwp435.

Miller AJ (2002). Subset Selection in Regression, volume 95 of Monographs on Statistics and
Applied Probability. 2nd edition. Chapman & Hall/CRC.

Molinaro AM, Lostritto K, van der Laan M (2010). “partDSA: Dele-
tion/Substitution/Addition Algorithm for Partitioning the Covariate Space in Prediction.”
Bioinformatics, 26(10), 1357–1363.

Molinaro AM, Simon R, Pfeiffer RM (2005). “Prediction Error Estimation: A Comparison
of Resampling Methods.” Bioinformatics, 21(15), 3301–3307.

Nelder JA, Wedderburn RW (1972). “Generalized Linear Models.” Journal of the Royal
Statistical Society: Series A, pp. 370–384.

Neugebauer R, Bullard J (2010). DSA: Deletion/Substitution/Addition Algorithm. R package
version 3.1.4, URL http://www.stat.berkeley.edu/~laan/Software/.

Park MY, Hastie T (2007). “L1-Regularization Path Algorithm for Generalized Linear Mod-
els.” Journal of the Royal Statistical Society: Series B, 69(4), 659–677.

Park MY, Hastie T (2013). glmpath: L1 Regularization Path for Generalized Linear
Models and Cox Proportional Hazards Model. R package version 0.97, URL http:

//CRAN.R-project.org/package=glmpath.

Pearl J (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press,
Cambridge, U.K. ISBN 9780521895606.

Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ (2011). “Positivity.” In
van der Laan and Rose (2011), chapter 10.

Polley EC, Rose S, van der Laan MJ (2011). “Super Learning.” In van der Laan and Rose
(2011), chapter 3.

Polley EC, van der Laan MJ (2011). SuperLearner: Super Learner Prediction. R package
version 2.0-4, URL http://CRAN.R-project.org/package=SuperLearner.

Rahbar MH, Fox EE, del Junco DJ, Cotton BA, Podbielski JM, Matijevic N, Cohen MJ,
Schreiber MA, Zhang J, Mirhaji P, et al. (2012). “Coordination and Management of
Multicenter Clinical Studies in Trauma: Experience from the PRospective Observational
Multicenter Major Trauma Transfusion (PROMMTT) Study.” Resuscitation, 83(4), 459–
464.

http://CRAN.R-project.org/package=relaxo
http://CRAN.R-project.org/package=relaxo
http://www.stat.berkeley.edu/~laan/Software/
http://CRAN.R-project.org/package=glmpath
http://CRAN.R-project.org/package=glmpath
http://CRAN.R-project.org/package=SuperLearner

BIBLIOGRAPHY 80

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Ritter SJ (2011). Variable Importance Analysis with Population Intervention Models. Mas-
ter’s thesis, University of California, Berkeley.

Ritter SJ, Jewell NP, Hubbard AE (submitted). “R Package multiPIM: A Causal Infer-
ence Approach to Variable Importance Analysis.” Submitted to the Journal of Statistical
Software.

Robins JM (1986). “A New Approach to Causal Inference in Mortality Studies with a
Sustained Exposure Period–Application to Control of the Healthy Worker Survivor Effect.”
Mathematical Modelling, 7(9-12), 1393–1512.

Robins JM (2000). “Marginal Structural Models versus Structural Nested Models as Tools
for Causal Inference.” In ME Halloran, D Berry (eds.), Statistical Models in Epidemiol-
ogy, the Environment, and Clinical Trials, pp. 95–113. Springer-Verlag, New York. ISBN
0387989242.

Rose S, van der Laan MJ (2011a). “Understanding TMLE.” In van der Laan and Rose
(2011), chapter 5.

Rose S, van der Laan MJ (2011b). “Why TMLE?” In van der Laan and Rose (2011),
chapter 6.

Rosenman RH, Brand RJ, Jenkins CD, Friedman M, Straus R, Wurm M (1975). “Coronary
Heart Disease in the Western Collaborative Group Study. Final Follow-up Experience of
8 1/2 Years.” JAMA, 233(8), 872–7.

Rosenman RH, Friedman M, Straus R, Wurm M, Jenkins CD, Messinger HB (1966). “Coro-
nary Heart Disease in the Western Collaborative Group Study. A Follow-up Experience of
Two Years.” JAMA, 195(2), 86–92.

