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ABSTRACT OF THE DISSERTATION

Thermal Conductivity and Phonon Properties of Twisted Bilayer Graphene
by
Chenyang Li

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2019
Dr. Roger K. Lake, Chairperson

Misorientation of two layers of bilayer graphene leaves distinct signatures in the electronic
properties and the phonon modes. The effect on the thermal conductivity has received the
least attention and is the least well understood. In this work, the in-plane thermal con-
ductivity of twisted bilayer graphene (TBG) is investigated as a function of temperature
and interlayer misorientation angle using nonequilibrium molecular dynamics (NEMD). The
central result is that with rotation angles larger than 13°, the calculated thermal conduc-
tivities decrease approximately linearly with the increasing lattice constant of the commen-
surate TBG unit cell. Comparisons of the phonon dispersions show that misorientation has
negligible effect on the low-energy phonon frequencies and velocities. However, the larger
periodicity of TBG reduces the Brillouin zone size to the extent that the zone edge acoustic
phonons are thermally populated. This allows Umklapp scattering to reduce the lifetimes
of the phonons contributing to the thermal transport, and consequently, to reduce the ther-
mal conductivity. This explanation is supported by direct calculation of reduced phonon

lifetimes in TBG based on density functional theory (DFT) for larger rotation angles.
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Nothing was previously known about how small twist angles (<13°) affect the
thermal conductivity of TBG, and how it approaches its aligned value as the twist angle
approaches 0°. To provide insight into these questions, we performed large scale NEMD
calculations on commensurate TBG structures with angles down to 1.87°. The results
show a smooth, non-monotonic behavior of the thermal conductivity with respect to the
commensurate lattice constant. As the commensurate lattice constant increases, the thermal
conductivity initially decreases by 50%, and then it returns to 90% of its aligned value as the
angle is reduced to 1.89°. These same qualitative trends are followed by the trends in the
shear elastic constant, the wrinkling intensity, and the out-of-plane ZAs phonon frequency.
The picture that emerges of the physical mechanism governing the thermal conductivity is
that misorientation reduces the shear elastic constant; the reduced shear elastic constant
enables greater wrinkling; and the greater wrinkling reduces the thermal conductivity. The
small-angle behavior of the thermal conductivity raises the question of how do response
functions approach their aligned values as the twist angle approaches 0°. Is the approach
gradual, discontinuous, or a combination of the two?

Much attention has been given recently to the material data science. A particu-
lar emphasis is placed on low dimensional materials exhibiting novel electrical and thermal
properties. An improved dimension classifier model has been created to identify the quasi-
1D materials that are often classified within the 2D material family. The algorithm is based
on the fact that quasi-1D materials contain different bond lengths within the unit cell. The
model can identify known quasi-1D material based on the structural data from Material

Project Database. Using the optimized distributed gradient boosting model (XGBoost),
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both the band gap and the magnetization properties can be predicted from structural and
elemental features. By fitting the XGBoost model with 15,000 kinds of materials, the accu-
racy of the predictions on the 5000 testing samples is greater than 91%. The mean absolute
error of the band gap prediction is only 0.148 eV. Additionally, 1,025 kinds of magnetic
materials have been identified among 5000 kinds of materials. According to the feature im-
portance analysis, the most correlated feature for band gap prediction is the number of the

valence electrons. While, for the magnetic material classification, it is the elemental period.
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Chapter 1

Rationale

1.1 Objectives

As the first discovered 2D atomic crystal, graphene has been subject of intense
investigations due to its promising electrical [8], mechanical |9] and optical properties [10].
The massless electrons of graphene due to their peculiar electronic structure guaranteed its
high electrical conductivity [11]. And a good electrical conductor is always a good heat con-
ductor. The excellent thermal characteristics were soon discovered by Balandin’s group [12].
It is reported that at room temperature, the thermal conductivity of single layer graphene
(SLG) can be as high as 5000 W/m-K. The extremely high thermal conductivity of graphene
opens up a new line of research in thermal management applications. Researchers have great
interest in heat dissipation and heat transport in graphene [13]. The mechanisms such as
doping, isotope, defects and hydrogenation which can greatly affect thermal conductivity
of SLG have been well studied. However, research on tuning the thermal conductivity of

graphene-based materials has just begun.



Another graphene-based material, consisting of two SLG with a 0.34 nm Van-der-
Waals (VAW) gap, named bilayer graphene (BLG) has attracted lots of attention in recent
years. The unique characteristics have potential applications in next generation micropro-
cessors |14]. The growing interest motivated people to study the phonon and thermal prop-
erties of BLG. Both experimental and theoretical studies show that due to the compressed
ZA mode, the thermal conductivity of BLG is relatively lower than that of SLG |15}/16].
However, the thermal conductivity of BLG, which is approximately 2000 W/m-K |15], is still
much higher than the conventional heat conductor. The interaction between the layers are
VAW forces which are considerably weaker than the strong in-plane sp? bonding. The devi-
ation of the phonon frequencies in BLG from SLG is negligible for the LA and TA acoustic
branches. The only exception is the layer breathing mode, also called ZAs. For BLG the
ZA5 mode has a very significant splitting with a frequency of 95 ecm~! [17] Moreover, using
Raman spectroscopy, researchers observed multiple peaks between 100-200 cm ™! which can
be associated with ZAs [18].

Currently, the interests of the physicists have been shifting to the twisted bilayer
graphene (TBG), which is constructed by rotating one layer with a commensurate rotation
angle. Although it is believed that rotation cannot strongly affect the interlayer interac-
tion, the breaking symmetry of the Bernal stacking will result in captivating dependence of
thermal conductivity on the commensurate rotation angle. In this thesis, we will uncover
the commensurate rotation effect on the thermal conductivity of TBG. Also an underlying
physical mechanisms will be presented by studying the phonon and elastic properties of

TBG.



1.2 Organization

The rest of the dissertation is organized as follow: Chapter 2 presents the in-plane
thermal conductivity of TBG as a function of temperature and commensurate rotation angle
larger than 13°. Chapter 3 presents the answer to the question of how small commensurate
rotation angles (< 13°) affect the thermal conductivity of TBG, and how it approaches its
aligned value as the twist angle approaches 0°. Chapter 4 presents a comparison of in-
teratomic potentials for TBG, both interlayer potentials and intralayer potentials will be
considered. Chapter 5 presents preliminary work on machine learning: dimension classifica-
tion, band gap prediction and magnetic material classification. Chapter 6 is a summary of
all the interesting findings and an outlook for future work. In the Appendix, the band gap
predictor by using machine learning and the dimension classifier are documented. Also, we

did an analysis of the vibrational mode for BLG using Elastic continuum model.



Chapter 2

Lattice Constant Dependent Thermal
Conductivity of Misoriented Bilayer

Graphene

2.1 Introduction

The record high thermal conductivity of graphene has created widespread interest
and may lead to its applications in thermal management [19,/20]. The room temperature ther-
mal conductivity (k) of single layer graphene (SLG) is approximately 3000 — 5000 W /m-K,
while the room temperature thermal conductivity of few layer graphene (FLG) ranges from
1300 W/m-K to 2800 W/m-K [19,[21,/22]. Similar values have also been obtained from the-
oretical studies [2325]. There are many factors that influence the thermal conductivity of

graphene such as vacancies, chirality, isotope [26]|, wrinkles, number of layers, etc. Among



them, the effect of interlayer misorientation on the in-plane thermal conductivity of bilayer

graphene (BLG) has been the least studied, and it is the focus of this work.

Figure 2.1: Top views of the primitive cells and the rectangular unit cells of (a) AB-BLG,
(b) 21.78° m-BLG, (c) 32.20° m-BLG, (d) 13.17° m-BLG. The value of the primitive lattice
constant is shown along the left edge of each primitive cell, and the number of atoms in each

primitive cell is shown to the right of each cell.

In graphene, or BLG, heat is carried by the low-energy vibrational (phonon) modes
. Anything that alters the low-energy phonon spectrum or the phonon scattering can
affect the thermal conductivity. Experimentally, Raman spectroscopy has been extensively
used to probe the zone-center vibrational properties of graphene, AB-BLG, and misoriented
BLG (m-BLG) [18,28134]. It has been used to measure the misorientation angle dependence
of the high-energy optical phonons of the G and 2D peaks of m-BLG, and it has also been

used to measure the new peaks that appear in the low-energy range of 90-200 cm™! in the



vicinity of the original ZO" breathing mode [18,31,[35]. The position, intensity, and width
of the Raman 2D peak can be used to identify the m-BLG misorientation angle [30,[33].
Misorientation also affects the electron-phonon interlayer and intralayer interactions [36,37],
and Raman spectroscopy has very recently been used to distinguish the interlayer from the
intralayer interactions [37]. While the Raman studies are useful for understanding the optical
phonon branches and their interactions with electrons, heat is carried by the low-energy
acoustic modes over a range of wavevectors which the Raman studies do not probe.

Recently, the in-plane thermal conductivities of two suspended BLG samples were
experimentally measured over a range of temperatures from 300 K to 650 K [15]. One
sample was aligned AB stacked BLG (AB-BLG), and the other sample was misoriented-BLG
(m-BLG) with a misorientation angle of 32.2°. The average & values of the m-BLG were
uniformly lower than those of the AB-BLG. There was considerable experimental uncertainty
of the data, with error bars of up to 40%, and the measurements were taken from a single
m-BLG sample. A theoretical study of m-BLG nanoribbons found strong edge effects and
an increase of thermal conductivity for misorientation angles of 22.5° and 30.0° compared
to that of an AB stacked nanoribbon [38]. Overall, the effect of the misorientation angle on
the in-plane thermal conductivity of BLG is still an open question.

The existing computational research on the phonon properties of m-BLG indicates
that misorientation only slightly affects the phonon frequencies, density of phonon modes
and the specific heat above room temperature [17},35,:39-41]. New low-energy ¢ = 0 modes
in the m-BLG w — ¢ dispersion naturally occur due to zone-folding. Considering the simple

expression relating the thermal conductivity, specific heat, velocity, and effective mean-



free path, kK = %Cv X U X lef, one would infer that interlayer misorientation should not
significantly affect the in-plane thermal conductivity provided that leg is not significantly
changed. However, zone-folding reduces the size of the Brillouin zone (BZ) and opens up
new Umklapp scattering channels that result in increased Umklapp scattering and a reduced
mean free path [15].

Usually, Umklapp scattering would be expected to have little effect on the heat
transport by low-energy phonons with small wave vector ¢q. The thermal conductivity de-
pends on the low-energy region, while Umklapp processes dominate the high-energy region.
However, the periodicity introduced by the moiré pattern or determined by the commensu-
rate unit cell can be very long. The lattice constant of the commensurate unit cell with the
smallest misorientation angle that we consider of 13.17° is 1.07 nm, corresponding to a BZ
I'-K path length of 3.91 nm~'. At wave vector K, the phonon frequency of the LA branch

is approximately 360 cm™!

corresponding to an energy of 45 meV, which is less than 2kgT
at room temperature |17]. Thus, the severe reduction of the BZ brings the zone edges into

the low-energy range where Umklapp processes could play a role in the room temperature

thermal transport.

2.2 Method and computational approach

The starting point of the theoretical investigation is the construction of the misori-
ented bilayer atomic structures using commensurate rotation angles. These special angles

ensure that the overall structure remains periodic, albeit with a much longer periodicity.



Commensurate misorientation angles are given by [42]

2 4 2
cos = +anm t+m , (2.1)
2(n? +nm +m?2)

where m and n are non-negative integers with m < n. The commensurate unit cell vectors
c; and cg are ¢; = na; + mag and ca = —may + (m + n)ag. We will refer to ¢; and co
as the primitive lattice vectors, their magnitude as the primitive lattice constant, and a
unit cell constructed with c; and co as a primitive cell, since it is the smallest periodic cell
that can be constructed for a given misorientation angle 8. Due to the 6-fold rotational
symmetry of graphene, we only need to consider misorientation angles between 0° and 60°.
The misorientation angles considered here are 0° (AB stacking), 13.17°, 21.78°, and 32.20°.
The three angles were chosen since they give the three smallest primitive cells as shown in
Fig. A 27.79° primitive cell is the same size as the 32.30° primitive cell, but the 32.30°
angle was chosen, since it corresponds to a clockwise rotation of the upper layer in the same
sense as the 13.17° and 21.78° angles, and this is also the misorientation angle of the m-BLG
sample measured in Ref. [15]. The next larger commensurate primitive cell corresponds to
a rotation angle of 17.89° with a primitive lattice constant of 13.69 A containing 124 atoms.
The sizes of the commensurate primitive cells quickly increase from there, and a table of
commensurate angles and primitive lattice constants is given in Ref. [43].

The NEMD simulations require a rectangular unit cell, so we define orthogonal
unit cell vectors r1 and ro as r1 = ¢; and r9 = 2c9 — ¢;. The number of atoms N in the
rectangular unit cell is N = 8(n? + nm 4+ m?). A top view of the rectangular unit cells are
shown in Fig. underneath their respective primitive cells. The rectangular unit cell of

AB-BLG can be made smaller than in Fig. 2.Th. It is constructed to be the same size as



the 21.78° unit cell, so that the thermal conductivities can be compared at a constant width
and a constant length. The rectangular unit cell is repeated multiple times in the direction
of the heat transport. It is also repeated in the direction perpendicular to the direction
of heat flow to ensure that the width is sufficiently large, so that the calculated thermal
conductivity values are independent of the width [44].

For the NEMD simulations, the BLG structures are divided into 2V identical slabs
along the transport direction where N is a positive integer, usually not less than 10 for the
accuracy of calculation. We will refer to the slabs as ‘NEMD slabs’, since they are created
purely for the NEMD calculation. For each NEMD slab, we obtain one statistical average
temperature. The hot region is at the center in NEMD slab N 4+ 1, and the cold regions are
at the sample ends in NEMD slabs 1 and 2N. The geometry is illustrated in the inset of
Fig. 2:2p.

The NEMD simulations are implemented in the LAMMPS code [45]. The time
step is 0.2 fs. A reactive empirical bond order (REBO) potential [46| is used for the in-plane
bonding interactions, and the Lennard-Jones (LJ) potential is included for the interlayer van
der Waals (vdW) forces with a well-depth energy of 2.96 meV and an equilibirum distance
of 0.334 nm [47].

There are three steps to the simulation. The relaxation process (step 1) is a con-
stant temperature, 340-ps-long, canonical-ensemble simulation that brings the system tem-
perature up to 300 K as illustrated in Fig. . We include a quantum correction [48] to
the simulation temperature. The temperature of the BLG increases monotonically to 300 K

during the first 150 ps; then the temperature fluctuates around 300 K. At 340 ps, the system
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Figure 2.2: (a) Temperature as a function of simulation time during the relaxation process
and the transition process of the NEMD simulation. The target temperature is T'= 300 K
and 0 = 21.78°. (b) Heat flux in the m-BLG as a function of simulation time during the

non-equilibrium process. Inset: structure geometry showing the hot (red) and cold (blue)
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Figure 2.3: Temperature as a function of NEMD slab number for the left-half of the structure
during the non-equilibrium process, for # = 21.78° m-BLG at 300 K. The thermal conduc-
tivity is extracted from the slope in the linear region. Inset: color plot of temperature

distribution of each atom. Temperatures are given by the color bar at right.

reaches a steady temperature of 300 K which indicates that the system is ready to enter the
transition process (step 2). The transition process is a 60 ps, constant-energy simulation
that ensures that the temperature of the system will maintain an average value of 300 K
under a microcanonical ensemble. After the transition process, the system is ready to enter
the non-equilibrium process for calculation of the thermal conductivity.

