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Abstract

In this paper we prove a conjecture of Alexander and Currier that states, except for

covering maps of equidistant surfaces in hyperbolic 3-space, a complete, nonnegatively

curved immersed hypersurface in hyperbolic space is necessarily properly embedded.

1 Introduction

Suppose that φ :Mn → Rn+1 is an immersed hypersurface with principal curvatures κ1, . . . , κn.

Then φ is said to be

• convex at a point if κi ≥ 0 for all i = 1, . . . , n.

• of nonnegative Ricci curvature if κi(
∑n

k=1 κk) ≥ κ2i for all i = 1, . . . , n.

• nonnegatively curved if κiκj ≥ 0 for all i, j = 1, . . . , n.

It is easily seen that up to orientation all three of the curvature conditions above are point-

wise equivalent for hypersurfaces immersed in Euclidean space. An immersed hypersurface in

Euclidean space is said to be locally convex if the hypersurface is locally supported by a hyper-

plane. It is not true that nonnegativity of the sectional curvatures alone implies local convexity

of a hypersurface (cf. [23]).

The study of nonnegatively curved immersed hypersurfaces goes back to Hadamard, who

showed that a compact, strictly convex, immersed surface in Euclidean 3-space is necessarily

1Corresponding author. The author is support by NSFC grant No.11301284 and NSFG grant No.11571185.
2The author is partially supported by NSF DMS-1303543
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embedded [20]. This result was later extended in [28, 31, 11, 23] to such that a complete, non-

negatively curved, nonflat, immersed hypersurface in Euclidean space is necessarily embedded

as a boundary of convex body.

In this paper we consider oriented immersed hypersurfaces φ : Mn → Hn+1 in hyperbolic

space. The following pointwise curvature conditions are no longer equivalent:

• (strictly) convex at a point if κi > 0 for all i = 1, . . . , n.

• nonnegative Ricci curvature if κi(
∑n

k=1 κk) ≥ n− 1 + κ2i for all i = 1, . . . , n.

• nonnegatively curved if κiκj ≥ 1 for all i, j = 1, . . . , n.

• (non-strictly) horospherically convex if κi ≥ 1 for all i = 1, . . . , n.

In fact, they are in strictly ascending order as listed above (cf. [15, 16, 1, 2]). Do Carmo and

Warner [14] showed that a compact, convex, immersed hypersurface in hyperbolic space is nec-

essarily embedded. For noncompact cases, even with strict convexity, a complete, immersed hy-

persurface in hyperbolic space may not be embedded [16] (see also [27], pg. 84). On the other

hand, Currier [12] showed that a (non-strictly) horospherically convex, complete, immersed

hypersurface in hyperbolic space is necessarily embedded and, if noncompact, a horosphere.

Therefore one wonders whether a complete immersed hypersurface with nonnegative sectional

curvature or even nonnegative Ricci curvature is necessarily embedded?

Naturally the embeddedness problem for a complete noncompact hypersurface in hyperbolic

space is related to its asymptotic boundary at infinity. The asymptotic boundaries at infinity of

complete hypersurfaces with nonnegative curvature in hyperbolic space have been studied in

[16, 1, 2]. In [16], using hyperbolic Gauss maps and the geometry of horospheres, Epstein

showed that a complete embedding of R2 into H3 with nonnegative Gaussian curvature has a

single point asymptotic boundary at infinity. Epstein also showed [16] that a complete, strictly

convex, immersed surface in H
3 with a single point asymptotic boundary at infinity is neces-

sarily embedded as the analog of van Heijenoort’s theorem [31] in hyperbolic 3-space. Epstein

then asked if a complete immersed surface in H3 with nonnegative Gaussian curvature is nec-

essarily embedded. [16].

Later in [1, 2], based on a theorem of Volkov and Vladimirova [32] and the splitting theorem

of Cheeger and Gromoll [10], Alexander and Currier showed that a complete, nonnegatively

curved, embedded hypersurface in hyperbolic space has an asymptotic boundary at infinity of

at most two points and, if two points, it is an equidistant surface about a geodesic line. Alexan-

der and Currier then in [2] gave the precise statement of the conjecture as: Except for covering

maps of equidistant surfaces in H
3, every nonnegatively curved immersed hypersurface in H

n+1

is properly embedded. They also mentioned a sketch of a proof of this conjecture for higher
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dimensions (n ≥ 3) suggested by Gromov. Their conjecture remains completely open in the

case when n = 2.

In this paper we present proofs of the conjecture of Alexander and Currier for the case when

n = 2 as well as all higher dimensions (n ≥ 3). Our main theorem is as follows:

Main Theorem. Except for covering maps of equidistant surfaces in H
3, a complete, non-

negatively curved, immersed hypersurface in hyperbolic space H
n+1 for n ≥ 2 is properly

embedded.

