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Abstract 

This dissertation is concerned with the construction and validation of an organizational 

framework for processing large protein sequence datasets. The framework relies on the 

accurate clustering of input sequences into functionally similar families. We demonstrate how 

the quality of output for existing protein clustering techniques may be improved by running a 

simple edge weight selection heuristic prior to clustering. Once clustering is completed, we are 

able to topologically organize the data by treating each cluster as a node in a network and 

searching for the union of minimum spanning trees that reconnects the clusters to each other.  

When thusly organized, the topological relationships between neighboring clusters exhibit 

properties similar to evolutionary relationships computed from phylogenetic models.  We 

demonstrate how these topological relationships may be used to algorithmically identify the 

functionally significant residues within the sequences in the organized dataset. This predictive 

capacity of the organizational framework serves as a quantitative metric for validating the 

framework’s biological significance. 
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Chapter 1 

Introduction 

1.1 PERSPECTIVE 

A few simple rules on how to better organize data may on occasion greatly impact the entire 

scientific community. At an 1869 presentation before the Russian Chemical Society, Dmitri 

Mendeleev stated that the elements, when arranged to according to their atomic mass, cluster 

into groups exhibiting similar valencies and chemical properties. Ordering the elements in a two-

dimensional table revealed periodically repeating patterns of chemical behavior. This periodic 

table allowed Mendeleev to organize all chemical properties associated with all known elements 

in a way that made the relationships between properties simple to visualize and easy to 

understand. Furthermore, by examining the position of gaps in the table, Mendeleyev could 

predict the atomic weights and chemical properties of unknown elements that had yet to be 

discovered. As these predictions proved accurate, it became obvious that the table itself was 

more than a useful manmade abstraction for organizing the elements. Mendeleev’s rules 

captured certain fundamental characteristics of how elements exist in relation to each other. 

Fifty years later, Niels Bohr explored these fundamental characteristics by integrating electron 

shells into his model of the atom. The basic rules put down by Mendeleyev to better organize 

the elements eventually led to a revolution in science. 

As this example shows, integrating available scientific information into a proper organizational 

framework can potentially lead to three significant results: 
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1) A cleaner emphasis on patterns across known data; 

2) The prediction of new properties for unknown data; 

3) A deeper understanding of the given system as whole.  

 

This is why many researchers today are focused on building a framework to aid in one of the 

most significant scientific endeavors of our time: deciphering the proteome. Currently the 

Uniprot database contains approximately 5 million protein sequences, a number that is growing 

exponentially. Half these proteins have not been characterized in any way, leaving unsolved the 

primary problem of modern biology, which is the full characterization of every known protein. 

Full characterization for any given protein requires relating structure-based biochemical 

mechanisms to the observed phenotypic characteristics associated with the protein in question.  

Such understanding may be achieved through scientific analysis, in which a protein is probed by 

a series of rigorous techniques so that enough reliable data may be recorded to partially 

characterize it in some way. Partial characterization yields only a single piece of the puzzle, such 

as phenotype relationships or structure, but not the total range of features for a protein.  

Nonetheless, with persistent analysis, data continues to accumulate until a protein is 

characterized in full. 

Characterizing a single protein is a difficult enterprise, which makes the ambitions of today’s 

biologists that much more daunting. They aim to fully characterize the millions of unknown 

protein sequences by relying on a multitude of experimental and computational techniques 

currently available for proper analysis. Unfortunately, prioritizing the application of these 

techniques to the proper protein targets remains an unsolved optimization problem.  A Brute-

Force approach in which each protein is analyzed by a series of techniques that are selected 
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independently of all other proteins would clearly involve an inefficient use of both time and 

resources.  Certain proteins may only be characterized through rigorous experimental analysis, 

while other proteins may more efficiently be characterized by guiding experimental hypothesis 

selection through computational analysis of available data. The remaining proteins cannot be 

effectively characterized using existing experimental techniques. This is particularly true of 

certain hypothetical proteins, which have been predicted from nucleic acid sequences, but have 

not been shown to exist by experimental evidence (Lubec, et al. 2005).  For the time being, such 

proteins must be characterized using only computational analysis that generates predictions to 

a reasonable degree of accuracy.  Selecting the appropriate combination of experimental and 

computational techniques is a difficult problem in and of itself, but the order in which unknown 

proteins are characterized must also be taken into account.  Experimentally characterizing one 

well-chosen protein within a group of unknowns might provide enough information to 

computationally characterize all other proteins in that group. By contrast, experimentally 

characterizing most any other protein in that group may provide only limited information, 

requiring further experiments to be carried out on additional proteins.   This reliance on order is 

frequently seen in homology modeling, where selection of a crystallization target with the 

greatest number of homologous relationships helps maximize the number of homology models 

obtained from minimal experimental effort (Marsden and Orengo, 2008). Proper target 

selection may sometimes lead to more immediate hypothesis generation while also minimizing 

laboratory resource expenditures and time. Thus, it is desirable to be able to infer from the 

relationships between proteins in any given dataset the most optimal ordering of experimental 

and computational techniques. An appropriate organizational framework is needed to capture 

these relationships. Over the past decade, biological theoreticians have been working on 
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developing such a framework, which is most frequently referred to in the literature as “The 

Protein Universe.”   

The protein universe encompasses within itself all possible proteins, including those that have 

not yet been discovered and those that have not yet evolved. The concept of the protein 

universe first appeared in a 1996 paper by Liisa Holm and Chris Sander. Holm and Sander 

suggested the protein universe represents an abstract high dimensional structural space in 

which in each protein structure is represented by a single point (Holm and Sander, 1996). They 

showed how the spatial distribution of known structures in this abstract space is centered on a 

finite number of key structural folds. Three years later, Golan Yona took an alternate approach 

to exploring the protein universe, defining proteins as points in sequence space rather than 

structural space (Yona, et al. 1999). His paper demonstrated how groups of evolutionary related 

proteins with similar structural and functional properties, which are frequently referred to as 

protein families, cluster individually in sequence space.  Additionally, his paper suggested that 

pairs of possibly related clusters could be used to plot local maps for neighborhoods of protein 

families.  These maps would then depict the “geometry” of protein space in the vicinity of the 

included families. A “protein space geometry” (PSG), defined in the paper as the topology of 

neighboring and non-neighboring families, somehow reflects an observable protein universe 

shape. Implicitly, the protein universe is more than just a density distribution of protein 

similarity in an abstract space. Instead, the protein universe has a geometry that can be 

quantified with the appropriate data and algorithmic techniques. 

Golan Yona and Michael Levitt continued to advance the concept of protein space by using both 

sequence and structural information to explore the geometry of that space (Yona and Levitt, 

2000). Distances between points in large protein datasets were calculated using sequence 
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similarity as well as any available structural similarity data. The distances were then projected 

into two-dimensional Euclidian space in order to estimate spatial geometry. This work 

represented two key conceptual advances in exploring the protein universe. First, despite the 

fact that available protein structures number in the tens of thousands while known protein 

sequences number in the millions, the structural information that is available could still help 

guide the exploration of the PSG. Second, after this paper, our understanding of protein space 

was no longer restricted to either sequence or structural coordinates. Sequence space and 

structural space both encompass aspects of the protein universe, but protein space itself 

represents a more general set of coordinates. In protein space, distance is a measure of 

proximity between protein sequence, protein structure, and protein function. Boundaries in 

protein space delineate families, the members of which share similar sequences, contain the 

same structural folds, and perform the same measurable combination of functions. These 

functions are defined as entropically unlikely chemical interactions between each protein and all 

other molecules normally found in biological systems. Neighboring families in protein space 

share some sequence homology, and show similar structural and functional properties. 

Nonetheless, despite the overlap shared with its neighbors, each family performs a unique 

combination of functions. More explicitly, if we represent each measured interaction between a 

protein and other molecules using a vector, then the resulting cosine similarity across functional 

vectors in the same family will, on average, outrank the cosine similarity between vectors in 

neighboring families.  By generalizing protein space, Yona and Levitt introduced a better 

organizational framework with which to examine the global proteome.  Their depiction of the 

protein universe helps address the problems associated with characterizing a large protein 

dataset using an optimal configuration of computational and experimental approaches. In 

generalized protein space, the structural and functional properties of uncharacterized families 
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may be inferred directly from their characterized neighbors.  Uncharacterized families with 

multiple characterized neighbors may be analyzed by computational means. When no 

characterized neighbors are present, an uncharacterized family must first be analyzed 

experimentally. Each such family may be ranked in importance by the number of neighbors that 

it borders, as well as its distance to these neighbors. Priority is given to experimentally 

characterizing those families with the most number of reasonably proximate neighbors in order 

to maximize the computational dissemination of experimentally observed information.  As a 

result, generalized protein space may be used as an organizational framework for optimally 

ordering the application of computational and experimental techniques over all existing 

proteins. 

Such promising theoretical implications have motivated numerous researchers to explore 

various properties of the protein universe in additional detail. Based on structural data, it has 

been estimated that the spatial distribution of protein clusters in the protein universe is scale-

free (Dokholyan et al. 2002).  When structural similarity is used to define connectedness across 

a network representation of protein space, the connected network components follow a scale-

free distribution of sizes that is significantly different from what could be expected in randomly 

generated networks. Structural data was also used to estimate the global shape of the three-

dimensional representation of protein space (Hou et al. 2003). This representation took place in 

linear, Euclidian space, though it has been suggested in another recent paper that the geometry 

of protein space is highly nonlinear (Farnum et al. 2003).   Embedding proteins across the 

surface of a stochastically determined multidimensional manifold better preserves the 

sequence-defined distances between them than a dimensionally-equivalent embedding in linear 

Euclidian space.  
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These research efforts support the conjecture that the protein universe adheres to a definitive, 

geometric structure. Implicitly, the above mentioned publications describe certain definite, 

shared features of spatially organized protein datasets that would be lacking in a randomly 

generated protein distribution.  Just as the periodic table is more scientifically significant than a 

random arrangement of elements, certain spatial arrangements of proteins must be more 

correct than others. While the precise nature of this “correctness” has not yet been explicitly 

defined, we may nevertheless infer of its existence based on protein patterns observed in 

published literature. It is therefore reasonable to hypothesize that, like the periodic table, the 

protein universe is not a mere interpretational abstraction but is representative of an actual 

underlying physical reality. If this hypothesis is true, then each proposed arrangement of the 

protein universe is only correct to the degree with which it captures that reality. Potentially, 

there is single physical interpretation of the protein universe, and if true, then the geometry of 

the proteome in protein space must not be subject to multiple constructions. Rather, there 

should exist a single valid PSG corresponding directly to tangible relationships between the 

proteins in that space. Thus, the logical extension of the aforementioned hypothesis is that all 

mappings of protein space which do not completely capture this one valid geometry are not 

correct. 

The existing body of literature gives credence to the hypothesis regarding a single correct 

interpretation of protein space geometry. Unfortunately, despite the progress being made, 

there have as of yet been no serious efforts to completely map out the geometry of the protein 

universe for the purposes of optimally characterizing all unknown proteins.  This is because any 

such effort would be for the most part subjective. Currently in the literature, there is no method 

of quantifying how well a proposed map of the protein universe matches the actual geometry of 



8 
 

protein space. If two labs publish two different mappings of the proteome in protein space, 

there is no objective way to determine which mapping is more correct.  

What is missing is an agreed-upon metric of quality for distinguishing between two geometries 

that vary in accuracy. The lack of metric is not surprising, given that no consensus exists on how 

to define a valid protein space geometry. Adequately quantifying an input PSG is a very difficult 

problem. Current scientific literature shows no recorded attempts to determine if a solution is 

possible.  The goal of this thesis is to take preliminary steps that may eventually yield a 

resolution. We lay the groundwork for developing a metric capable of quantifying the 

significance of data points distributed in protein space.   

1.2 CONTRIBUTION 

Certain complex scientific dilemmas first require solutions to simplified versions of the problem 

presented. Unraveling the micro-problem may lead to valuable insights into the greater 

dilemma as a whole. This is the approach we have chosen to take in our search for a 

quantitative metric. Rather than tackle the protein universe in its entirety, we have focused on 

constructing and understanding a simplified organizational framework for analyzing protein 

sequence data.  We embedded in the framework two key protein universe properties: clustering 

and topology. Our framework takes as input protein sequences, which are then clustered into 

discrete families.  Afterwards, the clusters are bounded topologically into sets of neighbors and 

non-neighbors.  This straightforward organizational technique allows us to better explore a 

question fundamental to the protein universe itself: how does one evaluate the biological 

significance of spatially organized protein data?  
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For our simplified framework we are able to provide an answer.  Our solution, like Mendeleev’s, 

rests on the predictive properties of the organizational framework at hand. Mendeleev was able 

to justify his periodic table because the table accurately predicted the existence of unknown 

elements.  We are likewise able to justify certain structured features of our organized protein 

sequence data based on the accuracy of predictions made from the topological relationships 

across the protein clusters in that data. We hypothesize that the true geometry of the protein 

universe may be validated using a similar prediction-based approach. 

1.3 SYNOPSIS 

This thesis is structured as follows: we build a protein sequence framework from the ground up, 

focusing first on clustering, then on topological relationships between clusters, and finally on 

justifying the topological relationships using a testable prediction technique. Chapter 2 of the 

thesis presents a modified technique for better clustering of protein sequences into families. 

Chapter 3 applies this technique to a protein sequence dataset in order to yield hypothetical 

functional classifications for unknown proteins within that data. Chapter 4 discusses a technique 

that yields topological relationships across the protein sequence clusters. These topological 

relationships are examined qualitatively using reliable phylogenetic information. Finally, Chapter 

5 presents a prediction algorithm that takes as input an organized protein sequence topology 

and outputs testable functional predictions pertaining to the proteins in question. The quality of 

the predictions may be used to justify the protein sequence topology itself, indicating that it is 

possible to measure the accuracy of spatially structured protein data. 
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Chapter 2 

Clustering Protein Similarity Networks into Families 
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Improving the Quality of Protein Similarity Network Clustering 
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Abstract 

Motivation: Clustering protein sequence data into functionally specific families is a difficult but 

important problem in biological research. One useful approach for tackling this problem involves 

representing the sequence dataset as a protein similarity network, and afterwards clustering the 

network using advanced graph analysis techniques. Although a multitude of such network 

clustering algorithms have been developed over the past few years, comparing algorithms is 

often difficult because performance is affected by the specifics of network construction. We 

investigate an important aspect of network construction used in analyzing protein superfamilies 

and present a heuristic approach for improving the performance of several algorithms. 
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Results: We analyzed how the performance of network clustering algorithms relates to 

thresholding the network prior to clustering. Our results, over four different datasets, show how 

for each input dataset there exists an optimal threshold range over which an algorithm 

generates its most accurate clustering output. Our results further show how the optimal 

threshold range correlates with the shape of the edge weight distribution for the input similarity 

network. We used this correlation to develop an automated threshold selection heuristic in 

order to most optimally filter a similarity network prior to clustering. This heuristic allows 

researchers to process their protein datasets with runtime efficient network clustering 

algorithms without sacrificing the clustering accuracy of the final results. 

2.1 INTRODUCTION 

In the last decade, there has been an explosion in the available protein sequence data. 

Currently, the Uniprot database contains approximately 11 million protein sequences and is 

growing exponentially (Apweiler et al., 2004); a very large proportion of these proteins have not 

been experimentally characterized. Computational clustering approaches can provide an 

important means to deciphering the functions of these uncharacterized proteins in an efficient 

way. Recent efforts in this area, discussed below, have focused on developing and testing 

algorithms for clustering proteins by functional similarity based only on sequence data. These 

algorithms go beyond traditional clustering approaches, such as hierarchical and k-means, which 

require advance knowledge approximating the number of functional groups present in order to 

either cluster effectively or to interpret clustering output correctly. Rather, these algorithms rely 

on the network properties of a protein sequence dataset to cluster the data into functional 

groups without any prior knowledge of the group identities (Schaeffer, 2007). 
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Network clustering algorithms take as input a protein similarity graph (Noble et al., 2005). 

Vertices in the graph represent individual proteins, while edges represent the pairwise sequence 

similarities between the proteins. Often, BLAST (Altschul et al., 1997) scores are used as edge 

weights. Subsequent to input, the similarity graph is processed by the network clustering 

algorithm to identify distinct groups of nodes in the graph that in many cases correspond to 

groups of proteins that share the same function. 

How the similarity graphs are processed varies with each clustering algorithm. In general, most 

network clustering approaches may be assigned to one of two categories; geometry-based and 

flow-based (Frivolt and Pok, 2006). Geometry-based approaches, such as Force (Wittkop et al., 

2007), Regularized Kernel Estimation (Lu et al., 2005), spectral clustering (Paccanaro et al., 2006) 

and TransClust (Wittkop et al., 2010) embed the protein graph into high-dimensional space and 

then group the nodes into clusters based on spatial proximity. Flow-based approaches, such as 

the Markov Clustering Algorithm (MCL; Enright et al., 2002) and Affinity Propagation (Frey and 

Dueck, 2007) model the possible flow of information between nodes based on edge weight. 

How the information congregates across groups of nodes then determines the final output of 

clusters. 

The differences between these two categorizes of algorithms reflect a difference in 

performance. Geometry-based approaches such as Force rely on non-linear calculations 

between pairwise elements in the similarity graph, leading to potentially long execution times. 

Flow-based approaches such as MCL rely on simple matrix and vector multiplication, which leads 

to relatively short execution times. However, it has been shown that Force outperforms MCL for 

certain similarity graphs (Wittkop et al., 2007), making the hours to seconds difference in run 

times a worthwhile performance trade-off. 
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While comparative performance of various network clustering algorithms has been examined in 

great detail in the literature, there remains a property of network clustering that warrants 

additional investigation. The protein similarity graphs themselves are treated as static objects 

when used as input to the algorithms. These graphs, however, are not static but rather exhibit a 

variety of dynamic properties when studied over a series of different edge weights (Atkinson et 

al., 2009). As the threshold for allowing edge weight inclusion is adjusted, the similarity graphs 

break and regroup into varying representations of protein similarity when visualized using an 

edge weighted network layout algorithm (Fruchterman and Rheingold, 1991). By viewing the 

graph behavior over a range of thresholds with a network visualization tool such as Cytoscape 

(Shannon et al., 2003) or BioLayout (Enright and Ouzounis, 2001), a researcher may observe 

degrees of protein similarity that are not visible in the complete, unthresholded graph. In other 

words, given a graph, one particular threshold may be more optimal for analysis than another. 

It was our goal to examine how dynamic graph thresholding relates to the various network 

clustering approaches. We set out to answer a number of important questions. Given a protein 

similarity graph and a network clustering algorithm, does a threshold exist at which network 

clustering performance is optimal? If so, how does the optimal threshold vary across different 

graphs and different categories of network clustering algorithms? Given an uncharacterized 

protein similarity graph, can we estimate the optimal edge weight threshold from the properties 

of the graph itself, prior to clustering? 

