Lawrence Berkeley National Laboratory
Recent Work

Title

THE TRANSPORT PROPERTIES OF SODIUM POLYSULFIDE MELTS AND A THEORETICAL
COMPARISON OF FLOW-THROUGH AND FLOW-BY POROUS ELECTRODES AT THE LIMITING
CURRENT

Permalink
https://escholarship.org/uc/item/5zw143ws

Author
Risch, T.

Publication Date
1983-12-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5zw143ws
https://escholarship.org
http://www.cdlib.org/

vgs—-\‘.

la! .
PTEEA -
v b

LBL-17160

C.

‘Lawrence Berkeley Laboratory

- UNIVERSITY OF CALIFORNIA

| =R ol i el AW AL el o

LAWRENCE

Materials & Molecular
Research Division fr 17 1984

IBRARY AND
POCUMENTS SECTION

THE TRANSPORT PROPERTIES OF SODIUM POLYSULFIDE
MELTS AND A THEORETICAL COMPARISON OF FLOW-THROUGH
AND FLOW-BY POROUS ELECTRODES AT THE LIMITING.

CURRENT

T. Risch
(M.S. Thesis)

December 1983

-
TWO-WEEK LOAN COPY

" This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 6782.

\

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

-

0 | = 1]



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



The Transport Properties of Sodium Polysulfide Melts
and
A Theoretical Comparison of Flow—Through and Flow—By
Porous Electrodes at the Limiting Current

Tim Risch

Master’s Thesis

Materials and Molecular Research Division

Lawrence Berkeley Laboratory
and

Department of Chemical Engineering
University of California

Berkeley, California 94720

December 15, 1983



The Transport Properties of Sodium Polysulfide Melts and
A Theoretical Comparison of Flow—Through and Flow—By

Porous Electrodes at the Limiting Current
Timothy Kent Risch

Abstract

Two current problems of electrochemical interest are addressed. In the
first section, the transport properties of sodium polysulfide melts are
investigated using two models. A macroscopic model is first proposed which
considers the melt to be composed of sodium cations and sulfide anions in a
neutral éulfur solvent. A rigorous set of governing equations is derived for
this pseudo—binary melt model which accounts for binary ionic~ionic and
ionic—solvent interactions. Fundamental transport parameters are defined
which quantify the interactions within the melt. These-are then related to
measurable transport properties and calculated from experimental data.
The resulting values for the transport parameters are shown to exhibit

unpredictable behavior.

A more sophisticated model is then developed which considers sodium
cations and seven different polysulfide anions as the sole melt components.
A consistent set of transport equations is then derived for this assumed melt
composition. Transport parameters appearing in these equations are
related to bulk transport melt properties. Predictions of the melt diffusion
coeflicient are made from this model using available transference number
and conductivity data. The predictions are shown to lie within the ranges of

conflicting experimental data for diffusion coefficients in polysulfide melts.



In the ‘second part, a limiting curre}nt model for the potential and
concentration distributioh for a low=by porous electrode of inﬁniteb length
to width ratio is developed and compared to previous models of Alkire and
Ng and Fedkiw. For flow—by electrodes of practical interest, the maximum
solution phase potehtial drop is shown to be dependent upon one relevant

parameter: the product of the electrode width and the reciprocal of the

penetration de»pf.h. ad. Criteria dé’ﬁneating the optimal electrode.

configuration are given using this potential difference as a basis for

clornparison. Design equations ‘are also derived for the flow=~through and
flow-by electrode at the limiting current relatihg,ﬁxed and Qariab_le co’stsvto
'electfode deéigrﬁ aﬁd operating variables. The sum of fixed and vaﬁable
cosf.s is then optimized for the 'ﬂow-through and ﬂow-b& configurations.
Tﬁe results of this optimization give the ‘conditions uﬁder which each

conflguration is preferred.
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Chapter 1
Overview

This thesis deals with two separate problems of current electrochemical
interest. In the first section comprising Chapters Two, through Six, the
transport properties of sodium polysulfide rnélts are investigated. The
second part, Chapters Seven through Thirteen, deals with the optimization

of flow porous electrodes.

Sodium—sulfur cells, which are undergoing intensive development,
‘utilize a melt composed of varying amounts of sodium and sulfur. For
accurate design and scale up of this system, it is important to understand
the transport processes of the melt. The combined effects of diffusion,
migration, and convection are studied in this work. A consistent set of
transport quations which completely describe these processes is
formulated in terms of two viewpoints regarding the composition of the melt.
A macroscopic meit model is first developed with the principal constituents
of the melt assumed to be sodium cations, sulfur anions, and neutral sulfur
solvent. This macroscopic model is used to define and correlate measurable
thermodynamic and transport properties[ A second model considers the
melt to include only sodium cations and polysulfide anions without neutral
sulfur. Using this microscopic model, the transport properties of sodium
polysulfide melts are predicted and compared with some recent
experimental data. Reasonable agreement between the model and the data

is obtained.

The second portion of the thesis studies porous flow electrodes. The

use of these electrodes has been suggested for many industrially important



procésses., Currently,} opinion within the literature is- divided over the
optimum configuration of porous electrodes. The flow—through design,
where current flows parallel to ﬂuid flow has been the long—established
configuration for flow porous electrodesl More recently, the low—by idesign,
“with perpendicﬁ}ar fluid and current flow, has been sugge'_st;ed by many to be
supefior to the ﬁéw-th‘rough design. A economic optihﬁzation' is performed
here to determine the conditions favoring -the application of each
conﬁgura.t.ion.' It is shown that the.ﬁow—by désign_ is more 'ecAo.nornical for
proc,essés with high feed concentrations and low ma:timufh allowable
S'o’luf.ion 'poten‘tial drops. The ﬂowélby configuration is prev.ferred for low feed

concentrations and high maximum solution potential drops.



Chapter 2
The Transport Properties of Sodium Polysulfide Melts;

Introduction

Molten sodium sulfide and sodium polysulfides are invol\}ed in a number
of‘practical engineering applications. The regeneration of caustic in the
Kraft process for pulp production requires a slag of molten salts containing
high concentrations of sulfides.! Sodium polysulfides have also been used as
-a source for the growth of high purity metal sulfide crystals.? By far the
most promising application for sodium sulfides is as the positive electrode in
a sodium-sulfur secondary cell. Sodium-sulfur batterieé are expected to
possess a high specific energy, greater than 150 W-hr/kg, and a cycle life
greater than 1000 cycles.3 These characteristics, combined with the
abundant availability and the low price of sulfur, make the sulfur electrode
and the sodium-sulfur battery attractive for both vehicle propulsion and

utility load leveling applications.

The sodium-sulfur cell is perhaps the most advanced of the current
molten—salt high temperature systems, and the closest to commercial
viability. Many corporations through private research and development
programs along with the cooperation of government laboratories are
developing the sodium-sulfur cell. Some recent reviews can be useful in

supplementing the information which follows.%¢

2.1. Fundamental Reactions and Phase Diagram

The fundamental reaction in the sodium-sulfur cell is the combination

of metallic sodium with sulfur to form sodium polysulfides



2Na + yS - Na,S,, . (2-1)
v _

" The formula Na,S, designates the non—stoichiometric sodium polysulfide.
The value of ¥y can lie between the value of 2 and approximately 5. This
Ibehavio‘r can best be explained by referring to a phase diagram for sodium
and sulfur shown in. Figure 2-1.7 In this figure, the existence of diﬂefent
phases is plotted for different t.e_mp}er'at._ures and varying overall melt
E‘:.ompovs’itions. The melt composition has been designated by the mole
percent of sulfuf or by the variable y. The most important part of this.
.diallgrani is for atom .percent.vs of. sulflﬁr.frorﬁ about 60 to 100 p’erc’e’nt. This 1S

the c_ompositio'n range where the sodium=-sulfur batteryoperétes. -

Figui‘ve' 2-1 sho\wsb the existence of flve regions 'bétween the
temperatures of 573 to 873 K spanniﬂg the cor:nposit.ions of 33 to 100 mole
percent sulfur. For a_rne_lt composed of nearly pufe sulfur, lvocated at thek
- far righf. qf this ﬂgure. the first région of thé phase diaéram is encountered.
For clarity, the width of this region has b_éeﬁ exaggerated. Thé actual size of
this region is very muéh smalle_r. and if 'dr'awn a,ccufately. tbe actual width
of this region wduld.be» no wider than the lines used to séparate the regioﬁs.
In this region, sodium and sulfur combine to form a single phase . of
p,o.lysulﬁdes. The composition of this phase at any point in this region is so
nearly that of pure sulfur.. that the actual composition of this phase is
frequently ignored, and its composition is considered to be that of pure

sulfur.

At élightly lower sulfur compositions, from 72 to 100 mole percent
sulfur and temperatures above 415 K, sodium and sulfur combine to form
two liqu_id phases in. equilibrium. One phase is composed of the essentially
- pure sulfur defined by the limit of the first single phase region, while the

second phase contains sodium polysulfides with a composition of about
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Na,S The compositions of both of the phases are nearly independent of

2¥s.2
temperature, sincé the lines deﬁning these compositions are nearly vertical.
The amount of each of theée phases varies for different overall ‘sul'fur
'c-ompositionsv. The amounts can be detérmined from a‘ppli_cati'on of the
inverse lev'e"r rule. To apply this rule one first draws a line parallel to the
‘abscissa, intexfsect.i'ng. the two vertical lines defining the composition of the

two phases. The distance between these compositions is recorded. The

~amount  for one phase is then-given by the distance from the overall

composition to the_ .éomposition of the other phase divided by the recorded

distance.

For sulfur compositions below Na,S, .. a second one—phase region- of
“liquid poly;;xlﬁdes becomes_éresent. Like_the first one—phase regiqn. the
composition of this phase. v.arives'v directly with the sverall.melt composition..

The phase diagram nlustiaﬁes that for melts coinposed of less than
about sixiy_ mole percent sulfur, a fourth regioh of the phase diagram will
define the composition.' Here, at a composition» highly‘ depe»hd_ent_upon
temperéture. a second two—phase fegion is present. This region is not of
practical interest, since sodium-—sulfur cells are not designed to operate in
-this region of the phase diagram. Solid sodium disulﬁde i§ present along
with a liquid polysulfide. The approximate composition for this liquid near
523 K is Nazss. Here again, the inverse lever rule can be applied to

determine the amounts of each of these phases present.

The fifth region of the phase diagram is for overall sulfur compositions
less than a one to one mole ratio of sulfur to sodium. This region contains
no liquid phase, but is a region of two solid phases. Sodium polysulfides less

than 50 mole percent overall sulfur are produced by combining sodium



monosulfide with sodium disulfide. Sodium disulfide melts at 748 K while
sodium monosulfide melts at over 1473 K; hence no liquid is formed unless

the temperature is increased above the meilting point of the disulfide.

2.2. Equilibrium Cell Discharge

The progress of a cell through an equilibrium discharge can be followed
by examining the cell potential versus the overall sulfur composition while
referring to the phase diagram. Figure 2-2 is a plot of cell potential versus
sulfur melt composition.? From an initial state of pure sulfur, the sulfur
composition decreases as sodium ions are added to the melt. As the
discharge proceeds and sodium is added to the melt, the overall sulfur
composition of the melt decreases steadily. The discharge begins at time
zero with an initial state of pure sulfur on the left of Figure 2—2 and on the
right of Figure 2—1. In Figure 2-2, the potential versus sulfur composition
shows four distinct regions. At the start of the discharge, the potential
drops rapidly cor.responding to the depletion of sulfur in the first single
phase region. Upon formation of two phases, at an overall sodium
composition of less than one percent, the potential becomes constant with
state of charge. For this mixture of two components with two equilibrium
phases and at a fixed temperature, the phase rule requires a fixed potential.
This value is dependent upon temperature, but it is around 2.1 V.
Throughout the discharge in this two phase region, the potential remains

constant at this value.

When the overall melt composition reaches the approximate formula
Na,S, ,. all of the sulfur rich phase has been depleted. Only a single phase
remains, and as discharge continues, the concentration of sulfur in this

phase decreases. The potential decreases nearly linearly with the mole
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fraction of sulfur. Finally, if the discharge is continued far enough, the
second two phase region is encountered. Again, the presence of two phases
requires that the potential remain constant in this region. The potential of
the cell in this‘region would be about 1.75 V but, sodium sulfur cells are not
designed to operate in this region of the phase diagram. Cell discharge

should be terminated before this composition is reached.

2.3. Practical Cell Designs

The origin of the sodium sulfﬁr cell is generally credited to Kummer and
Weber®® at Ford who discovered the ionic conductive properties of
f—aluminas. It's development was not a conscious design effort to produce a
viable secondary battery, but instead the result of work designed to produce
ionically conducting glasses. Since that time, many other companies have
followed the pattern laid out by Ford énd added their own innovations to
this cell's design. One company, however, has broken from this path and
developed this same property of ionic conduction in glasses. Like the other
compani‘es. their goal is an economical sodium—sulfur cell; however, their

approach to achieving this has been quite different.

Two designs of the sodium-—sulfur battery are currently being
developed: cells incorporating hollow glass fibers as electrolytes and celis
with the original type of ceramic electrolyte. These are distinguishable
mainly by the material composing the electrolyte and by the configuration

of the cell.

The two types of sodium sulfur cells are most easily described in terms
of their similarities, however, rather than their difflerences. All
sodium-sulfur cells have three basic features: a liquid sodium negative

electrode, a sulfur positive electrode, and a glass or ceramic electrolyte.
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These cells operate at relatively high temperatures, between 573 and 633 K.
~The inclusion of liquid sodium and molten polysulfides in these cells requires
a moisture—free environment. 'I'herefb‘re. the cells must be well sealed and

isolated from the ambient air.

The sulfur electrode consists of liquid sulfur and contains, depending
upon the state of charge, varying amounts of sodium in the form of sodium
polyéulﬁdes. The sulfur electrode, while under many conditions possesses a -
respectableiionic_"covndu_ctiv'ity. has a'véry poor electronic conductivif.y.
Cvonsequen't.ly. the sulfur eleétrode' requires a current collector. Common
rﬁate‘rials are grapvhite felt, >'coated steél. semiconducting cetﬁmics or in
some designs, coated alunmaﬁm foils. To reduce ohmic drop within the rﬁelt
and to provide a high surface a"f:"ea to the reaction, the _current;-c'ollecting
"material is intgrspersed Wi‘thin the sulfur—polysulﬁde rnixturé. This .gives a
porous.; macroscopically, honio_gen'eous pvhase. 'I'hese cpmponents are-
containved within a metal can made from sta'mles‘ls steél df other metals. The
can may be p"rotect.ed from the highly corrosive sulfur by plating it with

resistant metals such as chromium or molybdenum.

Sodi_urr_x anodes afe quite simply, molten sodium metal: The electronic
co.nduct.ivity' of molten sodium is véry high ax_md requires no other current
collector. The sodium metal itself, acts as its own current collector. The
- liquid sodium is contained ina rﬁetal reservoir and must be relatively free of
impurities. Other alkali metals, besides sodium, are especially harmful and
.‘degrade the performance of the cell. These metals enter the surface
structure of the electrolyte and can block the passage of ions. When this
h;ppens. the resistance of the electrolyte increases dramaticallf. causing

loss of performance during cycling.
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The electrolyte in these cells has but one function— to prevent the
physical mixing of molten sodium metal and molten sulfur, while at the same
time allowing sodium ions free passage. The electrolyte must possess a
small, if not negligible, electronic conductivity to prevent seif discharge of
the cell. The material constraint on the electrolyte is quite severe. It must
be stable in the extremely reducing environment of sodium metal while at
the same it must remain unaflected by the oxidizing properties of sulfur. In
addition, it must not crack or mechanically rupture from thermal stresses
while under variations of temperature during freeze thaw cycles. Even more
demanding, the electrolyte must not allow sodium metal to deposit within
the crystal lattice structure. Even the strongest electrolytes can fracture if
this process occurs. It is no wonder why the electrolyte has been the source

of the major problems in the development of this system.

2.3.1. Glass Fiber Cells’

One type of cell is the glass fiber cell. These ce.lls, developed by the Dow
Chemical Company, use borate glasses as the electrolye. These fiber cells
consist of several hundred to several thousand small hollow glass fibers
immersed in a sulfur reservoir. These fibers typically have an outside
diameter of 70 um and an inside diameter of S0 um, with 10 um as a wall
thickness. Because these fibers are sensitive to moisture, all processes
involving the fibers are conducted in low humidity rooms. To produce a
glass fiber cell requires a number of detailed processes. First, glass fibers
are produced by a proprietary process which yields an extremeiy uniform,
hollow cylindrical fiber. These fibers are then cut to size, sealed at one end,

and then placed on a long strip of coated aluminum foil. The purpose of the

‘This section is written, in part, from observations made on a visit to the Dow Chemical
Research Center, Walnut Creek, CA, March 18, 1882,
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coated alurninu'rn foil is to serve as the .current colleéto,r: Graphite has been
used as ab coating, although molybdenum seems to thé most common
- material used today. On a special machine, the foil and tubes are then
spirally wound around a circular mandrill. This completed assembly, or
"jelly-roll,” then contains alternating layers of foil and the cylindrical
fibers. The tﬁbe and current coll‘eétor asser;nbly are then immersed with the
"closed end of the tubes down in a sulfur—polysulfide reservoir. Sodiﬁm
metal fills the tubes from above through the open end éf the »tgbes. The
glass tubes thus containvmovllten. sodiumm metal on the 'inSide and the
sulfur—polysulfide melt on the_outside;- In some designs, _ho;vever. the
polysulfide melt can be ﬁla#ed on' the inside, with the molten sodium
: suz"rounding the tubeé on the outside. Separating the two réservoifs and

holding the glass tubes together is a glass “tube sheet” which resembles the

ends of a shell and tube heat exchanger. The tube sheet forms a leak—proof

“'seal around the tubes and isolates the positive electrode from the negativé

electrode.

During discharge of the cell, sbdiurn ions are transferred through the
electrolyte a_nd into the sulfur reservoir. The higb surféce area of the fibers
requirés only a low flux of ions through the glass, but this is necessary
because the glass has a very vhigh resistance. Over 90 percent of the cell
fesistanée is associated with the glass. As sodium ions pass through the
glass, sulfur reacts eléctrochemically at the current collector to produce
sodium polysulfides. Because of the large number of glass tubes and the
arrangement of the current collector, the sodium ions need not travel far,

and concentration variations through the cell are small.

)
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Glass fiber cells have been experimentally tested in 0.5, 6, and 40 A—hr
sizes. The sodium glass cell has not been perfected to the point where
failure—free operation for acceptable lengths of time is possible. This
trouble is especially severe when the cell is thermally cycled or cooled and
then reheated. Ideally, cells should provide at least 1500 to 2000 continuous
cycles and allow for a large number of thermal cycles. At this time, the'0.5
A-hr cells have achieved no more than 1000 continuous cycles, and 6 A-hr
cells have achieved only 400 to 500 cycles. These cycles are for 80 to 80
percent of rated capacity. Very few 40 A—hr cells have been tested. Current

specific energies for these cells are not available.

None of these cells have been successfully thermally cycled. The major
weak point of the cell is at the tube sheet connection where fracture of the
glass fibers commonly occurs. Contrary to I'u;xtuition, fracture of the fibers
may not be critically damaging to the cell. Many times when a fiber
fractures, it seals itself, leaving however one less fiber in the cell. If enough
fibers are damaged, unacceptable cell performance results. In a number of
cases, though, if enough fibers fracture simultaneously, the sodium and

sulfur can mix, leading to an uncontrollable thermal runaway of the cell.

Current research is aimed at reducing the fracture of the tube sheet.
Thermal cycling is a definite requirement if this design is to be used
successfully for electric vehicle applications. Correction of this fracture
problem is therefore a must. Corrosion of the anode container is also
another significant problem which must be overcome if the cells are to last
many years. Other work is being directed toward reducing the cost of each
cell. While the sodium-sulfur system is probably the most economically

promising high temperature battery, the cost is still too high for realistic
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consumer acceptance. Costs for experimental cells are very high at the
ppésent time, greater than 1000 3/kW—t;r. 'Estimated production costs for a
bare 0.8 A=hr cell alx;ev 32 8/kW-hr (May, 1979 dolla;"s) with projections of 35
3/xW—-hr (1980 dollars) for complete 40.0‘ A-hr cells by _1'98_4‘.v These
est'imates seem rather optimistic though, gi\(én the ‘current state of

technology.

2.3.2. Ceramic Cells

The seéond Eype of sodiﬁm;sulfur cell, v;hich has had bette:; suécéss, is
the ceramic sodium=—sulfur c_ell; Théprogreéé of this cell has benleﬁt-ed from
: a greater amount of research ana dé}}elo.bment as wellas a lar‘ger number of
developers, including several _t‘oreigh companies. Ceramic -éleétrolyﬁe cells
are vbeing developed by the American compﬁnies Ford and General Electric.
Curreht bfo'reign. coméatﬁes. ‘involve'd | with sodium-—sulfur cells in'chi_dg |
Brown—Bovefi. Chloride Silent Power, CGE. Mart;:oussis. and the Yuasa Battery
vComlv:'a'ny. | |

Ceramic sodium;sulfur cells differ from the glass fiber cells in the type
of electrolyté ‘w.hicb is used. The eleétr_olyte in the_Sg cells is a ceramic
composed of ALO, and Na,0. The ceramic ﬁ.—alur‘ninva contains these two
compounds in the molal rgtio of 9 tb ‘11. A more suitable ceramié because of
higher conductivity is f”—alumina. This contains ALQ, and Na,0 in i:he molal
ratio of approximately 6 to 1. Both f—alumina and §"—alumina are degraded
by moisture and £" is believed to be unstable at high temperatures. Like the
glasé elecholyte.'the reactivity witt;x respect to moisture requires that a dry

environment be available for the electrolytes during cell construction and

operation.
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Unlike the sodium glass cells, ceramic sodium cells contain only a single
tube of electrolyte, sealed at one end, with a diameter of 1 to 5 cm. Because
the conductivity of the cerarnic is much higher than that of the glass in the
glass cells, a thin walled, high surface area e-lectrolyte is not needed. The
sulfur electrode can be placed within the electrolyte in so called
sulfur—core cells or externally with sodium contained in the electrolyte.
Sulfur—core cells are generally designed for‘traction applications where
specific power as opposed to specific enérgy is required. An advantage of
sulfur—core cells is the reduction in corrosion of the container. A corrosion
resistant current collector is still necessary, however. Even with this

advantage, most cell designs, however, are sodium core cells.

The current collectors for cathodes can be constructed from fine
carbon mats. As described before, these are distributed throughout the
sulfur electrode compartment. The melt of polysulfide and sulfur permeates
the current collector mat which results in intimate contact of the melt and
mat. The high surface area encourages the interfacial reactions to occur
with a minimum of polarization losses. During cycling into the two phase
region of the melt, sulfur can be formed near to the mat interface. The
sulfur tends to increase the cell resistance by forming insulating layers,
preferentially wetting the graphite current collector. For this reason, some
sulfur cell designs incorporate alumina fibers into the mat, which are not
preferentially wetted by sulfur. Cells with very high specific energies can
then be constructed, since operation deep into the upper two phase region

1s possible.

Ceramic sulfur cells have had greater success than their glass—fiber

counterparts. At the present time, these cells exhibit cycle lives of 500 to
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1200. Some companies havevydemonstrated cells lasting 1400 cycles. Ceramic
cells are also capable of multiple freeze—~thaw cycles, although the total

number of charge-ﬁischarge cycles is reduced for each thermal cycle.

The testing of ceramic cells has been more extensive than the glass
fiber cells. Cells of 2 t;o 50 A-hr aré common 'for'experimental testiing-
..alt.hough. cells with capacities as high as 160 A—hr.h;we been buﬂt.‘. Current
single ceramic 'ce.lls exhibit specific energies between 90 to 200 Whr/kg with
speciﬁc powérs about 170 W/kg.!® As with all experimental battery systems,
cdsts for the ceramic cell are too high. Like their glass counterparts,
current experimental céramic cells cost in excess of 1000 $/kW-hr. Future

‘development work seeks to reduce this cost to less than 50 $/kW-hr.

Current problems which must be solved iriclude corrosion of ;he sulfur
chamber, degradation and cfacking of thevelecltrol'yte. énd reduction of t'he.
- ele.ctrolyte resisfémce. -C.orrosion of the sulfur chamber may be solved by
using highly resistant metals which are unaﬂ'ected by the corrosive
properties of sulfur and polysulfides. These méterials are quite expensive

and thus do not represent _lihe ultimate solution to this problem.

A mechanism for electrolye degradation has :"ecently been proposed by
De Jonghe.!! In this work he has identified the most important factors
rres.ponsible for degradatioh and failure of thé electrolyte. Improper
vf‘abricatv.ion. poor thverrnal manaéement, iand improper charging procedures
have been identified as the most commoh causes. Future work is aimed at
finding improvements in these areaé.

The incrveased resistance of the electrolyte has also been found as a

significant cause of cell failures. One cause for a high ele‘ctrvolyte resistivity

has been the buildup of low conduéting reaction products very near the '
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electrolyte—melt interface. The low conductivity of the melt compared to
the current collector matrix has been identified as the source of this
problem. The low melt conductivity causes much of the cell reaction to
occur in a region very near the electrolyte melt interface. One solution to
this problem has been the introduction of a “gradated resistivity” current
collector or a current collector with a spatially varying resistivity. This type
of current collector has a high resistance near the electrolyte melt
interface which decreases away from the electrolyte. The resistance of the
current collector can be modified by combining material of differing
conductivities in varying proportions through the current collector to
produce a gradual change in its resistance. Another design 1is more
straightforward. It is to sandwich two current collectors of different
resistivities next to each other to produce and abrupt variation in the
resistivity. In either design, the result is the same. Because of the higher
ohmic drop in the current collector, more current is carried within the melt
near the electrolyte, and the reaction is spread more uniformly through the

sulfur electrode.

2.4. Previous Work and Literature Review

While numerous cell development programs have been undertaken, the
availability of fundamental thermodynamic and transport data is still not as
sufficient as one would expect for a system so close to production.
Fundamental understanding of the transport processes occurring within the
polysulfide melt also have not received sufficient attention. Even though the
polysulfide is a highly nonideal, concentrated molten salt, the analysis of
experimental data has been performed using equations applicable for ideal,

dilute systems. The errors incurred by such an analysis are unknown. One
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" of the aims of this study is to identify deﬁicie’nvcies in the available transport
data and to formulate a consistent set of transport equations. These can
then be used to accurately interpret past experimental data and, eventually,

as a basis for cell de‘sign andvscale—up.

To characterize .the transport processes in .ahy system of three distinct
species requires the determination of three independent transport
pfopertieé. Fo‘r"a single electrolyte in a selven_t.. the three transport
'prupertie's. most commonly used are the diffusion coefficient of the salt, the
“transference number of either 'iqn relative t.o”the solvent, - and the
conductivity of the electrolyte—solvent mixture. However, m’any_elve‘ctro.lytes
cah be forrned from constituents where no discernible _'so_lv'eht exists. A
egtectic rniﬂure’of the salts LiCl-KCl is an example. .'-'I'hree transpoft
properties are etiﬂ' r’equix"eci to describe fully such ‘a system. In this
example, the transport properties are defined diﬂefently from the simpler
electrolYte-_»solvent mixture. However, three independent tfansport
properties deﬁ_ning this sys.tem, are still a diffusion eoetﬁﬁbc‘ient_. a
transference number, and a conductivity.

In addition‘ to the three transport properties described above, accurate
thermodynamic data are also needed. While the transport _properties
.cha_r'acterize the irreversible  process, thermodynamic data define the
driving forces for these prjocesSes. It is necessary to have activity data for

all components of the mixture.

2.4.1. Preparation

The preparation of sodium polysulfides is covered in -many of the
articles appearing in this literature review. Preparation methods of

polysulfides can roughly be divided into two types, chernical methods and
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electrochemical methods. Chemical methods of preparing sodium
polysulfides generally first require producing moisture—free sodium sulfide.
This can be done in three general ways. First, relatively pure hydrated
sodium s-ulﬁde. which is readily obtainable, can be dried and puriﬁed
directly. This method is the most common. It is also possible to react pure
sodium and sulfur, in the molten state, directly, but this synthesis is
considered too dangerous and is generally not used. Last, sodium and sulfur
can be combined in organic solvents which reduce the speed and
consequently the risk of too rapid a reaction. Because methods requiring
organic solvents are not able to produce a sufficiently pure product for
experimental work, these procedures are less desirable. Traces of the
organic solvent always remain after synthesis. Anhydrous sodium sulfide is
most commonly produced today by the diz;ect drying of the hydrated salt.
Sodium polysulfides can also be prepared directly by electrochemical
means, which yield very pure polysulfides. The product purity by this
method is limited by the purity of the starting materials, sodium and sulfur;
but these elements can generally be obtained in forms that are purér than
sodium sulfide. In recent years ceramic electrolytes have become generally
available, and this technique may become the favored method of

synthesizing polysulfides in the future.

A single reference source covering many methods of preparation is
Brauer.'? Eere, the preparation of sodium polysulfides of various
compositions is discussed. Rosén and Tegman‘a' describe, in very good
detail, a -method yieiding very pure polysulfides from hydrated sodium
sulfide and sulfur. Procedures for preparation of polysulfides from ceramic

electrolytes are given by Cleaver and Davies.'*
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2.4.2. Physical and Transport Properties

The properties}vof sodium polysulfide melts have been studied and
determined by a number of investigators. The most eemprehensive sources
of data for rriolten sodium polyéu_lﬁdes vare the papers by Cleaver, Davies, and
Eames! and Cleaver and Davies.!®!® In these, the authors tabulate tfhev
vfolvlewingvphyéicai_properties: densities, surface tensions, and viecosities for
polysulfide melts at several temperatures and melt eempositions. Values for
the rﬂelt mcon‘d.uctivit} are else }given. These authors also report
measure’rrients on the open—ciredit potentials for cells cvornpoeed of sod_iurn-
and sulfur electrodes and cells ﬁm transference eompoeed of :two sulfur
electrodes. . Activities of polysulfide rnelts .obtained fron'i' transpirat;ion
experiments of polysulfide rnelts are also. inc.luded. Poly_sulﬁde'aetivitiesv
| caicﬁlat.ed f,rom. vapor pressures cornpare favorably with f.ho'se determined
from equilibriurn celi pof.entials._ | |

" Thermodynamic. studies of -open-circuitv potentials for sodium-—sulfur
cells have also been 'perfor_?rned by Gupta and Tischer.’ They measured the
.epen—cireu,it potential of sodium-—sulfur cells at six temperatures and
several 'different. melt eOmpositions. f‘rom these experiments, they
~calculated the chemicai potential of sodiurﬁ polysulfide and sulfur in the
melt. They wez_'e' also able to determine sulfur solubility in the upper
two—phase region. Tegman'” has also determined the activities for
polysulfide melts from vapor transpiration experiments. This study is an
extensive source of thermodynamic information. Many data are collecte'd_'m
this study over the range of temperatures from 523 K to 1273 K and sulfur
compositiens from 30 to 100 mole percent sulfur. Tegman empirically fits

his therrnodynamic data to a microscopic model for the actual composition
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of polysulfide melts. He postulates the ions S¥ to Sg and Sg to exist in the
melt. Very good agreement between the model and the thermodynamic data

is obtained.

Determinations of the sulfur—polysulfide equilibria have been
performed by Rule and Thomas,!® Pearson and Robinson,'® 0ei,?® and Rosén
and Tegman.?! The first sodium-sulfur phase diagram was published by
Freidlich® in 1914. He assumed that sodium polysulfides existed as
tetrasodium sulfides with a general formula Na4Sy. Subsequently, Rule and
Thomas!® disproved Freidlich showing instead that sodium sulfides exist as
disodium compounds. Rule and Thomas also established the first accurate
phase diagram for the sodium—suifur system. Following Rule and Thomas,
Pearson and Robinson!® determined a more accurate phase diagram for the
sodium—sulfur system, which was the definitive standard for over 40 years.
More 'recently, Oei?® has redetermined the phase diagram for this system
and redefined many of the phase boundaries. Rosén and Tegman? have
repeated the determination of the phase diagram using more accurate and
precise experimental techniques. The phase diagram of Tegman is probably

the most accurate one available today.

Relatively little work has been performed on characterizing the
transport of polysulfide melts. Transference numbers have received an
especially scant treatment in the literature. The work of Cleaver and
Davies'® concludes with these authors attributing unity to the transference
number of sodium ions relative to sulfur solvent. Such a conclusion, while
appealing, leads to very ambiguous conclusions regarding the interactions
of ions in the melt. Yoshida and Nakajima?® present erroneous values of

transference numbers for the ions with respect to laboratory fixed



22

reference frames. They obtained.these values from experiments, but did not
consider the variations of concentration through their apparatus when they

performed their calculations.

Conductivities have fared only slightly better. Good values for
conductivities. have‘beer‘i tabulated in only one ref,erencg. Cleaver and
Davies'# present condu'ctivities for a wide range of temperéturé and melt
compositioné. These were rneasuréd by an AC conductance bridge

technique.

There have been a number of investigators in the past whicih' have
attempted to determine the diffusion coefficient in phre 'polysulﬁcie melts. A -
‘review of several ekp'er’iments' and calculations is give’n in ;he comprehensive
review by Tischer and _Ludwi_g.z‘ Tischer and Ludwig have coki'nbined' limiting
current rotating disk data obtained by ArmStrc;ng. Dickenson, and Reid?®
‘and the vch'ronopoteniiométric dat.a:-.o'f. South and Sudworth?® to obtain
diffusion coeﬂicientg fér a single polysulfide composition at one
temperature. These 'authors havg' also obtained fair agreement ‘between'
these results and diffusion coeﬂiéients estimated from gonduétivity and
vviscosii.y data. The values for D estim.ated by these ;nethods are 8 to 9 x 107
cm?/s af. 623 K for Na,S,. Both Armstrong. Dickenson, and Reid?® and South
and | Sudworth in their respective bapers report the formation of an
insoluble film on the surface of the electrode at high cathodic potentials.
Indepéhdently. they both determine that the formation of such a film »aﬁ‘ects
q'vuantitative interpretation of their experimental results. Tischer and
Ludwvig;. however, argue from subsequent'unpublished experiments that the
formatioﬁ of a film occurs only in the “vicinity” of the electrode and not

directly on the surface. Fence, Tischer and Ludwig argue that quantitative
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interpretation of these experiments is not altered by this effect. Diffusion
coefficients obtained from these experiments are thus stated to be

representative of the melt.

Under anodic polarization, both groups have observed the formation of
a second phase near the electrode surface. Unlike the sodium polysulfide
film which was observed on the electrode, this second phase forms within
the melt and is thought to be a sulfur rich phase in the two phase region.
Armstrong, Dickenson, and Reid?3 hostulate, however, that this second phase
might also cover the electrode surface. They therefore, give no quantitative
values for diffusion coeflicients obtained from either anodic or cathodic

limiting currents.

Recently, Divesek et al.?” have determined the diffusion coefficient in
sodium polysulfide melts using a rotating disk. To inhibit the effects of film
formation, these investigators utilize a transient pulsing technique
described by Nanis and Klein.?® No film formation or second phase is
observed when this technique is used. These authors report that no
insoluble polysulfide film forms on the rotating disk when it is cathodically
polarized to the limiting current. This, however, directly conflicts with the
observations of Armstrong Dickenson, and Reid,?®* who observed the
formation of such a film The authors also observe the formation of a
second distinct phase when the electrode is ancodically polarized to the
limiting current. Using the results of the transient rotating disk
experiments combined with the cathodic limiting current results these
investigators calculate values of diffusion coefficients and the concentration
of electroactive species in the melt. Their results for the diffusion

coefficient are near those determined by Tischer and Ludwig?* A
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}r:epresentativé value of the diffusion coefﬁ‘éient’-f‘or a concentration driving
force is 2.0 x 10°® >cm2/s for .NaZS_‘ at 823 K. Divesek et al. also have
measured the self diffusion coe,fﬁciehts for sulfur %n melts of‘ sulfur and
sodium polysulﬁdes. A stirred éapillary diffusion apparatus was used. with
rédioactivé sulfur—35 as a tracer. vMe;sgred.self diffusion coefficients are 2
x 10-5 cm?/s for Na,S, at 573 K | | |
A;}m.stfoné. Dickénson. and Reid?®® have performed AC impedance studies
on f_.he sodium polysulfide sfstern using inert carbon electrodes at 823 K.
They assume. a thermodynamicaliy .ideal binary model for the >me1t A_n’d a
single ‘electron trvans.fer(reaction mth equal diffusion Coefﬁc_ients for the
oxidized and reduced spe‘cies. From this._ théy\ éaléulate a diffusion
cOeﬂicientvfor’ a concérﬁtratibn drivmg force of 1.4'2 10'5- em?/s for Ndzss.
'I'>hi's value is Quite a bit higher f.h‘c_m Any published before. The assurﬁptioné |
- used in the vanalysi}s have bé.en questibned by DiQesek et al.,?” and this

determination is open to speculation.

| Other investigations of pertinent interest are those performed by Rosén
and Tegman,'® Oei.* and Janz et al.’! Rosén and Tegman'? have.conducted
x—-ray diffraction on solid sodium polysulﬁ'des_and determined the crystal
symmetry and lattice parameters. Oei, 3¢ using x—ray diffraction techniques,
seems to 'prove that Sg is not stable in the solid phase above 373 K. Some -
density and surface tension data are also reported although this is not as
extensive as the data of Cleaver and ‘Davi'es.‘s Janz et al3! have conducted
laser raman studiés ‘of solid polysulfides to determine the actual species in
these solids. These investigatovrs' claim this technique supports the
existence of the polysulfide ions S§, S;, and S;. The existerice of the

polysulfide ion S3 is not supported in these studies, nor is it disproven.
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The work characterizing the behavior of sulfide ions in other
nonaqueous solvents also deserves mentioning. Other articles of general
interest are ihose of Boedewig and Plambeck,3® Cleaver, Davies, and
Schiffrin,®® and Cleaver and Davies.3* Boedeﬁg and Plambeck have observed
polysulfide ions in molten melts of LiCl-KC] eutectics. Polysulfide ions have
also been studied in molten potassium thiocynate melts by Cleaver, Davies,
and Schiffrin. Cleaver and Davies® have conducted freezing ~ point
depression experiments on polysulfides in fused potassium thiocynates.
Tischer and Ludwig® review these and other investigations and discuss their

implications to sodium polysulfide melts.

This literature review, while not exhaustive, gives most of the recent
articles pertinent to the study of the thermodynamic and transport
properties. From this, one can see that the availability of such data is qu'ite
limited. No doubt, there are countless other sources of proprietary data
which are not available openly. Much work is still needed before an

adequate data base is available sufficient for accurate battery design.

2.4.3. Mathematical Models

Several researches have pt;oposed a number of models to predict the
behavior of the sulfur electrode. The first of these were generally relatively
straightforward and calculated the steady state spatial reaction distribution
for a uniform composition melt. Gibson3® was the first to propose such a
model. Eis was a specific application of the more general model presented
by Buler and Nonnenmacher.’® The assumptions in these two models are
linear kinetics, constant conductivities in the solid and melt phases, and a
one—dimensional planar geometry. These restrictions, however, allow the

governing equations to solved in closed—form, analytic expressions.
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.Brennana" and Breiter and Dunnaa improved npon Gibson's nmdel by
allowxng for a spatlally varying resxstxwty in the current collector. The
restriction to a melt of umform composmon was retamed ‘but the planar
geometry was replaced by a one-dlmensmnal cylindrical geometry which is
more representative of practxcal sodium—sulfur cells. These models were-
aimed at predicting -the performance of cells containing "gradated
reSistiVity'; current collectors. Brennan for_rnUlated a model epplica_ble for a
current collector containing any vnurnber of concentric current collector
"rings” | .with' different con;luctivities._ The». governing equatione' vwer'e
'formulated in terms of an equivaient circuit model 'a.n’d'solved by a 'cornputer
using an equwalent resxstance forrnula Ereiter:and Dnnn's model was
sumlar to Brennan s although the approach was quite different. —Thxs rnodel
~allows for a current collector of two rnatenals with two different resistivities
in the direction of _current.. ﬂo_vw.‘__Breite_r and Dunn solved the resulting
governing ordinary diﬂerential equations anelytically. and vrere able to
obtain a closed forrn solution for the variation of the reaction rate. They
_ compered their results to some actual cell data and concluded that a

”gradated resistivity” current collector has ‘merit for irnproving the

performance of these cells.

Kao and Wayner3®4¢ have proposed a model based onl a more tnoroogh
treatment ofvthe ectu'al procesvses involved .i-n the snlfur electrode. .Unlike
the other models, which are restricted to meits of uniform.cornposition, Kao
and Wayner accounted for the eflects of the non—uniform concentration
variations upon the reaction distribution. They also present results for the
transient behavior of the sulfur electrode during constant current
 discharges. The bulk convective‘velocities accompanying changes in the

melt composition as well as the effect of migration were included. Solutions
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to the governing equations were obtained by a computer using a ten—point
collocation technique. Unfortunately, these authors over-—simplify the
transport equations neglecting the effects of diffusion on the concentration
profiles. While theif results are useful for the high rate discharges they
present, these models will nt;t be accurate in predicting the behavior of

transient current discharges.

