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ABSTRACT OF THE DISSERTATION

Thermal Conductivity and Phonon Properties of Twisted Bilayer Graphene

by

Chenyang Li

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2019

Dr. Roger K. Lake, Chairperson

Misorientation of two layers of bilayer graphene leaves distinct signatures in the electronic

properties and the phonon modes. The effect on the thermal conductivity has received the

least attention and is the least well understood. In this work, the in-plane thermal con-

ductivity of twisted bilayer graphene (TBG) is investigated as a function of temperature

and interlayer misorientation angle using nonequilibrium molecular dynamics (NEMD). The

central result is that with rotation angles larger than 13◦, the calculated thermal conduc-

tivities decrease approximately linearly with the increasing lattice constant of the commen-

surate TBG unit cell. Comparisons of the phonon dispersions show that misorientation has

negligible effect on the low-energy phonon frequencies and velocities. However, the larger

periodicity of TBG reduces the Brillouin zone size to the extent that the zone edge acoustic

phonons are thermally populated. This allows Umklapp scattering to reduce the lifetimes

of the phonons contributing to the thermal transport, and consequently, to reduce the ther-

mal conductivity. This explanation is supported by direct calculation of reduced phonon

lifetimes in TBG based on density functional theory (DFT) for larger rotation angles.
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Nothing was previously known about how small twist angles (<13◦) affect the

thermal conductivity of TBG, and how it approaches its aligned value as the twist angle

approaches 0◦. To provide insight into these questions, we performed large scale NEMD

calculations on commensurate TBG structures with angles down to 1.87◦. The results

show a smooth, non-monotonic behavior of the thermal conductivity with respect to the

commensurate lattice constant. As the commensurate lattice constant increases, the thermal

conductivity initially decreases by 50%, and then it returns to 90% of its aligned value as the

angle is reduced to 1.89◦. These same qualitative trends are followed by the trends in the

shear elastic constant, the wrinkling intensity, and the out-of-plane ZA2 phonon frequency.

The picture that emerges of the physical mechanism governing the thermal conductivity is

that misorientation reduces the shear elastic constant; the reduced shear elastic constant

enables greater wrinkling; and the greater wrinkling reduces the thermal conductivity. The

small-angle behavior of the thermal conductivity raises the question of how do response

functions approach their aligned values as the twist angle approaches 0◦. Is the approach

gradual, discontinuous, or a combination of the two?

Much attention has been given recently to the material data science. A particu-

lar emphasis is placed on low dimensional materials exhibiting novel electrical and thermal

properties. An improved dimension classifier model has been created to identify the quasi-

1D materials that are often classified within the 2D material family. The algorithm is based

on the fact that quasi-1D materials contain different bond lengths within the unit cell. The

model can identify known quasi-1D material based on the structural data from Material

Project Database. Using the optimized distributed gradient boosting model (XGBoost),
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both the band gap and the magnetization properties can be predicted from structural and

elemental features. By fitting the XGBoost model with 15,000 kinds of materials, the accu-

racy of the predictions on the 5000 testing samples is greater than 91%. The mean absolute

error of the band gap prediction is only 0.148 eV. Additionally, 1,025 kinds of magnetic

materials have been identified among 5000 kinds of materials. According to the feature im-

portance analysis, the most correlated feature for band gap prediction is the number of the

valence electrons. While, for the magnetic material classification, it is the elemental period.
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Chapter 1

Rationale

1.1 Objectives

As the first discovered 2D atomic crystal, graphene has been subject of intense

investigations due to its promising electrical [8], mechanical [9] and optical properties [10].

The massless electrons of graphene due to their peculiar electronic structure guaranteed its

high electrical conductivity [11]. And a good electrical conductor is always a good heat con-

ductor. The excellent thermal characteristics were soon discovered by Balandin’s group [12].

It is reported that at room temperature, the thermal conductivity of single layer graphene

(SLG) can be as high as 5000 W/m·K. The extremely high thermal conductivity of graphene

opens up a new line of research in thermal management applications. Researchers have great

interest in heat dissipation and heat transport in graphene [13]. The mechanisms such as

doping, isotope, defects and hydrogenation which can greatly affect thermal conductivity

of SLG have been well studied. However, research on tuning the thermal conductivity of

graphene-based materials has just begun.
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Another graphene-based material, consisting of two SLG with a 0.34 nm Van-der-

Waals (VdW) gap, named bilayer graphene (BLG) has attracted lots of attention in recent

years. The unique characteristics have potential applications in next generation micropro-

cessors [14]. The growing interest motivated people to study the phonon and thermal prop-

erties of BLG. Both experimental and theoretical studies show that due to the compressed

ZA mode, the thermal conductivity of BLG is relatively lower than that of SLG [15, 16].

However, the thermal conductivity of BLG, which is approximately 2000 W/m·K [15], is still

much higher than the conventional heat conductor. The interaction between the layers are

VdW forces which are considerably weaker than the strong in-plane sp2 bonding. The devi-

ation of the phonon frequencies in BLG from SLG is negligible for the LA and TA acoustic

branches. The only exception is the layer breathing mode, also called ZA2. For BLG the

ZA2 mode has a very significant splitting with a frequency of 95 cm−1 [17] Moreover, using

Raman spectroscopy, researchers observed multiple peaks between 100-200 cm−1 which can

be associated with ZA2 [18].

Currently, the interests of the physicists have been shifting to the twisted bilayer

graphene (TBG), which is constructed by rotating one layer with a commensurate rotation

angle. Although it is believed that rotation cannot strongly affect the interlayer interac-

tion, the breaking symmetry of the Bernal stacking will result in captivating dependence of

thermal conductivity on the commensurate rotation angle. In this thesis, we will uncover

the commensurate rotation effect on the thermal conductivity of TBG. Also an underlying

physical mechanisms will be presented by studying the phonon and elastic properties of

TBG.
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1.2 Organization

The rest of the dissertation is organized as follow: Chapter 2 presents the in-plane

thermal conductivity of TBG as a function of temperature and commensurate rotation angle

larger than 13◦. Chapter 3 presents the answer to the question of how small commensurate

rotation angles (< 13◦) affect the thermal conductivity of TBG, and how it approaches its

aligned value as the twist angle approaches 0◦. Chapter 4 presents a comparison of in-

teratomic potentials for TBG, both interlayer potentials and intralayer potentials will be

considered. Chapter 5 presents preliminary work on machine learning: dimension classifica-

tion, band gap prediction and magnetic material classification. Chapter 6 is a summary of

all the interesting findings and an outlook for future work. In the Appendix, the band gap

predictor by using machine learning and the dimension classifier are documented. Also, we

did an analysis of the vibrational mode for BLG using Elastic continuum model.
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Chapter 2

Lattice Constant Dependent Thermal

Conductivity of Misoriented Bilayer

Graphene

2.1 Introduction

The record high thermal conductivity of graphene has created widespread interest

and may lead to its applications in thermal management [19,20]. The room temperature ther-

mal conductivity (κ) of single layer graphene (SLG) is approximately 3000− 5000 W/m·K,

while the room temperature thermal conductivity of few layer graphene (FLG) ranges from

1300 W/m·K to 2800 W/m·K [19,21, 22]. Similar values have also been obtained from the-

oretical studies [23–25]. There are many factors that influence the thermal conductivity of

graphene such as vacancies, chirality, isotope [26], wrinkles, number of layers, etc. Among
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them, the effect of interlayer misorientation on the in-plane thermal conductivity of bilayer

graphene (BLG) has been the least studied, and it is the focus of this work.

(a) AB (b) 21.78o

(c) 32.20o (d) 13.17o

2.
46

 A
o

4 6.
51

 A
o

28

8.
87

 A
o

52 10
.7

2 
A

o

76

Figure 2.1: Top views of the primitive cells and the rectangular unit cells of (a) AB-BLG,

(b) 21.78◦ m-BLG, (c) 32.20◦ m-BLG, (d) 13.17◦ m-BLG. The value of the primitive lattice

constant is shown along the left edge of each primitive cell, and the number of atoms in each

primitive cell is shown to the right of each cell.

In graphene, or BLG, heat is carried by the low-energy vibrational (phonon) modes

[27]. Anything that alters the low-energy phonon spectrum or the phonon scattering can

affect the thermal conductivity. Experimentally, Raman spectroscopy has been extensively

used to probe the zone-center vibrational properties of graphene, AB-BLG, and misoriented

BLG (m-BLG) [18,28–34]. It has been used to measure the misorientation angle dependence

of the high-energy optical phonons of the G and 2D peaks of m-BLG, and it has also been

used to measure the new peaks that appear in the low-energy range of 90–200 cm−1 in the
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vicinity of the original ZO′ breathing mode [18, 31, 35]. The position, intensity, and width

of the Raman 2D peak can be used to identify the m-BLG misorientation angle [30, 33].

Misorientation also affects the electron-phonon interlayer and intralayer interactions [36,37],

and Raman spectroscopy has very recently been used to distinguish the interlayer from the

intralayer interactions [37]. While the Raman studies are useful for understanding the optical

phonon branches and their interactions with electrons, heat is carried by the low-energy

acoustic modes over a range of wavevectors which the Raman studies do not probe.

Recently, the in-plane thermal conductivities of two suspended BLG samples were

experimentally measured over a range of temperatures from 300 K to 650 K [15]. One

sample was aligned AB stacked BLG (AB-BLG), and the other sample was misoriented-BLG

(m-BLG) with a misorientation angle of 32.2◦. The average κ values of the m-BLG were

uniformly lower than those of the AB-BLG. There was considerable experimental uncertainty

of the data, with error bars of up to 40%, and the measurements were taken from a single

m-BLG sample. A theoretical study of m-BLG nanoribbons found strong edge effects and

an increase of thermal conductivity for misorientation angles of 22.5◦ and 30.0◦ compared

to that of an AB stacked nanoribbon [38]. Overall, the effect of the misorientation angle on

the in-plane thermal conductivity of BLG is still an open question.

The existing computational research on the phonon properties of m-BLG indicates

that misorientation only slightly affects the phonon frequencies, density of phonon modes

and the specific heat above room temperature [17, 35, 39–41]. New low-energy q = 0 modes

in the m-BLG ω− q dispersion naturally occur due to zone-folding. Considering the simple

expression relating the thermal conductivity, specific heat, velocity, and effective mean-
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free path, κ = 1
3Cv × v × leff , one would infer that interlayer misorientation should not

significantly affect the in-plane thermal conductivity provided that leff is not significantly

changed. However, zone-folding reduces the size of the Brillouin zone (BZ) and opens up

new Umklapp scattering channels that result in increased Umklapp scattering and a reduced

mean free path [15].

Usually, Umklapp scattering would be expected to have little effect on the heat

transport by low-energy phonons with small wave vector q. The thermal conductivity de-

pends on the low-energy region, while Umklapp processes dominate the high-energy region.

However, the periodicity introduced by the moiré pattern or determined by the commensu-

rate unit cell can be very long. The lattice constant of the commensurate unit cell with the

smallest misorientation angle that we consider of 13.17◦ is 1.07 nm, corresponding to a BZ

Γ-K path length of 3.91 nm−1. At wave vector K, the phonon frequency of the LA branch

is approximately 360 cm−1 corresponding to an energy of 45 meV, which is less than 2kBT

at room temperature [17]. Thus, the severe reduction of the BZ brings the zone edges into

the low-energy range where Umklapp processes could play a role in the room temperature

thermal transport.

2.2 Method and computational approach

The starting point of the theoretical investigation is the construction of the misori-

ented bilayer atomic structures using commensurate rotation angles. These special angles

ensure that the overall structure remains periodic, albeit with a much longer periodicity.
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Commensurate misorientation angles are given by [42]

cos θ =
n2 + 4nm+m2

2(n2 + nm+m2)
, (2.1)

where m and n are non-negative integers with m ≤ n. The commensurate unit cell vectors

c1 and c2 are c1 = na1 + ma2 and c2 = −ma1 + (m + n)a2. We will refer to c1 and c2

as the primitive lattice vectors, their magnitude as the primitive lattice constant, and a

unit cell constructed with c1 and c2 as a primitive cell, since it is the smallest periodic cell

that can be constructed for a given misorientation angle θ. Due to the 6-fold rotational

symmetry of graphene, we only need to consider misorientation angles between 0◦ and 60◦.

The misorientation angles considered here are 0◦ (AB stacking), 13.17◦, 21.78◦, and 32.20◦.

The three angles were chosen since they give the three smallest primitive cells as shown in

Fig. 2.1. A 27.79◦ primitive cell is the same size as the 32.30◦ primitive cell, but the 32.30◦

angle was chosen, since it corresponds to a clockwise rotation of the upper layer in the same

sense as the 13.17◦ and 21.78◦ angles, and this is also the misorientation angle of the m-BLG

sample measured in Ref. [15]. The next larger commensurate primitive cell corresponds to

a rotation angle of 17.89◦ with a primitive lattice constant of 13.69 Å containing 124 atoms.

The sizes of the commensurate primitive cells quickly increase from there, and a table of

commensurate angles and primitive lattice constants is given in Ref. [43].

The NEMD simulations require a rectangular unit cell, so we define orthogonal

unit cell vectors r1 and r2 as r1 = c1 and r2 = 2c2 − c1. The number of atoms N in the

rectangular unit cell is N = 8(n2 + nm+m2). A top view of the rectangular unit cells are

shown in Fig. 2.1 underneath their respective primitive cells. The rectangular unit cell of

AB-BLG can be made smaller than in Fig. 2.1a. It is constructed to be the same size as
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the 21.78◦ unit cell, so that the thermal conductivities can be compared at a constant width

and a constant length. The rectangular unit cell is repeated multiple times in the direction

of the heat transport. It is also repeated in the direction perpendicular to the direction

of heat flow to ensure that the width is sufficiently large, so that the calculated thermal

conductivity values are independent of the width [44].

For the NEMD simulations, the BLG structures are divided into 2N identical slabs

along the transport direction where N is a positive integer, usually not less than 10 for the

accuracy of calculation. We will refer to the slabs as ‘NEMD slabs’, since they are created

purely for the NEMD calculation. For each NEMD slab, we obtain one statistical average

temperature. The hot region is at the center in NEMD slab N + 1, and the cold regions are

at the sample ends in NEMD slabs 1 and 2N . The geometry is illustrated in the inset of

Fig. 2.2b.

The NEMD simulations are implemented in the LAMMPS code [45]. The time

step is 0.2 fs. A reactive empirical bond order (REBO) potential [46] is used for the in-plane

bonding interactions, and the Lennard-Jones (LJ) potential is included for the interlayer van

der Waals (vdW) forces with a well-depth energy of 2.96 meV and an equilibirum distance

of 0.334 nm [47].

There are three steps to the simulation. The relaxation process (step 1) is a con-

stant temperature, 340-ps-long, canonical-ensemble simulation that brings the system tem-

perature up to 300 K as illustrated in Fig. 2.2a. We include a quantum correction [48] to

the simulation temperature. The temperature of the BLG increases monotonically to 300 K

during the first 150 ps; then the temperature fluctuates around 300 K. At 340 ps, the system

9



Figure 2.2: (a) Temperature as a function of simulation time during the relaxation process

and the transition process of the NEMD simulation. The target temperature is T = 300 K

and θ = 21.78◦. (b) Heat flux in the m-BLG as a function of simulation time during the

non-equilibrium process. Inset: structure geometry showing the hot (red) and cold (blue)

reservoirs and direction of heat flow (arrows).
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Figure 2.3: Temperature as a function of NEMD slab number for the left-half of the structure

during the non-equilibrium process, for θ = 21.78◦ m-BLG at 300 K. The thermal conduc-

tivity is extracted from the slope in the linear region. Inset: color plot of temperature

distribution of each atom. Temperatures are given by the color bar at right.

reaches a steady temperature of 300 K which indicates that the system is ready to enter the

transition process (step 2). The transition process is a 60 ps, constant-energy simulation

that ensures that the temperature of the system will maintain an average value of 300 K

under a microcanonical ensemble. After the transition process, the system is ready to enter

the non-equilibrium process for calculation of the thermal conductivity.

A heat flux J is applied by performing twice the kinetic energy exchange every 4

fs between the cold regions at the ends and the hot region in the middle according to the

Müller-Plathe algorithm [49], as shown in the inset of Fig. 2.2b. The average temperature

remains at 300 K. Fig. 2.2b shows the total heat flow as a function of simulation time for

the 21.78◦ m-BLG. The linear dependence of total heat flux indicates that the heat flow is

steady and smooth. The instantaneous J is the slope of the line in Fig. 2.2b.
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Fig. 2.3 shows the temperature distribution and temperature gradient of the 21.78◦

m-BLG at 300 K. The inset is the temperature distribution of each atom in the BLG.

The average temperature of the atoms in each NEMD slab is plotted underneath. The

temperature profile shows non-linear regions (the high temperature and low temperature

baths) and linear region. The temperature in the linear region, is centered around 300 K.