We used two representative and well-studied network clustering algorithms for our analysis, 

Force and MCL. Our results are somewhat surprising. For any of our four datasets (see below) 

and the two network clustering algorithms, there is a range of thresholds over which algorithm 

performance will be near optimal. This threshold range does not necessarily include zero, the 
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threshold at which the graph remains completely unfiltered. More importantly, our research 

shows that the optimal threshold range for any given similarity graph is dependent on the edge 

weight distribution across that graph. These findings allowed us to test a heuristic for estimating 

thresholds within the optimal range using network properties pertaining to the edge weight 

distribution. Applying our automated threshold selection heuristic prior to clustering improves 

performance for both Force and MCL. In addition, automated threshold selection bridges the 

gap between Force and MCL in comparative accuracy analysis. We also tested the threshold 

heuristic on three other clustering algorithms. The use of a threshold yielded improvement, but 

MCL continued to outperform all other algorithms after a threshold was applied. As a result, we 

believe researchers may now more confidently use the time-efficient MCL clustering technique 

for most of their protein sequence analysis needs. 

2.2 METHODS 

2.2.1 Dataset Selection 

Protein sequence datasets from four well-studied superfamilies were used in our study. Each 

superfamily is composed of individual families categorized by a distinct set of functions. This 

allowed us to test cluster performance based on how well individual clusters overlap with 

functionally characterized protein families. Two of the superfamilies, Enolase (Gerlt et al., 2005) 

and Amidohydrolase (Seibert and Raushel, 2005), represent enzymes that perform catalytic 

functions. These superfamilies are available as a ‘gold standard’ set of well-characterized 

mechanistically diverse enzyme superfamilies (Brown et al., 2006) in the Structure-Function 

Linkage Database (Pegg et al., 2006). A third dataset was composed of sequences from a recent 

study on the solute-carrier transferase (SLC) superfamily (Schlessinger et al., 2010). The final 
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dataset contained sequences from the extensively studied Kinase superfamily (Manning et al., 

2002). A total of 1174 amidohydrolase sequences, 1308 enolase sequences, 696 SLC sequences 

and 527 kinase sequences were used in our study. 

Of course, this data represents just a small sampling of each superfamily. For amidohydrolase 

alone, there are over 20 000 known members. Nonetheless, the families in each dataset 

represent a diverse sampling of sequence–structure–function relationships which are not trivial 

to distinguish from one another. Certain superfamily members in the dataset share nearly 

identical sequences, with a few amino acids accounting for the different functions they perform 

(Seffernick et al., 2001). More divergent families often share similar structural elements in which 

at least the active site residues associated with the superfamily-common partial reaction are 

conserved despite sharing a low level of sequence identity (Glasner et al., 2006). Thus, our 

sampling of superfamily data provides good test cases for measuring algorithm performance. 

2.2.2 Computing the Similarity Network 

For all four datasets, we carried out an all-by-all BLAST search using a custom database built 

from all sequences in the dataset. Four such runs were executed for each of the four families. 

The BLAST expectation value (E-value) cutoff for each search was set to one. Next, each protein 

was treated as a node in the similarity network. Whenever a BLAST alignment was returned 

between two proteins in the dataset, we connected these proteins with an edge. Each edge was 

given a weight equivalent to the −log of the BLAST e-value. Of course, using such a relaxed 

cutoff value produces a dense network where virtually every node is connected to every other 

node. 
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2.2.3 Evaluating Clustering Performance across an Edge Weight Threshold 

Range 

Each superfamily similarity network was filtered across a consecutive series of edge weight 

thresholds, ranging from zero to 100. At each threshold, all edges below the threshold were 

removed from the network. The filtered similarity network was then clustered using both Force 

and MCL. Clustering performance for each algorithm was quantified through F-measure, an 

evaluation criterion previously used both to study and compare multiple protein clustering 

techniques (Paccanaro et al., 2006; Wittkop et al., 2007) as well as in other areas of research 

where clustering is used (Chim and Dang, 2007). F-measure, ranging in value from zero to one, 

allowed us to compare the performance of both algorithms over the entire threshold range. 

To compute the F-measure, we characterized all pairs of proteins classified as belonging to the 

same functional family as true positives and all pairs of proteins classified as belonging to 

different families as true negatives. Each clustering run estimated the identities of the families, 

with respect to the family assignments in each dataset, leading to a count of true positives, false 

positives, true negatives and false negatives in the clustered data. These four values were then 

used to compute precision (P) and recall (R), which were then used to generate the F-measure 

using the formula 2*P*R/(P + R). An F-measure of 0.5 or less indicates clustering performance 

that was no better than random. An F-measure of 0.9 or more indicates very accurate clustering 

performance, because both high precision and high recall are desirable, and the F-measure 

reflects both these values as their arithmetic mean (Rodriguez-Esteban et al., 2009). 

2.2.4 Analyzing the Edge Weight Distribution 
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In order to test how threshold selection relates to the similarity network edge weight 

distribution, we computed the edge weight histogram for each of the four superfamily 

networks. The number of edges in each network at each threshold value was counted and 

plotted. For binning purposes, we rounded the –log of the edge weights to the nearest integer. 

The edge weight histogram plot could then be overlaid with the thresholded clustering 

performance data to test for a relationship between performance and the shape of the 

distribution. 

To better overlay distribution shape and clustering performance, we normalized each edge 

weight distribution. Normalization was carried out by first selecting the edge weight bin 

containing the greatest edge count. Next, the edge count in each edge weight bin was divided 

by this maximum value. This resulted in a distribution whose value at each edge weight ranged 

from zero to one. This range also corresponds to the range of F-measure, allowing us to view 

clustering performance and edge weight distribution shape using a single axis in our plots. 

2.2.5 Designing and Testing an Automated Edge Weight Threshold 

Selection Heuristic 

Network-based clustering algorithms group protein sequences into clusters that ideally 

correspond to functional families by estimating the edges that most likely connect proteins 

belonging to the same cluster based on network topology. These techniques arise directly from 

graph theory, and therefore do not consider certain biological properties relevant to our 

networks of interest. In particular, a purely topological analysis does not explicitly take into 

account that proteins with very low sequence identity are less likely to perform the same 

function as proteins with greater similarity (Ponting, 2001). With this assumption in mind, we 
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aimed to design a simple threshold selection heuristic for automatically prefiltering a protein 

similarity network prior to clustering. 

In order to do so, we first needed to study the properties of the similarity network edge weigh 

distribution, and how these properties overlap with Force and MCL clustering performance. 

These observations, discussed in Section 2.3, led to the direct development of a threshold 

selection heuristic. The details and logic behind our heuristic are discussed in Section 2.3.4. 

Suspecting our heuristic would arise from specific details pertaining to the Force and MCL 

clustering algorithms, we expanded the scope of our evaluation beyond these two clustering 

approaches by choosing three additional biological network clustering algorithms for testing. 

Using each algorithm, we clustered all four networks, both in their unthresholded state as well 

as at the threshold determined using our heuristic. We used this comparison to evaluate 

whether the automatically selected threshold generally leads to better clustering performance. 

The three additional algorithms selected for testing our heuristic were TransClust, Spectral 

Clustering of Protein Sequences (SCPS) (Paccanaro et al., 2006) and Affinity Propagation. The 

first two of these were designed to cluster protein similarity networks and the third is a general 

purpose clustering algorithm. TransClust is a geometrical layout-based clustering algorithm 

similar to Force, designed to cluster proteins into families directly. SCPS is a variation of spectral 

clustering. Unlike most spectral clustering algorithms, SCPS does not require the number of 

clusters to be known in advance. SCPS was designed with the purpose of clustering protein 

sequences into superfamilies, but its capacity to cluster proteins into families has not yet been 

explored. Affinity Propagation has been suggested as an alternative to MCL for protein 

interaction networks (Vlasblom et al., 2009). The diversity of purpose behind these approaches 
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gave us additional reason to measure their ability to cluster proteins into families, relative to 

Force, MCL, and each other, under both thresholded and unthresholded conditions. 

2.3 RESULTS 

2.3.1 Edge Weight Distribution Shape 

Figure 2.1 shows the clustering performance for all four datasets over the threshold range. 

Clustering performance has been overlaid with the normalized edge weight distribution 

associated with each dataset. 

The edge weight distributions for all four datasets share similar characteristics. The maximum 

point in each distribution is located at a very low edge weight value, at or near zero. As the edge 

weight value increases, the normalized edge count begins to decay. It descends from the 

maximum value of one towards a small value between 0.1 and zero. In three of the four 

distributions (Fig. 2.1A, B and D), a second, much smaller peak is also present. The smaller local 

maximum is located further along each distribution, at a larger edge weight value. Eventually, as 

the edge weight increases, each edge weight distribution drops to a value of zero and does not 

rise again. 

The four edge weight distributions may be further subdivided into two broad categories based 

on the rate with which each distribution descends from the maximum toward the local 

minimum. In the Amidohydrolase and SLC distributions (Fig. 2.1A and B, respectively), the 

descent is immediate, occurring over a range of less than five edge weight bins. In the Enolase 

and Kinase distributions (Fig. 2.1C and D, respectively), the descent is more gradual, occurring 

over a range of 20 or more edge weight bins. We refer to the former as rapid-descent 

histograms, and the later as gradual-descent histograms. 
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______________________________________________________________________________ 

 

Fig. 2. 1. Clustering performance and edge weight distributions. Each plot shows the F-measure 

clustering performance metric for both the Force and MCL clustering algorithms over a range of 

binned −log(E-value) thresholds, together with a normalized edge weight distribution. (A) 

Amidohydrolase; edge weight distribution is rapid-descent. (B) SLC; edge weight distribution is 

rapid-descent. (C) Enolase; edge weight distribution is gradual-descent. (D) Kinase; edge weight 

distribution is gradual-descent. 

______________________________________________________________________________ 

2.3.2 MCL Performance over Threshold Range 
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MCL algorithm performance follows the same general trend for all four datasets. Initially, the 

unthresholded MCL clustering results produce a low-performance F-measure. For three of the 

four datasets (Fig. 2.1A, C and D), the initial MCL F-measure is below 0.5. The MCL inflation 

parameter is known to influence the granularity of the clustering. We therefore explored the 

impact of alternate inflation parameters on the initial MCL F-measures for these superfamilies 

(Supplementary Table S2.1). These alternate inflation values did not yield significant 

improvements. 

As the edge weight threshold increases and the edge weigh distribution begins to decrease from 

the maximum, the MCL performance increases in quality. When the edge weight distribution 

approaches the local minimum, the MCL performance measure finally plateaus at its maximum 

value. For three of the four datasets (Fig. 2.1A, B and D), the maximum performance plateau is 

above 0.9. Finally, as the edge weight distribution decays completely to zero, MCL performance 

also drops significantly. Since MCL performance is greatly dependent on the shape of the edge 

weight distribution, it is not surprising that performance improves at a greater rate and plateaus 

at a lower threshold in the rapid-descent histograms than it does in the gradual-descent 

histograms. 

2.3.3 Force Performance over Threshold Range 

Force algorithm performance diverges across the two categories of edge weight distributions. In 

the two rapid-descent histograms, Force performs well even when no initial threshold is 

present. Force performance for both the rapid-descent histograms lies between 0.8 and 0.9 at 

edge weight zero. Performance then rises to approximately 0.9 as additional thresholds are 

considered. Eventually, when the threshold becomes too great, Force performance quickly 

decays in a manner similar to MCL performance. These results indicate that thresholding 
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provides the Force clustering algorithm with little additional benefits when a rapid-descent 

distribution is present. Furthermore, unthresholded Force clustering will outperform 

unthresholded MCL clustering in a rapid-descent histogram. 

For the two gradual-descent histograms, the opposite holds true. Initially, unthresholded Force 

performance is poor, falling below 0.5. As the threshold rises from zero, performance increases. 

This increase, however, is more gradual than the increase in MCL performance over the same 

threshold range. Eventually, Force performance plateaus at a maximum value equal to the best 

MCL performance. However, because of the gradual performance increase, Force reaches its 

maximum value at a greater threshold than MCL. Eventually, the threshold becomes too large, 

and algorithm performance decays. 

2.3.4 Developing an Automated Threshold Selection Heuristic from Edge 

Weight Distributions 

As the edge weight distribution drops rapidly, we observe an increase in clustering quality. From 

these observations, we may assume that at low-level thresholds, most of the edges removed 

exist between protein families. The presence of these intercluster edges is effectively noise, 

which impacts the overall clustering results. Eventually, when the threshold is high enough, a 

boundary is reached at which most intercluster edges have already been removed. The 

boundary represents the optimal threshold separating intercluster edges from intracluster 

edges. At this boundary, the protein family components may begin to be affected by the 

filtration process, and certain loosely connected nodes may break off from the main network. 

However, the final increase in clustering precision overcomes any decrease in clustering recall, 

and the overall clustering quality noticeably improves. Thus, we would like to use this as our 
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threshold in order to maximize the filtration of intercluster edges while minimizing the 

disruption of the protein family clusters. 

Our goal was to estimate this boundary automatically, without knowing in advance the identity 

of the proteins in the network. We heuristically approximated this boundary b using two 

available network properties. The first property, Nn(Th), is the number of nodes connected by 

one or more edges at threshold Th. The second property is SE(Th), the number edges remaining 

after threshold Th is applied. We combined these two properties into a single network summary 

value, Nsv, where Nsv(Th) = SE(Th)/Nn(Th). Conceptually, Nsv(Th) is equivalent to the average 

weighted node degree at threshold Th. 

We chose to examine Nsv because its derivative with respect to the threshold, dNsv(Th)/dTh, 

could potentially reveal interesting behaviors pertaining to the network. At low value 

thresholds, most of the filtered edges are between families, while the individual family 

components remain strongly connected. At these thresholds, the value of SE decreases while 

the value of Nn(Th) remains stable. Thus, as we begin to increase the threshold and filter out the 

noisy intercluster edges, we expect the value of dNsv(Th)/dTh to be negative. 

When Th = b, we expect most intercluster edges to have been already removed. We also expect 

a few poorly connected outlier nodes to disconnect completely from the network, leading to a 

decrease in Nn(Th). SE(Th) will also continue to decrease, but at a lesser rate then at lower 

thresholds, due to a slowdown in the initial rapid decay observed in the edge weight 

distribution. If the decrease Nn(Th) is great enough, and the decrease in SE(Th) is low enough, 

then the value Nsv may actually increase. In this case, dNsv(Th)/dTh will take on a positive value 

at a threshold proximate to the boundary, but not at lower thresholds. This leads to the 

following threshold estimation heuristic: b is approximate to the minimum threshold Th at 
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which dNsv(Th)/dTh > 0. If Nsv does not increase at any point in the distribution, then no 

threshold is returned. 

We applied this heuristic to all four networks, generating thresholds of 1.0 for SLC, 1.0 for 

Amidohydrolase, 20.0 for Enolase and 69.0 for Kinase. Plots of dNsv(Th)/dTh for all four 

networks are available in the Supplementary Figure S2.1. The heuristically determined 

thresholds lead to a performance increase in three of the four datasets (Fig. 2.1A, C and D) for 

both the Force and MCL algorithms, relative to the unthresholded performance of these same 

algorithms. For the fourth dataset (Fig. 2.1B), thresholding leads to an increase in MCL 

performance and a slight decrease of .01 in Force performance. For all four datasets, MCL 

performance at the heuristically determined threshold is greater than Force performance at that 

same threshold. 

We qualitatively confirmed the improvement in clustering quality by visualizing the generated 

clusters prior to and after filtering with the heuristically determined thresholds described above 

(Figs 2.2 and 2.3) using Cytoscape (Shannon et al., 2003), a biological network visualization and 

analysis tool with both MCL and Force clustering capabilities, and through the use of its 

ClusterMaker plugin (http://www.cgl.ucsf.edu/cytoscape/cluster/clusterMaker.html). 

Visualization was carried out by removing all edges from each similarity network that did not 

correspond to pairs of proteins within the same cluster. Afterwards, the clusters within each 

network were made visible through Cytoscape's Organic layout, which is a force-directed layout 

algorithm similar to Fruchterman-Reingold (Fruchterman and Rheingold, 1991). Nodes in the 

visualized network were colored by known protein family assignment to allow for visual 

assessment of clustering quality. 
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______________________________________________________________________________ 

 

Fig. 2.2. Visualizing MCL Clusters for the SLC Superfamily. Each set of clustering results has been 

visualized in Cytoscape using the Force-directed layout algorithm. Each node represents a 

protein, colored by the currently best available family assignments. Edges between nodes that 

are not in the same cluster have been removed from the similarity network prior to 

visualization. The unthresholded clustering results are shown in (A) and the thresholded 

clustering results are shown in (B). The same thresholded network is shown unclustered in 
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Supplementary Figure S2.4b. The mapping of node colors to family assignments is shown in 

Supplementary Figure S2.5a. 

______________________________________________________________________________ 

Figure 2.2A shows the unthresholded MCL clustering output for the SLC superfamily, where 

many false negatives are present. Multiple proteins belonging to the same family are grouped 

across distinct clusters, instead of being grouped together. In Figure 2.2B, the heuristically 

selected threshold has been applied and the number of false negatives has correspondingly 

decreased. Eliminating certain redundant edges between subsets of proteins within families 

prevents these subsets from clustering into distinct groups. As a result, more proteins within the 

same family are clustered together. 

Figure 2.3A shows the unthresholded MCL clustering output for the kinase superfamily. The two 

resulting clusters provide little discrimination among sequences that are known to belong to 

different functional families. Figure 2.3B shows the corresponding change in clustering output 

after applying a heuristically selected threshold. Many of the families that have previously 

clustered together now separate out into their own distinct clusters. This same pattern as seen 

in the kinase family also holds for Amidohydrolase (Supplementary Fig. S2.2) and Enolase 

(Supplementary Fig. S2.3) superfamilies. 

Visualization of the clustering of well-annotated protein families reaffirms that the increase in F-

measure values after automated thresholding corresponds to a genuine increase in clustering 

quality. Thresholding eliminates false positives in some networks, and eliminates false negatives 

in others, leading to a relevant improvement in the accuracy of the final clustered results. 

Visualizing the thresholded networks prior to clustering (Supplementary Fig. S2.4) emphasizes 

the role of thresholding in the improvement of clustering quality. When the thresholded SLC, 



28 
 

______________________________________________________________________________ 

 

Fig. 2.3. Visualizing MCL Clusters for the Kinase Superfamily. Each set of clustering results has 

been visualized in Cytoscape using the Force-directed layout algorithm. Each node represents a 

protein, colored by the currently best available family assignments. Edges between nodes that 

are not in the same cluster have been removed from the similarity network prior to 

visualization. The unthresholded clustering results are shown in (A) and the thresholded 

clustering results are shown in (B). The same thresholded network is shown as unclustered in 
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Supplementary Figure S2.4d. The mapping of node colors to family assignments is shown in 

Supplementary Figure S2.5b. 