A heat flux J is applied by performing twice the kinetic energy exchange every 4
fs between the cold regions at the ends and the hot region in the middle according to the
Miiller-Plathe algorithm [49], as shown in the inset of Fig. . The average temperature
remains at 300 K. Fig. 2:2b shows the total heat flow as a function of simulation time for
the 21.78° m-BLG. The linear dependence of total heat flux indicates that the heat flow is

steady and smooth. The instantaneous J is the slope of the line in Fig. 2:2p.
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Fig. [2.3|shows the temperature distribution and temperature gradient of the 21.78°
m-BLG at 300 K. The inset is the temperature distribution of each atom in the BLG.
The average temperature of the atoms in each NEMD slab is plotted underneath. The
temperature profile shows non-linear regions (the high temperature and low temperature
baths) and linear region. The temperature in the linear region, is centered around 300 K.
The gradient of the linear part gives the temperature gradient AT.

With the values for AT and J, the thermal conductivity & is given by Fourier’s

law,

L™ " 9A AT

(2.2)
The factor of 2 in the denominator appears, because the heat flux is divided into two
directions. The ‘prime’ on k7 indicates that this value is extracted from a finite length
simulation domain. A is the cross-sectional area (width x thickness) of the heat conduction
direction. For bilayer graphene, a thickness of 6.68 A is used for all samples, since the

interlayer distance is insensitive to stacking or misoreintation [50|. Since all the simulations

have the same fixed rate of kinetic energy exchange, J is a constant among all samples.
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Figure 2.4: Thermal conductivity of 21.78° m-BLG, AB, and AA BLG as a function of

width and at T = 300 K.
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To ensure that the width is sufficiently large, the thermal conductivity is calculated
as a function of the width. Fig. shows the width dependence of the thermal conductivity
k7 at T = 300 K for the AA, AB, and 21.78° structures all in the 21.78° geometry with
constant length of 20 nm. The thermal conductivity of all three BLGs is higher at very
small widths. Narrow widths result in reduced phonon-phonon scattering due to the lack
of phonon-phonon combinations that satisfy the energy and momentum conservation rules
for scattering [51]. The thermal conductivity at 7" = 300 K becomes width independent for
widths greater than ~ 60 A, and the converged value is approximately 210 W/m-K for all
three structures. For temperatures above 300 K, increased phonon-phonon scattering reduces
the phonon mean free path [52|, so that the thermal conductivity at higher temperatures is
also converged and independent of the width for widths > 60 A.

For each misorientation angle, 5 different lengths are simulated to obtain length-
dependent values for the thermal conductivity x. These values are subsequently used to
obtain a linear best fit to the inverse-length-dependence expression of the thermal conduc-

tivity [53],
1 1

b
P . (2.3)
In Eq. , b is the size coefficient. When plotted versus 1/L,, the intercept, 1/k, gives
the length-converged thermal conductivity «z, for L, — oo. For all rotation angles including
0°, the width of the structure is ~ 60 A and the length is varied from 200 A to 2710 A. The
largest structures contain approximately 1.5 x 10° atoms.

To analyze the evolution of phonon dispersion and phonon group velocity, we apply

the fluctuation dissipation theory implemented in the Fix-phonon package of the LAMMPS
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Figure 2.5: Lattice thermal conductivity of AB-BLG, 21.78° m-BLG, 32.20° m-BLG and
13.17° m-BLG plotted as a function of the primitive commensurate lattice constants for 5
different temperatures. The corresponding misorientation angles are labelled on the upper

horizontal axis.

code, which has been demonstrated to produce accurate phonon dispersions [54,55]. The
hybrid potential combining both the REBO potential and the LJ potential is used as in the
NEMD simulations. To avoid negative phonon frequencies near I', we use a 25 x 25 x 1
supercell for all of the m-BLG as well as the unrotated AB-BLG. Since the unit cell has at
least 28 atoms, the total number of iterations to enforce the acoustic sum rule is set at 50.
All settings are the same as those used in the NEMD simulations.

As part of the assessment of the hybrid potential, we also calculated the phonon
dispersion of AB-BLG using density functional theory (DFT) and compared the results to
those from the LAMMPS calculations. DFT combined with ShengBTE [56] are also used
to obatin the interatomic force constants (IFCs) of both BLG and m-BLG to determine

phonon lifetimes. Details of the DFT simulations are provided in the Appendix.
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2.3 Results and discussion

Fig. is the central result of this work. It shows the in-plane lattice thermal
conductivity k7 obtained from Eq. as a function of the primitive lattice constant
of the different commensurate rotation angles for 5 different temperatures. For the range
of angles considered, the thermal conductivity monotonically decreases as the size of the
commensurate primitive cell increases. This trend of decreasing thermal conductivity with
increasing commensurate primitive lattice constant is reminiscent of the trend observed in
the interlayer electrical conductance as a function of lattice constant [43,[57H59]. However,
the physics and the functional dependence are different. The physics of the electrons in
m-BLG is determined by the misalignment of the K-points in the two layers. However,
the low-energy phonons reside at I', and the I points of the two layers are always aligned.
What does qualitatively explain the dependence of the lattice thermal conductivity on the
commensurate primitive lattice constant is the reduction of the commensurate BZ and a
consequent increase in Umklapp scattering within the low-energy range contributing to
the thermal transport. This physical mechanism was previously suggested [15], and it is
consistent with the trends resulting from the NEMD simulations.

The relationship between the phonon modes, the BZ, and the thermal conductivity

is given by the Boltzmann transport equation |56|

1 0
= ~a ; a%(%x)vwvx, (2.4)

q,

K

where N is the number of ¢ points in the BZ, € is the volume of the unit cell, f is the
Bose-Einstein distribution function, wy is the phonon frequency of mode A, vy is the phonon

group velocity along a certain direction, and 7, is the phonon lifetime. Fig. shows
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Figure 2.6: (a) Phonon dispersion of AB stacked bilayer graphene. The vertical dashed lines
show the BZ edges of the m-BLGs corresponding to the misorientation angles as labelled.
(b) BZs of AB-BLG, 21.78° m-BLG, 32.20° m-BLG, and 13.17° m-BLG. The high symmetry

lines in the AB-BLG BZ are also shown.

the molecular dynamics (MD) calculated phonon dispersion of AB-BLG within the original
BZ of the 4-atom AB-BLG primitive cell. The dashed vertical lines labelled 13.17°, 32.20°
and 21.76° show the edges of the commensurate BZs of the corresponding m-BLGs. At the
vertical line labeled 32.20° along the I'-M path, the ZA, TA, and LA modes have energies
of 10 meV, 35 meV, and 53 meV, respectively. Thus, the zone-edge energies of the m-BLG
acoustic modes are less than kgT (ZA) or 2kpT (TA, LA), and Umklapp scattering can now
reduce the lifetimes of the low-energy phonons relevant to thermal transport. For reference,
the BZs of AB-BLG, 21.8° m-BLG, 32.20° m-BLG, 13.17° and the high symmetry lines of
the AB-BLG BZ are shown in Fig. [2.6|b).

The other factors that govern the thermal transport are the phonon velocities and

phonon energies. If misorientation reduces the phonon velocities, then this will reduce the
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thermal conductivity. To understand the effect of misorientation on the phonon velocities
and energies, we compare the AB-BLG phonon frequencies and the m-BLG phonon frequen-
cies calculated using the supercell of the m-BLG. By calculating the phonon frequencies of
AB-BLG using the same lattice vectors as those of the m-BLG, we can directly compare
the two phonon dispersions and separate out the effects of zone folding from misorientation.
Fig. [2.7 shows side-by-side comparisons of AB-BLG and m-BLG with misorientation angles
of 21.78°, 32.2°, and 13.17°. For each angle, visual inspection shows no difference between
the phonon dispersions of the AB-BLG and the m-BLG. All of the new energies appearing at
the high symmetry points are the result of zone folding. Furthermore, the slopes of the the
bands, i.e. the phonon group velocities, also appear to be the same. Quantitative values for
the LA and TA phonon velocities at ', numerically calculated from the dispersion curves,
are given in Table The quantitative values are unaffected by misorientation.

Since the phonon velocities and energies are unaffected by misorientation, the only
explanation consistent with the trend of reduced thermal conductivity with increased m-
BLG lattice constant is that it is the result of increased scattering among the low-energy
thermal phonons. To provide further support for this hypothesis, we calculate the phonon
lifetimes for AB-BLG and 21.78° m-BLG and compare them in Fig. The phonon
lifetimes of the LA branches of AB-BLG and m-BLG are similar for low energies below the
energy of the ZO’ mode of ~ 83 cm™!. Above this energy, the lifetimes of the m-BLG LA
mode are less than the lifetimes of the AB-BLG LA mode. In this same energy range, the
lifetimes of the TA and ZA modes of m-BLG are less than those of AB-BLG. The reduced

phonon lifetimes of m-BLG compared to those of AB-BLG provides further support to the
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Figure 2.7: Phonon dispersion of (a) AB-BLG calculated using the 21.78° m-BLG lattice
constants, (b) 21.78° m-BLG, (¢) AB-BLG calculated using the 32.20° m-BLG lattice con-
stants, (d) 32.20° m-BLG, (e) AB-BLG calculated using the 13.17° m-BLG lattice constants,

and (f) 13.17° m-BLG.
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hypothesis of increased Umklapp scattering in m-BLG as the cause of the reduced thermal

conductivity.
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Figure 2.8: Phonon lifetime comparison of AB-BLG and 21.78° m-BLG at 300 K.

Table 2.1: Comparison between AB-BLG, 21.78°, 32.20° and 13.17° m-BLG phonon group

velocity around I' for LA and TA modes.

Misorientation Angle(®) wvpa(km/s) wvra (km/s)

0° AB-BLG 20.0 12.9
21.78° m-BLG 20.0 12.8
21.78° AB-BLG 20.0 12.9
32.20° m-BLG 20.1 12.9
32.20° AB-BLG 20.0 12.9
13.17° m-BLG 20.0 12.8
13.17° AB-BLG 20.0 12.9
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2.4 Conclusion

The dependence of the in-plane BLG lattice thermal conductivity on the interlayer
misorientation angles 13.17°, 21.78° and 32.20° is theoretically investigated using NEMD
simulations for temperatures ranging from 300 K to 700 K. The thermal conductivities
decrease approximately linearly with the increasing lattice constant of the commensurate m-
BLG unit cell. At T'= 300 K, the thermal conductivity decreases by a factor of 2.0 between
AB-BLG and 13.2° m-BLG. For the 3 misorientation angles considered, misorientation does
not affect the phonon velocities or energies, but it does reduce the Brillouin zone size to
the extent that the zone edge acoustic phonon energies are thermally populated at room
temperature and above. This allows Umklapp scattering to reduce the lifetimes of the
phonons contributing to the thermal transport and, consequently, to reduce the thermal
conductivity. DFT calculations do find a reduction of the phonon lifetimes in m-BLG

compared to AB-BLG.

Appendix

This appendix describes the assessment and verification of the potentials and
NEMD method used in the calculations, and it also provides the details of the DFT calcu-
lations. At room temperature (300 K), the value of k, for single layer graphene extracted
from our NEMD simulations is 2116 W/m-K which is within the experimental range of val-
ues [15]. Additionally, our value for k7 of AB-BLG at room temperature extracted from

the NEMD simulations is 1046 W/m-K, which is lower, but still close to the experimental
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Table 2.2: Comparisons of the AB-BLG phonon frequencies at the I', M, and K points,
calculated from MD using the hybrid REBO and LJ potentials, from our DFT calculations,
from prior DFT calculations (in units of cm™!), and from prior experimental measruement

(EXP) “Reference [4], *Reference |5], “Reference [6], “Reference [7].

Method
LO ZO zZO' LA TA ZA LO TO LA TA ZA LO TO

MD 1589 993 83 1140 1007 553 1144 1543 1286 684 427 1286 1494

DFT 1571 869 92 1210 994 530 1211 1356 1325 628 474 1344 1401

DFT® 1560 884 78 1210 997 532 1228 1327 1318 627 473 1360 1396

EXP 1590 861° — 1184¢ —  482°¢ 1184¢ 1313% 12904 630° 465° 1321¢ 13894

results.

A well known artifact of NEMD simulations of the thermal conductivity is that
they are sensitive to the finite size effect |27,/44,60-63]. A length dependent study of NEMD
simulations of SLG required a length of 16 um for the thermal conductivity to reach a
value of 3200 W/mK [62]. This is the longest length simulated and correspondingly highest
value for the thermal conductivity obtained from a NEMD simulation of SLG. A detailed
examination of the finite size effect in both the direct approach (NEMD) and in the Green-
Kubo method is described in Ref. [60]. There, it is shown that extrapolating Eq. to the
1/L, = 0 intercept gives a good comparison between the two methods and the experimental
values for Si. A comprehensive tabulation of values from different studies can be found in

Ref. [64]. The NEMD approach systematically underestimates the thermal conductivity.
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Since, in this work, the simulation domains are similar for all of the misorientation angles,
the systematic underestimation will not affect the trends, which are the focus of the study.
We only ask whether the misorientation increases or decreases the thermal conductivity with
respect to the unrotated structure. For this question, the NEMD simulations are sufficient
to capture the trends, just as they capture the correct temperature trends.

For verification of the potentials, we calculated the known phonon dispersion of
AB-BLG using DFT. The DFT calculations are performed using the generalized gradient
approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) parametrization [65] for the
exchange correlation functional, as implemented in Vienna Ab-initio Simulation Package
(VASP) [66L/67]. Van der Waals corrections are included with the semiempirical DFT-D2
Grimme’s method [68,/69]. The structure is relaxed until the forces were less than 107°
eV/. A plane-wave basis set with kinetic energy cutoff of 500 meV is used to expand the
electronic wave functions and a 16 x 16 x 2 Monkhorst Pack k-point mesh is adopted for
the integration over the first BZ. The optimized lattice parameter of the unit cell is 2.46 A,
which is in good agreement with experiment |70] and theory [4]. The phonon dispersion is
calculated for a 5 x 5 x 1 supercell using Phonopy |71].

Quantitative comparisons of the phonon frequencies of AB-BLG at high symmetry
points calculated from MD, DFT, as well as the prior theoretical |[4] and experimental results
of others |5H7] are shown in Table Since previous theoretical calculations of AB-BLG
are also obtained from DFT, our DFT results match closely with the prior DFT studies [4].
The largest differences between the MD results and the DFT results occur in the high energy

optical modes I'zo and Kpg which are not relevant to this work. The MD acoustic branch
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energies are within 5% of the DFT results at K and within 10% of the DFT results at M.
The phonon lifetimes 7y of AB-BLG and m-BLG are calculated from the scattering
rates as implemented in ShengBTE [56], % = %(Z)\ Topsorsy + %Z)\ Cemission), where the
quantities I'gpsors and Iepmission are the three-phonon scattering rates, obtained by perturba-
tion theory. These phonon scattering rates depend on phonon frequencies, atomic masses,
and IFCs |56]. The second-order and third-order IFCs are calculated using DFT. In the
calculation of the IFCs, we use 5 x5 x 1 and 3 x 3 x 1 supercells for BLG and m-BLG,
respectively. The g-point mesh is set to 40 x 40 x 1 and 15 x 15 x 1 for BLG and m-BLG,
respectively. Interactions up to the fourth nearest neighbours are included for calculating

the anharmonic (third-order) force constants.
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Chapter 3

Elastic Constant Dependent Thermal
Conductivity of Small Angle Bilayer

Graphene

The effect of layer misorientation on the electronic structure and the electrical
conductance of bilayer graphene (BLG) and multi-layer graphene has received much atten-
tion [43,[57,/59,72H77|, and interest was recently renewed by the experimental discovery of
superconductivity at certain low misorientation angles [78,/79] where the electronic bands
become flat at the Fermi level |74}75]. Experimentally, the effect of interlayer rotation on
the phonon spectrum has been probed extensively with Raman spectroscopy [18,2835,,37].
Theoretical research on the phonon properties of twisted bilayer graphene (TBG) finds that
the phonon frequencies, density of phonon modes, phonon velocities, and specific heats of the

low frequency phonon branches vary little with the interlayer rotation angle |1,/17}35,/39,/40].
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Bringing these two different lines of research together, recent theory proposes a phonon
driven mechanism for the superconductivity [80]. The effect of misorientation on the in-
plane thermal conductivity of TBG has received less attention [1,/15,38,81,/82]. The one
experimental study on the in-plane thermal conductivity of TBG carried out opto-thermal
measurements [27] on one TBG sample with a twist angle of ~ 32°, and found that interlayer
misorientation reduced the in-plane thermal conductivity by up to 50% [15].