The gradient of the linear part gives the temperature gradient ∆T .

With the values for ∆T and J , the thermal conductivity κ′L is given by Fourier’s

law,

κ′L = − J

2A ·∆T
. (2.2)

The factor of 2 in the denominator appears, because the heat flux is divided into two

directions. The ‘prime’ on κL indicates that this value is extracted from a finite length

simulation domain. A is the cross-sectional area (width × thickness) of the heat conduction

direction. For bilayer graphene, a thickness of 6.68 Å is used for all samples, since the

interlayer distance is insensitive to stacking or misoreintation [50]. Since all the simulations

have the same fixed rate of kinetic energy exchange, J is a constant among all samples.

Figure 2.4: Thermal conductivity of 21.78◦ m-BLG, AB, and AA BLG as a function of

width and at T = 300 K.
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To ensure that the width is sufficiently large, the thermal conductivity is calculated

as a function of the width. Fig. 2.4 shows the width dependence of the thermal conductivity

κ′L at T = 300 K for the AA, AB, and 21.78◦ structures all in the 21.78◦ geometry with

constant length of 20 nm. The thermal conductivity of all three BLGs is higher at very

small widths. Narrow widths result in reduced phonon-phonon scattering due to the lack

of phonon-phonon combinations that satisfy the energy and momentum conservation rules

for scattering [51]. The thermal conductivity at T = 300 K becomes width independent for

widths greater than ∼ 60 Å, and the converged value is approximately 210 W/m·K for all

three structures. For temperatures above 300 K, increased phonon-phonon scattering reduces

the phonon mean free path [52], so that the thermal conductivity at higher temperatures is

also converged and independent of the width for widths ≥ 60 Å.

For each misorientation angle, 5 different lengths are simulated to obtain length-

dependent values for the thermal conductivity κ′L. These values are subsequently used to

obtain a linear best fit to the inverse-length-dependence expression of the thermal conduc-

tivity [53],

1

κ′L
=

1

κL
+

b

Lz
. (2.3)

In Eq. (2.3), b is the size coefficient. When plotted versus 1/Lz, the intercept, 1/κL, gives

the length-converged thermal conductivity κL for Lz →∞. For all rotation angles including

0◦, the width of the structure is ∼ 60 Å and the length is varied from 200 Å to 2710 Å. The

largest structures contain approximately 1.5× 105 atoms.

To analyze the evolution of phonon dispersion and phonon group velocity, we apply

the fluctuation dissipation theory implemented in the Fix-phonon package of the LAMMPS
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Figure 2.5: Lattice thermal conductivity of AB-BLG, 21.78◦ m-BLG, 32.20◦ m-BLG and

13.17◦ m-BLG plotted as a function of the primitive commensurate lattice constants for 5

different temperatures. The corresponding misorientation angles are labelled on the upper

horizontal axis.

code, which has been demonstrated to produce accurate phonon dispersions [54, 55]. The

hybrid potential combining both the REBO potential and the LJ potential is used as in the

NEMD simulations. To avoid negative phonon frequencies near Γ, we use a 25 × 25 × 1

supercell for all of the m-BLG as well as the unrotated AB-BLG. Since the unit cell has at

least 28 atoms, the total number of iterations to enforce the acoustic sum rule is set at 50.

All settings are the same as those used in the NEMD simulations.

As part of the assessment of the hybrid potential, we also calculated the phonon

dispersion of AB-BLG using density functional theory (DFT) and compared the results to

those from the LAMMPS calculations. DFT combined with ShengBTE [56] are also used

to obatin the interatomic force constants (IFCs) of both BLG and m-BLG to determine

phonon lifetimes. Details of the DFT simulations are provided in the Appendix.
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2.3 Results and discussion

Fig. 2.5 is the central result of this work. It shows the in-plane lattice thermal

conductivity κL obtained from Eq. (2.3) as a function of the primitive lattice constant

of the different commensurate rotation angles for 5 different temperatures. For the range

of angles considered, the thermal conductivity monotonically decreases as the size of the

commensurate primitive cell increases. This trend of decreasing thermal conductivity with

increasing commensurate primitive lattice constant is reminiscent of the trend observed in

the interlayer electrical conductance as a function of lattice constant [43, 57–59]. However,

the physics and the functional dependence are different. The physics of the electrons in

m-BLG is determined by the misalignment of the K-points in the two layers. However,

the low-energy phonons reside at Γ, and the Γ points of the two layers are always aligned.

What does qualitatively explain the dependence of the lattice thermal conductivity on the

commensurate primitive lattice constant is the reduction of the commensurate BZ and a

consequent increase in Umklapp scattering within the low-energy range contributing to

the thermal transport. This physical mechanism was previously suggested [15], and it is

consistent with the trends resulting from the NEMD simulations.

The relationship between the phonon modes, the BZ, and the thermal conductivity

is given by the Boltzmann transport equation [56]

κ =
1

NΩ

∑
q,λ

∂f

∂T
(~ωλ)νλνλτλ, (2.4)

where N is the number of q points in the BZ, Ω is the volume of the unit cell, f is the

Bose-Einstein distribution function, ωλ is the phonon frequency of mode λ, νλ is the phonon

group velocity along a certain direction, and τλ is the phonon lifetime. Fig. 2.6 shows

15



(a)

K

K’
K

K’K’
K ✁

✁

K

K

K

K

K

K

K

K
K

AB-BLG

21.78º m-BLG

3
2
.2

0
º 
m

-B
L
G

13.1
7º m

-B
LG

K’ K’K’(b)

Figure 2.6: (a) Phonon dispersion of AB stacked bilayer graphene. The vertical dashed lines

show the BZ edges of the m-BLGs corresponding to the misorientation angles as labelled.

(b) BZs of AB-BLG, 21.78◦ m-BLG, 32.20◦ m-BLG, and 13.17◦ m-BLG. The high symmetry

lines in the AB-BLG BZ are also shown.

the molecular dynamics (MD) calculated phonon dispersion of AB-BLG within the original

BZ of the 4-atom AB-BLG primitive cell. The dashed vertical lines labelled 13.17◦, 32.20◦

and 21.76◦ show the edges of the commensurate BZs of the corresponding m-BLGs. At the

vertical line labeled 32.20◦ along the Γ-M path, the ZA, TA, and LA modes have energies

of 10 meV, 35 meV, and 53 meV, respectively. Thus, the zone-edge energies of the m-BLG

acoustic modes are less than kBT (ZA) or 2kBT (TA, LA), and Umklapp scattering can now

reduce the lifetimes of the low-energy phonons relevant to thermal transport. For reference,

the BZs of AB-BLG, 21.8◦ m-BLG, 32.20◦ m-BLG, 13.17◦ and the high symmetry lines of

the AB-BLG BZ are shown in Fig. 2.6(b).

The other factors that govern the thermal transport are the phonon velocities and

phonon energies. If misorientation reduces the phonon velocities, then this will reduce the
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thermal conductivity. To understand the effect of misorientation on the phonon velocities

and energies, we compare the AB-BLG phonon frequencies and the m-BLG phonon frequen-

cies calculated using the supercell of the m-BLG. By calculating the phonon frequencies of

AB-BLG using the same lattice vectors as those of the m-BLG, we can directly compare

the two phonon dispersions and separate out the effects of zone folding from misorientation.

Fig. 2.7 shows side-by-side comparisons of AB-BLG and m-BLG with misorientation angles

of 21.78◦, 32.2◦, and 13.17◦. For each angle, visual inspection shows no difference between

the phonon dispersions of the AB-BLG and the m-BLG. All of the new energies appearing at

the high symmetry points are the result of zone folding. Furthermore, the slopes of the the

bands, i.e. the phonon group velocities, also appear to be the same. Quantitative values for

the LA and TA phonon velocities at Γ, numerically calculated from the dispersion curves,

are given in Table 2.1. The quantitative values are unaffected by misorientation.

Since the phonon velocities and energies are unaffected by misorientation, the only

explanation consistent with the trend of reduced thermal conductivity with increased m-

BLG lattice constant is that it is the result of increased scattering among the low-energy

thermal phonons. To provide further support for this hypothesis, we calculate the phonon

lifetimes for AB-BLG and 21.78◦ m-BLG and compare them in Fig. 2.8. The phonon

lifetimes of the LA branches of AB-BLG and m-BLG are similar for low energies below the

energy of the ZO’ mode of ∼ 83 cm−1. Above this energy, the lifetimes of the m-BLG LA

mode are less than the lifetimes of the AB-BLG LA mode. In this same energy range, the

lifetimes of the TA and ZA modes of m-BLG are less than those of AB-BLG. The reduced

phonon lifetimes of m-BLG compared to those of AB-BLG provides further support to the
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Figure 2.7: Phonon dispersion of (a) AB-BLG calculated using the 21.78◦ m-BLG lattice

constants, (b) 21.78◦ m-BLG, (c) AB-BLG calculated using the 32.20◦ m-BLG lattice con-

stants, (d) 32.20◦ m-BLG, (e) AB-BLG calculated using the 13.17◦ m-BLG lattice constants,

and (f) 13.17◦ m-BLG.
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hypothesis of increased Umklapp scattering in m-BLG as the cause of the reduced thermal

conductivity.

Figure 2.8: Phonon lifetime comparison of AB-BLG and 21.78◦ m-BLG at 300 K.

Table 2.1: Comparison between AB-BLG, 21.78◦, 32.20◦ and 13.17◦ m-BLG phonon group

velocity around Γ for LA and TA modes.

Misorientation Angle(◦) υLA(km/s) υTA (km/s)

0◦ AB-BLG 20.0 12.9

21.78◦ m-BLG 20.0 12.8

21.78◦ AB-BLG 20.0 12.9

32.20◦ m-BLG 20.1 12.9

32.20◦ AB-BLG 20.0 12.9

13.17◦ m-BLG 20.0 12.8

13.17◦ AB-BLG 20.0 12.9
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2.4 Conclusion

The dependence of the in-plane BLG lattice thermal conductivity on the interlayer

misorientation angles 13.17◦, 21.78◦ and 32.20◦ is theoretically investigated using NEMD

simulations for temperatures ranging from 300 K to 700 K. The thermal conductivities

decrease approximately linearly with the increasing lattice constant of the commensurate m-

BLG unit cell. At T = 300 K, the thermal conductivity decreases by a factor of 2.0 between

AB-BLG and 13.2◦ m-BLG. For the 3 misorientation angles considered, misorientation does

not affect the phonon velocities or energies, but it does reduce the Brillouin zone size to

the extent that the zone edge acoustic phonon energies are thermally populated at room

temperature and above. This allows Umklapp scattering to reduce the lifetimes of the

phonons contributing to the thermal transport and, consequently, to reduce the thermal

conductivity. DFT calculations do find a reduction of the phonon lifetimes in m-BLG

compared to AB-BLG.

Appendix

This appendix describes the assessment and verification of the potentials and

NEMD method used in the calculations, and it also provides the details of the DFT calcu-

lations. At room temperature (300 K), the value of κL for single layer graphene extracted

from our NEMD simulations is 2116 W/m·K which is within the experimental range of val-

ues [15]. Additionally, our value for κL of AB-BLG at room temperature extracted from

the NEMD simulations is 1046 W/m·K, which is lower, but still close to the experimental
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Table 2.2: Comparisons of the AB-BLG phonon frequencies at the Γ, M, and K points,

calculated from MD using the hybrid REBO and LJ potentials, from our DFT calculations,

from prior DFT calculations (in units of cm−1), and from prior experimental measruement

(EXP) aReference [4], bReference [5], cReference [6], dReference [7].

Method
Γ K M

LO ZO ZO′ LA TA ZA LO TO LA TA ZA LO TO

MD 1589 993 83 1140 1007 553 1144 1543 1286 684 427 1286 1494

DFT 1571 869 92 1210 994 530 1211 1356 1325 628 474 1344 1401

DFTa 1560 884 78 1210 997 532 1228 1327 1318 627 473 1360 1396

EXP 1590b 861b – 1184c – 482c 1184c 1313d 1290d 630b 465b 1321d 1389d

results.

A well known artifact of NEMD simulations of the thermal conductivity is that

they are sensitive to the finite size effect [27,44,60–63]. A length dependent study of NEMD

simulations of SLG required a length of 16 µm for the thermal conductivity to reach a

value of 3200 W/mK [62]. This is the longest length simulated and correspondingly highest

value for the thermal conductivity obtained from a NEMD simulation of SLG. A detailed

examination of the finite size effect in both the direct approach (NEMD) and in the Green-

Kubo method is described in Ref. [60]. There, it is shown that extrapolating Eq. (2.3) to the

1/Lz = 0 intercept gives a good comparison between the two methods and the experimental

values for Si. A comprehensive tabulation of values from different studies can be found in

Ref. [64]. The NEMD approach systematically underestimates the thermal conductivity.
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Since, in this work, the simulation domains are similar for all of the misorientation angles,

the systematic underestimation will not affect the trends, which are the focus of the study.

We only ask whether the misorientation increases or decreases the thermal conductivity with

respect to the unrotated structure. For this question, the NEMD simulations are sufficient

to capture the trends, just as they capture the correct temperature trends.

For verification of the potentials, we calculated the known phonon dispersion of

AB-BLG using DFT. The DFT calculations are performed using the generalized gradient

approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) parametrization [65] for the

exchange correlation functional, as implemented in Vienna Ab-initio Simulation Package

(VASP) [66, 67]. Van der Waals corrections are included with the semiempirical DFT-D2

Grimme’s method [68, 69]. The structure is relaxed until the forces were less than 10−5

eV/. A plane-wave basis set with kinetic energy cutoff of 500 meV is used to expand the

electronic wave functions and a 16 × 16 × 2 Monkhorst Pack k-point mesh is adopted for

the integration over the first BZ. The optimized lattice parameter of the unit cell is 2.46 Å,

which is in good agreement with experiment [70] and theory [4]. The phonon dispersion is

calculated for a 5 × 5 × 1 supercell using Phonopy [71].

Quantitative comparisons of the phonon frequencies of AB-BLG at high symmetry

points calculated from MD, DFT, as well as the prior theoretical [4] and experimental results

of others [5–7] are shown in Table 2.2. Since previous theoretical calculations of AB-BLG

are also obtained from DFT, our DFT results match closely with the prior DFT studies [4].

The largest differences between the MD results and the DFT results occur in the high energy

optical modes ΓZO and KTO which are not relevant to this work. The MD acoustic branch
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energies are within 5% of the DFT results at K and within 10% of the DFT results at M.

The phonon lifetimes τλ of AB-BLG and m-BLG are calculated from the scattering

rates as implemented in ShengBTE [56], 1
τλ

= 1
N (
∑

λ Γabsorb + 1
2

∑
λ Γemission), where the

quantities Γabsorb and Γemission are the three-phonon scattering rates, obtained by perturba-

tion theory. These phonon scattering rates depend on phonon frequencies, atomic masses,

and IFCs [56]. The second-order and third-order IFCs are calculated using DFT. In the

calculation of the IFCs, we use 5× 5× 1 and 3× 3× 1 supercells for BLG and m-BLG,

respectively. The q-point mesh is set to 40× 40× 1 and 15× 15× 1 for BLG and m-BLG,

respectively. Interactions up to the fourth nearest neighbours are included for calculating

the anharmonic (third-order) force constants.
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Chapter 3

Elastic Constant Dependent Thermal

Conductivity of Small Angle Bilayer

Graphene

The effect of layer misorientation on the electronic structure and the electrical

conductance of bilayer graphene (BLG) and multi-layer graphene has received much atten-

tion [43, 57, 59, 72–77], and interest was recently renewed by the experimental discovery of

superconductivity at certain low misorientation angles [78, 79] where the electronic bands

become flat at the Fermi level [74, 75]. Experimentally, the effect of interlayer rotation on

the phonon spectrum has been probed extensively with Raman spectroscopy [18,28–35,37].

Theoretical research on the phonon properties of twisted bilayer graphene (TBG) finds that

the phonon frequencies, density of phonon modes, phonon velocities, and specific heats of the

low frequency phonon branches vary little with the interlayer rotation angle [1,17,35,39,40].
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Bringing these two different lines of research together, recent theory proposes a phonon

driven mechanism for the superconductivity [80]. The effect of misorientation on the in-

plane thermal conductivity of TBG has received less attention [1, 15, 38, 81, 82]. The one

experimental study on the in-plane thermal conductivity of TBG carried out opto-thermal

measurements [27] on one TBG sample with a twist angle of ∼ 32◦, and found that interlayer

misorientation reduced the in-plane thermal conductivity by up to 50% [15].