Our approach for solving the conjecture of Alexander and Currier in higher dimensions

(n ≥ 3) is based on the recent work [4] on weakly horospherically convex hypersurfaces in hy-

perbolic space (cf. Definition 2.2), which may be considered as an extension of the embedding

theorem in [16]. Please see Theorem 2.2 and Theorem 2.3 in Section 2. This approach was

initiated by Epstein in [16]. One key issue is to derive the injectivity of the hyperbolic Gauss

map. We will rely on the injectivity theorem of Schoen and Yau [25, 26], while Epstein [16]

used the embeddedness. The other key issue is the size estimate for the asymptotic boundary at

infinity. We will rely on the Hausdoff dimension estimate of Zhu [34], while Epstein’s approach

in [16] is based on similar results of Huber [21] for subharmonic functions.

To prove the conjecture of Alexander and Currier in dimension n = 2, we first establish a

new proof of the classical result of Volkov and Vladimirova [32], which states that the only way

to isometrically immerse the Euclidean plane R
2 in H

3 is as a covering map of an equidistant

surface about a geodesic line or as a horosphere. Our proof of the main theorem is then based

on the sharp growth estimate (4.5) in Lemma 4.2 for solutions to Gaussian curvature equa-

tions based on [21, 29, 30]. The key lower bound estimate for solutions to Gaussian curvature

equations, which is needed to use [29, 30], is based on the non-collapsing result of Croke and

Karcher [13] and a Harnack-type estimate from Li and Schoen [22]. Our approach in spirit is to

show that a complete, noncompact, nonnegatively curved, nonflat, immersed surface in H
3 lies

inside a horosphere, hence has an asymptotic boundary at infinity of exactly one point. Then

the embeddedness follows from Epstein [16].

This paper is organized as follows: In Section 2 we introduce the geometry of horospherical

metrics for weakly horospherically convex hypersurfaces in hyperbolic space and some frame-

work from [18, 3, 4]. In Section 3 we apply the embedding Theorems 2.2 and 2.3 (see also [4])

to prove the conjecture of Alexander and Currier [2] in higher dimensions (n ≥ 3). In Section

4 we present the proof of the conjecture of Alexander and Currier [2] in the case when n = 2.

Acknowledgment The authors would like to express their gratitude to Professor Jose Espinar

at IMPA for his interest in this work. We are very appreciative of his careful reading that led to

the current version.
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2 Hyperbolic Gauss Maps and Horospherical Metrics

In this section we recall the definitions of hyperbolic Gauss maps and weak horospherical con-

vexity to set our terminologies and notations. Readers are referred to the papers [15, 17, 18, 3, 4]

for more details.

For n ≥ 2, we denote Minkowski spacetime by R
1,n+1, which is the vector space R

n+2

endowed with the Minkowski spacetime metric 〈, 〉 given by

〈x̄, x̄〉 = −x20 +
n+1∑

i=1

x2i ,

where x̄ ≡ (x0, x1, . . . , xn+1) ∈ R
n+2. Then hyperbolic space, de Sitter space, and the positive

null cone are given by the respective hyperquadrics

H
n+1 =

{
x̄ ∈ R

1,n+1 : 〈x̄, x̄〉 = −1, x0 > 0
}
,

S
1,n =

{
x̄ ∈ R

1,n+1 : 〈x̄, x̄〉 = 1
}
,

N
n+1
+ =

{
x̄ ∈ R

1,n+1 : 〈x̄, x̄〉 = 0, x0 > 0
}
.

We identify the ideal boundary at infinity ∂∞H
n+1 of hyperbolic space with the unit round

sphere S
n sitting at x0 = 1.

Definition 2.1. (cf. [6, 15, 17]) Let φ :Mn → H
n+1 denote an immersed oriented hypersurface

in H
n+1 with unit normal η :Mn → S

1,n. The hyperbolic Gauss map

G :Mn → S
n

of φ is defined as follows: for p ∈Mn, the imageG(p) ∈ S
n is the point at infinity of the unique

horosphere in H
n+1 passing through φ(p) and whose outward unit normal at φ(p) agrees with

η(p).

Given an oriented, immersed hypersurface φ : Mn → H
n+1 with unit normal vector field

η :Mn → S
1,n, the light cone map ψ associated to φ is defined by

ψ := φ− η :Mn → N
n+1
+ .

As the ideal boundary S
n of Hn+1 is identified with the unit round sphere at x0 = 1, we have

ψ = eρ(1, G), (2.1)

where ψ0 = eρ is the so-called horospherical support function of the hypersurface φ [18].