As one can see, a model encompassing all of the important features of
sodium—sulfur cells has not yet been published. All of the models above
treat only the behavior of the sulfur electrode and to varying degrees of
complexity. A more accurate model would incorporate all of the
considerations mentioned above, and would include the behavior of the
sodium anode and electrolyte as well. The effect of diffusion has also not
been con;sidere'd. Prt;per formulation of the governing equations to account
for this would be required for proper modeling of cycled cells. Also, thermal
management of these cells has not received much treatment. The thermal
response of the cell, especially the variation of electrolye conductivity with
temperature would be quite useful. This too could be included in a future

model.

2.5. Microscopic versus Macroscopic Model

Molten polysulfides are commonly formed by dissolving sodium
monosulfide in a melt of molten sulfur. One might consider such a mixture
to be composed of sodium cations and sulfur anions. in a neutral sulfur
solvent. While this assumption sounds simplistic, such an assumption about
the melt composition can be very useful in cataloging both the transport

and especially the thermodynamic properties.
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A more scp'h'isticated model for the electrolyte can be conceived cy
c.onsidering that neutral sulfur probably does not exist in melts of sodium
polysclﬁdes. Moreover, the actual composition of t_ljlese melts is thought to
involve various polysulfide anions and‘ sodium cations. The polysulfide

anions have a general formula given by S5, where n varies from one to eight.

These two cssumptions regarding the composvit._ion of the meit are not
necessarily in conﬁict ﬁth each.other. Each is defined from separate
| observations on thé melt composition. ‘From an externél viev?. since s_odiurn
sulfide and sulfur were the original componenﬁs. it is th_e simplest to expe_ct'
that these compovnent.s remain when combined to form the rne'lt..,
Macrcsccpicauy. or from this outwarcl_ view,l sodium'sulﬁdc and sulfur then
compose-the meit. Upon detailed examination from pcrhaps spectfosccpic.
or other techniques, one sees that polysulﬁdev ions really are the actual
species present. This microscopic view poi_rit leads to proposals about the
detailed interaction and _rnechariisms between these melt species.

It .is appropriate, at 'vtbis point, to dist;i'nguish further the concept of
models based on the macroscopic ccn:1posit.ion ~or the microscopic
composition. vIn the late. 1800’s, Gibbs defined by example the usefulness of
such a distinction. .'I'he dimerization of acetic ccid was chosen to illus_f.rate
this concept. In this work, Gibbs shows how the vapor;liquid equilibria for
acetic acid—-water mixtures can be measured and correlatcd assuming that

_the vapor phase consists solely of a mixture of single acetic acid mole_cules
and single water molecules. The choice of chemical constituents and ‘their‘
compositions in this model follow logically from observations onv the
individual items coinposing the mixture. The term "rnacroscopic” is given to

denote this type of model. Thermodynamic data can be correlated assuming
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this macroscopic view to apply with single acetic acid molecules and single
water molecules actually composing the mixture. Gibbs shows, however,
that ideal behavior for individual water and acetic acid molecules cannot be

ascribed to this system even at low pressures.

To reconcile this discrepancy between theory and experiment, Gibbs
postulates the concept of dimerized acetic acid molecules. This
"microscopic” assumption regarding the composition of the system resolves
the non—ideal behavior at low pressures. Theoretically, ideal behavior at low
pressures assuming dimerized acetic acid molecules can now be calculated
which differs from the behavior obtained when single acetic acid molecules
were assumed. V_fhen the same data are correlated using this model, ideal
behavior of the acetic acid—water vapor system is obtained. Thus, while the
existence of acetic acid dimer did not impair Gibb’s ability to obtain data on
the system and correlate them, it did prevent agreement with calculated
results derived from assumptions regarding the actual components present

in the mixture.

Modern scientists and engineers would recognize the two fields which
have grown from the concepts presented by Gibbs. The first is classical
thermodynamics while the second is molecular thermodynamics or
statistical mechanics. Classical thermodynamics is the macroscopic
science. |t provides a framework allowing the correlation and interpretation
of data to be performed for any assumed state of aggregation, regardless of
the true or actual configuration of species present. Statistical mechanics,
on the other hand, deals with the individual particles which actually
compose the mixture. The individual forces and particle interactions are

predicted in this science.
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As in the example presenté‘d above, thermodynamics and statistical
rnec>har_xicsi meet at an interniediate point. ﬁere, the results of statistical
mechanics are combined with the obsérvations and correlations of
_ th-ermodyn.arnics. If each separate field predicts l:k_xe sarne.result, credence
" to the assumed rrxiqrbscopic model can be inferred. If the unfortunate case
occurs where't;he two s;:iences disagree, ‘thven one may revise the thinking
avbout. the actual st.at.ve-v of aggfegation. then the thermodynarmic data did
not match the limiting beh‘éviorvwith the assu-rn;‘:,tion of a single acetic
molecule, Gibbs revised his.tvnicvroscopic model by postulating the existence

of the dimer.

The. ﬁéld of transport phenomena is analogous to thermodynamics.
'fransport broperties describing the irreversible processes occurring can be
‘defined and correlated for any assumed macroscopic model. Again, however,
. the prsperties must be pre'dictevd from a microscopic model which neaﬂy

‘repvresents the true state of the system.

This vs‘impler example considered by Gibbs allows us to 'd.raw~ajn analogy
to the sodium—sulfur system. The transport properties and thermodynamic
data of sod_iurn polysulﬁde meits have been most. commonly correlated using
, a macroscopic model consisting' of sodium cations. sulfide anioné. and
neutral sulfur solvent. The transport and th'ermodynarrﬁc properties when
correlated in this manner vary in very unpredictable ways. For the
thermodynamic properties. the unpredictable behavior is lumped if;to

activity coefTicients which absorb this undesirable effect.

- Again, the actual molecules composing polysulfide melts are definitely
not 'these_ cations, anions, and solvent. A microscopic model can be

formulated to predict the thermodynamic and transport properties without
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resorting to the use of activity coefficients or other empirical relationships.
The ultimate result of such a model would be a complete set of
thermodynamic and transport properties spanning the range of

temperatures and compositions found in the sodium—sulfur cell.

2.6. Purpose

This thesis does not deal with the optimization or design of any
sodium—sulfur cells directly. The results of this study will be useful,
however, for the designer of these cells. The long term objective is to
predict the behavior of this system so that the costly and timg consuming
experiments can be minimized. The mathematical model of Pollard and
Newman*!*2 would be an ideal tool for the prediction of the sodium—sulfur
cell behavior. Many "numerical” experiments can be performed in much less
time and at a considerably reduced c'ost than if these were actually
performed in the laboratory. One can also include all of the improvements
for a model suggested earlier, since all of these capabilities are presently
available. To do so, however, requires accurate knowledge of
thermodynamic and transport properties for sodium polysulfides. A proper
theoretical framework providing a consistent set of transport equations is

also needed.

This thesis has three purposes. They are: first, to predict the
properties of sodium—polysulfide melts using a microscopic model and
compare them to data obtained and correlated from information given for
the macroscopic system; second, to identify shortcomings in the available
experimental data and suggest ways in which required information can be
obtained; and finally, to define rigorously the governing equations useful for

battery design and determine how experimental data can be transformed
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into quantities appearing in these equations. All of these will be covered

_here.

o



Chapter 3

Transport Properties For a Binary Melt

3.1. Introduction

In this chapter we will explore the description of transport processes
based on the macroscopic melt composition. We develop transport
equations for a melt of sodium polysulfides considering the melt to be
composed of sodium cations, monosulfide anions, and a neutral sulfur
solvent. While we choose to consider only these species, this in no way will
affect the final outcome of éur work. It will however, determine the path
which we follow to the final result. Chapter Four will present a more
sophisticated approach toward describing the transport processes'within

the melt.

In this chapter, we will not consider the eflects of kinetically—limited
homogeneous reactions. For now, we will require that local equilibrium
prevail throughout the melt. By this, we mean that at every point through
the melt each species is in an equilibrated state with the other species at
the same location. We will not consider the possibility of ‘slow”
homogeneous reactions occurring within the melt. The term slow refers to
the time frame appropriate to the bulk movement of species through the
melt. The rate of influx of species into any location must be much less than
the rate of production of these species through homogeneous reactions. In
effect, we require that as species diffuse through the melt, any homogeneous

reactions must occur virtually instantaneously.

33
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This mpdel presented here is based on concentrated solution theory
developed by_ Newman, Bennion, ‘and Tobias*® which has found widespread
use for describing transport .:in(a.queous systems. The more recent work by
Newman** reviews this work in more detail and gives some additional

information.

The tfansport of ions in sodium polysulfide 'rnelt.S is affected by the
physical and chemical properties of the ions and their mutual interactions
within the melt. The dévelopment of tra.nspdrt -equ‘atiéns capable of
_;ccéunt’mg for these procesvses in a general way has so far not been
developed. We will develop .hgre a consistent set of tx;.e;'hs_port equations
which w.ill be general enough to describe the t»ranspott; vprvoc.ess.es under’
_r.nanyv situations. -F_'undamental transpprt parameters and measurable
transport'propert_ies will be deﬂ'ned. Some recent experimental work then
will be examined a-nd. related to- the measurable transport propertie.s.
, _Fvi'n‘ally.' these data will be used to determine fqndém‘ent.a_.l transport
p‘arér}xete‘rs and the implications with regard to fundamental solution

interactions will be addresséd.

3.2. Development of Transport Equations

The fundamental .transpo'rt equation for an electrolyte relavtes_ the
driving force per unit volume on species i with the frictional forces which
oppose these driving forces. For a system at constant temperature and

pressure, this is

e Vg = Z Kj(v; =) ‘ (3—-1)
The left side of Equation (3—1) expresses the driving force for movement of
species i in terms of the concentration of species i times the gradient of the

electrochemical potehtial of species i. The opposing frictional forces are
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written in terms of the summation of the differences in velocities of two
general species v; — v; multiplied by an appropriate friction coefficient X;.
The friction coefficients K;; can be replaced by binary interaction

coefficients 9‘-,- which are defined by

Ky =RT o ' (3-2)
The K;; and the corresponding 9,-,; parameters are dependent upon
temperature, pressure, and composition; but independent of the magnitude
of the driving forces. For a system composed of N species, Equation 3-2
déﬁnes N(N-1)/2 independent 91} parameters. Newton's third law
requires that

.’Qj = Kj" : (3-3)

or
91, = 9,1 . (3'4)

The parameters & ire not deflned. One also finds that for N species, only

N-1 independent transport equations are defined. Summation of equation

(3~1) over subscript i yields

}‘: eV = Z‘: ; Kj(v; - vy) . | (3-5)
The left side is zero by virtue of the Gibbs—Duhem Equation, and the right
side is zero since K; = Kj;.

For solutions of varying. temperature, the driving force in Equation
(3-1) must be modified to include contributions from thermal diffusion
(Soret Fluxes) and transport arising from body force interactions. The
geﬁeralized .driving forces accounting for these processes can be obtained

from Hirschfelder, Curtis, and Bird*3 but will not be explored further here.
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N 3.2.1. Binarymect.rolye

For a binary electrolyte, Equation (3-1) cal;x be expanded into two
independent equations. Consider a single cation denoted by the subscript +, |
a single anion denoted by the subscript — and a neutral solvent denoted by

o. The flux equations are then

| c,Vy.... = Ko(vy = v,) + K,-(v- -v.). , '(3-6_)

. e Vu.= Ko (v, —v.) + Ko (v, - V.—-) . 3 (3-7)
- These express the driving forces in terms of two differences in velocities and

cohtain three independent trahsport parar;ieters.

. Normally one knows the driving forces, and the irelocit.ies of the species
must be found. E’quations (3-8) and (_5—7) express the driving férce’s as
linear combinatiorgxs.“_vof the unknowﬁ velocities. One cari mathématic_ally

'mve_rt these equétions using the deflnition for 'tbe' current density,

i=¥c(zin. : (3-5) 
to obtain expressions for the fluxes .
v 9 Cr ° -
N’-c§'+-- :RT ;:-c V[J.‘ + ’F +C+v° . ' (3'9)
: - V. 9 Cr it2
N_=c.v_= TRT G, c Vu, + 2J+é'?° . (3-10)
and
N, =c,v, . ' (3-11)

In the above equations v = v, + v_ and ue = V.l + v_u-. The total solution
concentration or the sum of the anion concentration, th‘e cation
concentration, and the solvent,c_once_.ntration has been denoted by cf. One
has combined two of the independent K;; parameters in Equations ('3-6) and
(3-7) into two transport propertiés appearing in Equations (3-9) and

(3-10). The parameter £ is the diffusion coefficient for the electrolyte
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based on a thermodynamic driving force. In terms of the 9"'.;,- parameters
it is
Q= Dor Dolz.~-2.)
2, Dos=2_ Do~

This describes the movement of the neutral electrolyte due to variations in

(3-12)

its chemnical potential through the solution. The transference numbers with

respect to the solvent velocity are deflned

- z, 90+
Tz, Dor — 2- 9;0— '

These represent the proportionality between the flux of ions and the

(3-13)

current which flows in the solution. In a solution of uniform composition
where the gradient of chemical potential is zero, the transference numbers
with respect to a neutral solvent can be related to the fraction of current

carried by the individual ions.

The driving force for diffusion used in Equations (3—-9) and (3-10) is the
gradient of the chemical potential of the electrolyte Vu,. However, one most
often encounters diffusion coefficients 0 based on concentration driving

forces. One can relate these two through the following expression

cr dlny,.-
= — b ————— -14
D 9% 1 7 m ]. (3-14)

where ¥,_ is the molal activity coefficient and m is the molality of the
electrolye. The relationship

Vue = vVRT VIn (m.y,_) . (3-15)
has been used in obtaining Equation 3—14 which is the definition for the
gradient of the electrochemical potential. Using these definitions, the

diffusive fluxes in Equation (3—9) and (3—10) can be written equivalently as
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D cr dlnc, |,
VRT ¢ ¢ Ve =D | " dmc]'C (3-16)

‘The transport equations defined in Equetions (3-9) and (3-10) define
the fluxes in terms of the gradient of electrochemical 'poten‘tiel and the.
current as .d.riving forces. Many times, however, it is convenient to describe
the tfansport in solutions using the potentiel as a driving force. To do so,
one must. first develop the conc_ept of a potential ‘in'thiri the solution.
Newman* hae shown that the potential can be 'meas‘ured at ahy point in the
ce’tl using a suitable reference electrode. A.n arbitrary half cell-reaction

_ s_.M" + s, M +s,H ne” , - (3-17)
involving the anions, cations, and solvent can be considered. Apphcatxon of
‘ thermodynamic principles to the reaction in Equation (3—17) gives |
_ ;Vu_ + s,Vﬁ; + 8Vt ==nFVE. (3- iB) ,
- Using this deflnition of the potentxal one may ehmmate the electrochermcal )
potential of one of the ionic species. appeanng in Equation (3-8) and (3-7)
: and} in its place substxtutev the potential. One can then eliminate the
electrochemical potential of the remaining iOn in favor of the che;nieal
potential of the electrolyte. When these manipulations are performed, the

definition of the current density becomes |

. _K
i xVd 7

Equation (3-19) includes a new transport property. the conductivity <. In

S, £ s,c] o
- 4 -1 Tty . : -
[n Ve 2.V, 'nc,J Ke _ (3-19)

terms of the & ij parameters it is

te
% - RT [ 1 co (3-20)

+
crz z_F? 9*- v &s-
The physical meaning of the conductivit.yv can be described by

considering a solution of uniform composition. Under this condition,
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Equation (3—19) reduces to

i=-«Ve, (3-21)
which is Ohm's Law. Thus the conductivity is the proportioqality constant
between the gradient of potential and t.ﬁe resulting current density for a
solution of uniform composition. The additional terms in Equation (3—19)
account for the variations in potential due a nonuniform composition

profile.

Unlike the transference number and the diffusion coefficient, the
conductivity contains all three of the independent 9,;,- parameters. From
the initial three independent K;j which were defined in Equations (3—6) and
(3-7), the inverted transport equations have been expressed in terms of
three new independent transport properties. These are the conductivity «,
the transference number t3, and the diffusion coefficient 2 all of which
are functions of temperature, pressure; and composition. Each of these is a
well deflned solution property which can be obtained from experiments. In
contrast, the three 9‘-, parameters are not accessible by ;iirect
experimentation but are an equivalent means of specifying the transport

processes.

At this point, the development of the flux equations is completed. The
final equations are Equations (3-9), (3-10), (3-11), (3-15), and (3-19).
Equations (3-9), (3—-10), and (3-11) give the fluxes in terms of the gradient
of chemical potential of the electrolyte, the current density, and the solvent
velpcity. 'I'h.e definition of the current density is given in Equation (3-8).
Equation (3—19) relates the current density to the gradient of the solution
potential and to the gradient of the cheﬁﬁcal potential of the electrolyte.

The gradient of the chemical potential of the electrolyte can be related to



40

the concentration through the thermodynamic relationship given in
Equation (3-15). If the electrolyte.cbncentrat.ion and the solvent velocity
are known, then any of the other quantities can be calculated from these
equations. The solv_ent concentration, which is unknown, may also be.
needed. To obtain the two concentrations and the solvent velocity, one

needs additional équations specifying these quantities.

For the electrolyte concentration and solvent concentration, the
additional required equations can come from a material balance. For N
species one may write N independent materiél 'bala.nces. thus for a binary
electrolyte, there are three independent rnatérial balanées. Thé material

balance for any species i can be expressed a,s.

3, - _

—~=z=VN+R. (3-22)
at :

This states that the rate of change of any amount of rmaterial in a
di_ﬂérential volume is given by the sum of the net external inflow plus the
net internal generation. One may need additional equation:_,to relate the

internal generation process to the other known quantities.

The three material balance equations can be arranged to provide an
equal number of independent expressions for conservation of 6ther
quantities. For example, the continuity equation, which expresses
conservation of total mass, can be obtained by summing the individual

'species conservation equations. The electroneutrality condition
2 ze =0,
i
can be obtained by considering the conservation of charge which requires

Vi=0.
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One must also specify the velocity of the reference species, which in
this case has be designated as the solvent velocity. If this is not known, it
must be determined. The equations of fluid mechanics provide the basis for
obtaining this quantity. The equation of continuity and the Navier—Stokes
Equations are two generalizations of fluid mechanics which are often used if
the flow field is determined from external forces acting upon the system.
The continuity equation is not a separate independent conservation
equation, but it can be obtained by summing the material balance equations
derived above over all individual species. It is also possible for chemical or
electrochemical reactions to generate fluid motion within the electrolyte.
The generation of reaction products which have volumes significantly
different from the constituent reactants can cause a bulk movement of fluid.
In this case.‘one must relate the fluid velocity to the reaction process to

obtain the velocity throughout the solution.

3.2.2. Reference Velocities

It is possible, and sometimes very desirable, to choose a reference
velocity other than the solvent velocity. Analogous forms of Equation (3-9)
through (3—11) can be obtained which define new properties appropriate to
the chosen convention. One may pick the velocity of a species as the
reference velocity or one may choose to use linear combinations of the
velocities of all species. The mass average or molar average velocity are
examples of these conventions. The mass average velocity is advantageous
if the flow is determined from the equations of motion since these are
formulated most conveniently in terms of the mass average velocity. When
the flow is determined by the rate of the reaction, the molar average

velocity can prove to be more useful.
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For the sodium=—sulfur system, an alternate approach might involve
choosing the velocity of the cation as the reference velocity. This
éonvention has been used by Kao and Waynet3°'4° in a previous investigation
to descrii:e the transport processes. They have used the velocity of the
sodium cation as their reference species i_nﬁtead of the neutral sulfur
solvent. .One can obtain the equations for this' reference frame by algebraic
manipulation of Equations (3-9) through (3-11). If one solves Equation
(3—9) for the solvent veloéity in terms of the cation velocity and then
replaces the solvent velocity appearing in Equations (3-1'0) and (3-11) with

this expression, the following set of equations is obtained:

N, = c,v,..' : (3-23)
- ' '
N_ -_z—--.F_.+ c.v,, | (3-24)
Co Cq - cy 'bt°
N,==-2 Cofeg, _S 18 . - (3-25)

vRT cp Ko Coe 2.F
These are nearly identical to the Equations obtained by Kac and Wayner'

except for the additional diffusive term appearing in Equation (3—-25). Later,
we will discuss why Kao and Wayner have neglected this term and what the

consequences of this approximation are.

The equations developed here provide a consistent framework for the
description of tranvsport in a system containing a solvent and binary
electrolyte. For these three components, two independent flux equations
have been defined containing three independent transport properties. We
have shown that the structure of the equation$ depends upon the chosen
reference velocity: however the.number of transport properties is the same
regardless of this choice. The next section will focus on the experimental

determination of these properties.

See Equations (2), (3), and (4) of reference *°
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3.3. Experimentally Determined Transport Properties

The three transport properties defined above have been well
documeﬁted for a number of binary aqueous electrolytes. Techniques for
obtaining these properties have been well developed for these systems
enabling the properties to be gathered accurately and with a high degree of
precision. The high—temperature polysulfide melt, however, represents a
new challenge for the experimentalist. Most of these techniques become
unusable when one must deal with compounds as reactive and corrosive as
the sodium polysulfides. Moreover, the high temperatures and the inability
to work in an ambient atmosphere place limits on the types of experiments
which can be performed. One is unable to gather an equivalent amount of
data with the same precision as for an aqueous system. Given these
considerations, the recent work on the transport properties is discussed

next.

3.3.1. Transference Number

The transference number for many common agueous electrolytes can
be measured from either the Hittorf method or the moving boundary
method. The Hittorf method involves measuring the concentration changes
near two electrodes when current is passed between them. The more
accurate moving boundary method determines transference numbers by
monitoring the progress of the boundary between two electrolytes while
current is flowing through the boundary. For sodium polysulfide melts, each
of these methods is impractical due to the high temperatures and the
opaque nature of the electrolyte. It is possible, however, to obtain

transference number data from open circuit potential measurements on a
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cell with transference. Such a cell is made by combining two sulfur
electrodes of diflerent compositions with a “transition region’ or diffusion

® were the first to suggest

junction separating the two. Cleaver and Davies!
such a method but did not perform any calculations. Newman*® has
demonstrated the calculation of transference numbers from open circuit

potentia'l measurements using the same data of Cleaver and bavies.

A slightly modified analysis from that of Newman has been performed to
determine the transference numbefs within the rfn_elt. 'I'he highlights of the
method a'revpresented here while detailed derivations of th‘e Eqﬁations are
given in Append& B.

' Open—'c_ircuit—'pot.ential measurements. ﬁave been: performedv on the

14

following cell with transference

Cell 2

a g v4 6 . a’
CI‘_Na.‘,S’I ]Na23’.| s) |c.

The potential U; of this cell is shown to be given by

1 -z
LIRS
L

s

]
FUp = - -21—_/' [t‘i duy. (3-26)
7 _
where z, denotes the mole fraction of sodium sulfide in the transition
region. A complete discussion of the various composition conventions in

polysulfide mells is given in Appendix A. Differentiating this expression for

the cell potential gives

dUz=—‘2'F

Provided the differential of the activity of sulfur and the differential of the

RT [t‘l 1-% + 1] d(ln a,) . (3-27)

cell potential are known, the transference number can be determined.
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The differential of the activity of sulfur within the melt can be

determined from the potential U, of the cell

Cell 1
a g Y é '
C| Na(l)| pB—alumina | Naasy 1 |cC.
This is
EL ziav, . (3-28)
Combining Equations (3—27) and (3-28), the transference number of sodium

d(ln a,) =

ions relative to neutral sulfur is

(3-29)

The important result of Equation (3—-29) is that the transference number of
sodium ions relative to neutral sulfur solvent can be related to the variation

in the two cell potentials with the variation mole fraction of sodium sulfide.

Cleaver and Davies'!® present cell potential versus melt composition for
the cells descxl'ibed above (see Figures 4-9 and 4-10). The potentials of the
cells for two temperatures, 573.15 K and 633.15 K are given. The essential
feature of these curves is that the cell potential is very nearly linear with
the mole fraction of sodium sulfide. The potential of the cells can therefore
be described by the following relationships

Uy =a + 8z, . (3-30)

and

Uz = az + B2, . (3-31)
Thus,
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e R 3-32
dzc d 1 1 ( )
and
go= B ° (3-33)
* 1-z,

Values for the a’'s and f's at the two temperatures are given in Table 3-1
and 3-2. While Equation (3-29) gives the transferenée number for sodium
ions relative to sulfur solvent, the value of this number is very glose to one,
and it is more convenient to cor_x'sider the transference number of sulfide

ions. The transference number of sulfide ions is given by

Table 3—-1 Values for a; and g, describing i:_he open circuit
potential of cell 1 for the data of Cleaver _and Davies.

- Temperature, K a,, V B, V "Rel. Std. Dev., %
573 +2.4681 - -1.9812 0.0007
823 +2.4832 -2.0253 0.05

Table 3=2 Values for a; and 8, describing the open circuit
potential of cell 2.

Temperature, K a,, vV 8,. V Rel. Std. Dev., Z

573 -0.34955 1.8111 0.4
623 -0.39371 1.9958 0.2
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te =1 -1t9 . - (3-34)

Figure 3—1 plots the transference number for sulfide ion as a function of
composition for the two temperatures. This shows, subject to the stated
assumptions, the transference number is nearly constant over the range of

compositions encountered.

3.3.2. Conductivity

The conductivity of electrolytic solutions can be determined by the
measurement of current resulting from the application of a known potential.
* Most often, an alternating voltage source is used to eliminate the
undesirable effects of concentration gx_'adients. Cleaver and Davies!* have
utilized this technique to obtain conductivity data on several polysulfide
melts at different temperatures. They have correlated the data for discrete
melt compositions using an empirical function of temperature

E‘
£ = Ae FT-To) | (3-35)
The values of A, 7,, and £ depend upon the melt composition and are given

in Table 3-3.

A plot of the melt conductivity at two different temperatures is given in
Figure 3-2. The conductivity exhibits some rathef unusual behavior at
higher electrolyte compositions. Instead of increasing at a constant rate
with the mole fraction of sodium sulfide, the values for the conductivity level

out in this range.

3.3.3. Diﬂusio:i Coeflicient

The determination of the diffusion coefficient in polysulfide melts has
been attempted by a number of investigators. Most of these works are

reviewed in Chapter Two. A more thorough discussion of the problems
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Figure 3-1 Calculated sulfide ion transference numbers
relative to neutral sulfur solvent as a function of melt
composition for sodium polysulfide melts. Numbers calculated
from the data of Cleaver and Davies.!®
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Figure 3-2 Experimental conductivity for sodium polysulfides
as a function of melt composition. Figure reproduced from
Cleaver and Davies.!4
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Table 3-3 Values of the parameters in Equation (3-35)
describing the conductivity of polysulfide melts, from Cleaver and

‘ Davies.!*
Melt wt % Temp. range A E, Te
S K (Q-cm)~! kJ/mol K
Na,S,,  60.0 728-840 5.478 3079 499
NaS,;  66.1 642-698 3.863. 2478 458
Na;S,, 675 582-693  7.033 5693 329
NaS,,  70.1 458-694 . 7.048 5854 330
Na,S,, 723 428-694 7.056 - 6438 325
Na,S,, 748 456-871 8.279 - 6163 341
Nas;; 778 477-681 5815 6329 344

encounte:ed in measuring diffusion c_oeﬂicient'sb is given later in'Chapter
Five. At this time, no reliable experimental data for the diffusion coefficient
exist. |

3.3.4. Thermodynamic versus Concentration Dnvmg Force

In the development of the flux equations, we have shown how one may
express diffusive fluxes in terms of a driving forces based on gradients of
chemical potential or ones based on gradients of concentration. The
diffusion coeflficient for a concentration driving force D has been related to
the more fundamental diﬂusion coeflicient & based on the thermodynamic
driving force by Equation (3-14). Many investigators report diffusion
coefficient data in terms of D rather than & . 1t is therefore necessary to
interconvert between these two properties. One needs an expression

relating 1 + d ln y,./d Iln m to measurable quantities.
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The definition of the chemical potential of sodium sulfide can be written

in two ways
e = ud+ RTInag, = ud + VRT In(mgy,_) . (3-38)
The far right side of Equation (3-36) is the convention preferred by
Newman** while the middle expression is used by Cleaver and Davies.!® By

differentiating Equation (3—36) and dividing by the parameter v we obtain

dlny,. 1 dlna, .
1.’-cilnm—u dlnm ' (3-37)

which relates the desired quantity to the variation of the activity of sodium
sulfide in polysulfide melts with respect the molality of sodium sulfide. One
may obtain the activity of sodium sulfide from the activity of sulfur by
applying the Gibbs—Duhem Equation to the melt

z,d(lna,) +z, d(lnag,) =0. ~ (3-38)
The activity of sulfur in the melt can be obtained from the potential of Cell 1
in Equation (3—-28). Combining Equations (3—28) and (3-38) along with the

definition of the electrolyte molality

1 Zq

m = —— o, 3-39
M, (1 —ze) ( )
and using the chain rule we obtain
dln 7y, T (1 =z, )? dU
L 3y o «)° 2F dU, (3-40)

dlnm v RT dz,

'The potential of Cell 1 has been measured by Cleaver and Davies!® at two
temperatures but additionally, Gupta and Tischer’ have also measured the
potential of this cell. They have tabulated the cell potential for several melt
compositions at six temperatures of interest. Like the data of Cleaver and
Davies, the data of Gupta and Tischer are very nearly linear with the mole
fraction of sodium sulfide. Table 3-4 gives the parameters defined in

Equation (3-30) for the cell potential versus mole fraction of sodium sulfide.
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Table 3—4 Values for a; and B, describing the open circuit
potential of cell 1 for the data of Gupta and Tischer.

Temperature, K ag, V 81,V Rel. Std. Dev., %
553.15 2.48 -1.984 0.02
573.15 2.47 -2.057 0.01
603.15 2.47 -2.088 0.03
833.15 2.48 -2.158 0.004
663.15- 2.50 -2.232 0.01

The quantity 1 +d In ¥,/ d_ In m calculated from Equetion (3-40) is
plotted versus melt cemposition in Figure 3-3. We ha#e shown this quantity
Calculated from the data of Cleaver and Davies and Gupta and Tischer for
the sevefal temperatures. One can see thavt there is slight disagreement
between the two works, but since these curves have been obtained by
diﬁerentiating data, s_ome error is expecf.ed. The generel trends between
the two sets of data are not similar. The data of Gupta and Tischer predict
that the quantity 1 +d lny,/d in m generally decreases with temperature

while the measurements of Cleaver and Davies show the opposite trend.

3.3.5. Concentrations

In addition to the three independent transport properties, the flux
equations also require that the concentrations of the solvent and the
electrolyte be known. Concentrations of the melt components can not be
obtained'-directly from the literature. It is possible, however, to calcuLate
the concentrations from density data if the overall melt composition is

known. Our convention for describing the overall melt composition has been
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to use the mole fraction of the sodium sulfide electrolyte. Given this
definition for the melt ccmposition, the concentration of the electrolyte can

be determined from

c = 31&_ z, | | (3-41)

av

where M,, is the average mclecular weight of the melt
. Mw = z' Me + (1 - z') Mo . (3—42)

The molecular weight of sodium sulfide has been designated by M, while the

‘molecular weight of sulfur is #,. The concentrations of the anions and

cations follow directly from Equation (3~41) and are

C,=V,L = fle_ VieZg : (3-43)
and
czve = L—v.z, . (3-44)
oV

'I_’he concentration of the solvent is

= I{’:,"(I -z,), (3-45) |

and the total solution concentration is

CT = VC + €4 = [1 + (v - 1):.~] ;{L . (3-46)

3.3.8. Densities

The densities of polysulfide fnelts were taken from the experimental
results of Cleaver and Davies.!® They have correlated densities for several
discrete melt compositions as linear functions of temperature

p =D + E(T - 600). (3-47)
In Equation (3-47), D and E are constants dependent on melt composition,
and T is the temperaturc in K. Values for D and E are given in Table 3-5.

The uncertainity in these density measurements is estimated at 1%.
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Table 3—-5 Values of parameters in Equation (3—47) taken from
Cleaver and Davies.!3

Melt Wwt. Z Temp. range D E x 10*
s K g/cm® g/cm’/K
Na,S, 67.8 590-683 1.887 -5.85
Na,Sy4 89.7 576-689 1.901 -7.96
Na,S,, 72.0 563-669 1.926 -5.47
Na,S,, 75.4 571-680 1.869 -6.66
Na,S,, 77.0 573-683 1.876 -7.16

A graph of the densities for the discrete compositions as a function of
temperature is given in Figure 3—4. Melt densities as a function of
composition for several temperatures are given Figure 3-5. The somewhat
unusual composition dependence of the experimental density values on
temperature may be misleading. Much of the variation may be due to
experimental uncertainities since the precision of the experimental

measurements is only 1 %.

3.4. Calculation of Transport Parameters

If the conductivity, the transference number, and the diffusion
coeflicient are all known, then the binary 9.;,- transport parameters can be
calculated. The 9‘-,- can be calculated at different temperatures,
pressures, and compositions provided the three measurabie properties are
also known as functions of these same variables. The ;)bjective of usiné the

94},-'5 is to reduce the complications involved with correlating the three

transport properties which represent three very different processes. One
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would hbp'e that the .‘2,-,-'3 would be much more fundamental parameters
and one could correlate these much more successfully. If valueé of & .«
and t‘i .are all known, then the transport parameters 2',,, ‘Z,.. and
D .. are uniquely determined.
One can invert Equations (3-12), (3-13), and (3-20) for the transport

properties into expressions explicit in the three 7 ij- From Newman**

these equations are

| 9°-= g*?z- z . ' , (3‘48)
90+ = — g , v (3-49)

2.,—2. 1 -¢%

and
2,2.crF% 2z, -z_ ct%t°
; =t T _ 2%+ ok + . - (3-50)
D +- RTx 2w, C G
If one measures D instead of & , it is necessary to correct D using

Eqﬁation (3—-14).

The values for the three trahsport parameteré have beeh calculated for:
a polysulﬁde' melt at 833.15 K over the range of compositions commonly
encountered in the sodium sulfu_x; cell. We have used the conductivity data of
Cleaver anvd Davies'* and transference numbers calculated from the
equilibrium cell potentials of Cleaver and. Davies.!® Accurate diffusion
coémcients. which are unavailable, were estimated. A constant value for D.

equal to 4.0 x 10"® cm?®/s has been assumed.

Since not all of the required physical and transport properties were not
available at the same melt composition, it was necessary to develop an
interpolating procedure. The cubic spline technique was chosen to

determine the needed properties at any composition. The principle of this
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technique is to construct a set of cubic equations through each consecutive
set of four data points. The curves are constructed such that the values of
the functions at the given points are matched and so the slopes of the
curves are continuous at the given points. The necessary clalculations for
the cubic spline are performed by the subroutine CUBSPL. The
sodium—sulfur physical and t.ransport property data are calculated by the
subroutine PROPRT. The necessary data at intermediate compositions are
calculated by the subroutine CURVE. These subroutines are all listed in

Appendix F.

Figure 3-8 shows the variation of the 9,1’.]' parameters for the
polysulfide melt at 833.15 K. The most important feature of this plot is the
nearly constant values of the 2",- and the 9“ parameters.
Unfortunately, the value of 7 — exhibits some rather unpredictable
behavior., The very unusual variation in the conductivity causes this
unusual trend. One can see that the < ,_ behaves as unpredictably with
respect to the melt corriposition as the conductivity does. There seems to be
very little advantage in dealing with the 9 {j parameters versus the three
transport properties using this binary model. While it is useful to consider a
binary melt composition, we see that the fundamental analysis does not lead

to results which have an inherenl advantage over Lhe consideration of the

transport properties alone.
3.5. Second Law Requirements

One might wonder whether the Qu parameters calculated satisfy the
second law. This requires that the total entropy change for any irreversible
change must be greater than zero. In Appendix C, constraints on the .(2"-]'5

have been derived which lead to conditions which satisfy the second law.



60

-
- T=633I5K
'D=4.0x 10" cm2ss

'-0'3, :

L 11t

1074

LER BLARAS

L1 2322403l

i |

L

Ty
2 2 22111l

' .
'

|0‘6_

LR AALA |

Ho-

107 |
0.20 025 030 034

Xe

Figure 3—6 Binary interaction coefficients as a function of melt
composition for sodium polysulfide melts at 633.15 K.
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The results of Appendix C show that for the second law to be obeyed, the
diffusion coefficient £ and the conductivity £ must be greater than zero.
Since the 9_;},-'5 in Figure 3-6 have been calculated from conductivities
| and diffusion coefficients which are greater than zero, they must satisfy the

second law.

3.8. Applications to Previous Work We have discussed the work of Kao and
Wayner in regard to the choice of reference velocities. Kao and Wayner have
formulated a model for transport processes in the sodium polysulfide which
is very similar to the work performed here. Thei;' governing equations do
“not include the diffusive term contained in Equation (3—25). By observing
the values of transference numbers which are very near one, they have
assumed that K _ is eflectively infinity or & ,-is zero. From Figure 3-8 we
see that whiie 9,_ is small compared tn: D or & o+ it is not zero. If

& ,- is assumed to be equal to zero, then one is left with the unsatisfactory
result that & =.st also be zero. One cannot then consider the process of
diffusion within the melt if this assumption is invoked. Consequently, one
must recognize that the transference number of sodium ions is not uriity.
and it is therefore important to have accurate data for all of the three

transport properties.

3.7. Conclusions

A consistent set of transport equations has been developed for a rnelt of
sodium polysulfides. We have used the concept of the binary melt where the
constituents were defined as sodium cations, monosulfide anions, and
neutral sulfur. The starting point for this derivation considered the
interactions between these three species in the melt which could be

expressed as two independent force balances. Appearing in these force
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balances are three interaction paraméters describing the forces acting
upon these components as they move throughz the melt. From these, three
independent. measurable transport properties were derived by inverting the
‘tranvs'port equations. The conductivity, transference number, and diffusion
coefﬁcient were found to define uniquely the transport processes within the
rhelt.. .

Exp_eriments to determiné the measurable transport properties were
discussed. Conductiviti_es were taken directly from literature data while
transfer-encé 'nu'ml';er's were caléulated from cell potential data. Diffusion

coefficients for polysulﬁde melts were estimated.

The fundamehtal binary interactionv parameters for molten sodium
polysulfides have been calculated from experimental data on the
conductivity, transference number, and diffusion coefficient. These have
been correlated with the melt composition based on the mole fraction of
sodium sulfide. The resulting interaction parameters have been shown to

exhibit unpredictable behavior.



Chapter 4

Transport Properties for a Multicomponent Melt

4.1. Introduction

In Chapter Three, the transport properties for sodium polysulfide melts
were defined considering a binary melt. Three species were considered:
sodium cations, monosulfide anions, and neutral sulfur solvent. In this
chapter, we will calculate transport properties from first principles

considering a microscopic melt model.

4 2. Definitions of Melt Properties

4.2.1. Microscopic Melt Composition

Determination of the actual species present in polysulfide melts has
been attempted in several past works. The early works of Rule and Thomas!8
and Pearson and Robinson!? established the existence of the disodium
sulfur compounds in polysulfide melts. The recent work of 0ei®® has
confirmed these observations. He has used differential thermal analysis to
assess the microscopic composition by examining the behavior of the
'polysulﬁde melting curves. From his work, Oei confirms that solid sodium
polysulfides contain the stable compounds Na,S, Na,S,, Na,S,, and Na,S,.

The solid polysulfide with the nonstoichiometric formula Na,S; was judged to

be an equimolar mixture of Na,S, and Na,S,,.

New techniques for investigating the melt microcomposition have been
used. Recent laser Raman studies of solid sodium polysulfides by Janz et

al?! seem to be in accord with the predictions of Oei. The existence of the

63
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polysulfide compounds Na,S, Na,S,, Na,S,, and Na,S; were confirmed. Their
results could not support the existence of the polysulfide Na,S,: however,
they could not conclusively disprove its presence either. In laser Raman
work by these same authors,*’#® the existence of the S§ énion was
confirmed 1h solid pdtassium and barium sulfides. The x-—ray diffraction
work of 'I'egrnan’f’ also shows that the compounds Na,S,, Na,3,, andﬁ Na,S; are
fofﬁxed into yelledeﬁn'ed crystal structures m the solid phase. No x-ray

data were obtained for solid NaZSS.

While these few investigations on solid polysulfides have been
‘p‘erformed. no work has been performed which would direct_ly indicaté the .
actual spécies and their concentrati:on in polysulfide mélts. although several
- methods which indirectly suggest the makeup of the melt have been
pe:forméd. Tischer and Ludwig?* have interpreted linear sweep
voltammograms and postulate that the ions S3, S, S;. and S¢ are present.
They also conclude that the polysulfide anion S§ exists only in small
quantities as an qnstable intermediate. Again, these results are left open ﬁo
question regardinvg the simplifications used in tbéir theoretical analysis.
The errors introduced by applicétion of dilute solut.ioh theory to pdlysulﬁde

melts are unknown.

Tegman'? h#s.developéd a very comprebedﬁive model that éan be used
to calculate the microscopic melt composition. His is also the only work
which quantitatively postulates the actual composition of polysulfide melts.
Tegman has measured activities of sulfur vépor obtained from transpiration
experiments on polysulfide melts, and he has empirically fit these data for
an assumed microscopic melt composition. An ideal solution of sodium

cations and polysulfide anions was assumed. Contrary to these other works,
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Tegman's results indicate significant amounfs of the polysuifide ion S5 along
with S3, Sy, and S5, is present in the melt. His model shows excellent
agreement with his thermodynamic data, as well as agreeing very well with

other independent thermodynamic experimental results.