Standard expressions for the thermal conductivity based on the phonon Boltz-
mann transport equation show that the lattice thermal conductivity depends on the phonon
velocities, frequencies, and lifetimes. Since misorientation has little effect on the phonon
velocities and frequencies, it was proposed that that the zone-folding that occurs in TBG
opens up new channels for phonon scattering that are unavailable in unrotated BLG [15]. As
a consequence, the phonon lifetimes are reduced, which results in a reduction in the thermal
conductivity. A recent theoretical study of the of the lattice thermal conductivity of TBG
with three rotation angles corresponding to the three smallest commensurate unit cells,
21.78°, 32.17°, and 13.17°, found that the thermal conductivity decreased approximately
linearly as the commensurate lattice constant increased [1]. The scaling of the thermal con-
ductivity with the lattice constant rather than the angle was consistent with the hypothesis
that the decreased thermal conductivity in TBG resulted from increased scattering allowed
by the large zone-folding in the reduced Brillouin zones [15].

However, the three angles considered in [1] give only a small picture within the total
range of possible misorientation angles. What happens at smaller misorientation angles of

10° or less is still an open question. It seems reasonable to expect that as the rotation
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angle is reduced towards zero, the thermal conductivity might return to its aligned value in
some smooth manner even though the commensurate lattice constant becomes very large.
If this expectation were true, then there would be a minimum in the thermal conductivity
as a function of the commensurate lattice constant. Such a non-monotonic dependence of
the thermal conductivity on the commensurate lattice constant would suggest that physical
mechanisms other than increased scattering allowed by reduced Brillouin zones play a role in
governing the thermal conductivity. To investigate the mechanisms that govern the thermal
conductivity in TBG, and to provide insight into the physical mechanisms that give rise
to the angle and lattice constant dependence of the thermal transport, we perform large-
scale non-equilibrium molecular dynamics calculations of the thermal conductivity of TBG
for commensurate twist angles down to 1.89°, we calculate the elastic constants and the
phonon spectra for the misoriented structures, and we compare the results to those from

other theoretical and experimental works.

26



Figure 3.1: (a) and (c-n) The primitive cells of AB-BLG and commensurate TBG. For each
primitive cell, the rotation angle is given along the bottom edge, the number of atoms are
shown along the left edge, and the commensurate lattice constant is given along the top edge.
(b) A rectangular unit cell created and then repeated for constructing the long ribbons for

the thermal transport calculations.

3.1 Methods

The approach used to create the commensurate unit cells and to model their ther-
mal conductivities was previously described in detail , and only a brief description of
the most important points is provided here. A total of 13 different commensurate rotation

angles are considered with their commensurate primitive cells shown in Fig. B.I} For each
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structure, the rotation angle, lattice constant, and number of atoms in the commensurate
primitive cell are shown. The sizes of the commensurate primitive cells quickly increase as
the rotation angle decreases, and at the smallest angle of 1.89°, the primitive cell contains
3676 atoms. All of the angles chosen fall along the curve of minimum commensurate prim-
itive cells shown in Fig. 2 of Shallcross et al. [73], except for the one angle of 20.31°. The
primitive commensurate cells for 20.31° and 3.89° have the same primitive commensurate
cell lattice constants, even though their moiré patterns look very different. The misoriented
primitive cells for all of angles that fall along the curve of minimum commensurate primitive
cells appear to smoothly transition from a region of AB stacking to a region of AA stacking.
For the 20.31° structure, there are many such transitions within the primitive cell. This an-
gle is included to test whether the physics governing the thermal conductivity is determined
by the rotation angle or the size of the primitive commensurate cell. If the physics is gov-
erned by the rotation angle, then the thermal conductivities for misorientations of 3.89° and
20.31° should be very different. If the physics is governed by the size of the commensurate
primitive cell, then the thermal conductivities should be the same.

Calculations of the phonon dispersions and thermal conductivities are performed
using molecular dynamics (MD) and non-equilibrium molecular dynamics (NEMD) [49] as
implemented in LAMMPS [45|. Detailed benchmarking of various interatomic potentials
has been reported for graphene [83|, but there are no equivalent benchmarking studies for
bilayer graphene. The common intralayer potentials include Tersoff |84) 85|, Brenner |86,
the reactive empirical bond order potential (REBO) [46,87], and the long-range bond-order

potential for carbon (LCBOP) [88]. All of these potentials belong to empirical bond order
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potentials (EBOPs) [89] and treat electronic binding as effective pairs. For bilayer graphene
and misoriented bilayer graphene, the long range interlayer potential is critical. To model
this, a long range interlayer potential is added to the above intralayer potentials, and it
generally takes the form of a Lennard-Jones (LJ) potential [87]. Most recently a new in-
terlayer potential, dihedral-angle-corrected registry-dependent interlayer potential (DRIP),
was created specifically for misoriented multilayer graphene [90]. Calculations presented
here used REBO for the intralayer potential, which is the most recent extension originating
from the Tersoff potential, with the two types of interlayer potentials, LJ, as implemented
in the adaptive intermolecular REBO (AIREBO) potential, and DRIP. All calculations are
performed with AIREBO, and the main result, the trend in the thermal conductivity, is
verified with REBO-+DRIP.

The thermal conductivity is calculated using non-equilibrium molecular dynamics
(NEMD) implemented in LAMMPS [45], in which a constant small heat flux is applied
across the simulation domain and the gradient of the average temperature directly gives
the thermal conductivity. The average temperature for all calculations is 7" = 300 K. For
calculation of the thermal conductivity using this direct approach, the primitive cells shown
in Fig. [3.I]are expanded into rectangular cells, and the rectangular cells are then repeated in
both length and width to form long ribbons for the simulation domain. Periodic boundary
conditions are used in the width direction so that there are no edges and no edge effects.
When we refer to the “width” of the ribbon, we are referring to the width of the central
ribbon to which we apply periodic boundary conditions.

Finite width and finite length effects are both present, and they are addressed
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using the following approaches. The thermal conductivity of ribbons of increasing width are
simulated until the thermal conductivity (k;) becomes independent of the width. The width
at which this occurs is ~ 70 A as shown in Fig. [3.2)(a). All of the simulated structures have
a width greater than 70 A. The widths slightly vary, since the ribbons must be constructed
from integer multiples of the primitive cells shown in Fig. 3.1

To address the finite length effect, for each angle in Fig. multiple ribbons
are constructed of increasing length L ranging from 20 nm to 12.9 pum. The largest ribbon
contains 8,359,232 atoms. The inverse of the calculated thermal conductivity é for each
length is plotted versus 1/L and fit to the line é = é + £ |53]. As shown in Fig. , the
dependence of é on % is linear. The intercept at + = 0 gives the converged value of k1, as

L — 0.
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Figure 3.2: Lattice thermal conductivity of AB-BLG plotted as a function of (a) width and

(b) inverse length. The length of the ribbon in (a) is 1.06 ym and the width of the ribbon

in (b) is 7.87 nm.

Phonon dispersions are calculated using the Fix-phonon package of the LAMMPS
code [54]. In this approach the dynamical matrix is constructed directly from the time
averaged displacement-displacement correlation function evaluated during the molecular
dynamics simulations. The dynamical matrix constructed in this manner is temperature
dependent, and all simulations are performed at a temperature of T' = 300 K. To avoid
negative phonon frequencies near I', we use 25 x 25 x 1 supercells for all structures. The
resulting supercell sizes range from 17,500 atoms (AB) to 2,229,750 atoms (1.89°). The
total number of iterations to enforce the acoustic sum rule is set at 50. All settings are the

same as those used in the NEMD simulations. Velocities of the three acoustic branches are
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determined by evaluating the derivatives, v = g—‘g

q—>0.

The elastic constants are obtained by introducing small deformations of the crystal
cell around the equilibrium configuration and solving

OF 1 1 65:131 65$]

o=z C 116 d e.,=Z= 3.1
v Q;Id ij,kl€ij€kl,  QlL €ij 2( 81,‘j + O ) ( )

where 4, j, k, [ are deformation directions in three dimensions, Cj; x; is the elastic constant,
Vb is the equilibrium volume of the relaxed structure, and JE is the potential difference
recorded at each timestep. The Voigt form for the elastic constants will be used in the
results and discussion; for example Cyy is the Voigt notation for Co3 23.

The out-of-plane wrinkling intensity is quantified with the unitless metric v =
(na/mx) x 100%, where 14 is the mean wrinkling amplitude and 7 is the mean wrinkling

wavelength [91]. 74 is obtained by the averaging the standard deviation of out-of-plane

coordinates of every atom in each layer, ngy = % 212:1 \/ + Zfi 1(zi1 — )%, where [ denotes
the layer number, IV is the total number of atoms, z;; is the out-of-plane coordinate of atom
1 in layer [, and Zz; is the average out-of-plane coordinate of layer I. The wrinkling wave-
length 7 is determined from the Fourier transform of z; along the heat transfer direction,

% Zj iz — z)e*®it where xj; is the  coordinate of atom j in layer [.

3.2 Results

The calculated room-temperature thermal conductivities for all of the misorienta-
tion angles shown in Fig. [3.I] are plotted versus their commensurate primitive-cell lattice
constants in Fig. [3.3] The corresponding rotation angles are shown next to each data point.

The first 4 points with the smallest lattice constants have a decreasing linear dependence on
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the commensurate lattice constant, as previously reported [1]. However, this trend abruptly
ends at a commensurate lattice constant of 1.1 nm (13.17°), where the thermal conductiv-
ity reaches a minimum value. For commensurate lattice constants larger than 1.1 nm, the
thermal conductivity monotonically increases with increasing lattice constant and returns
towards the value of the unrotated AB-BLG.

For the chosen angles below 13°, the commensurate lattice constants monotonically
increase as the angles decrease. However, two very different angles, 3.89° and 20.31° have
identical commensurate lattice constants, and their thermal conductivities are also identical.
This result provides strong evidence that the thermal conductivity of TBG is a function of
the commensurate lattice constant rather than the twist angle. To further support that
contention, we show the thermal conductivities plotted versus rotation angle in the inset of
Fig. [3.3

The calculations in Fig. |3.3| were performed with the AIREBO (REBO+LJ) po-
tential. To verify that the above trend is not an artifact of the interlayer LJ potential,
we performed a subset of the above calculations using REBO with the interlayer poten-
tial recently developed specifically for twisted multilayer graphene, DRIP. The results are
shown in Fig. 3.7 in the The trends remain the same, with a minimum thermal

conductivity occurring at the commensurate lattice constant of 1.1 nm.
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Figure 3.3: Lattice thermal conductivity of AB-BLG and TBG plotted as a function of
the primitive commensurate lattice constant. The corresponding misorientation angles are

shown for each data point. The inset shows the same data plotted versus twist angle.

From the phonon Boltzmann transport equation [56], x; = g PP %(hw)\)l/)\l/)\ﬂ\,
two other factors that affect the thermal conductivity are the low-energy phonon frequencies
and velocities. There are 6 low energy phonon branches that originate from the 3 original
acoustic branches, longitudinal (LA), transverse (TA), and out-of-plane (ZA), of each indi-
vidual graphene layer. We will refer to the 3 acoustic branches that go to zero frequency
in the BLG and TBG structures as the LA, TA, and ZA modes and the three that have
finite frequency at I' as the LAy, TAs and ZAs modes. We use notation consistent with

Refs. [64,92], but we note that the ZAs mode is often referred to as the ZO’ mode in the
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literature describing Raman spectroscopy measurements [31,93]. The phonon velocities for
the LA and TA phonon branches were previously calculated for angles down to 7.34° |17].
We now calculate their velocities for angles down to 1.89°, and we find that over the entire
range of angles, the velocities only vary in the fourth significant digit. The velocities of
the LA modes lie in the range of 20.03-20.09 km/s, and the velocities of the TA modes lie
in the range of 12.83-12.86 km/s. Thus, the velocities of these two modes play no role in
explaining the changes in the thermal conductivity with misorientation.

The out-of-plane ZA modes in the individual graphene layers strongly couple and
split in frequency when the two layers are brought together to form BLG or TBG. The I point
frequency of the ZAy mode with AB stacking calculated from LAMMPS is 82.5 cm™!. Fig.
shows the I' point frequency of the ZAs mode, wza,, plotted versus the commensurate
lattice constant. The dependence of the frequency on the commensurate lattice constant
follows the same trend as that of the thermal conductivity. The mode initially softens, it
reaches a minimum frequency at the commensurate lattice constant of 1.1 nm, and then
it begins to harden as the commensurate lattice constant increases. The ZAs frequencies
for 3.89° and 20.31° are identical indicating a dependence on the commensurate lattice
constant rather than on the angle. While the consistency of this trend is interesting, it
cannot explain the trends in the thermal conductivity, since the ZAs mode is not expected

to play a significant role in thermal transport.
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Figure 3.4: Commensurate lattice constant dependence of the I' point frequency of the ZAg

mode.

Since the presence of wrinkles can reduce the thermal conductivity by up to
80% [91,]94], and, furthermore, wrinkling will always be present |95]|, we investigate the
wrinkling of the TBG structures. Fig. [3.5(a) shows a snapshot of the 13.17° structure dur-
ing the heat transfer calculation. Out-of-plane fluctuations or wrinkling are apparent in the
cross-sectional view. To quantify the intensity of the wrinkling, we plot the unitless metric
7 (described in Methods) as a function of the commensurate lattice constant in Fig. [3.5(b).
The wrinkling intensity peaks at the commensurate lattice constant of 1.1 nm correspond-
ing to the minimum in the thermal conductivity. The qualitative trends in the wrinkling
intensity track those of the thermal conductivity. The thermal conductivity is lowest when

the wrinkling intensity is highest.
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Figure 3.6: Elastic constant Cy4 plotted versus the commensurate lattice constant.

The ease with which BLG can bend or wrinkle depends on the shear elastic constant
Cyq [96]. Therefore, we calculate Cyy for the structures shown in Fig. and plot the values
versus commensurate lattice constant in Fig. [3.6] The trend in C44 matches the trends in
the thermal conductivity and the wrinkling intensity. For AB-BLG, Cy4 = 4.8 GPa, and this
agrees with other experimental and theoretical values as shown in Table [3.I] Cy4 reaches
a minimum value of 0.293 GPa at the misorientation angle of 13.17° with a commensurate
lattice constant of 1.1 nm, and then it returns to 2.9 GPa at the smallest angle of 1.89° with
a commensurate lattice constant of 7.5 nm. Cy4 decreases by a factor of 16 between the
maximum and minimum value. At the smallest rotation angle, it is below the AB aligned
value by a factor of 1.6. The calculated numerical values for all angles are given in Table
Table [3.1] also includes calculated values for Cq1, Ci2, and Cag, along with experimental
and theoretical values from other works. As shown in Table only Cyy is affected by

interlayer misorientation.
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3.3 Discussion

The picture that emerges from the above results is that the interlayer misorienta-
tion reduces the shear elastic constant Cy44 which increases the wrinkling of the TBG. The
increased out-of-plane wrinkling then reduces the thermal conductivity. The three parts
of this mechanism, reduced Cy4, increased wrinkling, and reduced thermal conductivity,
are consistent with prior results in the literature. The reduction in C44 with misorienta-
tion is consistent with previous experimental studies on Kish graphite [97] and pyrolitic
graphite |98] and a theoretical study of turbostratic graphite [96]. The theoretical study
provides a clear description of how a reduction in Cy4 reduces the energy for out-of-plane
wrinkling [96]. Experimental measurements found that the average thermal conductivity
of graphene with wrinkles is 27% lower than that of wrinkle-free graphene [94]. NEMD-
AIREBO simulations found that a 10% wrinkling intensity in single layer graphene resulted
in a 20% decrease in the thermal conductivity and a 20% intensity led to an 80% decrease |91].
Therefore, all of the required mechanisms that drive this process are well-established and
validated in the literature.