Note that, in our convention given in Definition 2.1, horospheres with outward orientation
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are the unique surfaces such that both the hyperbolic Gauss map and the associated light

cone map are constant. Moreover, if x ∈ S
n is the point at infinity of such a horosphere,

then ψ = eρ(1, x) where ρ is the signed hyperbolic distance of the horosphere to the point

O = (1, 0, . . . , 0) ∈ H
n+1 ⊆ R

1,n+1.

Considering the fact that horospheres are intrinsically flat, one can then use horospheres to

define concavity/convexity for hypersurfaces in hyperbolic space.

Definition 2.2. (cf. [24, 18, 4]) Let φ : Mn → H
n+1 be an immersed oriented hypersurface

and let Hp denote the horosphere in H
n+1 that is tangent to φ(M) at φ(p) whose outward unit

normal at φ(p) agrees with η(p). We will say that φ is weakly horospherically convex at p if

there exists a neighborhood V ⊂Mn of p so that φ(V \{p}) stays outside of Hp. Moreover, the

distance function of the hypersurface to the horosphere does not vanish up to the second order

at p in any direction.

Due to [18], we have the following characterization of weakly horospherically convex hy-

persurfaces.

Lemma 2.1. ([18]) Let φ : Mn → H
n+1 be an immersed oriented hypersurface. Then φ is

weakly horospherically convex at p if and only if the principal curvatures κ1, . . . , κn of φ at p
are simultaneously > −1. In particular, φ is weakly horospherically convex at p implies that

dG is invertible at p and therefore the hyperbolic Gauss map of φ is a local diffeomorphism.

To realize this second statement, let {e1, . . . , en} denote an orthonormal basis of principal

directions of φ at p and let κ1, . . . , κn denote the associated principal curvatures. Then dφ(ei) =
ei and dη(ei) = −κiei for i = 1, . . . , n, so as in [18], it follows that

〈(dψ)p(ei), (dψ)p(ej)〉R1,n+1 = (1 + κi)
2δij = e2ρ〈(dG)p(ei), (dG)p(ej)〉Sn , (2.2)

where gSn denotes the round metric on S
n. Now given an immersed oriented weakly horospher-

ically convex hypersurface φ : Mn → H
n+1, one can use the hyperbolic Gauss map (or light

cone map) to induce a canonical locally conformally flat metric on Mn as follows:

Definition 2.3. ([16, 17, 18]) Let φ : Mn → H
n+1 be an immersed oriented weakly horo-

spherically convex hypersurface. Then the hyperbolic Gauss map G : Mn → S
n is a local

diffeomorphism. We consider the locally conformally flat metric

gh = Ψ∗〈, 〉Ln+2 = e2ρG∗gSn (2.3)

on Mn and call it the horospherical metric associated to the immersed oriented weakly horo-

spherically convex hypersurface φ.
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For a weakly horospherically convex hypersurface φ, its associated light cone map Ψ is

spacelike and parameterizes a codimension 2 submanifold in R
1,n+1. φ and η provide two unit

normal fields to Ψ and the second fundamental form is given by

IIΨ(ei, ej) = (
1

1 + κi
φ− κi

1 + κi
η)gh(ei, ej) (2.4)

where {e1, . . . , en} is an orthonormal basis of principal directions with respect to φ. Hence, due

to the Gauss equations in R
1,n+1, the sectional curvatures of the horospherical metric gh on Mn

are given by

Kgh(
ei

1 + κi
,

ej
1 + κj

) = 1− 1

1 + κi
− 1

1 + κj
=

κiκj − 1

(1 + κi)(1 + κj)
. (2.5)

When n ≥ 3, the Schouten tensor then is given by

Schgh(ei, ej) = (
1

2
− 1

1 + κi
)gh(ei, ej). (2.6)

When n = 2, instead, one considers the symmetric 2-tensor

P = −∇G∗g
S
2dρ+ dρ⊗ dρ− 1

2
(|dρ|2G∗g

S
2
− 1)G∗gS2, (2.7)

whose eigenvalues are
1

2
− 1

1 + κ1
and

1

2
− 1

1 + κ2
, (2.8)

whose trace is the Gaussian curvature

Kgh =
κ1κ2 − 1

(1 + κ1)(1 + κ2)
, (2.9)

and whose divergence is 2dKgh. Hence we get the Gaussian curvature equation

−∆G∗g
S
2ρ+ 1 = Kghe

2ρ. (2.10)

When the hyperbolic Gauss map G : Mn → S
n of a weakly horospherically convex hyper-

surface φ : Mn → H
n+1 is injective, one may push down the horospherical metric gh onto the

image

Ω = G(M) ⊂ S
n (2.11)

to obtain the conformal metric

ĝh = (G−1)∗gh = e2ρ̂gSn , (2.12)

6



where ρ̂ = ρ ◦G−1 : Ω → R. When there is no confusion, we will also refer to this conformal

metric ĝh as the horospherical metric. The correspondence between weakly horospherically

convex hypersurfaces φ : Mn → H
n+1 in hyperbolic space and the conformal metric ĝh on

the image Ω of the Gauss map G have been promoted in [16, 18, 3, 4, 5]. The following result

follows from the so-called global correspondence from [4, 5, 18] and will be useful to our work

here.