The above review illustrates the uncertainities which exist with regard
to the microscopic melt composition. The microscopic melt composition has
not been conclusively deterrnined_by any investigator. Suitable qualitative
and quantitative techniques which would directly confirm the presence of
the microscopic species have not been developed. While we recognize the
differences between the works, we have chosen to use the microscopic model
of Tegman. His model is the most comprehensive, having been tested over a
wide range of temperatures and compositions. As we will show, his model
also predicts the results of other independent works very well. The
disadvantage of the work is in its empirical foundation. The melt species are
only postulated, and their relative amounts are determined from the
macroscopic thermodynamic sulfur activity. No direct confirmation of the
composition is possible. We have adopted his model for this work, but we

acknowledge the underlying uncertainity which exists.

4.2.1.1. Microscopic Melt Model

The model of Tegman predicts the equilibrium composition of
polysulfide melts considering the equilibria arﬁong seven polysulfide ions.
The formulation and a detailed derivation of the requisite equations are
given in Appendix D. Here we will present the essential results. For the
melt, the reactions between polysulfide ions and ideal sulfur diatomic vapor
are considered. The melt will be assumed to contain N total different ions,

or N-1 polysulfide ions. The definition for the subscript conventions on
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‘'variables for ions is shown in Table 4—1.

For the arbitrary reaction

- o |
T Sag) 87T (4-1)

at equilibrium,

i
6 = K ¢1 Ps]

Here K is the equilibrium constanl for the reaction, ¢; is the concentration

(4-2)

of the polysulﬁde'ion S&, and pg, is the vapor pressure of ideal diatomic
sulfur vapor. Equation (4-2) implies that ‘thé polysulfide anions form an
'i,déal solution,. since the equilibrium constant is defined in terms of the
species -concentration.- .The -gguilib;ium constants &£ can be eipressed in

terms of‘a free energy change for the reaction

Table (4-1) lons in Multicomponent Model.

Ions Species Number
i 1
Sz 2
Ss 3
Sj’ ‘ J
SNS-l N‘ 1
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AG?=—-RTIn K; . (4-3)
The dependence of AG? is defined to be composed of an enthalpy and

entropy term .

AG = AH? — T AS?, (4-4)
where AH? and AS? are assumed to be independent of temperature. For the
melt composed of N-1 polysulfide ions, N=2 values for AH? and N—2 values of
AS? are required. To fit accurately thermodynamic data, Tegman included
the polysulfide anions S%, S5, S3, Ss, S5. Sg. and Sg. The polysulﬁdé.anion
S7 was required only in such small amounts, that it was not included in the

model.

The quantitative melt compositioh can be determined by considering an
overall material balance and a material balance on sulfur. This gives an
equation relating the overall melt composition to the equilibrium vapor

pressure of sulfur

N-1 2—
1+ ) K ps,
1=2

N-1 (%J.L '
1+ )i K ps,
=2

T, = (4-5)

If the overall melt composition is known, then one can solve Equation (4-5)
by trial and error for the partial pressure of sulfur vapor. Once the vapor
pressure of sulfur is known, the individual concentrations of the ions can be
determined. Considering the distribution of ions in terms particle fractions

gives the fraction of polysulfide ion S;" as

4

K ps,

™S T Ao o (4-6)
1+ Eafﬁ ps;’
{=

The particle fraction of sulfide ions is defined as
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= N=-1 ’ (4_7)
s
i=t
The required calculations are performed by the program COMPOS, which will
calculate the particle fractions of the various polysulﬁde ions for any overall
‘melt composition.

Once 't.hel particle fractiéris | are known, the individual ionic
concentrations may also be calculated. The equations derived in Chapter
Three can be used here. The sodium cation con‘éentration is independent of
the two models, and consequently

CN S Cy = V,C . | _ (4-8)

The concentration of the individual anions can be d_ete\trnined from

_ s =n‘c_=n.,;u4._.c’. N | (4-9)
These 'x"elat_.ionships also account for conservation of charge within the melt.
Figure 4—1 and 4-2 show the calculated distributiqn of polysulfide ior_1s
in the melt as a'fgnctibn of the overali sulfur melt composition. These
curves are for the two temperatures 573 and 633 K. It is apparent from
these curves that the ions S5, S7, S5, and S§ are present in large quantities..
Smaller amounts of the ions S and Sg exist, while »the ion S7 wa.s not
included. | |
Although not \?éry obvious bs' an initial iﬁspection. these curves show
that the distribution of ions» in the melt 1s nearly independent of
temperature. The two curves at different tempefatures are nearly

superimposable.

4.2.2. Application to Open Circuit Potentials
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Figure 4-1 Distribution of polysulfide ions in sodium polysulfide
melts at 573.15 K calculated from the model of Tegman.!



70

0.6

os}

03,

02}

Figure 4-2 Distribution of polysulfide ions in sodium polysulfide
melts at 833.15 K calculated from the model of Tegman.!?
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4.2.2.1. Single Phase Region

The microscopic model of Tegman can be used to determine the open

circuit potential of sodium—sulfur cells. A shorthand notation for this cellis

@ B b4 é a
C| Na(l) |B~alumina | Na,S+(y -1)S{1) |C

The potential of this cell in terms of chemical potentials of reactants and

products is derived in detail in Appendix B. The result is

1 1
FU, = pfa + 5 4d = 5 iflas - (4-10)
One now needs to express the chemical potential of sodium sulfide and
sulfur in the polysulfide phase in terms of neutral sulfide compoundé
consistent with the microscopic model. If the arbitrary polysulfide

compounds NapS; and NayS, are chosen, then the potential of the cell can

be written equivalently as

FUV= gl * 3 Troay Masim 3 gy Mess, . (4-1D)

if one relates the chemical potential of sulfur in the melt to these

compounds by

(i -1)

HNagS, = HNags + 35— Hs - (4-12)
The chemical potentials of the sulfide compounds are given by

HNayS, = HNaps, + RT In Zna,s, (4-13)
since they are assumed to be ideal components in the melt. The mole
fraction of the compound Na,S; is the same as the particle fraction of the
corresponding S;° polysulfide ion

zNﬁzS( = 1"\ . (4—14)

Finally, the standard chemical potentials for the polysulfide compounds can
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be expressed in terms of the chemical potential of sodium monosulfide by

AGE = pfags, ~ 5L 13, it  (4-15)

If one combines Equation (4—11) and Equation (4—-13) through (4—15) with

some algebraic manipulation one obtains

- 1___'6 s 1____@ oo Lo _ 1
1 —-—RTlnn ...1___b__RTlnn . (4—16)
t2 (b -a) ®* 2 (b -a). s

~ for the potential of the cell. The choice of the species NAZS and Na,S, can
be a.rbltrary If the mdwuiual particle fractxons of any two polysulfide anions
and the st.andard chermcal potentials for rnolten sodlum rnetal solid sodmm
monosulﬂde. and ideal sulfur diatomic vapor are known, then the cell

potential can be calculated.

4.22.2. Standard Chemical Potentials

The standard chemical potential of the compouhds fequired in Equation
(4—16) can be obtained from thermod.ynamic data compiled in any of several
sources. A comprehensive source used here is the JANAF tables.*® Values for
standard chernical potentials are not directly available but must be
calculated from tabulated differences of free energies of formation. The
required diﬂ’erences of chemical potentials in the standard states can be

related to the free energies of formation by

1 .

1 - 1 1 =
- '2—#.13.25 = AGP ya + ry AG}.SZ - EAG}.NQZS = AG® .(4-17)
Values for the free energies of formation of liquid sodium, solid sodium
sulfide, and ideal diatomic sulfur vapor are all available for the

temperatures of interest in the sodium=sulfur cell. The values appearing

these tables for liquid sodium are given in Table 4—2 while values for solid
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Table 4—-2 Selected JANAF thermodynamic quantities for
liquid sodium.

T ' Cp AH? ' _ AG

K cal/mol-K kcal/mol kcal/mol
500 7.302 0.000 0.000
600 7.124 - 0.000 0.000
700 6.996 0.000 0.000

sodium sulfide are given in Table 4-3. Thermodynamic values for diatomic
sulfur vapor are tabulated in Table 4—4. For temperatures other than those
given in the table, one can determine the required combination of standard

chemical potentials from

d(AG°/T) _ _ AH°
dT °’

where AH® is a function of temperature and is given by

(4—18)

Table 4-3 Selected JANAF thermodynamic quantities for
solid sodium sulfide.

T C3 AH AG}

K cal/mol-K kcal/mol kcal/mol
500 19.600 -91.346 -83.903
600 19.900 -91.670 -82.381

700 20.200 -91.877 -80.793




74

Table 4—-4 Selected JANAF thermodynarnic quant1t1es for
diatomic sulfur in the ideal gas state.

T 3 AH? | AG}

K cal/mol-K kcal/mol kcal/mol
500 8.389 28.385 11.808
600 8.549 27.518 8.575
700 8.858 o 26.779 5.525
BH = AR, + [ ACP (4-19)

The quantity Afy, is the value of AP at the reference temperature T,. The
individual heat capacities of the compounds can be assumed to have the
following dependence on temperature

Ch=a, +5T. | (4-20)
The variable AC} can then be defined by

_ ACp = Aa + AbT, (4-21)
where A has the same significance as it does in AG® and AA®. Substitution of
Equation (4—-21) into Equation (4—19) and integrating Equation (4-18) gives
an expression for AG° and any arbitrary temperature T, in terms of

thermodynamic properties at a temperature of T,

T
0 = —
AG T

AGE: +AHr |1 - L-|-Thaln ==+ aa (T-T,)
0 ° Tp To

CLE (T-T,)7%. (4-22)

Values for AG® at the various temperatures are given in Table 4=5.
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Table 4—5 Values for AG® at several temperatures.

Temperature, K AG®, kcal/mol
500.00 44.903
5583.15 44.068
573.15 43.754
600.00 43.334
603.15 43.285
633.15 42.817
663.15 42.350
700.00 41.778

42.2.3. Cell Potentials

The open vcircuit cell potential at any melt composition and
temperature can now be computed using the equations derived above. The
standard free energies of formation at the reference temperature are
obtained and are used to determine the required diflerences in standard
chemical potentials. They are corrected to the desired temperature using
enthalpy of formation and heat capacity data. The melt composition is
calculated at the desired temperature, and the values of the change in free
energy for the polysulfide compounds are also determined. Finally, the
potential is calculated by combining all of these quantities. Figure 4-3
presents the calculated potential versus the mole fraction of sodium sulfide
in the melt. The melt temperature has been used as a parameter. The
model predicts that the cell potential generally decreases with increasing

temperature.
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Figure 4-3 Calculated open circuit cell potentials as a function of
melt composition for several temperatures.
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The predicted open circuit potential can be compared to the available
thermodynamic data for cell potentials obtained from Gupta and Tischer’
and Cleaver and Davies.!® Figures 4~4 through 4—8 compare the theory to
the model with the data of Gupta and Tischer for a range of temperature
from 553 K to 663 K. The comparison with the data of Cleaver and Davies at
573 and 633 K is shown in Figures 4-9 and 4-10. In general, good
agreement with the experimental data is seen. There are some deviations
with the data of Gupta and Tischer at the higher temperatures, but the
model reproduces the data of Cleaver and Davies very well at both

temperatures.

4.2.2.4. Two Phase Regions

The potential in the two phase regions and the overall melt composition
at the juncture of these regions can also be ascertained from the previous
analysis. First consider the two phase region at high sulfur cornpositions.
At the upper solubility limit, polysulfides with the approximate forrnula
Na,S,, are in equilibrium with a sulfur-rich phase which is very close to
pure sulfur. Schematically, the equilibrium between phases can be shown

as

1 2

Na,S, | Na,S

-
where the variable y denoting the composition in phase 1 is near 5.2 and the
variable y' in phase 2 is very large. The requirement of equilibrium between
the two phases can be expressed as

KNays, = Bia,s, (4—23)
where the superscripts 1 and 2 denote the polysulfide and sulfur~rich phase

respectively. Because the model of Tegman was fitted for a range of sulfur
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Figure 4—4 Comparison of calculated and experimental open
circuit cell potential as a function of melt composition at a
temperature of 553.15 K. Data is that of Gupta and Tischer.”
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Figure 4—5 Comparison of calculated and experimental open
circuit cell potential as a function of melt composition at a
temperature of 573.15 K. Data is that of Gupta and Tischer.”
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Figure 4-7 Comparison of calculated and experimental open
circuit cell potential as a function of melt composition at a
temperature of 633.15 K. Data is that of Gupta and Tischer.”
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Figure 4—8 Comparison of calculated and experimental open
circuit cell potential as a function of melt composition at a
temperature of 663.15 K. Data is that of Gupta and Tischer.” ‘v
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Figure 4—9 Comparison of calculated and experimental open
circuit cell potential as a function of melt composition at a
temperature of 573.15 K. Data is that of Cleaver and Davies.!6
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Figure 4—-10 Comparison of calculated and experimental open
circuit cell potential as a function of melt composition at a
temperature of 633.15 K. Data is that of Cleaver and Davies.!®
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compositions much less than the composition of the nearly pure sulfur
phase, it is not likely that the distribution of chemical constituents can be
calculated with any accuracy in this phase. But as an approximation, we
can assﬁme that the sulfur-rich phase contains only pure sulfur. Under
this condition, the requirement for equilibrium becomes
ps = uf (4—24)
where the macroscopic chemical potential of sulfur has been used. The
chemical potential of sulfur in the polysulfide phase can be determined from
Equation (4—10), which was derived earlier. Rearrangement of this equation
gives
p§ = 2FU, =~ 2ufg + tNays = 2FU), = 2ufla + pfa,s + RT Inmy . (4-25)
To obtain the composition of the polysulfide phase, one is required to solve
this equétion iteratively for the chemical potential in terms of the
corresponding mole fraction of sulfide ion. The standard chemical
potentials of liquid sulfur are also needed. Again, these have been obtained

from the JANAF tables and are given in Table 4~86.

Table 4—8 Selected JANAF thermodynamic quantities for
liquid sulfur.

T cp AH AGS

K cal/mol-K kcal/mol kcal/mol
500 9.081 0.000 0.000
600 8.200 0.000 0.000

700 7.799 0.000 0.000
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Figure 4—11 presents the results of this calculation. The calculated
§aturation composition of the melt is given in terms of the mole fraction of
Na,S. The experimental values of Cleaver and Davies and Gupta and Tischer
are also shown. One can see that the approximation of a pure sulfur rich
phase does not exactly predict the actual measured cornpositidn. Wﬁile.
some of the discrépancy between the two curves is due to the slight
solubility of polysulfides in the sulfur rich phase, the majority of the
differences between the two curves is probably due to diflerences in the»

asﬁumed standard state energies.

In the two phase region located at lower overall sulfur compositions.
solid sodium disulfide is in equilibrium with a phase containing a mixture of
polysulfides. A similar calculation for the melt co.r‘iiposition at the junction -
of these two :regiohs could be perfox‘rméd by conSidering the equilib.riurn for
sodium disuifide. Accurate values for the chénﬁcal potential of sodium
disulfide in the standard staﬁe do not seem to be available, although Gupta
and Tischer present a single value ﬁhich they indicate is of questioriable_
accuracy. No heat capacities or heats of forrnﬁtior’x are available. This
calculation must await further experimental determinations of these

required quantities.

4.2.3. Thermodynamic versus Concentration Driving Force
The microscopic model of Tegman also allows the thermodynamic factor

dln vy, ‘
I*Ihmm (4-26)

to be calculated. This is needed to relate <. to the more commonly

reported, but less fundamental D.
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Figure 4—11 Calculated and experimental saturation composition
of the polysulfide-rich phase in the upper two phase region. The
calculated points are obtained using the model of Tegman!” while
experimental data of Cleaver and Davies!® and Gupta and Tischer’
are shown for comparison.
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The required expression relating this desired quantity to polysulfide ion
coxflpOSitions can most easily be derived by considering the definitions for
the chemical potential of sodium sulfide

| Ko = p¢ + VRT In (y4-m) = pfas + RT Inm, . (4-27)
The definition for the chemical [Sotential on the left has been taken from the
macroscopic meltvmodel derived in Chapter'szree. The ideal microscopic
melt model definition is on the right. Taking the differential of the two
definitions axid applying the definition of the molality in Equation (3-39)
gives |

diny.- _ (1l -z) dn,
dinm vn,  dz,

1+ (4—-28)
One can now obtain the derivative of the particle fraction of the single
sulfide anion with respect t'o.the electroiy‘te mole fractibn using the chain

rule

vd‘n.l - dnl dpszv
dz. dps, iz. '

(4-29)

Equations (4-5) and (4-8) give the electrolyte mole fraction and any
polysulfide anion particle fraction in terms of the vapor pressure ‘of
diatomic sulfur vapor. If these expressions are differentiated and

substituted into Equation (4—29), then the final expression is obtained

dln7+-_(1-?-'-) 1

dinm v N=1 =
T 22 Ki(i - 1)?5‘3-1
<=

1+

_, (4=30)

N=1 =
Y K@ - 1)ps?i
: =2
This quantity is also calculated by the subroutine COMPOS when the

microscopic composition is calculated.
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4.3. Determination of Transport Properties

4.3.1. Inversion of the Transport Equations

The treatment of the binary melt in Chapter Three can be extended to
the melt where the individual species are now considered to be totally ionic.
Thus, sodium cations and polysulﬁde' anions are the sole species present

with neutral sulfur having been eliminated.

Again, the starting point for this analysis requires that one begin with

fundamental equations. The equation

N N C:C:
eV = 2&,’(‘71 -v;) =RT 2 c—l'l_.“'(vj -v) (4-31)
Jj=1 j=1 T 131

describes isothermal transport in the melt composed of N species. If
variations in temperature are encountered, the driving force on the left side
of Equation (4-31) can be modified to include contributions from thermal

diffusion.

Here, we have considered the individual species in the melt to consist of
the individual anionic polysulfide species and the sodium cations. For the N
total ions in the melt, the N-1 independent equations implied above define
N(N=-1)/2 indepenﬂent transport parameters. Fquation (4-31) is not
explicit in the fluxes, but one may invert them in a similar but more involved
manner as for the‘ binary model. Since these are linear equations for the
gradients of chemical potentials in terms of the driving forces, any
technique for inverting linear equations can be applied in principle.
Because of the large number of variables, the only practical method is
numerical inversion. Algebraic inversion is too cumbersome and ‘time
consuming. A complete description of the inversion process'is given in

Appendix E.
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The result of the inversion'pfocess is a set of équations for the fluxes in
terms of the gradients of chemical potentials of the polysulfide anions or
the neutral polysulfide compounds, the current density, anci the reference
velocity. If these equations were written out, the N(N—1)/2 independent
transport pararnet.érs would be combined into the  same nurnbe‘r of
independent transport properties. For the N-1 polysulﬁde anions with the
single sodium cation, the independent tr'ansport‘ parameters are described
ve_quivalently by N~2 independent transference numbers, 1 conductivity, and
(N—l)(N-Z)/Z ‘independent diffusion -coefficients. The transference
‘numbers defined above must be defined relative to some given velécity. One
of .rnany such velocities we could bchooﬁse .would be the velocity of the sodiﬁm
‘cation. Pollard and Newman®® have demonstrated the a’d\-rantageé of this
choice f.orvdvescribing the transport prd_perties of a mixture of two binary
molten saité with a common ion. For the reference ion, the transference
numﬁer is by definition equal to zero, and the additional constraint of a
unity sum fér the remaining transference numbers leaves N—2 inldependent

transference numbers.

It is n§.t necessary to define a reference velocity for the conductivity or
diffusion coefficients. These are invariant irit.h respect to this choice. The
(N-.l)(N-Z)/ 2 diffusion coefficients describe diffusion of any of N-1 neutral -
compounds under the influence of N-2 independent gradients of chemical

potential.

While the N(N-1)/2 transport properties have been defined, it is
impossible to compare any of these to any experimental data. Owing to the
present inability to measure the movement of the individual ions, one must

‘transform these into properties which can be measured. The work of
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Chapter Three defined transport properties for the binary melt and
established a firm foundation for the definition of binary transport
properties. These properties were shown to posses physical meanings and

all of these could be obtained from well--defined experiments.

The task now is to relate the fundamental 9/;,- parameters defined in
the multicomponent model to the three independent binary transpori
properties. Independent of the details of the melt model, each set of
equations must predict the same bulk movement of sodium and sulfur. In
other words, the flux of sulfur transported by the polysulfide ions which is
described by the multicomponent model must be equal to the flux of sulfur
in neutral sulfur form and as monosulfide ion given in the binafy model. The
flux of sodium ions must also be identical. Mathematically, one equates the
expressions for the flux of sodium ions and sulfur using expressions for each
derived in the two models. The details of the manipulations are covered in
Appendix E. The essential results can be summarized as

N=IN=1

£=F% Y Y z2cpzic Ll (4—32)
k=l =1

N-1 N-1
L key 3 Lije;
__1___ k=1 j=1

z_ N-1 N-1

L e 3, Lijcy (4-33)

k=l j=1
N-1 ¢

_1_ + —1.. kL
. Z,, k=1 CN

and

N=-1 N-1 B )
9 = 3RT kgnkajngé\;Cj[z U - 1)] (4-34)
c (y +2)y - 1)

The constants A and B are deflned by
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N=1 N-1
A= Yo, ¥ L¥c; ., (4-35)
kal j=1
and -
Nz} Ky C ,
B ='k2 cng Lfe;G = 1). (4-38)
=] =1 .o .

The important feature of these equations is that the _tré_nsport pr_opetties
for the binary model can be expressed in. terms of the inverted transport
c'béﬁcients‘ ofv the rnulticomponervxtv model. The inverted transport
~ parameters, Lg. are related to the fundamental 9 ij given m Equation
(4-31) and deﬂned__c'om;v:letely in Appendix E The velocity of the sodium ion
has been des‘ivgn.lated "'as_ the' reference velocity, and the mvérted I,ﬁ-"s are

dependent upon this choice. Hence the superscript designatipn N.

If seven polysulﬂde anions afe assumed to be present in the mélt. there
are then 28 independent parameters. None of these is known. This is a
| large number, especially when these must be fit to only three observable
quantities:b the transference number, the conductivity, and the diffusion
coeflficient. One might attempt a multidimensional search'.as_sumingv the
parameters are all constant, lool;ting for the optimum cor.r;bination'which
would be;f. fit the available data. ’I’his procedure has been utilized by
F"mt..aux'o51 in the study of electroiyte transport in membranes. His work
involved only four species with 8 independent parameters. The larger

number of parameters here makes this approach undesirable.

To reduce the number of parameters, one must resort to a method
which relates the 28 independent 7 ij para_.r.neters to each other. For a
dilute gas, the value of &% ,, can be obtained from sta_t.istical mechanics.
From Bird, Stewart, and Lightfoot,*® the relationship ‘for the difflusion

coefficient in a mixture of low pressure nonreactive gases is
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v 3
: 3 } 2
2 =2[_’=r 1, 1 r g7
A AB 3 | 2M, 2Mp p[r, . rb]!' ( )

Equation (4-37) predicts that the diffusivity varies inversely as the square
of the effective molecular diameters and directly with the square root of the
sum of the recipfocal of the molecular weights. The molecular weight term
arises from the velocity of the particles, which for a low pressure gas is
proportional to the square root of the mass. The mean free path of the
particles, or average distance between collisions is related to the inverse of

the effective particle diameter.

For the dense liquid phase, the prediction of diffusivities is much more
complex. No longer is the expression for the mass diffusivity in Eqﬁation
(4-37) applicable. Other theories have been developed wh_ich attempt to
predictA the self diffusivity or the diffusivity of a dilute solute. The Eyring
reaction rate theory®® and the model of Li and Chang®* suggest that the self
diffusion coefficient is proportional to the inverse of the particle radii. The
empirical relationship developed by Wilke and Chang®*® predicts- that
diffusivities for dilute solutes should vary inversely with very nearly the
square of the diffusing species radii. The viscosity of the solution is also
important in determining the magnitude of the diffusivity. The diffusivities
are inversely proportional to the viscosity of the solution, decreasing with
increasing solution viscosity. One therefore might relate the independent

7 if to some function of the inverse of the radii of each ion and melt
viscosity. This is the approach we adopt here.

While the 'viscosity of the polysulfide melt has been measured

experimentally, there are no known published techniques which will directly

lead to predictions of eflective collision radii of ions in polysulfide melts.
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One must therefore adopt a strategy which attempts to predic£ these
quantities indirectly. It has been common in many theories for diffusion in
liquids to assume that the radii of the individua}l’ particles are related to
their respective molar volumes. If f.hg molar volumes of the individual ions

can be ascertained, then the effective particle radii can be determined and

an empirical relationship for the 2 ij can be formulated.

43.2. l{olar Volumes

The molar volumes of the ions from the melt can be related to density
data which are available from the literaturé. The total melt density is
related'f' to the concentrations of the individual microscopic neutral

compounds by

| P i’gé"‘zs«”ﬂ-as‘- | (4-38)
The definition for the molar volumes require
N=1 | - . o
‘glcm,s‘ VNegs, = 1. - (4-39)
while the concehtrations of the individual cqmpt;und are related to the
‘particle fraction for the individual polysuiﬂde anions by

CNags; = ™€ . | : (4-40)

The 'molar volume for the neutral sodium polysulfide compound can be
subdivided into the volume of the respective polysulfide anion and the two

sodium cations

VN.'s‘ = F‘ + 271., . (4-41)
When Equations (4-38) through (4—41) are combined, the reciprocal of the

density can be expressed as a sum of terms all linear in the molar volumes

of the individual ions |



95

1 Nzt o N-1l

= YmM =2V + YV (4—42)

P i=1 i=1
In obtaining this equation we have assumed that the molar volumes of
sodium ions are identical for any of the neutral polysulfide compounds. The
polysulfide ion particle fractions must satisfy

N-1
Lm=1. (4—43)

=1

Equation (4—42) relates the molar volumes of the several ions in the
melt to a directly measurable property, the density. For seven polysulfide
anions, Equation (4—-42) requires the determination of eight individual molar
volumes. Again, in principle, one could perform a multidimensional search
or utilize‘ a fit of the experimental data to calculate all eight of the
individual molar volumes. The presently available density data do not justify
such a calculation. We must find a method to simplify this relationship to
reduce the number of arbitrary constants.

3 can be used to identify possible

The x~ray diffraction data of Tegman!'
simplifications which will relate the molar volumes. The x—-ray diffraction
data of soiid sodium polysulfides were obtained at the ambient temperature
of 297 K. Figure 4—12 shows the respective volumes of individual sodium
polysulfide compounds obtained from this investigation. One would expect,
that as the number of sulfur atoms in the polysulfide increases, so would the
volume. Figure 4—12 shows that this indeed is the case for the three
compounds shown. The data show that the volume is nearly, but not quite

linear in the number of sulfur atoms. To fit the data better, the empirical

relationship

V. = V, iP (4~44)

was introduced where p was an assumed constant. For different values of p,

a least squares fit was perforrned so that the best values of 7n and 71 fitting
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Figure 4—-12 Volumes of sodium polysuifide compounds obtained

from x-ray
Solid line is

diffraction studies on solid sodium polysulfides at 297 K.
empirical fit using equation (4~44) with p=1.5.
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the experimental density data were obtained. The results of the fit
indicated that the value of p = 1.5 fitted the data the best when the
minimization of the standard deviation was used as a criterion. The x—-ray
diffraction data plotted in Figure 4—12 indicate that p = 1.5 indeed fits the

three points very well.

The empirical relationship derived from the x—ray diffraction data was
also compared with the density for molten polysulfides. Cleaver and Davies!?
present values for ciensity at several compositions and temperatures. Their
results show that the densities of polysulfide melts are well represented by
linear functions of temperatures, but the dependence upon melt
composition is very irregular and unpredictable. To confirm the predictions
of the x—ray data, the empirical molar volume fit was compared to the
density data of Cleaver and Davies. Again, a least square linear regression
routine was used to find the best value of p which produced the best
agreement between the calculated and experimental densities. It was found
that the value of the exponent which best fit the data for all melit

temperatures was again p = 1.5. The respective molar volumnes calculated at

the various temperatures are given in Table 4-7.

The variation of the melt density is shown in Figures 4-13 through
4-15. The predictions for the density using p = 1.5 fit the data rather well,

very nearly within the experimental uncertainities for all of the points.

4.3.3. Calculation of Transport Properties

Now that we have determined the molar volumes of the individual ions,
we can develop a relationship for the 7 ij parameters. The previous work
for estimation of liquid phase diffusion coeficients shows that the diffusion

coeflicient is related to the inverse of the diffusing species radii raised to an
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Figure 4—13 Experimental and calculated densities for sodium
polysulfide melts versus melt composition at a temperature of
573.15 K. Curves for various values of the parameter p are
shown.
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Figure 4—-14 Experimental and calculated densities for sodium
polysulfide melts versus melt composition at a temperature of
600 K. Curves for various values of the parameter p are shown.
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Figure 4-15 Experimental and calculated densities for sodium
polysulfide melts versus melt composition at a temperature of
633.15 K. Curves for various values of the parameter p are
shown. ’
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Table 4-~7 Values for VN and 71 describing the molar volumes
of sodium polysulfides for p = 1.5.

Temperature 7~ 71 Rel. Std. Dev.

K cm?®/mol cm?®/mol %

Density Data

573.15 21.4581 5.8783 0.005
800.00 22.0298 5.8489 0.003
603.15 22.0547 5.8525 0.003
833.15 22.2949 5.9060 0.003
650.00 22.4318 5.9367 0.003
663.15 22.5387 5.9611 0.004
X-Ray Data
297 19.48 5.28 0.3

appropriate power. These works show that the power may be one, if the
theoretical work of Eyring or Li and Chang is adopted, but is two if the
empirical correlation of Wilke is accepted. These works estimate the self
diffusivity or the diffusivity for a dilute solute in an excess solvent. The
sodium polysulfide melt, however, is a concentrated solution of sodium
cations and polysulfide anions. The diffusion of ions in the melt does not
readily approach the dilute limits of these other methods. These methods
suggest, however, that the 9"-, parameters should be related to the
inverse of the ionic radii to a given power. For species of two different radii,
Equation (4-37) predicts that the sum of the individual radii are important.

We therefore have adopted two relationships for all of the 7 j parameters
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1 .
Dy =e mrrpe 07 v (4-45)
- 1 ,
M 9&” =& (7_‘ +'r~)7- i N, (4—46)
where
g e

The values of &, and g2 should be independent of meit cornpo;ition. but the}
can be functions of 'temperature and pressure.' The ionic radii were
assumed to be given as functions of the cube roots of the molar volumes as
given above. If these two relationships were strictly valid, then the values
for the threev traxisport éropefties cal-cgla_ted should be identicai to the
experimental values at a given témpera.t.ute ..when constant values of £, and
g3 are used. |

To ut.ilize‘ Equalions (4—45) a.nd (4—48) above, it is necessary to h'avé
values for the viscosities of polysulfide melts as a function of c_ompositio'n.
As we meﬁtioned, these have been dete’rminéd experimentally at a numﬁe:
of temperaﬁures in the work of Cleaver and Davies.'d Figure 4—18 plots the
variation in the melt viscosity at a température of 833.15 K The soﬁd points
are the experimental data, while the solid line is the best continuous
interpretation. It is appar_ent. that no general trend is discernible from
these data, and the viscosity exhibits very unpre&ictable behavior.with
respect the fnélt composition. The data of Cleaver and Davies suggest that
these measurements should be precise to within one 6;‘ tfvo percent, hence
random errors or statistical fluctuations should not be attributed to these

variations.
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Figure 4—16 Experimental melt dynamic viscosity for several
compositions from the data of Cleaver and Davies.!®
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To determine the best values of &, and &3, we have fit these two values to
the conductivity and tx;ansference number as a function of concentré.tion. A
two—-dimensional Newton—Raphson method was used to find the values of
these two variables which exactly fit the two measurable properties. The
expressions for tiae 7 i paramef.ers in Equations (4—-45) and (4~46) have
been used. The exponent ¢ was assumed to be an integer. It was found that
only for values of ¢ greater than or equal tq three could sets of £; and £3 be
calculatéd ‘wbi'ch matched the data over the entire composition range.
Hence, a value of gq =3 was used for all of the calculations. The derisity.
which was needed for the caléulation of the iqnic‘concentl.'atv.ions. was
calculated from the molar volume correlations. Since the viscosity and the
éonductivity were neéded' at several cbmp_ositidns which poésibly did not
.correspond to the measured cornposit.ions. a cubic spline technique was
used to deiermine v}alu‘esj of thes‘e' properties at intermediate points. The
solid curve in F“xgufe 4-18'is an. example of the use of this technique. While
the predicted curve passes through each pbint.. we do not imply that any
physical meaning can be attached to it. This is simply a convenient way of
generating properties at any composition. In fact, problems with the

unpredictable variation in viscosity will be addressed in a moment.

Once the sets of ¢, and ¢; which gave an exact match with the
experimental data were found. the transport properties were recalculated
using constant valués for these two §arameters. The two values were chosen
by averaging the variable values over the entire composition range. This
produced nearly the best single se£ of £, and ¢; which reproduced the

experimental data.
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Figure 4-17 compares the experimental conductivity measured by
Cleaver and Davies to the predictions of the model. The dashed curve is the
calculated conductivity using constant values of the parameters &; and &;
and with a composition varying viscosity. It is evident from this figure, that
constant values of these two parameters do not predict the complicated
variation of the conductivity v}ith composition exactly. The rather unusual
small variations in the curve are due to the very unpredictable trend in the
viscosity as demonstrated in Figure 4—16. It is doubtful if variations as
small as these posses any real meaning in a study as general as this.
Therefore, the variation in the viscosity will not be considered any further.
For all subsequent calculations, the viscosity will be assumed to be constant
with composition. The general trends in the results will be unaffected by
this choice. Figure 4—18 is the same prediction for the conductivity, but
without the variation in viscosity. The general trend is still the same. The

prediction for the conductivity at 573.15 K is shown in Figure 4—-19.

Predicted transference numbers for a temperature of 633.15 K and
573.15 K are shown in Figures 4-20 and 4-21. The dashed curves are the
predicted transference number assuming constant values of & and &;. It
was not possible to fit the transference at the lower temperature of 573.15
K. No set of £, and &; could be found which would predict a sulfide anion
transference number larger than about 0.05. The closest which could be
approached to the experimental data is given Figure 4-21. There is a large
difference here, but this is the best which could be calculated. One can also
see from both figures that the model predicts a much larger variation in the
transference number than is indicated from experiments. This is not
serious, however, since the experimental transference numbers have been

calculated by assuming constant values for slopes of potential versus
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Figure 4—17 Experimental and calculated conductivities versus
melt composition for a melt temperature of 633.15 K. Dashed
curve is for constant £, = 1.03 x 10728 g cm?%/s and € = 7.72 X
10728 g cm?/s with variable viscosity.
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Figure 4—18 Experimental and calculated conductivities versus
melt composition for a melt temperature of 633.15 K. Dashed
curve is for constant £,/ u = 6.32 x 10728 cm®/s and ¢,/ u = 4.68
x 10728 cm5/s while solid line is best continuous interpretation.
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Figure 4—-19 Experimental and calculated conductivities versus
melt composition for a melt temperature of 573.15 K. Dashed
curve is for constant &;/u = 5.12 x 10728 em®/s and £,/ u = 2.21
x 10728 ¢m5/s while solid line is best continuous interpretation.
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Figure 4—-20 Experimental and calculated transference
numbers versus melt composition for a melt temperature of
633.15 K. Dashed curve is for constant &/u = 6.32 x 10728
em®/s and &;/u = 4.68 x 10728 cmS/s while solid curve is
calculated from experimental data.
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Figure 4-21 Experimental and calculated transference
numbers versus melt composition for a melt temperature of
573.15 K. Dashed curve is for constant £,/u = 5.12 x 10728
cemd/s and &/ = 221 X 10728 .cm5/s while solid curve is
calculated from experimental data.
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composition curves. There is some uncertainity involved with this
determination since differentiating this data is bound to introduce errors.
In addition, the experimental curves are not truly straight lines. The actual
variations of the experimental transference numbers are suppressed by the

constant—slope approximation.

The main advantage of the model is that the diffusion coefficient for the
melt can be predicted. The values of the diffusion coefﬁcien_t for a
thermodynamic driving force are given in Figure 4—-22. The two
temperatures ‘Of 573 and 833 K are shown. Two curves are shown, the solid
curve is calculategl from variable values of &/u andl &2/ 1, ones which
exactly fit the transference number and . conductivity data at all
compositions. The dashed curves are for fixed valués of the two parameters.
Thére is some diﬂérence between the two curves, but this is not large, énd

the uncertainity is not too great.

Previous experimental work has determined J, or the diffusion
coefficient for a concentration driving force rather than the ;'nore
fundamental 2 . The difference between these two quantities is the
activity coeflicient factor muiltiplied by the ratio of the solvent
concentration to t.ixe electrolyte concentration and is expressed in Equation
(3-14). The activity coefficient factor can be calculated from Equation
(4-30). The predictions of the model for the thermodynamic correction
factor are given in Figures 4—-23 and 4—24 along with the curves calculated
from the experimental data of Cleaver and Davies!® and Gupta and Tischer.?
Like the transference numbers, the activity coeflficient factors calculated
from the model exhibit much more variation with composition than the the

experimental curves. Again, these curves are related to the slopes of the
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Figure 4—-22 Predicted values of the diffusion coefficient for a
thermodynamic driving force versus melt composition. Solid
lines are for variable values g, and ¢, which fit the conductivity
and transference data at all compositions. Dashed line is for
constant values of £,/ u and &5/ 4.
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Figure 4—23 Predicted values of thermodynamic activity
coefficient factor versus melt composition at 633.15 K. Solid line
is calculated from the model. Dashed curve is obtained from
experimental data.
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Figure 4—24 Predicted values of the thermodynamic activity
coefficient factor versus melt composition at 573.15 K. Solid line
is calculated from the model. Dashed curves are obtained from
experimental data. '
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potential versus composition curve. The constant slope approximation used
in reducing the experimental data tends to suppress any variations which

might be present.

Figure 4-25 exhibits the prediction for the diffusion coefficient for a
concentration driving force along with recent experimental data. The
theoretical curve is calculated using constant values for &, and &; and
applying the thermodynamic activity coefficient factor calculated from the
microscopic model. The experimental results of three investigations are
shown. The predictions for D fall in between those measured by Divisek et
al?” and those of Armstrong, Dickensqﬁ. and Reid.*® We have already

discussed the uncertainities in each of these measurements.

The data point for Tischer and Ludwig was obtained by these two
authors by combining the rotating disk data of South and Sudworth?®® and
Armstrong, Dickenson, and Reid.?® A value of 6.3 x 107 cm®/s has been
calculated for Na,S, at 623.15 K. If the same data of South and Sudworth
and Armstrong, Dickenson, and Reid are used to calculate the diffusion
coefficient for Na,S; at the same temperature, then a value for D of 2.9 x
10°® cm?/s is obtained. Sirnilar calculations for the same data at 578.15 K
yield values for diffusion coefficients of 2.5 x 107 ¢m?®/s for Na,S, and 5 x
10® cm?®/s for Na,S,. These values for Na,S; seem somewhat low with
respect to the other measurements and the calculations presented here. We
therefore suggest that this calculation is probably not accurate, and the

result is open to question.

4 4. Effect of Slow Homogeneous Reactions

Throughout this discussion of the transport properties, we have not

considered the possibility of slow homogeneous reactions between the melt
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Figure 4—-25 Comparison of predicted values of the measured
diffusion coefficient with selected experimental data.
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components. The assumption of infinitely fast kinetics for the reactions
between melt species has been required, leading to the required condition of

local equilibrium between melt components.

It is possible to-modify the existing work .t.o account for slow
homogeneous reactions between melt constituents. To do this requires
modification of the models develop;ad here and reconsideration of
experimental data. The general transport equations presented in this
chapter remain applicable, but one must replace the concentrations of the
individual species with actual composition at each position rather than
using equilibrium concentrations. One must now use the cénservation of
species 'equations for each microscopic species to determine their
concentrations at each point in time and space. The source term in these
expressionsumust include the production or the consumption of each

species by the slow homogeneous reactions.

The determination of the transport properties would also need to be
modified. The transference number for the melt was calculated using the
macroscopic model which assumed local equilibrium among all species. One
would need to model the diffusion process occurring in the transition region
accounting for the slow homogeneous reactions. One could not use the
macroscopic transport equations, but instead the transport processes would

have to be described using the microscopic equations.

If homogeneous reactions are to be accounted for, the limiting
reactions must be identified, and the rate constants need to be determined.
If all possible reactions between two species resulting were considered, then
for the seven polysulfide ions assumed here this would require the

determination of 9 independent rate constants. If tri—-molecular reactions
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are considered, then even more rate constants are required. Added to the 6
equilibrium constants and the 28 transport parameters, the number of
parameters required to describe this system increases very rapidly. For
seven polysulfide ions, there would be seven independent material bélances,
seven independent flux equations, and 9 reaction rate expressions. The
possibility of modeling any system using such an approach seems too
difﬁcult and would require a large, expensive calculation. Perhaps‘ if only
one or two r.e'lac_tions were rate.lifxﬁting. then it might be possible to include
these. but the additional accuracy which would be »obta‘ined ié probably not
jﬁstit_ied. For_now. until more information is av;iilaple_. the apprbximation of
a‘ microscopic equilib}_riurn melt is the most sophisticated approach which

can reasonably be considered.