Standard expressions for the thermal conductivity based on the phonon Boltz-

mann transport equation show that the lattice thermal conductivity depends on the phonon

velocities, frequencies, and lifetimes. Since misorientation has little effect on the phonon

velocities and frequencies, it was proposed that that the zone-folding that occurs in TBG

opens up new channels for phonon scattering that are unavailable in unrotated BLG [15]. As

a consequence, the phonon lifetimes are reduced, which results in a reduction in the thermal

conductivity. A recent theoretical study of the of the lattice thermal conductivity of TBG

with three rotation angles corresponding to the three smallest commensurate unit cells,

21.78◦, 32.17◦, and 13.17◦, found that the thermal conductivity decreased approximately

linearly as the commensurate lattice constant increased [1]. The scaling of the thermal con-

ductivity with the lattice constant rather than the angle was consistent with the hypothesis

that the decreased thermal conductivity in TBG resulted from increased scattering allowed

by the large zone-folding in the reduced Brillouin zones [15].

However, the three angles considered in [1] give only a small picture within the total

range of possible misorientation angles. What happens at smaller misorientation angles of

10◦ or less is still an open question. It seems reasonable to expect that as the rotation
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angle is reduced towards zero, the thermal conductivity might return to its aligned value in

some smooth manner even though the commensurate lattice constant becomes very large.

If this expectation were true, then there would be a minimum in the thermal conductivity

as a function of the commensurate lattice constant. Such a non-monotonic dependence of

the thermal conductivity on the commensurate lattice constant would suggest that physical

mechanisms other than increased scattering allowed by reduced Brillouin zones play a role in

governing the thermal conductivity. To investigate the mechanisms that govern the thermal

conductivity in TBG, and to provide insight into the physical mechanisms that give rise

to the angle and lattice constant dependence of the thermal transport, we perform large-

scale non-equilibrium molecular dynamics calculations of the thermal conductivity of TBG

for commensurate twist angles down to 1.89◦, we calculate the elastic constants and the

phonon spectra for the misoriented structures, and we compare the results to those from

other theoretical and experimental works.
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Figure 3.1: (a) and (c-n) The primitive cells of AB-BLG and commensurate TBG. For each

primitive cell, the rotation angle is given along the bottom edge, the number of atoms are

shown along the left edge, and the commensurate lattice constant is given along the top edge.

(b) A rectangular unit cell created and then repeated for constructing the long ribbons for

the thermal transport calculations.

3.1 Methods

The approach used to create the commensurate unit cells and to model their ther-

mal conductivities was previously described in detail [1], and only a brief description of

the most important points is provided here. A total of 13 different commensurate rotation

angles are considered with their commensurate primitive cells shown in Fig. 3.1. For each
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structure, the rotation angle, lattice constant, and number of atoms in the commensurate

primitive cell are shown. The sizes of the commensurate primitive cells quickly increase as

the rotation angle decreases, and at the smallest angle of 1.89◦, the primitive cell contains

3676 atoms. All of the angles chosen fall along the curve of minimum commensurate prim-

itive cells shown in Fig. 2 of Shallcross et al. [73], except for the one angle of 20.31◦. The

primitive commensurate cells for 20.31◦ and 3.89◦ have the same primitive commensurate

cell lattice constants, even though their moiré patterns look very different. The misoriented

primitive cells for all of angles that fall along the curve of minimum commensurate primitive

cells appear to smoothly transition from a region of AB stacking to a region of AA stacking.

For the 20.31◦ structure, there are many such transitions within the primitive cell. This an-

gle is included to test whether the physics governing the thermal conductivity is determined

by the rotation angle or the size of the primitive commensurate cell. If the physics is gov-

erned by the rotation angle, then the thermal conductivities for misorientations of 3.89◦ and

20.31◦ should be very different. If the physics is governed by the size of the commensurate

primitive cell, then the thermal conductivities should be the same.

Calculations of the phonon dispersions and thermal conductivities are performed

using molecular dynamics (MD) and non-equilibrium molecular dynamics (NEMD) [49] as

implemented in LAMMPS [45]. Detailed benchmarking of various interatomic potentials

has been reported for graphene [83], but there are no equivalent benchmarking studies for

bilayer graphene. The common intralayer potentials include Tersoff [84, 85], Brenner [86],

the reactive empirical bond order potential (REBO) [46,87], and the long-range bond-order

potential for carbon (LCBOP) [88]. All of these potentials belong to empirical bond order
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potentials (EBOPs) [89] and treat electronic binding as effective pairs. For bilayer graphene

and misoriented bilayer graphene, the long range interlayer potential is critical. To model

this, a long range interlayer potential is added to the above intralayer potentials, and it

generally takes the form of a Lennard-Jones (LJ) potential [87]. Most recently a new in-

terlayer potential, dihedral-angle-corrected registry-dependent interlayer potential (DRIP),

was created specifically for misoriented multilayer graphene [90]. Calculations presented

here used REBO for the intralayer potential, which is the most recent extension originating

from the Tersoff potential, with the two types of interlayer potentials, LJ, as implemented

in the adaptive intermolecular REBO (AIREBO) potential, and DRIP. All calculations are

performed with AIREBO, and the main result, the trend in the thermal conductivity, is

verified with REBO+DRIP.

The thermal conductivity is calculated using non-equilibrium molecular dynamics

(NEMD) implemented in LAMMPS [45], in which a constant small heat flux is applied

across the simulation domain and the gradient of the average temperature directly gives

the thermal conductivity. The average temperature for all calculations is T = 300 K. For

calculation of the thermal conductivity using this direct approach, the primitive cells shown

in Fig. 3.1 are expanded into rectangular cells, and the rectangular cells are then repeated in

both length and width to form long ribbons for the simulation domain. Periodic boundary

conditions are used in the width direction so that there are no edges and no edge effects.

When we refer to the “width” of the ribbon, we are referring to the width of the central

ribbon to which we apply periodic boundary conditions.

Finite width and finite length effects are both present, and they are addressed
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using the following approaches. The thermal conductivity of ribbons of increasing width are

simulated until the thermal conductivity (κl) becomes independent of the width. The width

at which this occurs is ∼ 70 Å as shown in Fig. 3.2(a). All of the simulated structures have

a width greater than 70 Å. The widths slightly vary, since the ribbons must be constructed

from integer multiples of the primitive cells shown in Fig. 3.1.

To address the finite length effect, for each angle in Fig. 3.1, multiple ribbons

are constructed of increasing length L ranging from 20 nm to 12.9 µm. The largest ribbon

contains 8, 359, 232 atoms. The inverse of the calculated thermal conductivity 1
κ′L

for each

length is plotted versus 1/L and fit to the line 1
κ′L

= 1
κL

+ b
L [53]. As shown in Fig. 3.2, the

dependence of 1
κ′L

on 1
L is linear. The intercept at 1

L = 0 gives the converged value of κL as

L→∞.
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Figure 3.2: Lattice thermal conductivity of AB-BLG plotted as a function of (a) width and

(b) inverse length. The length of the ribbon in (a) is 1.06 µm and the width of the ribbon

in (b) is 7.87 nm.

Phonon dispersions are calculated using the Fix-phonon package of the LAMMPS

code [54]. In this approach the dynamical matrix is constructed directly from the time

averaged displacement-displacement correlation function evaluated during the molecular

dynamics simulations. The dynamical matrix constructed in this manner is temperature

dependent, and all simulations are performed at a temperature of T = 300 K. To avoid

negative phonon frequencies near Γ, we use 25 × 25 × 1 supercells for all structures. The

resulting supercell sizes range from 17,500 atoms (AB) to 2,229,750 atoms (1.89◦). The

total number of iterations to enforce the acoustic sum rule is set at 50. All settings are the

same as those used in the NEMD simulations. Velocities of the three acoustic branches are
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determined by evaluating the derivatives, v = ∂ω
∂q

∣∣∣
q→0

.

The elastic constants are obtained by introducing small deformations of the crystal

cell around the equilibrium configuration and solving

δE

V0
=

1

2

∑
ij,kl

Cij,klεijεkl, and εij =
1

2
(
∂δxi
∂xj

+
∂δxj
∂xi

) (3.1)

where i, j, k, l are deformation directions in three dimensions, Cij,kl is the elastic constant,

V0 is the equilibrium volume of the relaxed structure, and δE is the potential difference

recorded at each timestep. The Voigt form for the elastic constants will be used in the

results and discussion; for example C44 is the Voigt notation for C23,23.

The out-of-plane wrinkling intensity is quantified with the unitless metric γ =

(ηA/ηλ) × 100%, where ηA is the mean wrinkling amplitude and ηλ is the mean wrinkling

wavelength [91]. ηA is obtained by the averaging the standard deviation of out-of-plane

coordinates of every atom in each layer, ηA = 1
2

∑2
l=1

√
1
N

∑N
i=1(zi,l − z̄l)2, where l denotes

the layer number, N is the total number of atoms, zi,l is the out-of-plane coordinate of atom

i in layer l, and z̄l is the average out-of-plane coordinate of layer l. The wrinkling wave-

length ηλ is determined from the Fourier transform of zi along the heat transfer direction,

1
N

∑
j,l(zj,l − z̄l)eikxj,l , where xj,l is the x coordinate of atom j in layer l.

3.2 Results

The calculated room-temperature thermal conductivities for all of the misorienta-

tion angles shown in Fig. 3.1 are plotted versus their commensurate primitive-cell lattice

constants in Fig. 3.3. The corresponding rotation angles are shown next to each data point.

The first 4 points with the smallest lattice constants have a decreasing linear dependence on
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the commensurate lattice constant, as previously reported [1]. However, this trend abruptly

ends at a commensurate lattice constant of 1.1 nm (13.17◦), where the thermal conductiv-

ity reaches a minimum value. For commensurate lattice constants larger than 1.1 nm, the

thermal conductivity monotonically increases with increasing lattice constant and returns

towards the value of the unrotated AB-BLG.

For the chosen angles below 13◦, the commensurate lattice constants monotonically

increase as the angles decrease. However, two very different angles, 3.89◦ and 20.31◦ have

identical commensurate lattice constants, and their thermal conductivities are also identical.

This result provides strong evidence that the thermal conductivity of TBG is a function of

the commensurate lattice constant rather than the twist angle. To further support that

contention, we show the thermal conductivities plotted versus rotation angle in the inset of

Fig. 3.3.

The calculations in Fig. 3.3 were performed with the AIREBO (REBO+LJ) po-

tential. To verify that the above trend is not an artifact of the interlayer LJ potential,

we performed a subset of the above calculations using REBO with the interlayer poten-

tial recently developed specifically for twisted multilayer graphene, DRIP. The results are

shown in Fig. 3.7 in the Appendix. The trends remain the same, with a minimum thermal

conductivity occurring at the commensurate lattice constant of 1.1 nm.
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Figure 3.3: Lattice thermal conductivity of AB-BLG and TBG plotted as a function of

the primitive commensurate lattice constant. The corresponding misorientation angles are

shown for each data point. The inset shows the same data plotted versus twist angle.

From the phonon Boltzmann transport equation [56], κl = 1
NΩ

∑
q,λ

∂n
∂T (~ωλ)νλνλτλ,

two other factors that affect the thermal conductivity are the low-energy phonon frequencies

and velocities. There are 6 low energy phonon branches that originate from the 3 original

acoustic branches, longitudinal (LA), transverse (TA), and out-of-plane (ZA), of each indi-

vidual graphene layer. We will refer to the 3 acoustic branches that go to zero frequency

in the BLG and TBG structures as the LA, TA, and ZA modes and the three that have

finite frequency at Γ as the LA2, TA2 and ZA2 modes. We use notation consistent with

Refs. [64, 92], but we note that the ZA2 mode is often referred to as the ZO’ mode in the
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literature describing Raman spectroscopy measurements [31, 93]. The phonon velocities for

the LA and TA phonon branches were previously calculated for angles down to 7.34◦ [17].

We now calculate their velocities for angles down to 1.89◦, and we find that over the entire

range of angles, the velocities only vary in the fourth significant digit. The velocities of

the LA modes lie in the range of 20.03–20.09 km/s, and the velocities of the TA modes lie

in the range of 12.83–12.86 km/s. Thus, the velocities of these two modes play no role in

explaining the changes in the thermal conductivity with misorientation.

The out-of-plane ZA modes in the individual graphene layers strongly couple and

split in frequency when the two layers are brought together to form BLG or TBG. The Γ point

frequency of the ZA2 mode with AB stacking calculated from LAMMPS is 82.5 cm−1. Fig.

3.4 shows the Γ point frequency of the ZA2 mode, ωZA2 , plotted versus the commensurate

lattice constant. The dependence of the frequency on the commensurate lattice constant

follows the same trend as that of the thermal conductivity. The mode initially softens, it

reaches a minimum frequency at the commensurate lattice constant of 1.1 nm, and then

it begins to harden as the commensurate lattice constant increases. The ZA2 frequencies

for 3.89◦ and 20.31◦ are identical indicating a dependence on the commensurate lattice

constant rather than on the angle. While the consistency of this trend is interesting, it

cannot explain the trends in the thermal conductivity, since the ZA2 mode is not expected

to play a significant role in thermal transport.
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Figure 3.4: Commensurate lattice constant dependence of the Γ point frequency of the ZA2

mode.

Since the presence of wrinkles can reduce the thermal conductivity by up to

80% [91, 94], and, furthermore, wrinkling will always be present [95], we investigate the

wrinkling of the TBG structures. Fig. 3.5(a) shows a snapshot of the 13.17◦ structure dur-

ing the heat transfer calculation. Out-of-plane fluctuations or wrinkling are apparent in the

cross-sectional view. To quantify the intensity of the wrinkling, we plot the unitless metric

γ (described in Methods) as a function of the commensurate lattice constant in Fig. 3.5(b).

The wrinkling intensity peaks at the commensurate lattice constant of 1.1 nm correspond-

ing to the minimum in the thermal conductivity. The qualitative trends in the wrinkling

intensity track those of the thermal conductivity. The thermal conductivity is lowest when

the wrinkling intensity is highest.
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Figure 3.5: (a) Snapshot of the cross section and top view of the 13.17◦ structure during the

NEMD simulation. Out-of-plane spatial fluctuations or wrinkling are present. (b) Wrinkling

intensity γ as a function of commensurate lattice constant.
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Figure 3.6: Elastic constant C44 plotted versus the commensurate lattice constant.

The ease with which BLG can bend or wrinkle depends on the shear elastic constant

C44 [96]. Therefore, we calculate C44 for the structures shown in Fig. 3.1, and plot the values

versus commensurate lattice constant in Fig. 3.6. The trend in C44 matches the trends in

the thermal conductivity and the wrinkling intensity. For AB-BLG, C44 = 4.8 GPa, and this

agrees with other experimental and theoretical values as shown in Table 3.1. C44 reaches

a minimum value of 0.293 GPa at the misorientation angle of 13.17◦ with a commensurate

lattice constant of 1.1 nm, and then it returns to 2.9 GPa at the smallest angle of 1.89◦ with

a commensurate lattice constant of 7.5 nm. C44 decreases by a factor of 16 between the

maximum and minimum value. At the smallest rotation angle, it is below the AB aligned

value by a factor of 1.6. The calculated numerical values for all angles are given in Table

3.1. Table 3.1 also includes calculated values for C11, C12, and C33, along with experimental

and theoretical values from other works. As shown in Table 3.1, only C44 is affected by

interlayer misorientation.
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3.3 Discussion

The picture that emerges from the above results is that the interlayer misorienta-

tion reduces the shear elastic constant C44 which increases the wrinkling of the TBG. The

increased out-of-plane wrinkling then reduces the thermal conductivity. The three parts

of this mechanism, reduced C44, increased wrinkling, and reduced thermal conductivity,

are consistent with prior results in the literature. The reduction in C44 with misorienta-

tion is consistent with previous experimental studies on Kish graphite [97] and pyrolitic

graphite [98] and a theoretical study of turbostratic graphite [96]. The theoretical study

provides a clear description of how a reduction in C44 reduces the energy for out-of-plane

wrinkling [96]. Experimental measurements found that the average thermal conductivity

of graphene with wrinkles is 27% lower than that of wrinkle-free graphene [94]. NEMD-

AIREBO simulations found that a 10% wrinkling intensity in single layer graphene resulted

in a 20% decrease in the thermal conductivity and a 20% intensity led to an 80% decrease [91].

Therefore, all of the required mechanisms that drive this process are well-established and

validated in the literature.

There have been two previous calculations of the thermal conductivity of TBG

[38,82]. Both studies used LAMMPS with an optimized Tersoff-LJ potential, small structure

sizes (5 nm × 13 nm) [38] (10 nm × 22 nm) [82], incommensurate rotation angles, and open

boundaries in the width direction. The last two items make comparisons with our results

problematic. Because of the open boundaries, the transport was dominated by the edges of

the nanoribbons [38,82], which, because of the incommensurate angles, change as a function

of the rotation angle. In [38], the thermal conductivity decreased as the rotation angle
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increased from 0◦ (AB) to 15◦. Then, the thermal conductivities of 22.5◦ and 30◦ were

larger than that of 0◦ with the maximum occurring at 30◦. In [82], the thermal conductivity

monotonically decreased as the rotation angle increased from 0◦ (AA) to 20◦, and then a

local maximum occurred at 30◦. The pattern was mirror symmetric as the angle decreased

from 60◦ (AB). The maximum values occurred for AA and AB stacking, and they were

equal. In both studies, a 30◦ rotation caused one layer to have a zigzag edge and the other

layer to have an armchair edge. The relatively smooth edges gave rise to the maximum

(or local maximum) values of the thermal conductivities [38, 82]. However, the presence of

angle dependent edge effects prevents meaningful comparisons with our results, since it is

not clear how much of the thermal conductivity reduction was due to edge effects and how

much was due to other processes.