Sevcikova H, Rossini T (2009). rlecuyer: R Interface to RNG with Multiple Streams. R pack-
age version 0.3-1, URL http://CRAN.R-project.org/package=rlecuyer.

Sinisi SE, Polley EC, Petersen ML, Rhee SY, van der Laan MJ (2007). “Super Learning:
An Application to the Prediction of HIV-1 Drug Resistance.” Statistical Applications in
Genetics and Molecular Biology, 6(1), Article 7. doi:10.2202/1544-6115.1240.

Sinisi SE, van der Laan MJ (2004). “Deletion/Substitution/Addition Algorithm in Learn-
ing with Applications in Genomics.” Statistical Applications in Genetics and Molecular
Biology, 3(1), Article 18. doi:10.2202/1544-6115.1069.

http://www.R-project.org/
http://CRAN.R-project.org/package=rlecuyer

BIBLIOGRAPHY 81

Spear RC, Seto E, Liang S, Birkner M, Hubbard A, Qiu D, Yang C, Zhong B, Xu F, Gu X,
Davis GM (2004). “Factors Influencing the Transmission of Schistosoma Japonicum in the
Mountains of Sichuan Province of China.” The American Journal of Tropical Medicine
and Hygiene, 70(1), 48–56.

Stamey T, Kabalin J, McNeal J, Johnstone I, Freiha F, Redwine E, Yang N (1989). “Prostate
Specific Antigen in the Diagnosis and Treatment of Adenocarcinoma of the Prostate. II.
Radical Prostatectomy Treated Patients.” The Journal of urology, 141(5), 1076.

Stone C, Hansen M, Kooperberg C, Truong Y (1997). “Polynomial Splines and their Tensor
Products in Extended Linear Modeling.” The Annals of Statistics, 25(4), 1371–1425.

Sudat SEK, Carlton EJ, Seto EYW, Spear RC, Hubbard AE (2010). “Using Variable Impor-
tance Measures from Causal Inference to Rank Risk Factors of Schistosomiasis Infection
in a Rural Setting in China.” Epidemiologic Perspectives & Innovations, 7(1), 3.

Therneau TM, Atkinson B, Ripley BD (2010). rpart: Recursive Partitioning. R package
version 3.1-46, URL http://CRAN.R-project.org/package=rpart.

Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the
Royal Statistical Society. Series B, pp. 267–288.

Tibshirani R (2011). “Regression Shrinkage and Selection via the Lasso: A Retrospective.”
Journal of the Royal Statistical Society: Series B, 73(3), 273–282.

Urbanek S (2011). multicore: Parallel Processing of R Code on Machines with Multiple
Cores or CPUs. R package version 0.1-7, URL http://CRAN.R-project.org/package=

multicore.

van der Laan MJ (2006). “Statistical Inference for Variable Importance.” The International
Journal of Biostatistics, 2(1), Article 2. doi:10.2202/1557-4679.1008.

Van Der Laan MJ, Dudoit S (2003). “Unified Cross-Validation Methodology for Selection
Among Estimators and a General Cross-Validated Adaptive Epsilon-Net Estimator: Finite
Sample Oracle Inequalities and Examples.”

van der Laan MJ, Gill RD, Robins JM (2003). “Locally Efficient Estimation in Censored
Data Models: Theory and Examples.” U.C. Berkeley Division of Biostatistics Working
Paper Series, (Working Paper 85). URL http://biostats.bepress.com/ucbbiostat/

paper85/.

van der Laan MJ, Gruber S (2010). “Collaborative Double Robust Targeted Maximum
Likelihood Estimation.” The International Journal of Biostatistics, 6(1), Article 17. doi:
10.2202/1557-4679.1181.

http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=multicore
http://CRAN.R-project.org/package=multicore
http://biostats.bepress.com/ucbbiostat/paper85/
http://biostats.bepress.com/ucbbiostat/paper85/

BIBLIOGRAPHY 82

van der Laan MJ, Polley EC, Hubbard AE (2007). “Super Learner.” Statistical Applications
in Genetics and Molecular Biology, 6(1), Article 25. doi:10.2202/1544-6115.1309.

van der Laan MJ, Robins JM (2003). Unified Methods for Censored Longitudinal Data and
Causality. Springer-Verlag, New York. ISBN 0387955569.

van der Laan MJ, Rose S (2011). Targeted Learning: Causal Inference for Observational and
Experimental Data. Springer-Verlag, New York. ISBN 9781441997814.

van der Laan MJ, Rubin D (2006). “Targeted Maximum Likelihood Learning.” The Inter-
national Journal of Biostatistics, 2(2), Article 11. doi:10.2202/1557-4679.1043.