4.5. Summary

The transport propertie's f'of a _’binary melt have been predicted by
consideri’nvg the microscopic composition of a sodium polyéulﬁde melt. The
interactions within a melt composed of all ionic species has been
considered. The macroscopic binary transport propertiés derived in
Chapter Three were formulated m termms of fundamen.tal interaction
parameters for Lthe individual sodium cations and polysulfide anions. It has
been demonstrated that the equilibrium rni;roscopic melt is equivale_nt to a
binary melt with variable physical properties for dgscribing the bulk
transport of sodium and sulfur. Empirical relationships for the parameters
defined in the microscopic modelv have been proposed which relate the 28
required parameters to two pafameters dependent on the melt temperature
but independevnt of melt composition. It has been demonstrated that the

general trends of Lhe transport properties can be predicted using this
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approach. Furthermore, the diffusion coefficient for sodium polysulfide
melts has been predicted and has shown general agreement with literature

data.

Slow homogeneous reactions were not accounted for in Lhis analysis,

but the necessary modifications to account for these processes were

outlined.



Chapter 5

Experimental Determination of Diffusion Coefficients

5.1. Introduction

Diﬂusion coefficients in electrochemical systems can be experiIhEntally
-detérmined in a gre\at number of ways. 'fhe rotating disk,%® transient
diffusion on a stationary electrode,® stagnant diffusion in a closed cell,’® or
a capillary®? are éll popular techniques. These have all have been utilized
extensive’ly. First we should distinguish these methods and the types of

diffusion coefficients that are obtained.

Newman®® presents a clear distinction between three types of diffusion
coefficients: polérograpbic. integral, and differential. = Polarographic
diffusion céefﬁ_cients are detérrnined from transient experiments. Diffusion
coefficients obtairied from a falling mercury drop or by chronoamperometric
means on a flat plate electrode constitute this type. Integral diffusion
coefficients can be obtained from steady—state non—equilibrium flow
systems such as a rotating disk or a flat plate. Since variations of transport
properties are present across a diffusion layer, integral diffusion coefficients
represent. a weighted average of the behavior of the transport processes.
Consequently, a measured integral diffusion coefficient cannot be assigned
to a unique composition, or a correspondingly unique set of transport
properties. While integral diffusion coefficients are useful for describing the
transport properties in boundary layer flows, the inability to correlate the
variation of these with specific solution compositions is a practical limit of

their usefulness.

120
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The most important type of diffusion coefficients with respect to this
study is the differential diffusion coefficient. The salient feature of these
diffusion coefficients is one’s ability to relate these uniquely to a single
solution composition, and a unique set of physical properties. Their
determination requires a method which does not average over anything but
an infinitesimally small concentration range. Because of the unique
relationship to compositions, differential diffusion coefficients can be used
with confidence in assessing the behavior of fundamental solution
interactions Rigorously, integral and polarographic coefficients cannot be
used for this purpose. The equations given in Chapter 3 provide the
essential framework for the comparison of differential diffusion coefﬁciénts

and solution interactions.

5.2. Application to Sodium Polysulfides

The literature review in Chapter Two shows that a number of
investigations have been performed to determine diffusion qoeﬂicients of
melts of sodium polysulfides. Integral diffusion coefficients have been
obtained from the rotating disk and polarographic coefficients from
chronoamperometry. Nearly all of these experiments have been plagued by
a most difficult problem characteristic of the sodium—sulfur system, the
inability to achieve a true limiting current. Consider an inert electrode in a
single phase polysulfide melt. If one polarizes this electrode to high enough
anodic potentials, a second, sulfur—rich liquid phase will be formed near the
electrode. The depletion of sodium polysulfides near this electrode causes
the solubility of sulfur to be reached. If instead, the same electrode is
cathodically polarized, solid sodium disulfide will be produced instead of

sulfur. The eflects of two phases on the hydrodynamics and charge transfer
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proceeses at the electrode surface cannot be predicted using any theories |

available today. One is therefore left with data which are very difficult to

interpret.

The previous determinations for the diffusion coeflicient have also
relied on some very simplistic assumptions regarding transport processes in
‘the melt. All of these have assumed that polysulfides are dilute solutions,
with Fick's Law governing ;he diffusion process. However, the molten state
of polysulfide melts where no nonionic species -are peesent in excess makes
this dilute solution essurnption highly questionable. The thermodynamically
ideal assumption of Fick's law is equally as bad. Sodium polysulfides exhibit

significant deviations from ideality.

A more accurate techmque for obtammg diffusion cvoemcxent data
would be one in whxch the presence of msolubles could be elmunated and
one in which the dilute-solution approxu’natmn could be abandoned. It hasv
been suggested that a better rneLhod for obtaining. dlﬂusxon data would be
'by the method of restricted chﬂ’usxon 81 This rnethod is' easily adapted to
concenlrated solutxons with variable physical properhes and requires that
no high current densities be produced within the meit. Consequently. the

formation of insoluble products is avoided.
5.3. Restricted Diffusion

5.3.1. Theoretical

The method of restricted difflusion was originally developed by Earned
and French® for dilute solutions, but it has since been extended to
concentrated solutions by Newman and Chaprnan.’al The method can be

described as follows. A concentration gradient of the species with an
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unknown diffusivity, is imposed in a tall thin rectangular cell, the height of
which is accurately known. The species within the cell are allowed to diffuse
freely for long times, while the concentration difference between the top
and the bétt.om of the cull is recorded. The diffusion coefficient can then be
extracted from the measured difference in concentration. A good source for
information on the origins of this experiment is given in Robinson and
Stokes.8 Although somewhat outdated, this reference also gives some useful

insights into the measurement and correlation of transport properties.

In the original method described by Harned and French,® the
concentrations are monitored by measuring the conductivity between two
electrodes placed perpendicular to the direction of diffusion. If a unique
relationship exists between the conductivity and the concentration, the
change in conductivity will' serve as an indicator of the change in the
concentration. While useful as an indicator at at low concentrations, the
conductivity loses accuracy in more concentrated solutions. The improved
method, developed by Newman and Chapman, replaces the conductivity with
the index of refraction as the indicator of concentration. Rayleigh
interferometry is used Lo determine the change in refractive index with
time, and this can be translated into corresponding changes in composition

with time.

An analysis of this method has been demonstrated by Harned and
French for dilute solutions and the rigorous analysis for concentrated
solutions has been performed by Newman and Chapman. As an example, to
highlight the important features of this method, let us consider the
determination of the diflusion coefficient for a simple system. This system

will involve a dilute solution where Fick's law is applicable, and the diffusion
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;';'coefﬁcient is invariant with composition. Negligible changes of volume upon
mixing will also be assumed. Mathematically, the solution for the
composition distribution within the cell is idéntical to that for transient
ﬁhermal diffusion within a finite slab if uniform physical properties are
assumed. Covnsi‘dex" a single diffusing species in a one dimensional planar

medium. The conservation of species equation requires

& _py (e
at-DVc. . | (5-1)

For the closed rectangle, the no—flux, impermeable boundaries at each end

of the enclosure require the following boundary conditions:

aty =0, —=0, 5-2
and _ ‘
- . Yo Tod
aty =L, =—=0. o 5-3
y &y (5-3)

The assumed initial condition will be an arbitrary distribution of the
diffusing species at time equal to zero,

‘ att =0,c = f(y). | (5-4)
The solution to Equation (5-1), subject to the boundary conditions of
Equations (5-2) and (5-3) and the initial condition of Equation (5—4), can
be found iq any good book on heat transfer or applied mathematics. One
" can also see Newman ahd Chapr:nan.‘""‘| The expression for the concentration

at any position and time is

- - nimine
¢ =Y de  *° cos n_;y_. (5-5)
=0

where the constants, denoted by A,. depend upon the initial concentration
profile. At long times, the concentration profile reduces to an exponentially

time decayirig cosine profile along the vertical dimension of the cell.
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If one monitors the difference in concentration between two fixed.
points at the end of the cell, say at the positions 1/6 and 5/8 of the length
of the cell, then the following expression describes this difference in

concentration,

5 _Dtn?
a a 22 m
‘Ac=c[€]—c[—6]=2Ale @ cos &
Dt
- 25 —=————
+2A5e *% cos %E—-f- (5-6)

When one then plots the logarithm of this difference in concentration with
time, it becomes linear as time tends toward infinity. Equation (5-8) for the
concentration difference shows that the higher order terms in the
expression rapidly become small compared to the leading term at long
times. The diffusion coefficient can thus be determined from the slope of

this straight line, which is Dn%/ a?.

The resulting difflusion coeflicient obtained corresponds to a
concentration given by a weighted average of the concentration profile
present at the start of the experiment. This is the same as the well mixed
composilion of the solution, or the composition of the solution as time tends
toward infinity. The resulting corresponding solution composition can thus
be obtained after the diﬁﬁsion process has occurred by measuring the

composition of the final solution.

For concentrated solutions, the simplified analysis presented above
may not be completely appropriate. Thermodynamic nonidealities may
cause the driving force to differ significantly from the gradient in
concentration. Fick's law may become quite inaccurate. The variation of
solution properties, especially the diffusion coefficient itself, may also

introduce uncertainities. Finally, the variation in the actual height of the



126

liquid column might respond to changes in the volume of components as

‘they mix and might have to be considered.

Newman and Chapman have shown that all of these effects can be
included in a more accurate aﬁalysis of restricted diffusion. Rigorous
application of th.-e concentrated flux equations presented in Chapter Three
have been used as a basis for this analysis. The resulting equations can be
solved in a more complicated way than in the dilute solution case. Using a
perturbalion expansion, an expression for the composition profile and the
' diﬂerence in.concentraf.i'on can be obtained. Again, though, the results
“show that the diffusion coefficient can be _obi".ained in the same way as
before. A logarithmic plot of concentration difference versus ti.fne recorded
at lohg times will have a slope which can be relaf.éd to the diffusion

coeflicient.

| There are threé-very important advantages of the .rneth-od of restricted
diffusion. The first advantage is that'the_ resulting diffusion coefficients are
absolutely determined. The method requires no calibration with a standard
solution of known diffusivity. Only the height of the liquid column must be
known. Second, in either the dilute or concentrated solution .case, the
resulting diﬂusion coeflicients do not depend on the init.ial concentration
profile within the cell. Any init.ia.l proﬁle can be used, yielding Lhe same
diffusion coefficient. Finally, it is also not neceésary to know the e#act
relationship between the measured variable and the solution composition.
As long as the measured property becomes linear at small diﬁ‘erehces in
concentration, then it may be used as a relative reference for the difference
in concentrations. The only restriction is that the measured property must

not have a minimum or maximum near the composition where the
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measurements are performed.

A schematic diagram of the experimental apparatus is shown in Figure
5—-1. Here a cell is charged with a pure sample of sodium polysulfides and
kept at the desired temperature by an external heater. Since sodium
polysulfides are hygroscopic, the cell must be isolated from the ambient
atmosphere. This can be achieved by sealing the cell or performing all
experiments within an inert atmosphere. A glove box could be used for this

purpose.

Located at the top and the bottom of the cell are two molybdenum
electrodes. These serve two purposes. First, the concentration difference of
the melt can be monitored using these as reference electrodes. Since
sodium polysulfides form opaque liquids, the change in composition cannot
be obtained from variations in index .of refraction. Any electrode reaction
could be be used for the reference reaction provided it is reversible to ions
present in the melt. The equilibrium between sulfur and sulfide ions on
rholybdenum

S*-+S+2e”, (5=7)
is a suitable reaction which would indicate the composition. The resuiting
potential difference between the two reference electrodes could be related
to changes in concentration. The potential difference could be recorded
using using a compensator circuit or high impedance electrometer, as
shown. The electrodes could also be used to generate the initial
concentration difference required. By polarizing the electrodes, an excess of
polysulfide ions would be generated at one electrode and depleted at the

other.
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Figure 5—1 Schematic diagram of apparatus.
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In the previous experiments of restricted diffusion, the concentration
differences were measured at the points 1/8 and 5/8 of the length of the
cell. Onsager suggested this method.® Careful examination of the governing
equations shows that selected higher order terms can be eliminated, when
this choice of positions is made. This makes the approach to infinite time
shorter for a given cell height, allowing for a more accurate determination.
For simplicity in cell construction, one may also monitor the concentrations
at each end of the cell; however, a longer time will be required for a linear

relationship to be achieved.

After the initial concentration profile has been generated, the melt
would be allowed to diffuse fr_eely. When sufficiently long times had passed,
the potential between the two electrodes would be recorded at regular time
intervals, and the diffusion coefficient will be obtained. The average melt -
composition must also be determined. This could be done ;ﬁhemically, but
preferably electrochemically using open circuit potential measurements
with respect to a sodium reference electrode as described by Gupta and
Tischer’ Using the method of restricted diffusion, the resulting diffusion
coefficients should be several fold more accurate than those determined
from any previous experiment. Accuracies of 0.2 to 0.3 percent have been

obtained in aqueous solutions.

The procedure for determining the diffusion coefficients is shown
symbolically in Figure 5-2. Four separate steps have been defined:
assembly, filling, sliding, and running. The diffusion cell and the reference
electrodes are first sandwiched together as shown in drawing (a). Next, the
sodium polysulfide is placed into the cell using an external fill-tube and

enough polysulfide is added to over fill the cell slightly. This is step (b). In



130

Mo Electrode - —
——— |

| to 3mm hole . | ’ .—4,%:\

' Pl DY

Glass A | | '
| ~ Cell —* | (=
Mo Electrode / f |

~ (a)

(b)

5=2 Symbolic representation of the method for

obtaining diffusion coefficients; (a) assemble cell; (b) fill with
polysulfide; (c) slide top electrode; (d) establish concentration

gradient and measure potential with time.

Figure
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step (c), the upper reference electrode is then moved sideways, covering the
hole in the glass cell. The cell is therefore completely filled with the
polysulfide, and a current path between the top and the bottom is formed.
The voltmeter and power supply are then connected to the reference
electrodes and once the concentration gradient is established, the potential

between the two electrodes is recorded at regular intervals in step (d).

The selection of the height of the cell is not critical, so long as the time
constant for diffusion in the cell is not too large or too small. Equation
(5—6.) shows that the concentration becomes linear at times on the order of
a®/ Dn®. One therefore should select the height of the cell from this
expression. For the aqueous electrolytes Newman and Chapman examined,
‘the diffusion coefficient D was about 1 x 10 cm?/s. They chose a time
constant of about two days, which suggested a cell heigh.t of about 5 cm.
For sodium polysulfides, the estimated difflusion coefficient is much smaller,
probably_around 5x 107 to 5 x 10°® cm?/s. For the same time constant, the

approximate cell height should then be about 0.5to 2 cm.

5.3.2. Experimental Apparatus

The experimental apparatus consisted of a number of separate parts.
The central piece of equipment in the experiment was the diffusion cell,
which contained the melt and two molybdenum reference electrodes. The
cell was located in an inert atmosphere glove box to protect the highly
hygroscopic polysulfides from contact with moisture in the air. Potential
measurements were made using a combination of equipment. Two high
impedance amplifiers and a digital voltmeter were used. More detailed
discussions of the diffusion cell, glove box, and electronic hardware follow in

separate sections.
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5.3.2.1. Diffusion Cell

CEL
A diagram of the diffusion cell is shown in Figure 5-3, and a photograph
1s shown in Figure 5-4. The main purpose of the diffusion cell is to provide a
stable lo.cat.iun for th}e determination of tf.he diffusion measuremeht. The cell
cpnsisf.s of four major parts: a base, thev actual cell, a fill tube, and a sliding

plate assembly. The diffusion cell was manufactured by the Chemistry

Departmeht f'abx"ica'_t.ion shops of the Uniirersity of California in Berkeley.

The base of the cell is a four inch diarrieter by one inch thick plate
machined érom alurnihum. It providea a stable .platform for the
experiment_s. 'Cophected to the base, by tapped holes, are four threaded
steel drill rods which extend upwards. An -i.nsuiating plate machined. from
transite, a high temperature elecf.r_onic insulator, was located in th'e' center
- of the base and fastened securely by four screws. Restirig;on this insulator
was a one inch round plate of mqubdénum machined frorn}( inch stock.
This plate was used as the bottom reference electrode.  The molybdenum
plate»was polished with abrasive paper on a Buehl.err Ecomet III rotating
'polisher't§ a fineness o‘f 600 grit. This imparted a finely smooth, shiny finish
to the moly_bdenum.

" The diffusion cell is a one inch diameter Pyrex® glass rod cut to a
vlcngth of approximately one centimeter. A 3 mm hole was drilled through
the cventer of the rod, and the faces of'vthe rod were polished with 600 grit
polishihg paste. This was placed on top of the molybdenum plate, and high
temperaLL.ivre vacuum grease manufactured by VWR Scientific was used to
form a seal between the glass and the plate. The sealing grease was rated-to

withstand temperatures up to 633 K.
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Figure 5—3 Diagram of diffusion cell showing: (1) cell base, (2)
upper aluminum plate (3) lower aluminum plate (4) glass cell, (5)
top plate, (6) wupper molybdenum electrode, (7) lower
molybdenum electrode, (8) transite insulator, (9) positioner
sleeves, (10) stainless steel reservoir, and (11) stainless steel
reservoir cap.
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Figure 5-4 Photograph of diffusion cell.
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Located above the top of the cell is the sliding plate platform. This
contains the upper molybdenum reference electrode. The upper
molybdenum reference eléctrode was attached to the sliding assembly which
in turn was mounted to a round, ¥ inch plate of alurnim;m. This plate was

mounted to a second ¥ inch aluminum plate via two hex head screws.

The sliding assembly consisled of two rectangular pieces of steel. One
of the steel rectangles fit into a channel machined in the other rectangle
and could be slid back and forth. Ball bearings were incorporated between
the first and second rectangular pieces of metal to provide smooth
movement. One of the steel rectangles was attached to the upper platform,
which enabled the second steel rectangle to slide back and forth relative to
the platform. The upper reference electrode was then attached to the
movable rectangle. Thin mica insulators were placed between the electrode
and the steel rectangle to isolate the electrode electricélly from the sliding
assembly. The entire sliding assembly consisting of the two aluminum
plates, sliding and fixed steel rectangles, and the reference electrode was
then placed above the diffusion cell. Holes drilled in the aluminum plates,
matching the pattern of the rods protruding up from the lower aluminum
base, were used to align the sliding assembly directly above the diffusion
cell. Allen key screws tapped into the upper plate held it in a fixed position
above the cell. The two hex head screws could be turned forcing the
aluminum plate containing the upper reference electrode down on top of
the cell. In this position, the lower face of the upper reference electrode
contacted the top of the diffusion cell. The pressure exerted on the cell by
the upper reference electrode on the upper face of the diffusion cell could

be varied by turning the two screws.
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Two chromel—alumel thermocouples protruded down beside the
diffusion cell and monitored the temperature near the cell. The absolute
temperature of the working thermocouples were determined with respect to
an ice reference thermocouple located in a dewer flask. The differences in
potential between the working and reference thermocouples were displayed

on a Keithly digital voltmeter.

A four foot length of flexible cable inside a cable guide was connected
to the sliding assembly. Remote movement of the reference electrode was

thus possible by moving the other end of the cable.

A small 2 mm hole was drilled through the upper molybdenum plate and
threads were tapped into the hole from the side away from the cell. A small
reservoir machined from stainless steel was constructed with a male
connector which could be screwed into this upper reference electrode from
above. A stainless steel hypodermic ne.edle was fabricated with a threaded
end which could also be screwed onto the reservoir. At the other end of the
reservoir, male threads were machined. Attached to the reservoir, and
extending upwards, was a stainless tube to which a vacuum or pressure line

could be attached.

5.3.2.2. Furnace Well and Glove—Box

The diffusion cell was contained within a glove box complete with
nitrogen, water, and oxygen removing capabilities. Photographs of the glove
box and purifying e.quipment are shown in Figure 5—5. The glove box and
purifiers were manufactured by the Vacuum Atmospheres Corporation (VAC)
of Hawthorne, California. The glove box was a Dri—Lab model DL 002—D-P
containing four work stations and a single vacuum/transfer chamber. Two

furnace wells were installed in the bottom of the glove box. The dimensions
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Figure 5-5 Photograph of glove box and purifying equipment
showing: (1) nitrogen and oxygen purifying equipment, (2)
furnace controllers, (3) furnace well and furnace, (4) glove
box refrigeration unit, (5) glove box, (6) oxygen monitoring
system, and (7) vacuum transfer chamber.
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of these are given in Figure 5—6. A cooling coil was installed in the upper

third of the furnace well to dissipate heat generated from the well.

The glove box was equipped with a Dri—train MO 40—2 dual bed inert gas
purifier for the removal of water and oxygen. The purifiers contained 16
pounds of molecular sieve and 10 pounds of Ridox®, a dessicant. Each bed
had enough capacity to operate for approximately three months before
regeneration was required. Only a single bed operated at a time, the dual
beds allowing the removal of oxygen even when the regeneration of one bed
was necessary. Regeneration of the beds was performed by passing a gas
stream containing 5% hydrogen and 95% helium through the beds. The
oxygen was reduced to water by the hydrogen, while the water was removed
when the temperature of the bed was increased by the hydrogen—oxygen

reaction.

Nitrogen removal was performed by a Nitrain model Ni—20 single bed
inert gas purifier. Ten pounds of titanium sponge operating at 1200 K
removed the nitrogen on a batch basis. The bed required regeneration
approximately every three months and was performed by increasing the
temperature to 1500 K. For the time the bed was regenerating, no nitrogen

removal occurred.

The inert gas within the glove box was grade A helium with a purity of
99.999%. This gas was continuously circulated through the purifiers by
electric blowers. Because of small leaks in the box and the removal of gas
lost by use of the transfer chamber, gas was constantly needed to replenish
the supply in the box. The average residence time of gas in the box was

about two weeks when work was being performed regularly.
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The pressure of the inert gases in the box was kept at a pressure of two
inches of water higher than the external, ambient pressure. This hindered
the leakage of unwanted gases from the ambient atmosphere into the glove
box. The box pressure was controlled by a Safe—1roll pressure regulator. If
the pfessure in the box deviated from a given range, the Safe—Troll shut
down all of the circulation and purifying equipment. In addition, emergency
pressure relief was performed by a silicon oil bubbler if the Safe—Troll could

not safely control the variation in pressure.

Monotoring of the oxygen level was performed continuously by a VAC AQO
316 H oxygen analyzer containing a Teledyne trace oxygen analyzer. The
resolution of the analyzer was 0.1 ppm. A VAC A A-1 audio alarm was
connected to the analyzer and warned when the oxygen level exceeded a
predetermined high level. A light bulb, with the filament open to the box
atmosphere was also located in the box. The length of time which the bulb
remained lit, gave an indication of the quality of the atmosphere. The bulb
remained lit for several months confirming that the concentration of the
atmosphere was below the 0.1 ppm level of oxygen. Nitrogen and water
monotoring was provided by batch mass spectroscopic analysis. This service
was provided by on-site technicians. This was performed typically every

three months.

The furnace well in the box were surrounded by Applied Test Systems,
Split Type, #2961 furnaces. These operated on 230 VAC and contained three
separate heating zones. Controlling the temperature of the furnaces were
Panel Packer model number 61010 controllers manufactured by Research
Incorporated. With these controllers, the furnaces could be operated in a

direct mode or in a feedback loop where thermocouples located within the
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furnaces monitored the temperature. In the direct mode, the heating rate
to the furnaces was controlled while in the feedback mode the controllers
maintained the temperature at a preselected value. The accuracy of the
controllers was plus or minus 5 K from the specified set point with less than
a 1 K variation during operation. To keep the inside of the glove box at a
comfortable working temperature, a VAC Dri Kool DK 3E refrigeration unit
was installed. The inside temperature of the box remained at 303 K plus or

minus 5 K throughout all experiments.

5.3.2.3. Electronic Equipment

Equipment used to measure the potential difference between the two
reference electrodes consisted of four different pieces of apparatus. These
were two buffer amplifiers, a digital voltmeter, a printer, and a power supply.
The electronic components and the interconnecting wiring are shown
schematically in Figure 5—7. A photograph of this equipment is given in

Figure 5-8.

Two Floyd Bell BA—1 buffer amplifiers connected in differential mode
monitored the potential difference from the two molybdenum reference
electrodes. The input impedance was greater than 10'? ohms, and the drift
on the amplifiers was stated by the manufacturer not to exceed plus or
minus 5 uV/month. The amplifiers each had their own separate internal
battery—operated power so connection to an external AC source was not
necessary. To prevent ground loops and to reduce noise, the inputs to the
amplifiers were guarded by applying a potential in the shield equal to the
potential being measured. The output from the amplifiers was connected to
a Keithly 173A digital voltmeter. This digital voltmeter contained a digital

interface which was connected to Keithly 750 printer. The readout from the
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Figure 5-8 Photograph of electronic hardware showing: (1)
buffer amplifiers, (2) digital voltmeter, (3) power supply,
and (4) printer.



144

voltmeter, four and half digits of precision, could be recorded by the printer
on a paper tape. The printing interval could be varied from less than every

second to more than a week.

During the runs, the buffer amplifiers were placed inside the glove box
in close proximity to the furnace well. Coaxial cable connected the buffer
amplifiers to a junction box above the diffusion cell, external to the furnace
well. Single conductor, high temperature Rockbestos—Micatemp® wire,
obtained from the Cereske Electric Cable Company, connected the reference
electrodes in the well to the junction box. This wire was rated to withstand
temperatures in excess of 900 K. Coaxial cable also connected the buffer

amplifiers to the voltmeter, which was located outside of the glove box.

A Hewlett—Packard 6101 A power supply was used when current was to
be passed through the cell. Either the potential or current output of the
supply could be adjusted to within less than one percent. Drift on the power

supply averaged about 1 percent every three hours.

5.3.3. Chemicals

Sodium sulfide was purchased from the Noah Chemical Division of the
Noah Industrial Corporation.’ The rated purity was 99.99% as guaranteed by
the manufacturer. A lot analysis performed by the manufacturer listed the
levels of impurities shown in Table 3—1. The sodium sulfide was supplied
ground to a uniform particle size of 100 mesh. Throughout the experiments,
the unused sodium sulfide was stored inside two airtight jars inside the glove

box.

*Noah Chemical Division, Noah Industrial Corporation, 87 Gazza Boulevard, Farmingdale,
NY 11735
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Table 3—1 Lot analysis for sodium sulfide, lot number 22719.

Element Maximum Level Present, Percent
Ca 0.01

Cd 0.001

Fe 0.0002

K 0.01

Mg 0.0001

Mn 0.0001

Ni 0.0001

High grade purity sulfur was obtained from the Electronic Space
Products Corporation.” The sulfur was guaranteed 99.999% pure. No lot
analysis was available. Like the sodium sulfide, it too was stored in two

airtight sealed jars.

Reagent grade sodium metal (lump) was obtained from the J. T. Baker
Company.f A lot analysis performed by this company indicated levels of
contamination shown in Table 3—2. The sodium metal was stored in a metal
can which was suplied by the company. A slight oxidized film was present on

the sodium during periods of nonuse.
5.3.4. Experimental Procedure

5.3.4.1. Preparation of Sodium Polysulfides

Sodium polysulfides were prepared by the procedure suggested by

Rosén and Tegman'® using sodium sulfide and sulfur. Briefly, stoichiometric

TElectronic Space Products [ncorporated, 854 So. Robertson Blvd., Los Angeles, CA 90035.
#]. T. Baxer Chemical Company, Phillipsburg NJ 08885
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Table 3—2 Lot analysis for sodium metal, lot number 14332.

Elerﬁent Maximum Level Present, Percent
Chloride < 0.002
Nitrogen < 0.002
Sulfate
Iron

Trace impurities in (ppm)

Phosphates <3
Heavy Metals <5

amounts of sodium sulfide and sulfur were weighed on a Satorius Digital
Balance to within 0.001 g. These were then placed in an open glass tube and
placed inside a sealed stainless steel reservoir. The polysulfide was then
formed by subjecting it to a series of heat treatments. First, the polysulfide
was heated to 523 K for about 5 hours. The temperature was then increased
to about 50 K above the melting point of the polysulfide and held for one
hour. Finally, the temperature was reduced and returned to 523 K for
another ten hours. When allowed to cool, solid of a uniform color was
produced. The resulting polysulfide was then ground to a uniform powder in
a small mortar with a pestle and placed in glass jars. Only about one gram

of polysulfide was produced at one time.

5.3.4.2. Measurement of Diffusion Coefficients

The procedure for measuring the diffusion coefficient involved a
number of complex steps. First, each end of the glass diffusion cell was

coated with the high temperature vacuum grease. The cell was placed on
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the bottom molybdenum electrode, and then the upper electrode was
pressed down upon the upper face of the glass cell. The hole in the upper
electrode was aligned with the hole in the glass cell. The hex screws were
then tightened just enough to keep the cell securely pressed between the
two electrodes. Even though the cell was pressed between the electrodes,
the upper electrode was still free to slide when the external cable was

pulled.

Next, a measured amount of the ground polysulfide powder was placed
in the fill reservoir with the hypodermic needle screwed on the bottom. The
long steel fill tube was then screwed onto the reservoir. The fill reservoir
was then clamped above the upper electrode, with the needle extending

down into the cell.

The clamped cell and reservoir were then placéd in the furnace well
with the flexible cable and the fill tube extending out of the well. Several
convection shields, which were aluminum plates the same diameter as the
furnace well were placed above the well at equally spaced intervals to

reduce variations in temperature through the well.

The temperature in the furnace well was then increased to a point
above the melting point of the polysulfide. After the temperature had
increased, the hex screws were tightened further. The coeflicient of thermal
expansion of the glass and the aluminum were sufficiently different that two
sequences were required. When the polysulfides in the reservoir had melted,
pressure from a hypodermic syringe was applied to the fill tube protruding
from the furnace well. This forced the polysulfides into the diffusion cell.
The resistance between the two reference electrodes was monitored using

an ohmmeter while the cell was being filled. When the resistance decreased
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from the initially infinite value, the cell was filled with polysulfides. When all
of the polysulfides filled the cell, the fill tube was removed, and the upper
reference electrode was moved via the flexible cable. The cell then was

completely closed and ready for the diffusion coefficient determination.

The initially required concentration gradient could be g‘enera.t;ed in one
" of two ways. First, the power slupply could be used to generate
electrochemically an excess concentration of polysulfide at one electrode,
depleting the concentration at the other. A more direct way, if the first
technique failed. was to fill the diffusion cell with polysulfide of two
compositions. This technique was used in the original study performed by

- Newman and Chapman and in later work by Nisancioglu and Newman.%

5.3.5. Résults:-

The results from the experiments were very disappointing, hbwever.
Several attempts were made to fill the cell, but it was not possible to form a
leakproof seal between the reference é‘lectrodes and the glass cell
Electrical contéct c;ould on.ly be established for a very short perioﬁ. about
five minutes. Post experimént examination revealed that the polysulfide
gould leaklout of the cell throggh the small space between the glass and the
metal. Also, contrafy to the manufact.urers specification, the vacuum
grease did not seemn to be stable at the temperature of 823 K at which: the
experiments were perforrﬁed. vUnfortunately, there was not enough time to

continue the experiments further.
5.3.6. Future Work

‘At the present time, there are a number of unsolved problems which
must be overcome before diffusion coefficients can be obtained. Primarily,

the leakage in the cell must be stopped. The problems of glass—metal joints

1
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which must remain leak free at 633 K are severe. In the experiments
described above, vacuum grease was used as sealant. As described, this
proved to be highly ineffective. The degradation of this material at the high

temperatures cannot be avoided.

There are, however, a number of alternatives which might be tried.
Other suggested materials are colloidal graphite and ceramic glues.
Colloidal graphite is a very fine suspension of graphite particles. Since
carbon has shown to be invulnerable to attack by molten polysulfides, this
material might prove to a stable sealant. The small particles with a large
surface area, though, would present a high surface area for reaction.
Although, carbon is stable, the high surface area might be enough for a

degradation reaction to occur to an appreciable extent.

Ceramic glues also can be suggested as sealants. These'v}ould be
permanent, but this could be an advantage. Some require curing at high
temperatures, but this should present no problem. The cell could be
assembled cold and then heated Lo the curing temperature. Immediately
afte_r that, the experiments could be performed. Hopefully, the ceramic

glues will be stable to the polysulfide.

Other significant problems which should be addressed are the
mechanical stability of the apparatus, thermal convection within the cell,
and noise that might be present in the potential measurement. The
mechanical stability of the apparatus is paramount. The cell must remain
vibration—free during the experiment. This is mentioneld only because small
vibrations of the furnace well were discovered. The source of these was
found to be the gas purification equipment. These vibrations would cause

problems later, if the experiments were to be continued.
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Thermal convection within the cell and electrical noise do not seem to
be insurmountable problems. The terriperature_variation in the furnace well
was typically less than 1 K. The high viscosity of the melt, the small
dimension of the cell, and small variation in temperature make thermal
convection a problem which will probably not require attention. The small
potential difference between the two electrodes might be more serious. The
buffer amplifiers seemed to drift slightly with time. This problem could be
overcome by zeroing the . potential before each measurement. . The
j convenience: of aﬁtomatic data collection with the present equipment would

be lost, however.

>5.4. Sumrﬁary

In this chapter, the results of experiments to rn.easurevthe diffusion
‘coefficient of sodium polysulfide melts hﬁve-béen described. A number of
unsolved pfoblerns exist which must be solved before results can be

"obtained. These are discussed and some pbssible solutions are suggested.



Chapter 6

Conclusions

We have investigated the transport properties for sodium polysulfide
melts using two different transport models. A binary, macroscopic model
has been formulated which defines the transport properties for a melt
considering sodium cations and monosulfide anions in a neutralr sulfur
solvent. A more sophisticated and refined model considers the melt to be .
composed of several neutral polysulfide compounds. In both models, local

equilibrium has been assumed to exist at all points.

For the three components defined in the binary model, three
independent transport parameters define the processes occurring in the
melt. These three transport parameters cannot be directly measured, but
have been transformed into three measurable transport properties by
inversion of the transport equations. The conductivity, transference
number for sodium ions relative to sulfur solvent, and diffusion coefficient
are the properties which have been defined. The values for each of these
properties have been shown to be accessible from well defined experiments

which have been described in detail.

From the three 'u;ldependent transport properties, the values for the
three fundamental transport parameters have been calculated.
Conductivity data was taken from the experiments of Cleaver and Davies'*
while transference numbers were calculated from open circuit potential
measurements from Cleaver and Davies.!® Values for diffusion coefficients

were estimated. The resulting transport parameters were found to possess

unpredictable behavior caused by the macroscopic assumptions of the

151



152

model

We then developed a more sophisticated model for the transport
processes. This microscopic model was developed the interactions between
sodium cations and polysulfide anions. For a melt composed of seven
polysulfide anions and spdium cations, 28 fundamental transport
~ parameters were defined and then reiated to equal number of micrbscopic
transport properties. Because the transport of rm'cro‘sco_pic species could
" not be measured, it was necess'ary to transform the parameters appearing in
- the microscopic model to measurable melt properties. The conductivity, the
transference number, and the diffusion coefficient in the binary model were
chosen. for this purpose. These three properties were defined in terms of
the independent microscopic parameters and the.concentrations of the
individual microscopic ionic species. |

The melt model of Tegman!? wa.s then used to predict the microscopic
melt corxiposit.ion, open circuit potentials, and the thermodynamic activity
coefficient fa'ctor.. An empirical relationship for the 28 fundamental
transport parameters was developed relating all of the 28 parameters to two
new pa;ameters._ These wefe assumed to be dependent on temperature, but
ind‘epende‘nt of the melt compbsition. The three measurable macroscopic
transport properties were calculated for 'a set of values of the two v
.parameters ‘which were independent of melt composition. The melt
conductivity and transference were predicted for the two temperatures of
5'73.15 and 633.15 K. Values of the diffusion coefficient were éalculated and

shown to lie within the ranges of conflicting experimental data.

A new technique to measure the diffusion coefficients in polysulfide

melts has been described and some unsuccessful results were reported. The
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method of restricted diffusion modified for opaque high temperature
electrolytes has been investigated. Problems with the experiments were

reported and suggestions for improvement have been given.



List of Symbols for Chapters One through Six

English Characters

a

S 9o 0 0w

D

g ©

height of diffusion cell, cm

activity of species i |

constant defined by Equaﬁion_(E—ZO_) _

constants defined by Equation (5-5)

constant defined bf Equation (E-22)
coﬁcentrahion.of electrolyte, mole/cm’
concentration of species i, rnole'/crn8

to(al solution concéntration,: mole/cm? ,

heat capacity at constant pressure, J/mol—K
measured diffusion coeﬂ_icieht of electrolyte, ‘cmz/s

diffusion coefficient of the électroly_e. for a thermodynamic driving
force, cm?/s .

difflusion coeflicient for interaction of species i and j, cm?/s
constant defined in Equation (3-47), gm/cm?® :
constant defined in Equation (3—47), gm/cm3-K

Faraday constant, 96,485 coulombs/equiv

enthalpy per mole, J/mol

free energy per mole, J/mol

current density, A/cm?

Boltzmann constant, 1.3807 x 10023 J/K

equilibrium constant for reaction i, atm~(t- 1)/2

friction coefficient for interaction of speciesi and j, J-s/cm®
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inverted transport coefficient with species N as the reference,

cm®/I-s

molality of electrolyte, mol/kg

molecular weight of species i, g/mol
molecular weight of electrolyte, g/mol
modified friction coefficient, J—s/cm?
number of electrons in reaction

pafticle fraction of species i

number of species present in solution
Avagadro’s number, 6.023 x 10%® (gm—mol)™
flux of species i, mole/cm®-s

total pressure, atm

exponent defined in Equation (4—-44)
partial pressﬁre of component i, atm
exponent defined in Equations (4—45) and (4—46)
ionic radius, cm

universal gas constant, 8.314 J/mol-K

rate of homogeneous production of species i, mol/cm3-s

stoichiometric coefficient species i in electrode reaction

entropy per mole, J/mol-K

time, sec

transference number of species i with respect to the solvent

velocity

transference number of species i with respect to the velocity of

species N
absolute temperature, K
equilibrium cell potential, V

mass—averaged velocity, cm/s
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velocity of species i, _crn,/s

molar volume of species i, cm?®/mol
mole fraction of electrolyte, ¢,/ (cq +¢, )
mole fraction of component i
composition of sodium sulfide in NazSy

charge number, equiv/mol

Greek Characters

Qo )
B1

B2

AG,
AGS

AH;
£

€2

7 -

He

constant defined in Equation (3—30) describing the open circuit cell
potential of cell 1,V

constant deﬁned in Equation (3 -31) descnblng the open circuit cell
potential of cell 2, V

constant defined in Equatlon (3-30) descnbmg the open circuit cell
potential of cell 1,V .

constant deﬁned in Equation (3— 31) describing the open circuit cell
potential of cell 2, V

difference in sf.aridard state heat cai:acities for a reaction, J/mol-K
change in free edergy for reaction'i,-J/mol

free energy of formation at the standard state, J/mol
change in enthalpy for reaction i, J/mol

enthalpy of formation at the the standard state, J/mol
parameter defined in Equation (4-45), g cm*/s
parameter defined in Equation (4—46), g cm®*/s

mean molal activity coeﬂicient of an electrolyte
conductivity of fluid phase in bed, (Q—cm)’!

dynamic viscosity, ci)

chemical potential of electrolyte, J/mol

chemical potential of species i, J/mol
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v kinematic viscosity of fluid, cm?/s

v number of moles of ions into which a mole of electrolyte
dissociates

Vv numbers of cations and anions into which a molecule of

electrolyte dissociates

p density, g/cm?

¢ electric potential, V

AN mass fraction of species i

We mass fraction of electrolyte
Subscripts

a denoting the compound Na;S,
b denoting the compound Na;S,
i - species number i

j species number j

k species number k

N species number N, Na* ions

0 species o, neutral sulfur
Superscripts

0 at the standard state

* at the ideal gas state



Chapter 7
A Theoretical Comparison of Flow—Through and
Flow—By Porous Electrodes at f.he Limitin_g Cin'rent.; :

Introduction

Packed—-bed porous electrodes have become increasingly attractive in
the past several years for use in a number of industrially important
processes. These electrodés_have been suggested for such diverse

applications as the removal of metal ions from dilute waste streams,%

8

electrd—organic synthesis, 7 and off—peak energy storage.eﬁ

) Characteristic of all porous electrodes are ~the non-uniform
- distributions of potential and concentration throughout the electrode.
- Because of the coupled transport lirriitv.‘atjlons and the non-uniform reaction
ra‘vt'es within thé electrode, changes in the cbncentratioris'ovf reacting

species and the potential occur with time and position.

Even though thg constructibrﬁ of a porous electrode may be irregular
and the exact geometry of the pﬁres unknown, continuous properties
characteristic ‘o.f the electrode can still be defined. These properties .are
obtained by averaging quantities over volume elements small compared to
the length scale of the bulk variations but large with respect to the
' individu-ai pore sizes. Since at least two phases are present, it is possible for
the averaging process to be perforrﬁed upon the Same quantity, but within
each phase. The resulting properties can then be assumed to be continuous
in time and space and used within fundamental governing equations to

predict the behavior of these electrodes.
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The non-uniform distribution of properties within a porous electrode is
illustrated in Figure 7—1. Here the variation of one averaged property, the
potential, in two phases is shown. In this example, the potential varies in a
monotonic and continuous manner in both phases, although for the matrix
phase the variation is much smaller and the potential appears to be nearly
constant. The variations of other properties also can be envisioned and
plotted in the same way as in Figure 7-1. Examples might the be the
concentration of reacting species, the current density, the reaction rate,

and the electrode porosity, among others.