Theorem 2.1 (cf. [4, 5, 18]). For n ≥ 2, let φ : Mn → H
n+1 be a complete uniformly weakly

horospherically convex hypersurface with injective hyperbolic Gauss map G :Mn → S
n. Then

• φ induces a complete conformal metric ĝh = e2ρ̂gSn on the image Ω = G(M) ⊂ S
n with

bounded curvature.

• More importantly, the asymptotic boundary ∂∞φ(M) ⊂ S
n at infinity of the hypersurface

φ in H
n+1 coincides with the boundary ∂Ω ⊂ S

n of the Gauss map image.

• One may use the image Ω of Gauss map as the parameter space to reparametrize φ so

that the Gauss map

G(x) = x : Ω → S
n

and

φt =
eρ+t

2
(1 + e−2(ρ+t)(1 + |∇ρ|2))(1, x) + e−(ρ+t)(0,−x+∇ρ) (2.13)

is the nornal flow of the hypersurface φ(M).

The contribution of [3] is the use of the normal flow of a weakly horospherically convex

hypersurface with injective hyperbolic Gauss map to possibly unfold the hypersurface into an

embedded one. This is because the leaves of regular part of the normal flow are the same as the

level surfaces of the geodesic defining function of the horospherical metric ĝh (cf. [3, 4]). For

instance, it is observed in [3] that any horospherical ovaloid can be deformed along its normal

flow into an embedded one. Consequently this leads to new proofs of Obata type theorems for

horospherical ovaloids. In [4, 5], based on the global correspondence theorem, we established

an extension of the embedding theorem of Epstein [16] as follows:

Theorem 2.2. (cf. [4, 5]) For n ≥ 2, let φ : Mn → H
n+1 be a complete uniformly weakly

horospherically convex hypersurface with injective hyperbolic Gauss map G : Mn → S
n.

Suppose that the asymptotic boundary ∂∞φ(M) at infinity of the hypersurface is a disjoint

union of smooth closed submanifolds in S
n. Then, along the normal flow from the hypersurface,

the leaves eventually become embedded.

An argument similar to those in [31, 16] results in the following slight extension of the

embedding theorem of Epstein [16].
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Theorem 2.3. For n ≥ 2, let φ :Mn → H
n+1 be a complete, locally strictly convex, immersed

hypersurface. Suppose that the asymptotic boundary ∂∞φ(M) at infinity of the hypersurface is

a single point in S
n. Then the hypersurface is in fact embedded.

Proof. For convenience of readers, we would like to present a proof based on the arguments

in [31, 16], which are similar to those in [4]. Since the asymptotic boundary at infinity of

the hypersurface is a single point in S
n, one may find a family of round (n − 1)-spheres in

S
n to foliate the sphere S

n with the point and its antipodal point deleted. Then the family of

hyperplanes whose asymptotic boundary at infinity are the family of round (n − 1)-spheres

foliates hyperbolic space. To finish the argument one simply needs to observe that, close to

the first touch point of the hyperplanes and the hypersurfaces from the antipodal point, the

hypersurface is locally embedded and the intersections of the hyperplanes and hypersurfaces are

embedded convex topological spheres. Moreover, everything remains the same up to the end.

The connectedness and convexity of the hypersurface force each intersection to be connected

and convex. The embeddedness of the intersections is due to [14].

3 Embeddedness in Higher Dimensions

In this section we consider noncompact hypersurfaces immersed in hyperbolic space with non-

negative sectional curvature and present a proof for the conjecture of Alexander and Currier [2]

in higher dimensions (n ≥ 3). Based on the injectivity of development maps of Schoen and

Yau [25, 26] and the Hausforff dimension estimates of Zhu [34], the proof of the conjecture

of Alexander and Currier [2] is rather straightforward following our work in [4] and the brief

summary in the previous section.

First of all, from the curvature relations (2.5), we have:

Lemma 3.1. Suppose that φ : Mn → H
n+1 is a nonnegatively curved immersed hypersurface.

Then φ is weakly horospherically convex and the horospherical metric is also nonnegatively

curved.

Proof. It is easily seen that a nonnegatively curved hypersurface in hyperbolic space is weakly

horospherically convex, in fact, it is strictly convex. Then the lemma is a simple consequence

of (2.5).