Vermeulen R, Li G, Lan Q, Dosemeci M, Rappaport SM, Bohong X, Smith MT, Zhang
L, Hayes RB, Linet M, et al. (2004). “Detailed Exposure Assessment for a Molecular
Epidemiology Study of Benzene in two Shoe Factories in China.” Annals of Occupational
Hygiene, 48(2), 105–116.

Young JG (2007). Statistical Methods for Complicated Current Status and High-Dimensional
Data Structures with Applications in Environmental Epidemiology. Ph.D. thesis, Univer-
sity of California, Berkeley.

Young JG, Hubbard AE, Eskenazi B, Jewell NP (2009). “A Machine-Learning Algorithm
for Estimating and Ranking the Impact of Environmental Risk Factors in Exploratory
Epidemiological Studies.” U.C. Berkeley Division of Biostatistics Working Paper Series,
(Working Paper 250). URL http://www.bepress.com/ucbbiostat/paper250.

Zheng W, van der Laan MJ (2011). “Cross-Validated Targeted Minimum-Loss-Based Esti-
mation.” In van der Laan and Rose (2011), chapter 27.

Zou H (2006). “The Adaptive Lasso and its Oracle Properties.” Journal of the American
statistical association, 101(476), 1418–1429.

Zou H, Hastie T (2005). “Regularization and Variable Selection via the Elastic Net.” Journal
of the Royal Statistical Society: Series B, 67(2), 301–320.

Zou H, Zhang HH (2009). “On the Adaptive Elastic-Net with a Diverging Number of Pa-
rameters.” Annals of Statistics, 37(4), 1733.

http://www.bepress.com/ucbbiostat/paper250

83

Appendix A

Help File for relaxnet Function

relaxnet Relaxation (as in Relaxed Lasso, Meinshausen 2007) applied to
glmnet Models

Description

Runs glmnet once on the full x matrix, then again on each distinct subset of columns
from along the solution path. The penalty may be lasso (alpha = 1) or elastic net (0 <
alpha < 1). The outcome (y) may be continuous or binary.

Usage

relaxnet(x, y, family = c("gaussian", "binomial"),

nlambda = 100,

alpha = 1,

relax = TRUE,

relax.nlambda = 100,

relax.max.vars = min(nrow(x), ncol(x)) * 0.8,

lambda = NULL,

relax.lambda.index = NULL,

relax.lambda.list = NULL,

...)

Arguments

x Input matrix, of dimension nobs x nvars; each row is an observation vector.
Can be in sparse matrix format (inherit from class "sparseMatrix" as in
package Matrix). Must have unique colnames.

APPENDIX A. RELAXNET HELP FILE 84

y response variable. Quantitative for family="gaussian". For
family="binomial" should be either a factor with two levels, or a two-
column matrix of counts or proportions.

family Response type (see above).

nlambda The number of lambda values - default is 100. Determines how fine the
grid of lambda values should be.

alpha Elastic net mixing parameter (see glmnet).

relax Should the model be relaxed. If FALSE, only the main glmnet model is
run and no relaxed models are.

relax.nlambda

Like nlambda but for secondary (relaxed) models.

relax.max.vars

Maximum number of variables for relaxed models. No relaxation will be
done for subsets along the regularization path with number of variables
greater than relax.max.vars. If ncol(x) > nrow(x) and alpha < 1, it
may make sense to use a value > nrow(x), but this may lead to increased
computation time.

lambda See (see glmnet). Optional and meant primarily for use by cv.relaxnet.

relax.lambda.index

Vector which indexes the lambda argument and specifyies the values at
which a relaxed model should be fit. Optional and meant primarily for
use by cv.relaxnet. Ignored if lambda argument is NULL.

relax.lambda.list

List of lambda values to use for the relaxed models. Optional and meant
primarily for use by cv.relaxnet. Ignored if lambda argument is NULL.