______________________________________________________________________________ 

Amidohydrolase and Enolase networks are displayed using a force-directed layout, the 

boundaries between individual families clearly become visible, even though edges continue to 

connect the families. In the thresholded Kinase network, clusters of individual families separate 

out completely, resulting in high-quality input for any protein family-specific clustering 

algorithm. 

To investigate further why families separate out from the thresholded Kinase network, but not 

from the other three datasets, we hypothesized that this network consisted of tightly connected 

Kinase families with unusually high edge weights. To confirm this, we calculated the average 

edge weight within families, and also between families, for each of the four datasets 

(Supplementary Table S2.2). We found that while the average intrafamily edge weight for Kinase 

ranked highly at 99.7, the average intrafamily edge weight for Enolase ranked even higher at 

114.9. The key to understanding what made Kinase distinct lay in the average edge weight 

between families. The average interfamily edge family edge weight for Kinase was very low, at 

13.8, relative to its high intrafamily edge weight. Furthermore, the Kinase superfamily was the 

only dataset assigned a threshold greater than its average interfamily edge weight. In the other 

three datasets, our heuristic assigned a threshold that filters some but not all of the intercluster 

edges. From these results, we draw the conclusion that our threshold heuristic will filter out 

some network noise without completely disrupting network connectively, except in those cases 

when there is a significant difference between interfamily and intrafamily edge weights. 
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Additionally, our results showed that the average intrafamily edge weights for SLC and 

Amidohydrolase were 38.7 and 51.6, respectively. This leads us to hypothesize that the 

difference in the shape of gradual-descending and rapid-descending distributions is related to 

the connectivity between families. In the two rapid-descending datasets, connectivity exists at 

lower edge weights, resulting in a more rapid transition between interfamily edges and 

intrafamily edges. We believe this more rapid transition results in a more rapid edge weight 

decay, as observed in our plots. 

2.3.5 Automated Threshold Selection Performance on Additional 

Clustering Algorithms 

Table 2.1 lists the performance of the MCL, Force, TransClust, SPCS and Affinity Propagation 

algorithms for both the unthresholded networks, as well as the networks filtered using our 

automated threshold selection heuristic. MCL outperforms the other four algorithms, but only 

when the automated threshold is applied. 

TransClust ranks third in clustering performance. Both the thresholded and unthresholded SLC 

networks score an F-measure of 0.87. The thresholded Kinase network scores an F-measure of 

0.82, improving significantly from the unthresholded F-measure of 0.15. Thresholding the 

Enolase and Amidohydrolase networks also improves the TransClust output, but not to a 

significant extent. Both these thresholded networks score an F-measure of less than 0.70. 

SCPS performs exceedingly poorly when its primary parameter values remain unchanged. 

Although clustering improvements are observed in all four networks after thresholding is 

applied, F-measure values score below 0.70 for three of our four datasets. In an effort to 

improve these, we attempted to adjust the SPCS epsilon parameter, which is responsible for  
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______________________________________________________________________________ 

Table 2.1. F-measure scores of clustering algorithms for thresholded and unthresholded 

superfamilies. 

 Amidohydrolase SLC Enolase Kinase 

 U T U T U T U T 

MCL 0.48 0.92 0.57 0.90 0.43 0.83 0.15 0.87 

Force 0.87 0.86 0.86 0.87 0.43 0.74 0.15 0.84 

TransClust 0.49 0.59 0.87 0.87 0.46 0.66 0.15 0.82 

SCPS 0.30 0.37 0.12 0.65 0.40 0.65 0.15 0.88 

SCPS 

Epsilon=1.1 
0.33 0.37 0.70 0.80 0.40 0.72 0.15 0.88 

AP 0.16 0.16 0.14 0.15 0.14 0.17 0.16 0.16 

 

Force ranks second in overall performance. It produces results with F-measure greater than 0.80 

for two of the unthresholded networks and three of the thresholded networks. The fourth 

thresholded network, Enolase, scores an F-measure of 0.74 under Force. This is a great 

improvement over the unthresholded F-measure of 0.43, but is still less than the 0.83 F-measure 

associated with the MCL clustering of the thresholded Enolase network. 

______________________________________________________________________________ 

tighter clustering at higher values. By sampling the epsilon parameter along increments of 0.01, 

we determined that an epsilon value of 1.1 leads to better clustering than the primary epsilon 

value of 1.0. At epsilon 1.1, SCPS clustering of the thresholded SLC and Kinase networks results 

in F-measure scores that are equal to or greater than 0.80. The thresholded F-measure for 

Enolase is 0.72, which is a significant improvement over the unthresholded F-measure of 0.40. 
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Unfortunately, the Amidohydrolase F-measure remains exceedingly poor, scoring at less than 

0.40, even after thresholding. 

Affinity Propagation is unable to cluster the four protein networks into functionally meaningful 

families. All F-measures fall below 0.20. Sampling alternate Affinity Propagation parameters did 

not yield the improvement. 

In order to confidently reconfirm these quantitative observations, we recalculated the clustering 

table using the Geometric Separation statistic (Brohee and van Helden, 2006) initially developed 

to compare the quality of protein interaction network clustering approaches. The Geometric 

Separation results (Supplementary Table S2.3) confirm the conclusions drawn from the F-

measure table. The use of an automatically selected threshold improves the Separation statistic, 

and the thresholded MCL Separation scores rank the highest relative to the other clustering 

algorithms in the table. 

2.4 DISCUSSION 

The results indicate that the shape of a protein similarity network edge weight distribution 

correlates with how well the network clusters over a range of thresholds. It is this relationship 

between the distribution and clustering potential that allows our simple threshold selection 

heuristic to improve the quality of clustering results in the variety of networks we studied. This 

is in contrast to the more complicated approach taken by Harlow et al. in which they performed 

single linkage hierarchical clustering on MCL results (Harlow et al., 2004). Although these 

observations are limited to superfamily-based sequence similarity networks of medium size, 

they nonetheless represent a valuable step in solving the difficult problem of clustering proteins 

into family groups that may be informative of their different functions. Researchers interested in 
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clustering larger, more diverse datasets may now efficiently group the data into superfamilies 

using algorithms like SCPS, and afterwards clustering each superfamily into families with the aid 

of our threshold selection heuristic. 

Our results also show that MCL outperforms other common algorithms in the task of clustering 

proteins into families, after the appropriate threshold is applied. The Force algorithm ranks 

second. This is in contrast to previous research (Wittkop et al., 2007), which showed Force 

outperforming MCL, as indicated by F-measure. Previous performance comparisons have all 

been carried out on unthresholded networks. The conclusion that Force outperforms MCL is to 

be expected when network thresholding is not taken into account. Based on our results, when a 

threshold is not provided, Force outperforms MCL in a network containing a rapid-descent edge 

weight distribution and performs just as poorly as MCL in a network with a gradual-descent 

edge weight distribution. However, as we have demonstrated, an appropriate threshold is easy 

to extract from an input edge weight distribution. Once that threshold is applied, MCL performs 

as well as or better than Force. By extending both algorithms to include a preliminary 

automated threshold selection step, the performance difference between the two approaches 

can be minimized. 

Eliminating the performance gap between Force and MCL is an important development because 

of the large difference in execution times of the two algorithms. As the size of the network 

increases, the execution time required for running Force goes up significantly (Wittkop et al., 

2007). On a modern desktop computer, the Amidohydrolase network takes 5 h to cluster with 

Force, while MCL clusters the same network in less than 2 min under the same conditions. Given 

this difference in runtime, and our results that show MCL clustering quality is equal to or better 

than Force after a heuristically selected threshold is applied, we argue that MCL should be the 
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algorithm of choice. This choice can be especially important when processing large high-

throughput protein similarity datasets. For example, the Amidohydrolase superfamily has more 

than 20 000 members. Using the current implementation of Force would not be feasible for 

such a superfamily. Applying heuristically selected thresholding to such a massive dataset allows 

us to cluster the proteins using the faster-performing MCL algorithm without fear of sacrificing 

accuracy for the sake of speed. 

Finally, our general comparison of biological network clustering approaches illustrates the 

importance of properly distinguishing between categories of networks prior to selecting an 

appropriate clustering algorithm. Not all biological networks are equal, and not all network-

related problems are equal. Although most of the algorithms we tested showed improvement 

after thresholding, not all algorithms improved equally. This is because some algorithms are 

more adept for certain types of problems than for others. SCPS, which was designed to group 

large sequence sets into superfamilies, clustered reasonably well but did not score as high as the 

more family-specific MCL and Force algorithms. Affinity Propagation, a general purpose 

algorithm for clustering nodes in networks, had difficulty in processing protein similarity 

networks of the scale used here. Thus, it is vital for researchers to proceed with caution before 

selecting a clustering algorithm appropriate for the problem at hand. 

Ultimately, application of sequence similarity networks for functional inference requires 

clustering results that correspond, to the extent possible, with functionally relevant 

relationships. A critical step in achieving this goal is automated clustering of sequence 

similarities without benefit of knowledge about their functional properties. As illustrated here, 

our approach provides a useful heuristic to improve network clustering in this regard. More 
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research will be required, however, to better understand the relationship of functional 

divergence to clustering of sequences using similarity networks. 

2.5 CONCLUSIONS 

We have examined the role that edge weight distribution plays in network clustering and shown 

how it may be used to improve the performance of several popular network clustering 

algorithms. Our automated threshold selection heuristic provides a simple approach for 

determining an appropriate threshold for network clustering. This threshold may then be 

employed to eliminate the current gap in clustering quality between MCL and other algorithms, 

thus alleviating the need to incur the heavily penalty in execution time needed with alternate 

algorithms such as Force. In addition our results, as shown in Table 1, suggest that thresholding 

generally improves clustering quality for four out of the five tested clustering algorithms. In the 

context of using protein similarity networks for functional inference, the significant 

improvement in clustering quality for these algorithms suggests that any future algorithms 

designed for this application include a threshold heuristic. 

More importantly, our research demonstrates that the predictive potential of the similarity 

network edge weight distribution is an area of study worth exploring in more detail. Future 

examination of edge weight distributions may help produce better threshold selection 

approaches, as well as possibly leading to the development of more accurate network clustering 

algorithms. Furthermore, additional study of edge weight distribution shape could also provide a 

deeper understanding of protein similarity networks as a whole. 

2.6 SUPPLEMENTARY FIGURES AND TABLES 
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______________________________________________________________________________ 

 

Fig. S2.1. Network summary value (Nsv) from our threshold selection heuristic. Each plot shows 

the first derivative of Nsv with respect to the threshold. The minimal threshold at which the 

derivative equals a positive value is marked by a dashed line: (A) Amidohydrolase; threshold of 

1.0. (B) SLC; threshold of 1.0. (C) Enolase; threshold of 20.0. (D) Kinase; threshold of 69.0.  

______________________________________________________________________________ 
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Fig. S2.2. Visualizing MCL clusters for the Amidohydrolase superfamily. Each set of clustering 

results has been visualized in Cytoscape using the Force-directed layout algorithm. Each node 

represents a protein, colored by the currently best available family assignments. Edges between 

nodes that are not in the same cluster have been removed from the similarity network prior to 

visualization. The unthresholded clustering results are shown in (A) and the thresholded 

clustering results are shown in (B). 

______________________________________________________________________________ 
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Fig. S2.3. Visualizing MCL clusters for the Enolase superfamily. Each set of clustering results has 

been visualized in Cytoscape using the Force-directed layout algorithm. Each node represents a 

protein, colored by the currently best available family assignments. Edges between nodes that 

are not in the same cluster have been removed from the similarity network prior to 

visualization. The unthresholded clustering results are shown in (A) and the thresholded 

clustering results are shown in (B). The same thresholded network is shown unclustered in 

Supplementary Figure S2.4b. The mapping of node colors to family assignments is shown in the 

legend to the right of the clusters. 

______________________________________________________________________________ 
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Fig. S2.4. Visualizing the thresholded networks prior to clustering. Applying the automatically 

selected thresholded filters out noise from each network, making the boundary separations 

between clusters of families more pronounced after visualization. Nonetheless, three of the four 

networks remain connected after thresholding, indicating that the post-thresholding process of 

clustering these networks is not a trivial matter. In the fourth, Kinase network, the clusters 

separate out completely after thresholding. (A) Amidohyrolase. (B) SLC. (C)Enolase. (D) Kinase.  

______________________________________________________________________________ 
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Fig. S2.5. The mapping of node colors to family assignments for the SLC and Kinase 

superfamilies. 

____________________________________________________________________________________________________________ 
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Table S2.1. Exploring inflation parameter for MCL clustering 

Inflation_Parameter Amidohydrolase SLC Enolase Kinase 

1 0.43 0.55 0.47 0.14 

1.5 0.47 0.55 0.41 0.14 

2 0.48 0.57 0.43 0.15 

2.5 0.50 0.49 0.46 0.28 

3 0.72 0.40 0.48 0.29 

3.5 0.62 0.36 0.43 0.37 

4 0.47 0.31 0.43 0.37 

4.5 0.34 0.29 0.43 0.38 

5 0.25 0.26 0.43 0.37 

 

The left-most column lists the MCL inflation parameter, ranging from 1 to 5 (2 is the standard 

default, shown in bold). The next four columns represent each of the four superfamilies. Each 

cell in the body of the table contains the F-measure associated with an unthresholded 

superfamily network that clustered using MCL, with the corresponding inflation parameter. 

Note that no value of the MCL inflation parameter produces results as high in performance as 

thresholded networks. 

______________________________________________________________________________ 
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Table S2.2. Average edge-weights, by category, within the superfamily networks 

 
Average Interfamily 

Edgeweight 
Average Intrafamily 

Edgeweight 

Amidohydrolase 
6.74 51.58 

SLC 
4.22 38.7 

Enolase 
52 114.93 

Kinase 
13.83 99.69 

 

The left-most column lists the four superfamilies. The next two columns list the average edge 

weights between families, and within families for each superfamily network.  Note that the 

average interfamily edge family edge weight for kinase is very small, 13.8, relative to its large 

intrafamily edge weight.  Because edge weights are –log(e-value) of Blast scores, larger values 

are more statistically significant. 

______________________________________________________________________________ 
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Table S2.3. Geometric separation scores across clustering algorithms for thresholded and 

unthresholded superfamilies. 

 Amidohydrolase SLC Enolase Kinase 

 U T U T U T U T 

MCL 0.39 0.58 0.47 0.76 0.27 0.44 0.21 0.76 

Force 0.44 0.47 0.75 0.75 0.25 0.30 0.31 0.56 

TransClust 0.35 0.38 0.78 0.80 0.20 0.35 0.31 0.56 

SCPS 

Epsilon=1.1 
0.20 0.32 0.44 0.69 0.25 0.40 0.20 0.80 

AP 0.29 0.19 0.25 0.25 0.22 0.24 0.23 0.27 

 

The left-most full column of the table lists the clustering algorithms tested. The next four full 

columns represent the Geometric Separation scores, as described in Brohee and van Helden, for 

clustering results across each of the four superfamilies. Each full superfamily column subdivides 

into two sub-columns; U and T. U represents the Geometric Separation for the clustered, 

unthresholded superfamily networks. T represents the Geometric Separation for the clustered, 

thresholded superfamily networks. Geometric separation scores are an alternate means of 

evaluating relative clustering algorithm performance, but the conclusions drawn from this table 

are similar to those shown in Table 2.1. 

______________________________________________________________________________ 
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Chapter 3 

Using Aggregated Network Clustering Techniques 

to Hypothesize the Functions of Uncharacterized 

Proteins 

A portion of the material in this chapter has been published in 

BMC Bioinformatics as: 

clusterMaker: A Multi-algorithm Clustering Plugin for Cytoscape  

John H. Morris*, Leonard Apeltsin*, Aaron M. Newman*, Jan Baumbach, Tobias 

Wittkop, Gang Su, Gary D. Bader, Thomas E. Ferrin 

*These authors contributed equally to this work. 

 

Abstract 

Motivation:  In the post-genomic era, the rapid increase in high-throughput data calls for 

computational tools capable of integrating data of diverse types and facilitating recognition of 

biologically meaningful patterns within them.  For example, large protein similarity networks 

may be clustered in a variety of ways, and proper visualization of the clustering results is a 
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necessary step to better understanding possible identities of uncharacterized proteins in the 

networks. Here we present clusterMaker, a Cytoscape plugin that implements several clustering 

algorithms and provides network views of the results.   

Results: We analyzed the vicinal oxygen chelate (VOC) superfamily enzyme using the 

clusterMaker plugin. Based on the clustering output, we were able to explore in detail the 

possible annotation of a protein as a methylmalonyl-CoA epimerase within the VOC superfamily. 

We also used alignment data to hypothesize the possible identities of other clustered proteins 

over various grades of likelihood.  

3.1 INTRODUCTION 

More than 40% of all known proteins lack any annotations within public databases (Jaroszewski 

et al., 2009) As a result, millions of proteins are completely uncharacterized. Nothing about 

them is known other than sequence and possibly predicted domain architectures.  

Bioinformatics techniques can allow us to filter through this immense collection of unknowns 

and assign a subset of the proteins some predicted biological characterization. A simple way to 

carry out large-scale functional prediction is through protein similarity network clustering. 

Under this approach, all characterized and uncharacterized proteins are represented as nodes in 

a network. Edge-weights between nodes reflect the sequence similarity between each pairwise 

set of proteins.  Network clustering algorithms can then organize the network based on 

predicted functional similarity. Predicted functions may afterwards be assigned to a subset of 

unknowns that cluster together with functionally characterized proteins. 

Of course, clustering all available protein sequence is an exceedingly difficult problem from a 

computational standpoint. A simpler approach is to provide researchers with the tools to cluster 
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their individual sequence datasets of interest. This approach is advantageous because large 

protein databases frequently aggregate an assortment of smaller, more particularized databases 

from a multitude of research labs. Each individual database might contain no more than a few 

hundred or a few thousand sequences, tailored to specific laboratory interests.  Some of these 

sequences will likely be unknowns, included because of similarity to other proteins in the set.   

There are many algorithms that have been applied to the clustering and categorization of 

proteins. These include Spectral Clustering of Protein Sequences (SCPS; Paccanaro et al., 2006), 

TransClust (Wittkop et al., 2010), Markov Clustering Algorithm (MCL; Enright et al., 2002), 

Affinity Propagation  (Frey and Dueck, 2007), and FORCE (Wittkop et al., 2007). Ideally, we 

would like to cluster input sequence datasets using a subset of these algorithms in order to both 

quantitatively and visually observe the consistency of the categorization. Unfortunately, there 

are no tools that provide a convenient platform for linking multiple protein clustering algorithms 

with a straightforward interface for visualization and analysis. The absence of such tools for 

hypothesis formulation and protein categorization will grow even more significant as new 

experimental results and techniques become available.  