The maximum variation in solution phase potential is a quantity of
great interest to the designer of porous electrodes. This quantity is denoted
by the symbol A$, on Figure 7—1 and is the difference between the highest
and lowest solution ﬁotent’ials within the electrode. For porous electrodes,
it may be desirable to operate the reactor under conditions for which
unwanted side reactions are minimized. To do so requires that the largest
potential difference between the solution and matrix phases must be low
enough so that side reactions do not occur to an appreciable extent. At the
same time to insure a high processing rate, the lowest matrix-solution
potential difference within the electrode must be sufficiently high to insure

a limiting—current condition.

The maximum allowable variation in potential can be assessed
experimentally from a limiting—current curve obtained from a rotating disk
or other suitable electrode. Figure 7-2 illustrates limiting—current data
obtained by Selman®® from a rotating disk for the copper sulfate—sulfuric
acid systern. Point b on Figure 7-2 lies at the threshold of the

limiting—current region, at potentials slightly lower than the end of the
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Figure 7-1. Solution—phase and matrix—phase potentials, as
functions of position through a porous electrode.
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Figure 7-2. Current versus potential for the copper
sulfate—sulfuric acid system obtained from a rotating disk
electrode. The curve is reproduced from Selman.59
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well-defined kinetic region. At the other end of the limiting—current region,
point a lies just above the upturn in the current potential curve. Point a
marks the onset ‘of the side reaction region. To avoid operating in the
kinetic or the side reaction region,.the-potential within the electrode must
be held within the bounds given by points a and b. The difference in
potential between .t’hese two points is the same potential diﬁerence‘which
can be tolerated in the porous electrode. Using this figure as an example,
the maximum potential difference which can be tolerated .in, an eiectrode

‘can be seen to be approximately 0.2 V.

- The rnaxifnurn potential drop through a porous electrode is 'mﬂuenced
by the transport of reactants and products through the electrode as well as
the finite rates of the chemical or eleétrochemiéa‘l re'act.idns. Thé type of
reactants, the physical éroper;ties of the solution, and the properties of the.
solid pﬁase all affect the magnitude of the ohmic potential dr_op.- Different
potential drops would be 6bservéd if a one is processing a solution
containing a high concentration of an excess supporting elecf.rolyte, such as
su‘lfuric acid, versus the same solution without the .acid. Design constrain-t.sy
also affect the potential drop through the solution and must be considered
in the design. For example, if the specified conversion of a reactant is
changed, so will the ohmic potential drop, all other factors remaining the
same. The potential drop through the electrode can also be influenced by
more directly controllable variables. These operating variables may include
such quantities as the flowrate of the reactant stream or perhaps the
reactant concentration. The essence of this thesis thus deals with
predicting the maximum potential drop for different physical properties,
design constraints, and operating variables. The results will be useful to a

designer. He will then be able to produce a porous electrode that will satisfy
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the requirement of a given maximum ohmic potential drop and at the same

time perform the required operations.

Porous electrodes may have stagnant fluids, as in lead acid battery
plates or may involve flowing electrolytes. Redox energy storage cells are
examples of this second kind. This thesis, however, deals only with the latter
type. Two principal configurations for these porous flow electrodes have
been developed: the flow—through configuration, where fluid flow and
current are parallel; and the flow—by configuration, where the fluid flows
perpendicularly to the current. Both configurations are illustrated in
Figure 7-3; where the porous electrodes are represented by rectangles and
the separators by dashed lines. For simplicity we choose to represent the
counterelectrodes as planar electrodes; however, in general, the
counterelectrodes can also be porous electrodes. The y direction in thé

figure denotes the direction of fluid flow.

Figure 7-3 a illustrates a flow—through electrode with an upstream
counterelectrode. An upstream counterelectrode is favored over a
downstream counlerelectrode in the flow—through configuration, because it
gives a lower ohmic potential drop, particularly at high conversions.”® The
variable L represents the length of the electrode in the y direction. For the
flow—through configuration, the flow is divided as it enters and flows in
different directions through the working electrode and counterelectrode.
Both current and fluid flow parallel, along the y direction. The current,
however, may flow in the same direction as the fluid flow or in the opposite
direction, depending upon whether the porous electrode is an anode or
cathode. Figure 7-3 a illustrates a porous electrode being operated as a

cathode. In any case, the distinguishing feature of this configuration is the
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Figure 7—3. Porous electrode configurations, a) flow—through
electrode, upstream counterelectrode, b) low—=by electrode.
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parallel low of fluid and current.

Figure 7-3 b illustrates a flow—by configuration. Again, we have
designated the length of the electrode by the variable L. For this
configuration the fluid flow is again divided, but here the flow to the working
electrode and counterelectrode remains in the same direction. In this
configuration, current generated within the porous electrode travels
generally in the x direction, which is perpendicular to the direction of the
ﬂuid flow. Because the current and fluid flow are perpendicular, the width
of the electrode is also important. Here, the variable d denotes the‘ width of

the electrode in the direction of current flow.

Bennion and Newman®® develéped a one—dimensional model for the
ﬁow\—thrqugh electrode assuming its performance to be limited only by the
transpor't of reactants from the bulk stream to the surface of the electrode.
This limiting—current assumption considerably simplifies the analysis of
porous electrodes. The limitations of the heterogeneous reaction occurring
at the solution-matrix interface are ignored in this approximation. The
limiting—current assumption implies a zero surface concentration of the
reacting species at the matrix-solution interface. Consequently the
concentration overpotential within the solution tends toward infinity. The
actual operating cell potential therefore cannot be established from a

lirniting—current analysis.

One is not prevented from developing other more sophisticated models
to describe the operation of porous flow electrodes. More realistic
one—~dimensional models for the flow—through electrode not restricted to
the limiting—current assumption have subsequently been developed.”%"?

These models incorporate equilibrium constraints, kinetic limnitations, and
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parasiuic éidc reactionsi in addition to the transport of reactants. However,
becausze of the large number of paraméters needed for such a model to
~ describe the phenomena and the necessity for .computer solution, the
limiting—current assumption remains attractive. One may be content to
Sacriﬁce-so;ng predictive accuracy for simplicity in analysis. Hence, models

empioying the limiting—current assumption still find recent applications.”®74

Because the fluid and current travel in the same direction in the
flow—through ¢onﬁguration. the analysis remains one—dimensional even in
the general case. In the ﬁow—bf configuration, however, the general
analysis is necessarily two—dimensiona}. The absence of a comrnbn space
variable for the fluid and current flow requires>.t.hat. the analysis be
for'rn-ulgf.ved in terms of partial' diﬁerehtial equations unless sifnpliﬁcations

‘are.made.

Alkire and Ng’%7® simplified the ana‘lysis‘ of the flow—by electrode by
assuming current ﬁow to travel directly perpendicular to the fluid low. This
assumption Vreduces tbe equatibn for the potential ‘distribution from a
.part'ial differential equation to an ordinary differential équation. Recently,
Fedkiw’? has analyzed the special case of a flow—by electrode at the limiting
current bly including the two—dimensional nature of the current distribution
and the eﬂ'vects of the finite electrode length. However, his analysis was
_specific, using only a single mass transfer correlation. He ihcluded only é

sir:gle dependence of the mass—transfer coeff.cient on velocity.

Alkire and Ng,”%’® Trainham and Newman.®® and Fedkiw’® have all
considzred the selection of the optimum electrode configuration for a given
application. Trainham and Newman developed a method, applicable below

the limiting current, to select the optimum configuration. They optimized
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the desilgn of a flow-through or flow-by electrode for the case where
operating costs were dominated by the cost of electrical energy associated
with the electrochemical reaction. Pumping costs were not included in their
optimization. This assumption applies to systems processing feeds with high
reactant concentrations, such as the redox flow energy storage system
which they examined. Capital costs, included in their study, consisted of
costs only for the electrochemical reactor. Costs for reactant storage such
as external tanks and piping were excluded. Their reactor cost was
subdivided into two categories: the cost for the bed material and the cost
for the separator. From their optimization, Trainham and Newman were able
to determine the optimum reactor configuration, dimensions, and feed
ﬂo'v;rate which rninimized the weighted sum of operating and capital costs.

The flow-by configuration  was found to be the most economical

configuration under these conditions.

Alkire and Ng,’® followed by Fedkiw,”® considered the choice of the
optimum configuration at the limiting current. Alkire and Ng maximized the
volumetric current density to compare the two configurations. Fedkiw
compared the maximum solution—phase potential drop for the flow—through
configuration to the maximum solution—phase potential drop for the
flow—by electrode. Equal electrode volumes and identical flow velocities
were chosen as fixed quantities for these two comparisons. It will be shown
in Chapter Nine that at the limiting current, the maximization of the
volumetric current density or the minimization of the maximum ohmic

potential drop lead to the same result.

In this thesis, we propose a limiting—form solution to the

two-dirmnensional potential distribution. This solution shows that the
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maximum solution—phase potential drop for the flow—-by electrode is
primarily dependent upon a dimensionless electrode width variable with only
“a secondary dependence upon the ratio of the electrode length to width. We
then reexamine potential distribution derived by Fedkiw‘ to determine the
conditions under which the two—dimensional nature of the cufrent
_ distribution and the effects of the finite electrode should be included. This
new solution, along with the e#pressions derived by Fedkiw énd' Alkire and
Ng. is presented in a fﬁrrn that is ﬁot‘ restricted to the single rnass—t'ransfér

correlation presented by Fedkiw.

Using the potential distribution derived here, we then compare the
flow-through and ﬂow—by configurations using the maximum potential
difference. These results are then compared to the results presented by

Fedkiw.

The' relévant désign.equations for low—by porous electrodes 6perated
at the liﬁliting current are derived. Based on these design equations, the
beh_avior of design variables 1s examined in relation to the cost—optimum
design of a flow—by electrode at the limiting current. For dilute solutions of
reactants, the optimal electrode conﬁgurétion is predicted by minimizing
the totél'cost of each conﬁguration. ‘Finally, the criteria giving the optimum
electrode configuration for a speciﬁé application are examined and
compared to the results of Alkire and Ng, Fedkiw, and Trainham ahd

Newman.
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Chapter 8
Potential Distribution
The starting point for the analysis will be the theoretical framework for
porous electrodes developed by Bennion and Newman® and extended by
Newman and Tiedemann.”” The porous electrode is treated as a
superposition of two continua, representing the fluid phase and the solid
phase. The coordinate system and dimensions for the electrodes are given

Figure 7-3. A single reaction of the form

Y s Mt > ne” (8—1)

i
will be assumed to occur within the electrode. Under these assumptions, the
electrode reactiori appears as a homogeneous source or sink term within
the conservation of species equation. A solution with excess supporting
electrolyte and a uniform solution conductivity will be assumed as well as a
dilute solution of reacting species. Diffusion and dispersion will be
neglected. Also, the velocity within the electrode is assumed to be plug—flow,
one-dimensional in the ¥ direction only. Under these conditions, at steady
state, conservation of the reactant species for both the flow—through and

flow—by electrode can be expressed as

de
v E = - aknc , | (8-2)
with the boundary condition
at y =0,c =cp . (8-3)

Solution of Equation (8—2) subject the boundary condition of Equation (8-3)

yields
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.. c =cpe %, ' ' ‘ - (8-4)
where
ak
az= —=—. (8-5)
v

The reciprocal of the parameter a can be thought of as a penétration
length. The penetration 'length defines the distance where the reactant is
depleted to 1/e of its inlet compositiOn. or, as an order of magnitude, the

length of the region where most of the reaction occur§ within the electrode.

" At the end of the bed (y=L), the concentration of the flowing stream

will have reacted to the largest extent. Here the concentration of the
reactant will be denoted as ¢;. Equation (8—4) then gives at the end of the
bed | |

c; =cp e"-‘L . '. : (8-6)
This may be rearranged for al in terms of the inlet and outlet
concentrations as

. c : '
al =ln = (8=7)
: L . _

Equation (8—7) shows that the parameter aL specifies the natural logarithm
" of the conversion, or the ratio of the feed reactant conc_éntration to the

feed outlet concentration.

Now that the concentration distribution has been established, the
solution to the potential distribution may proceed. For a uniform
conductivity and negligible diffusion potential. Ohm's law governs the

£

potential distribution within the fluid phase

i = =k Vd, . (8~8)

Faraday's law relates the transfer current to the local rate of mass transfer

within the electrode

LR
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. mnfak,c
=" (8-9)
R

One must also employ the relationship

V-ig=j (8—10)
which defines the transfer current as the divergence of the total current.
Substituting the concentration distribution obtained in Equation (8—4) into

Equation (8-9) and using Equations (8—8) and (8-10), we obtain

Vi, = - —— ¢~V (8-11)
In contrast to the solution for the concentration distribution, the solution

to the potential distribution depends upon the electrode configuration.

Bennion and Newman®® solved Equation (8~11) for a one—dimensional
flow~through electrode. Alkire and Ng”3 solved this equation for the flow—by
electrode assuming potential variation only in the direction perpendicular
to fluid flow. This assumption reduces Equation (8-11) from a partial
differential equation to an ordinary differential equation. Fedkiw’? solved
Equation (8—11) for two—dimensional current flow in a low—by electrode of

finite length.

Here, we propose to examine the limiting case of a flow—by electrode

with an infinite aspect ratio. Thus our case will reflect the condition

L, | _
R = 4 . (8—-12)

To solve Equation (8—11), one must specify an appropriate number of
boundary conditions. For the semi—infinite rectangle, four such conditions
are required. These conditions can be obtained from physical assumptions
which one may obtain from the current flow. A good discussion of this point
is given in the Appendix to Fedkiw.” Briefly, it is assurned that there will be

no current density in the solution at the front of the bed (¥ =0) and along
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one side wall (z=0). Also, far down the bed (y =), the current density will
a'so approach zero. Finally, along the wall near the counterelectrode, the
solution potential is assumed to be fixed, and equal to a constant. The

boundary conditions appropriate to the assumptions above are

: 9%,
at y =0, —=0, 8—13)
y 7y | A
ad, : :
.as -0, — 0, v 8—14)
y 7 (

v 9%, _
atz-O..la—z-O.v . (8-15)
and »
at z=d,%,=V. ’ (8-18)

v The solution to Equatiop (8—11) subject to tbé boundary cdnditio'n's in
Equations (8—13) through (8-18) is given in detail in Appendix G. The final

result is

nfepu? cos ad
Sp K Gk
- 1 1 -/
+ 2ad =1 | = - ——— d,
A Peab vyl b COS M/ (g-17)
where

A = @5—1&  (8-18)

A more dsef_ul quantity than the potential distribution, from the
standpoint of a designer, is the maximum potential drop. Chapter Seven
discussed the import;ance of the maximum potential drop and its effects on
the operavtion of the electrode. From these expressions' for the potential

distributions, the maximum potential difference can be obtained. For the
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flow—by electrode configuration, the potential distribﬁtion indicates that the
maximurn solution phase potential drop occurs at the front of the electrode,
y =0, between the two electrode boundaries, z=0 and z=d. Thié is the
position where the greatest current is ﬂo.wing. The maximurn solution phase

potential difference in dimensionless form for the semi—infinite electrode is

@2(2 =O,y =O) -V _ A¢g _ A@g Sh
nfcpu® nFcpu? enfecpD, Pe?
Sp K aky, Sp Kk ak,, Sp K
1 - 1 1
= ——— -1 + 2ad -1 | = - —5———| (8-
o5 od LY R T NS 619)

This result can be compared to the results obtained by other
investigators. The Alkire—Ng approximation for one—dimensional current

flow gives for the maximum solution phase potential difference

$(z=0,y=0) -V _ A% Sh 1 2
> = 7 = 5 (ad)*.
nFcF/u 87'LFC‘:'D° Pe 2 (8—20)
Sp Kk gk, Sp k

The solution obtained by Fedkiw, which includes the effects of the finite

electrode length, is

$2(z=0,y=0) =V _ Ad, Sh _
nfcpu’® " enFcpD, Pe?
Sp K akp, SR X
=1+20ay E L___ e
neo An tanh A, R sinh A, R
d = 1 —1\n ,-al _
- 2a Z 1 Ll) € 1 , (8—21)

R Syl +6ne A2+ (ad)? cosh A

where

An = M (5_22)
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An = "—R’-’-, (8—23)
and
1ifn =0 '
Ono = {o ifn#0 - (8-24)

This solution was obtained by Fedkiw in a way similar to the analysis
presented here. The main difference is the boundary condition given by
Equation (8-14), which for the flnite electrode is modified to require the

derivative of the solution potential to vanish at the finite electrode length

a9,
aty =L, —=0. (8-25)

R -
Examination of the infinite series in Equation (8—21) shows that it is
poorly convergent for for large values of R combined with small values of
ad. Equation (8-18), however, is much better behaved and gives more

accurate results for the same number of terms in the series.
" For the flow—through electrode, the maximum solution phase potential

drop occurs between the front and the rear of the electrode, y=0 and y =L.

From Bennion and Newman,® this is

$2(y =0) - $5(y=L) A, Sh al
= — =1-e" 1+al).
nFCcpu? enFepD, Per ot T (Mral) o e
Sp K akm Sp K : '

The above expressions for the maximum potential drops all contain the
dimensioniess group sg x A$,/ enFfecpD,. Each of the quantities contained
within this group is a property of the packed bed, electrolyte, or electrode
reaction. If the feed conditions and bed properties are known, then this
dimensionless group can be thought of as a dimensionless maximum sclution
phase potential drop. Conversely, the reciprocal of this group can be
thought of as a dimensionless concentration, if the maximum solution

potential drop is specified. For now, we will assume that the feed properties
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are all known, and that this group represents the dimensionless maximum

potential drop through the electrode.

The dimensionless group sp k£ A%/ enfecpD, can also be Lthought of as a
measure of the ease in performing the desired reaction. Small values of this
parameter are associated with solutions of high concentrations, low
conductivities, and low maximum allowable solution potential drops.
Reactions with solutions characterized by these low values are more difficult
to process than operations where this parameter is large. When this
i:arameter is small, one must flow the solution at slow velocities in the
flow—through electrode configuration to achieve the desired conversion. At
the other extreme, high values of the conductivity, high allowable solution
potential drops, and low values of the reactant concentration assign a high
value to this parameter. Reactions characterized by this-condiiion are

easier to perform.

A useful consequence of expressing the maximum potential differences
in the non—dimensionalized forms of Equations (8—18) through (8—21) and
Equation (8-28) above is the generality for determining the maximum
allowable flow velocity. The expression for the potential drop for the
flow—through electrode, Equation (8—28), indicates thatl the right side of the
expression depends only upon the conversion of reactant. The left side,
however, is a function of the maximuin solution phase potential difference,
the bed and fluid properties, and flow velocity. The maximum allowable flow
velocity for a given conversion and maximum solution phase potential
difference can be obtained on a log—log plot of Sherwood Number versus
Péclet Number. At a fixed conversion, the maximum flow velocity can be

found from the intersection of the Sherwood—Péclet Number relationship
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and a étraight line of slope two with intercept
enfepD,/ spbdy (1 — (1 + al)-e~%L). For very large conversions, or in the
limit as al approaéhes inﬁnity. this intercept approaches a finite limit,
snFc;-D,/sRch_Qg. Figure 8-1 exemplifies a plot of the Sherwood Number
versus the Péclet Number with several straight lines deﬁneid by Equation
(8-26) intersecting this curve. The straight lines are for al ini Equation
(8-28) equal to iﬁﬁnity. The reLation_ship for the Sherwood. Number to the
Péclet Number has been taken from Fedkiw and Nevnn'nan."3 This graphical
method is useful for visualizing the ihe way in which l‘;he operating variables
can be obtained from the required design specifications. In addition, the
graphical méthod allows this determination :evenvif no analytic relationship

between the Sherwood Number and the Péclet Number exists.

For the flow—by electrode configuration, the determination of the
méximum flow velocity is more complex. Equations (8-—19) through (8—21)
show that k,/v? and Sh/ Pe? depend on ad as well as al. One can still
determine the maximum flow velocity by the same method outlined above
for the flow—through electrode; however, now the intercept of the straight
line intersecting the Sherwood—Péclet Number relationship will depend on a

second variable, ad.

‘We now turn to the potential distribution for the ﬁow—-by electrode and
the maximum potential difference defined by Equations (8—19) to (8=21). In
Figure 8—2 we have plotted the dimensionless maximum Ipotential drop times
the ratio of the Sherwood Number to the square of the Péclet Number for a
flow=by electrode versus ad as the independent variable. The ratio of the
electrode length to width A, is used as a parafnéter. The semi-infinite

electrode solution is denoted by R -+ =. We have also included curves for
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Figure 8—=2. Dimensionless maximum potential drop times the
ratio of the Sherwood to the square of the Péciet Number for the
flow—by electrode of various aspect ratios R as a function of ad.
Note R = al/ad.
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this same quantity for finite aspect ratio electrodes as derived by Fedkiw. In

addition, the solution given by Alkire and Ng is shown. These curves are

independent of any specific mass—transfer relationship. This figure clearly

demonstrates five points.

(1)

(2)

(3)

(4)

(5)

The dimensionless maximum potential drop times the ratio of the
Sherwood Number to the square of the Péclet Number calculated by the
finite—electrode solution, the semi—infinile—electrode solution, and the

Alkire and Ng solution all approach the same limit as ad becomes small.

The maximum dimensionless potential drop times the ratio of the
Sherwood Number to the square of the Péclet Number approaches a
limiting form for K becoming large. At large values of ad and large
aspect ratios, this relationship becomes proportional to ad. In the limit

of small ad, this relationship approaches a value given by %(ad )3,

The maximum dimensionless solution phase potential drop times the
ratio of Sherwood Number to the square of the Péclet Number for finite
R asymptotically becomes proportiqnal to ad at large values of ad. The
value of this proportionality constant is determined by the magnitude

of R.

The effect of the finite electrode length is important only for values of R

less than approximately one and then only at large values of ad.

The Alkire and Ng one—dimensional solution is seen to reflect the limit
as the aspect ratio of the flow—by electrode tends toward zero for all
values of ad. This contrasts with earlier work which has assumed the
Alkire and Ng solution results only as the aspect ratio R, goes to

infinity.”?
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If the maximum dimensionless solution phase potential drop times the
ratio of thé Sherwood Number to the square of the Péclet Number for the
flow—through electrode were plotted on this graph, the resulting curves
would be horizontal straight 1'1nés. Equation (8—28) shows that for the
flow—-through electrode this quantity is not dependent upon the éarameter
ad. The positions of the lines are determined only by the conversion or the

value of al.

While Figure 8-2 is useful for understanding how the maximum
potential drop varies with the aspect ratio X, seldom will this be useful for a
‘des;xvgner. Most often, a designer will nee‘d to consider the variation in the
rn.axiniurn potential drop for avﬁxed conversion and not a _ﬁ.xed aspect ratio.
Again, the parameter aL is an equivalent means of expressing the reactant

conversion.

Figure 8-3 is a plot of the maximum potential dfop times the ratio of
the Sherwood Number to the square of the Péclet Number versus ad with al
as a parameter. The solution to the maximum potential drop for the
semi—infinite electrode cah be seen to be denoted by the curve marked
al - . On this curve the valué of R; which is the ratio of al to ad, is also
infinity. Finite values of al are associated with the Fedkiw, finite electrode

length solution.

Again; the significant features of this graph are the same as in Figure
8-2. At small values of ad, the semi-infinite solution, the finite length
solution, and the Alkire and Ng solution all reduce to the same curve. For all
values of ad, the Alkire and Ng solution is seen to be valid in the limit of
zero conversions (aL = 0). Finally, for complete conversions, the maximum

potential drop times the ratio of the Sherwood to the square of the Péclet
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Figure 8-3. Dimensionless maximum potential drop times the
ratio of the Sherwood to the square of the Péclet Number for the
flow—-by electrode at various reactant conversions al as a

function of ad.
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Number approaches a limiting relationship. This relationship is the same

relatiohship obtained for an electrode with an infinite aspect ratio .

To summarize, we have derived the potential distribution for a flow=by
electrode of infinite aspect ratio. From this, we have obtéxined an expression
for the maximum potential drop in this electrode. We have compared this to
the results given by Alkire and Ng and Fedkiw and shown thve conditions
under which each of these approximations is valid. For a flow—-through
porous electrode, the maximum 's.olution potential drop depends only upon
the fatio of thev electrode length and penetration depth aZ. The expression
for the maximum p_of.ential drop for infinitely long flow—by electrodes
depends upon the dimensionless group ad. For finite length electrédes, ghe
maximum potential drop depends on the variable ad as well as al. All
expl;essions fo.r the rnaxiihurn potential difference for flow-by électrodés,_
however, reduce to thg simpler expression of Alkire and Ng in the limit of ad

much less than one.



Chapter 9
Comparison of Flow-Through and Flow-By Porous Electrodes;

Maximum Potential Drop

The choice of the optimum electrode configuration has been considered
by Alkire and Ng, and Fedkiw using the rnaxiﬁmm potential difference as a
basis for comparison. Alkire and Ng assumed one dimensional current flow
perpendicular to the fluid flow in calculating the potential drop of a flow—by
poroué electrode. To compare configurations, they then maximized the
current density per unit volume for each configuration. Fedkiw, selected
the configuration which, for equal electrode volumes and feed flowrates,
g&ire the lower maximum potential drop. In this section we will show that

each of these methods is equivalent and produces the same result.

The results of Alkire and Ng and Fedkiw can be reconciled by an order
of magnitude analysis. This can be useful in determining the approximate
conditions under which the flow—by configuration is superior to the
flow—through confilguration at the limiting current. Consider a
flow—through and a flow—by electrode of equal dimensions and feed flow
rates and with identical packings and feed compositions. Each reactor hasa
length L, width d, and height #. At the limiting current, the reactant flows
through the electrode and reacts at a rate determined solely by the type of
packing and the magnitude of the fluid flow. The distribution of the reaction
and the total current will therefore be identical in the two reactors. For
high conversions of reactant to product, most of the reactant will be
depleted in a region very near the front of the electrode. The characteristic

length of this region is the penetration depth, denoted by 1/ a. Most of the

183
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solution—~side current in the flow—-through electrode with an upstream
counterelectrode, must travel an approximate distance 1/a, through an
area of Wd. -The majority of the solution—side current in the flow-by
electrode, however, néed only travel a distance comparable to the width of
the electrode d, l:h'rougﬁhv an area of W/a. The superior electrode
configuration is the conﬁgurati.on that yields a lower ohmic potential drop.
The ohmic potentiAI drop is the product of the total current times the
length of travel divided by the cross sectional area to current flow. A
comparison of the solution ohmic drop shows that the flow-by electrode
configuration is preferred fpr high conversiqns if the approximate condition

} ad <1 | ' (9-1)
is satisfled. This re‘sult‘ is identical to the result obtained by Alkire and Ng
when ‘t.he_y rnaxirniz:ed the volumetric current d.en'sity to compare

configurations.

Now _lgt us éxamine the optimum conflguration for low conversions. At
low conversions, t.he pénetration length eventually becomes comparable to
the electrode length. In this limit, the solution side currer;t. in ;he
flow—through electrode now flows a distance L, rather than 1/ a. Lil;ewise in
the flow—=by elecltrode. the solution-side current flows through an area of
L. Eéuat.ing_ the ohmic potential drop in the low—conversion limit results in

the criterion that the flow—by configuration is favored for .

L _
d-R>1. (9-2)

Equation (9—1) shows that, at high conversions, the parameter ad is of
primary importance in distinguishing the optimum electrode configuration
and in determining the maximum potential drop in the flow-by

configuration. At low conversions, Equation (9-2) shows that L/d can be
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expected to be the parameter of prirmnary importance in determining the

optimum configuration.

As a first approximation, the point where the electrodes are equally
competitive for a specified conversion can be found by equating the ra.tio of
Sherwood to to the square of the Péclet Number divided by the parameter
enfepD,/ speAd; for each conﬁguration. Equating these expressions
requires that the flow—through and flow-by have equal dimensions and
flow—rates. In Figure 9—1 we have plotted the values of ad and R (as
functions of al) which give equal dimensionless maximum potential drops
times the ratio of {the Sherwood to the square of the Péclet Number for the
flow—through electrode and for the ﬁo;/v-by electrode. We have also
designated the regions where each type of configuration is preferred. Again,
the variable er directly represents the requirement of cdﬁversion that we
have imposed on the design. The maximum dimensionless potential drop
times the ratio of Sherwood to the square.of the Péclet Number for the
flow—through electrode has been calculated using Equation (8—26). We have
included the three possibilities for evaluating the this quantity for the
flow—by electrode. First, the flow—by electrode is assumed to be infinitely
long, and Equation (8-19) is used. We can also assume that the
one—~dimensional potential variation of Alkire and Ng might be appropriate
and use Equation (8—20). Finally, the effects of the finite electrode length
also can be included. The relationship given by Fedkiw could also be used,
Equation (8-21). For this finite electrode case, an additional constraint-
must be imposed since this function explicitly depends on the aspect ratio.

The value of R is computed from

R=q%aa" (9-3)
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potential drops times the ratio of the Sherwood Number to the
square of the Péclet Number for the flow—through electrode and
the flow—by electrode using: a) order of magnitude expressions,
b) Alkire and Ng expression, c¢) semi-infinite
expression, d) Fedkiw expression. These two representations are
equivalent since R =al/ad.
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Figure 9—1. Values of ad and R for equal dimensionless
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Thus, the value of ad and the value of K is found for each value of al such
that the maximum dimensionless potential drops times the ratio of
Sherwood to the square of the Péclet Number are equal. For comparison, we
have also included the results of the order of magnitude analysis, which

were derived earlier.

We emphasize here, that this comparison of the two electrode
configurations does not require that we specify a mass—transfer coefficient
relationship. This comparison does not depend upon the Sherwood—Péclet
Number relationship. Fedkiw compared the two configurations in a similar
way except that he introduced a specific Sherwood-Péclet Number
relationship in his comparison. The comparison presented here is
considered to be preferable because it is not restricted to a single

correlation.

Figure 9—1 establishes several important points. At low values of al
and, consequently, low conversion, the aspect ratio and the value of ad for
equal potential drops are independent of the flow—by ‘potential drop
relationship. The Alkire and Ng one—dimensional approximation, the
semi—infinite electrode approximation, and the finite electrode relationship
all predict the same geometry. In this low conversion range, al less than
one, the aspect ratio for equal potential drops is seen to approach one. The
value of ad, given equal electrode cost, is seen to approach a limiting
relationship of

ad = al . (9-4)
The conclusion to be made here is that a low—by electrode is favored at low
conversions if it can be constructed with an aspect ratio greater than one.

Otherwise, a flow—through electrode would be a better choice. Equation
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(9—4) is identical to Equation (9-2) obtained by the order of magnitude
analysis in the introduction section.

At higher conversions, values of a/ greater than about 2, the criterion
tha£ specifles the more economical configuration changes. In this region,
the value of R delineating the optixﬁum electrode configuration no longer is
constant. Also, the one—dimensional Alkire and Ng approximation deviates
from the two-dimensional solutions. Since the one—dimensional
approximation over-predicts the potential drop, it results in a criterion
g.iving a lower flow-by aspect ratio. The two_—dimensio‘nal potential
_distribut.io'ns are thus seen to affect the choice of electrode configurations
only at high conversionls. From Figure 9-1 we can see that at high
conversion opé would choose a low=by electrode only if the resulting aspect
ratio is greater than 0.45 times al. Acbc;ording to Fedkiw,”® the flow—by
configuration was preferred over the flow—through configuration for

| R=25. ’ (9-5)

One can see, however, that this relationship holds only for values of al near

10. In terms of ad, the flow—by electrode is superior at high conversions
only if

ad <2.218. (9-86)

Except for the factor of 2.218, Equation (9—6) is consistent with Equation

(9-1) obtained by an order of magnitude estimate pfeviously. This factor

accounts for the variation of current acrouss the flow—by electrode and the

two—dimensional current flow which was not included in the earlier analysis.

Figure 9—1 also demonstrates another significant point. The curves for
the optimum electrode conﬂguratibn given by the finite length electrode or

the semi—infinite electrode are very nearly the same. At high and low
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conversions, the criterion becomes independent of whether one considers
the finite electrode length. Only for a region of al near one, does the effect
of the finite electrode length on the criterion become noticeable. From
Figure 8—1, one can see that only when the aspect ratio approaches one at
high conversions does the effect of the Iﬁnite electrode length on the
potential drop become noticeable. But at large conversions, or large al, it
is impractical to construct a ﬂov;r—by electrode with an aspect ratio near
one. Consequently, considering the potential distribution in a flow=by
electrode of finite length is not really importanf. for practical flow—by
designs when thé maximum potential drop is used as a basis for comparison.
The potential distribution for an electrode with an infinite aspect ratio gives
results which are practically identical but in a less complicated expression.
The potential distribution of Alkire and Ng. however, cannot be used to
predict the optimum configuration accurately for all conversions. Therefore
the semi—infinite electrode approximation retains the accuracy of the finite

electrode expression, but reduces the complexity of calculations.

In this chapter, we have compared the flow—through and flow—by
configurations using the maximum potential drop as a basis for comparison.
The results of this work show that the criterion delineating the optimum
electrode depend upon reactant conversion. Also, three expressions for the
maximum flow—-by potential drop have been compared. The semi-—infinite
electrode approximation embodies most of the accuracy of the Fedkiw
expression, but retains some simplicity like the Alkire and Ng solution. The
comparison presented in this section necessarily requires that the two
configurations be compared when both electrodes have the same dimensions
and equal feed flowrates. Also, it requires that one know these prior to the

comparison. Chapters Ten and Eleven will present a method that relaxes
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this restriction so that the flow—through and flow=by configurations can be

compared under any conditions.



Chapter 10

Electrode Design

In the previous section we delineated the conditions under which the
flow—by configuration was superior to the flow—through configuration by
equating their maximum solution potential drops. This comparison implied

equal electrode dimensions and feed flow rates.

In general, the optimal electrode configuration should not be
determined solely from a comparison of the potential drop for each
configuration, but it should be determined from cost considerations. The
optimal electrode configuration should be found by minimizing the
combined sum of oéerat.ing and capital costs for each configuration and
choosing the configuration which gives the resulting lower lifetime cost. In
the previous section, by equating the maximum potential drops, we
considered only those costs which were identical for each configuration.
Since equal dimensions and feed flowrates were implied in the earlier
analysis, only equal electrode costs arising from those factors were

considered.

Now we address the question of how the cost—optimum electrode
configuration and design can be determined for a given application. We
consider fixed electrode costs which are directly related to the electrode
volume and separator area, along with variable pumping costs. First, we
discuss qualitatively the number of independent variables for each

electrode configuration.

From Equation (8-28), for the flow—through electrode, one can see that

the specification of the conversion or al. and the parameter
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EnFCF»Do/SéKAQg specifies the required flow velocity if the relationship
between the Sh_erwood and Péclet Number is"known, Since the velocity is
_determined, the -required electrode length can also be calculated from the
parameter al Ifor specified bed properties. The required separator area per
unit of volumetric flow can also be determined given this information. One
t‘herefoz'e sees, that specifyi;ng the conversion and the parameter
snFépDo/stAéz is sufficient to determine cornpletely the design of a

flow—through electrode at the limiting current.

The analysis of the flow—by configuration is more complex, however.
Equations (8—v1_9) through (8—21) indicate that while the maximum aﬂowabie
flow velocity may depend on al, it also depends on a second variable ad.

‘Consequently, it is not sufficient to specify only the conversion and the

parémeter enkFepD,/ speAd, to determine the electrode dimensions. It is this

added flexibility in the variable ad, which makes the flow—by configuration
more versatile.

Let us derive the applicable design equations for a flow—through and a

flow—by electrode opérating at the limiting current considering variation in

volumetric, pumping, and _seéarat.or costs. We wili assurme a high current
efficiency for each conﬁguratiOn one independent of all operating or design
variables. The variation in t.hev cost of electrical energy to provide the
driving force for the électrochernical react'ion will also be assumed to be
negligible. This assumption will be rnbst acéurate if th_é solutions to be
processed contain only dilute concentrations of reactants. Under this
condition, the energy requirement to pump the feed through the electrode

will far exceed the electrical energy needed to perform the reaction.

L
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The given dimensions of the flow—by electrode are a width d, height ¥,
and length L. It is not renquired for the flow—through electrode that its
actual width and height be specified. These two quant.if.ies can be changed
as matter of convenience in the design provided the required cross sectional
area, or the product of the width and height is satisfied. Given the design
conditions above, the cost—optimum dimensions of the flow—through and
flow-by may not necessarily be the same. Consequently, the velocity of the
fluid through each electrode also may be different. For the flow—through or
the flow—by configuration, the volume of the electrode per quantity of feed

can be expressed as

Q e~

(10-1)

ol.ﬁ

The required separator érea for the low—through electrode will be the cross
sectional area perpendicular to the flow direction. In the flow—by design,
the separator must be placed along one side wall parallei to the solution
flow. The required separator area for the flow—by electrode is then the
height of the electrode times the electrode length. In terms of the required
separator area per volumetric quantity of feed, the flow—through electrode

requires

(10-2)

b _ A
Q —Acv

area per volumetric flow. For the flow—by configuration, this quantity is

d|»—*

given by

—_— T —— (10-3)
Pumping losses are the product of the pressure difference through the bed
times the volumetric flow. A relationship often used for the pressure drop in

packed beds is the Ergun Equation.”® In dimensionless form it is
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APe? 150 5 2o. ., 1.75 o 3| al _
= + — — -
alD? 28 Pe?Sc 5 Pe T (10-4)

The pressure drop is thus the work per unit of volumetric flow to move the
fluid through the electrode. Equation - (10-:4) con‘ta'ins two | terms-
representing the pressure drop in two ﬁov«) regimes. In the low flow rggirrie.
the pressure drop is proportional to the velocity and viscosity. At higher
ﬂovi rat.és. the pressufg ;vdro‘pv becomes independent of the- viscosity but .
proportional to the square of the veiocity. |

Tt is élso necessary to include the effect of mass transfer on the design
- of thev porous electrode and the choice of the optimal cénﬁguration. For
demonstration, é simpliﬁed_".Sherwood-'Péclet number relationship of the
-form’ |
Sh = A Pe? | (10-5)
| v?ill .be uséd. This relationship is general, for most mass transfer data are
correlated in this way. Rewriting Equations (10-~1) through (10-4) in
dimensiénless form using Equation (10-5), we obtain for dimensionless

electrode volume and pressure drop for the ﬂovw—througt;v or flow—-by

configuration
v atp 2 |
L 2% _al |l Sh2-5 (10-6)
@ ¢ A [A Pe? v
1

APe? _ Pe? | 150 . 1.75 Pe? [2-B
= —— — 10-7
2afDZ - Sn | 36 Se + = [A = al. ( )

The dimensionless separator area for the flow—through iconﬁguration is

4 op = |L S |Z-F -
?aD,-[A Pez] . (10-8)

and for the flow=by electrode is
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1 R
Ag al [1 Sh |2-B
Q@ a0, ad [A Pe? ( )

In Equations (10-6) through (10-9), the ratio of Sherwood Number to the

square of the Péclet Number is evaluated using the relationships derived in
the previous section. For the flow—through electrode, this function is given
by Equation (8-28), while the for the flow—by electrode Equations (8-19)

through (8—21) can be used.

Equations (10—6) through (10-9) indicate that the relationship between
the required electrode volume, separator area, and pumping work per
volumetric flow explicitly depend upon the mass—transfer relationship. For
the flow—through configuration, these quantities also depend upon the ratio
of the Sherwood Number to the square of the Péclet Number and on the
conversion. Again, if the maximum solution potential drop, t.h.e conversion,
and the bed and fluid properties are specified, then the ratio of the
Sherwood to the square of the Péclet Number is also specified. Thus, the
quantities in Equations (10—8) through (10-8) are determined uniqﬁely
under these conditions.. One can contrast this to the low—by configuration.
For this configuration, the ratio of the Sherwood Number to the square of
the Péclet Number is also dependent upon the variable ad. Also Equation
(10-9) shows an explicit dependence of the separator area per volumetric
flow on ad. Thus the three dimensionless quantities require the additional

specification of ad if they are to be calculated.

The actual operating and design variables of the electrodes can be
related to the dimensionless quantitieé described before. The actual flow
velocity and the length for the flow—~through electrode can be determined
from Equations (10—1) and (10-2) once the ratio of the Sherwood Number to

the square of the Péclet Number is known. The flow velocity can be
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determined from

| v = A (10-10)
and the length can be found from
v,
L=—=uv. 10-11)
) (

If one also knows the value of ad, the actual operating and design variables
of the flow—by electrode can also be determined. The superficial flow

velocity v, for the flow-by electrode, can be calculated from

- al ' _
v = f d . (10-12)

while the bed width d,'can be calculated from

Vo ad - =~ :
S —_——y. 10-13
4= " o ee1d)

‘The required electrode length may then be found from

. al

L=d 2% 0 (10-14)

ad

While these absolute variables are required to irnplémerit the design, the

equivalent dimensionless variables formulated in the analysis are more
useful. The dimedsiqnless variables remain invariant during scale—up and
predict the behavior of any system regardless of its absolute size. For this

‘reason, only dimensionless vaﬁables will be used in the rest of this study.