There does not seem to be any analog of Lemma 3.1 available if we consider nonnegative

Ricci curvature for the hypersurface φ instead. In higher dimensions (n ≥ 3), using the works

in [25, 26, 34], we obtain the following:

Lemma 3.2. For n ≥ 3, let φ : Mn → H
n+1 be a complete, nonnegatively curved, immersed

hypersurface. Then the hyperbolic Gauss map is a development map from (Mn, gh) and injec-

tive. Moreover, the Hausdorff dimension of ∂G(M) = S
n\G(M) is zero.
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Proof. Due to the uniform weak horospherical convexity (strict convexity) of the hypersurface

φ, the completeness of the hypersurface implies the completeness of the horospherical metric gh.

In the light of Lemma 3.1, (Mn, gh) is a complete, nonnegatively curved Riemannian manifold.

Therefore the lemma follows from the injectivity theorem of Schoen and Yau in [25, 26] and the

Hausdorff dimension estimates of Zhu in [34]. Notice that the theorem of Schoen and Yau only

needs gh to have nonnegative scalar curvature and the Hausdorff estimates of Zhu only need gh
to be Ricci nonnegative.

One more ingredient for our proof of the conjecture of Alexander and Currier [2] in higher

dimensions (n ≥ 3) is the following:

Lemma 3.3. Suppose that φ : Mn → H
n+1 is a nonnegatively curved immersed hypersurface.

Then along the normal flow (2.13) the hypersurface remains nonnegatively curved.

Proof. For the normal flow (2.13) in hyperbolic space, one knows exactly how the principal

curvatures evolve:

κti =
κi + tanh t

1 + κi tanh t
. (3.1)

One may then calculate the sectional curvatures Kt
ij = κtiκ

t
j − 1 for t > 0 to find

Kt
ij = κtiκ

t
j − 1 =

Kij(1− tanh2 t)

(1 + κ1 tanh t)(1 + κ2 tanh t)
≥ 0, (3.2)

where Kij are the sectional curvatures of φ.

We are now ready to prove the conjecture of Alexander and Currier [2] in higher dimensions

(n ≥ 3).

Proof. (Main Theorem in higher dimensions) For n ≥ 3, let φ : Mn → H
n+1 be an im-

mersed, complete, noncompact hypersurface with nonnegative sectional curvature. In the light

of Lemma 3.2 the hyperbolic Gauss map G : Mn → S
n is injective and the Hausdorff dimen-

sion of ∂G(M) ⊂ S
n is zero. According to Theorem 2.1 (cf. [4]), we have

∂∞φ(M) = ∂G(M).

Now, if ∂∞φ(M) = ∂G(M) were empty, then φ(M) would be compact. Moreover, since any

set of Hausdorff dimension zero is totally disconnected, due to the splitting theorem of Cheeger

and Gromoll [10], the asymptotic boundary ∂∞φ(M) = ∂G(M) consists of either one single

point or exactly two points.

When ∂∞φ(M) is a single point, the result follows from Theorem 2.3. Assume ∂∞φ(M)
consists of exactly two points. We then first apply Theorem 2.2 (please also see [4]) and ob-

serve that along the normal flow the nonnegatively curved hypersurface φt is embedded for
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sufficiently large t. Notice that the nonnegativity of the sectional curvatures of φt follows from

Lemma 3.3. Therefore, by the rigidity result of Alexander and Currier [1, 2], for t sufficiently

large the hypersurface φt has to be an equidistant hypersurface about a geodesic line in hy-

perbolic space. This forces the hypersurface φ to be an equidistant hypersurface in hyperbolic

space. Thus the proof of the conjecture of Alexander and Currier [2] in higher dimensions

(n ≥ 3) is complete.

4 Embeddedness of Nonnegatively Curved Surfaces

In this final section we consider noncompact, complete surfaces immersed in H
3 with nonneg-

ative Gaussian curvature and present a proof of the conjecture of Alexander and Currier [2] in

dimension 2.

Suppose that φ : M2 → H
3 is a complete, nonnegatively curved, immersed surface. We

may assume the surface is locally strictly convex after a change of orientation, if necessary.

Therefore the hyperbolic Gauss map G : M2 → S
2 is a local diffeomorphism, and the horo-

spherical metric gh is complete (cf. Theorem 2.1) and nonnegatively curved in the light of (2.9).