A promising foundation for development in this area is Cytoscape (Shannon et al., 2003), an 

open-source, cross-platform software package for visualizing and analyzing biological networks.  

Cytoscape provides an extensive plugin application programming interface (API) that allows 

programmers to extend the native capabilities of Cytoscape to provide new functionality. We 

used this API to implement clusterMaker, a plugin that links 10 common clustering algorithms 

with Cytoscape’s built-in data visualization capabilities. While existing clustering approaches 

have not proven to be sufficient to provide definitive categorization of proteins, these 

approaches can be extremely useful as initial steps in an overall curation pipeline. 
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clusterMaker allows researchers and database curators to rapidly cluster their datasets and 

immediately compare the resulting output through visual analysis. By mapping protein function 

to visualized node properties, the curator may immediately discern those clusters that include 

both the unknowns and the functionally characterized proteins. The availability of multiple 

clustering algorithms allows the curator to assign a greater confidence to those predictions that 

appear consistently across multiple clustering outputs.  Working with clusterMaker allows the 

curator to rapidly generate new functional predictions for immediate public use. This approach 

can significantly reduce the overall curation timeline, particularly in the early stages of analysis 

before other approaches such as Hidden Markov Models (HMMs) are applicable. 

In this chapter, we examine the use of clusterMaker as a curation aid for the Structure-Function-

Linkage Database (SFLD – sfld.rbvi.ucsf.edu). The SFLD is a gold-standard resource tool linking 

sequence information from mechanistically diverse enzyme superfamilies to their characterized 

structural and functional properties (Pegg et al., 2006).  The SFLD provides a three-level 

classification for proteins: superfamily –  proteins that catalyze the same partial reaction, family 

– proteins that catalyze a unique reaction, and subgroup – a mid-level classification containing 

multiple families with shared functional residue motifs. All sequences in the SFLD are assigned a 

superfamily classification, but in numerous cases, family and subgroup assignments remain 

incomplete. clusterMaker allowed us to hypothesize the possible identities of multiple 

uncharacterized sequences within the SFLD.  

3.2 METHODS 

3.2.1 Implementation 
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clusterMaker (http://www.rbvi.ucsf.edu/cytoscape/cluster/clusterMaker.html) is implemented 

as a plugin to the Cytoscape package.  clusterMaker extends Cytoscape’s capabilities by adding 

implementations of various clustering algorithms and associated visualizations and linking those 

in an intuitive fashion to the network visualization provided by Cytoscape. clusterMaker is 

entirely written in Java to allow easy portability to any platform supporting the Java virtual 

machine. 

clusterMaker exposes parameters for each clustering algorithm.  When a user selects an 

algorithm, a dialog appears for specifying the node or edge attributes to use for the data source, 

along with any algorithm-specific parameters, such as the expansion factor for MCL. All of the 

clustering methods allow selection of a single edge attribute for clustering.  For network 

clustering algorithms this is assumed to be a distance metric.  If no attribute is provided, a 

default distance value of one is assigned to each edge in the network.  Each of the ten 

algorithms provided by clusterMaker has been ported into the clusterMaker source to provide a 

consistent user interface and operation. 

clusterMaker provides an intuitive visualization for viewing the clustering results of protein 

similarity networks constructed using any of the following network clustering algorithms: 

Affinity Propagation, MCL, SCPS, MCODE (Bader and Hogue, 2003), GLay (Su et al., 2010), and 

TransClust. Each newly constructed network shows only the intra-cluster edges (all inter-cluster 

edges are dropped). The network is automatically laid out using the Cytoscape force-directed 

layout.   The user may also choose to add the inter-cluster edges back in after the network has 

been laid out to highlight inter-cluster relationships. 

Cytoscape 2.8.1 with clusterMaker plugin version 1.8 loaded was used for all of the analyses 

described here.  Cytoscape is available from http://www.cytoscape.org and the clusterMaker 
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plugin is available through the Cytoscape plugin manager.  clusterMaker exports a number of 

Cytoscape commands to allow other Cytoscape plugins to take advantage of the visualizations 

and algorithms it provides. 

3.2.2 Data Sources 

From the 23 available superfamilies present in the SLFD, we have chosen to cluster the vicinal 

oxygen chelate (VOC) superfamily which comprises a group of metal-dependent enzymes that 

share a common fold motif and catalyze a variety of reactions (Armstrong et al., 2000). This 

superfamily is a particularly difficult superfamily to discriminate specific functions due to 

multiple, perhaps serial permutations and other rearrangements in its evolutionary history 

(Babbitt, 2011). 

The VOC superfamily dataset was composed of 10,437 protein sequences, partially classified 

among along seven subgroups and 17 families. Less than half of these sequences included both 

a family and subgroup classification. 224 sequences contained a subgroup classification but not 

a family classification. The remaining 168 sequences were completely uncharacterized. 

3.2.3 Protocol 

The SFLD data analysis interface allowed for the immediate importing of the VOC superfamily 

into Cytoscape using the “download network” button in the “Sequence Similarity” sub-section of 

the toolbox menu with an e-value cutoff of 1e-1. Nodes in the network represent individual 

proteins, with family and subgroup classifications already specified among the properties of the 

nodes. Edges in the network represent protein similarities based on the BLAST e-values of each 

pairwise sequence alignment. 
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______________________________________________________________________________ 

 

Fig. 3.1. Protein similarity network clustering indicates possible family membership for 

uncharacterized proteins. (A) A distribution of edge weights (binned –log(E-values)) of the VOC 

superfamily is shown, with a cutoff value of 5.5 indicated by a red vertical line.  The cutoff was 

determined by a heuristic described in the previous chapter and was used for subsequent 

clustering. (B) MCL clusters for the VOC superfamily are displayed with nodes colored by family 

assignment. Red nodes represent proteins with unknown function.  (C) Four clusters within the 

MCL clustering results show only proteins from a single family or proteins of unknown function. 

These clusters are easily distinguished from all other MCL clustering results in B. Three of these 

four clusters also appear in the TransClust results. 

______________________________________________________________________________ 
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After we loaded the network, we used clusterMaker to heuristically generate a cutoff prior to 

clustering. clusterMaker implements an automated cutoff selection heuristic, which selects a 

cutoff based on properties of the network edge weight distribution (Figure 3.1A). This heuristic, 

described in detail in the previous chapter, has been shown to improve the accuracy with which 

a protein similarity network gets clustered into families (Apeltsin et al., 2011). A heuristically 

determined cutoff value of 5.5 was used for all our clustering runs here. 

We ran three clustering algorithms on the VOC dataset: MCL, TransClust and SCPS. No initial 

parameters were altered other than the number of MCL iterations, which we raised from eight 

to 15. Clustering outputs were then visualized by coloring each node based on the known family 

assignments for each enzyme. This allowed us to immediately pick out those clusters which 

were composed of a single characterized family and multiple uncharacterized nodes. We then 

compared the presence of such clusters across all of our clustering results.  

3.3 RESULTS 

Prior to visualizing the clustering results, we examined the number of clusters returned by each 

algorithm. MCL generated 26 clusters and TransClust generated 28 clusters. These numbers 

adequately approximated the presence of 17 distinct families in 50% of the VOC dataset. SCPS 

on the other hand, generated only four clusters, which indicated an overabundance of false 

positives in the SCPS clustering data. We therefore disregarded the SCPS clusters and focused 

our comparison on the MCL and TransClust clustering results. 

The TransClust and MCL results (Figure 3.1B) are dominated by uncharacterized proteins 

(colored red in the figure). Certain clusters are composed entirely of uncharacterized proteins,  

which makes it impossible to hypothesize their function solely from this data. Other clusters are 
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composed of uncharacterized proteins as well as two more families, as indicated by two or more 

additional colors in the nodes. These heterogeneous clusters also give little indication as to 

which families to assign to uncharacterized proteins and suggest that sequence information 

alone is not enough of a discriminant to functionally assign these proteins. The most interesting 

clusters contain just two colors, representing the grouping of uncharacterized proteins with a 

single VOC family. These clusters allow us to hypothesize the identity of the uncharacterized 

proteins. 

Three such single-family clusters are present in almost equal measures across both the 

TransClust and MCL results (Figure 3.1C), one of which is the methylmalonyl-CoA epimerase 

subgroup of 50 proteins (see arrow in Figure 3.1C). This includes the nine characterized 

members of the methylmalonyl-CoA epimerase family and 41 sequences that lack a family 

classification in the SFLD, although they are in the same subgroup. The size of the cluster is 52 in 

the TransClust results and 53 in the MCL results. The additional few nodes represent sequences 

lacking a subgroup classification and that appear in both the TransClust and MCL results, 

suggesting that putatively assigning these to the methylmalonyl-CoA epimerase subgroup would 

be reasonable.  

In an effort to seek out additional evidence of family and subgroup membership, we explored in 

some detail one of the uncharacterized proteins within the methylmalonyl-CoA epimerase 

cluster. The hypothetical (predicted) protein BH2212 from Bacillus halodurans (gi:15614775) 

lacks both a family and subgroup assignment. We aligned its sequence with that of 

methylmalonyl-CoA epimerase from Propionibacterium shermanii (gi:15826388). Four of the five 

functionally critical active site residues align perfectly with the uncharacterized sequence.  

These four residues bind the active-site metal ion needed for catalysis. In the initial alignment,  
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Table 3.1. HMM alignments of clustered uncharacterized proteins to critical active site 

residues within the families and subgroups into which they cluster 

Gi Number Family Cluster Subgroup Residues Align Family Residues Align 

15895460 Methylmalonyl-CoA epimerase Yes No 

23099316 Methylmalonyl-CoA epimerase Yes No 

15614775 Methylmalonyl-CoA epimerase No No 

13473208 2,6-dichlorohydroquinone 

dioxygenase 

No Yes 

27365357 

 

Glyoxalase I Yes Yes 

21243096 
 

Glyoxalase I Yes Yes 

23011551 
 

Glyoxalase I Yes Yes 

15902908 
 

Glyoxalase I Yes Yes 

30021288 
 

Glyoxalase I Yes Yes 

48825814 
 

Glyoxalase I Yes Yes 

29346990 
 

Glyoxalase I Yes Yes 

21401095 
 

Glyoxalase I Yes Yes 

7488556 
 

Glyoxalase I No No 

27886881 
 

Glyoxalase I Yes Yes 

19703698 
 

Glyoxalase I Yes Yes 

15806698 
 

Glyoxalase I No No 

22958029 
 

Glyoxalase I Yes Yes 

29841036 
 

Glyoxalase I No No 

15790201 
 

Glyoxalase I Yes Yes 

27382600 
 

Glyoxalase I Yes Yes 

29831945 
 

Glyoxalase I No No 

23121587 
 

Glyoxalase I Yes Yes 
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17552228 
 

Glyoxalase I No No 

15889727 
 

Glyoxalase I Yes Yes 

15900839 
 

Glyoxalase I Yes Yes 

16080888 
 

Glyoxalase I Yes Yes 

6625562 
 

Glyoxalase I No No 

27380436 
 

Glyoxalase I No No 

 

The first column identifies the uncharacterized protein. The second column indicates the family 

into which it clusters. The third column indicates whether or not the critical active site residues 

in the subgroup all align with the unknown. The final column indicates whether or not the 

critical active site residues in the family align with the unknown. 

______________________________________________________________________________ 

the fifth residue, a glutamic acid that abstracts a proton from the substrate, is shifted by one 

position, but minor editing can align it as well without degrading the rest of the alignment. Thus, 

the unknown protein is most likely capable of binding the active site metal and may also 

perform the epimerization of (2R)-methylamonyl-CoA.   

As part of a wider analysis, we aligned each uncharacterized protein with all sequences from the 

family and subgroup into which it clustered. These alignments were carried out using the built-in 

alignment functionality of the SFLD, in which precomputed hidden Markov models (HMMs) help 

ensure the accuracy of the final alignment. For every uncharacterized sequence, we recorded 

whether or not the HMM alignment with the family and subgroup resulted in a complete 

overlap among the functionally critical residues (Table 3.1), as defined in the SFLD. For 19 

uncharacterized sequences, the overlap between functionally critical subgroup residues was 
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perfect. 17 of these sequences also included a perfect overlap with the functional critical 

residues in the clustered family. All of these 17 sequences clustered with the glyoxalase I family. 

3.4 DISCUSSION 

Our results indicate that it may well be possible to use clustering algorithms in combination with 

alignment techniques in order to rank the likelihood with which an unknown protein might 

perform a particular function relative to other uncharacterized proteins in the dataset. An 

uncharacterized protein that falls within a family cluster may be more likely perform the family’s 

function than a protein which clusters outside of the family. A uncharacterized protein that falls 

into a family in both the TransClust and MCL results is also likely a better candidate for 

characterization then a protein which clusters solely within the TransClust results. If the family’s 

functionally critical residues align well with the clustered unknown, it further increases the 

likelihood of the protein’s characterization into that family. By this last standard, 17 of the 

unknown proteins that cluster within the glyoxalase I family are the most likely candidates for 

categorization explored in our study. 

However, in order to definitively validate the hypothesized functions of the clustered 

uncharacterized proteins, experimental testing is necessary. The clustering techniques discussed 

in this chapter are excellent hypothesis generation tools, but the correlation between various 

granularities of clustering results and actual functional likelihood has not yet been rigorously 

studied from a statistical standpoint. Future work will focus on not only confirming the VOC 

superfamily clustering results, but also exploring the interplay between clustering, alignment 

and function across other superfamily datasets. In the meantime, researchers may use the 

clusterMaker plugin to guide the selection of appropriate functional testing techniques in their 

efforts to more efficiently characterize large protein datasets.  
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3.5 CONCLUSIONS 

clusterMaker is an important addition to the suite of Cytoscape plugins. The protein similarity 

clustering algorithms provided by the plugin allow for easier curation of large protein datasets. 

Our application of clusterMaker to the VOC superfamily demonstrated how the plugin may be 

used to potentially categorize new proteins whose function is not yet known. While all such 

categorization efforts must eventually be tested experimentally, clusterMaker nonetheless 

offers a valuable tool for hypothesis generation in the data curation process.  

3.6 SUPPLEMENTARY FIGURES  
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______________________________________________________

 

Fig. S3.1. Results of clustering the VOC superfamily using clusterMaker’s Transitivity Cluster 

implementation. 

______________________________________________________________________________ 
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Chapter 4 

A Network Filtration Protocol for Elucidating 

Relationships between Families in a Protein 

Similarity Network 

Abstract 

Motivation: The study of diverse enzyme superfamilies can provide important insight into the 

relationships between protein sequence, structure and function.  It is often challenging, 

however, to discover these relationships across a large and diverse superfamily. Contemporary 

similarity network visualization techniques allow researchers to aggregate sequence similarity 

information into a single global view. Network visualization provides a qualitative estimate of 

functional diversity within a superfamily, but is unable to quantitate explicit boundaries, when 

present, between neighboring families in sequence space. This limits the potential of existing 

sequence-based algorithms to generate functional predictions from superfamily datasets. 

Results: By building on current network analysis tools, we have developed a new algorithm for 

elucidating pairs of homologous families within a sequence dataset. Our algorithm is able to 

filter through a dense similarity network in order to estimate both the boundaries of individual 

families and also how the families neighbor one another. Globally, these neighboring families 

define a topology across the entire superfamily. The topology is simple to interpret by visualizing 
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the network output generated by our filtration protocol. We have compared the network 

topology within the kinase superfamily against available phylogenetic data. Our results suggest 

that neighbors within the filtered kinase network are more likely to share structural and 

functional properties than more distant network clusters. 

4.1 Introduction 

Some homologous but highly divergent sets of proteins have evolved to perform substantially 

different molecular functions.  These include a wide range of membrane transporters (George et 

al., 2004) as well as mechanistically diverse enzyme superfamilies (Pegg et al., 2006). 

Mechanistically diverse enzyme superfamilies are sets of evolutionarily related proteins with 

similar structural and functional properties. All members of such superfamilies share the same 

structural scaffold and use a conserved subset of active site residues that can be associated with 

an underlying aspect of catalysis, often a partial reaction (Babbitt and Gerlt, 1997), (Babbitt and 

Gerlt, 2001). A superfamily can further be subdivided into individual families. Each family 

catalyzes a unique overall reaction which, together with a distinct set of catalytic residues, 

differentiates it from all the other families in the set (Pegg et al., 2005). Each individual family 

within a superfamily can usually be further differentiated by its substrates and products.  

Given a superfamily with a few hundred or more protein sequences, it would be valuable to 

summarize how families within the superfamily relate to one another. More specifically, we 

would like to extract individual families from the dataset and determine which pairs of families 

share the strongest degree of functional similarity with each other. We restrict ourselves here 

only to sequence information because it is widely available and provides us access to large 

amounts of data. Aggregating these pairs of “neighboring” families allows us to define a 
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topology that in some cases can be associated with functional transitions within the superfamily 

and this, in turn, is helpful in predicting the function of previously uncharacterized sequences.   

Determining superfamily topology without first knowing the identities of the protein families in 

the data set is not an easy task. It requires us to calculate boundaries in sequence space based 

solely on sequence similarity while keeping in mind that the relationships between sequence, 

structure, and function within a protein superfamily are complex and far from clear. Two closely 

related superfamily members may share nearly identical sequences, with a few amino acids 

accounting for the different functions they perform (Seffernick et al., 2001). More divergent 

families within a superfamily may still share a similar structure in which at least the active site 

residues associated with the superfamily-common partial reaction are conserved despite sharing 

a low level of sequence identity (Brenner et al., 1998), (Glasner et al., 2006). Consequently, we 

are unable to draw reliable conclusions from local sequence-sequence comparisons. 

Fortunately, when we aggregate all local sequence comparisons into large-scale protein 

similarity networks, the results we obtain are much more informative (Enright and Ouzounis, 

2000) although they typically lack sufficient resolution to detect topological boundaries between 

neighboring families. The approach we describe here builds on available similarity network 

analysis techniques to design a process for identifying topological boundaries in a given 

superfamily sequence set.    

Much of the current research in the field of sequence similarity network analysis has focused on 

qualitative analysis based on network visualization. Tools such as BioLayout (Enright and 

Ouzounis, 2001) and CLANS (Fickey and Lupas, 2004) are able to take an all-by-all BLAST-scored 

(Altschul et al., 1997) network associated with a set of protein sequences and output a visual 

representation of that network in two-dimensional and three-dimensional space, respectively. 
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They do this by employing the Fruchterman-Reingold force-directed layout algorithm 

(Fruchterman and Reingold, 1991), which models the network as a physical network in Euclidian 

space. The algorithm places the nodes in the network into visually discernible clusters whose 

distance to one another is a function of their connectivity and BLAST scores. These groups might 

represent subsets within a monofunctional family, or a collection of strongly related families. 