 One sees from these relationships for the ﬁow—‘by conﬁguration. Athat
the variable ad is r.elated indirectly to the superficial ve‘_.lvocity of the ﬁui‘d'or
_the.electrode widﬁh. The éxpr;éssion_s for I’./ q or A,/ Q are fulnctions of the
maximum dimensionless solution potentiél drop, which is dependent upon
ad. We have chosen ad to be the independent variable because of its
relevance in determiriing'the potential drop. It is useful to examine the

behavior of these relationships with variations in ad. In Figure 10-1 we

Al
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have plotted thé variation of dimensionless V,/ @ with ad for the flow—by
electrode with the exponent B as a parameter. For most 'rna_ss—transfer
correlations, the exponent B lies between 0.33 and 1.0, hence three values
of B from 0.33 to 1.0 are shown. Two curves t'br two different conversions
are aléo shbv\.rnb. The first is for al equai 6.5, while the sécond is the limit for
complete conversion. This figure. shows that .the reQulred volume of
- electrode per volumetric quantity of feed monotonically increases with ad
b.f;)r th.e two conversions shown. In fact, the required volume to flowrate ratio
is an | i.néfeasing monoténic function for all va;lues of ad .given_ any
conversion or aL.. Reducing ad reduces the required volume of electrode

for a set flow rate, conversion, and maximum solution potential drop.

In Figure 10-2, we have plott.ed the di.mgnsionl_ess sepav.ratorvarea pér |
volumetric flow rate of feed versus the vari‘ﬁble ad. Again the '_exponent Bis |
a pararheter. Here, in co.'ntrast to ‘the variation of thé dimensionless
electrode vo[urne. the dimensionless sepa'rat.of »are‘a' is' not 'a monotonic
,functién of ad for all values of the expdnent B. Also, the genéral trend of
the function dependsv'upOn the conversion. For finite value»s- of dL. this
function is seen to b_ave a relative rnaxirnurri near ad equal to one for values
of the exponen.t. less than one. As al tends toward infinity, the relative
maximum disappears a.hd the curves for complete conversion show that an
absolute maximum now occurs.

The dimen_vsbionless pressure drop given in Equation (.10—7). unlike tﬁe
relationships for the dimensionless electrode volume and separator area'.per
volume of feed, can not easily be plotted in a general form. Instead, the
general behavior of this relationship will be discussed. Equation (10-7)

shows the pressure drop to be composed of two terms. The first term is
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proportional to the Péclet Nﬁmber squared over the Sherwood Number while
the second term is prbportional to this function to the (3 - B5)/(2 - B)
power. For the flow—by electrode of infinite aspect ratio or at complete
conversions, the dimensionléss maximum potential drop is proportional the
to square of ad at low ad and proportional to ad at large values of ad. The
pressure drop is therefore seen to be made up of two terms, both of which
increase as ad decreases. For less than complete conversions, t.h-ev safne
behavior is observed. The pumping cost then, always increases as}lad

decreases.

In> Figures 10-1 and 10-2, the dimensionless electrode volume and
separator area for the flow—through e‘lectrode. could also have been plotted
- on these graphs. Since the maximum solution phase potential drop is not
depehdent on ad, these quantities would be horizontal straight lines if
plotted on these ﬁ_gures. The' interceét of the horizontél linés with y axis
would depend upon the chosen conversion, or the parameter al, and the
value of the exponent 5. One sees, hoﬁever.. that thle the separator area
and the eiectrode voldme are fixed quantities for the flow=through
electrode, it is possible to reduce these ‘quantit.ies for the low—by electrode

by decreasing the value of ad.

From this analysis, we see that the éptimél flow—-by elecirode design is
constrained by pumping costs as ad is decreased. Volumetric electrode
cost per volume of feed is seen to increaée monotonically w.ith ad.
Separator costs per quantity of fced first increase with ad and then reach a
maximum. If the conversion is éomplete. then the seéarator area per
volumetric flow will then continue to decrease. For less than complete

conversions, the dimensionless separator area begins to increase again at
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high values of ad. The task now is to determine the optimum value of ad for
the flow-by electrode, calculate the individual capital and operating costs

. for each configuration, and then compare the total costs.



Chapter 11
Electrode Cost Optimization
As we have mentioned in the Chapter Ten, the ﬁow—By configuration
allows one additional degree'o‘f freedom in the design of an electrode.. One
way of determining the value of ad is t.o'mi'nimize the combined capital cost

and operating cost for the reactor. We consider a cost function cohsisting

of the volumetric ele_ctrode cost and the area cost associated with the

separator. Since we are also considering only dilute solutions with high flow
rates, variable pumping costs will be included. A cost function givén by

2 2 T+ Cp AP ’ (11—1)

includes all of the factors given above. 'The ‘total electrode cost per

' V.
Cr'z [ny—' + Cs ;Ai'

volumetric flow rate of feed Cp, is composed of these three costs. The
factors Cy, Cs, and Cp represent the cost per volume of electrode, the cost

per surface area of separator, and the cost of pumping power, respectively.

The cost of the electrode may not scale linearly with size, and hence, these

factors may be dependent upon the total quantity of feed processed. The
factor 7 accounts for the time value of invested capital. It inclﬁdes the
effects of interest, taxes, and dep_rec‘ia‘tioh. The op'f.imum value of ad may
, bé found by minimizing the total cost given by Equation (11-1).

Let us now consider the_ design of a flow=through and flow—=by electrode
subject to some common design constraints. In this design we will specify
the conversion of reactants to products. In addition, the maximum potential
‘drop through the electrode will be constrained not to exceed a

predetermined value. Presumably, this maximum allowable value would be

202
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determined from other experiments as discussed in Chapter Seven. These
specifications would be very common in practice, since the requirements for
many processes entail a given conversion of reactants to products. The
limit on the maximum potential drop is also realistic, since one would strive

for an electrode with a high specificity for the desired product.

The optimization process will begin by rewriting Equation (11-1) in a
dimensionless form. We choose f._o non-dimenéionalize the Fquation using the
cost per unit volume as a common basis. If we rewrite Equation (11-1),
substituting in expressions for the various cos‘t relationships from Equations

(10-8) through (10-9), this gives for the flow-through cost

Crpra©D, 1_aL|l Sh|z-B Csa |1 Sh |2-B
Cye T A |A Pe? Cye |A Pe?
1
Cepa'Dd 1 Pe? [150 1.75 |, Pe?|2-5
+ {112
ce r sn|38 "8 “ = a(11-2)
The total cost for the flow-by electrode is
2 1 _
Crrea®D, 1 _aL 1 Sh|7-F _Cse aL (1 Sh|2-B
Cy€ T A A Pez Cyt ad | A Pez
1
Cepa'D¥ 1 Pe? | 150 1.75 |, Pe?|2-B
- + =2 — 11-3
M -l Sc =4 = a L )

The total electrode cost has been expressed for both configurations as
functions of only the dimensionless ratio of the Sherwood to the square of
the Péclet Number. The difference between Equations (11-2) and (11-3) is
the factor of aL/ ad appearing in the separator cost term for the flow-by
configuration. Also, the function Sh/ Pe? depends upon the electrode

configuration. For the flow-through electrode, this ratio depends only upon



204

" the chosen conversion for a _ﬁxed maximum potential drop and feed
concentration. In addition to these, this ratio also depends upon a second

variable, ad, for the flow-by configuration.

One can observe an important restriction on ﬁhe comparison of the two
configurations based on the maximum potential difference. Equating the-
méx’imum dimensio‘nle.ss potent.ia.lv drops is identical to equating: ti’le
electrode costs provided that the ter_'_l.'l.'xs. involving sepérator costs are not
included. »Thus._ the earliér. comparison is equivalent to a cost comparison
“which _nveglects separaﬁor c.osts.

Equaiiohs (11-2) and (11-3) abo;re contain seven parameters
chara_cteriét.ic of thé bed, propertiles.-. the mass i:ransfer .rélationship. .ﬁhe :
materials cost, and the energy cosi. As discﬁ_ssed before, the pararneter al
can be thought of as a dimensionlesé conversion. The parameters 4 and 5
describe the mass tranéfer fe_lationShip bétween the Sherwood &nci Péclet
Number. The _parameLer r reflects Lhe time value of money and relates the
outlay of capital cost in the present tb»the future Saving' in opetating'gosts.
The paramet.'e’r Sc is the ratio of the d.ifl’usion coefficient to the kinematic
visvcosity. which is used for thé pressure drop at iow flowrates. Finally, the
‘two pa’rametexv's Csa/ Cye and Cppa D/ Cyés are cost ratios for the cost of
separator per unit area to cost of bed volume and the cost of pufnping

power to the cost of bed volume.

Even in this analysis, the number of parameters is large. To evaluate
the effect of each of these parameters on the cost optimum designs would
require an analysis beyond the scdpe of this work.” To llluétrate the
optimization procedure, the values of several of these pararﬁeters will be

fixed, and the dependence of the electrode optimum designs on them will
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not be presented.

As an example, the values of these fixed parameters will be chosen to
represent metal ion removal from an aqueous solution. Values for some the
parameters have been taken from Bennion and Newman®® for the removal of
copper. While these parameters are specific to copper removal, they are
used only to illustrate the principles discussed here. One may replace these
values with others specific to the chosen systems. Table 11-1 presents the

values of six parameters which have been fixed throughout the optimization.

The parameter al has been set for a ratio of outlet concentration to
inlet concentration of approximately 1.5 X 103, The parameters 4 and B

% as reduced by Trainham

are taken from the data of Bennion and Newman,
and Newman,”® for the reduction of copper solutions. The factor 7 was
calculated assuming a five year life on capital equipment 'using 127% interest

compounded continuously. The fourth parameter in Table 11-1 expresses

Table 11-1 Values of selected parameters used in
the optimization.

Parameter Value
al, 6.5
A 0.07054
B 0.5454
Cppa4D°a 1
o T 5.0 X 1078
r, yr! 0.28429

Sc 1670
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the ratio of pumping cost to volumetric bed cost. The}rnagnitude for this
parameter is best understood by translating it into absnlute terms. As an
example, take a reactor with spéciﬁc surface area of 25 crm’! and porosity of
0.3 with a ﬁﬁid of deﬁsity near 1 g)cm’ and a diffusion coefficient of 8 X 10°¢
cm?®/s. Then the cost of pumping power is about 5 X 10°® $/kJ for a bed
| costing 1 OOO S/m".
pr let us exa‘fnine the behavior of Equation (11—2); whiéh.gives the
total cost for thé flow-through electrode rconﬁguration. Shown in Figure
11-1 is agploi; o‘f‘ the total cost for a ﬂow-through electrode versus thg
parameter mFCpD;/sR/cA@z. As described before, this parameter can 'bé
thoughf. _qf as expressing the ease of separation. Fov‘r a given reaction"an'd _
fixed maxirnﬁrn- ohmic potential drop, this parameter can also be thought of
as dimensidhless reactant cohcentra_t_ior_x. Thus, Figure 11-1 shows the
variétion of total ﬂov;r-through cost as a; function of reactant concentration.
The dimensionless total cost has been graphed with Csa/ Cye as parameter
which is a dimensionless separator érea cost to electrode volume cost.
Again; i.h_e magnitude of this'pax_'arneter can best be understood in absolhf.e
terms. For the same conditions pertaining to the pumping‘cost to electrode
volume cost ratio, a value of Csa/ Cv€.= 1000 implies a separator cost of 120 o
$/m? for an electrode volume cost of 1 000 S/m’.‘ Each curve on Figure
11-1 represents the total cost for a given separator area to electrode
volume cost ratio.
| Figure 11=1 is a “U" shaped curve typical of operating-cabital cost
trade-of! behavior. The total cost is dominated by pumping costs at low
values of enfcpD,/ speAd,. As values of the abscissa increase, the total

electrode cost decreases, reaches a minimum, and then increases as the
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capital dost. for the separator and electrode volume increases. At high
‘values of enfcpD,/ spebd, the total cost depends strongly upon the

separator cost factor.

This curve demonstrates a very important point regarding the
"~ operation of a ﬂow-tbrough electrode. Up until now, wé have assumed that
thé bptimum conditions for the operation of i’.he ﬂow-thrbugh electrode will
be at the ohmic limit. That is, the most economical operating condition for |
the ﬂowﬂhrough- electrode will be at conditions such _that. the maximum
potential diﬂére’nce th‘rbugh the electrode will correspond to the maximum
aliowable potential drop. This is‘not. always the case, however. Below a
certain value of eﬁFcFD,/SRxAég one sées that .it is most..econofnicial not vt;ov
run thé-reaétor at.th.e. ohmic hrmt One should instead cv>‘perat.e‘the reactor
wit;hv' a potential difference through the reactor which is lower than fhe
ma_ximurnballowat‘:lé difference, and correspondingly.'.at. a .ﬂow rate lower .
than that de.t-errnined froﬁl the ohmic liuﬁt. Physically, below a specific
value of enfrpD,/spxld; one cannbt. economically run the reactor at
ohmically limit.ed_conditiohs. To do sb_r‘equires a flow rate so great that‘t‘he
pumping cost becomes greater than the gain.obtai;uéd from the higher

»

processing rate.

One can calculate the minimum cost and the value of enfcpD,/ sprdd;
‘at this point by differentiating Equation (11-2) with respect to this variable
and setting the resultant expression to zero. The resulting differentiated

expression which must be solved is
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Crrra®D, 1 ]

d 2 28 -2
Cye T =0=laL 12-8 _ R Sh |z2-8
enfepD, A (2 - B) Pe?|
SRICAQZ
1 .B—;_l. 4n3
L 55 |1z=5 | She-F _ Cepa”Dy pe? |150 Se
Cye |A Pe? Cye3 Sh | 36
1.75 (3-5) |1 Pe?[2-B| .| Pe (11-4)
8 (2-F) |4 Sh enfFepD,
SRICA@Z

The expression for the derivative of the Sherwood Number over the square
of the Péclet Number with respect to enfcpD,/ spcA®, can be obtained from

Equation (8-26). This is

d

2

>
=1~-(1+al)e . (11-5)

enfFepD,
Sp K Aég

From Figure 11-1, one can also see that the value of enfepD,/ spcldd, at
the minimum depends upon the dimensionless ratio of separator cost to
volumetric electrode cost. In Figure 11-2 we have solved for the value of
(enFcpD,/ spehds)min as a function of the separator area to volumetric
electrode cost which gives the minimum electrode cost. We have also shown
the dimensionless total cost for this minimum point as a function of this
same variable. As expected, the lower the ratio of separator area to
volumetric cost, the lower the minimum total electrode cost. Figure 11-2
also shows that as the ratio of the separator area to volumetric electrode
cost is decreased the value (enfcpD,/ spxA®2)min increases. Since the
separator must be placed perpendicular to the flow direction, one may

tolerate a smaller cross sectional area or higher flowrate and larger ohmic
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drop for a higher separator cost. Again, the value of enfecpD,/ sprdd, which
gives the lowest flow—through cost is shown in Figure 11-2. 1t is only
economical to run a ﬂow—through_ electrode at ohmically limited conditions,

provided enfcpD,/ spl®; is greater than this minimum point.

We now turn to the optimization of the flow-by configuration. As
discussed before, while the operating conditions for the flow-by electrode
depend upon the parameter enfcgl,/ spelAd; at fixed conversion, they also
depend upon the variable ad. Therefore, for each value of enfcplD,/ spcAd,,
one must also optimize the electrode cost over ad. At first, it would seem
that the most economical flow—by design must be found by a more
complicated process than the one used for the flow—through configuration.
Both the value of enfcplD,/ speAd, and ad can be varied which affect the
total electrode cost. A simplification arises, however. The optimum flow—by
electrode design always occurs for the reactor operating at the ohrnié limit.
That is, at the lowest possible value of enfcgD,/spxlA®;. Therefore, the
procedure reduces to a one—dimensional optimiéation over ad for a fixed
enfecpD,/ spebd,. The minimum electrode cost for any value of
enfcpD,/ speAd,, corresponding to the ohmic limit, is found by
differentiating Equation (11-3) with respect to ad and setting this
expression to zero. Performing this operation results in the following

expression which must be solved
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. 2
d [C”ga.’D, 1] 2  28-2) g =R
Cyve r —0=laz 1|7-3 B [ Sh|2-B Pe?
d (ad) - A (2 - B) | Pe? d ad
1. B-1 4 ._57_"_
Csa alf ad |LIF75 1 Sh |2-8 __ Pe?
Cve (ad)? A (2 - B) | Pe? d ad
3
S 2pn2 2
_ {1 sn |2-B| _Cpalpa®Dy | pe?| | 150 Se
‘A pe? | g2 Sh| | 36
) 4
, L7 (3-85) |, P?(Z-5| Pe (11-8)
8 (2-5) Sh d(ad) =

The expression for the derivative of the ratio of the. Sherwood Number

to the square of the Péclet Number depends upon the expression chosen for
the potential distribution. If the semi—infinite electrode approximation is
chosen, then this derivative can be obtained by differentiating Equation

(8-19). The resulting expression is

Pe? - enfeplD, | sin ad +2 z’: 1 1
d (ad) sp € 89; | cos? ad nza (A2 A% - (ad)?
- - n ' .
- 4(ad)? ) (=1 ] (11-7)

(A3 = (ad)?)?

n=0



213

For the finite length electrode, this derivative is obtained

from Equation (8-21)

d Sh _ ,
Pe? _ enfepD, 22 (-1)" 1 e
d ad SpelAdy | Ty A2 tanh A, sinh A\ R
ST Gt B 1 ek 1
+2 R -
:‘:‘o An sinh? \,R sinh A, R tanh A\, R

L2 5 Xntanh X, (—q)m e-al — 1 1 (11-8)
R &, coshA, (ad)® +A2 (1 + 6,p)

It is appropriate to discuss the relevance of Equations (11-7) and (11-8) in
comparison to Figure 8-2. Equations (11-7) and (11-8) are related to the
slopes of the curves appearing on this figure. They differ only by a factor of

enfepD,/ speldd,.

We have numerically solved for the optimum value of ad giving the
lowest flow-by cost. Equations (11-6) and (11-7) have been used to
calculate minimum cost for a semi-infinite flow—-by electrode while
Equations (11-6) and (11-8) have been used for the finite electrode. In
each case, the independent variable is chosen to be enfcplD,/ spxdd;. In
Figure 11-3, we have plotted the minimum total flow-by electrode cost as a
function of enfcpD,/speldd,. Again, we have used the dimensionless
separator cost to volumetric cost ratio as a parameter. Two expressions for
the ratio of the Sherwood to the Péclet Number and its derivative have been
used. This figure shows that the cost of the flow-by electrode depends
strongly upon the ratio of separator to volume cost at high values of
enfepD,/ speAd,, but becomes constant at lower values of this parameter.

Unlike the flow-through configuration, there is no minimum point in the cost
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curve. This substantiates the assertion that the optimum operating
conditions always occur at the ohmic limit. One may also see that the
minimum cost of the flow-—by electrode depends very little upon the:
assumption made for the electrode géometry. whether it is infinitely long or

not.

The optimum value of ad for the minimum flow-by total cost is plotted
in Figure 11—-4 and 11-5. Figure 11—4 is the optimum ad calculated using
the semi—infinite electrode approximation while Figure 11-5 is for a finite
length electrode. Again Csa/ Cye is parameter in these curves. Thése
curves show that the optimum value of ad depends upon the approximation
for the flow—by electrode geometry at small values of enfcpD,/ spedd,. At
large values of enfcpD,/ spelAd;, the resulting value of ad is the same when
calculated frorﬁ the two expressions. From Figure 11-4 or 11-5 in this
region, the value of ad becomes small compared to the assumed value for
alL. Thus, the length to width ratio becomes very large. This is exactly the
condition where the semi—infinite potential expression is most accurate and
hence the two expressions become equivalent. Again, however, the resulting

total cost is very insensitive to this choice for any value of enfcpD,/ sprAd,.

From the optimizations presented for each configuration we may now
make a comparison to identify the more cost effective configuration. The
ratio of the total flow-through cost to the flow-by cost has been plotted
versus the value of the separation parameter enfcpD,/spxlAd; in Figure
11-6. At very low values of &nfcpl,/ speld®;, the optimum flow-by
configuration has the lower total cost. In an intermediate region, the flow-
through electrode becomes more cost effective. Finally, in the last region,

the flow-by electrode configuration again becomes the lower—cost
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Figure 11—4. Optimum value of ad versus enfcgD,/ sped®, for
the semi—infinite low—by electrode. The quantity Csa/Cype is a

parameter.
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configuration.

The behavior of this curve can be explained from the analysis presented
here and the results of Ch.apter Ten. At very low values of enFcpD,/ spklA®,,
the flow—through configuration is constrained by the high cost of pumping.
To ofIset this disadvantage, the optimum flow—through electrode requires a
large flow cross section or separator area to balance the pumping cost. The
optimum flow cross section becomes so large, and consequently the flow
velocity so small, that the flow~through electrode cannot be run at the
ohmic limit. This constrains the design of this configuration. In contrast,
the low feed concentration is an advantage for the flow—by configuration.
The extra variable ad allows he flow—by configuration to operate at the
ohmic limit regardless of the value of enfcpD,/ spedd,. In this region the
optimum value of ad beco.mes very large, much greater than the value of al
Very high values of ad combined with the low value of enfcgpD,/ sprdd, give
the flow—by configuration a lower separator cost. While Figure 10-2 shows
that the separator area increases as ad becomes large, the decreasing value

of enfcpD,/ spicd®; offsets this increase.

In the intermediate region, the flow—through electrode is preferred
primarily because it has a lower separator cost than the flow—by
configuration. In this region the optimum ad is near one. Figure 10-2
shows that in this region the separator cost reaches a relative maximum.
When combined with the values of enFfcpD,/ speldd;, the separator cost is
greater for the flow—=by configuration than for the flow—through

configuration.

In the last region, the flow—by electrode again becomes the lower—cost

configuration. In this region, the lower volume and separator costs give the
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flow=by configuration an advantage. Again, Figure 10-2 and 10-3 show that
the separator cost and the volumetric cost for the flow—by electrode

decrease relative to the flow—through cost for small as ad.

Figure 11—4 or 11-5 also is useful for determining the aspect ratio R of
-the cost—optimum flow—by electrode. Si.nc_:e the value of aL has been fixed
in the optimization, the aspect ratio can be determined from the ratio of al
to ad. The curve in F’igﬁre 11-4 or 11-5 shows that while at high values of
. enFepD,/ speAd; the optimum value of ad depends upon the appro-ximatiori
made for the electrode length, in general the aspect ratio increases as
enfcpD,/ spedd; increases. Thus narrow flow—-by electrodes are preferred
for feeds with high concentrations. As the concentration Hof the reactant
dgcrea.ses. the optimum’ﬁow-by design requires a progressively wider aﬁd
shorter electrode. | o o
- From a practical point of view, the flow-through electrode may be
c‘heaper to construct because it may be possible to eliminate the separator
from the design. In the ﬁow-thr_oug.h conﬁgufation. the fluid streams enter
the cell, immediately separate, and flow in diferent directions. If no
separator is present, then the two streams can mix if the products of the
two electrodes can d_iﬂuse against the Auid flow. In the flow-by
configuration, however, the products need bnly diffuse éerpendicularly Lo
the fluid low. Thus it appears likely that a barrier impermeable to fluid flow
is needed more in this dgéign if separate anolyte and catholyte streams are
desired. This reason makes the flow—by configuration much.more dependent
6n a separator for a high separation efficiency. Natural convection may also
be an important consideration in. both design if sufficiently large density

gradients are produced. If this occurs, then mixing of the two streams will
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be much more likely to occur. Separators may then be required for each‘
design. The flow—through configuration, then, may not have an appreciable

advantage.

Figures 11-7, 11-8, and 11-9 compare the cost of a flow-by electrode
with a separalor to the cost of a flow-through electrode without a separator.
Each figure presented gives a different separator cost for the flow-by
configuration. While the elimination of the separator may reduce the cost
based on superficial area, it may not totally eliminate such a cost. We
therefore have plotted several curves representative of a low flow-through
separator cost relative to the cost for the separator in the flow-by
configuration. These curves show that, at higher values of the parameter
enfepD,/ speAd,, the reduced flow-through separator cost makes the flow-
through configuration much ﬁore attractive. At low;:r values of this
parameter, however, the flow-by electrode still remains cheaper. The flow-
by electrode retains this superiority despite its higher separator cost per

unit area.

These results are generally in agreement with the work of Trainham and
Newman.®® Their comparison was much more specific and considered the
case where the electrical energy to provide the faradaic reaction dominated
operating costs. In addition, their study included operation of the
electrodes below the limiting current. While the differences between these
two studies are apparent, the general trends predicted by the two models
are very similar. Both models predict a distinct advantage for the flow—by
configuration for processes with high feed concentrations. Also, each study
predicts that long, narrow flow-by electrodes are preferred for these

conditions. Thus, one may conclude that the low—by electrode is generally
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Dimensionless flow—by separator cost is equal to 1000
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Dimensionless flow—by separator cost is equal to 2000.
Dimensionless flow—through separator cost is a parameter.
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Figure 11-9. Ratio of total flow—through electrode cost to
total flow=by electrode cost as a function of enfczD,/ speldd,.
Dimensionless flow—by separator cost is equal to 4000.
Dimensionless low—through separator cost is a parameter.



225

superior for processes with high feed concentrations. The flow—through
electrode, however, is useful for processing lower feed concentrations and
can be less expensive than the flow—by configuration under these

conditions.

One may wonder how the economic optimization presented here is
related to the comparison of the two configurations based on their
maximum potential drops. Again, the ohmic drop comparison required
electrodes with the same dimensions and flow—-rates. Also, the cost of the
separator was not included in this optimization. The results of Chapter Nine
showed that the optimum configuration could be distinguished using only
the variable ad or R for a given conversion. From this chapter, one can see
that considering the cost of the separator considerably alters the results of
the comparison. The results presented here show that the choice of the
optimum electrode depends upon the conversion, as well as the feed
conditions and the cost of the separator. An equivalent relationship
delineating the optimum configuration involving only ad cannot be

produced.

The flow—through and flow—by configurations have been compared in
this chapter by comparing the minimized sum of operating and capital costs.
Capital costs consisting of volumetric electrode cost and separator area
cost have been included. The cost for pumping energy is the only operating
cost considered in the optimization. The cost of electrical energy needed to
provide the faradaic reaction has been neglected. This assumption is
justified provided the solutions contain only dilute concentrations of
reactants where such a cost is secondary. The results of the optimization

show that neither the flow—by nor the flow—through configuration is
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preferred for all operating conditions.



Chapter 12
Summary

In this thesis, we have examined the flow—through and flow-by
electrodes to determine the preferred configuration. We have shown, that
there are several different ways to compare these two configurations.
Figures 12-1 and 12-2 illustrate the procedure developed for these

comparisons and summarize all of this work.

T13e comparison starts in the upper right hand corner. As given
information, the conversion al and the separation factor or dimensionless
concentration enfcpD,/ spelAd; have been assumed. These two quantities
were always assumed to be known whenever the two configurations were
compared. One progresses through the flow—chart from top to bottom,
branching at the diamond shaped decision points. Needed calculations are
represented by the rectangles. These figures also refer to key equations
and figures presented in previous chapters. The result of the comparison is
the configuration which has the lower cost satisfying the constraints on the

design.

In Chapter Nine, the two electrode configurations were compared on
the basis of the lower maximum potential drop. If the electrode with the
lower total cost was to be found by this comparison, two restrictive
conditions were required. First, equal electrode dimensions and feed
flowrates were assumed for each configuration. Second, no costs based on
the separator area could be included in the comparison. If these two
conditions were satisfied, then Figure 9—1 could be used to determine the

less expensive configuration.
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The somewhat unrealistic assumptions in the above comparison were
then relaxed. Chapter Ten developed the general cost equations applicable
to each configuration. The. restriction of no costs dependent upon the
separator area was removed. Provided one still knew the dimensions of each
electrode, the given cost factors, and the feed flowrates, the less expensive

electrode configuration could now be found.

Finally, Chapter Eleven presented the most general' comparison. Here,
the least expensive poseible ﬂow—thr‘ougb electro_de was corﬁpared to the
least expensive ﬂow—by electrode. The two electrodes were optimized using
an objective function consxstmg of volumetric electrode capital costs,
separator capital costs, and pumping operating cosf.s. The opt.u'nurnv _
operating coridition’s_ for the flow—by arid' the ﬂoﬁr—through conﬁguf‘atien
were then foux;d-.' ‘An example considered the o>ptimi2ation ef the two
configurations for single conversion. Equal volumetric cost fact;ors and
pumping cosf. factors were assumed. However, the seearator cost factor was

parametrized, and the influence of the separator cost was examined.



Chapter 13

Conclusions

The two—dimensional potential distribution for a flow—by porous
electrode of infinite length to width ratio operating at the limiting current
has been derived. It is shown that the maximum solution phase potential
drop depends primarily on the ratio of the electrode width and the
penetration depth, ad. The potential drop for practical flow—by designs
depends only weakly upon the length to width ratio. This result has been
compared to the potential drop for a finite length electrode given by Fedkiw

and the one—dimensional potential drop of Alkire and Ng.

The flow—through and flow-by electrode configurations have been
compa.red at the limiting current using the maximum solution phase
potential diﬂerence as a basis for comparison. This comparison is
independept of any specific mass—transfer coeflicient correlation. Criteria
delineatigg the optimum electrode configuration have been given which
depend upon the reactant conversion. At low conversion a flow—by
electrode is favorable providing that it can be constructed with a length to
width ratio greater than one. At high conversions, however, a flow—by
electrode is favorable if the ratio of the electrode width and penetration

depth is less than 2.218.

A method for determining the cost optimum design of flow—through or
flow—by porous electrodes also has been developed. Optimization of these
two configurations was performed for fixed values of the conversion and
fixed dimensionless maximum potential drop. Each electrode was optimized

with respect to the sum of operating costs and capital costs. Capital costs
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consisted of a volumetric electrode cost and a separator cost while pumping
was the only operating cost considered. Results from this optimization for
equal flow—through and ﬁow—by séparator costs show that the the optimum
electrode configuration depends upon' the the dimensionless group
enfepD,/ spedd, and the dimensionleés separator cost. For very low and
high values of the parameter enftpD,/ speldd;, the ﬁow—by‘ electrode is
preferred. The flow—through electrode is preferred tor an intermediate
range of this parameter. A flow—=through electrode withdut a separator has
‘been compared to a flow=by electrode with a separator. The flow—through
conﬁguration becornes‘preferable for a g‘réater range of enfepD,/ sR(cAég
and separator cost, but the low—by electrode still is preferred under many

conditions.
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List of Symbols for Chapters Seven through Thirteen

English Characters

specific interfacial surface area, cm?®/cm?®

constant in Sherwood number relationship, Equation (10-5)
cross sectional area to flow for flow-through electrode, cm?

surface area of separator in flow-through or flow-by electrode,

cm?

exponent in Sherwood number relationship, Equation (10-5)
pore averaged concentration, rnol/'crna

pumping cost factor, $/J

separator cost factor, $/cm?

total electrode cost per volume of feed, $/cm?

volumetric electrode cost factor, $/cm3

flow—by electrode bed width perpendicular to fluid—flow direction,
cm

free stream diffusion coefficient of reacting species, cm?/s
Faraday constant, 96,485 coulombs/equiv

constant equal to nfaky,cp/ sp £, V/cm?

superficial current density for electrolyte phase, A/cm?
transfer current density, A/cm?

mass transfer coefficient, cm/s

bed depth in direction of fluid flow, em

arbitrary species

number of electrons transferred in reaction
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volumetric flow rate of feed, em?/s

Péclet number, v/ al,

factor accounting for interest, deprveciation. and taxes on capital
equipment, s’

bed aspect ratio, L/ d
Schmidt Number, v/ D,

Sherwood number, sk, / al),

‘stoichiometric coefficient of reactant

superﬁcial fluid velocity, cm/s

reference potential of low—by electrode at y =d, V

volume of flow-through or flow-by electrode, cm?®

charge number, vequiv/ mol

Greek Characters

AP

Ad,

reciprocal of penetration length, ak, /v, cm’!
dynamic pressure drop across electrode, Pa
maximum allowable solution potential drop, V
bed porosity or void fraction

conductivity of fluid phase in bed, (Q=cm)!

- dimensionless eigenvalue defined in Equation (7-18)

dimensionless eigenvalue defined in Equation (7-23)
solution potential, V
fluid density, g/cm?

kinematic viscosity of fluid, cm?/s

Subscripts



species number

n eigenvalue number
F feed condition
FB for the flow—by configuration
FT for the flow—through configuration
L exit condition
min at the minimum cost
Superscripts
solution to Equation (G-10)
B solution to Equation (G-19)
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Appendix A

Binary Composition Conventions

For a polysulfide melt composed of nonstoichiometric amounts of
sodium and sulfur, the composition of the melt can be described by a
number of conventions. We consider the melt here to be pseudo-binary
compound composed of Lhrée distinct species. The melt can be described by
considering anions, cations, and a neutral solvent, or two anions and a
common cation. We examine each of these models individually and compare

concentrations based on each of these microscopic melt models.

First we will consider the melt to be composed of a Na,S in a neutral
sulfur solvent. Thus, ‘we will include monosulfide anions, sodium cations, and
neutral sulfur solvent to be present within the melt. We begin by establishing
a common basis to compare each convention. This is defined to be the mole
fraction of the undissociated Na,S electrolyte in a neutral sulfur solvent z,.
The variable z, is defined to be the moles of Na,S divided by moles of Na,S
plus moles of free neutral sulfur. For a melt composition denoted by the
non-stoichiometric formula Nazsy. the variable y is related to the mole

fraction of Na,S by

y= | (A-1)

or
-1 -
Ze = o (A-2)

One could also use the particle fraction of sulfur computed on the basis
of a dissociated electrolyte and a melt containing monosulfide ions, sodium

ions, and sulfur solvent. Using this convention, the particle fraction of
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sulfur, both ions and atoms is

1

1.+2z, (A-3)

ng =

The mass fraction can also be used to describe the composition of the
melt. Commonly used to describe the composition of the melt is the mass
fraction of sulfur, both ions and molecules wg where the other component is

sodium. It is related to the mole fraction of Na,S by

_ 1
T 2z, Mno/ Ms + 1

ws (A‘4)

and

g = L (1-0s) Hs v
* 2 ws Mya

(A-5)

Next we will consider the melt to be composed of two anionic species S =
and S, and sodium cations Na’. Thus we can identify two neutral
compounds Na,S, and Na,S,. The mole fraction of the compound Na,S,

which is defined as moles of electrolyte A per total moles of electrolyte A

and B is
1 1 '
= -— =b], -
%a (a =b) [z. ] . - (a8
and
T, = 1 - A-7
* (@ =b)zg +b (a=7)
Fere the mole fraction of Nazsb can be determined from
Ty +Zp = 1. (A-"B)

Finally, the mass fraction of the electrolytes Na,S, and Na,S, can also
be used. These are defined analogously to the mole fractions of the two
electrolytes. That is, mass of one electrolyte to per total mass of melt. The

mass fraction of Nazsu is terms of thé mole fraction of Nazs‘l is



247

“e = ZMNaZ ﬁisztwa
(@ —b)+ Na/ Ms (A-9)
~and
e 2Mya/ Hs |
Na/;{ls +a) £ (b —a) (A—10)
a

These manipulations are performed by the FORTRAN subroutine CONVRT

which will interconvert between any of the given composition variables.



Appendix B
Calculation of Tran.sference Numbers for Sodium Polysulfide Melts

Consider the following electrochemical cell from Cleaver and Davies!®

Cl NasS | INaS.| S IC
and rewrite it equivalently as
a g ' y 6 a
Cl| NaS+(y-1)S()] [NaS+(y'-1)S(1) [S() |C.

Here three components have been defined: Na*, S%, and S. The potential of
this céll is given as -
FUy=-F($*-%*)=pl - s - (B-1)

If equilibrium between phases a and 8, and ¥ and 6 are assumed, then

plo=pd v2ul. (B-2)

and

Ml = ud + 2u (B-3)

and if the sulfur in phase § is assumed to be pure

pd = ud = pud. (B-4)
Combining Equations (B—1) through (B=4) thus gives for the potential of the

cell
. 1 1 -
FUp = pg- = u = 5 (pde —ude) + 5 (ud - pf) . (B-3)
Now Equation (16=3) from Newman? is
1 - F. £ Z;
. Vin = i z‘: 2. [V;q z, Vp.,.] . (B-6)
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Fere we will let species n be ST and transference numbers will be taken
relative to neutral sulfur, S. Also we will take i to be zero. This equation

combined with the Gibbs—Duhem Equation which requires

ZTedpg + (1 —zg)du, =0, | (B-7)

results in
1 1- Z,
=Vuea = —t3 4 ° — Vu, . B-8
2 S Na+ z‘ I-Lo ‘ ( )

The mole fraction of Na,S has been represented by the variable z, and the
activity of sulfur by u,. Integration of Equation (B—8) from the composition

in phase ¥ to the composition in phase 8 gives

1-z

B - . B
1 1 1
—fV/J, - = - (#sp: —#g-) = - —ftﬁﬂ“ v#o . (B—'g)
2 4 2 24

This gives for the potential of the cell from Equation (B—5)

Z,

_ 1 A o ‘1 - Z
FUp = - 5_[ £+ —*! d o . (B—10)
If the the activity of sulfur is defined to be
Ms = o = lg + RT In a, , (B—-11)

and the activity of sulfur in phase 6 and 7 is assumed to be equal to that of

pure sulfur which is one,

8
- _ RT e 1 -z
Ue = ZF[[tN"' :

—+ 1] d(in a,) . (B—12)

Finally, Equation {(B—12) can be differentiated to give

1l—-z

RT ¢ 41
zl

dU; = - oF [tgh*

d(in a,) . (B-13)

The activity of sulfur can be obtained from the equilibriurn potential of

the following cell

Na(l)| p-alumina | Na,S, (1) |C
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with cell potential denoted by U,. Rewrite it as

@ g Y é a'
C{ Na(l) |[B-alumina| Na,S+(y-1)S(1) |C.

The following reactions will be assumed to occur

Na -+ Na* +e- (B-14)

ST+S+2e” (B-15)

-at the anode and cathode respectively. These two reactions can be
" combined to yield the overall cell reéction of'

2Na + S ~ Na,S . | (B-16)

. Equilibria among the various phases gives -

s = Ul + 13, _ ~ (B-17)

‘and

Hom=2pk +ud. o ~ (B-18)

The cell potential can be expressed as

' g 1 1
FU:=#f-‘#:-=-#§.°#§.¢-§'#s"-f 5#5- - (B-19)
Assuming sodium metal in phase § to be pure énd assuming sodium ions are

equilibrated between the ¥ and § phases gives

1 = pfa . (B-20)
and ”
| Mt = Holgs - | (B-21)
The potential of the cell is thus ‘
P - 1 1 8
FU\ = pfa + S ud - Sl (B—22)

When one takes the differential of Equation (B—22) and applies the

Cibbs—Duhem equation Equation (B—7) this yields
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1 1
FaU, = o 7=dl - (B—23)

For the same definition of sulfur activity given in Equation (B—11), Equation

(B-22) is
_ RT 1
e =55 ;d(ln Q). (B—24)
or
2F
d(ln !lo) = ﬁz, dUl (B—-25)

Using Equation (B—25) gives for the differential of potential of cell two

Zq

+ 1|z, AU, . (B—26)

AUz = - [t;,a,.

The transference number of sodium ions relative to neutral sulfur is thus

. ‘
to = dz, dU, ¢ (B-27)
Na :

The two derivatives of cell potential with electrolyte mole fraction can

be obtained from the slope of cell potential data versus composition.



Appéndix C
Enf.ropy Production
From Newman®, binary interaction coefficients must obey the following

two ihequalities

Cy  Ce : . .
+ =0, C-1
9‘1 9* ( )
and
Cj . : Cy v '
. + —=20, c-2
&, Dp+tce Dy a ( )
where species i, j, and k are arbitrary. Now choose
i+, : (C=3)
j=o, (C—4)
and
k-, - (C-5)
then
€L TC4 = V4C, (C-86)
Cj = ¢, Scr—ve, , (C=7)
“and,
Ceg =C.=v.C, ' . (C-8)

. where c is the concentration of electrolyte.
Criterion number one given by Equation (C-1) requires

vee(cr = ve) . voc(cr = ve)
. .-

while criterion number two given by Equation (C-2) gives

=0, ' (C-9)

(cp = vc) V.C
Vol & g+ VL 240 Q .-
The expressions for @ ,,, 2 ,-.and ¢ ,_are found in Newman*

20. (C—lo)
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- 9
9%+-z+_z_1_t1. (C-11)
z 2
90- - z+ :z- tg N (C—12)
and, ’
1 _  z.zcrF% oz, -z cthtl (C-13)
Do - RT«x ZW, C G

Using these definitions in Equations (C-9) and (C—-10) one obtains a
restriction upon the diffusion coefficient as

9=0, (C-14)

and a restriction upon the conductivity as

c=0. (C-15)
Therefore, the second law is satisfled for combinations of the _62\,-
parameters if they are calculated from a diffusion coefficient and a

conductivity which are both greater than zero.