In fact, the symmetric tensor P associated with the horosphericl metric gh satisfies

−1

2
gh < P <

1

2
gh (4.1)

according to (2.8). With the complex structure given by the horospherical metric gh the Gauss

map G is a conformal map into the Riemann sphere. Lemma 3.2 breaks down in dimension 2

because of the abundance of local holomorphic functions (the lack of Liouville Theorem). The

search for a type of Picard theorem for holomorphic functions analogous to Lemma 3.2 in di-

mension 2 is technically much more difficult, though it seems to be a classic topic. We are going

to rely on the growth estimate (4.5) in Lemma 4.2 based on [21, 29, 30] for the support function

ρ as a solution to the Gaussian curvature equation (2.10). The novelty of our approach is to

recognize that nonflatness implies that the asymptotic boundary at infinity consists of exactly

one point and embeddedness then follows directly from the embedding theorem of Epstein [16]

as a hyperbolic analog of the embedding theorem of van Heijenoort [31].

Let π : M̃2 → M2 be the universal covering map. Then we consider the new parametriza-

tion φ̃ = φ ◦ π : M̃2 → H
3 with the hyperbolic Gauss map G̃ = G ◦ π : M̃2 → S

2 and

the horospherical metric g̃h = π∗gh whose Gaussian curvature Kg̃h = Kgh ◦ π ≥ 0. Most

importantly we have the symmetric tensor

P̃ = P ◦ π = −∇2
G̃∗g

S
2
ρ̃+ dρ̃⊗ dρ̃− 1

2
(|dρ̃|2

G̃∗g
S
2
− 1)G̃∗gS2 ,
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where ρ̃ = ρ ◦ π and

−1

2
g̃h < P̃ <

1

2
g̃h. (4.2)

It follows from Theorem 15 in [21] of Huber that (M2, gh) is parabolic when the surface φ is

nonnegatively curved. Therefore the universal cover M̃2 ofM2 is biholomorphic to the complex

plane C.

4.1 Flat Cases

In this subsection we present a proof to the following theorem of Volkov and Vladimirova [32].

Our proof paves a way for us to handle the nonflat cases in next subsection.

Theorem 4.1 ([32]). Let φ be an isometric immersion from Euclidean plane to hyperbolic 3-

space. Then φ is either a covering map of an equidistant surface about a geodesic line in H
3 or

it is an embedded horosphere.

Proof. First of all it follows from (2.9) that Kgh ≡ 0 whenever Kφ ≡ 0. Therefore (R2, gh)
is isometric to the Euclidean plane. Let z = (x, y) be the Euclidean coordinate for (R2, gh) so

that

|dz|2 = gh = e2ρG∗gS2.

From the properties of the tensor P , we know that P is a symmetric 2-tensor, which is trace-free,

divergence-free and bounded in the sense that

−1

2
|dz|2 < P <

1

2
|dz|2.

Thus P is in fact constant since P is associated with a bounded holomorphic function on C.

This implies that the principal curvatures of the surface are both constant (i.e. the surface is

an isoparametric surface). Therefore it is a horosphere when P = 0 and an equidistance surface

when P 6= 0 according to the classification of isoparametric surfaces in hyperbolic 3-space (cf.

for example, [7, 8, 32]). So the proof is complete.

We would like to point out that in the case when P = 0 (i.e. when the surface is a horo-

sphere), one in fact can explicitly find that

ρ(x, y) = log(C[(x− x0)
2 + (y − y0)

2] +
1

4C
) (4.3)

for some positive constant C.
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4.2 Nonflat Cases

In this subsection we consider a complete, noncompact, nonnegatively curved, nonflat, im-

mersed surface φ : M2 → H
3. We will focus on how to recognize and use the nonflatness.

From Huber’s result [21], we know the universal cover (M̃2, g̃h) is globally conformal to the

Euclidean plane. Let z = (x, y) be the Euclidean coordinate for M̃2 so that

e2ρ̃0 |dz|2 = g̃h = e2ρ̃G̃∗gS2 .

Rewrite the relation above as

|dz|2 = e2(ρ̃−ρ̃0)G̃∗gS2 = e2ρ0G̃∗gS2

for ρ0 = ρ̃− ρ̃0 and consider the symmetric 2-tensor

P0 = −∇2
G̃∗g

S
2
ρ0 + dρ0 ⊗ dρ0 −

1

2
(|dρ0|2G̃∗g

S
2
− 1)G̃∗gS2. (4.4)

It is perhaps helpful to think that with the Gauss map G̃ and support function eρ0 , P0 corresponds

to a “surface” in H
3 as in Theorem 2.1. What is this “surface”? From the discussion in the flat

cases in the previous subsection we know that it is a horosphere if P0 vanishes. The following

is a simple calculation.

Lemma 4.1. In the (x, y) coordinates

(P0)11 = ∂2xρ̃0 −
1

2
((∂xρ̃0)

2 − (∂yρ̃0)
2) + P̃11,

(P0)22 = ∂2y ρ̃0 −
1

2
((∂yρ̃0)

2 − (∂xρ̃0)
2) + P̃22,

(P0)12 = (P0)21 = ∂x∂yρ̃0 − (∂xρ̃0)(∂yρ̃0) + P̃12,

where

P̃ = −∇2
G̃∗g

S
2
ρ̃+ dρ̃⊗ dρ̃− 1

2
(|dρ̃|2

G̃∗g
S
2
− 1)G̃∗gS2

is the Schouten tensor for the surface φ̃.