There have been two previous calculations of the thermal conductivity of TBG
[38,82]. Both studies used LAMMPS with an optimized Tersoff-LJ potential, small structure
sizes (b nm x 13 nm) [38] (10 nm X 22 nm) [82|, incommensurate rotation angles, and open
boundaries in the width direction. The last two items make comparisons with our results
problematic. Because of the open boundaries, the transport was dominated by the edges of
the nanoribbons [38|/82], which, because of the incommensurate angles, change as a function

of the rotation angle. In [38], the thermal conductivity decreased as the rotation angle
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increased from 0° (AB) to 15°. Then, the thermal conductivities of 22.5° and 30° were
larger than that of 0° with the maximum occurring at 30°. In |82], the thermal conductivity
monotonically decreased as the rotation angle increased from 0° (AA) to 20°, and then a
local maximum occurred at 30°. The pattern was mirror symmetric as the angle decreased
from 60° (AB). The maximum values occurred for AA and AB stacking, and they were
equal. In both studies, a 30° rotation caused one layer to have a zigzag edge and the other
layer to have an armchair edge. The relatively smooth edges gave rise to the maximum
(or local maximum) values of the thermal conductivities [38,82]. However, the presence of
angle dependent edge effects prevents meaningful comparisons with our results, since it is
not clear how much of the thermal conductivity reduction was due to edge effects and how
much was due to other processes.

Previous calculations of Cy4 found a one-order-of-magnitude drop from 4.8 GPa
to 0.274 GPa as the commensurate lattice constant increased from 2.46 A (AB) to 6.51 A
(21.78°) [96]. As the lattice constant increased further, C44 gradually declined to a minimum
average value of 0.2 GPa at a commensurate lattice constant of 2.56 nm corresponding to

a rotation angle of 11.0°. The calculations were performed using density functional theory

(DFT).

Prior calculations of the ZAy frequency found a drop from 95 ecm™" to 89.5 cm ™ as
the commensurate lattice constant increased from 2.46 A (AB) to 6.51 A (21.78°) [17]. After
the initial decrease, there was a slight monotonic decline to 89.1 cm™"! as the commensurate

lattice constant was increased to 1.9 nm corresponding to a misorientation angle of 7.34°.

These calculations used the Born-von Karman (BvK) model for the intralayer forces and
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the LJ potential for interlayer forces.

One significant difference between our NEMD and MD simulations and the BvK
model or DFT calculations is that our simulations explicitly take into account finite temper-
ature effects and time-dependent thermal fluctuations. DFT is a zero-temperature theory.
In the BvK approach, there is no relaxation of the structure so that the geometry of the
layers remains ideally flat. In our NEMD and MD calculations, the effects of finite temper-
ature and out-of-plane wrinkling are included both in the thermal conductivity calculations
and in the construction of the dynamical matrix for the calculations of the phonon spectra.

What is unique to our results is the prediction of non-monotonic behavior of the
thermal conductivity with respect to the commensurate lattice constant. For the small angle
rotations, the commensurate lattice constants become extremely large. Our calculations of
the thermal conductivity, Cy4, and wza, all show a return to a value similar to, but less than
the value of the aligned AB structure as the twist angle is reduced to 1.89°. If we extrapolate
the trends in Cy4, and wza, observed previously [17,/96], the values would continuously
decline as the twist angle approached 0°, followed by a sudden large discontinuity as the
angle became exactly 0°. At small twist angles 6 < 1°, there are large regions that are close
to AA stacking, large regions that are close to AB stacking, and connecting regions that are
misaligned. Whether it is appropriate to view the thermal conductivity of such structures as
an average of different macroscopic regions of aligned structures and misaligned structures
is unclear, but such a view would be consistent with the small-angle trend that we observe.
If such a perspective is correct, it raises the question of what length scale determines when

such a view is permissible or not.
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3.4 Summary, Conclusions, and Open Questions

Large scale room temperature NEMD calculations of the thermal conductivity of
twisted bilayer graphene find a non-monotonic dependence of the thermal conductivity on the
commensurate lattice constant. At a commensurate lattice constant of 1.1 nm corresponding
to an angle of 13.2°, the thermal conductivity falls to 50% of the value of the aligned AB
structure. As the commensurate lattice constant increases, the thermal conductivity also
increases and reaches 91% of the AB value at a commensurate lattice constant of 7.5 nm
corresponding to an angle of 1.89°. The commensurate-lattice-constant-dependent trends in
the thermal conductivity are also followed by the trends in the shear elastic constant Cyq,
the wrinkling intensity, and the frequency of the out-of-plane ZAs mode. The picture that
emerges from these results is that the interlayer misorientation reduces the shear elastic
constant Cyyq, the reduced shear elastic constant allows increased wrinkling of the TBG, and
the increased wrinkling reduces the thermal conductivity. The small-angle approach of the
thermal conductivity towards its value in the aligned structure raises the question of how
response functions approach their aligned values as the twist angle approaches 0°. Is the

approach gradual, discontinuous, or a combination of the two?

Acknowledgments

This work was supported in part by the National Science Foundation under awards
1307671 and 1433395. Numerical simulations were supported in part by the Spins and Heat
in Nanoscale Electronic Systems (SHINES) an Energy Frontier Research Center funded by

the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #DE-

42



SC0012670. This work used the Extreme Science and Engineering Discovery Environment
(XSEDE) |[3] which is supported by National Science Foundation Grant No. ACI-1548562

and allocation ID TG-DMR130081. Used resources include Stampede and Comet.

Appendix

Table. shows the calculated elastic constants for each rotation angle along with

experimental values and values calculated from DFT. Only Cy4 is affected by misorientation.
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Table 3.1: Calculated elastic constants of AB-BLG and TBG. from prior DFT calculation

and from our MD calculation using the hybrid REBO and LJ potentials

Rotation angle (° ) Ci1 (GPa) Ciz2 (GPa) Css (GPa) Cuas (GPa)

0(EXP) [07] 1109416 139+36 38.747 543
0(DFT) [96] 1109 175 42 4.8

0 1023.6 227.1 42.3 4.79
21.78 1023.6 227.2 42.6 1.65
27.83 1023.8 227.3 42.7 0.411
13.17 1023.3 227.8 42.7 0.293
9.43 1023.7 227.4 42.7 0.503
7.34 1023.7 227.4 42.6 0.618
6.00 1023.6 227.5 42.7 1.485
5.08 1023.8 227.6 42.6 2.47
4.40 1023.5 227.6 42.6 2.53
3.89 1023.2 227.9 42.6 2.57
2.87 1023.5 227.9 42.6 2.89
1.89 1023.4 227.9 42.6 2.90

To verify that the trends shown in Fig. [3:3]are not an artifact of the AIREBO imple-
mentation of the LJ potential, we performed a subset of the calculations using REBO+DRIP.
Five commensurate angles are selected: 0° (AB), 21.78°, 13.17°, 9.43° and 1.89°. Instead of
running multiple simulations of different lengths for each angle and extracting the L = oo
value of the thermal conductivity, we choose one length of ~ 130 nm for each angle and

a width of ~ 15 nm. Since the structures are composed of integer numbers of primitive
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cells that have different sizes, the actual widths lie between 149.12 A to 150.09 A, and
the lengths range from 1284.88 A to 1304.14 A. Due to the finite lengths, the quantitative
values will be lower, than those in Fig. however, here, we only wish to confirm the
non-monotonic trend of the thermal conductivity with the commensurate lattice constant.
All other settings related to the NEMD simulations, periodic boundary conditions in the
width direction, and temperature (300 K) are as described in the section. It is
clear from the results shown in Fig. [3.7] that the trends in the thermal conductivity with
respect to the commensurate lattice constant are unaffected by the choice of the interlayer

potential.
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value) for two different interlayer potentials as shown in the legend. The inset shows the
absolute values. The REBO+LJ values are the extracted L = oo values from Fig. The
REBO-+DRIP values are from the finite length 130 nm structures. Thus, these values are

expected to be quantitatively lower.
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Chapter 4

Comparative analysis of interatomic

potentials for graphene systems

4.1 Introduction

The key to perform an accurate MD simulation is choosing a proper potential for
the target system. And unlike SLG, this potential should be suitable for both intralayer and
interlayer interactions.

To accurately describe intralayer interactions, a comparison has to be made be-
tween the three most widely used potentials of graphene system: Tersoff [84,[85], reactive
empirical bond order potential (REBO) [46/87] and intrinsic long-range bond-order poten-
tial for carbon (LCBOP) [88]. Besides LCBOP, other potentials belong to empirical bond
order potentials (EBOPs). They are based on the chemical pseudopotential theory created

by Abell [89] and treat electronic binding as effective pairs. The influence of local environ-
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ment around every atom was described by a many-body function and they only consider
the interactions between nearest-neighbours. [99] So all EBOPs only have short-range co-
valent part, which means they need interlayer potentials to describe the long-range Van
der Waals (VDW) part, which will be discussed later. Despite the similarities; REBO and
Tersoff still have lots of differences. REBO was initially developed as an improved version
of Tersoff model. [46] It has different expressions for bond-order, improved angular function
at small angles and an extra four-body torsional term. [46}87] According to the recent semi-
empirical potential benchmarks [83,/100] for SLG, REBO beats both Tersoff-1989 [84] and
Tersoff-2010 [85] in replicating the lattice constant and phonon dispersion. They evaluate
the accuracy by comparing the results with the data collected from density functional theory
(DFT) and experiments. The phonon properties of graphene are very sensitive to the struc-
tural properties especially the lattice constant, and the thermal conductivity is a function of
the acoustic velocity which is directly related to the phonon dispersion. The LCBOP model
belongs to the long-range corrected bond-order potential, which by itself has the capability
to properly describe the VDW force. 88| It claims that it can better reproduce structural,
energetic and elastic properties of single and multilayer graphene compared to EBOPs. [100]
According to the benchmarking results, LCBOP does have an overall better performance
in phonon dispersion calculations and similar accuracy in structural properties. [83,/100]
However, such ascendancy does not guarantee the best performance in thermal conductivity
calculation, because the overall better performance of the LCBOP model is due to their high
accuracy in reproducing the optical mode. [83] For acoustic modes, on average LCBOP has

relatively worse performance than REBO, and its ZA branch has the least accuracy among
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all of the potentials considered in the benchmark. [83] Another shortcoming of LCBOP is
that the dispersion interaction resulting in the VDW force is not considered, even though
it is known to be important. This is the primary force governing the ZA mode, so it is not
surprising that the ZA mode has the least accuracy with LCBOP.

To accurately describe the interlayer interaction, a comparison between the existing
potentials with long rang interactions is necessary. Due to the most widely usage, LJ and
LCBOP are considered. Recently, a new type of potential named dihedral-angle-corrected
registry-dependent interlayer potential (DRIP) was created to better describe the interlayer
VDW forces of multilayer graphene. [90] DRIP is constructed by two parts: one for rep-
resenting the attractive interaction due to dispersion and another for repulsive interaction
due to the anisotropic overlap of electronic orbitals. They claimed that using this potential
combined with REBO or Tersoff can reproduce the different stacking energies of multilayer
graphene more accurately by the improved repulsive interaction term. [90]

In rest of this section, we will perform potential benchmarking with non-equilibrium
molecular dynamics (NEMD) simulations. Both thermal conductivity results and system

stability will be considered as the criteria.

4.2 Method

The commensurate angles considered in the benchmarks are 0° (AB-stacking) and
21.78°. The details about how to construct TBG are introduced in the Method section of
chapter 3. The NEMD simulations are implemented in the LAMMPS code [45]. The time

step is 0.2 fs. There are three steps to the simulation. The relaxation process (step 1) is
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a constant temperature, 340-ps-long, canonical-ensemble simulation that brings the system
temperature up to 300 K as illustrated in Fig. . We include a quantum correction [48|
to the simulation temperature. The temperature of the BLG increases monotonically to
300 K during the first 150 ps; then the temperature fluctuates around 300 K. At 340 ps,
the system reaches a steady temperature of 300 K which indicates that the system is ready
to enter the transition process (step 2). The transition process is a 60 ps, constant-energy
simulation that ensures that the temperature of the system will maintain an average value
of 300 K under a microcanonical ensemble. After the transition process, the system is ready
to enter the non-equilibrium process for calculation of the thermal conductivity.

The following interlayer potentials are considered for comparison: LJ, LCBOP. All
of them will be combined with intralayer potentials including: Tersoff, REBO and LCBOP.
Since LCBOP contains both interlayer and intralayer part, we will not consider the combi-

nation of LCBOP with other potentials.

4.3 Results and Discussion

As shown in Table. to maintain a stable structure of TBG the choice of in-
tralayer potentials is critical. Although Tersoff has proven to be very successful in predicting
phonon properties in SLG, it is not as good as REBO and LCBOP in TBG system due to
the layer separation or losing atoms. As the most recent extension originating from the
Tersoff potential, REBO maintains a stable TBG structure at room temperature according
to the benchmark results. Due to the structural issue, Tersoff will not be considered in our

research. Since both LCBOP and REBO-+LJ can maintain a stable structure, the thermal
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conductivity of TBG is calculated using both of them for the final round of comparison.
As shown in Table using the LCBOP potential, the thermal conductivity difference
between AB-BLG and 21.78° TBG is less than 0.5%. While REBO can detect the thermal
conductivity reduction (~ 25%) due to the commensurate rotation, which is consistent with
the recent experimental study on the thermal conductivity of TBG by Balandin’s group [15].

Due to the best benchmark performance, all calculations will be performed with REBO+LJ.

Table 4.1: Potential benchmark results for TBG by runing NEMD simulations. Unit:

W/mK

Interlayer
LJ DRIP LCBOP
Intralayer
Tersoff-1989 Layer separation in TBG n/a
Tersoff-1990 Layer separation in TBG n/a
Tersoff-1994 Lost atoms Layer separation in TBG n/a
Tersoff-2005 Layer separation in TBG n/a
Tersoff-2010 Layer separation in TBG n/a
864.13 (AB)
LCBOP n/a
861.22 (21.78°)
1045.81 (AB) 502.78 (AB)
REBO n/a
791.85 (21.78°) 367.06 (21.78°)
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Chapter 5

Low dimensional material data

sclence

There is much current attention on the opportunities afforded by this new field in
accelerating materials development and deployment efforts. A particular emphasis is placed
on materials exhibiting novel electrical and thermal properties spanning multiple length-
/structure scales and the impediments involved in establishing invertible process-structure-
property (PSP) linkages for these materials. More specifically, it is argued that modern data
sciences (including advanced statistics, dimensionality reduction, and formulation of meta-
models) and innovative cyberinfrastructure tools (including integration platforms, databases,
and customized tools for enhancement of collaborations among cross-disciplinary team mem-
bers) are likely to play a critical and pivotal role in addressing the above challenges.

In this chapter, we will describe how to identify the quasi-1D materials from the

Material Project Database (MPDB). The structural data from MPDB will be used to predict
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band gap and identify magnetic materials using machine learning model.