Appendix D
Multicomponent Melt Phase Compositions
From Tegman,!” the composition of sodium polysulfide melts can be
calculated from equi'libria among .the monosulfide ion and each polysulfide
ion in the melt. Consider the following general reaction betwéen the single

sulfide ion with gaseous sulfur dimer to form a polysulfide ion

L=l sug) +57 ST (D-1)

At equilibrium

ii‘.L,
¢, = K cyps; -

Here the variable Ps, repres’ents; the partial pressure of dimer sulfur vapor

(D-2)

and ¢, and ¢; the concentrations of monosulfide ion and érbitrary’
polys.ulﬂde ion with formula S{ respectively. Equation (D-2) can be
rewritten in terms of the particle fraction of sulfur species

no=Knps? . (D=3)
where ‘
n = g——
= N=t -
¢j (_D +)
izt

The paraimet.er N denotes the number of total species, hence the number of
anionic polysulfide species is given by N=1. The equilibrium coefficients can
be determined from the free energy change for each reactioﬁ. The free
energy change is assumed to be expressed as

AG = AR} - TAS (D-5)
where AA? and AS? are independent of temperature and pressure; The

standard state for each reaction is taken to be ideal dimer sulfur vapor at
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one atmosphere. Using the definition

AG! = - RT ln K; (D-6)
results in
AH? AS? |
= - —+ .. D-7
K =exp| - & B ] (D-7)
Values of AH? and AS? for several polysulfide ions are given in Table D~1.!7

Table D—-1 Values of AA? and AS? for several polysulfide ions taken
from Tegman!? )

iin SF AR?, kI/mol AS?, J/mol K
2 -68.52 £ 7.3 -37.85 £ 6.3
3 -135.08 + 8.1 -85.00 + 5.9
4 -204.04 + 8.3 -155.54 + 6.0
5 -267.22 + 8.7 -228.69 + 12.4
6 -333.24 + 11.9 -312.07 + 24.0
8 -417.14 + 6.3 -392.60 + 6.2

A material balance for the melt composed of N-1 polysulfide ions

requires
N-1
=1, (D-8)
i=1
and
N-1
zim =y, (D-9)

=1

where y denotes the composition of the melt with an overall formula of
Na,S . Using Equations (D-3) and (D-8) gives for the particle fraction of

monosulfide ion as
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1

n; = " .
N-1 41 D-10

1+ Y Kps,? ( )
1=2

Substitution of Equation (D-10) into (D-9) gives for the overall melt

composition
N-1 L=
1+ Y1 K pst
=,
Y= — (D-11)

1+ ) Kps?
: i=2 _
One must solve Equation (D-11) by trial and error for the partial pressure of
sulfur vapor for a given overall melt composition. The monosulfide ion
particle fraction can then be determined from Equation (D-10). | Fir':lally', the
particle fraction for each species can then be determined from Equation

(D-3) once the monosulfide ion particle fraction is known.

‘These equations are programmed into the subroutines COMP and
PLYSLFD which will calculate the melt composition for ahy temperature and
overall sulfur melt composition. The iteration is performed usinvg subroutine

SECANT.



Appendix E

Multi—Anion Transport Equations and Properties

Table (E—-1) defines the convention used to represent ionic species in

the melt.

Table (E-1) Ions in Multicomponent Model.

Ions Species Number
S= 1
Ss 2
Sy 3
oh j
SN-1 N-1
Na* N

At constant temperature and pressure

N=1
c;Vu; = kE Mje (Ve —vy), (E-1)
=1
where

My =Kp J#k (E-2)

N-1 _
My = Kp — X K 7=k (E-3)

i=1

Inversion of the above equations for velocity differences in terms of
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gradients of electrochemical potential gives

N=-1
(vi —vy) == 3 L¥c;Vu;, (E-4)
J=1
where
LY = - (M)!. ~ (E-5)

The definition of the current density is.

N N-1 :
i= Fz ZpCrlUp = Fz zkck(vlé -VN) . _ (E—G)
k=1 k=1

Using the expression for the velocity differences in terms of the gradients of
the electrochemical potentials givés for the current density
. N-1 N-1 N
1is- Fz 2 Cp Z ngCjV/J.j . : '(E_?)
k=1 i=1 . } .

For a solution of uniform composition, any electrochemical potential for any

ion reduces to

Vuj = 2, F V% . ' | (E-8)

Therefore in a solution of uniform composition, the current derisity is
N=1 N-1 N | -
i=- fe 2 ZpCp Z Lk,CijVQ . (E_g)
k=t . j=1

Ohm's Law also governs the flow of current under these conditions
i=-xVd, (E-10)
- and one can therefore identify the conductivity as
N=IN=1 " .
€= F2 Y Yaecez;cily - (E-11)
k=1j=1 :

Although L,;g's depend upon the reference frame chosen, the conductivity is

invariant with respect to the choice of the reference frarme.

Now we will derive the binary melt transference number for sodium ions
relative to neutral sulfur and the binary diflusion coefficient for a melt
consisting of an arbitrary number of polysulfide species. Again, the

definition for the current density in the melt is
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N-1
i=-FY

N-1 N
2eCr 3, Lije;Vuy . (E-12)
k=1 j=1

The gradients of electrochemical potential for each ionic species can be
obtained by considering the following general chemical reaction
SF -S4+ (j-1)S. (E—13)

Expressing the equality of the electrochemical potential for reactants and
products in terms of the electrochemical potential for species in the
anion—cation-solvent model gives

Vuj = Vu- + (j-1)Vy, . (E-14)
The Gibbs—~Duhem Equation for the melt in the anion—cation—solvent model
requires

CoViLe +¢ Vuy =0, (E-15)

while the definition for the electrochemical potential of the electrolyte is

Vue = v, Vu, + v_Vu_. (E-18)
Equations (E-14), (E-15), and (E-18) give the gradient of electrochemical

potential of species j as

Y I - C .3 |
Vu; = [V_ (G-1) CO]V#« —— Vi, (E~-17)
The expression for the current density given by Equation (E—12) is then

N-1
i=-F‘Z
k=1

Equation (E-18) can then be rearranged to obtain the gradient of

N-1
1 . v
ZeCr Lﬁéc,-[—v Ve = (5=1) = Ve = == Vu,|. (E-18)

electrochemical potential of sodium ions in terms of the gradient of the
chemical potential of the electrolyte and the current density. This

expression can then be substituted into Equation (E-17) to give

B

Vyj = ‘Z'—

(j-1)]c—°°— Vue + -:1- (E-19)

where A and B are given by
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N=-1 N=t
A=-FY zc,. 3 Llc; (E-20)
k=1 j=1
and
B= -F'Z} ZC Z‘,L,,,c, j-1). (E-21)
k=1

The flux of each ionic species can be written as

Ny =V, = - Ck 2 L,,,cJ Vy,, + CeVy (E-22)
j=t
or using the Equation (E-19) this becomes

. -l o
Np =cev=—c, 3, Lfjc; [[% - (j‘l)]f- Vi, + ;f +cevy . (E-23)
j'l -

Independent of the reference frame of model, the flux of sodium and
- sulfur must be identical. Equal sulfur fluxes require

N-1 : - » : .
.Elk Nb = NO + N.-,- 0 . (E-24')

while the condition of equal sodium fluxes gives

Ny=N,. ) ' (E—zs) -
Equations (E-24) and (E-25) also account for conservation charge. If each
side of each equation were mulitiplied' by the charge number of the ions,
equal currents would be defined on both sides of each equation. Definitions

for the fluxes in each system réqui.re for equal sulfur fluxes

N=1 ;

Zlcc,,l ZLk,c, —--(_7—1) —Vp, + & +Vy

b=l FED] A
v. & cr it?
= - —_— + — i -26
CoUq AT G c Vi, = *c-v, (E-28)
while for equal sodium fluxes we have

ve Z cr it2
= - L + . -27
CNVy VRT o, c Vi, = F + €LV, (E-27)

Eliminating the velocity of species N in Equation (E-26) using Equation

(E-27) gives
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VRT ¢, c Vu, - chk ELkJ J[ (J I)J—V#e

it’.o Nz Ck

-1
+ -— -L%%
2z, F 2 cw Z_F E Ck ZL"JCJ
N-1 CsC
+ Zk k> +

V, = CaVy —C_V, =0. E-28
st CN -] 0vo 0 ( )

In a solution of uniform composition with no current flow, Equation (E-28)
reduces to

c, N1
C_V +Co¥y = — Y kcpv, =0. (BE-29)
CN =1
Definitions for the concentrations in the two models require

Cs = Cy¥ (E-30)
and

N-1
Co +Co= ) kcy . (E-31)
k=1
Thus one sees that Equation (E-29) is identically zero, and the convective

terms make no contribution to Equation (E-28).

In a solution of uniform composition, the migration term is

1tg_ 1 N=1

N=1
kcp = —— = — S ke Llec; =0. E-32
2+F CN k=t k Z.F A kgl kjgl k1% ( )

Solving Equation (E-32) along with the definition of A gives for the

transference number of sodium ions relative to sulfur solvent as

¢ (E-33)
j=t

Ore may also distinguish the transference numbers of the individual

anionic species in two ways. If the migration contributions to the flux of
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species k£ in Equation (E—23) can assumed to be in a form given by

~
(g
vz

- l_ s _
ZkF_ A ngJ' ) (E 34)
then
N-1
Cng 2 LkJCJ
tf = 243 (E-35)
2 chk 2 LkJCJ
k=1 Jj=
with the definition
ti=0. (E-38)

It can be seen from Equation (E-35) above that

th=1. | ' ‘ (E-37)

The transference numbers for each species can also be determined if
one again considers a solution of uniform composition. The velocity of any

species relative to species N will then be given by

it
(Ve — V) = = (E-38)

Again in a solution of uniform composition, Ohm's Law given in EQuawtion
(E-10) governs the current flow. Using this definition along with Equations
(E-9) and (E-38) gives the transference number of species ] relative to

species N as

1 N-1
td = - ;Fezkckkgllszct 2 . " (E-39)
Equation (E-39) reduces to the previously derived expression, Equation
(E-35), provided the charge numbers of all species included within the
summation in Equation (E<39) are equal. This requirement is fulfilled, since

all of the anionic species have equal charges.
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Using Equation (E-33) and Equation (E-35), the transference number
of sodium ions relative to sulfur solvent in terms of the anion transference

numbers relative to sodium ions is

N-1 N

;1.._ - L

0 — - k=1 k
— —
z. 2, k=1 CN

One can simplify this expression by noting again that the charges of all
anionic species are the same and using the definition in Equation (E-31)
This gives

e tg -1
=t (E-41)

¥y -1

Finally, the diffusion coefficient in the binary anion-cation-solvent

t =

- model also can be determined from Equation (E-28). In a solution where no

current is flowing, only the diffusive terms remain, and Equation (E-28)

becomes
-(2 Cr VQ. N-l
RT = Clow B T

N-1 N=-1 N B . c
+ Z kck 2 Ltjcj Z - (]"1) E— V,U.' =0. (E"‘42)
k=1 i=1 )

Solving for the diffusion coeflicient gives

N=-1 N-1 N B ]
| vRT kzlkCg jz-:x ij i ’-4- -G
2=- SRL .

or - (E—43)
— Y kcy = v
CN k=1 ]

Again, after 'some substitution, Equation (E-43) can be simplified, and the

diffusion coeflicient in the binary system can be expressed as



where

g < BRT k=1 j=

N=1 N
3 ke

Sue, [2-6-1)

c (y+2)(y'-1)‘_

N-1 N-1
Lce ) Lijes
j=1

s =1

A _
B~ N1 A=l _ '
Lo ¥ Lije;(G = 1)

k=1 j=1
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Appendix F

Computer Programs for Sodium Polysulfide Melts

This section presents a listing of the two computer programs used in
the determination of the transport properties of sodium—sulfur melts. Two

programs have been used: COMPOS and SSTP.

Program COMPOS calculates the equilibrium microscopic melt
composition using the model developed by Tegman.!” It also determines the
open-—circuit cell potential for a sodium sulfur cell and the activity
coefficient factor. The subroutines and their purpose in COMPOS are listed

in Table F-1,

Table F-1 Subroutines and Purpose in Program COMPCS

Subroutine Purpose

PLYSFD Calculates the equilibrium constants, material
balances, and the variation in the particle fraction of
monosulfide ion with electrolyte mole fraction on a
sodium polysulfide melt using the model of Tegman.!’

SECANT Performs an iteration on a one—~dimensional function
using a regula—falsi technique.

Program COMPOS calculates the particle of polysulfide anions in the melt,
the open circuit potential, and the activity coeflicient factor. Needed inputs
are the melt temperature and standard differences in chemical potentials
for molten sodium metal, liquid sodium sulfide, and ideal sulfur vapor. A

program listing and sample output follows.
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PROGRAM COMPOS (INPUT,OUTPUT,TAPES=INPUT ,TAPE6=0UTPUT)

PROGRAM COMPOS

PURPOSE CALCULATE THE MICROSCOPIC COMPOSITION, THE CELL
POTENTIAL, AND THE VARIATION OF THE ACTIVITY
WITH COMPOSITION FOR A POLYSULFIDE MELT OF A GIVEN
COMPOSTION USING THE MODEL PROPOSED BY TEGMAN.
THIS PROGRAM FIRST CALCULATES THE PARTICLE FRACTIONS
OF THE VARIOUS POLYSULFIDE IONS.
SECOND ,IT DETERMINES THE OPEN CIRCUIT POTENTIAL
OF A CELL FORMED BY A SULFUR ELECTRODE WITH A
SINGLE PHASE OF GIVEN COMPOSITION COMBINED WITH
A LIQUID SODIUM ELECTRODE.
FINALLY, IT DETERMINES THE DERIVATIVE OF THE LOGARITHM
OF THE ACTIVITY COEFFICENT WITH RESPECT TO THE
LOGARITHM OF THE MOLALITY OF SODIUM SULFIDE.

SUBROUTINES REQUIRED

PLYSFD
SECANT

REVISED 8-6-83

€ 0 2000600 0000000000000 000000 0600 0006C0E600006006CER0O0CCROIICOOIEOIAMILRIROOEEOEORINGOCEEOIREOGTES

REAL LGPS2,LGPS21,LGPS22,MUQ

EXTERNAL PLYSFD -

DIMENSION DELTAG(8),IN(8),X(8) _
COMMON/FIRST/ DELTAG,DXSDXE,IN,XE,X,TEMP
DATA IN/1,1,1,1,1,1,0,1/

DATA R,F/8.3143,96485.0/

PROGRAM CONDITIONS FOLLOW
XESTRT=0.20

DXE=0.005

XSAT=0.1920

NINT=32

TEMP=633.15

DELTAGO=42.817

WRITE OUT TEMPERATURE

WRITE(6,100) TEMP

CALCULATE STANDARD CHEMICAL POTENTIAL

MUO=4.184%1000.0*DELTAGO
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FOR EACH COMPOSITION, CALCULATE COMPOSITIONS, CELL
POTENTIAL, AND DLGDLM

DO 20 K=1,NINT
IF(K.EQ.1) XE=XSAT
IF(K.EQ.2) XE=XESTRT

ITERATIVELY SOLVE MATERIAL BALANCES
STARTING GUESSES FOLLOW

LGPS21=-1.0
CALL SECANT(PLYSFD,LGPS21,YFUNC,LGPS22,1.0E-06,1ERR,20)

FIRST TIME PRINT OUT DELTA G”S

IF(K.NE.1) GO TO 10

DO 5 I=2,8
IF(IN(I).EQ.0) GO TO 5
WRITE(6,101) I,DELTAG(I)
CONTINUE

WRITE(6,102)

CALCULATE POTENTIAL ETC.

RTLNA=Q . 5*R*TEMP*ALOG(X(4)/X(2)/X(2))
POT=(MUO+0.5*DELTAG(4 )~DELTAG(2)+RTLNA)/F
DLGDLM=XE*(1.0-XE)/3.0/X(1)*DXSDXE

WRITE THEM OUT

WRITE(6,103) XE,X(1l),X(2),X(3),X(4),X(5),X(6),X(8),POT,DLGDLM
XE=XE+DXE
CONTINUE

FORMAT STATEMENTS FOLLOW

FORMAT(* * //%* * *TEMPERATURE = * F7.2,*K*//
* % *DELTAG VALUES*/)
FORMAT(* * *DELTAG(*,I1,*) = * 1PE15.8)
FORMAT(* *,//,* * SX *XE* 8X,*X(1)*,7X,*X(2)*,7X,*X(3)*,7X,

1 *X(4)*,7X,*X(5)*,7X,*X(6)*,7X,*X(8)*,7X,*Ul* ,5X,*1+DLGDLM*/)

FORMAT(* *,10(F8.5,3X))
END

SUBROUTINE PLYSFD (LGPS2,DIFF)

® 6 0 0000006046 000600600000 0060060000008 000606006°000088006e000000000s0006s s

SUBROUTINE PLYSFD
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PURPOSE TO CALCULATE THE MATERIAL BALANCES FOR A POLYSULFIDE
' MELT. ' '

USAGE  CALL PLYSFD(LGPS2,DIFF)
DESCRIPTION OF PARAMETERS |
LGPS2  THE COMMON LOGRITHM OF THE SULFUR VAPOR
PRESSURE. THIS PARAMETER IS THE INDEPENDENT
VARIABLE INPUT INTO THE MATERIAL BALANCES.
DIFF THE DIFFERENCE BETWEEN THE CALCULATE
MOLE FRACTION OF ELECTROLYTE AND THE
GIVEN MOLE FRACTION OF ELECTROLYTE.
SUBROUTINES REQUIRED
. NONE
REFERENCES
RAGNAR TEGMAN, THERMODYNAMIC STUDIES OF HIGH
TEMPERATURE EQULIBRIA, CHEMICA SCRIPTA, 1976,
9, 158-166.

REVISED 8-6-83

REAL K,LGPS2 ,NUMER ‘
COMMON/FIRST/ DELTAG,DXSDXE, IN,XE,X,TEMP
DIMENSION DELTAH(8) ,DELTAS(8),DELTAG(8),IN(8),K(8),X(8)

DATA OF TEGMAN FOLLOWS

DATA DELTAH, DELTAS/

0.0,‘68 052 ’-135 -08 ,-204004 ,-267 022 ,-333 024 ,0 .0 ,-417 -14 >
000 ‘-37065, -85'00,-155.64,-228069,-312007,000,_392060/
INITIALIZE SOME CONSTANTS

DATA R/8.314/

DATA N/8/

DELTAG(1)=0.0
NUMER=1.0
DENOM=1.0
PS2=10.0**(LGPS2)
DSUM1=0.0
DSUM2=0.0
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FOR EACH COMPONENT IN THE MELT, CLACULATE DELTA G”S
AND RELATIVE COMPOSITIONS

DO 10 I=2,N
X(1)=0.0

CALCULATE DELTA G VALUES

IF(IN(I).EQ.O0) GO TO 10
DELTAG(I)=DELTAH(I)*1000.0-TEMP*DELTAS(I)

NOW CALCULATE K”S

K(I)=EXP(-DELTAG(I)/R/TEMP)
X(I)=K(I)*PS2**(FLOAT(I~-1)/2.0)
NUMER=NUMER+X (1) ‘
DENOM=DENOM+FLOAT (I)*X(I)
DSUM1=DSUM1+X( I)*FLOAT(I-1)/PS2
DSUM2=DSUM2+FLOAT (I*(I-1))*X(I)/PS2
CONTINUE

DETERMINE MONOSULFIDE ION COMPOSITION

XCALC=NUMER/DENOM
X(1)=1.0/NUMER

DETERMINE HIGHER POLYSULFIDE COMPOSITIONS .
DO 20 I=2,N

IF (IN(I).EQ.0) GO TO 20

X(I)=X(I)*X(1)

CONTINUE

CALCULATE DERIVATIVE OF MONOSULFIDE ION PARTICLE FRACTION
WITH RESPECT TO TOTAL SODIUM SULFIDE MOLE FRACTION.

DXSDXE=X(1)/XE/(XE*DSUM2/DSUM1~-1)

CALCULATE DIFFERENCE BETWEEN GIVEN SODIUM SULFIDE
MOLE FRACTION AND CALCULATED MOLE FRACTION.

DIFF=XCALC~XE

RETURN

END

SUBROUTINE SECANT(FCNY,X1,Y,X2,TOL,IERR,NITER)

® 8 00 00000005 05 0000000000000 0000000480000 000080000sse000es

SUBROUTINE SECANT

269
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PURPOSE PERFORM AN ITERATION USING THE SECANT METHOD ON
A ONE~-DIMENSIONAL FUNCTION. '

USAGE CALL SECANT(FCNY,XI,YI,XZ,IOL,IERR,NITER)

DESCRIPTION OF PARAMETRS

FCNY

X1

TOL

IERR

NITER

NAME OF SUBROUTINE CONTAINING THE EXPRESSION
OF THE FUNCTION TO BE ITERATED UPON.

. FIRST GUESS FOR INDEPENDENT VARIABLE.

FINAL VALUE OF INDEPENDENT VARIABLE
IS RETURNED HERE.
FINAL VALUE OF DEPENDENT VARIABLE IS
RETURNED HERE. DEPENDENT
VARIABLE IS ITERATED TO ZERO.
SECOND GUESS FOR INDEPENDENT VARIABLE.
ITERATION TOLERANCE EXPRESSED AS A.
: FRACTION CHANGE OF THE INDEPENDENT

VARIABLE.
ERROR FLAG.
=1 IF NUMBER OF SPECIFIED ITERATIONS

v * ARE EXCEEDED.
NUMBER OF ITERATIONS. IERR IS ASSIGNED A
VALUE ‘OF ONE IF THE NUMBER OF
ITERATIONS EXCEEDS THIS PARAMETER.

SUBROUTINES REQUIRED

FCNY

REVISED 1-29-83

SUBROUTINE TO EVALUATE THE INDEPENDENT
VARIABLE FOR A GIVEN VALUE OF THE
DEPENDENT VARIABLE.

® 8 ® 0000000080000 0CEPN0SHOS SO CO OO0 NS00 60600 S PPN LOGO0CSSESEIETIOTEEDS

DIMENSION DELTAG(8),IN(8),X(8)
COMMON/FIRST/ DELTAG,DXSDXE,IN,XE,X,TEMP

N=1

EVALUATE FUNCTION FOR INITIAL GUESSES

CALL FCNY(X1,Y1)
CALL FCNY(X2,Y2)

COMPUTE NEW VALUE FROM PREVIOUS GUESSES

X3=X2-(X2-X1)/(Y2-Y1)*Y2

CALL FCNY(X3,Y3)

DETERMINE IF ITERATION TOLERANCE HAS BEEN MET
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IF(ABS((X3-X2)/X3).LT.TOL) GO TO 2

DETERMINE IF SPECIFIED NUMBER OF ITERATIONS

sNeoNeNe]

OO0
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HAS BEEN EXCEEDED
IF(N.GT.NITER) GO TO 3
IF NOT TRY AGAIN !

X1=X2
Y1=Y2
X2=X3
Y2=Y3
N=N+1
GO TO 1

SUCCESS ! RETURN VALUES
X1=X3

Y=Y3

RETURN

RETURN AN ERROR

IERR=1

RETURN
END
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* 633.15K

DELTAG VALUES

DELTAG(2) = ~-4.46819025E+04

DELTAG()) =
DELTAG(A) =
DELTAG(S) =
DELTAC(S) =
DELTAG(S) =

.19200
.20000
.20500
.21000
.21500
. 22000
.22500
23000
.23500
24000
.24500
25000
.25500
+26000
.26500
. 27000
.27500
.28000
.28%00
.29000
.29500
.30000
.30500
31000
.31500
32000
32500
.33000
.33500
. 34000
. 34500
.35000

~8.12622500E4+04
-1.05496534E+05
-1.22424927E+08
~1.356592880E+05
-1.68565)108405
x(1) x(2)
.00001 .00153.
.00001 .00210
.00001 .00256
.00002 L0001
.00002 .00379
.00003 .00461
00004 .00563
00006 .00688
.00008 .00842
.00010 .01031
.00014 .01263
00019 01344
.00025 01882
00034 .02286
.00046 .02762
00061 .03319
+00081 .03%962
.00106 04700
.001)9 .035)7
.00181 06478
00234 .07526
.00300 .0868)
.00382 09947
.00481 NIBIRE
00602 .12780
00746 146334
00916 15963
01118 17659
01345 19403
.01608 .21181
01906 22976
.022)9 224774

Ssmple Output for Program CONPOS

Xx(3)

06025
.08483
09639
.10959
12400
13997
15767
AN
19867
.22202
24716
27383
30179
13058
35978
.38893
41261
44332
AT166
49624
.51871
.53877
.55620
.57082
58253
59130
59717
.60025
.60068
.59866
59444
.58824

x(4)

.19258
.32192
4919
.36962
.18%00
.40703
4208
43763
44936
45812
46356

46540

46354
.45801
44898
43675
42170
.40429
238497
+36422
34252
.32031
29199

. +27592

25441
233N

.21402

19548

.17817 -

16212
14735
.13382

x(3%)

.31307
.31639
31309
1115

7430459

«29543
.28376
.2697%
.25368
.23594

,.21701
19742
A

.15839

.1398%

12241
.10629
09161
.0784)
06673
05646
.04753
.03985
.03329
.02773
.02306
.01915
01589

L0109

.01096
00912
.00760

X(6)

16386
8114
14077
12969
11809
10617
.09416
.08232
.07091
.06016
.05030
04146
03313
02
02157
.01699

©.01326

.01028
.00791
.00605
00461
.00349
00264
.00199
.00150

00113

00085
00064
.N0048
.00037
00028
.00021

x(8)

15072
11760
.09579
.07681
.06031
04673
.03333
.02614
.01889
.01334
.00921
.00624
.00414

.00271

00173
.00112
.00070
.00044
.00027
.00017
.00010

.00006°

00004

.00002°

.00001
.00001
J000n1
.00000
.00000
.00000
.00000
.00000

2.09345
2.0790%

' 2.07002

2.06090
2.05160
1.04209
2.03292
2.02228
2.01197
2.00142
1.99069
1.97982
1.96889
1.95797
1.94710
1.93634
1.92571
1.9152
1.90497
1.89489
1.8850)
1.87540
1.86602
1.85689
1.84803
1.83945
1.83117
1.82320
1.8155)
1.80817
1.8011)

- 1.79439

L4DLGOLN

.71
2.81314
2.86977
2.94707
3.04262
3.15228
3.27086
3.39155%
3.50656
3.60814
3.69002
3.74847
3.78270
3.79436
3.78655
3.76279
3.72631
3.67963
3.62451
3.56198
3.49258
3. 41648
3.33376
3.24453
3.14%09
3.04798
2.94199
2.83219
2.71941
2.60614
2.49248
2.38004

aLe
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Program SSTP calculates the values of g, and &; which best fit the
experimental data of conductivity and transference number. Program SSTP
also calculates the melt viscosity and density. Conductivities, densities, and
14-18

viscosities have been calculated using the data of Cleaver and Davies.

The subroutines in program SSTP are listed in Table F-2.

Table F-2 Subroutines in Program SSTP

Subroutine Purpose

COMP Determines the equilibrium constants for the microscopic
reactions and calculates material balances on the melit.
‘This is very similar to subroutine PLYSFD except that
the variation of the monosulfide ion with mole fraction
of sodium sulfide is not calculated.

SECANT Performs an iteration on a one—~dimensional function using a
regula—falsi iteration scheme.

MATINV Inverts a matrix or solves a set of linear equations by
a Gauss~Jordan reduction method.
Subroutine MATINV was written by John Newman.

FUNDER Sets up the equations and computes the derivatives for a
two—dimensional Newton—Raphson iteration.

FUNCT Sets up the matrix for the calculatinn of binary transport
: properties from the fundamental Qi,- parameters.
PROPRT Calculates the physical and transport properties of
sodium—sulfur melts using the data of Cleaver and Davies.!* 18
CUBSPL Calculate a cubic spline through a given set of data points.

CURVE Interpolate a set of points.
If the set of points contains more than three points,
use a cubic spline.
If there are less than three points, use a Legendre polynomial.

CONVRT Convert the composition of sodium polysulfides from one
compositional variable to another.
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A program listing and sample output follows.
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® 0 8 00000060000 0008 05000 0000C000600080006060000000060000e0s0ss0000

PROGRAM SSTP (SODIUM-SULFUR TRANSPORT PROPERTIES)

PURPOSE CALCULATE THE BINARY TRANSPORT PROPERTIES FOR SODIUM
POLYSULFIDE MELTS FROM A MICROSCOPIC MODEL.

SUBROUTINES REQUIRED

COMP

SECANT

MATINV

FUNDER

FUNCT

PROPRT

CUBSPL

CURVE

CONVRT

CALCULATES MATERIAL BALANCES ON A POLYSULFIDE
MELT. THIS SUBROUTINE IS NEARLY IDENTICAL
SUBROUTINE PLYSFD IN PROGRAM COMPOS.

PERFORMS A SECANT ITERATION ON A
ONE~DIMENSIONAL FUNCTION.

INVERTS A MATRIX OR SOLVES THE SYSTEM
OF EQUATIONS BX = D.
MATINV WAS WRITTEN BY JOHN NEWMAN.

CALCULATES THE FUNCTION AND NUMERICALLY
EVALUATES THE DERIVATIVES FOR A TWO-
DIMENSIONAL NEWTON-RAPHSON ITERATION.

CALCULATES THE MELT TRANSFERENCE NUMBER,
CONDUCTIVITY, AND DIFFUSION COEFFICIENT
BY INVERSION OF THE TRANSPORT COEFFICIENT
MATRIX.

COMPUTES THE TRANSPORT AND PHYSICAL PROPERTIES
FOR SODIUM POLYSULFIDE MELTS AT SEVERAL SPECIFIC
COMPOSITIONS AS A FUNCTION OF TEMPERATURE

THIS SUBROUTINE UTILIZES THE EXPERIMENTAL DATA
OF CLEAVER AND DAVIES AND CAN RETURN

VALUES OF THE DENSITY, CONDUCTIVITY, VISCOSITY,
AND SURFACE TENSION.

CALCULATES A CUBIC SPLINE THROUGH N DATA
POINTS. CUBSPL IS USED TO DETERMINE MELT
PROPERTIES AT INTERMEDIATE COMPOSITIONS NOT
GIVEN BY PROPRT.

USED IN CONJUNCTION WITH CUBSPL TO INTERPOLATE
BETWEEN DATA POINTS TO CALCULATE PROPERTY
AT DESTIRED COMPOSITION.

CONVERTS THE COMPOSITION OF SODIUM POLYSULFIDE
MELTS FROM ONE COMPOSITIONAL VARIABLE TO
ANOTHER. CONVRT IS USED TO CONVERT THE
EXPERIMENTAL DATA FROM CLEAVER AND DAVIES WHICH



QOO0 0O00OO0

oan

276

IS GIVEN IN MASS FRACTION OF SULFUR TO

MOLE FRACTION OF SODIUM SULFIDE WHICH IS

THE COMPOSITION CONVENTION USED IN THE PROGRAM.
SSTP.

REVISED 10-7-83

® 600000080600 080600600008060C0608608 0000068000000 0060@800COSSESGECOESIEBILEOEOICOAETDSIOEOIEGEDS

PROGRAM SSTP(INPUT,OUTPUT, TAPES-INPUT TAPE6=OUTPUT)
EXTERNAL COMP
REAL LGPS2,LGPS21,LGPS22
REAL KAPPA,MNA,MJ,MWAV,MNA2S ,MWOD,MS, MSMNA MWSUM
. DIMENSION DELTA(B) )
- DIMENSION PARAM(2),PARAMO(2),Y0(2),DX(2),DYDX(2,2)
DIMENSION DELTAG(8),X(8),IN(8)
DIMENSION XD(10),YD(10),XK(10),YR(10),XV(10),YV(10),AA(10,4),
1 SD(10),SK(10),SV(10)
COMMON/FIRST/ DELTAG, IN,XE
COMMON/THIRD/ C,DELTA,F,MSMNA,N,RBRAO,Y
COMMON/FOURTH/ R,TEMP,X
‘COMMON/FIFTH/ POWER2,SCRPTD

DATA STATEMENTS FOLLOW -

- DATA R,F/8.314,9.6485E4/ '
DATA DELTA/1.0,2.0,3.0,4.0,5.0,6.0,8.0,0.0/
DATA IN/6*1,0,1/-
DATA DX/1.0E-08,1.0E-08/ '
DATA MNA,MNA2S,MS/22.98977,78.03934,32.06/
DATA IDSIZE,IKSIZE,IVSIZE/3*1/

INITIALIZE PARAMETERS

POWER1=1.5
POWER2=3.0
A=5.9060
B=44.58998
DELTAG(1)=0.0
NITER1=20
NITER2=20

N=8
RBRAO=(B/2.0/A)**(1.0/3.0)
TCOEF=0.9721
TEMP=633.15
TOL1=1.0E-06
TOL2=1.0E-04
PARAMO(1)=1.0E-04
PARAMO(2)=1.0E~04
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PRINT OUT TEMPERATURE AND POWER ON DIJ”S

WRITE(6,5) TEMP,POWER2
FORMAT (*1*,////* * *TEMPERATURE = * F8.2,% K*/
1 * * *PQWER2 = * ,F10.5//)

PRINT OUT HEADING

WRITE(6,6)

FORMAT (* * *NITER*,4X,*XE*,8X,*KAPPA*,6X,*MU*,8X,*TOPLUS*,3X,
1 *EXP DENS*, 3X,*CALC DENS*,6X,*SCRIPTD*,7X,*4PIELNA/3MUV1*,
2 4X,*4PIE2NA/3MUV1*/)

STARTING MELT COMPOSITION FOLLOWS.
XE=0.21

GET EXPERIMENTAL PROPERTIES

FIRST GET DENSITY

CALL PROPRT(TEMP,XD,YD,10,IDSIZE,1)
IF(IDSIZE.EQ.0) GO TO 5000

DO 10 J=1,IDSIZE

XIN=XD(J)

CALL CONVRT(XIN,XD(J),5,1)
IF(IDSIZE.LE.3) GO TO 20

CALL CUBSPL(XD,YD,SD,AA,10,IDSIZE,1)

NEXT GET CONDUCTIVITY DATA.

CALL PROPRT(TEMP,XK,YK,10,IKSIZE,4)
IF(IKSIZE.EQ.0) GO TO 5000

DO 30 J=1,IKSIZE

XIN=XK(J)

CALL CONVRT (XIN,XK(J),5,1)
IF(IKSIZE.LE.3) GO TO 40

CALL CUBSPL(XK,YK,SK,AA,10,IKSIZE,1)

NEXT GET VISCOSITY DATA.

CALL PROPRT(TEMP,XV,YV,10,IVSIZE,2)
IF(IVSIZE.EQ.0) GO TO 5000

DO 50 J=1,IVSIZE

XIN=XV(J)

CALL CONVRT (XIN,XV(J),5,1)
IF(IVSIZE.LE.3) GO TO 60

CALL CUBSPL(XV,YV,SV,AA,10,IVSIZE,1)

CALCULATE EPSILONS FOR EACH MELT COMPOSITION
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DO 2000 NNN=1,12
STARTING ITERATION GUESSES HERE

PARAM(1)=PARAMO(1)
PARAM(2)=PARAMO(2)

CALCULATE SOME OTHER IMPORTANT QUANTITIES

Y=1.0/XE
MWAV=(1-XE)*MS+XE*MNA2S
MSMNA=MS/MNA

DETERMINE MICROSCOPIC COMPOSITION

LGPS21==1.0

LGPS22==5.0

CALL SECANT(COMP,LGPS21,YFUNC,LGPS22,TOL1,IERR,NITERL)
IF(IERR.EQ.1) GO TO 1101

X(7)=X(8) ‘

X(8)=2.0

CALCULATE THEORETICAL DENSITY FROM EMPIRICAL -
MOLAR VOLUME FIT '

XWEIGHT=0.0

DO 70 I=1,N-1 | '
XWEIGHT=XWEIGHT+X( 1) *DELTA(T) **POWERL
CONTINUE '

MWOD=A*XWEIGHT+B

. MWSUM=MS*Y+2.0*MNA

DENST Y=MWSUM/MWOD

C=DENSTY*XE/MWAV

NOW GET EXPERIMENTAL DENSITY;

CALL CURVE(TRUDEN,XE,XD,YD,SD,IDSIZE,IDERR)
IF(IDERR.EQ.1) GO TO 1000

~ CONDUCTIVITY,

CALL CURVE(KAPPA,XE,XK,YK,SK,IKSIZE,IKERR)
IF(IKERR.EQ.1) GO TO 1000

AND VISCOSITY.

CALL CURVE(MU,XE,XV,YV,SV,IVSIZE,IVERR)
IF(IVERR.EQ.1) GO TO 1000

DETERMINE EXPERIMENTAL TRANSFERENCE NUMBER



a0

aaO0ao0n

anon

1100
1101
1102

1200
2000

W~

W -

279

TOPLUS=(TCOEF-XE)/(1.0-XE)

NOW LETS ITERATE THE THEORETICAL EXPRESSION
FOR CONDUCTIVITY AND TRANSFERENCE NUMBER
TO FIND VALUES OF PARAM

NCOUNT=1

CALL FUNDER(PARAM,Y0,DX,DYDX)
Y0(2)=-Y0(2)+1.0-TOPLUS
YO(1)=-YO(1)+KAPPA

CALL MATINV(2,1,DET,DYDX,YO)

DAMPEN CHANGES IN DEPENDENT VARIABLES IF
TOO LARGE

IF(ABS(YO(1)/PARAM(1)).GT.2.0) YO(1)=SIGN(2.0*PARAM(1),Y0(1))
IF(ABS(YO(2)/PARAM(2)).GT.2.0) YO(2)=SIGN(2.0*PARAM(2),Y0(2))
PARAM(1)=PARAM(1)+YO0(1)
PARAM(2)=PARAM(2)+Y0(2)

ITERATION TOLERANCE COMPUTED HERE

DIFF=(ABS(YO(1))+ABS(YO0(2)))/(ABS(PARAM(1) )+ABS(PARAM(2)))
NCOUNT=NCOUNT+1 :
IF(NCOUNT .GT.NITER2) GO TO 1100

IF(DIFF.GT.TOL2) GO TO 80

WRITE OUT RESULTS

WRITE(6,100) NCOUNT,XE,KAPPA,MU,TOPLUS,TRUDEN,DENSTY,SCRPTD,
PARAM(1) ,PARAM(2)

FORMAT(* *I2,3X,6(F8.6,3X),3(1PE14.7,3X))

GO TO 1200

ERRORS PROCESSED HERE

WRITE(6,1001) XE

FORMAT (* *,

R+ *

*NO PROPERTY AT A COMPOSITION OF XE = * F6.4,
R etk )

GO TO 1200

IERR=2

WRITE(6,1102) IERR

FORMAT(* *,

e e e e o N

*TO0 MANY ITERATIONS REQUIRED IERR = *,I1,
R )

XE=XE+0.01

CONTINUE

STOP
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5000 WRITE(6,5001) TEMP
5001 FORMAT(* *
1 e * _ _ _
2 *NO PROPERTY AT A TEMPERATURE OF = *,F6.2,
3 * R
STOP
END

SUBROUTINE COMP(LGPS2,DIFF)
SUBROUTINE COMP

PURPOSE TO CALCULATE THE MATERIAL BALANCES FOR A POLYSULFIDE
MELT.

USAGE CALL COMP(LGPS2,DIFF)
DESCRIPTION OF PARAMETERS
LGPS2 THE COMMON LOGARITHM OF THE SULFUR VAPOR
' PRESSURE. THIS PARAMETER IS THE INDEPENDENT
VARIABLE INPUT INTO THE MATERIAL BALANCES.
DIFF THE DIFFERENCE BETWEEN THE CALCULATED MOLE
FRACTION OF ELECTROLYTE AND THE GIVEN
MOLE FRACTION OF ELECTROLYTE.
SUBROUTINES REQUIRED
NONE
REFERENCE
RAGNAR TEGMAN, THERMODYNAMIC STUDIES OF HIGH
TEMPERATURE EQULIBRIA, CHEMICA SCRIPTA, 1976,
9, 158-166.

REVISED 8-24-83

® 00 0 900800060060 C0 0000000000000 00000009 8000000020 CO0SCSSIEIEIDLIODS

OO0 O0OO0O0O0O0000000000000000000000

REAL K,LGPS2,NUMER

COMMON/FIRST/ DELTAG,IN,XE

COMMON/FOURTH/R,TEMP,X

DIMENSION DELTAH(8),DELTAS(8),DELTAG(8),IN(8),K(8),X(8)

DATA OF TEGMAN FOLLOWS

a0

DATA DELTAH, DELTAS/ ,
1 0.0,-68.52,-135.08,-204.04,-267.22,-333.24,0.0,-417.14,
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2 0.0,-37.65, -85.00,~155.64,-228.69,-312.07,0.0,-392.60/

INITIALIZE SOME CONSTANTS

DATA N/8/
NUMER=1.0
DENOM=1.0
PS2=10.0**(LGPS2)

FOR EACH COMPONENT IN THE MELT, CALCULATE DELTA G°S
AND RELATIVE COMPOSITIONS

DO 10 I=2,N
CALCULATE DELTA G VALUES

DELTAG(I)=DELTAH(I)*1000.0-TEMP*DELTAS(I)
IF(IN(I).EQ.0) GO TO 10

NOW CALCULATE K°S

K(1)=EXP(-DELTAG(I)/R/TEMP)
X(I)=K(I)*PS2**(FLOAT(I-1)/2.0)
NUMER=NUMER+X(I)
DENOM=DENOM+FLOAT (1) *X(I)
CONTINUE :

DETERMINE MONOSULFIDE ION COMPOSITION

XCALC=NUMER/DENOM
X(1)=1.0/NUMER

DETERMINE HIGHER POLYSULFIDE COMPOSITIONS
DO 20 I=2,N

IF (IN(I).EQ.0) GO TO 20

X(I)=X(I)*X(1)

CONTINUE

RETURN COMPOSITION VALUES

DIFF=XCALC-XE

RETURN

END

SUBROUTINE SECANT(FCNY,X1,Y,X2,TOL,IERR,NITER)

® 0 0 0 5000000000000 000 PEBCO N0 PO P 00 0EBEENOCEESONENOORESILtON

SUBROUTINE SECANT

281
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PURPOSE PERFORM AN ITERATION USING THE SECANT METHOD ON
A ONE-DIMENSIONAL FUNCTION.