... Further aruments passed to glmnet. Use with caution as this has not yet
been tested. For example, setting standardize = FALSE will probably
work correctly, but setting an offset probably won’t.

Value

Object of class code”relaxnet” with the following components:

call A copy of the call which produced this object

main.glmnet.fit

The object resulting from running glmnet on the entire x matrix.

relax The value of the relax argument. If this is FALSE, then several of the other
elements of this result will be set to NA.

APPENDIX A. RELAXNET HELP FILE 85

relax.glmnet.fits

A list containing the secondary glmnet fits gotten by running glmnet on
the distinct subsets of the columns of x resulting along the solution path
of lambda values.

relax.num.vars

Vector giving the number of variables in each ”relaxed” model.

relax.lambda.index

This vector indexes result$main.glmnet.fit$lambda and gives the lambda
values at which the relax.glmnet.fits were obtained.

total.time Total time in seconds to produce this result.

main.fit.time

Time in seconds to produce the main glmnet fit.

relax.keep In certain cases some of the relaxed models are removed after fit-
ting. relax.fit.times records times for these removed models as
well. This logical vector shows which of the models whose timings are
given in relax.fit.times were actually kept and have results given in
relax.glmnet.fits above. Hopefully this will not be necessary in later
versions.

relax.fit.times

Vector of times in seconds to produce secondary ”relaxed” models.

Author(s)

Stephan Ritter, with design contributions from Alan Hubbard.

Much of the code (and some help file content) is adapted from the glmnet package, whose
authors are Jerome Friedman, Trevor Hastie and Rob Tibshirani.

See Also

glmnet, cv.relaxnet, predict.relaxnet

86

Appendix B

Help File for widenet Function

widenet Extends the relaxnet Package with Polynomial Basis Expansions

Description

Expands the basis according to the order argument, then runs relaxnet in order to select
a subset of the basis functions. Multiple values of order and alpha (the elastic net tuning
parameter) may be specified, leading to selection of a specific value by cross-validation.

Usage

widenet(x, y, family = c("gaussian", "binomial"),

order = 1:3,

alpha = 1,

nfolds = 10,

foldid,

screen.method = c("none", "cor", "ttest"),

screen.num.vars = 50,

multicore = FALSE,

mc.cores,

mc.seed = 123,

...)

Arguments

x Input matrix, each row is an observation vector. Sparse matrices are not
yet supported for the widenet function. Must have unique colnames.

APPENDIX B. WIDENET HELP FILE 87

y Response variable. Quantitative for family="gaussian". For
family="binomial" should be either a factor with two levels, or a two-
column matrix of counts or proportions.

family Response type (see above).

order The order of basis expansion. Elements must be in the set c(1, 2, 3).
If there is more than one element, cross-validation is used to chose the
order with best cross-validated performance.

alpha The elastic net mixing parameter, see glmnet. If there is more than
one element, cross-validation is used to chose the value with best cross-
validated performance.

nfolds Number of folds - default is 10. Although nfolds can be as large as the
sample size (leave-one-out CV), it is not recommended for large datasets.
Smallest value allowable is nfolds=3.

foldid An optional vector of values between 1 and nfold identifying what fold
each observation is in. If supplied, nfolds can be missing.

screen.method

The method to use to screen variables before basis expansion is ap-
plied. Default is no screening. "cor" = correlation, i.e. bivari-
ate correlation with the outcome. ttest is meant for binary outcomes
(family = "binomial"). The screening methods are adapted from the
SuperLearner package, the author of which is Eric Polley.

screen.num.vars

The number of variables (columns of x to screen in when using screening.

multicore Should execution be parallelized over cv folds (for cv.relaxnet) or over
alpha values (for cv.alpha.relaxnet) using multicore functionality from
R’s parallel package?

mc.cores Number of cores/cpus to be used for multicore processing. Parallelization
is over cross-validation folds.

mc.seed Integer value with which to seed the RNG when using parallel processing
(internally, RNGkind will be called to set the RNG to "L’Ecuyer-CMRG").
Will be ignored if multicore is FALSE. If mulicore is FALSE, one should
be able to get reprodicible results by setting the seed normally (with
set.seed) prior to running.

... Further arguments passed to relaxnet or cv.relaxnet, which should also
be passed on to glmnet. Use with caution as this has not been tested.