The most important technical tool in this case is the following sharp growth estimates for

solutions to Gaussian curvature equations based on [21, Theorem 10], [29, Lemma 3], and [30,

Theorem 2.1]. We will present the proof in the next subsection.

Lemma 4.2. Suppose that (R2, e2u|dz|2) is complete, noncompact, nonnegatively curved, and

nonflat. If the Gaussian curvature is bounded, then

u = −m log
√
1 + |z|2 + o(log

√
1 + |z|2) as |z| → ∞ (4.5)

for some m ∈ (0, 1].
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We are now ready to prove that P0 vanishes.

Lemma 4.3. The Schouten tensor P0 in (4.4) vanishes identically on R
2 and ρ0 is given as a

solution in (4.3).

Proof. First of all we know that P0 is trace-free and divergence-free since e2ρ0G̃∗gS2 = |dz|2 is

flat. To show P0 is in fact identically zero one just needs to show |P0| ∈ Lp(R2) for some p > 1,

in the light of, for instance, [33, Theorem 3]. As the Gaussian curvature of g̃h is bounded, by

applying Lemma 4.2, we get

ρ̃0 = −m log
√
1 + |z|2 + o(log

√
1 + |z|2) as |z| → ∞

for some m ∈ (0, 1]. Then from (4.2) we know that

|P̃ | ≤ Ce2ρ̃0 ≤ C

(1 + |z|2)m
2

, (4.6)

and hence |P̃ | belongs to Lp(R2) for some large p > 1. From interior estimates to the Gaussian

curvature equation

−∆ρ̃0 = Kg̃he
2ρ̃0 (4.7)

From the Schauder and Lp estimates of [19], we have

{
R2− 2

p‖∂2ρ̃0‖Lp(BR(0)) ≤ C(‖ρ̃0‖C0(B2R(0)) +R2− 2
p‖Kg̃he

2ρ̃0‖Lp(B2R(0))),

r‖∂ρ̃0‖C0(Br(z)) ≤ C(‖ρ̃0‖C0(B2r(z)) + r2‖Kg̃he
2ρ̃0‖C0(B2r(z))).

(4.8)

From (4.6) and the first inequality of (4.8) as R → ∞, we have ∂2ρ̃0 ∈ Lp(R2) for any p
sufficiently large since Kg̃h is bounded. Meanwhile, from the second inequality of (4.8) and

m ∈ (0, 1] for

r = (1 + |z|2)m
4 <

1

2
|z|,

at least when |z| > 2
√
2, we get

|∂ρ̃0(z)| ≤
C

(1 + |z|2)m
4

(log |z| + C),

which implies that |∂ρ̃0(z)|2 ∈ Lp(R2) for p sufficiently large. Therefore, due to Lemma 4.1, it

follows that |P0| ∈ Lp(R2).

With P0 = 0, we now know that the support function ρ0 and the Gauss map G̃ indeed induce

a real “surface”, which in fact is a horosphere. Thus the proof is complete.
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We are now ready to complete the proof of the conjecture of Alexander and Currier [2] in

dimension 2.

Proof of the Main Theorem in nonflat cases in dimension 2 From Lemma 4.3 we know G̃ is an

injective map which misses only one point q ∈ S2. So the covering map π is a diffeomorphism.

From (4.3) and (4.5) we have

ρ̃ = ρ0 + ρ̃0 = (2−m) log |z|+ o(log |z|), m ∈ (0, 1]

as z → +∞. So ρ̃(G̃−1(ξ)) → +∞ as ξ → q, which, together with the proof of Lemma 3.2

of [4], implies that ∂∞φ(M) = {q}. We remark that one may derive the same conclusion from

[5]. From the embedding theorem of Epstein in [16], we know φ is embedding. ✷

4.3 Proof of Lemma 4.2

In this subsection we prove Lemma 4.2. We start with [30, Theorem 2.1] as follows:

Theorem 4.2. ([30, Theorem 2.1]) Let v(x, y) be a C2 positive solution of

0 ≤ −∆v ≤ Ce2v

in a punctured neighborhood of the origin in R2 for a constant C. Then either v has C1 exten-

sion to the origin or

lim
|x|→0+

v(x, y)

log(1/
√
x2 + y2)

= m1

for some finite positive number m1.

Remark 4.1. By considering v(x, y)− inf v(x, y), one can easily extend the above theorem to

the case that v(x, y) is just bounded from below.