5.1 Dimension classifier

To identify all the quasi-1D materials from MPDB, we created a dimension classifier
based on Evan Reed’s "find dimension" package [101] implemented in pymatgen module.
The fundamental algorithm is shown in Fig. The part inside the dashed red box is
the adding method to identify quasi-1D materials from 2D materials. The default criteria
for the "find cluster" method is 0.5 A, while the reduced criteria is 0.2 A. The dimension

classifier code along with the manual is attached Appendix A.2.
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Figure 5.1: Algorithm to classify the dimension of given material. Input: material unitcell
with .cif format. Output: dimensions (0D, 1D, quasi-1D, 2D, 3D, intercalated ion and

intercalated molecule).

Using this code, the identified quasi-1D materials sorted by the band gap and total
magnetization are shown in Table [5.I]and Table [5.2] respectively. And we also attached the
identified 1D materials sorted by the total magnetization in Table 53] The data will be

useful for the theoretical and experimental study.
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Table 5.1: quasi-1D materials identified from MPDB sorted by the band gap.

MPID Material Formula | Band Gap (eV)
mp-558387 | TeOF2 4.189
mp-753858 | TiOF2 3.8984
mp-28448 | DyCI3 3.8951
mp-23293 | ThCI3 3.798
mp-753800 | NbOF3 3.6661
mp-31320 | Nd(C2N3)3 3.5983
mp-567763 | Pr(C2N3)3 3.5811
mp-31321 | La(C2N3)3 3.5567
mp-29185 | Te203F2 3.3405
mp-561533 | SbOF 3.3231
mp-27976 | SmBr3 2.9285
mp-27975 | NdBr3 2.9222
mp-28580 | Y2NCI3 2.1398
mp-28299 | USe207 2.1387
mp-680334 | LaSb(SBr)2 2.0983
mp-27725 | Aul 2.0853
mp-27979 | Lal3 2.0652
Continued on next page
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Table 5.1 — continued from previous page

MPID Material Formula | Band Gap (eV)
mp-27697 | Thl4 1.8297
mp-9481 TeS2 1.1449
mp-9922 HfS3 1.1188
mp-9921 ZrS3 1.0991
mp-705486 | U3Cu2H10(CO10)2 | 0.7648
mp-28375 | Ta2AgF12 0.7135
mp-638749 | Te3(PdBr)4 0.6621
mp-567478 | MnSbhSe2Br 0.6263
mp-14653 | AgSb2F12 0.5352
mp-570268 | MnSbSe2l 0.5335
mp-573321 | TePdI2 0.5268
mp-556582 | Cu(103)2 0.4893
mp-1683 ZrSe3 0.4382
mp-13542 | ZrGeTed 0.4017
mp-28965 | AgBi2F12 0.3605
mp-562100 | NbS3 0.3568
mp-567817 | HfGeTe4 0.3467

Continued on next page
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Table 5.1 — continued from previous page

MPID Material Formula | Band Gap (eV)
mp-15622 | HfSe3 0.308
mp-649601 | RuXeF11 0.3055
mp-28571 | La2Br5 0.2976
mp-570506 | Zrl2 0.2939
mp-23169 | Pr2Br5 0.2826
mp-9920 TiS3 0.2318
mp-30282 La2I5 0.1781
mp-22854 | Pr2I5 0.1295
mp-684706 | LaO3 0.0223
mp-17588 | AgRuF7 0
mp-581990 | Bi3Rh 0
mp-567687 | CrI2 0
mp-753975 | Dy2(Bi02)7 0
mp-680500 | PtXeF11 0
mp-28308 | Ta2NiSh 0
mp-541183 | Ta2NiSe7 0
mp-8435 Ta2PdS6 0

Continued on next page
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Table 5.1 — continued from previous page

MPID Material Formula | Band Gap (eV)
mp-8436 Ta2PdSe6 0
mp-14474 | Ta2PtSe7 0
mp-30527 | TaS3 0
mp-29652 | TaSe3 0
mp-8357 UTe3 0
mp-2089 Z1r'Te3 0

Table 5.2: quasi-1D materials identified from MPDB sorted by the total magnetization.

MPID Material Formula | Total Magnetization (A /m)
mp-567478 | MnSbSe2Br 5.000002725
mp-570268 | MnSbSe2l 5.00000005
mp-567687 | CrI2 4.000114
mp-17588 | AgRuF7 2.999999875
mp-649601 | RuXeF11 2.95321195
mp-8357 UTe3 2
mp-705486 | U3Cu2H10(CO10)2 | 1.9999071
mp-22854 | Pr2I5 1.0006243
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MPID Material Formula | Total Magnetization (A /m)
mp-23169 | Pr2Brb 1.00037625
mp-28571 | La2Br5 1.0002548
mp-28965 | AgBi2F12 1.0000001
mp-14653 | AgSb2F12 1
mp-30282 | La2l5 1
mp-28375 | Ta2AgF12 0.9999999
mp-556582 | Cu(103)2 0.9999998
mp-684706 | LaO3 0.99579195
mp-680500 | PtXeF11 0.9278836
mp-14474 | Ta2PtSe7 0.02779195
mp-638749 | Te3(PdBr)4 0.00010445
mp-581990 | Bi3Rh 0.0000144
mp-753975 | Dy2(Bi02)7 0.0000111
mp-570506 | Zrl2 0.000007375
mp-28448 | DyCl3 0.00000575
mp-8435 Ta2PdS6 0.0000022
mp-541183 | Ta2NiSe7 0.0000018
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MPID Material Formula | Total Magnetization (A /m)
mp-680334 | LaSb(SBr)2 0.000001525
mp-8436 Ta2PdSe6 0.0000004
mp-23293 | ThCl3 0.00000035
mp-13542 | ZrGeTed 0.00000015
mp-15622 | HfSe3 0.00000005
mp-558387 | TeOF2 0
mp-753858 | TiOF2 0
mp-753800 | NbOF3 0
mp-31320 | Nd(C2N3)3 0
mp-567763 | Pr(C2N3)3 0
mp-31321 | La(C2N3)3 0
mp-29185 | Te203F2 0
mp-561533 | SbOF 0
mp-27976 | SmBr3 0
mp-27975 | NdBr3 0
mp-28580 | Y2NCI3 0
mp-28299 | USe207 0
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MPID Material Formula | Total Magnetization (A /m)
mp-27725 | Aul 0
mp-27979 | Lal3 0
mp-27697 | Thl4 0
mp-9481 TcS2 0
mp-9922 HfS3 0
mp-9921 ZrS3 0
mp-573321 | TePdI2 0
mp-1683 ZrSe3 0
mp-562100 | NbS3 0
mp-567817 | HfGeTe4 0
mp-9920 TiS3 0
mp-28308 | Ta2NiSh 0
mp-30527 | TaS3 0
mp-29652 | TaSe3 0
mp-2089 Zr'Te3 0
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Table 5.3: 1D materials identified from MPDB sorted by the total magnetization.

MPID Material Formula | Band Gap (eV) | Total Magnetization (A /m)
mp-735662 | Fe4dAs10PbO22 1.7469 19.99812645
mp-541385 | Cs6Fe205 1.5098 7.996752
mp-765941 | Mn2F7 1.8053 7.00110275
mp-867369 | TckF3 0.1714 6.0281908
mp-676241 | FeCl3 0.8119 5.00768555
mp-25540 | MnH4(CO3)2 2.3683 5.0017518
mp-566645 | MnH6SO6 4.4475 5.00110965
mp-28912 | MnInBr3 1.6239 5.0007345
mp-683891 | MnSb6(Pb2S7)2 0.447 5.00065735
mp-771047 | Mn(103)2 2.5127 5.0004147
mp-25770 | MnH6(SO4)4 5.0995 5.00031185
mp-540676 | MnH4(ClO)2 4.3746 4.9999998
mp-10412 | Mn(SbS2)2 0 4.99984055
mp-638590 | MnT12GeTed 0.1865 4.9997786
mp-566172 | MnH10S2(NO2)4 4.3533 4.9992838
mp-553927 | Pu(I03)4 0.091 4.03017185
mp-504883 | FeH4(ClO)2 4.1399 4.0080385
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-772432 | FeH4(S05)2 0.0724 4.0007409
mp-22369 | FeSb6(Ph2S7)2 0 4.0000343
mp-743926 | FeH4(CO3)2 2.5092 4.0000203
mp-22857 | CrCl2 0.7019 4.000005
mp-27215 | Crl2 0.0153 3.9999999
mp-763306 | CrH10S2(NO2)4 2.9651 3.9999995
mp-744256 | MnH5SO7 0.6941 3.999406775
mp-540759 | Al2CoCI8 0.3251 3.00077565
mp-772662 | MnH4(SO5)2 0.6868 3.0004849
mp-629319 | CoSb2S2(0OF3)4 2.9027 3.0004673
mp-765253 | MnF4 0.7666 3.00028125
mp-15236 | CrSbSe3 0.4753 3.00019625
mp-9130 CrSbS3 0.5818 3.000113375
mp-774233 | Co(103)2 2.3533 3.000053825
mp-743783 | CoP4(H508)2 3.2039 2.9999996
mp-23244 | UI3 0.0954 2.9999898
mp-25492 | CoH4(CO3)2 2.4737 2.9998627
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-568443 | AI2VCI8 1.6263 2.99964085
mp-570480 | TcBr4 0.6025 2.998397363
mp-27780 | TeCl4 0.7829 2.994713325
mp-555999 | Np(103)4 0.2239 2.99109995
mp-778446 | Cr2(PS4)3 0 2.926512225
mp-864733 | Mol3 0 2.65673565
mp-28301 | OsBr4 0 2.0203318
mp-542131 | UTe4Brd 0.0029 2.0033179
mp-605912 | AI2NiCI8 1.1343 2.00150305
mp-684560 | MoCl4 0 2.00137
mp-558794 | Cu2BH506 0.0409 2.001127275
mp-695793 | ZnAs4(HO2)8 0.1253 2.0005229
mp-765097 | W20F8 2.5313 2.00042885
mp-653062 | Mo2CI8O 0.9227 2.000096275
mp-558341 | CrXeF6 1.7998 2.000000025
mp-23312 | MoBr3 0.6926 1.999946325
mp-704123 | CrF4 1.5634 1.99989625
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-571035 | OsCl4 0.5105 1.9998556
mp-865473 | VBr3 0 1.99977245
mp-566902 | Te3W2Se4(Cl40)2 1.0027 1.9996633
mp-772376 | Ni(I103)2 2.8257 1.99959755
mp-655360 | Ul4 0.2676 1.9992569
mp-865493 | VI3 0 1.9992233
mp-866812 | UTa256C160 0.183 1.99070055
mp-862851 | Pal3 0 1.98446405
mp-570722 | NbI3 0 1.3745771
mp-28321 | Sc7CI12 0 1.1592062
mp-542135 | Mo2NC17 0.0046 1.07044505
mp-541102 | Sc6C2I11 0.0154 1.0380839
mp-680309 | Mo2NCIS8 0 1.00786695
mp-504921 | Sc7CBr12 0.1005 1.006156
mp-606617 | CuSb2(XeF8)2 0.0694 1.0057132
mp-774723 | CuH12C3SN60O7 0.5787 1.0028137
mp-703531 | CuSiH8(O2F3)2 0.9868 1.00124025
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-622116 | ReOF4 0.9318 1.001086713
mp-720299 | ZrCuH8(O2F3)2 0.8695 1.0010209
mp-764115 | V307 1.1608 1.000820067
mp-639662 | CrF5 1.3584 1.000487225
mp-24362 | CuH6CN203 0.5795 1.000117025
mp-707170 | CuH6SO7 0.7765 1.00010565
mp-566402 | CrSbF10 1.31 1.000083175
mp-25062 | MoCl30 2.4587 1.00008085
mp-765216 | VF4 1.5907 1.000067738
mp-632759 | CuH4(OF)2 0.2541 1.0000034
mp-19243 | VSb205 2.5772 1.00000055
mp-765500 | V20F7 2.4201 1.0000001
mp-565978 | WCI30 1.719 1.000000025
mp-1852 UF5 0.7489 0.9999999
mp-643913 | CoH6(NCI1)2 0.2352 0.9999953
mp-30999 | CuCl2 0.0333 0.9998947
mp-570568 | W2NCIS8 0.1574 0.9998106
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-696152 | CuSnH12(NO3)2 0.8126 0.9992447
mp-680300 | Mo3N2Cl111 0.1598 0.986204
mp-567624 | CrBr2 0 0.5777743
mp-27340 | ReCl4 0 0.483597975
mp-556538 | Na8(Cu02)5 0 0.4526595
mp-16977 | Ti(MnP6)2 0.0012 0.4512632
mp-571143 | TiCl3 0 0.25085525
mp-27978 | Pul3 0 0.2131271
mp-504781 | Npl3 0.0004 0.09440445
mp-541826 | Ti(AlBr4)2 0 0.09194745
mp-685385 | T12In3Seb 0.6106 0.0594165
mp-23294 | RuBr3 0 0.02999935
mp-864915 | HfBr3 0 0.0260708
mp-675519 | T13In7Sel0 0.5683 0.02089365
mp-541175 | Sc7Col12 0.2411 0.0176131
mp-862773 | Tel2 0.7144 0.01691595
mp-23219 | CuBr2 0 0.0108531
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-29279 | CuCIF10 0.0247 0.01069785
mp-683982 | RuOF4 0.298 0.007980838
mp-559817 | Na3(Cu02)2 0 0.006828375
mp-674324 | Sn7(SBr5)2 2.014 0.0059585
mp-556436 | Sb2BrF15 2.8579 0.00528455
mp-541032 | TeTAs51 0.3024 0.0047946
mp-621960 | Sb4Pb4S11 0 0.00393345
mp-29178 | TePbF6 4.6008 0.003859625
mp-654051 | Nb6SI9 0 0.0032187
mp-865005 | DyI3 2.1725 0.00321095
mp-655489 | Pb4SeBr6 1.9565 0.0029662
mp-770274 | NiP4 0 0.002874525
mp-561241 | USb30O2F17 2.4478 0.0028572
mp-758096 | SbOF3 1.9231 0.00256145
mp-27199 | AuSeBr 0.6295 0.002385625
mp-766269 | ZnPH5C2N403 4.5292 0.002346725
mp-697033 | CdH4CN2C120 3.5746 0.00232125
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-758957 | As2HPbF13 4.5547 0.002317838
mp-759848 | Bi4OHF2 2.4866 0.002275475
mp-864657 | Hol3 2.2173 0.0021535
mp-567661 | MoPCI503 2.3144 0.002078713
mp-556117 | Ga3PbbF19 4.7168 0.0017115
mp-703352 | UP2H607 2.5385 0.001556825
mp-866214 | LuBr3 3.0669 0.00150055
mp-540925 | Hg2AsF6 0.7379 0.0014388
mp-555059 | TcSb(OF4)2 2.8188 0.00143285
mp-571465 | PbIBr 2.5643 0.001391225
mp-484 Te3As2 0.4367 0.00132105
mp-20326 | U(PS3)2 0 0.00131045
mp-31268 | AlBiBr6 2.5681 0.00130635
mp-29862 | SnBr2 2.5388 0.00127605
mp-605347 | HgTe(H203)2 2.0783 0.001236575
mp-24053 | AgH2C105 2.8242 0.001230275
mp-541155 | V5S4 0.9396 0.001226025
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-567264 | SbMoOF9 3.6798 0.0012058
mp-733848 | CdRe2H8C2(N205)2 | 2.7675 0.001175025
mp-864982 | DyBr3 3.0029 0.00117225
mp-24714 | ZnH4(CO3)2 3.1831 0.001161
mp-625272 | Zn(HO)2 2.0603 0.0011546
mp-24307 | CdH8C4(S2N3)2 3.2788 0.0011517
mp-669496 | Ptl4 0.6934 0.001144475
mp-569175 | ZrCl4 3.6105 0.0011
mp-31487 | Nblb 0.5983 0.00109525
mp-558199 | CuAs4S3Cl 1.6217 0.001056925
mp-649616 | Pd(XeF8)2 1.4046 0.001046025
mp-27907 | Sb6Pb4S13 0.8506 0.0009705
mp-554819 | MgP4(C1503)2 3.5985 0.0009573
mp-557926 | CdAs2(XeF5)4 2.3694 0.0009497
mp-570857 | Y(AICI4)3 4.0292 0.000948433
mp-861867 | Acl3 2.5886 0.00093485
mp-568896 | La(AlBr4)3 2.6083 0.0009292