Details

The type.measure argument has not yet been implemented. For type = gaussian models,
mean squared error is used, and for type = binomial, binomial deviance is used.

APPENDIX B. WIDENET HELP FILE 88

Value

Returns and object of class "widenet" with the following elements:

call A copy of the call which generated this object

order The value of the order argument

alpha The value of the alpha argument

screen.method

The value of the screen.method argument

screened.in.index

A vector which indexes the columns of x, indicating those variables which
were screened in for the run on the full data

colsBinary A vector of length ncol(x) representing which of the columns of x con-
tained binary data. These columns will be represented by a 2. The other
columns will have a 3.

cv.relaxnet.results

A list of lists containing "cv.relaxnet" objects, one for each combination
of values of alpha and order.

min.cvm.mat A matrix containing the minimum cross-validated risk for each combina-
tion of values of alpha and order

which.order.min

The order which ”won” the cross-validation, i.e. resulted in minimum
cross-validated risk.

which.alpha.min

The alpha value which ”won” the cross-validation.

total.time Total time in seconds to produce this result.

Author(s)

Stephan Ritter, with design contributions from Alan Hubbard.

Much of the code (and some help file content) is adapted from the glmnet package, whose
authors are Jerome Friedman, Trevor Hastie and Rob Tibshirani.

See Also

predict.widenet, relaxnet, cv.relaxnet

89

Appendix C

Help File for multiPIM Function

multiPIM Estimate Variable Importances for Multiple Exposures and Out-
comes

Description

The parameter of interest is a type of causal attributable risk. One effect measure (and a
corresponding plug-in standard error) will be calculated for each exposure-outcome pair.
The default is to use a Targeted Maximum Likelihood Estimator (TMLE). The other
available estimators are Inverse Probability of Censoring Weighted (IPCW), Double-
Robust IPCW (DR-IPCW), and Graphical Computation (G-COMP) estimators. PIM
stands for Population Intervention Model.

Usage

multiPIM(Y, A, W = NULL,

estimator = c("TMLE", "DR-IPCW", "IPCW", "G-COMP"),

g.method = "main.terms.logistic", g.sl.cands = NULL,

g.num.folds = NULL, g.num.splits = NULL,

Q.method = "sl", Q.sl.cands = "default",

Q.num.folds = 5, Q.num.splits = 1,

Q.type = NULL,

adjust.for.other.As = TRUE,

truncate = 0.05,

return.final.models = TRUE,

na.action,

check.input = TRUE,

APPENDIX C. MULTIPIM HELP FILE 90

verbose = FALSE,

extra.cands = NULL,

standardize = TRUE,

...)

Arguments

Y a data frame of outcomes containing only numeric (integer or double)
values. See details for the default method of determining, based on the
values in Y, which regression types to allow for modelling Q. Must have
unique names.

A a data frame containing binary exposure variables. Binary means that all
values must be either 0 (indicating unexposed, or part of target group)
or 1 (indicating exposed or not part of target group). Must have unique
names.

W an optional data frame containing possible confounders of the effects of the
variables in A on the variables in Y. No effect measures will be calculated
for these variables. May contain numeric (integer or double), or factor
values. Must be left as NULL if not required. See details.

estimator the estimator to be used. The default is "TMLE", for the targeted maxi-
mum likelihood estimator. Alternatively, one may specify "DR-IPCW", for
the Double-Robust Inverse Probability of Censoring-Weighted estimator,
or "IPCW", for the regular IPCW estimator, or "G-COMP" for the Graph-
ical Computation estimator. If the regular IPCW estimator is selected,
all arguments which begin with the letter Q are ignored, since only g (the
regression of each exposure on possible confounders) needs to be modeled
in this case. Similarly, if the G-COMP estimator is selected, all arguments
which begin with the letter g, as well as the truncate argument, will be ig-
nored, since only Q needs to be modeled in this case. Note: an additional
characteristic of the G-COMP estimator is that there are no plug-in stan-
dard errors available. If you want to use G-COMP and you need standard
errors, the multiPIMboot function is available and will provide bootstrap
standard errors.

g.method a length one character vector indicating the regression method to use in
modelling g. The default value, "main.terms.logistic", is meant to
be used with the default TMLE estimator. If a different estimator is
used, it is recommended to use super learning by specifying "sl". In this
case, the arguments g.sl.cands, g.num.folds and g.num.splits must
also be specified. Other possible values for the g.method argument are:
one of the elements of the vector all.bin.cands, or, if extra.cands is