To apply Theorem 4.2 we first take an inversion. Let z̃ = z
|z|2 be the inversion map. Then

|dz|2 = 1

|z̃|4 |dz̃|
2 and g = e2u|dz|2 = e2(u−2 log |z̃|)|dz̃|2 = e2v|dz̃|2

where

v(z̃) = u(
z̃

|z̃|2 )− 2 log |z̃|. (4.9)

We then have

−∆̃v = Kg(
z̃

|z̃|2 )e
2v = K̃ge

2v in R
2\{0}. (4.10)

14



It is clear that, in order to apply Theorem 4.2, we need to obtain a lower bound first for

the conformal factor v. To this purpose we first observe that e−v is a subharmonic function on

(R2, e2v|dz̃|2), that is,

∆ge
−v = e−v|∇gv|2 − e−v∆gv = e−v(|∇gv|2 + K̃g) ≥ 0.

To obtain the lower bound, we recall [22, Theorem 1.2]. To state their theorem we consider a

Riemannian manifold M , x0 ∈ M , and a radius r such that, if M has no boundary, r is less

than half of the diameter of M ; if ∂M 6= ∅, r < 1
5
dist(x0, ∂M).

Theorem 4.3. ([22, Theorem 1.2]) Suppose that Mn is a Riemannian manifold with Ric ≥
−(n− 1)k. Let x0 ∈ M and r given as above. Then for a nonnegative subharmonic function v
we have, for a constant C depending only on the dimension and any τ ∈ (0, 1

2
),

sup
B(1−τ)r(x0)

v2 ≤ τ−C(1+
√
kr) 1

vol(Br(x0))

ˆ

Br(x0)

v2dvol. (4.11)

We therefore have, for the conformal factor v in (4.10),

sup
B(1−τ)r(x0)

e−2v ≤ τ−C 1

volg(Br(x0))

ˆ

Br(x0)

e−2vdvolg

≤ τ−C
vol|dz̃|2(Br(x0))

volg(Br(x0))
.

(4.12)

Fortunately, we have a non-collapsing result in dimension 2 from [13, Theorem A] as fol-

lows:

Theorem 4.4. ([13, Theorem A]) If (M2, g) is complete and nonnegatively curved, then there

exists a constant C(M) such that, for r ≤ 1,

volg(Br(x)) ≥ C(M)r2. (4.13)

Thus, the fact that the conformal factor v is bounded from below follows from (4.12),

(4.13), and the fact that vol|dz̃|2(Br(x0)) is bounded. In fact, in this way we may conclude

that v(x0) → ∞ as z̃(x0) → 0.

Now we are ready to finish the proof of Lemma 4.2.

Proof of Lemma 4.2 According to Theorem 4.2, we get

v(z̃) = m1 log
1

|z̃| + o(log
1

|z̃|) as z̃ → 0
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for some constant m1 > 0. Next we claim that m1 ≥ 1 since the metric g = e2v|dz̃|2 is com-

plete and noncompact at the origin.

Assume otherwise m1 < 1. Then let m2 ∈ (m1, 1) and rs be sufficiently small so that

v < m2 log
1

|z̃| for all 0 < |z̃| < rs,

which implies

exp(v) < |z̃|−m2 for all 0 < |z̃| < rs

and
ˆ rs

0

exp(v(t, 0))dt <

ˆ rs

0

t−m2dt <∞.

This contradicts the assumption that the metric g = e2v|dz̃|2 is complete and noncompact at the

origin.

Therefore, from (4.9), we have

u(z) = (2−m1) log
1

|z| + o(log
1

|z|) as |z| → ∞,

where m = 2−m1 ≤ 1.

To see m > 0 when g is nonnegatively curved and nonflat, we recall

−∆u = Kge
2u ≥ 0 in R

2.

Taking an approach similar to that in the proof of [29, Lemma 3], for 0 < r2 < r1, we have that

r2ū
′(r2) = r1ū

′(r1) +
1

2π

ˆ

r2<|z|<r1

Kge
2u, (4.14)

where

ū(r) =
1

2π

ˆ 2π

0

u(r cos θ, r sin θ)dθ.

Then

|ū′(r)| ≤ 1

2π

ˆ 2π

0

|∇u(r cos θ, r sin θ)|dθ

and therefore

lim
r2→0+

r2ū
′(r2) = 0.

16



Plugging this back into (4.14), we have that

r1ū
′(r1) = − 1

2π

ˆ

|z|<r1

Kge
2u.

Now, from u = m log 1
|z| + o(log |z|) as |z| → ∞, it follows that

lim
r1→∞

r1ū
′(r1) = −m = −

ˆ

R
2
Kge

2u < 0,

as Kg ≥ 0 and is not identically 0. ✷
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