Previous calculations of C44 found a one-order-of-magnitude drop from 4.8 GPa

to 0.274 GPa as the commensurate lattice constant increased from 2.46 Å (AB) to 6.51 Å

(21.78◦) [96]. As the lattice constant increased further, C44 gradually declined to a minimum

average value of 0.2 GPa at a commensurate lattice constant of 2.56 nm corresponding to

a rotation angle of 11.0◦. The calculations were performed using density functional theory

(DFT).

Prior calculations of the ZA2 frequency found a drop from 95 cm−1 to 89.5 cm−1 as

the commensurate lattice constant increased from 2.46 Å (AB) to 6.51 Å (21.78◦) [17]. After

the initial decrease, there was a slight monotonic decline to 89.1 cm−1 as the commensurate

lattice constant was increased to 1.9 nm corresponding to a misorientation angle of 7.34◦.

These calculations used the Born-von Karman (BvK) model for the intralayer forces and
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the LJ potential for interlayer forces.

One significant difference between our NEMD and MD simulations and the BvK

model or DFT calculations is that our simulations explicitly take into account finite temper-

ature effects and time-dependent thermal fluctuations. DFT is a zero-temperature theory.

In the BvK approach, there is no relaxation of the structure so that the geometry of the

layers remains ideally flat. In our NEMD and MD calculations, the effects of finite temper-

ature and out-of-plane wrinkling are included both in the thermal conductivity calculations

and in the construction of the dynamical matrix for the calculations of the phonon spectra.

What is unique to our results is the prediction of non-monotonic behavior of the

thermal conductivity with respect to the commensurate lattice constant. For the small angle

rotations, the commensurate lattice constants become extremely large. Our calculations of

the thermal conductivity, C44, and ωZA2 all show a return to a value similar to, but less than

the value of the aligned AB structure as the twist angle is reduced to 1.89◦. If we extrapolate

the trends in C44, and ωZA2 observed previously [17, 96], the values would continuously

decline as the twist angle approached 0◦, followed by a sudden large discontinuity as the

angle became exactly 0◦. At small twist angles θ . 1◦, there are large regions that are close

to AA stacking, large regions that are close to AB stacking, and connecting regions that are

misaligned. Whether it is appropriate to view the thermal conductivity of such structures as

an average of different macroscopic regions of aligned structures and misaligned structures

is unclear, but such a view would be consistent with the small-angle trend that we observe.

If such a perspective is correct, it raises the question of what length scale determines when

such a view is permissible or not.
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3.4 Summary, Conclusions, and Open Questions

Large scale room temperature NEMD calculations of the thermal conductivity of

twisted bilayer graphene find a non-monotonic dependence of the thermal conductivity on the

commensurate lattice constant. At a commensurate lattice constant of 1.1 nm corresponding

to an angle of 13.2◦, the thermal conductivity falls to 50% of the value of the aligned AB

structure. As the commensurate lattice constant increases, the thermal conductivity also

increases and reaches 91% of the AB value at a commensurate lattice constant of 7.5 nm

corresponding to an angle of 1.89◦. The commensurate-lattice-constant-dependent trends in

the thermal conductivity are also followed by the trends in the shear elastic constant C44,

the wrinkling intensity, and the frequency of the out-of-plane ZA2 mode. The picture that

emerges from these results is that the interlayer misorientation reduces the shear elastic

constant C44, the reduced shear elastic constant allows increased wrinkling of the TBG, and

the increased wrinkling reduces the thermal conductivity. The small-angle approach of the

thermal conductivity towards its value in the aligned structure raises the question of how

response functions approach their aligned values as the twist angle approaches 0◦. Is the

approach gradual, discontinuous, or a combination of the two?
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Appendix

Table. 3.1 shows the calculated elastic constants for each rotation angle along with

experimental values and values calculated from DFT. Only C44 is affected by misorientation.
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Table 3.1: Calculated elastic constants of AB-BLG and TBG. from prior DFT calculation

and from our MD calculation using the hybrid REBO and LJ potentials

Rotation angle (◦ ) C11 (GPa) C12 (GPa) C33 (GPa) C44 (GPa)

0(EXP) [97] 1109±16 139±36 38.7±7 5±3

0(DFT) [96] 1109 175 42 4.8

0 1023.6 227.1 42.3 4.79

21.78 1023.6 227.2 42.6 1.65

27.83 1023.8 227.3 42.7 0.411

13.17 1023.3 227.8 42.7 0.293

9.43 1023.7 227.4 42.7 0.503

7.34 1023.7 227.4 42.6 0.618

6.00 1023.6 227.5 42.7 1.485

5.08 1023.8 227.6 42.6 2.47

4.40 1023.5 227.6 42.6 2.53

3.89 1023.2 227.9 42.6 2.57

2.87 1023.5 227.9 42.6 2.89

1.89 1023.4 227.9 42.6 2.90

To verify that the trends shown in Fig. 3.3 are not an artifact of the AIREBO imple-

mentation of the LJ potential, we performed a subset of the calculations using REBO+DRIP.

Five commensurate angles are selected: 0◦ (AB), 21.78◦, 13.17◦, 9.43◦ and 1.89◦. Instead of

running multiple simulations of different lengths for each angle and extracting the L = ∞

value of the thermal conductivity, we choose one length of ∼ 130 nm for each angle and

a width of ∼ 15 nm. Since the structures are composed of integer numbers of primitive
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cells that have different sizes, the actual widths lie between 149.12 Å to 150.09 Å, and

the lengths range from 1284.88 Å to 1304.14 Å. Due to the finite lengths, the quantitative

values will be lower, than those in Fig. 3.3, however, here, we only wish to confirm the

non-monotonic trend of the thermal conductivity with the commensurate lattice constant.

All other settings related to the NEMD simulations, periodic boundary conditions in the

width direction, and temperature (300 K) are as described in the Methods section. It is

clear from the results shown in Fig. 3.7 that the trends in the thermal conductivity with

respect to the commensurate lattice constant are unaffected by the choice of the interlayer

potential.
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Figure 3.7: Lattice constant dependent relative thermal conductivity (normalized to the AB

value) for two different interlayer potentials as shown in the legend. The inset shows the

absolute values. The REBO+LJ values are the extracted L =∞ values from Fig. 3.3. The

REBO+DRIP values are from the finite length 130 nm structures. Thus, these values are

expected to be quantitatively lower.
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Chapter 4

Comparative analysis of interatomic

potentials for graphene systems

4.1 Introduction

The key to perform an accurate MD simulation is choosing a proper potential for

the target system. And unlike SLG, this potential should be suitable for both intralayer and

interlayer interactions.

To accurately describe intralayer interactions, a comparison has to be made be-

tween the three most widely used potentials of graphene system: Tersoff [84, 85], reactive

empirical bond order potential (REBO) [46, 87] and intrinsic long-range bond-order poten-

tial for carbon (LCBOP) [88]. Besides LCBOP, other potentials belong to empirical bond

order potentials (EBOPs). They are based on the chemical pseudopotential theory created

by Abell [89] and treat electronic binding as effective pairs. The influence of local environ-
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ment around every atom was described by a many-body function and they only consider

the interactions between nearest-neighbours. [99] So all EBOPs only have short-range co-

valent part, which means they need interlayer potentials to describe the long-range Van

der Waals (VDW) part, which will be discussed later. Despite the similarities, REBO and

Tersoff still have lots of differences. REBO was initially developed as an improved version

of Tersoff model. [46] It has different expressions for bond-order, improved angular function

at small angles and an extra four-body torsional term. [46,87] According to the recent semi-

empirical potential benchmarks [83, 100] for SLG, REBO beats both Tersoff-1989 [84] and

Tersoff-2010 [85] in replicating the lattice constant and phonon dispersion. They evaluate

the accuracy by comparing the results with the data collected from density functional theory

(DFT) and experiments. The phonon properties of graphene are very sensitive to the struc-

tural properties especially the lattice constant, and the thermal conductivity is a function of

the acoustic velocity which is directly related to the phonon dispersion. The LCBOP model

belongs to the long-range corrected bond-order potential, which by itself has the capability

to properly describe the VDW force. [88] It claims that it can better reproduce structural,

energetic and elastic properties of single and multilayer graphene compared to EBOPs. [100]

According to the benchmarking results, LCBOP does have an overall better performance

in phonon dispersion calculations and similar accuracy in structural properties. [83, 100]

However, such ascendancy does not guarantee the best performance in thermal conductivity

calculation, because the overall better performance of the LCBOP model is due to their high

accuracy in reproducing the optical mode. [83] For acoustic modes, on average LCBOP has

relatively worse performance than REBO, and its ZA branch has the least accuracy among
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all of the potentials considered in the benchmark. [83] Another shortcoming of LCBOP is

that the dispersion interaction resulting in the VDW force is not considered, even though

it is known to be important. This is the primary force governing the ZA mode, so it is not

surprising that the ZA mode has the least accuracy with LCBOP.

To accurately describe the interlayer interaction, a comparison between the existing

potentials with long rang interactions is necessary. Due to the most widely usage, LJ and

LCBOP are considered. Recently, a new type of potential named dihedral-angle-corrected

registry-dependent interlayer potential (DRIP) was created to better describe the interlayer

VDW forces of multilayer graphene. [90] DRIP is constructed by two parts: one for rep-

resenting the attractive interaction due to dispersion and another for repulsive interaction

due to the anisotropic overlap of electronic orbitals. They claimed that using this potential

combined with REBO or Tersoff can reproduce the different stacking energies of multilayer

graphene more accurately by the improved repulsive interaction term. [90]

In rest of this section, we will perform potential benchmarking with non-equilibrium

molecular dynamics (NEMD) simulations. Both thermal conductivity results and system

stability will be considered as the criteria.

4.2 Method

The commensurate angles considered in the benchmarks are 0◦ (AB-stacking) and

21.78◦. The details about how to construct TBG are introduced in the Method section of

chapter 3. The NEMD simulations are implemented in the LAMMPS code [45]. The time

step is 0.2 fs. There are three steps to the simulation. The relaxation process (step 1) is
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a constant temperature, 340-ps-long, canonical-ensemble simulation that brings the system

temperature up to 300 K as illustrated in Fig. 2.2a. We include a quantum correction [48]

to the simulation temperature. The temperature of the BLG increases monotonically to

300 K during the first 150 ps; then the temperature fluctuates around 300 K. At 340 ps,

the system reaches a steady temperature of 300 K which indicates that the system is ready

to enter the transition process (step 2). The transition process is a 60 ps, constant-energy

simulation that ensures that the temperature of the system will maintain an average value

of 300 K under a microcanonical ensemble. After the transition process, the system is ready

to enter the non-equilibrium process for calculation of the thermal conductivity.

The following interlayer potentials are considered for comparison: LJ, LCBOP. All

of them will be combined with intralayer potentials including: Tersoff, REBO and LCBOP.

Since LCBOP contains both interlayer and intralayer part, we will not consider the combi-

nation of LCBOP with other potentials.

4.3 Results and Discussion

As shown in Table. 4.1, to maintain a stable structure of TBG the choice of in-

tralayer potentials is critical. Although Tersoff has proven to be very successful in predicting

phonon properties in SLG, it is not as good as REBO and LCBOP in TBG system due to

the layer separation or losing atoms. As the most recent extension originating from the

Tersoff potential, REBO maintains a stable TBG structure at room temperature according

to the benchmark results. Due to the structural issue, Tersoff will not be considered in our

research. Since both LCBOP and REBO+LJ can maintain a stable structure, the thermal
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conductivity of TBG is calculated using both of them for the final round of comparison.

As shown in Table 4.1, using the LCBOP potential, the thermal conductivity difference

between AB-BLG and 21.78◦ TBG is less than 0.5%. While REBO can detect the thermal

conductivity reduction (∼ 25%) due to the commensurate rotation, which is consistent with

the recent experimental study on the thermal conductivity of TBG by Balandin’s group [15].

Due to the best benchmark performance, all calculations will be performed with REBO+LJ.

Table 4.1: Potential benchmark results for TBG by runing NEMD simulations. Unit:

W/mK
PPPPPPPPPPPPPP
Intralayer

Interlayer
LJ DRIP LCBOP

Tersoff-1989 Layer separation in TBG n/a

Tersoff-1990 Layer separation in TBG n/a

Tersoff-1994 Lost atoms Layer separation in TBG n/a

Tersoff-2005 Layer separation in TBG n/a

Tersoff-2010 Layer separation in TBG n/a

LCBOP n/a
864.13 (AB)

861.22 (21.78◦)

REBO
1045.81 (AB) 502.78 (AB)

n/a
791.85 (21.78◦) 367.06 (21.78◦)

51



Chapter 5

Low dimensional material data

science

There is much current attention on the opportunities afforded by this new field in

accelerating materials development and deployment efforts. A particular emphasis is placed

on materials exhibiting novel electrical and thermal properties spanning multiple length-

/structure scales and the impediments involved in establishing invertible process-structure-

property (PSP) linkages for these materials. More specifically, it is argued that modern data

sciences (including advanced statistics, dimensionality reduction, and formulation of meta-

models) and innovative cyberinfrastructure tools (including integration platforms, databases,

and customized tools for enhancement of collaborations among cross-disciplinary team mem-

bers) are likely to play a critical and pivotal role in addressing the above challenges.

In this chapter, we will describe how to identify the quasi-1D materials from the

Material Project Database (MPDB). The structural data from MPDB will be used to predict
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band gap and identify magnetic materials using machine learning model.

5.1 Dimension classifier

To identify all the quasi-1D materials from MPDB, we created a dimension classifier

based on Evan Reed’s "find dimension" package [101] implemented in pymatgen module.

The fundamental algorithm is shown in Fig. 5.1. The part inside the dashed red box is

the adding method to identify quasi-1D materials from 2D materials. The default criteria

for the "find cluster" method is 0.5 Å, while the reduced criteria is 0.2 Å. The dimension

classifier code along with the manual is attached Appendix A.2.
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Figure 5.1: Algorithm to classify the dimension of given material. Input: material unitcell

with .cif format. Output: dimensions (0D, 1D, quasi-1D, 2D, 3D, intercalated ion and

intercalated molecule).

Using this code, the identified quasi-1D materials sorted by the band gap and total

magnetization are shown in Table 5.1 and Table 5.2, respectively. And we also attached the

identified 1D materials sorted by the total magnetization in Table 5.3. The data will be

useful for the theoretical and experimental study.
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Table 5.1: quasi-1D materials identified from MPDB sorted by the band gap.

MPID Material Formula Band Gap (eV)

mp-558387 TeOF2 4.189

mp-753858 TiOF2 3.8984

mp-28448 DyCl3 3.8951

mp-23293 TbCl3 3.798

mp-753800 NbOF3 3.6661

mp-31320 Nd(C2N3)3 3.5983

mp-567763 Pr(C2N3)3 3.5811

mp-31321 La(C2N3)3 3.5567

mp-29185 Te2O3F2 3.3405

mp-561533 SbOF 3.3231

mp-27976 SmBr3 2.9285

mp-27975 NdBr3 2.9222

mp-28580 Y2NCl3 2.1398

mp-28299 USe2O7 2.1387

mp-680334 LaSb(SBr)2 2.0983

mp-27725 AuI 2.0853

mp-27979 LaI3 2.0652

Continued on next page
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Table 5.1 – continued from previous page

MPID Material Formula Band Gap (eV)

mp-27697 ThI4 1.8297

mp-9481 TcS2 1.1449

mp-9922 HfS3 1.1188

mp-9921 ZrS3 1.0991

mp-705486 U3Cu2H10(CO10)2 0.7648

mp-28375 Ta2AgF12 0.7135

mp-638749 Te3(PdBr)4 0.6621

mp-567478 MnSbSe2Br 0.6263

mp-14653 AgSb2F12 0.5352

mp-570268 MnSbSe2I 0.5335

mp-573321 TePdI2 0.5268

mp-556582 Cu(IO3)2 0.4893

mp-1683 ZrSe3 0.4382

mp-13542 ZrGeTe4 0.4017

mp-28965 AgBi2F12 0.3605

mp-562100 NbS3 0.3568

mp-567817 HfGeTe4 0.3467

Continued on next page
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Table 5.1 – continued from previous page

MPID Material Formula Band Gap (eV)

mp-15622 HfSe3 0.308

mp-649601 RuXeF11 0.3055

mp-28571 La2Br5 0.2976

mp-570506 ZrI2 0.2939

mp-23169 Pr2Br5 0.2826

mp-9920 TiS3 0.2318

mp-30282 La2I5 0.1781

mp-22854 Pr2I5 0.1295

mp-684706 LaO3 0.0223

mp-17588 AgRuF7 0

mp-581990 Bi3Rh 0

mp-567687 CrI2 0

mp-753975 Dy2(BiO2)7 0

mp-680500 PtXeF11 0

mp-28308 Ta2NiS5 0

mp-541183 Ta2NiSe7 0

mp-8435 Ta2PdS6 0
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mp-8436 Ta2PdSe6 0

mp-14474 Ta2PtSe7 0

mp-30527 TaS3 0

mp-29652 TaSe3 0

mp-8357 UTe3 0

mp-2089 ZrTe3 0

Table 5.2: quasi-1D materials identified from MPDB sorted by the total magnetization.