APPENDIX C. MULTIPIM HELP FILE 91

supplied, one of the names of the extra.cands list of functions. Ignored
if estimator is "G-COMP".

g.sl.cands character vector of length ≥ 2 indicating the candidate algorithms that
the super learner fits for g should use. The possible values may be taken
from the vector all.bin.cands, or from the names of the extra.cands

list of functions, if it is supplied. Ignored if estimator is "G-COMP". or
if g.method is not "sl". NOTE: The TMLE estimator is recommended,
but if one is using either of the IPCW estimators, a reasonable choice is
to specify g.method = "sl" and g.sl.cands = default.bin.cands.

g.num.folds the number of folds to use in cross-validating the super learner fit for g
(i.e. the v for v-fold cross-validation). Ignored if estimator is "G-COMP",
or if g.method is not "sl".

g.num.splits

the number of times to randomly split the data into g.num.folds folds in
cross-validating the super learner fit for g. Cross-validation results will be
averaged over all splits. Ignored if estimator is "G-COMP", or if g.method
is not "sl".

Q.method character vector of length 1. The regression method to use in modelling Q.
See details to find out which values are allowed. The default value, "sl",
indicates that super learning should be used for modelling Q. Ignored if
estimator is "IPCW".

Q.sl.cands either of the length 1 character values "default" or "all" or a character
vector of length ≥ 2 containing elements of either all.bin.cands or of
all.cont.cands, or of the names of the extra.cands list of functions, if
it is supplied. See details. Ignored if estimator is "IPCW" or if Q.method
is not "sl".

Q.num.folds the number of folds to use in cross-validating the super learner fit for Q
(i.e. the v for v-fold cross-validation). Ignored if estimator is "IPCW" or
if Q.method is not "sl".

Q.num.splits

the number of times to randomly split the data into Q.num.folds folds
in cross-validating the super learner fit for Q. Ignored if estimator is
"IPCW" or if Q.method is not "sl".

Q.type either NULL or a length 1 character vector (which must be either
"binary.outcome" or "continuous.outcome"). This provides a way to
override the default mechanism for deciding which candidates will be al-
lowed for modeling Q (see details). Ignored if estimator is "IPCW".

adjust.for.other.As

a single logical value indicating whether the other columns of A should
be included (for TRUE) or not (for FALSE) in the g and Q models used to

APPENDIX C. MULTIPIM HELP FILE 92

calculate the effect of each column of A on each column of Y. See details.
Ignored if A has only one column.

truncate either FALSE, or a single number greater than 0 and less than 0.5 at which
the values of g(0, W) should be truncated in order to avoid instability of
the estimator. Ignored if estimator is "G-COMP".

return.final.models

single logical value indicating whether final g and Q models should
be returned by the function (in the slots g.final.models and
Q.final.models). Default is TRUE. If memory is a concern, you will
probably want to set this to FALSE.

na.action currently ignored. If any of Y, A or (a non-null) W has missing values,
multiPIM will throw an error.

check.input a single logical value indicating whether all of the input to the function
should be subjected to strict error checking. FALSE is not recommended.

verbose a single logical value indicating whether messages about the progress of
the evaluation should be printed out. Some of the candidate algorithms
may print messages even when verbose is set to FALSE.

extra.cands a named list of functions. This argument provides a way for the user to
specify his or her own functions to use either as stand-alone regression
methods, or as candidates for a super learner. See details.

standardize should all predictor variables be standardized before certain regression
methods are run. Passed to all candidates, but only used by some (at this
point, lars, penalized.bin and penalized.cont)

... currently ignored.

Details

The parameter of interest is a type of attributable risk. This means that it is a measure
(adjusted for known confounders) of the difference between the mean value of Y for the
units in the target (or unexposed) group and the overall mean value of Y. Units which
are in the target (or unexposed) group with respect to one of the variables in A are
characterized as such by having the value 0 in the respective column of A. Members of
the the non-target (or exposed) group should have a 1 in that column of A. Assuming
all causal assumptions hold (see the paper), each parameter estimate can be thought of
as estimating the hypothetical effect on the respective outcome of totally eliminating the
respective exposure from the population (i.e. setting everyone to 0 for that exposure).
For example, in the case of a binary outcome, a parameter estimate for exposure x and
outcome y of -0.03 could be interpreted as follows: the effect of an intervention in which
the entire population was set to exposure x = 0 would be to reduce the level of outcome
y by 3 percentage points.