Continued on next page

70




Table 5.3 — continued from previous page

MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-570880 | RuCl3 0 0.000909
mp-555121 | MgAs2S2(OF3)4 3.5807 0.000902625
mp-556434 | AgBi(PS3)2 1.1797 0.0008917
mp-753246 | Sn3(OF)2 0 0.000887125
mp-560633 | Al2SnCl60 3.959 0.000876975
mp-29796 | Ho(AICl4)3 4.31 0.000853833
mp-567874 | Pr(AlBr4)3 3.3654 0.0008395
mp-765597 | HS2I108 2.7665 0.00083895
mp-28757 | Nd(AlBr4)3 3.3848 0.000836933
mp-17867 | Mn2NbP12 0 0.0008255
mp-865301 | TmBr3 2.9866 0.00082165
mp-768283 | UAs2H6011 2.3704 0.00081335
mp-743614 | MoH2CI203 2.6258 0.0008109
mp-560464 | UTI2(TeO4)2 1.8322 0.000784525
mp-640341 | Mo3S7Cl4 1.6678 0.00078275
mp-21653 | BaNiN 0 0.000781442
mp-570417 | Bi6PtCl10 1.5756 0.000747438
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-567318 | TISbSe2 0.6743 0.0007387
mp-23493 | Ce(103)4 1.4876 0.00073345
mp-619661 | Pb3(10)2 2.2335 0.000732575
mp-27317 | SbAsFS8 3.8632 0.00072175
mp-606393 | NbBr30O 1.9611 0.000704525
mp-558330 | ICIOF 2.0229 0.0006892
mp-865605 | YBr3 2.9454 0.0006646
mp-540924 | NbTel3 0.4539 0.00065345
mp-23536 | SbI3CI8 1.1884 0.0006528
mp-759602 | Sb4O5F2 2.8185 0.0006504
mp-705569 | NiB18(H11C2)2 1.56217 0.000647425
mp-864662 | HoCl3 3.7011 0.00064075
mp-27742 | K2CdO2 1.3576 0.000623475
mp-24294 | HgHCIO4 2.3817 0.000619175
mp-28509 | Ta4SiTe4d 0.0286 0.000608475
mp-632706 | ZnH8(N2C1)2 4.5084 0.0006004
mp-680836 | TadTe9Il40 0.3812 0.0005985
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-862986 | PmBr3 2.8814 0.00058955
mp-24337 | MgH2CI120 5.3707 0.00058835
mp-29946 | IO2F 2.8952 0.00058695
mp-541772 | Bi4dRuBr2 0.5304 0.00058485
mp-24460 | MgH6(SO4)4 0.9617 0.0005843
mp-759866 | TeH3CCl3 2.9222 0.0005738
mp-643387 | AIH2PbO2F3 4.4942 0.0005621
mp-505284 | Pb3(Br0O)2 2.3882 0.000557475
mp-28135 | NbXeF11 2.648 0.000536475
mp-583499 | Bi6PtBrl10 1.4291 0.0005361
mp-541094 | Ta2Hg3S(02F5)2 2.4414 0.00052705
mp-3785 T1GaTe2 0.5317 0.00052505
mp-648414 | V2PS10 1.1097 0.000523763
mp-757173 | Sb5O7TF 3.078 0.0005105
mp-754661 | INO3 1.6497 0.00050095
mp-610491 | BiSeCl 1.8404 0.000498825
mp-570951 | Ti(AlCl4)2 0.0552 0.0004911
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-28256 | V2Se9 0.713 0.00047305
mp-865324 | LuCl3 3.8453 0.00046535
mp-23408 | T14Bi2S5 0.9897 0.000453875
mp-645740 | SnSO4 3.5219 0.0004498
mp-865353 | Tml3 2.2545 0.0004484
mp-29469 | Pd(Se3Cl)2 1.28 0.00044555
mp-27628 | Te3Cl2 1.3482 0.00044275
mp-865521 | Lul3 2.1804 0.0004401
mp-780501 | CrB3(HO3)3 2.1189 0.000432625
mp-764274 | VOF3 3.4012 0.0004296
mp-566001 | CrHg(PbO3)2 2.0835 0.0004235
mp-541106 | Nb2Se9 0.7637 0.0004194
mp-31040 | NbCl4 1.0765 0.00041665
mp-703539 | AgB11H6CBr6 3.2973 0.000414425
mp-30938 | PAuS4 1.3165 0.00041045
mp-30150 | GaBH6 4.8941 0.000403083
mp-758899 | Sb20F8 2.1564 0.00039585
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-626865 | H2ZWO5 2.4402 0.00037915
mp-22856 | Bi2S3 1.3618 0.00037645
mp-9579 AlT1Se2 0.5873 0.00037515
mp-14249 | Th(PS3)2 2.4371 0.0003656
mp-28149 | Bi9I2 0 0.0003624
mp-603254 | PHIAuC3S3Cl 2.8803 0.000354888
mp-753785 | NbOF3 3.2629 0.000348325
mp-768093 | VSO4F3 0.9283 0.000344675
mp-752422 | IC10 1.0256 0.00034275
mp-29483 | MgInBr3 2.0567 0.000336125
mp-570553 | FeP4 0.8043 0.000326675
mp-864617 | NdI3 2.0128 0.00032095
mp-29526 | BrNO3 2.1636 0.00031745
mp-760758 | Bi3O4F 2.1905 0.0003172
mp-745159 | MoPH307 3.1857 0.00031165
mp-29422 | HfCl4 4.1644 0.0003111
mp-556130 | GeXeF10 2.3433 0.000308725
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-571061 | Nb3Sel0Cl13 1.093 0.0002921
mp-754005 | Mg(CO2)2 3.4504 0.0002838
mp-541013 | Til4 1.0867 0.00028305
mp-541610 | GeBr2 2.597 0.00027495
mp-29573 | Sb4S5CI2 1.8692 0.00026945
mp-29465 | TaCl4 1.2222 0.0002603
mp-758829 | Nb20OF8 4.2124 0.0002593
mp-27436 | PaClb 2.4189 0.0002472
mp-541732 | AI3Pb5F19 5.1376 0.00024505
mp-29190 | Te4MoBr 0.855 0.00024185
mp-556425 | SbF4 3.4408 0.0002347
mp-567484 | PtCl2 1.1359 0.0002326
mp-504575 | MoOF4 4.1739 0.000228938
mp-9580 T1GaSe2 0.561 0.00022875
mp-543028 | T12TeO3 1.9408 0.000227763
mp-29018 | ZrSnCl6 2.2258 0.000224717
mp-769377 | SbSO4F3 1.8163 0.00022025
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mp-862983 | InCl3 3.0122 0.0002184
mp-24215 | ScH3Br3N 3.1435 0.000214625
mp-27684 | Tl403 1.0973 0.0002113
mp-580999 | Ga2NiCl8 0.5238 0.0002086
mp-676362 | HIO4 1.5685 0.000207175
mp-558408 | Nb4Te9Il40 0.2533 0.00020445
mp-554764 | Sb3Au3F22 0.0795 0.0002038
mp-4649 PdSe205 0.9947 0.00020325
mp-27655 | Te2l 0.6558 0.00020275
mp-8251 VP4 0 0.0002019
mp-27373 | SnCIF 3.4438 0.00020055
mp-27866 | MoS2ClI3 1.4364 0.00020015
mp-30937 | HgClO3 3.0661 0.000194563
mp-541093 | Nb2Hg3S(02F5)2 2.3509 0.00019205
mp-1509 Sn2S3 0.7755 0.000188625
mp-24509 | CdH4(BrO4)2 3.9715 0.00018655
mp-28038 | NbTeBr3 0.5913 0.000179775
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MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-625112 | H8PtO6 1.5662 0.0001795
mp-28005 | As2(SO4)3 4.5714 0.000179325
mp-769355 | AgH302 1.0711 0.000178738
mp-19941 | As2PbS4 0.765 0.00017765
mp-22871 | ZrCl3 0 0.00017605
mp-29492 | S2I12011 2.6242 0.000170925
mp-30159 | AuBrF6 1.9127 0.00017085
mp-561299 | As2Pb4S6ICI 1.829 0.00016895
mp-28885 | PSe 2.2421 0.000168006
mp-768315 | Mg(103)2 3.3254 0.000167575
mp-569766 | Tel 0.7163 0.000165425
mp-23041 | SbSI 1.6354 0.000164875
mp-570140 | AuBr 1.9716 0.00015345
mp-778385 | B3H3SeO9 3.2394 0.000150738
mp-569522 | MnP4 0.4803 0.00014855
mp-867875 | SmCl3 3.4912 0.00014835
mp-28683 | Ta(ICI1)2 1.1785 0.00014585
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mp-641112 | ReO2F3 3.2953 0.000144588
mp-540540 | PaBr30 1.7543 0.0001401
mp-23355 | PAuCl4 2.5498 0.000139575
mp-23498 | NbSeBr3 0.7309 0.00013715
mp-568146 | Pd(Se3Br)2 1.0268 0.0001361
mp-510421 | CrO3 2.2551 0.0001352
mp-754514 | N2 0 0.0001324
mp-29844 | Th(AICIl4)3 4.2153 0.000125067
mp-861871 | Sel2 0.8854 0.0001207
mp-540615 | Nb3Se5CI7 0.9467 0.00011995
mp-556422 | NbCl30 2.8024 0.000119425
mp-27648 | Te2Br 0.6563 0.00011835
mp-567998 | I1Cl1 1.8269 0.0001154
mp-8725 HfSnS3 1.1982 0.000113575
mp-505373 | AsSel 1.242 0.000110825
mp-28460 | Br20 1.3644 0.000104075
mp-541037 | CsCuO 1.1227 0.00010305
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mp-32479 | TI3VO4 2.5951 0.0001027
mp-557163 | TaPbE7 5.1278 0.00010245
mp-505357 | InSel 1.4358 0.000101425
mp-20244 | ZrPbS3 1.2455 0.000100275
mp-569152 | SnCI2 3.0724 0.000098875
mp-22600 | Sc3P2 0 0.000098725
mp-572597 | SbPS4 2.0791 0.0000984
mp-2160 Sb2Se3 0.7564 0.000096175
mp-643902 | SnH4(NF)2 3.1067 0.0000958
mp-23963 | HIO3 3.213 0.0000946
mp-23247 | ZrBr3 0 0.0000946
mp-28364 | Rb2CdO2 1.3087 0.0000932
mp-2809 Sb2S3 1.2828 0.0000907
mp-22232 | TlInSe2 0.7351 0.00008855
mp-684021 | SndSb6513 0.6014 0.0000874
mp-8759 Cs2Z1r03 3.854 0.00008545
mp-23291 | PbCl2 3.7939 0.0000848

Continued on next page
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Table 5.3 — continued from previous page

MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-569017 | PdI2 0.8733 0.00008475
mp-554724 | CuP4S3I 1.7032 0.000082775
mp-571235 | Zrl4 2.0134 7.98833E-05
mp-753806 | BSbO3 3.762 0.00007975
mp-28693 | Al3Te3I 1.9651 0.000079125
mp-541771 | Bi4Rul2 0.4519 0.0000791
mp-13923 | SnPS3 2.1282 0.000078075
mp-504564 | Si(PbS2)2 2.0437 0.0000753
mp-764232 | VO2F 3.0505 0.000074225
mp-757256 | ZnH4(104)2 3.2826 0.000073
mp-770164 | V2508 1.8925 0.000072925
mp-556078 | MgAs2(XeF8)2 2.9713 0.00007215
mp-753233 | Sb60O5F8 3.3506 0.0000721
mp-568002 | HfI3 0 0.00007175
mp-626577 | Mo(HO2)2 3.1832 0.00006795
mp-768223 | Cs2CeO3 2.2437 0.000066
mp-541785 | GePdS3 1.3072 0.0000651

Continued on next page
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Table 5.3 — continued from previous page

MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-561397 | SO3 5.1414 0.000064775
mp-23170 | 102 1.4525 6.36625E-05
mp-546285 | NbI3O 0.8108 0.00005685
mp-637982 | AsbPb3S10 0.488 0.000056075
mp-28974 | TiF4 4.166 5.53167E-05
mp-28661 | Ba2Cu3P4 0 0.0000551
mp-567731 | Nb3Sel0Br3 1.2229 0.00005465
mp-571146 | SnlICl 2.5132 0.00005455
mp-570270 | NbSeCl3 0.7501 0.00005265
mp-571555 | InCl 2.1996 0.00005205
mp-29251 | Te6Br2011 2.5231 0.00005135
mp-686102 | T13In2Se5 0.6144 5.01375E-05
mp-322 TIS 0.7034 0.000048725
mp-861891 | SeBr2 0.8221 0.00004835
mp-569059 | HfI4 2.3528 0.000046425
mp-638022 | Sb4Pb5S11 1.3758 0.000044
mp-24741 | ScH3NCI3 3.8496 0.00004385

Continued on next page
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Table 5.3 — continued from previous page

MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-20408 | InGaTe2 0 0.00004355
mp-756372 | Rb2MgO2 2.2799 0.00004185
mp-504814 | Sb2Pb2S5 1.0418 0.000041275
mp-558797 | VF5 2.9917 0.00004005
mp-22147 | HfPbS3 1.452 0.000039625
mp-22870 | InBr 1.2575 0.00003955
mp-634812 | H20 5.3268 0.000039375
mp-7609 SbOF 3.3084 0.00003905
mp-27639 | IBr 1.4023 0.00003825
mp-573051 | ReO3F 3.0005 3.75833E-05
mp-8781 SnS 1.8201 0.000037
mp-28857 | Pb(103)2 2.6939 0.000036475
mp-27857 | PdBr2 0.8979 3.53625E-05
mp-21365 | InSbS3 1.4761 0.0000348
mp-28714 | Dy(AICl4)3 4.2606 3.47333E-05
mp-28845 | OsO3F2 2.3101 0.000034725
mp-22997 | PbBrCl 3.4376 0.00003465

Continued on next page
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Table 5.3 — continued from previous page

MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-22971 | SbSBr 1.7648 0.00003435
mp-27735 | GaSbCl6 3.928 0.00003375
mp-12027 | TaTlSe3 0.3102 0.0000305
mp-28608 | Ga3Te3l 1.2591 0.00002985
mp-608653 | As2Pb2S5 1.6038 2.90625E-05
mp-29579 | Sc7NCI12 0.0043 0.0000271
mp-560625 | RePbClO4 3.3739 0.0000264
mp-23297 | BrF3 2.1576 0.0000248
mp-726 Se02 3.2709 2.46625E-05
mp-541593 | ZrPb2F8 0.2222 0.000023375
mp-680181 | Bi2Pb2S5 0.7228 2.32375E-05
mp-757220 | LuH6(ClO5)3 5.3849 0.0000225
mp-570188 | Zrl3 0.0747 0.000020325
mp-623984 | PbSO4 3.8567 0.000020175
mp-2511 PbF2 4.3823 0.000019075
mp-23407 | Hg(103)2 2.6017 0.0000187
mp-23202 | Inl 1.3414 0.0000181