Individual groups close to each other in Euclidian space may represent functionally separable 

families that are nonetheless very similar to one another. The groups that are far apart due to 

little or no direct connectivity (as can be captured using BLAST as a comparison tool) are a result 

of sequence divergence. As the distance between groups increases, the degree of functional 

overlap between proteins represented in the network decreases (Adai et al., 2004). By 

visualizing these spatial properties of a network, we obtain a reasonable global representation 

of all sequence data within a superfamily.  

While network visualization is a useful tool for hypothesis generation, it does not always 

accurately define a topology between functional classes of proteins within a superfamily. In 

order to improve the definition of topology, it is first necessary to delineate boundaries between 

all distinct pairs of neighboring families in a manner that best approximates functional 

differences. Visualization constrains us to label these boundaries using cluster distributions in 

two or three-dimensional space. The network itself, however, is a multidimensional object. If we 

do not know in advance the distribution of network variance across all possible dimensions we 

run the risk of inferring the incorrect topology based on statistically insignificant distances 

(Vlachos et al., 2002). 

Even if we ignore the issue of dimensionality, we are still unable to accurately determine 

topology between functionally distinct protein clusters using just the visual representation of a 



66 
 

network. As the number of edges between neighboring clusters increases in large networks, the 

visual representation deteriorates.  With the Fruchterman-Reingold force-directed layout 

algorithm noted above, clusters are drawn towards one another by the attractive force 

proportional to the number of connecting edges. Eventually, the proximity between the clusters 

blurs the spatial border between them and multiple clusters merge into a single large cluster. 

The user of the network visualization tool is then left with an incomplete representation of the 

topological relationships between families in the dataset.  

Little previous work has been done to address the issue of visual complexity resulting from 

excess edges in similarity networks. One current approach is to select a threshold and remove 

all edges with weights below the threshold (Medini et al., 2006). The threshold is manually 

adjusted until a value is reached that eliminates many redundant edges while maintaining 

network connectivity. This approach falls short, however, because not all clusters in the network 

share equal connectivity. When using a threshold suitable for a majority of edges in the 

complete network, clusters of outliers connected to the core of the network with very low edge 

weights may break away, or clusters with multiple poorly weighted connections will 

disintegrate. It is therefore difficult to maintain network connectivity, which is needed to 

determine topology, while filtering edges using only a single threshold value. 

The goal of the work we describe here is to develop a better filtration approach that maintains 

network connectivity while highlighting both individual clusters and the topological relationships 

between them. To do so, we focus on a quantitative analysis of the clusters within similarity 

networks. The automated clustering of proteins into families based solely on connectivity within 

protein similarity networks is an expanding area of research. Building on graph theory-based 

network clustering techniques (Frivolt and Pok, 2006), algorithms such as TribeMCL (Enright et 
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al., 2002) and RANKPROP (Noble et al., 2005) attempt to isolate tightly integrated sets of nodes 

using criteria such as edge density and edge weights. These algorithms are parameterized to 

classify protein sequences into unique families using alignment-based protein similarity 

networks.  The clusters they compute are likely to correspond with spatial clusters of nodes that 

aggregate together in a force-directed layout, but because the clustering is not based on the 

spatial proximity of nodes, dimensionality is not an issue. 

By clustering the nodes in the network, followed by further analysis, we are able to achieve an 

effective filtration protocol for reducing the number of edges within a network and elucidating 

the topology in the associated data set. We accomplish this by first clustering the network into 

sets of tightly connected components. All edges outside the clusters are then removed from the 

network, leaving isolated clusters. Next, the clusters are reconnected by reinstating a small set 

of best-scoring edges between nodes in different clusters. Edges added back into the network 

represent the boundary between pairs of neighboring clusters and define the topological 

structure of sequences in the dataset. Finally, we visualize the filtered network using a force-

directed layout. The layout of the filtered network qualitatively highlights the topology spanning 

the clusters, allowing for more intuitive hypothesis generation. 

4.2 Methods 

4.2.1 Outline of the Network Filtration Protocol 

Given an all-by-all BLAST-scored protein similarity network, we want to filter it such that 

individual families within the network fall into obviously distinguishable clusters and that the 

sequences most optimally connecting the separate clusters are visible within the network. The 

protocol for accomplishing this can be summarized as follows: 
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1. Compute an all-by-all protein similarity network using BLAST; 

2. Cluster the nodes in the network and remove all edges that do not connect two nodes in 

the same cluster; 

3. Reconnect the clusters using the minimum number of reasonably weighed edges; 

4. Visualize the network using a force directed layout algorithm. 

4.2.1.1 Computing the Similarity Network 

For any input data set, we carry out an automated BLAST search for every sequence in either the 

NCBI NR database using default parameters, or a custom database built from selected input 

sequences. Although skewed expectation values result from running a custom BLAST search 

compared to running a search against the much larger NCBI NR database, this skew is 

unimportant relative to the topology of the network itself.  The BLAST expectation value (e-

value) cutoff for each search is set to one in order not to miss possible connections, although 

this e-value does not represent a statistically significant match. 

Each protein is treated as a node in the similarity network. Whenever a BLAST alignment is 

returned between two proteins in the data set, we connect these proteins with an edge. Each 

edge is given a weigh equivalent to the –log of the BLAST e-value. 

4.2.1.2 Clustering the Network 

After computing the similarity network, we carry out clustering using techniques discussed in 

Chapters Two and Three. We prefilter the network and run MCL in order to cluster the nodes 

into families. MCL is our algorithm of choice because of its speed and its reliability when a 

threshold is applied.  
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4.2.1.3 Reconnecting the Clusters 

After we have isolated the clusters, our goal is to reconnect these clusters using a minimal 

subset of edges from the original all-by-all network. We strive to reconnect clusters by 

maximizing the connectivity between closely related clusters while minimizing the presence of 

redundant edges. We accomplish this by computing edges from all possible minimum spanning 

trees (Prim, 1957) connecting all clusters, using a modified version of Kruskal’s algorithm 

(Kruskal, 1956). These edges, defining the topology between clusters, are added back into the 

network. Edge weights are rounded to integer values when computing all minimum spanning 

trees to help address the noisy nature of BLAST e-values. The detailed procedure for our cluster 

reconnection algorithm is as follows: 

1. Create an empty graph list gL and an empty edge list eL. Go to step 2. 

2. For each cluster X outputted by tribeMCL, create a graph gX such that all edges from the 

original unfiltered network connecting the nodes in X are present in gX. Add gX to list 

gL. Go to step 3. 

3. Select all intercluster edges from the unfiltered network that are not present in any 

graph gX in gL. Add these edges to eL. Go to step 4. 

4. Sort edges in eL from largest to smallest edge weight. Go to step 5. 

5. If the length of eL is zero, return all nodes and edges present in gL. This is the final 

filtered network. Otherwise go to step 6. 

4.2.1.4 Visualizing the Network 

We visualize the final filtered network in Cytoscape (Shannon et al., 2003), an open-source Java-

based program originally designed to display protein-protein interaction networks. Cytoscape 
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allows users to assign multiple attributes to the nodes and edges of a given network and then 

map a set of colors to these attributes. For example, those nodes that represent functionally 

categorized proteins can be assigned a color based on their family identity. Edges can also be 

assigned a color based on whether or not they connect nodes from neighboring clusters, as well 

as on the statistical significance of the corresponding edge weight. The final network is then 

displayed using Cytoscape’s “organic” layout, a force-directed layout algorithm available within 

the “yfiles” plugin and a standard part of the Cytoscape distribution. 

4.2.2 Data Set Selection 

4.2.2.1 Designing the Protocol 

In order to design our filtration protocol, we used a gold standard collection of manually 

annotated sequences (Brown et al., 2006) from the enolase superfamily (Babbitt et al., 1996).  

We downloaded 681 enolase sequences from the Structure Function Linkage Database (SFLD) 

(Pegg et al., 2006). We used this dataset for the development of our protocol because it 

represents a highly divergent superfamily in which families evolve at variable rates. All edge-

weights were derived using the NCBI NR database.  

4.2.2.2 Testing the Significance of the Generated Network Topologies  

It has long been established that evolutionary proximity corresponds to structural and functional 

similarity (Perutz et al., 1965). Protein families rooted directly from the same branch point in a 

phylogenetic tree share a higher degree of similarity than families that are not. With this axiom 

in mind, we decided to compare how network topology relates to evolutionary branching in a 

well-studied phylogenetic tree. Our goal was not to correlate topology with evolution, but 
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rather to examine the manner in which protein structural and functional similarities could be 

inferred from a network.   

To generate a test dataset, we focused on the kinase superfamily (Manning et al., 2002). In a 

recent study (Scheeff and Bourne, 2005), the phylogenetic tree for the kinases was generated 

using rigorous stochastic optimization (Ronquist and Huelsenbeck, 2003) that incorporates both 

sequence and structural information. The resulting tree encompasses the evolutionary history of 

21 kinases, each from a unique family. The families divide into nine different kinase functional 

classes. We searched for these families in the KinBase [http://kinase.com/kinbase/] and 

KinaseNet [http://www.kinasenet.org] kinase sequence databases. Thirteen of the families were 

found in one or both of the databases. These families encompassed all nine classes, and 

encapsulated a total of 527 sequences. We used the sequences to generate a filtered network 

representation of the kinase superfamily. All edge-weights were derived using a custom 

database, rather than the NCBI NR database, for the purpose of quicker computation. 

 4.3 RESULTS 

4.3.1 Visualizing the Topology in the Enolase Superfamily Network 

We compared the unfiltered enolase superfamily network from our development dataset to the 

network output by our filtration protocol. Figure 4.1 shows the unfiltered network.  Each node is 

labeled a distinct color based on the carefully curated family assignment contained in the SFLD. 

The color coding of nodes in Figure 4.1 makes clear the strong presence of family based clusters 

within the similarity network. The boundaries between the clusters, however, are generally not 

clear. It is also difficult to see, through a purely qualitative analysis, how the families transition 

from one cluster to another. Furthermore, while we observe the presence of certain separate  



72 
 

______________________________________________________________________________ 

 

Fig. 4.1 Unfiltered Enolase similarity network. Edge-weighed force-directed representation for 

the pairwise BLAST similarities in the enolase superfamily. Nodes of the same color group 

together in two-dimensional space, but it is difficult to distinguish which nodes are responsible 

for the transition between neighboring families.   Certain large spatial clusters are composed of 

nodes belonging to multiple families. While the nodes in a given family do tend to co-locate, this 

is only discernible due to their shared color scheme.  This would not have been visible if the 

identities of these families were not known prior to generating the network.  

______________________________________________________________________________ 

clusters due to the color coding based on characterized family assignment, a researcher 

visualizing a previously uncharacterized superfamily for which high quality annotation is 

unavailable would likely be unable to distinguish between adjacent components of the network.  
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The corresponding filtered network is shown in Figure 4.2A and demonstrates the final output of 

our network filtration protocol. The enolase superfamily has been separated into clearly 

distinguishable components by our protocol, corresponding, for the most part, to known protein 

families. These components are connected by edges that designate pairs of components as 

neighbors. Edge color defines how closely the components neighbor one another, with the least 

significant edges shown in blue. The topological relationships between components are easy to 

detect by direct inspection of the network layout. 

The overall connectivity of the family relationships within the enolase superfamily fail in some 

cases to reflect relationships inferred from highly curated observations derived using 

experimental methods. For example, the blue edges shown in Figure 4.2A connecting the 

OSBS/NSAR and the enolase [family] cluster reflect e-values that range from 10-0.29 -  10-0.74. 

Because they are both of low statistical significance and highly complex, the most difficult of the 

family relationships to capture for this superfamily are those relating the families in the 

muconate lactizing enzyme (MLE) subgroup.  

4.3.2 Structure, Function, Topology and Evolution in the Muconate 

Lactonizing Enzyme Subgroup 

4.3.2.1 Introduction to the Muconate Lactonizing Enzyme Subgroup 

The MLE subgroup is a well-studied subset of the enolase superfamily (Glasner et al., 2006). Our 

enolase dataset represents six catalytic reactions from the MLE subgroup. These include 

muconate cycloisomerase (MLE I), choloromuconate cycloisomerase (MLE II), Dipeptide 

epimerase (DipEp), N-succinylamino acid racemase (NSAR), and o-succinylbenzoate synthase 

(OSBS). Proteins in the OSBS family are particularly difficult to classify because they are highly 
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divergent. Some members share less than 15% pairwise sequence identity with other members 

of the family. Additionally, certain OSBS enzymes are capable of catalyzing both OSBS and NSAR 

reactions (Palmer et al., 1999; Sakai et al., 2006).  Despite this divergence and promiscuity, 

careful phylogenetic analysis has revealed that members of the OSBS family (including the 

OSBS/NSAR enzymes) are monophyletic and more closely related to one another than they are 

to other families in MLE subgroup (Glasner et al., 2006).  

We wanted to explore how this messy interplay of sequence, structure, function, and evolution 

within the MLE subgroup correlates with network topology.  We therefore examined in more 

detail the topology of the subgraph in the filtered enolase network corresponding to the MLE 

subgroup (Figure 4.2B).  

4.3.2.2 Clustering the MLE Subgroup 

The MLE I and MLE II families, which catalyze very similar isomerization reactions, group 

together in a single cluster. The DipEp family is split across four clusters of sizes one, 11, 15, and 

32, respectively.  As expected, the divergent OSBS family was distributed across multiple clusters 

of various sizes. Seven clusters were composed of only a single node. Five clusters each 

contained between three and eight nodes. The remaining three clusters contained between 12 

and 27 nodes. 

One of the OSBS clusters includes several proteins annotated as NSARs in the SFLD. Three of 

these have been experimentally characterized and are promiscuous for both OSBS and NSAR 

activities (Sakai et al., 2006). The functions of the other proteins annotated as NSAR or OSBS in 

this cluster have not been experimentally determined, but phylogeny and comparative 

genomics suggest that while some are physiologically required for OSBS activity, others are 

more likely to function as NSARs in the cell (Glasner et al., 2006). 
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___________________________________________________________________________ 

 

Fig. 4.2 Enolase similarity network. (A) Unweighted force-directed layout representations of the 

enolase similarity network after processing with our filtration protocol. Edges between nodes in 

the same cluster are colored black. Edges connecting nodes from neighboring clusters are 

colored blue, red, and green, based on edge weight. Blue edges have an edge weight of less 

than 10 (e-value > 1 x 10-10). Green edges have an edge weight between 10 and the prefiltering 

threshold (33, corresponding to an e-value = 1 x 10-33). Red edges have an edge weight greater 

than the threshold (e-value < 1 x 10-33). Parts of the network have been positioned manually to 

minimize overlap between red edges. Nodes clustered into the same functional class are clearly 

visible as discrete circular clusters within the network. Many of these clusters are highly 

homogeneous with respect to the color assignments generated from SFLD annotation (the 

names of the protein families have been added by hand for this figure). The global topology of 

the clusters is easy to distinguish. (B) Subgraph of the enolase network in Figure 4.2A containing 
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just the families from the MLE subgroup. All other families have been deleted from the layout. 

The OSBS proteins in the OSBS/NSAR cluster do not directly connect to other members of the 

OSBS family, despite being more closely related to the OSBS family than are other families 

within the superfamily. Interestingly, structural superposition shows that the structurally 

characterized OSBS/NSAR from Amycolatopsis is more similar to an MLE (lower RMSD) than to 

other structurally characterized OSBSs (Glasner, 2006). 

______________________________________________________________________________ 

4.3.2.3 OSBS Connectivity 

The OSBS family forms a monophyletic group in the MLE subgroup phylogeny (Glasner et al., 

2006). We therefore had expected there to be a direct path connecting all OSBS clusters. For the 

most part this was the case. Eleven of the clusters were connected by a direct path, 

uninterrupted by the presence of sequence from other families. Edge weights bridging the gap 

between these clusters ranged from six to 36. One of the 11 clusters connects to AEE with an 

edge weight of 18. Another connects to MLE I/II with an edge weight of 13.  

Despite the connectivity between most OSBS clusters, the OSBS/NSAR cluster does not directly 

connect to the other 11 OSBS clusters. Instead, it connects to both AEE and MLE I/II with edge 

weights of 29. This was quite unexpected. The OSBS proteins in that cluster appear closer in 

sequence space to members of other families then they do to the members of the family with 

which they share the same function.  

There is little evidence to explain this discrepancy except to note that BLAST e-value is not a 

good enough metric to resolve this type of complexity. While the topology of a BLAST-based 
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filtered similarity network is useful as a hypothesis generator, we are unable to use that 

topology in order to draw definitive conclusions. 

4.3.2.4 Interpreting the Significance of Neighboring Clusters in a Filtered Similarity 

Network 

Our investigation of the MLE subgroup revealed that the presence of an edge between two 

distinct clusters is not necessarily a good indication of evolutionary proximity. Rather, the edge 

implies that the proteins in the two neighboring clusters share some degree of similarity as it 

can be identified by the comparison method used, in our case the BLAST algorithm, which in 

turn implies that the proteins share some degree of functional similarity.  For the network 

shown in Figure 4.2B, all clusters in the group have already been validated as sharing some 

degree of functional similarity by definition—they are all members of the enolase superfamily, 

each protein of which performs a common partial reaction mediated by a conserved 

constellation of active site residues that in most cases are easily identified by BLAST (Babbitt, 

1996). 

It is important to emphasize that we currently have no way of inferring the degree of similarity 

between two neighboring clusters. Any conclusions we draw about the similarity between two 

clusters connected by an edge can only be made relative to all other nodes that these clusters 

do not neighbor. For example, the 375 member enolase family is a direct neighbor to the cluster 

of OSBS/NSAR sequences. The edge weight connecting the two clusters is zero, indicating that 

the BLAST alignment between enolase and OSBS/NSAR is not statistically significant. Based on 

this data we are unable to interpret how much functional similarity is shared between the 

enolase and OSBS/NSAR clusters. We can, however, hypothesize that because the enolase 

family has no other neighbors in the network, the degree of overlap between enolase and all 
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other proteins in the dataset is no more significant than the degree of overlap between enolase 

and OSBS/NSAR. As illustrated by this example, when drawing a hypothesis from a given 

network topology, it is important to consider not only all pair-wise neighbors, but also the set of 

all pair-wise clusters that do not neighbor one another.  

4.3.3 Examining Protein Kinase Network Topology 

4.3.3.1 Summary of the Kinase Network Topology 

We generated an all-by-all kinase similarity network (Figure 4.3A), which we then filtered using 

our protocol (Figure 4.3B) to produce 20 individual clusters. Nineteen pairs of neighboring 

clusters define the topology, indicating that no cycles are present. Three of the clusters are 

composed of multiple families belonging to the same functional class. Functional classes in the 

kinase superfamily designate groups of evolutionary related families frequently subject to 

similar functional regulation within the cell (Hanks and Hunter, 1995). Twelve clusters 

encompass all sequences from a single family within the dataset, while the five remaining 

clusters each contain a subset of sequences from a unique family.  