APPENDIX C. MULTIPIM HELP FILE 93

If check.input is TRUE (which is the default and is highly recommended), all of the
arguments will be checked to make sure they have permissible values. Many of the argu-
ments, especially those for which a single logical value (TRUE or FALSE) or a single char-
acter value (such as, for example, "all") is expected, are checked using the identical

function, which means that if any of these arguments has any extraneous attributes (such
as names), this may cause multiPIM to throw an error.

On the other hand, the arguments Y and A (and W if it is non-null) must have valid names
attributes. multiPIM will throw an error if there is any overlap between the names of the
columns of these data frames, or if any of the names cannot be used in a formula (for
example, because it begins with a number and not a letter).

By default, the regression methods which will be allowed for fitting models for Q will
be determined from the contents of Y as follows: if all values in Y are either 0 or 1 (i.e.
all outcomes are binary), then “logistic”-type regression methods will be used (and only
these methods will be allowed in the arguments Q.method and Q.sl.cands); however,
if there are any values in Y which are not equal to 0 or 1 then it will be assumed that
all outcomes are continuous, “linear”-type regression will be used, and the values allowed
for Q.method and Q.sl.cands will change accordingly. This behavior can be overriden
by specifying Q.type as either "binary.outcome" (for logistic-type regression), or as
"continuous.outcome" (for linear-type regression). If Q.type is specified, Y will not be
checked for binaryness.

The values allowed for Q.method (which should have length 1) are: either "sl" if one
would like to use super learning, or one of the elements of the vector all.bin.cands

(for the binary outcome case), or of all.cont.cands (for the continuous outcome case),
if one would like to use only a particular regression method for all modelling of Q.
If Q.method is given as "sl", then the candidates used by the super learner will be
determined from the value of Q.sl.cands. If the value of Q.sl.cands is "default", then
the candidates listed in either default.bin.cands or default.cont.cands will be used.
If the value of Q.sl.cands is "all", then the candidates listed in either all.bin.cands
or all.cont.cands will be used. The function will automatically choose the candidates
which correspond to the correct outcome type (binary or continuous). Alternatively, one
may specify Q.sl.cands explicitly as a vector of names of the candidates to be used.

If A has more than one column, the adjust.for.other.As argument can be used to
specify whether the other columns of A should possibly be included in the g and Q
models which will be used in calculating the effect of a certain column of A on each
column of Y.

With the argument extra.cands, one may supply alternative R functions to be used
as stand-alone regression methods, or as super learner candidates, within the multiPIM

function. extra.cands should be given as a named list of functions. See Candidates
for the form (e.g. arguments) that the functions in this list should have. In order to
supply your own stand alone regression method for g or Q, simply specify g.method or

APPENDIX C. MULTIPIM HELP FILE 94

Q.method as the name of the function you want to use (i.e. the corresponding element of
the names attribute of extra.cands). To add candidates to a super learner, simply use
the corresponding names of your functions (from the names attribute of extra.cands)
when you supply the g.sl.cands or Q.sl.cands arguments. Note that you may mix
and match between your own extra candidates and the built-in candidates given in the
all.bin.cands and all.cont.cands vectors. Note also that extra candidates must be
explicitly specified as g.method, Q.method, or as elements of g.sl.cands or Q.sl.cands
– Specifying Q.sl.cands as "all" will not cause any extra candidates to be used.

Value

Returns an object of class "multiPIM" with the following elements:

param.estimates

a matrix of dimensions ncol(A) by ncol(Y) with rownames equal to
names(A) and colnames equal to names(Y), with each element being the
estimated causal attributable risk for the exposure given by its row name
vs. the outcome given by its column name.

plug.in.stand.errs

a matrix with the same dimensions as param.estimates containing the
corresponding plug-in standard errors of the parameter estimates. These
are obtained from the influence curve. Note: plug-in standard errors are
not available for estimator = "G-COMP". This field will be set to NA in
this case.

call a copy of the call to multiPIM which generated this object.
num.exposures

this will be set to ncol(A).
num.outcomes

this will be set to ncol(Y).