Continued on next page
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Table 5.3 — continued from previous page

MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-21904 | PbS203 3.5394 0.0000168
mp-3245 SnP7Au3 0.0281 0.00001505
mp-20320 | InTe 0 0.000014425
mp-22747 | Pb(CO2)2 2.7868 0.0000131
mp-756448 | LaMglh 1.9817 0.000013
mp-23264 | Til3 0.1604 0.000012275
mp-554896 | SbXe20F15 1.2419 0.00001225
mp-765135 | WOF4 4.4088 0.0000113
mp-28077 | PbBr2 3.1375 0.0000106
mp-561664 | TeF4 4.0186 0.00001035
mp-29500 | GeT7F16 4.3804 0.0000095
mp-27308 | SbBrF8 2.6902 0.000008625
mp-28964 | TadFeTe4 0 0.000008
mp-634 HgS 1.7068 0.0000074
mp-569008 | PACI2 0.9097 0.000007
mp-866003 | Erl3 2.0376 0.0000067
mp-561449 | OsOF4 0.6713 0.0000063

Continued on next page
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Table 5.3 — continued from previous page

MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-20526 | PbS 2.0909 0.000006
mp-9847 YbP5 0 0.0000055
mp-28804 | TcO2F3 2.5259 0.0000042
mp-17324 | ZrSnS3 0.995 0.00000355
mp-27472 | NbSbF10 4.3499 0.0000032
mp-20507 | PbSO3 3.6372 0.0000029
mp-8203 Zr(PS3)2 1.5319 0.0000027
mp-20716 | PbSeO3 2.8838 0.0000024
mp-542694 | HI30O8 2.5131 0.000002075
mp-27133 | BiPS4 1.4839 1.9375E-06
mp-27358 | Se205 2.885 0.0000017
mp-27462 | AlPS4 2.6141 0.00000155
mp-862800 | PrI3 1.9521 0.0000015
mp-15046 | Sb2(PSe3)3 1.4601 0.000001325
mp-7302 CrpP4 0 0.0000013
mp-572284 | SbXeOF9 2.2 0.0000012
mp-28954 | T12PdSe2 0 0.000001

Continued on next page
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Table 5.3 — continued from previous page

MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-27994 | HgBrO3 3.1922 0.000000875
mp-27743 | BiFb5 1.8138 0.0000008
mp-863658 | PmCI3 3.5399 0.0000007
mp-542769 | Sn(CO2)2 2.6084 0.0000006
mp-557705 | OsO2F3 0.5722 0.000000575
mp-573815 | Rel3 0.947 5.33333E-07
mp-863695 | PmlI3 2.0675 0.0000005
mp-583234 | Bidl 0 0.000000475
mp-570044 | Nbl4 0.478 0.0000004
mp-568100 | ReNCl4 1.0777 0.0000004
mp-28051 | SbTel 0.8606 0.0000004
mp-568758 | BiBr 1.0369 3.375E-07
mp-540639 | FeH8C4(S2N3)2 0.5768 0.0000003
mp-733929 | P2H4PbO8 4.4499 0.0000003
mp-753160 | BiOF 3.3538 0.00000025
mp-570443 | TI2CN2 1.892 2.33333E-07
mp-11508 | MoP4 0 0.0000002

Continued on next page
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Table 5.3 — continued from previous page

MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-555760 | S 2.2718 1.88889E-07
mp-568388 | Bil 0.8279 0.000000175
mp-8187 K2Zn0O2 1.9785 0.00000015
mp-769016 | Pb(BrO3)2 3.2535 0.00000015
mp-27480 | Sn20F2 2.6708 0.00000015
mp-616327 | In3Te3l 1.1004 0.00000005
mp-5770 AgNO2 1.7726 0
mp-942 AuF3 1.4723 0
mp-30097 | Bi2Te7CI18 0.7625 0
mp-23324 | BiSBr 2.0287 0
mp-23318 | BiSCl 1.9601 0
mp-569707 | BiSeBr 1.6912 0
mp-23020 | BiSel 1.5745 0
mp-23514 | BiSI 1.8669 0
mp-27724 | BPS4 2.2625 0
mp-3199 CuSe205 0.0055 0
mp-27218 | Ge(BrF5)2 2.9044 0

Continued on next page
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Table 5.3 — continued from previous page

MPID Material Formula | Band Gap(eV) | Total Magnetization (A /m)
mp-568616 | Nb2Br5 0.709 0
mp-541817 | NbSel3 0.6281 0
mp-559792 | Nd2As6XebF46 2.6927 0
mp-19727 | PbCN2 1.7031 0
mp-560008 | PNEF2 0.6175 0
mp-558576 | ReSb(OF4)2 3.7699 0
mp-22996 | SbSel 1.3776 0
mp-14 Se 0.9988 0
mp-29174 | SiCl2 2.0151 0
mp-1602 SiS2 3.0676 0
mp-H68264 | SiSe2 2.1493 0
mp-17835 | Sn2Sb2S5 1.045 0
mp-19 Te 0.1856 0
mp-582657 | TidTe9l40 0.3978 0
mp-574169 | TiGeTe6 0.4183 0
mp-720 TIF 3.2045 0
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5.2 Band gap prediction and magnetic material classification

The starting point of machine learning is choosing a proper model. Optimized
distributed gradient boosting (XGBoost) is the leading model for working with standard
tabular data, such as dataframe, json, csv and excel. This model dominates many Kaggle
competitions. It is an implementation of the Gradient Boosted Decision Trees algorithm.
Comparing with other machine learning algorithms, it has better accuracy. Comparing with
deep learning it allows much better interpretation.

Feature engineering is the process of using domain knowledge of the data to create
features that make machine learning algorithms work. It is fundamental to the application
of machine learning, and is both difficult and expensive. The purpose is to find out those
features that can help when solving the problem, and encode them into the format that the
model can read. In this study, two kinds of features have been selected: structural features
and elemental features. The structural features are originate from the information of the unit
cell such as the unit cell volume and the number of the atoms. While the elemental features
originate from the information of periodic table such as atomic weight, atomic radius, and
number of valence electrons. For the best performance, the average, min/max values and
differences of each elemental feature have been calculated. For non-numerical features, such
as space group, we did one-hot-encoding (OHT) since it is necessary for XGBoost. In total,
20,000 kinds of different materials have been included in the machine learning. The 20,000
materials have been divided into two subsets: 75 % training samples (15,000) and 25 %
testing samples (5,000). For each material there are 95 features included. they will be used

to predict band gap and to do magnetic material classification.
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Figure 5.2: The correlation heat map of all the features considered in the XGBoost, yellow

indicates that two features are positively linear correlated, while dark green indicates that

two feature are negatively linear correlated.

Fig. [5.2] shows the feature correlation heat map. The yellow square indicates that
the corresponding two features are positively correlated. While the dark green indicates that
the corresponding two features are negatively correlated. Those features with 0 correlation

mean that they are not correlated. Those highly correlated features are used to fill in the

missing values in elemental features.
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Table 5.4: The predicted band gap vs band gap from MPDB.

Material Formula

Predicted Band Gap (eV)

Band Gap from MPDB (eV)

Ce3(AgGe)4 0.002 0
SrCaMg30032 4.239 4.431
Li3V(H403)4 3.994 4.026
ZnPb2F6 4.004 3.923
Cr3N4 0 0
CsLi2F3 6.78 7.04
Ni3Sn2 0.004 0
V2Cu207 0.016 0
Li2Mn3TeO8 0.226 0
MgH10CO8 4.818 4.795
ReH4NO4 3.926 4.086
BaTi8016 0 0
LiB(S04)2 6.145 6.387
KGaH4 4.951 4.936
ThMn4(CuO4)3 0 0
CaSbPt 0 0
Sc2IrPd 0.223 0

Continued on next page
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Table 5.4 — continued from previous page

Material Formula | Predicted Band Gap(eV) | Band Gap from MPDB (eV)
Cu 0.024 0

Rb2Be3Zn2F12 0.895 5.858

KSm(PO3)4 5.402 5.297

Mn3W3C 0.009 0

K2LiDyCl6 4.95 5.02

Na3YC2(O3F)2 5.014 4.884

LibGa0O4 3.08 3.763

CsNaB10(H209)2 | 5.421 5.762

Gd6Tad4Al43 0.052 0

Before running XGBoost, the last step we need to do is a parameter grid search.

For more details, please refer to Sec. A.2 of the Appendix. Table shows a subset of

the central results of band gap prediction, the comparison between the predicted band gap

and band gap obtained from MPDB. The calculated mean absolute error of the training

samples is 0.148 eV, which prove that our prediction is in good agreement with the results

on MPDB. For the magnetic material classification, the results accuracy can be evaluated

by the confusion matrix as shown in Fig. [5.3] Among 5000 kinds of materials, our model

found 1315 magnetic materials and 3685 non-magnetic materials, in reality, there are 1155
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magnetic materials and 3845 non-magnetic materials. The accuracy can be calculated by:

TP +TN
TP+TN+ FP+FN

accuracy = (5.1)

where TP refers to true positive which means the number of the materials are actual mag-
netic material has also been predicted as magnetic material. While FN refers to false neg-
ative which means the number of the materials are actual magnetic material but has been
predicted as non-magnetic material. The smaller the values of FP and FN, the better the
accuracy is. When the values of FP and FN both equal to 0, the accuracy is 1. In this

study, the accuracy is 0.916.

Total Number = 5000 Predlctt.ed Predicted !\Ion-
Magnetics Magnetics
1025 (TP) 130 (FN)
290 (FP) 3555 (TN)

Figure 5.3: Confusion matrix of magnetic material classification, used to judge the accuracy

of the classification.

To evaluate which feature dominates the prediction and classification, the most
important 10 features are shown in Fig. [5.4] The feature importance criteria we used is
"gain". "Gain" indicates the improvement in accuracy brought by a feature to the branches
it is on. It is the most widely used criteria to evaluate the feature importance. For band
gap prediction, the maximum value of the elemental valence electrons is the most important

feature. For magnetic material classification, the maximum value of the elemental period is
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the most important feature.

Top 10 Important Feature of Bandgap Prediction

m max_valence_electrons
® avg_atomic_density
® min_melting_point
max_specific_heat
W avg_specific_heat
m max_number_of_outer_shell_electrons
m max_covalent_radius
B min_boiling_point

m avg_dipole_polarizability

B max_atomic_density

Top 10 Important Feature of Magnetization Classification

m max_period

B max_atomic_weight

™ max_atomic_number

W space_group

B max_atomic_density

m max_valence_electrons

m min_number_of_outer_shell_electrons
W avg_valence_electrons

W volume_per_atom

W sum_atomic_density

Figure 5.4: The most important 10 features for predicting band gap and for magnetic

material classification.
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Chapter 6

Summary and Outlook

In conclusion, the dependence of the in-plane thermal conductivity of TBG is
theoretically investigated. For large commensurate rotation angles (< 13.2°), the thermal
conductivities decrease approximately linearly with the increasing lattice. At a commensu-
rate lattice constant of 1.1 nm corresponding to an angle of 13.2°, the thermal conductivity
falls to 50% of the value of the aligned AB structure at room temperature. For all 13 com-
mensurate rotation angles we considered, rotation does not affect the phonon velocities or
frequencies, but it does reduce the Brillouin zone size to the extent that the zone edge acous-
tic phonon energies are thermally populated. This allows Umklapp scattering to reduce the
lifetimes of the phonons contributing to the thermal transport and, consequently, to reduce
the thermal conductivity. The DFT calculations give solid proof for this explanation by
observing a reduction of the phonon lifetimes in TBG compared to AB-BLG.

For small commensurate rotation angles (> 13.2°), a non-monotonic dependence of

the thermal conductivity on the commensurate lattice constant has been discovered. As the
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commensurate lattice constant increases, the in-plane thermal conductivity increases and
reaches 91% of the AB value at a commensurate lattice constant of 7.5 nm corresponding
to an angle of 1.89°. The commensurate-lattice-constant-dependent trends in the thermal
conductivity are also followed by the trends in the shear elastic constant Cyy, the wrinkling
intensity, and the frequency of the out-of-plane ZAs mode. The picture that emerges from
these results is that the interlayer misorientation reduces the shear elastic constant Cyy4, the
reduced shear elastic constant allows increased wrinkling of the TBG, and the increased
wrinkling reduces the thermal conductivity.

The small-angle approach of the thermal conductivity towards its value in the
aligned structure raises the question of how response functions approach their aligned values
as the twist angle approaches 0°. Is the approach gradual, discontinuous, or a combination
of the two?

To identify quasi-1D material from 2D material, an improved dimension classifier
model has been created. The algorithm of this model is based on the fact that quasi-1D
material contains different bond lengths in the unit cell. The accuracy of this model is
validated by successfully identifying known quasi-1D material based on the structural data
from MPDB. Using structural data and elemental properties from MPDB, we perform a
band gap prediction and magnetic material classification by applying XGBoost model. By
fitting the XGBoost model with 15,000 kinds of materials, the accuracy of the predictions
on the 5000 testing samples is greater than 91%. The MAE of the band gap prediction is
0.148 eV. For the magnetic material classification, 1,025 kinds of magnetic materials and

3,555 kinds non-magnetic materials have been identified. Using gain as the criteria, the most
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correlated feature for band gap prediction is the number of the valence electrons. While, for

the magnetic material classification, it is the elemental period.
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Chapter 7

Appendix

A.1 Band Gap Prediction using Machine Learning (Python3)

The first step of machine learning is downloading data from material project
databases and format them. To do this you can use the following code, some packages

might need to install before running, such as pymatgen, mendeleev, numpy and pandas.

from pymatgen import MPRester, Composition

from pymatgen.electronic structure.plotter import BSPlotter
import pymatgen.analysis.find dimension

import pymatgen.io.cif as pcif

import pandas as pd

from tqdm import tqdm

#import periodictable as pt

from mendeleev import element

import re
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import numpy as np
from collections import OrderedDict
from IPython.display import clear output

import time

def get valence(group id):

if group id == None:
return (None)

elif group id >= 1 and group id <= 12:
return (group id)

elif group id >= 13 and group id <= 18:
return (group id —10)

elif group id ==0:
return (8)

else:

raise ValueError(’The_group_ID_is_out_of_range’)

def NumberOfElement (unit cell formula ,element):
if element not in unit_ cell formula:

raise ValueError (’Element_can_not_be_found_in_pretty formula’)
else:
return (unit_cell formula[element])