MPID Material Formula Total Magnetization (A/m)

mp-567478 MnSbSe2Br 5.000002725

mp-570268 MnSbSe2I 5.00000005

mp-567687 CrI2 4.000114

mp-17588 AgRuF7 2.999999875

mp-649601 RuXeF11 2.95321195

mp-8357 UTe3 2

mp-705486 U3Cu2H10(CO10)2 1.9999071

mp-22854 Pr2I5 1.0006243
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mp-23169 Pr2Br5 1.00037625

mp-28571 La2Br5 1.0002548

mp-28965 AgBi2F12 1.0000001

mp-14653 AgSb2F12 1

mp-30282 La2I5 1

mp-28375 Ta2AgF12 0.9999999

mp-556582 Cu(IO3)2 0.9999998

mp-684706 LaO3 0.99579195

mp-680500 PtXeF11 0.9278836

mp-14474 Ta2PtSe7 0.02779195

mp-638749 Te3(PdBr)4 0.00010445

mp-581990 Bi3Rh 0.0000144

mp-753975 Dy2(BiO2)7 0.0000111

mp-570506 ZrI2 0.000007375

mp-28448 DyCl3 0.00000575

mp-8435 Ta2PdS6 0.0000022

mp-541183 Ta2NiSe7 0.0000018
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mp-680334 LaSb(SBr)2 0.000001525

mp-8436 Ta2PdSe6 0.0000004

mp-23293 TbCl3 0.00000035

mp-13542 ZrGeTe4 0.00000015

mp-15622 HfSe3 0.00000005

mp-558387 TeOF2 0

mp-753858 TiOF2 0

mp-753800 NbOF3 0

mp-31320 Nd(C2N3)3 0

mp-567763 Pr(C2N3)3 0

mp-31321 La(C2N3)3 0

mp-29185 Te2O3F2 0

mp-561533 SbOF 0

mp-27976 SmBr3 0

mp-27975 NdBr3 0

mp-28580 Y2NCl3 0

mp-28299 USe2O7 0
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mp-27725 AuI 0

mp-27979 LaI3 0

mp-27697 ThI4 0

mp-9481 TcS2 0

mp-9922 HfS3 0

mp-9921 ZrS3 0

mp-573321 TePdI2 0

mp-1683 ZrSe3 0

mp-562100 NbS3 0

mp-567817 HfGeTe4 0

mp-9920 TiS3 0

mp-28308 Ta2NiS5 0

mp-30527 TaS3 0

mp-29652 TaSe3 0

mp-2089 ZrTe3 0
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Table 5.3: 1D materials identified from MPDB sorted by the total magnetization.

MPID Material Formula Band Gap (eV) Total Magnetization (A/m)

mp-735662 Fe4As10PbO22 1.7469 19.99812645

mp-541385 Cs6Fe2O5 1.5098 7.996752

mp-765941 Mn2F7 1.8053 7.00110275

mp-867369 TcF3 0.1714 6.0281908

mp-676241 FeCl3 0.8119 5.00768555

mp-25540 MnH4(CO3)2 2.3683 5.0017518

mp-566645 MnH6SO6 4.4475 5.00110965

mp-28912 MnInBr3 1.6239 5.0007345

mp-683891 MnSb6(Pb2S7)2 0.447 5.00065735

mp-771047 Mn(IO3)2 2.5127 5.0004147

mp-25770 MnH6(SO4)4 5.0995 5.00031185

mp-540676 MnH4(ClO)2 4.3746 4.9999998

mp-10412 Mn(SbS2)2 0 4.99984055

mp-638590 MnTl2GeTe4 0.1865 4.9997786

mp-566172 MnH10S2(NO2)4 4.3533 4.9992838

mp-553927 Pu(IO3)4 0.091 4.03017185

mp-504883 FeH4(ClO)2 4.1399 4.0080385
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mp-772432 FeH4(SO5)2 0.0724 4.0007409

mp-22369 FeSb6(Pb2S7)2 0 4.0000343

mp-743926 FeH4(CO3)2 2.5092 4.0000203

mp-22857 CrCl2 0.7019 4.000005

mp-27215 CrI2 0.0153 3.9999999

mp-763306 CrH10S2(NO2)4 2.9651 3.9999995

mp-744256 MnH5SO7 0.6941 3.999406775

mp-540759 Al2CoCl8 0.3251 3.00077565

mp-772662 MnH4(SO5)2 0.6868 3.0004849

mp-629319 CoSb2S2(OF3)4 2.9027 3.0004673

mp-765253 MnF4 0.7666 3.00028125

mp-15236 CrSbSe3 0.4753 3.00019625

mp-9130 CrSbS3 0.5818 3.000113375

mp-774233 Co(IO3)2 2.3533 3.000053825

mp-743783 CoP4(H5O8)2 3.2039 2.9999996

mp-23244 UI3 0.0954 2.9999898

mp-25492 CoH4(CO3)2 2.4737 2.9998627
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mp-568443 Al2VCl8 1.6263 2.99964085

mp-570480 TcBr4 0.6025 2.998397363

mp-27780 TcCl4 0.7829 2.994713325

mp-555999 Np(IO3)4 0.2239 2.99109995

mp-778446 Cr2(PS4)3 0 2.926512225

mp-864733 MoI3 0 2.65673565

mp-28301 OsBr4 0 2.0203318

mp-542131 UTe4Br5 0.0029 2.0033179

mp-605912 Al2NiCl8 1.1343 2.00150305

mp-684560 MoCl4 0 2.00137

mp-558794 Cu2BH5O6 0.0409 2.001127275

mp-695793 ZnAs4(HO2)8 0.1253 2.0005229

mp-765097 W2OF8 2.5313 2.00042885

mp-653062 Mo2Cl8O 0.9227 2.000096275

mp-558341 CrXeF6 1.7998 2.000000025

mp-23312 MoBr3 0.6926 1.999946325

mp-704123 CrF4 1.5634 1.99989625
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mp-571035 OsCl4 0.5105 1.9998556

mp-865473 VBr3 0 1.99977245

mp-566902 Te3W2Se4(Cl4O)2 1.0027 1.9996633

mp-772376 Ni(IO3)2 2.8257 1.99959755

mp-655360 UI4 0.2676 1.9992569

mp-865493 VI3 0 1.9992233

mp-866812 UTa2S6Cl6O 0.183 1.99070055

mp-862851 PaI3 0 1.98446405

mp-570722 NbI3 0 1.3745771

mp-28321 Sc7CI12 0 1.1592062

mp-542135 Mo2NCl7 0.0046 1.07044505

mp-541102 Sc6C2I11 0.0154 1.0380839

mp-680309 Mo2NCl8 0 1.00786695

mp-504921 Sc7CBr12 0.1005 1.006156

mp-606617 CuSb2(XeF8)2 0.0694 1.0057132

mp-774723 CuH12C3SN6O7 0.5787 1.0028137

mp-703531 CuSiH8(O2F3)2 0.9868 1.00124025
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mp-622116 ReOF4 0.9318 1.001086713

mp-720299 ZrCuH8(O2F3)2 0.8695 1.0010209

mp-764115 V3O7 1.1608 1.000820067

mp-639662 CrF5 1.3584 1.000487225

mp-24362 CuH6CN2O3 0.5795 1.000117025

mp-707170 CuH6SO7 0.7765 1.00010565

mp-566402 CrSbF10 1.31 1.000083175

mp-25062 MoCl3O 2.4587 1.00008085

mp-765216 VF4 1.5907 1.000067738

mp-632759 CuH4(OF)2 0.2541 1.0000034

mp-19243 VSb2O5 2.5772 1.00000055

mp-765500 V2OF7 2.4201 1.0000001

mp-565978 WCl3O 1.719 1.000000025

mp-1852 UF5 0.7489 0.9999999

mp-643913 CoH6(NCl)2 0.2352 0.9999953

mp-30999 CuCl2 0.0333 0.9998947

mp-570568 W2NCl8 0.1574 0.9998106
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mp-696152 CuSnH12(NO3)2 0.8126 0.9992447

mp-680300 Mo3N2Cl11 0.1598 0.986204

mp-567624 CrBr2 0 0.5777743

mp-27340 ReCl4 0 0.483597975

mp-556538 Na8(CuO2)5 0 0.4526595

mp-16977 Ti(MnP6)2 0.0012 0.4512632

mp-571143 TiCl3 0 0.25085525

mp-27978 PuI3 0 0.2131271

mp-504781 NpI3 0.0004 0.09440445

mp-541826 Ti(AlBr4)2 0 0.09194745

mp-685385 Tl2In3Se5 0.6106 0.0594165

mp-23294 RuBr3 0 0.02999935

mp-864915 HfBr3 0 0.0260708

mp-675519 Tl3In7Se10 0.5683 0.02089365

mp-541175 Sc7CoI12 0.2411 0.0176131

mp-862773 TeI2 0.7144 0.01691595

mp-23219 CuBr2 0 0.0108531
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mp-29279 CuClF10 0.0247 0.01069785

mp-683982 RuOF4 0.298 0.007980838

mp-559817 Na3(CuO2)2 0 0.006828375

mp-674324 Sn7(SBr5)2 2.014 0.0059585

mp-556436 Sb2BrF15 2.8579 0.00528455

mp-541032 Te7As5I 0.3024 0.0047946

mp-621960 Sb4Pb4S11 0 0.00393345

mp-29178 TePbF6 4.6008 0.003859625

mp-654051 Nb6SI9 0 0.0032187

mp-865005 DyI3 2.1725 0.00321095

mp-655489 Pb4SeBr6 1.9565 0.0029662

mp-770274 NiP4 0 0.002874525

mp-561241 USb3O2F17 2.4478 0.0028572

mp-758096 SbOF3 1.9231 0.00256145

mp-27199 AuSeBr 0.6295 0.002385625

mp-766269 ZnPH5C2N4O3 4.5292 0.002346725

mp-697033 CdH4CN2Cl2O 3.5746 0.00232125
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mp-758957 As2HPbF13 4.5547 0.002317838

mp-759848 Bi4O5F2 2.4866 0.002275475

mp-864657 HoI3 2.2173 0.0021535

mp-567661 MoPCl5O3 2.3144 0.002078713

mp-556117 Ga3Pb5F19 4.7168 0.0017115

mp-703352 UP2H6O7 2.5385 0.001556825

mp-866214 LuBr3 3.0669 0.00150055

mp-540925 Hg2AsF6 0.7379 0.0014388

mp-555059 TcSb(OF4)2 2.8188 0.00143285

mp-571465 PbIBr 2.5643 0.001391225

mp-484 Te3As2 0.4367 0.00132105

mp-20326 U(PS3)2 0 0.00131045

mp-31268 AlBiBr6 2.5681 0.00130635

mp-29862 SnBr2 2.5388 0.00127605

mp-605347 HgTe(H2O3)2 2.0783 0.001236575

mp-24053 AgH2ClO5 2.8242 0.001230275

mp-541155 VS4 0.9396 0.001226025
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mp-567264 SbMoOF9 3.6798 0.0012058

mp-733848 CdRe2H8C2(N2O5)2 2.7675 0.001175025

mp-864982 DyBr3 3.0029 0.00117225

mp-24714 ZnH4(CO3)2 3.1831 0.001161

mp-625272 Zn(HO)2 2.0603 0.0011546

mp-24307 CdH8C4(S2N3)2 3.2788 0.0011517

mp-669496 PtI4 0.6934 0.001144475

mp-569175 ZrCl4 3.6105 0.0011

mp-31487 NbI5 0.5983 0.00109525

mp-558199 CuAs4S3Cl 1.6217 0.001056925

mp-649616 Pd(XeF8)2 1.4046 0.001046025

mp-27907 Sb6Pb4S13 0.8506 0.0009705

mp-554819 MgP4(Cl5O3)2 3.5985 0.0009573

mp-557926 CdAs2(XeF5)4 2.3694 0.0009497

mp-570857 Y(AlCl4)3 4.0292 0.000948433

mp-861867 AcI3 2.5886 0.00093485

mp-568896 La(AlBr4)3 2.6083 0.0009292
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mp-570880 RuCl3 0 0.000909

mp-555121 MgAs2S2(OF3)4 3.5807 0.000902625

mp-556434 AgBi(PS3)2 1.1797 0.0008917

mp-753246 Sn3(OF)2 0 0.000887125

mp-560633 Al2SnCl6O 3.959 0.000876975

mp-29796 Ho(AlCl4)3 4.31 0.000853833

mp-567874 Pr(AlBr4)3 3.3654 0.0008395

mp-765597 HS2IO8 2.7665 0.00083895

mp-28757 Nd(AlBr4)3 3.3848 0.000836933

mp-17867 Mn2NbP12 0 0.0008255

mp-865301 TmBr3 2.9866 0.00082165

mp-768283 UAs2H6O11 2.3704 0.00081335

mp-743614 MoH2Cl2O3 2.6258 0.0008109

mp-560464 UTl2(TeO4)2 1.8322 0.000784525

mp-640341 Mo3S7Cl4 1.6678 0.00078275

mp-21653 BaNiN 0 0.000781442

mp-570417 Bi6PtCl10 1.5756 0.000747438
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mp-567318 TlSbSe2 0.6743 0.0007387

mp-23493 Ce(IO3)4 1.4876 0.00073345

mp-619661 Pb3(IO)2 2.2335 0.000732575

mp-27317 SbAsF8 3.8632 0.00072175

mp-606393 NbBr3O 1.9611 0.000704525

mp-558330 IClOF 2.0229 0.0006892

mp-865605 YBr3 2.9454 0.0006646

mp-540924 NbTeI3 0.4539 0.00065345

mp-23536 SbI3Cl8 1.1884 0.0006528

mp-759602 Sb4O5F2 2.8185 0.0006504

mp-705569 NiB18(H11C2)2 1.5217 0.000647425

mp-864662 HoCl3 3.7011 0.00064075

mp-27742 K2CdO2 1.3576 0.000623475

mp-24294 HgHClO4 2.3817 0.000619175

mp-28509 Ta4SiTe4 0.0286 0.000608475

mp-632706 ZnH8(N2Cl)2 4.5084 0.0006004

mp-680836 Ta4Te9I4O 0.3812 0.0005985
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mp-862986 PmBr3 2.8814 0.00058955

mp-24337 MgH2Cl2O 5.3707 0.00058835

mp-29946 IO2F 2.8952 0.00058695

mp-541772 Bi4RuBr2 0.5304 0.00058485

mp-24460 MgH6(SO4)4 5.9617 0.0005843

mp-759866 TeH3CCl3 2.9222 0.0005738

mp-643387 AlH2PbO2F3 4.4942 0.0005621

mp-505284 Pb3(BrO)2 2.3882 0.000557475

mp-28135 NbXeF11 2.648 0.000536475

mp-583499 Bi6PtBr10 1.4291 0.0005361

mp-541094 Ta2Hg3S(O2F5)2 2.4414 0.00052705

mp-3785 TlGaTe2 0.5317 0.00052505

mp-648414 V2PS10 1.1097 0.000523763

mp-757173 Sb5O7F 3.078 0.0005105

mp-754661 INO3 1.6497 0.00050095

mp-610491 BiSeCl 1.8404 0.000498825

mp-570951 Ti(AlCl4)2 0.0552 0.0004911
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mp-28256 V2Se9 0.713 0.00047305

mp-865324 LuCl3 3.8453 0.00046535

mp-23408 Tl4Bi2S5 0.9897 0.000453875

mp-645740 SnSO4 3.5219 0.0004498

mp-865353 TmI3 2.2545 0.0004484

mp-29469 Pd(Se3Cl)2 1.28 0.00044555

mp-27628 Te3Cl2 1.3482 0.00044275

mp-865521 LuI3 2.1804 0.0004401

mp-780501 CrB3(HO3)3 2.1189 0.000432625

mp-764274 VOF3 3.4012 0.0004296

mp-566001 CrHg(PbO3)2 2.0835 0.0004235

mp-541106 Nb2Se9 0.7637 0.0004194

mp-31040 NbCl4 1.0765 0.00041665

mp-703539 AgB11H6CBr6 3.2973 0.000414425

mp-30938 PAuS4 1.3165 0.00041045

mp-30150 GaBH6 4.8941 0.000403083

mp-758899 Sb2OF8 2.1564 0.00039585
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mp-626865 H2WO5 2.4402 0.00037915