Eight of the nine functional classes are well connected (Figure 4.3B). Any non-cyclic path 

between two members of a single well connected functional class contains only sequences from 

that particular functional class. This does not apply to the atypical kinases (AKs). No atypical 

kinase family connects directly to a second atypical kinase family. 

Cluster degree, defined as the number of neighbors to a given cluster, is not uniform across the 

network. One cluster has degree eight, one cluster has degree four, three clusters have degree 

three, two clusters have degree two, and thirteen clusters have degree one. Cluster hubs, which  
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______________________________________________________________________________ 

 

Fig. 4.3 Kinase similarity network. (A) Edge-weighed force-directed  representations for the 

pairwise BLAST similarities in the kinase superfamily. Nodes are colored by functional class and 

individual functional classes group by color within the network. Node classifications to 

functional classes and families were obtained from the KinBase and KinaseNet databases. No 

direct connectivity is discernible from this cluttered network representation. (B) Unweighted 

force-directed layout representation of the filtered similarity network colored by functional 

class. Edges connecting nodes from neighboring clusters are colored blue, red, and green, based 

on edge weight. Blue edges have an edge weight of less than 10. Green edges have an edge 
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weight between 10 and the prefiltering threshold of 42. Red edges have an edge weight greater 

than the threshold. Parts of the network have been positioned manually to minimize overlap 

between intercluster edges. The clusters correspond to either individual families or individual 

functional classes. Eight of the nine functional classes are well connected. According to the 

topology, the CAMK functional class is a central hub in the network, connecting five of the 

functional classes. (C) Unweighted force-directed layout representation of the filtered similarity 

network colored by family. (D) The kinase superfamily phylogenetic tree, optimized with Mr. 

Bayes using both sequence and structural data. Both families and functional classes are 

indicated in the tree. Leaves in the tree correspond to individual families. The labeled ovals 

encompass multiple families corresponding to functional class, as defined by Scheeff and Bourne 

(Scheeff and Bourne, 2005). Each oval, signifying a unique functional class, is labeled a unique 

color.  Chk1 is the closest of the typical kinases to the AK functional class. Kinases labeled with a 

black asterisk are classified differently in the tree compared with the classification produced by 

Manning (Manning et al., 2002). (Figure 4D from Scheeff and Bourne, 2005). 

______________________________________________________________________________ 

neighbor multiple clusters at the same time, are clearly distinguishable in the network.  This 

clustering information can be ascertained directly just by looking at the final network layout.  

4.3.3.2 Comparing Network Topology to Phylogenetic Branching 

We analyzed branching in the evolutionary tree from the 2005 Scheeff and Bourne study 

(Scheeff and Bourne, 2005) (Figure 4D).  Three pairs of functional classes connect directly to a 

single internal node, while nine pairs of families also descend directly from a single branch point. 

Seven of these pairs are present in our data set.  We are therefore able to compare network  
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______________________________________________________________________________ 

Table 4.1.  Comparing phylogenetic divergence to filtered network topology data in kinase 

superfamily 

    Kinases With Direct 

Common Ancestor 

    Classification        In Same Cluster     Neighbors      Hop Distance 

TK – TKL Class No Yes 1 

CAMK – AGC Class No Yes 1 

Chk1 – AK Class No Yes 1 

EGFR – FGFR2 Family No Yes 1 

Musk – IRK Family Yes No 0 

CAMK1 – MAPKAPK2 Family No Yes 1 

PKB – PKA Family Yes No 0 

JKN3 – CDK2 Family No Yes 1 

CK2 – GSK3 Family No Yes 1 

AFK – PI3K Family No No 3 

 

Column 1 contains pairs of families and functional classes that are believed to have evolved 

directly from the same common ancestor. Column 2 specifies whether the kinase pairs are 

classified as families or functional classes. Column 3 specifies whether or not the kinases appear 

in the same cluster. Column 4 specifies whether or not the kinases appear in neighboring 

clusters. Column 5 specifies the hop distance between the kinases, which we define as the 
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minimum number of clusters that must be traversed across the filtered network to connect a 

given kinase pair. The average hop distance is 1.0. 

______________________________________________________________________________ 

topology with phylogenetic branching in ten functional classes and family pairs by measuring the 

hop distance between each of the pairs across the network. We defined hop distance as the 

minimum number of cross-cluster traversals that separate two distinct kinase groups. A hop 

distance of zero indicates that two groups are in the same cluster. A hop distance of one 

indicates that the two groups are found in adjacent clusters that neighbor one another. The hop 

distances between all ten pairs of kinase groups are listed in Table 1. The average hop distance 

and the median hop distance for the ten pairs are both equal to one. In contrast, the mean hop 

distances between all pairs of functional classes and all pairs of families, are 2.22 and 2.51 

respectively. These results informally imply that for this system, protein functional groups 

evolving directly from a single ancestor have a greater propensity to neighbor each other or 

cluster together in the filtered network. In other words, if two functional groups are not 

neighbors then they are less likely to have evolved directly from a single ancestor.  

Eight of the 19 neighboring cluster pairs corresponding to seven pairs of functional classes were 

of indeterminate significance. These indeterminate pairs (TK-AGC, STE-AGC, CAMK-AK, CK-AK, 

CMGC-CAMK, Chk1-CAMK, CK-CAMK) consisted of neighboring clusters from distinct functional 

classes that had not diverged directly from a single common ancestor. The significance of these 

pairs is not known at this time. We are, however, able to state that for our BLAST-based 

network, over half of the neighboring clusters in the filtered kinase network are consistent with 

known evolutionary relationships.  
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4.3.3.3 Determining the Nearest Neighbor to the Atypical Kinases 

The proteins in the atypical kinase class differ from other members of the kinase superfamily in 

that they do not share certain sequence and structural motifs common to all typical kinase 

proteins. One of the goals of the Scheeff and Bourne study was to determine which kinase class 

had the greatest evolutionary proximity to the atypical kinases. According to their phylogenetic 

tree, the AK class and the channel kinase (Chk1) class directly evolved from the same common 

ancestor. However, the bootstrap value connecting AK and Chk1 to an internal branch point was 

not reliable enough for the authors to draw a definitive conclusion. Furthermore, a second 

phylogenetic tree stochastically optimized using just sequence data showed that the choline 

kinase (CK) class, rather than the Chk1 class, connected to the atypical kinases, albeit again at a 

very low bootstrap value. The authors presented arguments demonstrating that both CK and 

Chk1 make good candidates as the closest evolutionary link to the atypical kinases, and that one 

or the other is the actual link. 

In our filtered network representation of the kinase superfamily (Figure 4C), both CK and Chk1 

connect to members of the AK class. Chk1 neighbors the actin-fragmin kinase (AFK) family, while 

CK neighbors a subset of the channel kinase (Chak) family. The remaining atypical kinase 

sequences, which include the phosphoinositide 3-kinase (PI3K) family and a subset of the Chak 

family, connect to the calcium/calmodulin-dependent kinase (CAMK) class, which connects 

directly to both CK and Chk1 in the network. Although the BLAST e-values underlying these 

results are not statistically significant, the results themselves are consistent with the two 

candidates for nearest evolutionary neighbor derived using phylogenetic analysis. 

4.4 DISCUSSION 
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4.4.1 Network Topology as a Metric of Functional Similarity 

Our results indicate that protein families which are not neighbors in the kinase network are less 

likely to descend directly from the same common ancestor. Since evolutionary distance reflects 

structural and functional proximity, these results suggest that a filtered network topology may 

be useful for developing hypotheses about structural and functional similarity. Individual 

clusters within a filtered network correspond to whole families or sets of functionally similar 

families within a superfamily. The topology between these clusters suggests the degree of 

functional similarity between distinct families and functional classes. Families that do not 

neighbor one another are less likely to share structural and functional properties than neighbors 

within the network.  

These properties suggest that filtered similarity networks are a useful tool for discriminating 

sequence clusters in order to provide a starting point for predicting functional relationships and 

properties in poorly understood protein data sets. A researcher examining a large superfamily 

with few functionally characterized members will be able to apply our protocol and generate a 

simple visual representation of all sequences in the data set. Upon visual inspection it should be 

clear which uncharacterized proteins group together with members of known families. These 

proteins are likely to be functionally similar to the families with which they cluster, influencing 

the scope of the experimental assays necessary to characterize function. Additionally, certain 

clusters will be composed entirely of uncharacterized sequences, indicating the presence of new 

families. The characterized properties of clusters neighboring unknown families could help 

constrain the possible functions of these uncharacterized sequences. The network topology will 

influence hypothesis generation, which in turn allows the researcher to prioritize functional 

assays in order to efficiently characterize new functions within a superfamily.  
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Based on the intuitive nature of the filtered network layout, it is possible to investigate 

functional properties just by visual inspection of the network. However, unlike in the all-by-all 

network view, the topological boundaries between clusters in the filtered network are clearly 

defined prior to visualization in two- or three-dimensional space. Our filtration protocol allows 

researchers to automate the process of network generation relevant to function prediction, 

without relying on Euclidian distances across dimensionally reduced spatial representations of 

large multidimensional sequence datasets. 

4.4.2 Contrasting Network Analysis with Phylogenetic Analysis 

Using our protocol, we are able to suggest relationships between typical and atypical kinases 

that have previously required combining data from two separate phylogenetic trees. At the 

same time, we are unable to recapitulate the conclusion that atypical kinase families 

interconnect to form the AK functional class. Clearly, a similarity network topology does not 

hold the same statistical significance as a stochastically optimized phylogenetic tree. It is, 

however, possible to foresee research problems that lend themselves better to network analysis 

then to phylogenetic analysis.  

Filtered homology networks are not as rigorous as phylogenetic trees in representing sequence 

relationships. The topology of phylogenetic trees is based on detailed mathematical models of 

protein evolution (Cavalli-Sforaza and Edwards, 1967).  In contrast, our protocol uses a heuristic 

approach that elucidates structural and functional similarity from global sequence comparisons 

without being restricted by any one model. This heuristic approach provides a useful additional 

tool for researchers seeking to extract potentially important features within a large sequence 

data set. A few minutes of computation time is all that is required to filter and visualize a 

similarity network based on several thousand sequences. The process is entirely automated, 
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requiring no a priori assumptions about the functional identity of the sequences within the 

network. By contrast, an optimal phylogenetic tree can only be computed using a limited subset 

of sequences in a multiple sequence alignment due to the computational complexity required to 

properly align a large and diverse set of sequences. In a large data set, the subset of sequences 

in the multiple sequence alignment captures only a small fraction of the total available 

information. Furthermore, selecting the best multiple sequence alignment subsets is a 

subjective task for the researcher, leading to the risk of bias in the results derived from the data. 

Even when a well-prepared data set is ready for phylogenetic analysis, evaluating the optimal 

evolutionary tree usually takes hours of computation time (Laget and Simon, 1999). Therefore, a 

filtered similarity network serves as a good substitute to a phylogentic tree in those cases when 

rapid hypothesis generation across a large, diverse dataset takes priority over rigorous statistical 

significance. 

It is also worth emphasizing that the network topology representation of a sequence data set 

includes connectivity properties not accessible through a dendrogram or phylogenetic tree. As 

shown in the kinase network, the degree of connectivity varies from cluster to cluster. This 

variability allows us to distinguish CAMK as a major hub in the network, which connects five 

distinct functional classes. This is not at all clear from the phylogenetic representation, where 

individual proteins connect indirectly through pathways of interior nodes.  

The significance of hubs in protein similarity networks is unknown at this time. We hypothesize 

that such hubs may serve as indicators of proximity to phylogenetic branch points. Future 

studies will test these and other hypotheses in order to determine if the presence of hubs 

signifies evolutionary relationships that are not discernible within a phylogenetic tree. Filtered 
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network topologies provide context and terminology that make it possible to examine the 

importance of hubs in more detail. 

4.4.3 Caveats 

In our current implementation we are unable to display inter-family relationships with complete 

accuracy, partially because our greedy approach to reconnecting the clusters relies solely on a 

simple scoring metric for edges (e-value) of limited precision. Local alignments made by BLAST 

across pairs of motifs with significantly different lengths may lead to misleading connections 

within a similarity network. More sophisticated similarity comparisons, such as profile-profile 

alignments and hidden Markov models, could lead to more accurate network topologies. 

We are also aware that the quality of a network topology depends on how well the functional 

groups in the dataset separate out in the first place. Kinase functional groups are more discrete 

with respect to one another then families in the MLE subgroup, for example. This in turn leads 

to better clustering, and a more meaningful topology. Knowing in advance the separability of 

functionally similar groups in a network would give us some measure of topological reliability. 

Currently, we are unable to infer the discreteness of network components from only sequence 

data.  

4.5 CONCLUSIONS 

We have developed a protocol for filtering protein superfamily similarity networks. The protocol 

divides an input network into discrete components while at the same time emphasizing the 

topology that best connects the components together. We have shown that individual clusters 

in the filtered networks correspond to families and classes of functionally similar proteins. 

Additionally, we provide evidence that neighboring clusters represent more similar sets of 
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proteins than clusters that are distant. Our results suggest that network topologies in a protein 

similarity graph, as defined by our filtration protocol, embody a meaningful representation of 

structural and functional similarities between individual functional groups within a protein 

superfamily. 

In addition to defining topology, our filtration protocol also leads to a more meaningful 

visualization of the data within the network. An unfiltered network resembles a “hairball,” 

where clusters are often difficult to distinguish from one another and overlapping edges make it 

difficult to see significant connections. By filtering the network prior to visualization using a 

force-directed layout algorithm, we are able to directly count the number of clusters and see 

precisely how these clusters connect to one another. This direct global view provides a useful 

alternative for summarizing a large data set in a single easy-to-comprehend image. Our protocol 

can be used to output a simple representation of otherwise complex information, thereby 

facilitating the generation of useful hypotheses relevant to the data set in question.  

The use of global protein similarity networks in the bioinformatics research community 

continues to rise. Our filtration protocol builds on existing network techniques to yield a 

comprehensive understanding of protein superfamily data. We believe the protocol serves as a 

foundation for developing new techniques capable of making meaningful structural and 

functional predictions based only on sequence information. 

4.6 REFERENCES 

Adai,A.T. et al. (2004) LGL: Creating a Map of Protein Function with an Algorithm for Visualizing 

Very Large Biological Networks. J. Mo.l Biol., 340,179-190. 



89 
 

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database 

search programs. Nucleic Acids Res., 25,3389-3402. 

Babbitt,P.C. and Gerlt,J.A. (1997) Understanding enzyme superfamilies. Chemistry as the 

fundamental determinant in the evolution of new catalytic activities. J. Biol. Chem., 272, 30591-

30594. 

Babbitt,P.C. and Gerlt,J.A. (2001) Divergent evolution of enzyme function:  Mechanistically diverse 

superfamilies and functionally distinct suprafamilies. Annu. Rev. Biochem. 70, 209-246. 

Babbitt,P.C. et al. (1996) The Enolase Superfamily: A General Strategy for Enzyme-Catalyzed 

Abstraction of the alpha-Protons of Carboxylic Acids. Biochemistry, 35, 16489-16501. 

Brown,S.D. et al. (2006) A gold standard set of mechanistically diverse enzyme superfamilies. 

Genome Biol. 7, R8. 

Brenner,S.E. et al. (1998) Assessing sequence comparison methods with reliable structurally 

identified distant evolutionary relationships. Proc. Natl. Acad. Sci. USA, 95, 6073-6078. 

Cavalli-Sforaza,L.L. and Edwards,A.W. (1967) Phylogenetic Analysis. Models and Estimation 

Procedures. American Journal of Human Genetics, 19, 233-257. 

Enright,A.J. and Ouzounis,C.A. (2000) GeneRAGE: a robust algorithm for sequence clustering and 

domain detection. Bioinformatics, 16, 451-457. 

Enright,A.J. and Ouzounis,C.A. (2001) BioLayout—an automatic graph layout algorithm for 

similarity visualization.  Bioinformatics, 17, 853-854. 

Enright,A.J. et al. (2002) An efficient algorithm for large-scale detection of protein families. Nucleic 

Acids Res., 30, 1575-1584. 

Fickey,T. and Lupas,A. (2004) CLANS: a Java application for visualizing protein families based on 

pairwise similarity. Bioinformatics, 20, 3702-3704. 



90 
 

Frivolt,G. and Pok,O. (2006) Comparison of Graph Clustering Approaches. In IIT.SRC 2006: Student 

Research Conference:168-175 April 2006; Bratislava, Slovakia, 168-175.  

Fruchterman,T.J. and Reingold,M.R. (1991) Graph Drawing by Force-Directed Placement. Software 

– Practice And Experience, 21, 1129-1164. 

George,R.A. et al. (2004) SCOPEC: A database of protein catalytic domains. Bioinformatics, 20, 130-

136. 

Glasner,M.E. et al. (2006) Evolution of structure and function in the o-succinylbenzoate sythase/N-

acylamino acid racemase family of the enolase superfamily. J. Mol. Biol., 360, 228-250. 

Hanks,S.K. and Hunter,T. Protein kinases 6. (1995) The eukaryotic protein kinase superfamily: 

kinase (catalytic) domain structure and classification. FASEB., 9, 576-596. 

Kruskal,J.B. On the shortest spanning subtree and the traveling salesman problem. Proc. Amer. 

Math. Soc., (1956) 7, 48–50. 

Laget,B and Simon,D.L. (1999)  Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of 

Phylogenetic Trees. Mol. Biol. Evol., 16, 750-750. 

Medini,D. et al. (2006) Protein Homology Network Families Reveal Step-Wise Diversification of 

Type III and Type IV Secretion Systems. PLoS Comput. Biol.,2, e173. 

Noble,W.S. et al. (2005) Identifying remote protein homologs by network propagation. FEBS 

Journal, 20, 5119–5128. 

Palmer,D.R.J. et al. (1999) Unexpected divergence of enzyme function and sequence: “N-acylamino 

acid racemase” is “o-Succinylbenzoate Synthase”. Biochemistry, 38, 4252-4258. 

Pegg,S.C.H. et al. (2005) Representing Structure-Function Relationships in Mechanistically Diverse 

Enzyme Superfamilies. Pac. Symp. Biocomput., 10, 358-369. 



91 
 

Pegg,S.C.H. et al. (2006) Leveraging Enzyme Structure-Function Relationships for Functional 

Inference and Experimental Design: The Structure-Function Linkage Database. Biochemistry, 45, 

2545-2555. 

Perutz,M.F. et al. (1965) Structure and function of haemoglobin II. Some relations between 

polypeptide chain configuration and amino acid sequence. J. Mo.l Biol., 13, 669-678. 

Prim,R.C. (1957) Shortest connection networks and some generalisations. Bell System Technical 

Journal, 36, 1389–1401. 

Sakai,A. et al. (2006) Evolution of enzymatic activities in the enolase superfamily: N-succinylamino 

acid racemase and a new pathway for the irreversible conversion of D- to L-amino acids. 