W.names the names attribute of the W data frame, if one was supplied. If no W was
supplied, this will be NA.

estimator the estimator used.

g.method the method used for modelling g.

g.sl.cands in case super learning was used for g, the candidates used in the super
learner. Will be NA if g.method was not "sl".

g.winning.cands

if super learning was used for g, this will be a named character vector with
ncol(A) elements. The ith element will be the name of the candidate
which ”won” the cross validation in the g model for the ith column of A.

APPENDIX C. MULTIPIM HELP FILE 95

g.cv.risk.array

array with dim attribute c(ncol(A), g.num.splits,

length(g.sl.cands)) containing cross-validated risks from super
learner modeling for g for each exposure-split-candidate triple. Has
informative dimnames attribute. Note: the values are technically not
risks, but log likelihoods (i.e. winning candidate is the one for which this
is a max, not a min).

g.final.models

a list of length nrow(A) containing the objects returned by the candidate
functions used in the final g models (see Candidates).

g.num.folds the number of folds used for cross validation in the super learner for g.
Will be NA if g.method was not "sl".

g.num.splits

the number of splits used for cross validation in the super learner for g.
Will be NA if g.method was not "sl".

Q.method the method used for modeling Q. Will be NA if double.robust was FALSE.

Q.sl.cands in case super learning was used for Q, the candidates used in the super
learner. Will be NA if double.robust was FALSE or if Q.method was not
"sl".

Q.winning.cands

if super learning was used for Q, this will be a named character vector
with ncol(Y) elements. The ith element is the name of the candidate
which ”won” the cross validation in the super learner for the Q model for
the ith column of Y.

Q.cv.risk.array

array with dim attribute c(ncol(A), ncol(Y), Q.num.splits,

length(Q.sl.cands)) containing cross-validated risks from super
learner modeling for Q. Has informative dimnames attribute. Note: the
values will be log likelihoods when Q.type is "binary.outcome" (see
note above for g.cv.risk.array), and they will be mean squared errors
when Q.type is "continuous.outcome".

Q.final.models

a list of length ncol(A), each element of which is another list of length
ncol(Y) containing the objects returned by the candidate functions used
for the Q models. I.e. Q.final.models[[i]][[j]] contains the Q model
information for exposure i and outcome j.

Q.num.folds the number of folds used for cross validation in the super learner for Q.
Will be NA if double.robust was FALSE or if Q.method was not "sl".

Q.num.splits

the number of splits used for cross validation in the super learner for Q.
Will be NA if double.robust was FALSE or if Q.method was not "sl".

APPENDIX C. MULTIPIM HELP FILE 96

Q.type either "continuous.outcome" or "binary.outcome", depending on the
contents of Y or on the value of the Q.type argument, if supplied.

adjust.for.other.As

logical value indicating whether the other columns of A were included in
models used to calculate the effect of each column of A on each column of
Y. Will be set to NA when A has only one column.

truncate the value of the truncate argument. Will be set to NA if estimator was
"G-COMP".

truncation.occured

logical value indicating whether it was necessary to trunctate. FALSE

when truncate is FALSE. Will be set to NA if estimator was "G-COMP".

standardize the value of the standardize argument.
boot.param.array

this slot will be NULL for objects returned by the multiPIM function. See
multiPIMboot for details on what this slot is actually used for.

main.time total time (in seconds) taken to generate this multiPIM result.

g.time time in seconds taken for running g models.

Q.time time in seconds taken for running Q models.

g.sl.time if g.method is ”sl”, time in seconds taken for running cross-validation of g
models.

Q.sl.time if Q.method is ”sl”, time in seconds taken for running cross-validation of
Q models.

g.sl.cand.times

if g.method is ”sl”, named vector containing time taken, with each element
corresponding to a super learner candidate for g.

Q.sl.cand.times

if Q.method is ”sl”, named vector containing time taken, with each element
corresponding to a super learner candidate for Q.

Author(s)

Stephan Ritter, with design contributions from Alan Hubbard and Nicholas Jewell.

See Also

multiPIMboot for running multiPIM with automatic bootstrapping to get standard er-
rors.

summary.multiPIM for printing summaries of the results.

Candidates to see which candidates are currently available, and for information on writ-
ing user-defined super learner candidates and regression methods.