mp-22856 Bi2S3 1.3618 0.00037645

mp-9579 AlTlSe2 0.5873 0.00037515

mp-14249 Th(PS3)2 2.4371 0.0003656

mp-28149 Bi9I2 0 0.0003624

mp-603254 PH9AuC3S3Cl 2.8803 0.000354888

mp-753785 NbOF3 3.2629 0.000348325

mp-768093 VSO4F3 0.9283 0.000344675

mp-752422 IClO 1.0256 0.00034275

mp-29483 MgInBr3 2.0567 0.000336125

mp-570553 FeP4 0.8043 0.000326675

mp-864617 NdI3 2.0128 0.00032095

mp-29526 BrNO3 2.1636 0.00031745

mp-760758 Bi3O4F 2.1905 0.0003172

mp-745159 MoPH3O7 3.1857 0.00031165

mp-29422 HfCl4 4.1644 0.0003111

mp-556130 GeXeF10 2.3433 0.000308725
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mp-571061 Nb3Se10Cl3 1.093 0.0002921

mp-754005 Mg(CO2)2 3.4504 0.0002838

mp-541013 TiI4 1.0867 0.00028305

mp-541610 GeBr2 2.597 0.00027495

mp-29573 Sb4S5Cl2 1.8692 0.00026945

mp-29465 TaCl4 1.2222 0.0002603

mp-758829 Nb2OF8 4.2124 0.0002593

mp-27436 PaCl5 2.4189 0.0002472

mp-541732 Al3Pb5F19 5.1376 0.00024505

mp-29190 Te4MoBr 0.855 0.00024185

mp-556425 SbF4 3.4408 0.0002347

mp-567484 PtCl2 1.1359 0.0002326

mp-504575 MoOF4 4.1739 0.000228938

mp-9580 TlGaSe2 0.561 0.00022875

mp-543028 Tl2TeO3 1.9408 0.000227763

mp-29018 ZrSnCl6 2.2258 0.000224717

mp-769377 SbSO4F3 1.8163 0.00022025
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mp-862983 InCl3 3.0122 0.0002184

mp-24215 ScH3Br3N 3.1435 0.000214625

mp-27684 Tl4O3 1.0973 0.0002113

mp-580999 Ga2NiCl8 0.5238 0.0002086

mp-676362 HIO4 1.5685 0.000207175

mp-558408 Nb4Te9I4O 0.2533 0.00020445

mp-554764 Sb3Au3F22 0.0795 0.0002038

mp-4649 PdSe2O5 0.9947 0.00020325

mp-27655 Te2I 0.6558 0.00020275

mp-8251 VP4 0 0.0002019

mp-27373 SnClF 3.4438 0.00020055

mp-27866 MoS2Cl3 1.4364 0.00020015

mp-30937 HgClO3 3.0661 0.000194563

mp-541093 Nb2Hg3S(O2F5)2 2.3509 0.00019205

mp-1509 Sn2S3 0.7755 0.000188625

mp-24509 CdH4(BrO4)2 3.9715 0.00018655

mp-28038 NbTeBr3 0.5913 0.000179775
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mp-625112 H8PtO6 1.5662 0.0001795

mp-28005 As2(SO4)3 4.5714 0.000179325

mp-769355 AgH3O2 1.0711 0.000178738

mp-19941 As2PbS4 0.765 0.00017765

mp-22871 ZrCl3 0 0.00017605

mp-29492 S2I2O11 2.6242 0.000170925

mp-30159 AuBrF6 1.9127 0.00017085

mp-561299 As2Pb4S6ICl 1.829 0.00016895

mp-28885 PSe 2.2421 0.000168006

mp-768315 Mg(IO3)2 3.3254 0.000167575

mp-569766 TeI 0.7163 0.000165425

mp-23041 SbSI 1.6354 0.000164875

mp-570140 AuBr 1.9716 0.00015345

mp-778385 B3H3SeO9 3.2394 0.000150738

mp-569522 MnP4 0.4803 0.00014855

mp-867875 SmCl3 3.4912 0.00014835

mp-28683 Ta(ICl)2 1.1785 0.00014585
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mp-641112 ReO2F3 3.2953 0.000144588

mp-540540 PaBr3O 1.7543 0.0001401

mp-23355 PAuCl4 2.5498 0.000139575

mp-23498 NbSeBr3 0.7309 0.00013715

mp-568146 Pd(Se3Br)2 1.0268 0.0001361

mp-510421 CrO3 2.2551 0.0001352

mp-754514 N2 0 0.0001324

mp-29844 Tb(AlCl4)3 4.2153 0.000125067

mp-861871 SeI2 0.8854 0.0001207

mp-540615 Nb3Se5Cl7 0.9467 0.00011995

mp-556422 NbCl3O 2.8024 0.000119425

mp-27648 Te2Br 0.6563 0.00011835

mp-567998 ICl 1.8269 0.0001154

mp-8725 HfSnS3 1.1982 0.000113575

mp-505373 AsSeI 1.242 0.000110825

mp-28460 Br2O 1.3644 0.000104075

mp-541037 CsCuO 1.1227 0.00010305

Continued on next page
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Table 5.3 – continued from previous page

MPID Material Formula Band Gap(eV) Total Magnetization (A/m)

mp-32479 Tl3VO4 2.5951 0.0001027

mp-557163 TaPbF7 5.1278 0.00010245

mp-505357 InSeI 1.4358 0.000101425

mp-20244 ZrPbS3 1.2455 0.000100275

mp-569152 SnCl2 3.0724 0.000098875

mp-22600 Sc3P2 0 0.000098725

mp-572597 SbPS4 2.0791 0.0000984

mp-2160 Sb2Se3 0.7564 0.000096175

mp-643902 SnH4(NF)2 3.1067 0.0000958

mp-23963 HIO3 3.213 0.0000946

mp-23247 ZrBr3 0 0.0000946

mp-28364 Rb2CdO2 1.3087 0.0000932

mp-2809 Sb2S3 1.2828 0.0000907

mp-22232 TlInSe2 0.7351 0.00008855

mp-684021 Sn4Sb6S13 0.6014 0.0000874

mp-8759 Cs2ZrO3 3.854 0.00008545

mp-23291 PbCl2 3.7939 0.0000848

Continued on next page

80



Table 5.3 – continued from previous page

MPID Material Formula Band Gap(eV) Total Magnetization (A/m)

mp-569017 PdI2 0.8733 0.00008475

mp-554724 CuP4S3I 1.7032 0.000082775

mp-571235 ZrI4 2.0134 7.98833E-05

mp-753806 BSbO3 3.762 0.00007975

mp-28693 Al3Te3I 1.9651 0.000079125

mp-541771 Bi4RuI2 0.4519 0.0000791

mp-13923 SnPS3 2.1282 0.000078075

mp-504564 Si(PbS2)2 2.0437 0.0000753

mp-764232 VO2F 3.0505 0.000074225

mp-757256 ZnH4(IO4)2 3.2826 0.000073

mp-770164 V2SO8 1.8925 0.000072925

mp-556078 MgAs2(XeF8)2 2.9713 0.00007215

mp-753233 Sb6O5F8 3.3506 0.0000721

mp-568002 HfI3 0 0.00007175

mp-626577 Mo(HO2)2 3.1832 0.00006795

mp-768223 Cs2CeO3 2.2437 0.000066

mp-541785 GePdS3 1.3072 0.0000651

Continued on next page
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Table 5.3 – continued from previous page

MPID Material Formula Band Gap(eV) Total Magnetization (A/m)

mp-561397 SO3 5.1414 0.000064775

mp-23170 IO2 1.4525 6.36625E-05

mp-546285 NbI3O 0.8108 0.00005685

mp-637982 As5Pb3S10 0.488 0.000056075

mp-28974 TiF4 4.166 5.53167E-05

mp-28661 Ba2Cu3P4 0 0.0000551

mp-567731 Nb3Se10Br3 1.2229 0.00005465

mp-571146 SnICl 2.5132 0.00005455

mp-570270 NbSeCl3 0.7501 0.00005265

mp-571555 InCl 2.1996 0.00005205

mp-29251 Te6Br2O11 2.5231 0.00005135

mp-686102 Tl3In2Se5 0.6144 5.01375E-05

mp-322 TlS 0.7034 0.000048725

mp-861891 SeBr2 0.8221 0.00004835

mp-569059 HfI4 2.3528 0.000046425

mp-638022 Sb4Pb5S11 1.3758 0.000044

mp-24741 ScH3NCl3 3.8496 0.00004385

Continued on next page
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Table 5.3 – continued from previous page

MPID Material Formula Band Gap(eV) Total Magnetization (A/m)

mp-20408 InGaTe2 0 0.00004355

mp-756372 Rb2MgO2 2.2799 0.00004185

mp-504814 Sb2Pb2S5 1.0418 0.000041275

mp-558797 VF5 2.9917 0.00004005

mp-22147 HfPbS3 1.452 0.000039625

mp-22870 InBr 1.2575 0.00003955

mp-634812 H2O 5.3268 0.000039375

mp-7609 SbOF 3.3084 0.00003905

mp-27639 IBr 1.4023 0.00003825

mp-573051 ReO3F 3.0005 3.75833E-05

mp-8781 SnS 1.8201 0.000037

mp-28857 Pb(IO3)2 2.6939 0.000036475

mp-27857 PdBr2 0.8979 3.53625E-05

mp-21365 InSbS3 1.4761 0.0000348

mp-28714 Dy(AlCl4)3 4.2606 3.47333E-05

mp-28845 OsO3F2 2.3101 0.000034725

mp-22997 PbBrCl 3.4376 0.00003465

Continued on next page

83



Table 5.3 – continued from previous page

MPID Material Formula Band Gap(eV) Total Magnetization (A/m)

mp-22971 SbSBr 1.7648 0.00003435

mp-27735 GaSbCl6 3.928 0.00003375

mp-12027 TaTlSe3 0.3102 0.0000305

mp-28608 Ga3Te3I 1.2591 0.00002985

mp-608653 As2Pb2S5 1.6038 2.90625E-05

mp-29579 Sc7NCl12 0.0043 0.0000271

mp-560625 RePbClO4 3.3739 0.0000264

mp-23297 BrF3 2.1576 0.0000248

mp-726 SeO2 3.2709 2.46625E-05

mp-541593 ZrPb2F8 5.2222 0.000023375

mp-680181 Bi2Pb2S5 0.7228 2.32375E-05

mp-757220 LuH6(ClO5)3 5.3849 0.0000225

mp-570188 ZrI3 0.0747 0.000020325

mp-623984 PbSO4 3.8567 0.000020175

mp-2511 PbF2 4.3823 0.000019075

mp-23407 Hg(IO3)2 2.6917 0.0000187

mp-23202 InI 1.3414 0.0000181

Continued on next page
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Table 5.3 – continued from previous page

MPID Material Formula Band Gap(eV) Total Magnetization (A/m)

mp-21904 PbS2O3 3.5394 0.0000168

mp-3245 SnP7Au3 0.0281 0.00001505

mp-20320 InTe 0 0.000014425

mp-22747 Pb(CO2)2 2.7868 0.0000131

mp-756448 LaMgI5 1.9817 0.000013

mp-23264 TiI3 0.1604 0.000012275

mp-554896 SbXe2OF15 1.2419 0.00001225

mp-765135 WOF4 4.4088 0.0000113

mp-28077 PbBr2 3.1375 0.0000106

mp-561664 TeF4 4.0186 0.00001035

mp-29500 Ge7F16 4.3804 0.0000095

mp-27308 SbBrF8 2.6902 0.000008625

mp-28964 Ta4FeTe4 0 0.000008

mp-634 HgS 1.7068 0.0000074

mp-569008 PdCl2 0.9097 0.000007

mp-866003 ErI3 2.0376 0.0000067

mp-561449 OsOF4 0.6713 0.0000063

Continued on next page
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Table 5.3 – continued from previous page

MPID Material Formula Band Gap(eV) Total Magnetization (A/m)

mp-20526 PbS 2.0909 0.000006

mp-9847 YbP5 0 0.0000055

mp-28804 TcO2F3 2.5259 0.0000042

mp-17324 ZrSnS3 0.995 0.00000355

mp-27472 NbSbF10 4.3499 0.0000032

mp-20507 PbSO3 3.6372 0.0000029

mp-8203 Zr(PS3)2 1.5319 0.0000027

mp-20716 PbSeO3 2.8838 0.0000024

mp-542694 HI3O8 2.5131 0.000002075

mp-27133 BiPS4 1.4839 1.9375E-06

mp-27358 Se2O5 2.885 0.0000017

mp-27462 AlPS4 2.6141 0.00000155

mp-862800 PrI3 1.9521 0.0000015

mp-15046 Sb2(PSe3)3 1.4601 0.000001325

mp-7302 CrP4 0 0.0000013

mp-572284 SbXeOF9 2.2 0.0000012

mp-28954 Tl2PdSe2 0 0.000001

Continued on next page
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Table 5.3 – continued from previous page

MPID Material Formula Band Gap(eV) Total Magnetization (A/m)

mp-27994 HgBrO3 3.1922 0.000000875

mp-27743 BiF5 1.8138 0.0000008

mp-863658 PmCl3 3.5399 0.0000007

mp-542769 Sn(CO2)2 2.6084 0.0000006

mp-557705 OsO2F3 0.5722 0.000000575

mp-573815 ReI3 0.947 5.33333E-07

mp-863695 PmI3 2.0675 0.0000005

mp-583234 Bi4I 0 0.000000475

mp-570044 NbI4 0.478 0.0000004

mp-568100 ReNCl4 1.0777 0.0000004

mp-28051 SbTeI 0.8606 0.0000004

mp-568758 BiBr 1.0369 3.375E-07

mp-540639 FeH8C4(S2N3)2 0.5768 0.0000003

mp-733929 P2H4PbO8 4.4499 0.0000003

mp-753160 BiOF 3.3538 0.00000025

mp-570443 Tl2CN2 1.892 2.33333E-07

mp-11508 MoP4 0 0.0000002

Continued on next page
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MPID Material Formula Band Gap(eV) Total Magnetization (A/m)

mp-555760 S 2.2718 1.88889E-07

mp-568388 BiI 0.8279 0.000000175

mp-8187 K2ZnO2 1.9785 0.00000015

mp-769016 Pb(BrO3)2 3.2535 0.00000015

mp-27480 Sn2OF2 2.6708 0.00000015

mp-616327 In3Te3I 1.1004 0.00000005

mp-5770 AgNO2 1.7726 0

mp-942 AuF3 1.4723 0

mp-30097 Bi2Te7Cl8 0.7625 0

mp-23324 BiSBr 2.0287 0

mp-23318 BiSCl 1.9601 0

mp-569707 BiSeBr 1.6912 0

mp-23020 BiSeI 1.5745 0

mp-23514 BiSI 1.8669 0

mp-27724 BPS4 2.2625 0

mp-3199 CuSe2O5 0.0055 0

mp-27218 Ge(BrF5)2 2.9044 0

Continued on next page
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Table 5.3 – continued from previous page

MPID Material Formula Band Gap(eV) Total Magnetization (A/m)

mp-568616 Nb2Br5 0.709 0

mp-541817 NbSeI3 0.6281 0

mp-559792 Nd2As6Xe5F46 2.6927 0

mp-19727 PbCN2 1.7031 0

mp-560008 PNF2 5.6175 0

mp-558576 ReSb(OF4)2 3.7699 0

mp-22996 SbSeI 1.3776 0

mp-14 Se 0.9988 0

mp-29174 SiCl2 2.0151 0

mp-1602 SiS2 3.0676 0

mp-568264 SiSe2 2.1493 0

mp-17835 Sn2Sb2S5 1.045 0

mp-19 Te 0.1856 0

mp-582657 Ti4Te9I4O 0.3978 0

mp-574169 TiGeTe6 0.4183 0

mp-720 TlF 3.2045 0
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5.2 Band gap prediction and magnetic material classification

The starting point of machine learning is choosing a proper model. Optimized

distributed gradient boosting (XGBoost) is the leading model for working with standard

tabular data, such as dataframe, json, csv and excel. This model dominates many Kaggle

competitions. It is an implementation of the Gradient Boosted Decision Trees algorithm.

Comparing with other machine learning algorithms, it has better accuracy. Comparing with

deep learning it allows much better interpretation.