Biochemistry., 45, 4455-4462. 

Scheeff,D.E. and Bourne,P.E. (2005) Structural Evolution of the Protein Kinase-Like Superfamily. 

PLos Comput  Biol., 1, e49. 

Seffernick,J.L. et al. (2001) Melamine Deaminase and Atrazine Chlorohydrolase: 98 Percent 

Identical but Functionally Different. J. Bacteriol., 183, 2405–2410. 

Shannon,S. et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular 

Interaction Networks. Genome Research, 13, 2498-2504. 

Vlachos,M. et al. (2002) Non-Linear Dimensionality Reduction Techniques for Classification and 

Visualization. In Proceedings of the Eight ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining: 645-651 July 2002; Alberta., 645–651. 

 



92 
 

Chapter 5 

Validating Filtered Network Topologies Using a 

Functional Residue Prediction Algorithm 

Abstract 

Motivation: Indirect validation of filtered similarity networks from phylogenetic data is 

insufficient to study such networks on a larger scale. A more quantitative approach is necessary. 

Results: We have developed an algorithm capable of predicting the location of functionally 

significant sequence residues given a protein similarity network. Since the quality of the final 

predictions depends directly on the network topology, these predictions may be used as an 

assessment of a given network’s biological significance. We tested the algorithm on the network 

representation of a transmembrane protein superfamily. The algorithmic predictions overlapped 

with experimentally determined functional data for the superfamily, thereby validating the 

presence of certain hubs within the superfamily network.  

5.1 Introduction 

In the previous chapter we explored relationships between clustered protein families using 

filtered network topologies. We examined the overlap between network topology and 

evolutionary branching in the Kinase superfamily in order to draw certain broad conclusions 

about the biological validity of connections in the network. These conclusions were based on 

preliminary results and have yet to be rigorously proven, so we refer to them as the 
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“conjectured general principles” supporting the filtered network data. Because evolutionary 

distance reflects structural and functional proximity, we were able to state as a conjectured 

general principle that neighboring clusters in the filtered networks share a greater degree of 

functional similarity then non-neighbors. This functional similarity is related directly to structure, 

and is explicated in more detail later in this chapter. Our conclusions concerning functional 

similarity and network topologies were drawn from purely qualitative observations of 

relationships between topology and phylogeny. Nonetheless, this simple comparison of 

observable similarities yielded some initial validation of our filtered network technique. 

There were, however, certain critical limitations to our comparison-based analysis. As discussed 

in section 4.4.2 of the previous chapter, network hubs present in the Kinase topology could not 

be related to the branching in the phylogenetic tree. The hubs connected to an above-average 

number of families, and such inter-connectivity may not be observed in phylogenetic data. We 

found no way to infer whether such hubs were an anomaly, or whether they were integral to 

the structure of the network. Thus we were unable to evaluate the biological significance of the 

network topology in its entirety. Qualitative comparisons allowed us to validate certain distinct 

relationships within the network, but not the network as a whole.  

The limitation of a qualitative approach led us to ask a much broader question; how does one 

validate an entire protein similarity network in a quantitative way? To determine an answer it is 

first necessary to define what we mean by “validity.” In a valid network topology, the 

conjectured general principles pertaining to the similarities and differences between 

neighboring and non-neighboring families must hold true in some quantifiable way. The more 

accurate the conjectures, the more valid the network will become.  This correlation between 

conjecture and validity in an organizational framework may be better understood by following 
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the history of the periodic table. In his initial set of conjectures, Mendeleev stated that the 

elements are ordered by atomic weights. In 1914, Henry Moseley altered this conjecture, 

ordering the elements by nuclear charge instead. The change in conjecture led to a more valid 

table. Certain elements were placed in new positions more compatible with their chemical 

properties. Argon, for example, was finally put in a column with the rest of the noble gasses. 

More importantly, the appearance of gaps in the reordered table resulted in the discovery of 

two new radioactive elements; Technetium and Promethium. Thus, although Mendeleev’s 

original set of guiding principles held true to a certain extent, Moseley’s table proved more valid 

because of its advanced predictive capacity.  

We treat the general principles associated with network topology in an analogous way. If the 

general principles hold true, then all topological relationships, including hubs within the 

network, will be biologically significant.   Therefore, the network validation process requires that 

we test and confirm our conjectured general principles about the relationships represented in 

the network. To do so, we must first use these principles as a basis for an algorithm capable of 

predicting certain testable protein properties. The accuracy of the algorithm will depend on the 

degree to which the general principles hold true. The more accurate the predictions, the more 

valid the clusters and the network topology will be relative to our conjectured principles. 

Likewise a lack of predictive potential will cast doubt on the biological significance of the filtered 

network. Thusly, the predictive algorithm can serve as a scoring function for validating the 

significance of any input network. 

In this chapter, we develop one such algorithm and put it to the test. We show how it is possible 

to infer the location of functionally critical residues from the topological relationships with a 
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filtered sequence similarity network. Functional residue prediction is then used to validate a 

potentially critical hub within the network of a transmembrane protein superfamily. 

5.2 Predicting Protein Properties from a Filtered Network 

Topology 

A set of broadly conjectured general principles underlie our interpretation of filtered network 

topologies. First and foremost, we conjecture that a connection between two proteins in the 

similarity network is indicative of a functional similarity rooted directly in sequence and 

structure. This similarity depends on a function being defined as the total set of possible 

entropically unlikely interactions between a protein and all other molecules normally found in 

biological systems. The definition includes all protein-protein, protein-DNA, and protein-ligand 

interactions. It does not include interactions with other domains in a quaternary structure; these 

are treated as equivalent to structural self-interactions in a single protein domain1.  Functional 

biochemical interactions physical depend on a protein’s structural fold, which is encoded in its 

one-dimensional amino acid sequence.  Two proteins sharing a similar sequence homology are 

more likely to share a similar structure, thus resulting in a similar set of biochemical interactions 

(Babbitt and Gerlt, 2001). If we were to represent these interactions as vectors of 

experimentally recorded measurements, we theoretically could calculate this similarity directly. 

However, such broad experimental coverage is not currently available. We must therefore rely 

                                                           
1
 Functional sites by necessity differ across similar families, because they perform different functions. 

Meanwhile, structural scaffolds are conserved between these families. Similar families sharing the same 
structural scaffold will display the same quaternary structure with the same interaction points across 
domains. These interaction points are likely to be conserved across families. As a result, we should not 
treat them as functional sites. We therefore do not include multimeric interactions in our definition of 
function. Instead, they are treated as structural interactions necessary to create a scaffold that will allow 
the family to carry out the unique set of functions by which it is defined. However, multimeric interactions 
and functional sites are not necessarily mutually exclusive, since in certain proteins the functional site 
location overlaps with points of multimer assembly (Kim et al., 2005). 
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on conjecturing that the binary binning of similar and dissimilar proteins is represented 

adequately by the presence and absence of edges in the filtered network topologies. As a 

corollary, the adjacent clusters in each the network ought to share greater sequence, structural, 

and functional similarity then the non-neighboring clusters.  

Expanding on the previous conjecture, we can further state that the non-adjacent clusters also 

share a limited transitive similarity, by virtue of their connectivity within the network topology. 

We may examine transitive similarity in an example network containing just three clusters; 

Cluster A, Cluster B and Cluster C.  In this sample network topology, Cluster B is connected to 

both Cluster A and Cluster C, but clusters A and C are not connected to each other. If additional 

data is available for a protein in Cluster A, that data may be used to make inferences relating to 

proteins in Cluster B.  For example, the structure of a protein in Cluster A may be used to model 

the structure of a protein in Cluster B. Afterwards, the same attributes may be propagated and 

applied to proteins in Cluster C. Thus, a modeled structure in Cluster B may be used as a 

template to model an additional structure in Cluster C. As a result, there is a transitive link 

between Cluster A and Cluster C; the properties of one may be inferred by propagating through 

the network the properties of the other.  Of course, in larger networks such propagation 

inevitably alters the preset properties of proteins in a cluster receiving the attribute information, 

requiring additional propagation to neighbors of that cluster. The propagation may invariably 

continue until an equilibrium point is reached in which no new attribute information is being 

passed from one cluster to another. 

An additional conjecture equates each cluster with a single protein family. As defined in 

previous chapters, the members of a family share the same structural scaffold and perform a 

unique set of functions. These functions are rooted in physical interactions between 
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biomolecules and certain critical residues within the structural scaffold of each protein (Pegg et 

al., 2005).  All family members perform the same functions, and specific combinations of 

biochemical interactions are unique to each individual family. Under such conditions, a subset of 

the critical functional residues must be “class-specific,” meaning they are conserved uniquely 

within a given family, but not across its neighbors.  Meanwhile, neighboring families connected 

in the network must also share certain structural and functional properties, based on the 

discussion in the previous two paragraphs. Overlapping functional characteristics between 

neighboring families can only result if particular residues in common across the neighbors lead 

to shared biochemical patterns of interaction (Babbitt and Gerlt, 1997), (Babbitt and Gerlt, 

2001).  We therefore conjecture the existence of “invariant” functional residues, which are 

conserved across the functional sites of neighboring families in the networks.   

These conjectured general principles allow us to infer that the functional site motifs responsible 

for the molecular interactions associated with a protein’s activity are composed of both 

invariant and class-specific residues. As a result, local residue conservation between neighboring 

families may be used to elucidate particular functional residue motif segments, which are part 

of a greater motif.  Transitivity allows for the global propagation of locally derived motif 

segments across the entire network. The segments may afterwards be recombined into 

complete functional residue motifs. Thus, searching for patterns of residue conservation across 

a filtered network topology should lead to the algorithmic identification of functional sites, for 

all protein sequences in that network. 

Functional residue prediction from conservation patterns in sequence data is not a novel idea. 

Evolutionary Trace (ET), a commonly used algorithm for functional residue prediction, has been 

around for fifteen years (Lichtarge et al. 1996). This algorithm takes as input a phylogenetic tree 
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computed from all sequences in a dataset. Initializing at the root of the tree, the algorithm 

iteratively descends breadth first down the branches, subdividing sequences into subgroups 

based on the number of branch points. At each iteration, a multiple sequence alignment is 

carried out for all subgroups, and a consensus sequence is calculated for every subgroup 

alignment. The consensus sequences are then compared with one another. If, at a particular 

position, a residue is identical in all consensus sequences, then the residues at that position are 

labeled as invariant. If on the other hand, the residues at that position are conserved within 

each subgroup, but vary between subgroups, then these residues are labeled as class-specific. 

Otherwise, all residues at that position are labeled as neutral.  All specific residues are assigned 

a rank, which represents the minimum number of branches that the tree must be divided for 

that residue to receive a specific label. The algorithm iterates until all residues have been 

assigned an evolutionary rank. The lowest ranking residues are assumed to represent the 

highest evolutionary functional importance. These residues are most likely to appear within the 

functional site of the protein structure.  

The simple sequence-based approach behind ET has inspired the development of new 

algorithms, which combine multiple sequence alignments with available structural data to 

elucidate functionally significant residues (Landgraf, et al. 2001), (Aloy, et al. 2001). Also, the 

evaluation of residue conservation in the multiple alignment step of the ET algorithm has grown 

increasing more sophisticated.  Techniques have been developed to score and penalize gaps in 

the multiple sequence alignments (Madabushi, et al., 2002). Furthermore, the use of 

informational entropy to keep track of residue diversity within the alignments has also been 

explored (Mihalek, et al., 2004). 
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Building on ET, we have developed “Protein Space Trace” (PST), an algorithm that relies on a 

filtered input network to properly rank residues by functional significance. We treated PST as a 

simple baseline technique for topology-based predictions. PST relies on nothing more than 

simple multiple alignments and network connectivity. It does not take into account structural 

data, and does not integrate the more sophisticated alignment analysis discussed in the 

previous paragraph. Future iterations of Protein Space Trace are possible and could build on the 

baseline approach to improve the prediction quality, for example. For now, this simplified 

implementation demonstrates that similarity network-based predictions are possible. 

The PST algorithm is dependent on a conservation threshold which iteratively decreases from 

one to zero. At each iteration, the conservation threshold is used to identify a set of conserved 

residues within each family. These conserved residues are then compared locally across all pair-

wise neighbors. Patterns of specific and invariant residues are treated as functional motifs. 

Afterwards, all functional site information is propagated globally across all families in order to 

generate a more complete set of motifs. When the final iteration reaches completion, each 

residue is assigned a rank equivalent to the minimum number of iterations required to place 

that residue within a functional motif. Since the conservation threshold decreases with every 

iteration, the number of required iterations is inversely proportional to residue conservation 

within a motif. Thus, the lowest ranking residues are assumed to hold the greatest degree of 

functional significance.  

It is important to note the predictions made by PST are open to direct experimental validation 

through mutagenesis studies. Such validation would corroborate not only the algorithm, but 

also our conjectures pertaining to the biological significance of filtered protein similarity 

networks. 
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5.3 Developing and Implementing Protein Space Trace 

The following sections discuss and justify each step of the PST algorithm.  

5.3.1 Defining Invariance and Class-Specificity in PST 

Assume we are given Cluster A and Cluster B, two neighboring clusters in a filtered protein 

similarity network. Alignment A and Alignment B are the multiple alignments of sequences in A 

and B, respectively. We take it for granted that certain columns (positions) in each multiple 

alignment are conserved, and that we can distinguish conserved from non-conserved positions 

using a set of criteria to be defined later.  

The boundary between Cluster A and Cluster B is bridged by a pair of “bridge sequences,” Bridge 

A and Bridge B, that best connect Cluster A and Cluster B together. Since Bridge A and Bridge B 

both appear in Alignment A and Alignment B, each residue in a bridge is associated with a 

particular position in a multiple alignment. We can carry out a pair-wise alignment of Bridge A 

and Bridge B, and examine all pairs of residues in the pair-wise alignment that corresponds to 

conserved positions in both Alignment A and Alignment B. For all such pairs of residues, we 

check to see if the residues are equal. If they are equal, then the associated positions in 

Alignment A and Alignment B are labeled as invariant. If the residues are not equal, then the 

associated positions are labeled as class-specific.  

5.3.2 Propagation of Class-Specificity 

Clusters in the network may share multiple neighbors. It is therefore possible that a conserved 

position within a cluster alignment may be labeled as invariant in relation to one neighbor, and 

class-specific in relation to another. In such cases, class-specificity takes precedence. While 
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closely related families may share the same residue at a particular position, that residue varies 

across other related families in the network, and is therefore not invariant. 

The priority assigned to class-specific positions allows for the propagation of class-specificity 

across the network. If a position is designated as invariant for all connected clusters except for 

one, then the outlier cluster will propagate its position assignment of class-specificity to its 

neighbors, whom will in turn propagate the assignment to their neighbors, and so on, eventually 

converging to a state where no further propagation is possible. This does not necessarily mean 

that the assignment will propagate to all clusters in the network. For propagation to occur, a 

bridge sequence residue associated with the class-specific position must align with a conserved 

residue in the neighboring bridge sequence. This will likely hold true for clusters close to the 

origin of propagation, but not for more distance clusters. Therefore, an alternate set of 

conserved residues might align across the bridge sequences, and the class-specific residue from 

one bridge sequence might align with a residue that is not conserved at all. At this point, class-

specificity will not propagate to that neighboring cluster.  

5.3.3 Defining Functional Significance in PST 

To determine which positions in the alignments are associated with residues that are 

functionally significant, we look at relationships between neighboring positions. Neighboring 

positions are defined by an “adjacency threshold” that is set at a low value, say one or two. If 

the distance gap between two columns in a multiple sequence alignment is less than or equal to 

the adjacency threshold, the columns are neighbors to one another. 

We use the following two assumptions to define functional significance along the columns of a 

multiple sequence alignment: 
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1. If an invariant column neighbors a class-specific column, then both columns are 

functionally significant.  

2. If a conserved column neighbors a previously determined functionally significant 

column, then the conserved column is also assigned a functionally significant label. 

The first assumption is based on our interpretation of how sequence similarity relates to 

structural and functional similarity. Neighboring clusters share similar but distinct functions. This 

is a result of both overlapping and diverging residues being present in the functional sites of the 

protein structures associated with the clusters. Conserved residues within the functional sites 

appear as a series of motifs distributed across protein sequences. Certain motifs are likely to 

reflect the combination of overlapping and diverging residues in the functional site by 

containing invariant and class-specific residues that neighbor one another. When these motifs 

appear within an alignment, we can assume they are likely to be associated with the functional 

site.  

Furthermore, if two conserved residues are neighbors, then they belong to the same motif. If 

one of those residues is functionally significant, then the entire motif is functionally significant. 

Therefore, all residues that neighbor a functionally significant residue are also functionally 

significant, thus justifying the second assumption. Together, the two assumptions allow us to 

isolate individual motifs segments, which are then expanded into complete motifs through the 

propagation step of the algorithm. 

5.3.4 Defining Column Conservation 

Functional characterization is dependent on being able to distinguish conserved from non-

conserved residue positions. However, we have not yet defined what it means for a position to 
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be conserved. In the simplest, most stringent definition, a column in a multisequence alignment 

is only conserved when no residue varies within that column. We believe this definition is too 

restrictive. If all residues except for one within a column are the same, then, while not fully 

conserved, the column is highly conserved nonetheless. Thus, there are degrees of conservation, 

relative to one another, that should be taken into account. We explore these degrees of 

conservation using a “Column Conservation Threshold” (CCT). The CCT is a value, ranging from 

zero to one. We compare the CCT to the fraction of the column occupied by the most frequently 

occurring residue. If that fraction is greater than or equal to the CCT, then we classify the 

column as conserved. Otherwise, it is not. The maximum CCT under which a column is 

conserved underlies the degree of conservation associated with that column. A CCT of one 

implies the column is fully conserved. A CCT of .9 implies it is highly conserved. A CCT of less 

than .5 implies that conservation within that column is, for the most part, not significant. 

While the CCT is a good metric for relating column conservation within the columns of a single 

cluster alignment, it is not the best metric for comparing conservation between columns of 

distinct clusters. This is because the clusters themselves are meant to represent distinct protein 

families, and some protein families are more divergent then others.  A large, diverse family may 

neighbor a smaller, more homogenous family in the filtered similarity network. Both families 

might share similar functional site residues, but the larger family will show a greater tendency 

towards variety within that functional site. In this example, a lower CCT holds a greater 

significance for the large family then it does for the small family. In order to properly relate 

conservation between one family and the other, a second, more global parameter is needed. 