NumberOfElement ({ ’C’: 2.0, ’P’: 2.0, 'V’: 4.0},’C’)+1

def getOneElementFeature(feature, Element):

currentElem = element (Element)
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if feature =— "atomic number":

return (currentElem . atomic_number)

elif feature — "atomic weight":

return (currentElem . atomic weight)

elif feature — "period":

return (currentElem . period)

elif feature — "group id":

return (currentElem . group id)

elif feature — "atomic radius":

return (currentElem . atomic radius)

elif feature — "covalent radius":

return (currentElem . covalent radius)

elif feature = "valence electrons":

return (get valence(currentElem.group id))

elif feature = "number of outer shell electrons":
d = OrderedDict (currentElem.ec.electrons per shell())
els = list (d.items())

return (list (d.items())[—1][1])
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elif feature = "ionenergies":

return (currentElem . ionenergies[1])

elif feature = "dipole polarizability":

return (currentElem . dipole polarizability)

elif feature = "melting point":

return (currentElem . melting point)

elif feature = "boiling point":

return (currentElem . boiling point)

elif feature — "atomic density":

return (currentElem . density)

elif feature — "specific_heat":

return (currentElem . specific _heat)

elif feature — "fusion heat":

return (currentElem . fusion heat)

elif feature — "evaporation heat":

return (currentElem . evaporation heat)

elif feature — "thermal conductivity":

return (currentElem . thermal conductivity)
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def

def

def

def

def

else:

raise ValueError(’ This_feature_dose_not_exsits’)

createElementsDict (unit _cell formula):

return (unit_cell formula)

natoms (unit cell formula ,elements):
n =20
for element in elements:
n += NumberOfElement (unit_cell formula, element)

return (n)

featureSum (feature , unit cell formula, elements):
fsum = 0
elements dict = createElementsDict (unit_ cell formula)
for Element in elements:
fsum += getOneElementFeature(feature ,Element)*elements dict[Element |

return (fsum)

featureAvg (feature , unit cell formula, elements):

return (featureSum (feature, unit_ cell formula, elements)/natoms(

unit cell formula ,elements))

featureDifference (feature, unit_cell formula, elements):

favg = featureAvg(feature, unit cell formula, elements)
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fdiff =0
for Element in elements:
fdiff += (getOneElementFeature(feature ,Element) — favg)*x2

return (np.sqrt ( fdiff/natoms(unit_cell formula ,elements)))

def featureLargest (feature, unit cell formula, elements):
feature values = |[]
for Element in elements:
feature values.append(getOneElementFeature(feature ,Element))

return (max(feature values))

def featureSmallest (feature, unit cell formula, elements):
feature values = |[]
for Element in elements:
feature values.append(getOneElementFeature(feature ,Element))

return (min(feature values))

featureSum ("atomic weight" ,{"Rb’: 2.0, 'Te’: 2.0, ’Au’: 2.0}

7[7Rb777Te777Au7])

atomicFeatures = ["atomic _number" ,"atomic weight" ,"period" ,"group id","
atomic_ radius","covalent radius","valence electrons", "
number of outer shell electrons","ionenergies","dipole polarizability","
melting point","boiling point", "atomic density","
specific_heat","fusion heat","evaporation heat","thermal conductivity"]
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len (atomicFeatures)

mpr = MPRester ("Frv0akZ1InOToUmL" )##API key should be inside the "" k6 URL for

API key: https://materialsproject.org/dashboard

data = mpr.query (criteria={"band gap": {"$gt": —0.1}},properties=(["cif","
pretty formula","unit cell formula",6"band gap","volume","spacegroup","
density","elements" ,"nelements"]))

pd all = pd.DataFrame(data)

pd_all.head (20)

pd_all|’spacegroup’|[4][ crystal system ]

pd_all.query(’band gap_—=_0").shape

pd_ subset = pd.concat ([pd_ all.query(’band gap_—_0")[0:10],pd all.query(’

band gap_!=_07)[—10::]])

pd_ subset.shape

pd_subset . head ()

pd_ subset.isnull () .sum()

pd_subset.reset index (inplace=True)
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dict _all = {}
for i in range(len(atomicFeatures)):

dict _all["sum "+atomicFeatures|[i]]

dict _all["avg "+atomicFeatures|[i]]

dict _all["diff "+atomicFeatures[i]] = []

dict _all["max "+atomicFeatures|[i]]

dict _all["min "+atomicFeatures|[i]]
for j in range(pd_ subset.shape[0]):
feature tester = [] #test whether there is None feature value
for Element in pd_subset|’elements’|[]]:
feature tester.append(getOneElementFeature(atomicFeatures|[i],
Element ) )
if None not in feature tester:
clear output ()
print ("row_"+ str(j) + "_and_feature_" + str(i))
dict _all["sum "+atomicFeatures|[i]].append(featureSum (
atomicFeatures[i],pd subset[’ unit cell formula’][j],pd subset]|
Celements [ ]))
dict _all["avg "+atomicFeatures[i]].append(featureAvg(
atomicFeatures|[i],pd subset[’ unit cell formula’][j],pd subset]|
Celements [ ]))
dict _all["diff "+atomicFeatures[i]].append(featureDifference (
atomicFeatures|[i],pd subset|[’ unit cell formula’][j],pd subset]|
Celements [ ]))
dict _all ["max "+atomicFeatures[i]].append(featureLargest (
atomicFeatures|[i],pd subset|[’unit cell formula’][j],pd subset]|

“elements " |[j]))
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dict _all ["min "+atomicFeatures[i]].append(featureSmallest (
atomicFeatures[i],pd subset[ unit cell formula’][j],pd subset]|
“elements ' |[j]))

else:

dict _all["sum_ "+atomicFeatures[i]].append(’None’)

dict _all["avg "+atomicFeatures|[i]].append(’None’)

dict _all["diff "+atomicFeatures[i]].append(’ None’)

dict _all["max "+atomicFeatures[i]].append(’None’)

dict _all ["min "+atomicFeatures[i]].append(’None’)

pd.DataFrame (pd.DataFrame(dict all)=—"None’) .sum()

dict _all["band gap"| = []
dict _all["material density"] = []
dict all["material volume"] = []
dict _all|["space group"| = []
dict all["volume per atom"] = []
dict _all["pretty formula"] = []
dict all[’unit cell formula’] = []
dict _all["cif"] = []
for i in range(pd_ subset.shape[0]):
clear _output ()
natom = 0
for Element in pd_ subset|’elements’|[1i]:
natom += NumberOfElement (pd subset [ unit cell formula’|[i],Element)
dict _all["band gap"|.append(pd_subset|[’band gap’|[1i])

dict _all["material density"].append(pd_subset[’density ’][i])
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dict _all["material volume"].append(pd_subset|’volume’|[i])
dict _all["space group"].append(pd subset["spacegroup"|[i][ crystal system’

D)

dict _all["volume per atom"].append(pd_subset|["volume"|[i]/natom)

dict _all["pretty formula"].append(pd subset|["pretty formula"|[i])

dict _all[’unit cell formula’].append(pd_ subset|’unit cell formula’][i])
dict all["cif"].append(pd subset|["cif"][i])

print ("row_"+ str(i))

ML data = pd.DataFrame(dict all)
ML data.to excel ("ML data 20.xlsx")

After this step we need to clean the data, in this project, what we did is imputing
the missing data according to the known part of the data. You can run the following code
in the same directory, changing the ".xlsx" file name accordingly. Although we did not plot
the distribution of each feature in this step, it is still recommended to do it. Because most
of machine learning algorithms are based on the assumption that the feature values are
normally distributed. If not, a feature engineering need to be done before applying machine

learning.

import pandas as pd

import numpy as np

from sklearn.impute import Simplelmputer

from sklearn.experimental import enable iterative imputer
from sklearn.impute import Iterativelmputer

pd_all = pd.read excel(’ML _ data 10000.xlsx ")
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pd_all.replace(’'None’,—999,inplace=True)

numerics = [’intl6’, ’int32’, ’int64’, ’'floatl6’, ’float32’, ’float64’]
numeric_columns = pd_all.select dtypes(include=numerics).columns
non numeric_columns = pd_all.select dtypes(exclude=numerics).columns

# fitting the missing data using mean value algorithm

imp = SimpleImputer (missing values=-999, strategy="mean’)

imp. fit (pd_all.select dtypes(include=numerics))

df numeric = pd.DataFrame(imp. transform (pd_all.select dtypes(include=numerics)
) ,columns=numeric_columns)

df nonnumeric = pd_all.select dtypes(exclude=numerics)

pd.merge(df numeric, df nonnumeric, left index=True, right index=True).
to_excel(’ML data impute 10000.xlsx ")

# fitting the missing data using predictions

imp feature = Iterativelmputer(max iter=100, random state=0,missing values
=-999,initial strategy='most frequent’)

imp feature. fit (pd_all.select dtypes(include=numerics))

df numeric_2 = pd.DataFrame(imp feature.transform (pd all.select dtypes(include
=numerics) ) ,columns=numeric_columns)

pd.merge (df numeric_2, df nonnumeric, left index=True, right index=True).

to_excel (’ML data impute 5 10000.xIsx ')

The last step is fitting the data into the selected machine learning model and using
them to do the prediction. The optimized distributed gradient boosting (XGB) is applied
in this code. As the regularized version of gradient boosting method, XGB is an efficient
and easy to use algorithm. It delivers high performance and accuracy as compared to other
algorithms.

To measure the accuracy of the prediction, we could split the data (have both
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features and targets) into two samples: training and testing. Only training samples will be

fitted, and testing samples are only used to judge the accuracy. Run the following code will

automatically generate a ".xlsx" file with predicted bandgap of 5000 materials. The mean

absolute error of the prediction is only 0.148 eV.

import pandas as pd

import numpy as np

import xgboost as xgb

import seaborn as sns

from sklearn.model selection import KFold, GridSearchCV
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn import metrics, preprocessing

from sklearn.model selection import cross_validate
from sklearn.model selection import train_ test split
import time

import matplotlib.pyplot as plt

from scipy import sparse

from sklearn.metrics import mean absolute error

get ipython ().run_ line magic( ' matplotlib’, ’inline’)

44+ Load Data

df all = pd.read excel(’ML data Featurelmpute 0tol10000.xlsx ")

df all.head()

ml all = df all.drop(columns=[’Unnamed:_0’, Unnamed:_0.1", pretty formula’,”’

unit_cell formula’, cif’])
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data types = ml_ all.dtypes

cat_cols = list (data_ types|[data types=—’object’].index)

con cols = list (data types[data types=—’int64’].index) + list (data_ types|
data types—’'float64’].index)

con_cols.remove( ’band gap’)

print ("Categorical_features:", cat_cols)

print ( "Numerica_features:", con_cols)

## Encode cat features, must do before using XGB

OHE = preprocessing . OneHotEncoder (sparse=True)

start=time.time ()

full data sparse=OHE. fit transform(ml all[cat cols])

print (’One—hot—encoding_finished_in_%f_seconds’ % (time.time ()—start))

full data sparse = sparse.hstack ((full data sparse,ml all[con cols|), format=’

csr )

## Train test split
train x,test x,train y,test y = train test split(full data sparse, ml all[’

band gap’], test size=0.25, random state=42)

## Metod for evaluation
def logregobj(labels, preds):
con = 2
x =preds—labels
grad =con*x / (np.abs(x)+con)
hess =con**2 / (np.abs(x)+con)**2

return grad, hess
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def log mae(y,

return mean absolute error(np.exp(y), np.exp(yhat))

log _mae scorer = metrics.make scorer(log mae,

## Grid Search

def search model(train_x, train_y,

model = GridSearchCV (estimator

# Fit Grid

yhat) :

for the best

Search Model

model

model. fit (train _x, train_ y)

est ,

print ("Best_score:_%0.3f{" % model.best score )

print ("Best_parameters_set:", model.best params )

print ("Scores:", model.cv_results_)

return model

param grid = {’

objective’

:[logregobj],

"learning rate’:[0.03,0.1,0.2],

'n_estimators’:[2000,4000,8000],
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refit=False):

param_grid, n_jobs, cv,

= est,

param _grid = param _grid,
scoring = log _mae scorer,
verbose = 10,

n_jobs = n_jobs,

iid = True,

refit = refit ,

cv = cv)



"max_depth’: [6,8,10],

"min_child weight ’:[10,8,6,4,2,1],

"subsample’: [0.78,0.5],

"colsample bytree’ :[0.67],

'gamma’:[0,0.9,10],

"nthread’: [—1],

"seed’ [1234]}
model = search model(train x,
train_y,

xgb . XGBRegressor () ,
param _grid,

n_jobs = 1,

refit = True)

## Setting up the paramters of XGB and fitting the model

rgr

xgb . XGBRegressor (seed = 1234,

learning rate = 0.03, # smaller, better results , more
time
n_estimators = 2000, # Number of boosted trees to fit.

max_depth=10, # the maximum depth of a tree

min_child weight=10,

colsample bytree=0.67, # the fraction of columns to be
randomly samples for each tree

subsample=0.78, # the fraction of observations to be

randomly samples for each tree
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gamma=0.9, # Minimum loss reduction required to make a
further partition on a leaf node of the tree,
# the larger , the more conservative

nthread = —1, # Number of parallel threads used to run

xgboost .

silent = False # Whether to print messages while
running boosting.

)

rgr. fit (train_x, train_y)

## Predict the bandgap using the fitted model

pred y = rgr.predict (test x)

## Save prediction results of test samples

results = pd.DataFrame()

results [ 'pretty formula’| df all.iloc[test y.index|[ pretty formula’]
results | ’band gap’] = pred y

results [ 'real band gap’] = test_y.values

results.to_excel("pred 20191118.xlsx", index=False)

## Print MAE of test sample prediction unit eV

print (mean absolute error(pred y, test y.values))

## Save prediction results for train samples, used to check overfitting
pred train y = rgr.predict(train_x)

results = pd.DataFrame()
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results | 'pretty formula’|] = df all.iloc|[train_y.index][ pretty formula’]
results | ’band gap’|] = pred train_y

results|’real band gap’]| = train_ y.values

results.to_excel("pred 20191118 train.xlsx", index=False)

mean _absolute error(pred train_ y, train_y.values)

## plot the feature importance
xgb.plot importance(rgr ,max num features=10,importance type='gain’)

If you want to try predicting the total magnetization, you need to include "total magnetization"
into your mpr query. Also you need to drop the "total magnetization" from the continues

features. The two lines you need to revise in the code are as below:

data = mpr.query(criteria={"band gap": {"$gt": —0.1}},properties=(["cif","
pretty formula","unit cell formula",6"band gap","volume","spacegroup","
density","elements" ,"nelements" ,"total magnetization"]))

con_cols.remove(’'total magnetization’)

A.2 Dimension Classifier (Python3)

This code is used to classify the dimension of a given material into the one of the

following types: 0D, 1D, quasi-1D, 2D, 3D, intercalated ion and intercalated molecule. The
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code used the find dimension package implemented in pymatgen. It needs the structure
files with ".cif" format as input, and output a spreadsheet with three columns: formula of
the material, dimension of the material and band gap. The band gap information is directly
downloaded from material project.

To use this code, you need to adjust the tolerance before running it. If the tolerance
is too big, some "quasi-1D" materials will be identified as 2D material, while if it is too small,

some of them will be identified as 0D material or intercalated ion.

from pymatgen import MPRester, Composition

from pymatgen.electronic structure.plotter import BSPlotter
import pymatgen.analysis.find dimension

import pymatgen.io.cif as pcif

import pandas as pd

import pymatgen.analysis.find dimension as pfd

from tqdm import tqdm

#HHHHT 0oading data from material projects

mpr = MPRester ("Frv0akZ1InOToUmL" )##API key should be inside the "", URL for

API key: https://materialsproject.org/dashboard

data = mpr.query (criteria={"band gap": {"$gt": —0.1}},properties=(["cif","
pretty formula","unit cell formula",6"band gap","volume","spacegroup","
density","elements","nelements"]))

df all = pd.DataFrame(data)

df all.to_ excel(’Material Project dataForDimensionClassify.xlsx )

#H#H#Prepare Input Files
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subsample = 100
for i in range(len(data[:subsample])):
with open(str (i) + ’ dimension.cif’, ’w’) as the file:

the file.write(data[i][ cif’])

#Dimension Classification
dimensions = []
for i in tqdm(range(len (data [:subsample]))):

dim = pfd.find dimension(pcif.Structure.from file(str(i)+" dimension.cif")

)

if dim = ’2D’ and pfd.find dimension(pcif.Structure.from file(str (i)+"
_dimension. cif") ,tolerance=0.1) = "1D":
dimensions.append(’quasi—1D")

else:

dimensions . append (dim)

HHHH#Generate Outputs

pretty formula = []

band gap = []

for i in range(len(data[:subsample])):
pretty formula.append(data[i]|[ pretty formula’])
band gap.append(data[i][ 'band gap’])

df dimensions pd.DataFrame({ 'pretty formula’:pretty formula, band gap’:

band gap, 'dimensions’:dimensions})

df dimensions.to excel(’df dimensions.xlsx’)
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