Feature engineering is the process of using domain knowledge of the data to create

features that make machine learning algorithms work. It is fundamental to the application

of machine learning, and is both difficult and expensive. The purpose is to find out those

features that can help when solving the problem, and encode them into the format that the

model can read. In this study, two kinds of features have been selected: structural features

and elemental features. The structural features are originate from the information of the unit

cell such as the unit cell volume and the number of the atoms. While the elemental features

originate from the information of periodic table such as atomic weight, atomic radius, and

number of valence electrons. For the best performance, the average, min/max values and

differences of each elemental feature have been calculated. For non-numerical features, such

as space group, we did one-hot-encoding (OHT) since it is necessary for XGBoost. In total,

20,000 kinds of different materials have been included in the machine learning. The 20,000

materials have been divided into two subsets: 75 % training samples (15,000) and 25 %

testing samples (5,000). For each material there are 95 features included. they will be used

to predict band gap and to do magnetic material classification.
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Figure 5.2: The correlation heat map of all the features considered in the XGBoost, yellow

indicates that two features are positively linear correlated, while dark green indicates that

two feature are negatively linear correlated.

Fig. 5.2 shows the feature correlation heat map. The yellow square indicates that

the corresponding two features are positively correlated. While the dark green indicates that

the corresponding two features are negatively correlated. Those features with 0 correlation

mean that they are not correlated. Those highly correlated features are used to fill in the

missing values in elemental features.
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Table 5.4: The predicted band gap vs band gap from MPDB.

Material Formula Predicted Band Gap (eV) Band Gap from MPDB (eV)

Ce3(AgGe)4 0.002 0

SrCaMg30O32 4.239 4.431

Li3V(H4O3)4 3.994 4.026

ZnPb2F6 4.004 3.923

Cr3N4 0 0

CsLi2F3 6.78 7.04

Ni3Sn2 0.004 0

V2Cu2O7 0.016 0

Li2Mn3TeO8 0.226 0

MgH10CO8 4.818 4.795

ReH4NO4 3.926 4.086

BaTi8O16 0 0

LiB(SO4)2 6.145 6.387

KGaH4 4.951 4.936

ThMn4(CuO4)3 0 0

CaSbPt 0 0

Sc2IrPd 0.223 0

Continued on next page
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Table 5.4 – continued from previous page

Material Formula Predicted Band Gap(eV) Band Gap from MPDB (eV)

Cu 0.024 0

Rb2Be3Zn2F12 5.895 5.858

KSm(PO3)4 5.402 5.297

Mn3W3C 0.009 0

K2LiDyCl6 4.95 5.02

Na3YC2(O3F)2 5.014 4.884

Li5GaO4 3.08 3.763

CsNaB10(H2O9)2 5.421 5.762

Gd6Ta4Al43 0.052 0

Before running XGBoost, the last step we need to do is a parameter grid search.

For more details, please refer to Sec. A.2 of the Appendix. Table 5.4 shows a subset of

the central results of band gap prediction, the comparison between the predicted band gap

and band gap obtained from MPDB. The calculated mean absolute error of the training

samples is 0.148 eV, which prove that our prediction is in good agreement with the results

on MPDB. For the magnetic material classification, the results accuracy can be evaluated

by the confusion matrix as shown in Fig. 5.3. Among 5000 kinds of materials, our model

found 1315 magnetic materials and 3685 non-magnetic materials, in reality, there are 1155
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magnetic materials and 3845 non-magnetic materials. The accuracy can be calculated by:

accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

where TP refers to true positive which means the number of the materials are actual mag-

netic material has also been predicted as magnetic material. While FN refers to false neg-

ative which means the number of the materials are actual magnetic material but has been

predicted as non-magnetic material. The smaller the values of FP and FN, the better the

accuracy is. When the values of FP and FN both equal to 0, the accuracy is 1. In this

study, the accuracy is 0.916.

Figure 5.3: Confusion matrix of magnetic material classification, used to judge the accuracy

of the classification.

To evaluate which feature dominates the prediction and classification, the most

important 10 features are shown in Fig. 5.4. The feature importance criteria we used is

"gain". "Gain" indicates the improvement in accuracy brought by a feature to the branches

it is on. It is the most widely used criteria to evaluate the feature importance. For band

gap prediction, the maximum value of the elemental valence electrons is the most important

feature. For magnetic material classification, the maximum value of the elemental period is
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the most important feature.

Figure 5.4: The most important 10 features for predicting band gap and for magnetic

material classification.
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Chapter 6

Summary and Outlook

In conclusion, the dependence of the in-plane thermal conductivity of TBG is

theoretically investigated. For large commensurate rotation angles (< 13.2◦), the thermal

conductivities decrease approximately linearly with the increasing lattice. At a commensu-

rate lattice constant of 1.1 nm corresponding to an angle of 13.2◦, the thermal conductivity

falls to 50% of the value of the aligned AB structure at room temperature. For all 13 com-

mensurate rotation angles we considered, rotation does not affect the phonon velocities or

frequencies, but it does reduce the Brillouin zone size to the extent that the zone edge acous-

tic phonon energies are thermally populated. This allows Umklapp scattering to reduce the

lifetimes of the phonons contributing to the thermal transport and, consequently, to reduce

the thermal conductivity. The DFT calculations give solid proof for this explanation by

observing a reduction of the phonon lifetimes in TBG compared to AB-BLG.

For small commensurate rotation angles (> 13.2◦), a non-monotonic dependence of

the thermal conductivity on the commensurate lattice constant has been discovered. As the
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commensurate lattice constant increases, the in-plane thermal conductivity increases and

reaches 91% of the AB value at a commensurate lattice constant of 7.5 nm corresponding

to an angle of 1.89◦. The commensurate-lattice-constant-dependent trends in the thermal

conductivity are also followed by the trends in the shear elastic constant C44, the wrinkling

intensity, and the frequency of the out-of-plane ZA2 mode. The picture that emerges from

these results is that the interlayer misorientation reduces the shear elastic constant C44, the

reduced shear elastic constant allows increased wrinkling of the TBG, and the increased

wrinkling reduces the thermal conductivity.

The small-angle approach of the thermal conductivity towards its value in the

aligned structure raises the question of how response functions approach their aligned values

as the twist angle approaches 0◦. Is the approach gradual, discontinuous, or a combination

of the two?

To identify quasi-1D material from 2D material, an improved dimension classifier

model has been created. The algorithm of this model is based on the fact that quasi-1D

material contains different bond lengths in the unit cell. The accuracy of this model is

validated by successfully identifying known quasi-1D material based on the structural data

from MPDB. Using structural data and elemental properties from MPDB, we perform a

band gap prediction and magnetic material classification by applying XGBoost model. By

fitting the XGBoost model with 15,000 kinds of materials, the accuracy of the predictions

on the 5000 testing samples is greater than 91%. The MAE of the band gap prediction is

0.148 eV. For the magnetic material classification, 1,025 kinds of magnetic materials and

3,555 kinds non-magnetic materials have been identified. Using gain as the criteria, the most
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correlated feature for band gap prediction is the number of the valence electrons. While, for

the magnetic material classification, it is the elemental period.
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Chapter 7

Appendix

A.1 Band Gap Prediction using Machine Learning (Python3)

The first step of machine learning is downloading data from material project

databases and format them. To do this you can use the following code, some packages

might need to install before running, such as pymatgen, mendeleev, numpy and pandas.

from pymatgen import MPRester , Composition

from pymatgen . e l e c t r on i c_s t r u c t u r e . p l o t t e r import BSPlotter

import pymatgen . a n a l y s i s . f ind_dimension

import pymatgen . i o . c i f as p c i f

import pandas as pd

from tqdm import tqdm

#import p e r i o d i c t a b l e as pt

from mendeleev import element

import re
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import numpy as np

from c o l l e c t i o n s import OrderedDict

from IPython . d i sp l ay import c lear_output

import time

de f get_valence ( group_id ) :

i f group_id == None :

re turn (None )

e l i f group_id >= 1 and group_id <= 12 :

re turn ( group_id )

e l i f group_id >= 13 and group_id <= 18 :

re turn ( group_id−10)

e l i f group_id ==0:

re turn (8 )

e l s e :

r a i s e ValueError ( ’The␣group␣ID␣ i s ␣out␣ o f ␣ range ’ )

de f NumberOfElement ( unit_cel l_formula , element ) :

i f e lement not in unit_ce l l_formula :

r a i s e ValueError ( ’ Element␣can␣not␣be␣ found␣ in ␣pretty_formula ’ )

e l s e :

r e turn ( unit_ce l l_formula [ element ] )

NumberOfElement ({ ’C ’ : 2 . 0 , ’P ’ : 2 . 0 , ’V ’ : 4 . 0} , ’C ’ )+1

de f getOneElementFeature ( f ea ture , Element ) :

currentElem = element ( Element )
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i f f e a t u r e == "atomic_number" :

r e turn ( currentElem . atomic_number )

e l i f f e a t u r e == "atomic_weight" :

r e turn ( currentElem . atomic_weight )

e l i f f e a t u r e == " per iod " :

re turn ( currentElem . per iod )

e l i f f e a t u r e == "group_id" :

re turn ( currentElem . group_id )

e l i f f e a t u r e == "atomic_radius " :

r e turn ( currentElem . atomic_radius )

e l i f f e a t u r e == " cova lent_radius " :

r e turn ( currentElem . cova lent_radius )

e l i f f e a t u r e == " va l ence_e l e c t rons " :

r e turn ( get_valence ( currentElem . group_id ) )

e l i f f e a t u r e == "number_of_outer_shel l_electrons " :

d = OrderedDict ( currentElem . ec . e l e c t rons_per_she l l ( ) )

e l s = l i s t (d . i tems ( ) )

re turn ( l i s t (d . i tems ( ) ) [ − 1 ] [ 1 ] )
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e l i f f e a t u r e == " i on en e r g i e s " :

r e turn ( currentElem . i o n en e r g i e s [ 1 ] )

e l i f f e a t u r e == " d i p o l e_po l a r i z a b i l i t y " :

r e turn ( currentElem . d i p o l e_po l a r i z a b i l i t y )

e l i f f e a t u r e == "melt ing_point " :

r e turn ( currentElem . melt ing_point )

e l i f f e a t u r e == " bo i l ing_po int " :

r e turn ( currentElem . bo i l i ng_po int )

e l i f f e a t u r e == "atomic_density " :

r e turn ( currentElem . dens i ty )

e l i f f e a t u r e == " spe c i f i c_hea t " :

r e turn ( currentElem . sp e c i f i c_hea t )

e l i f f e a t u r e == " fus ion_heat " :

r e turn ( currentElem . fus ion_heat )

e l i f f e a t u r e == "evaporation_heat " :

r e turn ( currentElem . evaporation_heat )

e l i f f e a t u r e == " thermal_conduct iv i ty " :

r e turn ( currentElem . thermal_conduct iv i ty )
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e l s e :

r a i s e ValueError ( ’ This ␣ f e a t u r e ␣dose ␣not␣ e x s i t s ’ )

de f c reateElementsDict ( unit_ce l l_formula ) :

r e turn ( unit_ce l l_formula )

de f natoms ( unit_cel l_formula , e lements ) :

n = 0

f o r element in e lements :

n += NumberOfElement ( unit_cel l_formula , element )

re turn (n)

de f featureSum ( fea ture , unit_cel l_formula , e lements ) :

fsum = 0

elements_dict = createElementsDict ( unit_ce l l_formula )

f o r Element in e lements :

fsum += getOneElementFeature ( f ea ture , Element ) ∗ e lements_dict [ Element ]

r e turn ( fsum )

de f featureAvg ( f ea ture , unit_cel l_formula , e lements ) :

r e turn ( featureSum ( f ea ture , unit_cel l_formula , e lements ) /natoms (

unit_cel l_formula , e lements ) )

de f f e a t u r eD i f f e r e n c e ( f ea ture , unit_cel l_formula , e lements ) :

favg = featureAvg ( f ea ture , unit_cel l_formula , e lements )
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f d i f f = 0

f o r Element in e lements :

f d i f f += ( getOneElementFeature ( f ea ture , Element ) − favg ) ∗∗2

return (np . s q r t ( f d i f f /natoms ( unit_cel l_formula , e lements ) ) )

de f f e a tu r eLa rg e s t ( f ea ture , unit_cel l_formula , e lements ) :

f ea ture_va lues = [ ]

f o r Element in e lements :

f ea ture_va lues . append ( getOneElementFeature ( f ea ture , Element ) )

re turn (max( f eature_va lues ) )

de f f e a tu r eSma l l e s t ( f ea ture , unit_cel l_formula , e lements ) :

f ea ture_va lues = [ ]

f o r Element in e lements :

f ea ture_va lues . append ( getOneElementFeature ( f ea ture , Element ) )

re turn (min ( f eature_va lues ) )

featureSum ( "atomic_weight" ,{ ’Rb ’ : 2 . 0 , ’Te ’ : 2 . 0 , ’Au ’ : 2 .0}

, [ ’Rb ’ , ’Te ’ , ’Au ’ ] )

atomicFeatures = [ "atomic_number" , "atomic_weight" , " per iod " , "group_id" , "

atomic_radius " , " cova lent_radius " , " va l ence_e l e c t rons " , "

number_of_outer_shel l_electrons " , " i o n en e r g i e s " , " d i p o l e_po l a r i z a b i l i t y " , "

melt ing_point " , " bo i l ing_po int " , " atomic_density " , "

sp e c i f i c_hea t " , " fus ion_heat " , " evaporation_heat " , " thermal_conduct iv i ty " ]
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l en ( atomicFeatures )

mpr = MPRester ( "Frv0akZ1InOToUmL" )##API key should be i n s i d e the "" , URL f o r

API key : https : // ma t e r i a l s p r o j e c t . org /dashboard

data = mpr . query ( c r i t e r i a={"band_gap" : {" $gt " : −0.1}} , p r op e r t i e s =([ " c i f " , "

pretty_formula " , " unit_ce l l_formula " , "band_gap" , "volume" , " spacegroup " , "

dens i ty " , " e lements " , " nelements " ] ) )

pd_all = pd . DataFrame ( data )

pd_all . head (20)

pd_all [ ’ spacegroup ’ ] [ 4 ] [ ’ crysta l_system ’ ]

pd_all . query ( ’ band_gap␣==␣0 ’ ) . shape

pd_subset = pd . concat ( [ pd_all . query ( ’ band_gap␣==␣0 ’ ) [ 0 : 1 0 ] , pd_all . query ( ’

band_gap␣!=␣0 ’ ) [ − 1 0 : : ] ] )

pd_subset . shape

pd_subset . head ( )

pd_subset . i s n u l l ( ) . sum( )

pd_subset . reset_index ( i np l a c e=True )
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d i c t_a l l = {}

f o r i in range ( l en ( atomicFeatures ) ) :

d i c t_a l l [ "sum_"+atomicFeatures [ i ] ] = [ ]

d i c t_a l l [ "avg_"+atomicFeatures [ i ] ] = [ ]

d i c t_a l l [ " d i f f_ "+atomicFeatures [ i ] ] = [ ]

d i c t_a l l [ "max_"+atomicFeatures [ i ] ] = [ ]

d i c t_a l l [ "min_"+atomicFeatures [ i ] ] = [ ]

f o r j in range ( pd_subset . shape [ 0 ] ) :

f e a tu r e_t e s t e r = [ ] #t e s t whether the re i s None f e a tu r e va lue

f o r Element in pd_subset [ ’ e lements ’ ] [ j ] :

f e a tu r e_t e s t e r . append ( getOneElementFeature ( atomicFeatures [ i ] ,