This parameter, the “Global Conservation Threshold,” (GCT), must assign each family a CCT 

based on the size and divergence of that family, in a manner that gives equal significance to all 

conserved columns within the entire dataset. 
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It is possible to define the GCT by assuming that at each resolution of conservation, all clusters 

across the network share approximately an equal number of conserved residues. That is, at a 

high level of conservation, one percent of residues within each cluster are conserved (for 

example), while at a medium level of conservation, 10 percent of all residues within each cluster 

are conserved, and so on. The GCT, a parameter between 0 and 1, is able to define the 

appropriate level of conservation for all clusters. For any given value of the GCT, a custom CCT is 

set for each of the clusters. The CCT associated with each cluster equals the minimum value in 

which at least 100*GCT percent of the residues in the cluster alignment are conserved.  

When the GCT is low, all residues specified as conserved are highly conserved, even if some of 

those residues come from more divergent clusters. As the GCT increases, more residues are 

included. Those residues that are conserved at a higher GCT but not a lower one are of less 

importance then residues that are conserved when the GCT is low. The GCT can therefore be 

used to globally rank all residues within all alignments in the network. 

5.3.5 Ranking Functional Significance with PST 

The PST algorithm builds on these definitions, assumptions, and parameters. When initialized, 

the GCT is set to a low value. At each iteration, the GCT is incremented and the conserved 

residues are recomputed. Afterwards, invariant and class-specific conserved residues are 

located and propagated across the network. Conservation is then used to recalculate the 

position of all functionally significant residues. If a particular column in an alignment is 

categorized as functionally significant at that iteration, but was not so categorized for all 

previous iterations, then the residues in that column are assigned a score equal to the GCT. The 

score serves as a ranking of functional significance for those residues. Residues with a lower 

score are assumed to be more functionally significant then residues with a higher score. 
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______________________________________________________________________________ 

 

Fig. 5.1 Flow diagram of the PST algorithm 

______________________________________________________________________________ 

5.4 Testing Protein Space Trace on a Transmembrane 

Superfamily 

Some protein superfamilies have very few structures available for available for analysis. For 

these superfamilies, sequence-based functional residue prediction is of particular importance 

because determining functional residues from the limited structural data can be challenging. 

The Solute Carrier Transporter (SLC) superfamily represents one such group of proteins. Solute 

carrier transporters are transmembrane proteins that control the uptake and efflux of crucial 

components such as sugars, amino acids, nucleotides, inorganic ions, and drugs into the cell 
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(Schlessinger et al. 2010). These transporters are theorized to function based on an alternative 

access mechanism, in the solute binds to the transporter at specific binding site outside the 

intercellular membrane (Schlessinger et al. 2010), (Jardetzky, 1966). After the solute interacts 

with the binding cavity, the transporter undergoes a change in confirmation and shifts the 

solute to the other side of the membrane. Thus, the most critical functional residues are located 

within the solute binding cavity of the transporter. 

Transporters can serve as either drug targets or drug delivery systems, making them crucial to 

new pharmaceutical developments.  Unfortunately, like all membrane proteins, they are 

notoriously difficult to crystallize and few SLC structures are available. We were therefore 

interested in testing whether functionally critical SLC residues could be extracted from just 

sequence data using the PST algorithm. We generated a network from the 683 SLC sequences 

discussed in Chapter 2, and processed it using our Network Filtration Protocol. The resulting 

protein similarity network was then used as input into Protein Space Trace. 

To test the quality of the residue rankings generated by our algorithm we relied on a recent 

mutagenesis study of the OAT3 gene (Erdman et al. 2006). OAT3 is a human gene belonging to 

the SLC22 family. In the study, 10 distinct OAT3 coding regions were identified in DNA samples 

from 270 individuals. Clones of each variant were created by site-directed mutagenesis, 

expressed in cells, and tested for function. Three of the 10 variants led to a complete loss of 

function. One of these variants eliminated function through the formation of a premature stop 

codon. Erdman et. al hypothesized that the loss of transport resulting from the remaining 

variants was due to the substitution of a chemically different amino acid at a functionally crucial 

location, although they were quick to point out that additional studies must be performed to 

rule out differences in mRNA or protein expression as a cause of the differences in function. 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Erdman%20AR%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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We wanted to test how our PST residue rankings for OAT3 would overlap with Erdman’s loss-of-

functions variants. Our reasons for exploring this system were four-fold. First, agreement 

between our predictions and Erdman’s experimental work would contribute to validating our 

hypothesis that each variant is located at a functionally critical site. Second, our predictions 

could lead to the discovery of new functionally critical residues within the SLC superfamily. 

Third, a successful test would help validate PST as a useful functional residue prediction 

algorithm. Finally, our results would help validate the biological significance of the SLC network, 

leading us to potentially treat the hubs in the network as priority targets for crystallization.  

5.5 RESULTS 

5.5.1 The SLC Network Topology 

Running our network prediction protocol on the SLC dataset produced a network that was not 

completely connected. A cutoff of 1.0 was applied to the network, prior to clustering it with 

MCL. 407 proteins fell into clusters of families that did not connect to each other. The other 289 

sequences formed a connected subgraph with 16 distinct families (Figure 5.2), and SLC22 

formed a hub in this subgraph by neighboring five other families. We used the subgraph as our 

input into PST. 

5.5.2 Top Ranking Functional Residues in OAT3 

After running PST, we examined the top ranking residues in OAT3. 12 residues occupied the top 

three ranks.  The residues clustered into three distinct regions in the gene’s amino acid amino 

acid sequence (Table 5.1). Two of these regions overlapped completely with two of Erdman’s 

experimentally characterized loss-of-function sites. The third region did not match any of the 10  
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______________________________________________________________________ 

 

Fig. 5.2 289 sequences forming a connected subgraph with 16 distinct families in the filtered 

SLC protein similarity network created with Cytoscape using the clusterMaker plugin (Morris et 

al. 2011).  Nodes have been colored by family. Edges between nodes in the same cluster are 

colored black. Edges connecting nodes from neighboring clusters are colored red. The cluster 

containing the SLC22 family has been highlighted in yellow. The SLC22 cluster is a hub that 

serves as a neighbor to five other families within the network. The mapping of node colors to 

family assignments is shown in Supplementary Figure S2.5a. 

______________________________________________________________________________ 

known variants  described by Erdman et. al. 

In order to evaluate the statistical significance of the found three motifs, we processed the 

sequences in the SLC22 cluster using the MEME motif discovery tool (Bailey and Elkan, 1994). 

We set the MEME input parameters requesting the 20 motifs ranging from three to six residues. 

The motifs were returned and ranked by e-value. The e-value for each motif estimated the  
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______________________________________________________________________________ 

Table 5.1. The top ranking residues as determined by PST overlaid with other available data. 

OAT3 Motifs AB056422 Motifs Transmembrane Topology 

DRFG[R] DRLG[R] Cytoplasm 

ES[I]RWL ES[A]RWL Cytoplasm 

LPE LPE Cytoplasm 

 

Column one contains residues associated with the OAT3 gene. Column two contains residues 

associated with the AB056422 gene that align to the residues in column one. Column three 

contains the predicted transmembrane topology for the residues in column two. The twelve top 

ranking residues are colored blue.  Red brackets surround the two loss-of-function variants 

discussed in Erdman et. al. The top ranking PST residues cluster into three regions, two of which 

overlap with the loss-of-function variants. All three regions are computationally predicted to 

localize in the cytoplasm. 

______________________________________________________________________________ 

expected number of motifs with similar properties that one would find in an equal-sized dataset 

of random sequences.  The e-value motifs in the final MEME output ranged from 1.0e-142 to 

1.0e-22.  All three PST motifs appeared in the output. The two loss-of-function site motifs 

occupied the second and third ranked position in the MEME results, with e-values of 1.6e-139 

and 6.0e-122. The third motif occupied the seventh position, with an e-value of 8.9e-80. Thus, 

we confirmed that three PST motifs were unlikely to be a result of random output. Also, the 

comparison indicated that the PST algorithm selected its motifs in a more discriminate manner  
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______________________________________________________________________________ 

 

Fig. 5.3 The MODBASE model structure for OAT3, model id number 

05e68042930a21b75ddc866cd5fe321c. The model target includes the first two high ranking PST 

regions, which overlap with the loss-of-function sites. It does not include the third region motif. 

The two included regions are colored red and green. They appear adjacent to each other near 

the edge of the model’s barrel shaped structure, indicating a possible solute binding site.  

______________________________________________________________________________ 

the MEME, an algorithm not designed to differentiate between structural and functional site 

motifs. 

We compared our findings to the results of a recent bioinformatics analysis of the AB056422 

gene, a member of the SCL22 family found in mice (Wu et al. 2009). The analysis 

computationally predicted the transmembrane topology of AB056422. An alignment of OAT3 

present in and AB056422 showed that the three regions discussed in the previous paragraph are 
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also AB056422 with a noticeable degree of conservation (Table 5.1). All three regions are 

predicted to fall within the cytoplasm in the transmembrane topology.  

We were also able to locate a protein structure model for OAT3 in the MODBASE model 

database (Sanchez and Sali, 1999). Unfortunately the sequence identity between the input 

sequence and the template was only 12%, possibly limiting the accuracy of the model. 

Furthermore, the model target region did not include the third, previously unstudied motif. 

Nonetheless, we were able to map the first two motifs onto the model structure (Figure 5.3). 

These motifs appeared adjacent to each other at the edge of the barrel shaped structure, where 

a solute could potentially bind.  

These results led us to hypothesize that all three regions determined by our PST algorithm 

neighbor one another in the protein’s barrel shaped tertiary structure, thus potentially forming 

a single functionally critical site where solutes may bind prior to being expelled from the 

cytoplasm. It would be most interesting to see what effect mutating the residues in the third 

region would have on OAT3 function; our prediction is that mutating these residues would also 

lead to a loss-of-function similar to the other two regions.   

5.6 DISCUSSION 

5.6.1 Validating SLC Network Topology and the OAT3 Functionally Critical 

Sites 

The PST algorithm accurately confirmed the location of two experimentally determined loss-of-

function sites within the OAT3 protein in the SLC22 family. More importantly, because PST was 

designed to elucidate functionally significant residues, we are able to conclude that these two 
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regions represent functionally critical locations within the protein. This diminishes the 

possibility, raised in the original OAT3 paper, that changes in mRNA or protein expression 

subsequent to mutation are potentially responsible for the loss-of-function. Thus, our PST 

algorithm, together with our network filtration protocol, helped corroborate the final 

hypothesis drawn by Erdman et. al.  

These results help demonstrate the predictive capacity of the PST algorithm. They also help 

validate certain key conjectures on which the algorithm itself was founded. The conjectures in 

question pertain to the biological significance of the input filtered similarity network.  

Meaningful predictions of functionally significant sites indicate that the SLC network used as 

input to PST is actually biologically relevant. This leads us to hypothesize that the SLC22 family 

serving as a hub in the network is not some random anomaly of the network filtration process. 

We believe that SLC22 is a hub precisely because it shares certain structural and functional 

similarities with other families.   Based on the previously mentioned conjectures, the neighbors 

of this particular family share a more homologous structural scaffold with SLC22 then they do 

with each other. Thus, knowing the structure of SLC22 could lead to valuable homology models 

of five additional families. This has important implications for experimentalists because 

crystallization is a difficult and costly process, particularly for transmembrane proteins such as 

the solute carrier transferases. Any such X-ray crystallography efforts represent a significant 

investment of time and resources, so the determined crystal structure should ultimately yield 

information that allows for further hypothesis generation. Based on the predictive capacity of 

our filtered SLC network, we conclude that SLC22 might represent a greater priority target for 

crystallization then most other members of the SLC superfamily.  Additional experimental 

validation of predicted functionally significant residues would also help bolster our confidence in 

this conclusion. 
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5.6.2 Caveats and Future Directions 

Although our preliminary results look promising, we have to date limited the testing of the PST 

algorithm to only the SLC superfamily. Additional testing on multiple superfamilies is required to 

statistically confirm the algorithm’s capacity to validate filtered protein similarity networks and 

our ability to predict functionally important residues.  Since mutagenesis data is typically not 

available for any given superfamily, future testing will necessitate the integration of other data 

sources into our evaluation of the algorithm.  Structural data is a particularly useful supplement 

to mutagenesis, especially in enzymes whose crystallized structures feature a ligand bound to 

the active site. Using a properly calibrated scoring method that classifies residue predictions as 

true positives, false positives, true negatives, and false negatives, it should be possible to 

evaluate the PST residue rankings based on the distance between highly ranked residues and 

bound elements within the protein structure. Ultimately, the integration of structural and 

mutagenesis data will allow us to carry out a large-scale study of PST performance over multiple 

available superfamilies. 

The eventual scaling of the PST validation process may lead to other interesting possibilities. In 

the future, we shall be able to process a multitude of superfamily datasets through an 

automated pipeline, in which similarity networks are generated, filtered, and scored based on 

how the PST predictions align and misalign with available superfamily structures and 

experimentally determined functional data.  Network topologies scoring above an 

experimentally determined significance threshold will be categorized as being biologically 

significant, and will undergo additional analysis, which will include the extraction of information 

rich hubs from within the network.  

5.7 CONCLUSIONS 
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We have developed Protein Space Trace, an algorithm for predicting the position of functionally 

significant residues from a filtered protein similarity network. The design of the algorithm is 

based on certain general-principle conjectures about the biological significance of network 

connectivity. Thus, the validation of the algorithm’s predictive capacity indirectly validates the 

biological significance of an input protein similarity network. We tested Protein Space Trace 

using the SLC superfamily.  Our predictions of three critically conserved residues matched two 

previously experimentally characterized functionally critical regions within the OAT3 gene, while 

predicting the location of a third, previously unstudied region in the sequence. These predictions 

also help validate the network of the SLC superfamily, leading us to hypothesize that the SLC22 

network hub is a high priority  target for crystallization. Thus, we have showed how the PST 

algorithm simultaneously serves as a predictive technique and a validation technique, when 

applied to the SLC superfamily. Although further analysis is needed to fully explore the 

algorithm’s potential, our initial results represent a fruitful first step to eventually developing a 

quantitative metric for scoring similarity networks based on biological significance.  
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Chapter 6 

Conclusion 

The goal of this thesis has been to develop a simple organizational framework for arranging 

protein sequence datasets in a way that increases their hypothesis generation potential.  Prior 

to building this framework, we set down a few prerequisite requirements. The framework 

needed to reasonably capture how the input protein sequences clustered into functional 

families. Furthermore, it was important that the framework represent topological relationships 

between similar and dissimilar family clusters. Finally, we needed a way to evaluate the 

biological significance of a processed input dataset based on the predictive capacity of the 

organized protein sequences.   

We began by searching for a better way to cluster protein sequences into families. In our first 

full chapter, we examined a variety of commonly used protein sequence clustering algorithms. 

All these algorithms took as input a sequence similarity network generated from the starting 

dataset. By studying the properties of edge weight distributions in four different similarity 

networks, we were able to develop a simple thresholding heuristic for filtering out unnecessary 

edges prior to clustering.  Applying the threshold to our input networks improved the quality of 

the overall clustering results across multiple algorithms. One of the algorithms that showed 

noticeable improvement was MCL, a clustering technique with a relatively rapid runtime. Thus, 

we combined the thresholding heuristic with the MCL clustering algorithm to form the first step 

in our organizational framework protocol. 
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The next chapter probed in more detail the capacity of thresholded MCL clustering to assist in 

the generation of new hypotheses pertaining to the identity of uncharacterized protein 

sequences. We ran our technique on 683 sequences in the vicinal oxygen chelate superfamily. 

Less than half of these sequences featured a family categorization. Certain uncharacterized 

proteins fell into clusters with previously classified proteins that all belonged to a single family. 

Examining how the uncharacterized sequences align with the families into which they cluster 

revealed the existence of overlaps between functionally significant family residues and a subset 

of the uncharacterized sequences. This allowed us to predict the function of uncharacterized 

proteins while simultaneously ranking the priority of each prediction by the degree of residue 

overlap. The generation of ranked hypotheses makes it easier for researchers to focus on 

specific proteins when analyzing complex datasets. Thus, the individual protein clusters in our 

organizational framework formed a meaningful hypothesis generation tool. 

Next, we extended our research beyond individual protein clusters and examined how these 

clusters may relate topologically to one another. We developed a baseline reconnection 

protocol in which each cluster is treated as a single network metanode. The extracted 

intercluster edges from the unfiltered starting network are then used to calculate the union of 

all minimum spanning trees that connect the metanode clusters. We carried out the 

reconnection algorithm on clusters from the kinase superfamily. A qualitative comparison 

between the resulting topology and a carefully calculated kinase phylogenetic tree revealed 

certain similar sets of relationships between proteins in the superfamily. The results implied that 

the connected clusters within the topology shared a greater degree of structural and functional 

similarity than non-connected clusters. Thus, a visualized sequence topology can potentially give 

researchers an immediate birds-eye view of intricate relationships within a complex protein 
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dataset.  We believe our protocol for generating such topologies is a useful data organizational 

tool for researchers to employ. 

Finally, we presented a technique for quantifying the biological significance of a protein 

similarity network topology. The technique relied on the predictive capacity of the topologies in 

question. Using several general hypotheses on significance of clusters and cluster connections 

within a topology, we developed the Protein Space Trace algorithm. This algorithm was 

designed to find the location of functionally significant residues within the proteins composing 

an input topology. The quality of these predictions reflects the biological significance of the 

topology used as input. We tested Protein Space Trace on the topology for the solute carrier 

transferase superfamily. The algorithm produced three functional site motifs. Two of these 

motifs have previously been confirmed experimentally as functionally significant and a third is 

yet to be confirmed. These results indicate that the topological relationships within a 

superfamily are useful for making biologically significant predictions. This helped validate our 

use of the solute carrier transferase network topology as a hypothesis generation tool and, thus, 

we were able to demonstrate how algorithmic prediction may be used to probe the validity of 

protein organizational schemas. 

In this thesis, we developed and tested a framework for organizing protein sequence datasets. 

Future work will focus on extending these techniques beyond mere sequence data in order to 

take into account additional protein properties such as structure and function. Eventually we 

hope to be able to unify all existing protein data in a single organizational framework. The 

unified data structure will be tested and validated for its predictive capacity and will then be 

employed to predict the identities of all uncharacterized proteins and to prioritize experiments 

needed to confirm these predictions.  
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Appendix 

The python code for implementing the automated threshold selection heuristic discussed in 

Chapter 2 is available at http://www.rbvi.ucsf.edu/Research/cytoscape/threshold_scripts.zip. 

Instructions for installing the clusterMaker Cytoscape plugin discussed in Chapter 3 are available 

at http://www.cgl.ucsf.edu/cytoscape/cluster/clusterMaker.html.  The python code for 

implementing the network filtration protocol discussed in Chapter 4 is available at 

http://www.rbvi.ucsf.edu/Research/cytoscape/protocol_scripts.zip. 

http://www.rbvi.ucsf.edu/Research/cytoscape/threshold_scripts.zip
http://www.cgl.ucsf.edu/cytoscape/cluster/clusterMaker.html
http://www.rbvi.ucsf.edu/Research/cytoscape/protocol_scripts.zip
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