Element ) )

i f None not in f e a tu r e_t e s t e r :

c lear_output ( )

p r i n t ( "row␣"+ s t r ( j ) + "␣and␣ f e a tu r e ␣" + s t r ( i ) )

d i c t_a l l [ "sum_"+atomicFeatures [ i ] ] . append ( featureSum (

atomicFeatures [ i ] , pd_subset [ ’ unit_ce l l_formula ’ ] [ j ] , pd_subset [

’ e lements ’ ] [ j ] ) )

d i c t_a l l [ "avg_"+atomicFeatures [ i ] ] . append ( featureAvg (

atomicFeatures [ i ] , pd_subset [ ’ unit_ce l l_formula ’ ] [ j ] , pd_subset [

’ e lements ’ ] [ j ] ) )

d i c t_a l l [ " d i f f_ "+atomicFeatures [ i ] ] . append ( f e a t u r eD i f f e r e n c e (

atomicFeatures [ i ] , pd_subset [ ’ unit_ce l l_formula ’ ] [ j ] , pd_subset [

’ e lements ’ ] [ j ] ) )

d i c t_a l l [ "max_"+atomicFeatures [ i ] ] . append ( f e a tu r eLa rg e s t (

atomicFeatures [ i ] , pd_subset [ ’ unit_ce l l_formula ’ ] [ j ] , pd_subset [

’ e lements ’ ] [ j ] ) )
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d i c t_a l l [ "min_"+atomicFeatures [ i ] ] . append ( f e a tu r eSma l l e s t (

atomicFeatures [ i ] , pd_subset [ ’ unit_ce l l_formula ’ ] [ j ] , pd_subset [

’ e lements ’ ] [ j ] ) )

e l s e :

d i c t_a l l [ "sum_"+atomicFeatures [ i ] ] . append ( ’None ’ )

d i c t_a l l [ "avg_"+atomicFeatures [ i ] ] . append ( ’None ’ )

d i c t_a l l [ " d i f f_ "+atomicFeatures [ i ] ] . append ( ’None ’ )

d i c t_a l l [ "max_"+atomicFeatures [ i ] ] . append ( ’None ’ )

d i c t_a l l [ "min_"+atomicFeatures [ i ] ] . append ( ’None ’ )

pd . DataFrame (pd . DataFrame ( d i c t_a l l )==’None ’ ) . sum( )

d i c t_a l l [ "band_gap" ] = [ ]

d i c t_a l l [ "mater ia l_dens i ty " ] = [ ]

d i c t_a l l [ "material_volume" ] = [ ]

d i c t_a l l [ " space_group" ] = [ ]

d i c t_a l l [ "volume_per_atom" ] = [ ]

d i c t_a l l [ " pretty_formula " ] = [ ]

d i c t_a l l [ ’ unit_ce l l_formula ’ ] = [ ]

d i c t_a l l [ " c i f " ] = [ ]

f o r i in range ( pd_subset . shape [ 0 ] ) :

c lear_output ( )

natom = 0

f o r Element in pd_subset [ ’ e lements ’ ] [ i ] :

natom += NumberOfElement ( pd_subset [ ’ unit_ce l l_formula ’ ] [ i ] , Element )

d i c t_a l l [ "band_gap" ] . append ( pd_subset [ ’ band_gap ’ ] [ i ] )

d i c t_a l l [ "mater ia l_dens i ty " ] . append ( pd_subset [ ’ d ens i ty ’ ] [ i ] )
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d i c t_a l l [ "material_volume" ] . append ( pd_subset [ ’ volume ’ ] [ i ] )

d i c t_a l l [ " space_group" ] . append ( pd_subset [ " spacegroup" ] [ i ] [ ’ c rysta l_system ’

] )

d i c t_a l l [ "volume_per_atom" ] . append ( pd_subset [ "volume" ] [ i ] / natom)

d i c t_a l l [ " pretty_formula " ] . append ( pd_subset [ " pretty_formula " ] [ i ] )

d i c t_a l l [ ’ unit_ce l l_formula ’ ] . append ( pd_subset [ ’ unit_ce l l_formula ’ ] [ i ] )

d i c t_a l l [ " c i f " ] . append ( pd_subset [ " c i f " ] [ i ] )

p r i n t ( "row␣"+ s t r ( i ) )

ML_data = pd . DataFrame ( d i c t_a l l )

ML_data . to_excel ( "ML_data_20 . x l sx " )

After this step we need to clean the data, in this project, what we did is imputing

the missing data according to the known part of the data. You can run the following code

in the same directory, changing the ".xlsx" file name accordingly. Although we did not plot

the distribution of each feature in this step, it is still recommended to do it. Because most

of machine learning algorithms are based on the assumption that the feature values are

normally distributed. If not, a feature engineering need to be done before applying machine

learning.

import pandas as pd

import numpy as np

from sk l ea rn . impute import SimpleImputer

from sk l ea rn . exper imenta l import enable_iterat ive_imputer

from sk l ea rn . impute import I t e r a t i v e Impute r

pd_all = pd . read_excel ( ’ML_data_10000 . x l sx ’ )
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pd_all . r ep l a c e ( ’None ’ ,−999 , i np l a c e=True )

numerics = [ ’ in t16 ’ , ’ i n t32 ’ , ’ i n t64 ’ , ’ f l o a t 1 6 ’ , ’ f l o a t 3 2 ’ , ’ f l o a t 6 4 ’ ]

numeric_columns = pd_all . s e l e c t_dtypes ( i n c lude=numerics ) . columns

non_numeric_columns = pd_all . s e l e c t_dtypes ( exc lude=numerics ) . columns

# f i t t i n g the miss ing data us ing mean value a lgor i thm

imp = SimpleImputer ( miss ing_values=−999, s t r a t e gy=’mean ’ )

imp . f i t ( pd_all . s e l e c t_dtypes ( i n c lude=numerics ) )

df_numeric = pd . DataFrame ( imp . trans form ( pd_all . s e l e c t_dtypes ( i n c lude=numerics )

) , columns=numeric_columns )

df_nonnumeric = pd_all . s e l e c t_dtypes ( exc lude=numerics )

pd . merge ( df_numeric , df_nonnumeric , l e f t_ index=True , r ight_index=True ) .

to_excel ( ’ML_data_impute_10000 . x l sx ’ )

# f i t t i n g the miss ing data us ing p r e d i c t i o n s

imp_feature = I t e ra t i v e Impute r (max_iter=100 , random_state=0,miss ing_values

=−999, i n i t i a l_ s t r a t e g y=’ most_frequent ’ )

imp_feature . f i t ( pd_all . s e l e c t_dtypes ( i n c lude=numerics ) )

df_numeric_2 = pd . DataFrame ( imp_feature . trans form ( pd_all . s e l e c t_dtypes ( i n c lude

=numerics ) ) , columns=numeric_columns )

pd . merge ( df_numeric_2 , df_nonnumeric , l e f t_ index=True , r ight_index=True ) .

to_excel ( ’ML_data_impute_5_10000 . x l sx ’ )

The last step is fitting the data into the selected machine learning model and using

them to do the prediction. The optimized distributed gradient boosting (XGB) is applied

in this code. As the regularized version of gradient boosting method, XGB is an efficient

and easy to use algorithm. It delivers high performance and accuracy as compared to other

algorithms.

To measure the accuracy of the prediction, we could split the data (have both
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features and targets) into two samples: training and testing. Only training samples will be

fitted, and testing samples are only used to judge the accuracy. Run the following code will

automatically generate a ".xlsx" file with predicted bandgap of 5000 materials. The mean

absolute error of the prediction is only 0.148 eV.

import pandas as pd

import numpy as np

import xgboost as xgb

import seaborn as sns

from sk l ea rn . mode l_se lect ion import KFold , GridSearchCV

from sk l ea rn . ensemble import ExtraTreesRegressor

from sk l ea rn . ensemble import RandomForestRegressor

from sk l ea rn import metr ics , p r ep ro c e s s i ng

from sk l ea rn . mode l_se lect ion import c ro s s_va l i da t e

from sk l ea rn . mode l_se lect ion import t r a i n_te s t_sp l i t

import time

import matp lo t l i b . pyplot as p l t

from sc ipy import spar s e

from sk l ea rn . met r i c s import mean_absolute_error

get_ipython ( ) . run_line_magic ( ’ matp lo t l i b ’ , ’ i n l i n e ’ )

## Load Data

d f_a l l = pd . read_excel ( ’ML_data_FeatureImpute_0to10000 . x l sx ’ )

d f_a l l . head ( )

ml_all = df_a l l . drop ( columns=[ ’Unnamed : ␣0 ’ , ’Unnamed : ␣ 0 .1 ’ , ’ pretty_formula ’ , ’

unit_ce l l_formula ’ , ’ c i f ’ ] )
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data_types = ml_all . dtypes

cat_co l s = l i s t ( data_types [ data_types==’ ob j e c t ’ ] . index )

con_cols = l i s t ( data_types [ data_types==’ in t64 ’ ] . index ) + l i s t ( data_types [

data_types==’ f l o a t 6 4 ’ ] . index )

con_cols . remove ( ’ band_gap ’ )

p r i n t ( " Cat ego r i c a l ␣ f e a t u r e s : " , cat_co l s )

p r i n t ( "Numerica␣ f e a t u r e s : " , con_cols )

## Encode cat f e a tu r e s , must do be f o r e us ing XGB

OHE = prep ro c e s s i ng . OneHotEncoder ( spar s e=True )

s t a r t=time . time ( )

fu l l_data_sparse=OHE. f i t_trans fo rm (ml_all [ cat_co l s ] )

p r i n t ( ’One−hot−encoding ␣ f i n i s h e d ␣ in ␣%f ␣ seconds ’ % ( time . time ( )−s t a r t ) )

fu l l_data_sparse = spar s e . hstack ( ( fu l l_data_sparse , ml_all [ con_cols ] ) , format=’

c s r ’ )

## Train t e s t s p l i t

train_x , test_x , train_y , test_y = t ra i n_te s t_sp l i t ( fu l l_data_sparse , ml_all [ ’

band_gap ’ ] , t e s t_s i z e =0.25 , random_state=42)

## Metod f o r eva lua t i on

de f l o g r e gob j ( l ab e l s , preds ) :

con = 2

x =preds−l a b e l s

grad =con∗x / (np . abs ( x )+con )

hess =con ∗∗2 / (np . abs ( x )+con ) ∗∗2

return grad , hess
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de f log_mae (y , yhat ) :

r e turn mean_absolute_error (np . exp (y ) , np . exp ( yhat ) )

log_mae_scorer = metr i c s . make_scorer ( log_mae , g reate r_i s_bet te r = False )

## Grid Search f o r the best model

de f search_model ( train_x , train_y , est , param_grid , n_jobs , cv , r e f i t=Fal se ) :

model = GridSearchCV ( es t imator = est ,

param_grid = param_grid ,

s c o r i ng = log_mae_scorer ,

verbose = 10 ,

n_jobs = n_jobs ,

i i d = True ,

r e f i t = r e f i t ,

cv = cv )

# Fit Grid Search Model

model . f i t ( train_x , train_y )

p r in t ( "Best ␣ s co r e : ␣%0.3 f " % model . best_score_ )

p r in t ( "Best ␣ parameters ␣ s e t : " , model . best_params_ )

pr in t ( " Scores : " , model . cv_results_ )

return model

param_grid = { ’ ob j e c t i v e ’ : [ l o g r e gob j ] ,

’ l ea rn ing_rate ’ : [ 0 . 0 3 , 0 . 1 , 0 . 2 ] ,

’ n_estimators ’ : [ 2 000 , 4 000 , 8 000 ] ,
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’max_depth ’ : [ 6 , 8 , 1 0 ] ,

’ min_child_weight ’ : [ 1 0 , 8 , 6 , 4 , 2 , 1 ] ,

’ subsample ’ : [ 0 . 7 8 , 0 . 5 ] ,

’ co lsample_bytree ’ : [ 0 . 6 7 ] ,

’gamma ’ : [ 0 , 0 . 9 , 1 0 ] ,

’ nthread ’ : [−1] ,

’ seed ’ : [ 1 2 34 ] }

model = search_model ( train_x ,

train_y ,

xgb . XGBRegressor ( ) ,

param_grid ,

n_jobs = 1 ,

cv = 4 ,

r e f i t = True )

## Set t ing up the paramters o f XGB and f i t t i n g the model

rg r = xgb . XGBRegressor ( seed = 1234 ,

l ea rn ing_rate = 0 .03 , # smal l e r , b e t t e r r e s u l t s , more

time

n_estimators = 2000 , # Number o f boosted t r e e s to f i t .

max_depth=10, # the maximum depth o f a t r e e

min_child_weight=10,

colsample_bytree =0.67 , # the f r a c t i o n o f columns to be

randomly samples f o r each t r e e

subsample =0.78 , # the f r a c t i o n o f ob s e rva t i on s to be

randomly samples f o r each t r e e
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gamma=0.9 , # Minimum l o s s r educt ion r equ i r ed to make a

f u r t h e r p a r t i t i o n on a l e a f node o f the tree ,

# the l a rg e r , the more con s e rva t i v e

nthread = −1, # Number o f p a r a l l e l threads used to run

xgboost .

s i l e n t = False # Whether to p r i n t messages whi l e

running boost ing .

)

rg r . f i t ( train_x , train_y )

## Pred i c t the bandgap us ing the f i t t e d model

pred_y = rgr . p r ed i c t ( test_x )

## Save p r ed i c t i on r e s u l t s o f t e s t samples

r e s u l t s = pd . DataFrame ( )

r e s u l t s [ ’ pretty_formula ’ ] = d f_a l l . i l o c [ test_y . index ] [ ’ pretty_formula ’ ]

r e s u l t s [ ’ band_gap ’ ] = pred_y

r e s u l t s [ ’ real_band_gap ’ ] = test_y . va lue s

r e s u l t s . to_excel ( "pred_20191118 . x l sx " , index=False )

## Print MAE of t e s t sample p r ed i c t i on un i t eV

pr in t ( mean_absolute_error ( pred_y , test_y . va lue s ) )

## Save p r ed i c t i on r e s u l t s f o r t r a i n samples , used to check o v e r f i t t i n g

pred_train_y = rgr . p r ed i c t ( train_x )

r e s u l t s = pd . DataFrame ( )
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r e s u l t s [ ’ pretty_formula ’ ] = d f_a l l . i l o c [ train_y . index ] [ ’ pretty_formula ’ ]

r e s u l t s [ ’ band_gap ’ ] = pred_train_y

r e s u l t s [ ’ real_band_gap ’ ] = train_y . va lue s

r e s u l t s . to_excel ( "pred_20191118_train . x l sx " , index=False )

mean_absolute_error ( pred_train_y , train_y . va lue s )

## plo t the f e a tu r e importance

xgb . plot_importance ( rgr , max_num_features=10, importance_type=’ gain ’ )

If you want to try predicting the total magnetization, you need to include "total_magnetization"

into your mpr query. Also you need to drop the "total_magnetization" from the continues

features. The two lines you need to revise in the code are as below:

. . .

data = mpr . query ( c r i t e r i a={"band_gap" : {" $gt " : −0.1}} , p r op e r t i e s =([ " c i f " , "

pretty_formula " , " unit_ce l l_formula " , "band_gap" , "volume" , " spacegroup " , "

dens i ty " , " e lements " , " nelements " , " tota l_magnet izat ion " ] ) )

. . .

. . .

. . .

con_cols . remove ( ’ tota l_magnet izat ion ’ )

. . .

A.2 Dimension Classifier (Python3)

This code is used to classify the dimension of a given material into the one of the

following types: 0D, 1D, quasi-1D, 2D, 3D, intercalated ion and intercalated molecule. The
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code used the find_dimension package implemented in pymatgen. It needs the structure

files with ".cif" format as input, and output a spreadsheet with three columns: formula of

the material, dimension of the material and band gap. The band gap information is directly

downloaded from material project.

To use this code, you need to adjust the tolerance before running it. If the tolerance

is too big, some "quasi-1D" materials will be identified as 2D material, while if it is too small,

some of them will be identified as 0D material or intercalated ion.

from pymatgen import MPRester , Composition

from pymatgen . e l e c t r on i c_s t r u c t u r e . p l o t t e r import BSPlotter

import pymatgen . a n a l y s i s . f ind_dimension

import pymatgen . i o . c i f as p c i f

import pandas as pd

import pymatgen . a n a l y s i s . f ind_dimension as pfd

from tqdm import tqdm

#####Loading data from mate r i a l p r o j e c t s

mpr = MPRester ( "Frv0akZ1InOToUmL" )##API key should be i n s i d e the "" , URL f o r

API key : https : // ma t e r i a l s p r o j e c t . org /dashboard

data = mpr . query ( c r i t e r i a={"band_gap" : {" $gt " : −0.1}} , p r op e r t i e s =([ " c i f " , "

pretty_formula " , " unit_ce l l_formula " , "band_gap" , "volume" , " spacegroup " , "

dens i ty " , " e lements " , " nelements " ] ) )

d f_a l l = pd . DataFrame ( data )

d f_a l l . to_excel ( ’ Mater ia l_Project_dataForDimensionClass i fy . x l sx ’ )

#####Prepare Input F i l e s
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subsample = 100

f o r i in range ( l en ( data [ : subsample ] ) ) :

with open ( s t r ( i ) + ’ _dimension . c i f ’ , ’w ’ ) as t h e_ f i l e :

t h e_ f i l e . wr i t e ( data [ i ] [ ’ c i f ’ ] )

#####Dimension C l a s s i f i c a t i o n

dimensions = [ ]

f o r i in tqdm( range ( l en ( data [ : subsample ] ) ) ) :

dim = pfd . f ind_dimension ( p c i f . S t ruc ture . f rom_f i l e ( s t r ( i )+"_dimension . c i f " )

)

i f dim == ’ 2D’ and pfd . f ind_dimension ( p c i f . S t ruc ture . f rom_f i l e ( s t r ( i )+"

_dimension . c i f " ) , t o l e r an c e =0.1) == "1D" :

dimensions . append ( ’ quasi−1D’ )

e l s e :

d imensions . append (dim)

#####Generate Outputs

pretty_formula = [ ]

band_gap = [ ]

f o r i in range ( l en ( data [ : subsample ] ) ) :

pretty_formula . append ( data [ i ] [ ’ pretty_formula ’ ] )

band_gap . append ( data [ i ] [ ’ band_gap ’ ] )

df_dimensions = pd . DataFrame ({ ’ pretty_formula ’ : pretty_formula , ’ band_gap ’ :

band_gap , ’ d imensions ’ : d imensions })

df_dimensions . to_excel ( ’ df_dimensions . x l sx ’ )
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