USAGE CALL SECANT(X1,Yl,X2,TOL,IERR,NITER)
DESCRIPTION OF PARAMETERS

X1 FIRST GUESS FOR INDEPENDENT VARIABLE.
FINAL VALUE OF INDEPENDENT VARIABLE
IS RETURNED HERE.
Y FINAL VALUE OF DEPENDENT VARIABLE IS
' RETURNED HERE. DEPENDENT
VARIABLE IS ITERATED TO ZERO.

X2 SECOND GUESS FOR INDEPENDENT VARIABLE.
TOL ITERATION TOLERANCE EXPRESSED AS A
FRACTION CHANGE OF THE INDEPENDENT
|  VARIABLE.
IERR  ERROR FLAG.
=1  IF NUMBER OF SPECIFIED ITERATIONS

ARE EXCEEDED.

NITER NUMBER OF ITERATIONS. IERR IS ASSIGNED A
VALUE OF ONE IF THE NUMBER OF
ITERATIONS EXCEEDS THIS PARAMETER.

SUBROUTINES REQUIRED
FCNY SUBROUTINE TO EVALUATE THE INDEPENDENT
VARIABLE FOR A GIVEN VALUE OF THE
DEPENDENT VARIABLE. '

REVISED 1-29-83

S 60 0G0 00C0E080C08000C000000806000060 0060060680006 00606060s600600e060006s0cCcs00O0E

'DIMENSION DELTAG(8),IN(8),X(8)
COMMON/FIRST/ DELTAG,IN,XE
COMMON/FOURTH/ R,TEMP,X

N=l

EVALUATE FUNCTION FOR INITTAL GUESSES
CALL FCNY(X1,Yl)

CALL FCNY(X2,Y2)

COMPUTE NEW VALUE FROM PREVIOUS GUESSES

X3=X2-(X2-X1)/(Y2-Y1)*Y2
CALL FCNY(X3,Y3)

DETERMINE IF IiERAIION TOLERANCE HAS BEEN MET
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IF(ABS((X3-X2)/X3).LT.TOL) GO TO 2

DETERMINE IF SPECIFIED NUMBER OF ITERATIONS
HAS BEEN EXCEEDED

IF(N.GT.NITER) GO TO 3
IF NOT TRY AGAIN !

X1=X2

Yl=Y2

X2=X3 -
Y2=Y3

N=N+1

GO TO 1

SUCCESS ! RETURN VALUES

X1=X3
Y=Y3
RETURN

RETURN AN ERROR

IERR=1
RETURN
END

SUBROUTINE MATINV(N,M,DETERM,B,D)
PROGRAM WRITTEN BY J. NEWMAN
COMMENTS HAVE BEEN OMITTED TO SAVE SPACE

DIMENSION ID(7),B(N,N),D(N,M)
DETERM=1.0

DO 1 I=1,N

ID(I)=0

DO 18 NN=1,N

BMAX=1.1

DO 6 I=1,N

IF(ID(I).NE.O) GOTO 6
BNEXT=0.0

BTRY=0.0

DO 5 J=1,N

IF(ID(J).NE.O) GOTO 5
IF(ABS(B(I,J)).LE.BNEXT) GOTO 5
BNEXT=ABS(B(I,J))

IF(BNEXT .LE.BTRY) GOTO 5
BNEXT=BTRY

BTRY=ABS(B(I,J))
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JC=J

CONTINUE
IF(BNEXT .GE .BMAX*BTRY) GOTO 6
BMAX=BNEXT /BTRY

IROW=TI

JCOL=JC

CONTINUE

IF(ID(JC).EQ.0) GOTO 8
DETERM=0.0

RETURN

ID(JCOL)=1
IF(JCOL.EQ.IROW) GOTO 12
DO 10 J=1,N
SAVE=B(IROW,J)
B(IROW,J)=B(JCOL,J)
B(JCOL,J)=SAVE

DO 11 K=1,M
SAVE=D(IROW,K)
D(IROW,K)=D(JCOL,K)

D(JCOL,K)=SAVE

F=1.0/B(JCOL,JCOL)

DO 13 J=1,N
B(JCOL,J)=B(JCOL,J)*F
DO 14 R=l,M
D(JCOL,K)=D(JCOL,K)*F
DO 18 I=1,N '
IF(I.EQ.JCOL) GO TO 18

- F=B(I,JCOL)

DO 16 J=1,N
B(I,J)=B(I,J)-F*B(JCOL,J)
DO 17 R=1,M
D(I,K)=D(I,K)~F*D(JCOL,K)
CONTINUE

RETURN

END

SUBROUTINE FUNDER(XO,Y0,DX,DYDX)

@ 0 00 0000 000900880000 0080 EOPTOO OSSO P 0000680606000 GsLSGIS

'SUBROUTINE FUNDER

PURPOSE CALCULATE THE VALUES OF THE FUNCTION AND
NUMERICALLY EVALUATE DERIVATIVES FOR A
TWO-DIMENSIONAL NEWTON-RAPHSON ITERATION.

USAGE CALL FUNDER(XO,YO0,DX,DYDX)

DESCRIPTION OF PARAMETERS

X0 A VECTOR CONTAINING THE VALUES OF THE TWO
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INDEPENDENT VARTIABLES.

YO A VECTOR CONTAINING THE VALUES OF THE
DEPENDENT VARIABLE AT THE CORRESPONDING
VALUES OF THE INDEPENDENT VARIABLE IN XO.

DX A VECTOR CONTAINING THE HALF INTERVAL OVER
WHICH THE DERIVATIVES ARE NUMERICALLY
EVALUATED. A CENTRAL DIFFERENCE APPROXIMATION
FOR THE DERIVATIVE IS USED WITH A TOTAL
INTERVAL DIFFERENCE OF 2*DX.

DYDX A MATRIX CONTAINING THE DERIVATIVES OF
THE TWO INDEPENDENT VARIABLES WITH RESPECT
INDEPENDENT VARIABLES.

SUBROUTINES REQUIRED

FUNCT EVALUATES THE INDEPENDENT VARIABLES FOR ANY
VALUES OF THE TWO DEPENDENT VARIABLES.

REVISED 8-24-83

© © 86 800006000505 0600000800000 060680 060008006008 000000060000000ss000ss0e0

COMMON/THIRD/ C,DELTA,F,MSMNA,NCOMP,RBRAO,Y

COMMON/FOURTH/ R,TEMP,X

COMMON/FIFTH/POWER2, SCRPTD

REAL MSMNA

DIMENSION DELTA(8),X(8)

DIMENSION XX(2),DX(2),DYDX(2,2),X0(2),Y0(2),YY(3),YMAT(2,2)

FIRST SET UP THE GIVEN VALUES OF THE DEPENDENT VARIABLE INTO
ANOTHER REGISTER

DO 1 M=1,2
XX(M)=XO0(M)
CONTINUE

NOW GET THE VALUES OF THE INDEPENDENT VARIABLES
AT THE GIVEN VALUES OF THE DEPENDENT VARIABLES

CALL FUNCT(XX,YY)
DO 2 M=1,2
YO(M)=YY(M)
CONTINUE

NOW NUMERICALLY CALCULAIE THE DERIVATIVES USING A
CENTRAL DIFFERENCE APPROXIMATION

DO 7 J=1,2
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FIND THE VALUES OF THE DEPENDENT VARIABLES

DO 3 M=1,2

- XX(M)=X0(M)

CONTINUE
XX(J)=XX(J)=DX(J)

NOW GET THE VALUES OF THE INDEPENDENT VARIABLES
DO 5 K=1,2

CALL FUNCT (XX, YY)

DO 4 N=1,2

YMAT (N,K)=YY(N)

CONTINUE .

INCREMENT INDEPENDENT VARIABLE |

XX(J)=XX(J)+2.0*DX(J)
CONTINUE

CALCULATE THE DERIVATIVES

DO 6 N=1,2
DYDX(N,J)=(TMAT (N,2)~YMAT(N,1))/2.0/DX(J)

- CONTINUE :

CONTINUE
NOW RETURN

RETURN
END

SUBROUTINE FUNCT (PARAM,YFUNC)
SUBROUTINE FUNCT
PURPOSE CALCULATE THE MELT TRANSFERENCE NUMBER, CONDUCTIVITY,
 AND DIFFUSION COEFFICIENT FOR THE POLYSULFIDE
MELT BY INVERSION OF THE TRANSPORT MATRIX.
USAGE  CALL SUBROUTINE FUNCT(PARAM,YFUNC)
DESCRIPTION OF PARAMETERS
PARAM  VECTOR OF INDEPENDENT PARAMETERS

YFUNC  VECTOR RETURNING CALCULATED TRANSFERENCE
NUMBER AND DIFFUSION COEFFICIENT.
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SUBROUTINES REQUIRED
NONE

REVISED 8-24-83

9 0068060800 0008000000000 000 0000000080 0060606006000000s00600060ss0s0

REAL KAPPA,MSMNA,L,M,KK

COMMON/THIRD/ C,DELTA,F,MSMNA,N,RBRAO,Y
COMMON/FOURTH/ R,TEMP,X

COMMON/FIFTH/ POWER2,SCRPTD

DIMENSION D(8,8),L(7,7),M(7,7),KK(8,8),TC(8)
DIMENSION DELTA(8),X(8)

DIMENSION YFUNC(2),PARAM(2)

DATA M,L,KK/162%0.0/

CALCULATE D MATRIX

DO 1 I=1,N-1

DO 2 J=I,N-1

IF(I.EQ.J) GO TO 2

TOP=1.0
BOT-(SQRI(DELTA(I))+SQRT(DELTA(J)))**POWERZ
D(I,J)=PARAM(1)*(TOP/BOT)
D(J,I)=D(I1,J)

CONTINUE

RI=1.0/(RBRAO+SQRT (DELTA(I)))**POWER2
D(I,N)=RI*PARAM(2)

D(N,I)=D(I,N)

CONTINUE

CALCULATE K MATRIX

RTC=C*R*TEMP

RTC3=RTC/3.0

DO 3 I=1,N-1

DO 3 J=I+1,N

IF (I1.EQ.J) GO TO 3
KK(I,J)=RTC3*X(I)*X(J)/D(I,J)
KK(J,I)=KK(I,J)

CONTINUE

SET UP M MATRIX

DO 6 I=1,N-1

DO 6 J=I,N-1
M(I,J)=KK(I,J)
IF(I.NE.J) GO TO 5
DO 4 K=1,N
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M(1 ,J)’M(I,J)"KX(I,K)
CONTINUE

IF(I.EQ.J) GO TO 6
M(J,1)=M(T,J)
CONTINUE

SET UP THE IDENTITY MATRIX IN THE L MATRIX

DO 10 I=1,N-1

L(I,I)=1.0
CONTINUE

NOW INVERT M MATRIX

CALL MATINV(N~-1,N-1,DETERM,M,L)

CALCULATE TRANSFERENCE NUMBERS,

DIFFUSION COEFFICIENTS, AND
CONDUCTIVITY

APRP0.0
BPR=0.0

DO 200 K=1,N-1

SUM1=0.0

SUM2=0.0

DO 100 J=1,N-1
TERM=L(K,J)*X(J)
SUM1=SUM1+TERM
suwz-suu2+rzxn*(DELTA(J)-l 0)
CONTINUE

TC(K)=X(K)*SUML
APR=APR+TC(K)
BPR=BPR+SUM2*X(K)
SUM4=SUM4+DELTA(K) *X(K) *SUM2
CONTINUE

SUM3=0.0

DO 300 K=1,N-1
TC(K)=TC(K)/APR
SUM3=SUM3+TC(K)*DELTA(K)
CONTINUE
TOPLUS=(SUM3-1.0)/(¥~1.0) '
SCRPTD=3.0*RTC/(Y+2.0)/(Y-1.0)*(BPR*SUM3-SUM4 )
KAPPA==4 ,O*FAFAC*C*APR
YFUNC(2)=1.0-TOPLUS
YFUNC(1)=KAPPA

RETURN

END

SUBROUTINE PROPRT(TEMP,WS,PROP,N,ISIZE,IPROP)

® 0 00 060000000000 S CEPGEGL NGNS 00 0800000000000 000e

288
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PROGRAM PROPRT

PURPOSE COMPUTE TRANSPORT AND PHYSICAL PROPERTIES FOR
SODIUM POLYSULFIDE MELTS AT SPECIFIC COMPOSITIONS
AS A FUNCTION OF TEMPERATURE. SUBROUTINE PROPRT
CALCULATES ALL OF THE COMPOSITIONAL DATA FOR
A GIVEN PROPERTY AT A SELECTED TEMPERATURE.

USAGE CALL PROPRT(TEMP,WS,PROP,N,ISIZE,IPROP)

PARAMETERS
TEMP TEMPERATURE
WS WEIGHT PERCENT SULFUR
PROP PHYSICAL OR TRANSPORT PROPERTY
N SIZE OF ARRAY PROP AND X

ISIZE NUMBER OF COMPOSITIONS
IPROP VARIABLE INDICATING DESIRED
TRANSPORT PROPERTY

=1 DENSITY
=2 VISCOSITY
= 3 SURFACE TENSION
=4 CONDUCTIVITY
SUBROUTINES REQUIRED
NONE
REFERENCES

B. CLEAVER, A.J. DAVIES, AND M.D. HAMES,
“PROPERTIES OF FUSED POLYSULFIDES - I. II., III.”
ELECTROCHEMICA ACTA, 18, 1973, PP. 719 - 739.

REVISED 1-20-83

9 060000000600 060600500060 000806060 000608060080 06000800000s0ess 000000

REAL KCOEF

DIMENSION ILNGTH(6),ICODE(6),

PCOEF(5,5) ,ECOEF(8,6) ,GCOEF(10,5),

KCOEF(7,6) ,PROP(N) ,WS(N)

DATA ((PCOEF(I,J),J=1,5),I=1,5),
((ECOEF(I,J),J=1,6),I=1,8),
((GCOEF(I,J),J=1,5),I=1,10),
((RCOEF(I,J),J=1,6),I=1,7)/

DENSITY COEFFICIENTS FOLLOW.
6.76E-01,5.90E02,6.83E02,1.887E00,=5.65E=-04,

NEXT DATA STATEMENT 1S CHANGED
DOES NOT REFLECT CLEVER AND DAVIES DATA EXACTLY
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LINE SHOULD CORRECTLY READ AS FOLLOWS
6.97E-01,5.76E02,6.89E02,1.901E00,~7.96E-04,

6.97E-01,5.73E02,6.89E02,1.901E00,-7.96E-04,
7.20E-01,5.63E02,6.69E02,1.926E00,-5.47E-04,
7.54E-01,5.71E02,6.80E02,1.869E00,-6.66E-04,
7.70E-01,5.73E02,6.83E02,1.876E00,-7.16E-04,

‘VISCOSITY COEFFICIENTS FOLLOW.

6.84E~01,5.77E02,6.53E02,5.647E-01,8.428E03,3.32E02,
7.00E~01,5.89E02,6.47E02,3.344E~01,1.124E04,2.88E02,
7.17E-01,5.58E02,6.46E02,6.351E-01,7.915E03,3.42E02,
7.31E~01,5.33E02,6.52E02,4.055E-01,9.283E03,3.26E02,
7.40E-01,5.87E02,6.41E02,4.079E-01,9.333E03,3.28E02,
7.51E-01,5.72E02,6.75E02,8.021E~01,6.020E03,3.90E02,
7.68E~01,5.57E02,6.54E02,4.733E-01,8.181E03, 3. 56E02,
7.85E-01,6.20E02,6.48E02,1.717E+00,3.125E03, 4 .65E02,

SURFACE TENSION COEFFICIENTS FOLLOW.

6.77E-01,5.83E02, 6.91E02,1.738E02,~6.00E~02,
6.85E~01,5.88E02,6.73E02,1.653E02,~1.19E-01,
6.97E~01,5.86E02, 6.71E02,1.526E02,~6.50E-02,
7.15E-01,5.89E02,6.77E02,1.416E02,~3.40E~02,
7.24E-01,5.39802,6.76E02,1.320E02,~3.60E~02,
7.40E-01,5.56E02,6.41E02,1.282E02,~5.80E-02,
7.51E-01,6.02E02, 6.76E02,1.278E02,~6.70E-02, -
7.63E-01,5.62E02,6.71E02,1.272E02,-7.10E~02,
7.68E-01,6.25E02,6.88E02,1.280E02,~9.10E-02,
7.84E-01,6.16E02,6.61E02,1.153E02,~3.90E~02,

CONDUCTIVITY COEFFICIENTS FOLLOW.

6.00E-01,7.28E02,8.40E02,5.478E00,3.079E03,4.99E02,

. 6.61E-01,6.42E02,6.98E02,3.836E00,2.478E03,4.58E02,

6.75E-01,5.82E02,6.93E02,7.033E00,5.693E03,3.29E02,
7.01E-01,4.58E02,6.94E02,7.048E00,5.854E03,3.30E02,
7.23E-01,4.28E02,6.94E02,7.056E00,6.436E03,3.25E02,
7.48E-01,4.56E02,6.71E02,6.279E00,6.163E03,3.41E02,
7.78-01,4.77E02,6.81E02,5.815E00,6.329E03,3.44E02/

DATA ILNGTH/S5,8,10,7/

DATA R/8.314/

ISIZE=1

DO 100 I=1,ILNGTH(IPROP)
GO TO (10,20,30,40), IPROP
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DENSITY CALCULATED HERE

IF(TEMP.LT.PCOEF(I,2)) GO TO 100
IF(TEMP.GT.PCOEF(I,3)) GO TO 100
PROP(ISIZE)=PCOEF(I,4)+PCOEF(I,5)*(TEMP-600.)
WS(ISIZE)=PCOEF(I,1)

GO TO 50

VISCOSITY HERE

IF(TEMP.LT.ECOEF(I,2)) GO TO 100

IF(TEMP.GT.ECOEF(I,3)) GO TO 100
PROP(ISIZE)=ECOEF(I,4)*EXP(ECOEF(I,5)/(R*(TEMP~ECOEF(I,6))))
WS(ISIZE)=ECOEF(I,1)

GO TO 50

SURFACE TENSION HERE

IF(TEMP.LT.GCOEF(I,2)) GO TO 100

IF(TEMP.GT .GCOEF(I,3)) GO TO 100

PROP(ISIZE )=GCOEF(I,4)+GCOEF(I,5)*(TEMP-600.)
WS(ISIZE)=GCOEF(I,1)

GO TO 50

CONDUCTIVITY HERE

IF(TEMP.LT.KCOEF(I,2)) GO TO 100

IF(TEMP.GT .KCOEF(I,3)) GO TO 100
PROP(ISIZE)=KCOEF(I,4)*EXP(-RCOEF(I,5)/(R*(TEMP-KCOEF(I,6))))
WS(ISIZE)=KCOEF(I,1)

CONTINUE

ISIZE=ISIZE+1

CONTINUE

ISIZE=ISIZE-1

RETURN

END

SUBROUTINE CUBSPL(X,Y,S,A,N,NPTS,IEND)

SUBROUTINE CUBSPL

PURPOSE COMPUTE A CUBIC SPLINE FOR N DATA POINTS.
USAGE  CALL CUBSPL(X,Y,S,A,N,NPTS,IEND)
DESCRIPTION OF PARAMETERS

X ARRAY OF INDEPENDENT VARIABLE
Y ARRAY OF DEPENDENT VARIABLE
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N SIZE OF ARRAYS
NPTS NUMBER OF POINTS
IEND TYPE OF END CONDITION TO BE USED.

=] LINEAR ENDS; S(1)=S(N)=0
=2 PARABOLIC ENDS S(1)=S(2), S(N)=S(N—l)
=3 CUBIC ENDS; S(1), S(N) ARE EXTRAPOLATED

REMARKS PROGRAM SETS UP AND SOLVES TRIDIAGONAL MATRIX.
PROGRAM RETURNS VALUES OF SECOND DERIVATIVE
AT EACH END POINT. ’

SUBROUTINES AND SUBPROGRAMS REQUIRED
NONE

METHOD TRIDIAGONAL MATRIX EVALUATION IS USED.
REFERENCES: CURTIS GERALD, “APPLIED NUMERICAL
ANALYSIS®, SECOND EDITION, ADDISON AND WESTLEY,
1978, CHAPTER 10, SECTION 3, PP. 474-482.

REVISED 12-12-82

..'.‘...'....'..QA'......‘...........OO.......0......'..0‘00.‘0.

DIMENSION X(N),Y(N),S(N),A(N,4)

'COMPUTE FOR N-2 ROWS.

NM2=NPTS-2
NM1=NPTS~1
DX1=X(2)-X(1)

’DY1=(Y(2)-Y(1))/DX1*6 0

DO 10 I=1,NM2
DXZ-X(I+2)-X(I+1)
DY2=(Y(I+2)-Y(I+1))/DX2%6.0
A(I,1)=DX1
A(I,2)=2.0*(DX1+DX2)
A(1,3)=DX2 '
A(1,4)=DY2-DY1

DX1=DX2

DY1=DY2

CONTINUE

ADJUST FIRST AND LAST ROWS APPROPRIATE TO END CONDITION.
Go TO (20,50,80), IEND

FOR IEND = 1, NO CHANGE IS NEEDED.

GO TO 100

FOR IEND = 2, S(1)=S(2), S(N-1)=S(N), PARABOLIC ENDS.
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A(1,2)=A(1,2)+X(2)-X(1)
A(NM2,2)=A(NM2,2)+X(NPTS)-X(NM1)
GO TO 100

FOR 1IEND = 3, CUBIC ENDS, S(1) AND S(N) ARE EXTRAPOLATED.

DX1=X(2)-X(1)

DX2=X(3)-X(2)

A(l,2)=(DX1+DX2) *(DX1+2.0*DX2)/DX2
A(1l,3)=(DX2*DX2-DX1*DX1)/DX2
DXN2=X(NM1)-X(NM2)

DXN1=X(NPTS)-X(NM1)
A(NM2,1)=(DXN2*DXN2-DXN1*DXN1) /DXN2
A(NM2,2)=(DXN1+DXN2)*(DXN1+2.*DXN2) /DXN2

NOW SOLVE TRIDIAGONAL SYSTEM.

FIRST REDUCE ROWS.

DO 110 I=2,NM2
A(1,2)=A(T,2)-A(I,1)/A(I-1,2)*A(I-1,3)
A(T,4)=A(T,4)-A(I,1)/A(T-1,2)*A(I-1,4)
CONTINUE : _
NOW BACK SUBSTITUTE

A(NM2,4)=A(NM2,4) /A(NM2,2)

DO 120 I=2,NM2

J=NM1-1
A(J,4)=(A(T,4)-A(T,3)*A(J+1,4))/A(J,2)
CONTINUE

TABULATE S VECTOR

DO 130 I=1,NM2

S(I+1)=A(1,4)

CONTINUE

SUBSTITUTE END CONDITIONS

GO TO (150,160,170), IEND

FOR LINEAR ENDS, S(1)=0, S(N)=0
S(1)=0.

S(NPTS)=0.

RETURN

FOR PARABOLIC ENDS, S(1)=S(2), S(N)=S(N-1)
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S(1)=s(2)
S(NPTS)=S(NPTS~-1)
RETURN

FOR CUBIC ENDS, EXTRAPOLATE.

S(1)=((DX1+DX2)*S(2)+DX1*S(3))/DX2

S(NPTS)=( (DXN2+DXN1)*S(NM1)-DXN1*S(NM2))/DXN2
RETURN

END

SUBROUTINE CURVE(Y!,X1,X,Y,S,ISIZE IERR)

0 000000000 0000608000060006080000 0000000000000 060000e000000ca00e0P00

SUBROUTINE CURVE

PURPOSE INTERPOLATE BETWEEN AN ARBITRARY SET OF POINTS.
IF THE SET OF POINTS CONTAINS MORE THAN
THREE POINTS, CURVE USES THE VALUES OF SECOND
DERIVATIVES AT EACH POINT TO DETERMINE A CUBIC
SPLINE THROUGH THE POINTS. IF THREE OR LESS POINTS
ARE GIVEN, CURVE.USES A LEGENDRE INTERPOLATING
POLYNOMINAL TO DETERMINE VALUES AT INTERMEDIATE
POINTS.

‘USAGE  CALL CURVE(YI,XI,X,Y,S,ISIZE;IERR)

DESCRIPTION OF PARAMETERS

Y1 INTERPOLATED VALUE OF DEPENDENT VARIABLE
_ REQUIRED AT X1.
X1 VALUE OF INDEPENDENT VARIABLE.
X ARRAY OF INDEPENDENT VARIABLE VALUES.
Y ARRAY OF DEPENDENT VARIABLE VALUES
CORRESPONDING TO POINTS IN ARRAY X.
S ARRAY OF SECOND DERIVATIVE VALUES

CORRESPONDING TO POINTS IN ARRAY X.
ISIZE ~ NUMBER OF POINTS IN ARRAYS X,Y AND S.
IERR ERROR FLAG
=] IF REQUIRED POINT TO BE
INTERPOLATED LIES OUTSIDE THE
RANGE OF VALUES IN ARRAY X.

REMARKS VALUES IN ARRAY X MUST BE ARRANGED IN DECREASING
ORDER. VALUES FOR SECOND DERIVATIVES CAN BE
OBTAINED FROM SUBROUTINE CUBSPL.

REVISED 1-29-83

0. 00000000 00 C PSSO 00 S0 0N B0 000000 EP000 0SSN EEEOONSSICOEOSeE

DIMENSION X(10),Y(10),S(10)
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IERR=0

DO 1 J=1,ISIZE-1
IF(X1.LT.X(J+1)) GO TO 1
IF(X1.GT.X(J)) GO TO 1
GO TO 2

CONTINUE

IERR=1

RETURN

IF MORE THAN THREE POINTS USE CUBIC SPLINE

IF(ISIZE.LE.3) GO TO 3
DXJ=X(J+1)-X(J)
DYJ=Y(J+1)-Y(J)
DSJ=S(J+1)-S(J)
Al=DSJ/6.0/DXJ

A2=5(J)/2.0
A3=DYJ/DXJ-(2.0*S(J)+S(J+1))*DXJ/6.0
Ab=Y(J)

DX=X1-X(J)

Y1=( (A1*DX+A2)*DX+A3 ) *DX+A4
RETURN :

IF THREE POINTS OR LESS USE LEGENDRE POLYNOMIAL

Y1=0.0

DO 4 I=1,ISIZE

HOLD=1.0

DO 5 J=1, ISIZE

IF(1.EQ.J) GO TO 5
HOLD=HOLD*(X1-X(J))/(X(I)=-X(J))
CONTINUE

Y1=Y1+HOLD*Y(I)

CONTINUE

END

SUBROUTINE CONVRT(XIN,XOUT,IXIN,IXOUT)

SUBROUTINE CONVRT

PURPOSE CONVERT THE COMPOSITION OF SODIUM POLYSULFIDE
FROM ONE COMPOSITIONAL VARIABLE TO ANOTHER.
ALLOWABLE VARIABLES ARE

MOLE FRACTION SODIUM SULFIDE
MOLE FRACTION SULFUR

Y IN NA(2)S(Y)

MASS FRACTION SODIUM SULFIDE
MASS FRACTION SULFUR
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USAGE CALL CONVRT(XiN,XOUT,IXIN,IXOUT)
DESCRIPTION OF PARAMETERS

XIN INPUT COMPOSITION VARIABLE
XouT OUTPUT COMPOSITION VARIABLE
IXIN INPUT COMPOSITION ' VARIABLE CODE
DETERMINES TYPE OF INPUT COMPOSITION VARIABLE

=] COMPOSITION IN MOLE FRACTION SODIUM
SULFIDE

=2 COMPOSITION IN MOLE FRACTION SULFUR

=3 COMPOSITION IN NA(2)S(X)

=4 COMPOSITION IN MASS FRACTION SODIUM
SULFIDE

=5 COMPOSITION IN MASS FRACTION SULFUR

IXOUT = OUTPUT COMPOSITION VARIABLE CODE
DETERMINES TYPE OF OUTPUT COMPOSITION VARIABLE

=] COMPOSITION IN MOLE FRACTION SODIUM
SULFIDE :

=2 COMPOSITION IN MOLE FRACTION SULFUR

=3 ° COMPOSITION IN NA(2)S(X)

=4 COMPOSITION IN MASS FRACTION SODIUM
SULFIDE ’

=5 COMPOSITION IN MASS FRACTION SULFUR

REMARKS PROGRAM FIRST TAKES INPUT COMPOSITION AND CONVERTS
IT TO MASS FRACTION OF SULFUR. THEN THE OUTPUT
COMPOSITION IS COMPUTED FROM THE MASS FRACTION
OF SULFUR.

REVISED 1-30-83

RMW=22.98977/32.06

IF (IXIN.EQ.IXOUT) GO TO 110

Go TO (10,20,30,40,50), IXIN

MOLE FRACTION SODIUM SULFIDE TO MASS FRACTION SULFUR

XOUT=1.0/(1.0+2.0*RMW*XIN)
GO TO 55

MOLE FRACTION SULFUR TO MASS FRACTION SULFUR

XOUT=1.0/(1.0+RMW*(1.0-XIN)/XIN)
GO TO 55
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X IN NA(2)S(X) TO MASS FRACTION SULFUR

X0UT=1.0/(1.0+2.0*RMW/XIN)
GO TO 55

MASS FRACTION SODIUM SULFIDE TO MASS FRACTION SULFUR

XOUT=XIN/(2.0*RMW+1.0)+(1.0-XIN)
GO TO 55

MASS FRACTION SULFUR TO MASS FRACTION SULFUR

XOUT=XIN N
GO TO (60,70,80,90,100), IXOUT

MASS FRACTION SULFUR TO MOLE FRACTION SODIUM SULFIDE

XOUT=(1.0-X0UT)/2.0/X0OUT/RMW
RETURN

MASS FRACTION SULFUR TO MOLE FRACTION SULFUR

XOUT=1.0/(1.0+(1.0-XOUT)/XOUT/RMW)
RETURN ’

MASS FRACTION SULFUR TO X IN NA(2)S(X)

XOUT=2 . 0*RMW*XOUT / (1.0-XOUT)
RETURN

MASS FRACTION SULFUR TO MASS FRACTION SODIUM SULFIDE

XOUT=(1.0+1.0/2.0/RMW)*(1.0-XOUT)
RETURN

MASS FRACTION SULFUR TO MASS FRACTION SULFUR
XOUT=XIN

RETURN
END



TEMPERATURE =  633.15 K
POVER2 =  3.00000
NITER  XE KAPPA
S .210000  .443306
S .220000 -.465608
S .230000  .486746
6  .2640000  .50627)
6  .250000  .526028
6  .260000  .550084
6  .270000  .582561
6  .280000  .621313
6  .290000  .66469)
6  .300000  .698322
S .310000  .719701
S .320000  .731671

16.49896
16.05445
15.74387
16.12326
15.81848
15.39426
16.22135
16.96809
17.02000
16.77246
16.55735
16.39042

Ssmpie Output for Program SSTP

TOPLUS

.964684
964231
.963766

963289

+962800
.962297
.961781
+961250
.960704
.960143
+959565
.958971

EXP DENS

1.851059
1.845884
1.848753
1.862294
1.8R0946

" 1.898210
1.907587
1.904154 .

1.891936
1.878116
1.869348
1.866618

CALC DENS

1.847236

1.858264

1.867299
1.874239
1.879175
1.882364
1.884112
1.884676
1.884230
1.882889
1.880732
1.877826

SCRIPTD

5.5725906E~07

$.6658035E-07

5.7550735E-07
5.8348153E-07

5.9246791E-07
'6.0677991E-07

6.30557318E-07

6.6322396E-07

6.9646342E-07

7.2172121€E-07

7.3478274E-07

7.3902322E-07"

APIEINA/3MUV]

1.8400366E-04
2.1308857E-04
2.4966713E-04
2.8728933E-04
3.1729431E-04
3.3525272E-04
3.4256081E~04
3.4023977E-04
3.2505718E-04
2.9537001E~04
2.5478601E-04
2.1130727E~-04

4PIE2NA/IMUV]

2.2971109E-04
2.2223057E-04
2.1512016E-04
2.0821354E-04
2.0223615e-04
1.9851363E-04
1.9806504E-04
2.0031362E-04
2.0251821F-04
2.0227115E-04
1.9868842E-04
1.9297754E~04

8617



Appendix G
Derivation of Potential Distribution for a Semi—Infinite

Flow—By Electrode at the Limiting Current

The governing equation for the potential distribution at the limiting

current is
ak,
k -
nfakmer S (G-1)
with the boundary conditions

at y (G-2)

1
e
g|
"
e

as y = =, — =0, (G-3)

= (G-4)

I
L
!

at z =
and
atz=d,d;,=V. (G-5)

For simplicity, rewrite Equation (G-1) as

V2, = - Ge~ W, (G-8)
where
nfaokn,c
G = mbiF . (G—?)
Sp K
and
ak
a= — (G-8)
v
By superposition, let
YR SAPEY V'Y Y S G
2=~ 73 2 2 : (G-9)

Eere, ¢, has been decomposed into a sum of a particular solution and three

299
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- homogeneous solutions. The last term in Equation (G—‘9) is the third
homogeneous so‘xutim;l, which has been solved by inspection.

The particular solution to Equatiqn (Gj-l) above satisfies the differential
equation; however, it introduces a. nonhomogeneous boundary condition
which extends from y=0 to infinity along z=d. First, this must be removed.

Let &5 be the solution to

, vied =0, (G-10)
with the boundary conditions
. @A .
as y -, -ﬁz =0, : (G-11)
284

atz=0, a—:- =0, | (G-12)
atz=d df= Lo, (G-13)

S a? - ,

Because "tr;e 'udimen'sions of the .elec;.t.x;ode ‘extend - to inﬁnit;v in the y
direction, tbérev are _n'o'eigenva'lues determined in the y direction.
Therefore t.hé. nonhomogeneity along z =d must be transformed to a
boundaryv ex’tendiné in the =z direction. ' In -or;ier to rembve this
non—homogeneous boundary conditi_on. ovne. is not ét liberty to p;escribe
four boundary conditions upon @f. but only three. Solution of Equation
_(G-IO) by separation' of variables'_.subject td vt._he‘t.hree boundary conditions
of Equations (G—11) through (G—-13) gives

G

és =
2cos ad

Qa

e” % cosaz . - (G-14)

Because we have specified only three boundary conditions in the
solution to 3, we must now evaluate the eflect of this solution upon the
fourth boundary. Using the original boundary conditions combined with the

values of the particular and two homogeneous solutions at the boundaries
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row gives the boundary conditions for $Z as

897 G | cos az
t y=0, — = L (=822 _ -
at y =0, dy o |cos ad 1 (G~15)
GL1Fd
asy » =, —==0, (G-18)
oy
3%7
at z =0, — =0, (G=17)
oz
and
at z =d, @2 = (G-18)
The homogeneous solution ‘I’ZB must satisfy
vef=0. (G—-19)
Again, solution by separation of variables gives
=3 Cne-)"‘wdcos Apz/d , (G-20)
n=0

where
A = &;_lm (G—21)

The constants in Equation (G-20) are evaluated using the boundary
condition at y = 0, Equation (G—-15). Differentiating Equation (G-20) with

respect to y and applying Equation (G—15) yields

9 2‘9 - S Caln  -ayrd COS Az
y ngoTe cos (A\pz/d) = = | coc ag 1. (G-22)

The constants (, are determined by Fourier's Theorem which requires

Cn;" cos? (\,z/d)dz = - = f [22: :; l]cos (Mz/ d) dz(G—23)

d
!
The expression on the left of Equation (G—23) can be integrated, and for all
values of A, it becomes |
} G

¢

To evaluate the integral on the right of Equation (G-23), we must distinguish

An cos? (\,z/d)dzx = é Caln . (G-24)
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to cases:
Case 1 A2 =(ad)?, : (G~25)
and » '
Case 2 A2 # (ad)?. (G-28)
For case 1
1 4 G y coé oz
‘2- GiAn = - ;— { [m — I]COS_(Anz/ d) dz , | (G-27)
(=D 1 _ 6 - -
- Ap Q& 2 acosad ’ (G-28)
or '
2G(-1)* G : \
C, = - — . G-29
" a’d a?cos ad ( )
For case 2
-1 G y cos azx | | : :
X d = = [|Eesax _ (G-
5 Gt . jo' — l]cos (Maz/d)dz, '~ (G-30)
_ Gd(=1)" cd sin .()\n -ad) ‘si'n (An + ad) (G=31)
T ai, acosad | 2(A\, —ad) = 2(A, + ad) A
or ’
C = 2Gd(-1)" _ o6d sin (A, — ad) sin (A, + ad) (G=32
' - ar? aAp cos ad | 2(Ap, = ad) 2(Ap + ad) |’ —32)
- 2G(-1)"d _ _ 2G(-1)"

ar? a(A: - (ad ® (_G—BS)

For 'the case of A, # ad, the potential distribution then becomes

4’2' |4 = g9V cos azx -1
nfcpv? cos ad
Sp X ka
SER! 1 -\Ny/d
+ 2ad(—1)"n2° -A? —_rz—-_-(a—d)z—]e W79 os Az/ 2. (G-34)
= n

The maximum potential difference occurs within the flow—=by electrode

between the points =0, y=0 and z=d,y =0. From Equation (G-34) above
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this is
@2(2 =O.y =O) -V _ A@g _ A@z Sh
nfepv? T nFcpv® | enfepD, Pe?
Sp Kk akmy, Sgp K akm, SR K
1 < 1 1
= —-1+2ad -1 - —5———| (G-
oz od EO( U v ity (wd)z| (6-39)

If ad is an eigenvalue of the system, then the term in the summations
appearing in Equations (G-34) and (G—35) corresponding to this eigenvalue
should be replaced with the appropriate constant calculated in Equation

(G—29). In this case the potential distribution is

__@_2_1— = g~ Qy
nfcpu?
Sp XK GJCm
— 1 1 -\ py/d ad 1
+Zad2(-1)n[g—we Ay cosAp,z/d n#—ﬂ_——-z—
n=0 : (G-36)
—1\n
+3L1-Le‘“ycosaz n=%-i.
ad ™ 2
Likewise, the maximum potential difference is
@2(1 =0.y=0) -V _ A¢2 _ A¢2 Sh
nFcpu? T nFcpu? | enFcpD, Pe?
Sp K akpm, Sp K akpy, SR K
=-1
. 1 1 d 1
+2adZ(-—1)" - n# —_— - =
= A2 A% - (ad)? m 2
n=0 n n ( ) (G—37)

, 2(=D" n =24 _
m

ad



Appendix H

Computer Programs For Porous Electrodes

This section presents a listing of the computer programs used in the

comparison of flow-through and flow-by porous electrodes at the limiting

current. The programs and their purpose are summarized in Table H-1.

Table (E-1) Computer Programs and Their Purpose

Program Name

Purpose

OPTCON
COST
FCNY!
FCNY2
POTFB
POTFT
POTINF

DERIV1

DERIV2

Main program to determine cost optlrnum flow-
through and flow-by designs.

Calculate the total cost for the ﬁow-through or flow-
by configurations.

Calculate the derivative of the total flow-through
cost with respect to enfepl,/ sprldd,.

Calculate the derivative of total flow-by electrode
cost with respect to ad.

Calculate the maximum poténtial drop for a flow-by
electrode of finite length at the limiting current.

Calculate the maximum potential drop for a flow-

‘through electrode at the limiting current.

Calculate the maximum potential drop for a flow-by
electrode of infinite length at the limiting current.

Calculate the derivative of the ratio of the Sherwood
Number to the square of the Péclet Number Number
for a flow-by electrode of infinite length at the
limiting current.

Calculate the derivative of the ratio of the Sherwood
Number to the square of the Péclet Number Number
for a flow-by electrode of finite length at the limiting
current.

304
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SECANT Perform a regula-falsi or secant iteration on a one

dimensional function.

Program OPTCON was written to compare the cost of the optimum flow-

through electrode to the optimum flow-by electrode. For a given value of

the parameter enfcpD,/ spkAd, (CFOKAP) this program will calculate the

following:

(1)

(@)
(3)

(4)

(5)
(6)

The value of enfepl,/sped®; yielding the minimum flow-through

eleétrodé cost.

The cost. of this flow-through electrode.

The cost of the flow-through electrode at the chosen value of
enfFepD,/ speld,.

The value of ad giving the lowest flow-by electrode cost at the chosen
value of enfcpD,/ speld,.

The cost of this flow-by electrode.

The ratio of the cost of the cheaper flow-through electrode to the cost
of the flow-by electrode. If the value of enfcpD,/ sprxAd,; yielding the
minimum electrode is larger than the chosen value of enfcpD,/ speAd,
then the minimum flow-through cost is used. Otherwise the cost for the

electrode computed at the chosen value of enfcgD,/ spkAd, is used.

Subroutines DERIV1 and POTINF can be used interchangeably with

subroutines DERIV2 and POTFB. DERIV! and POTINF are used for a

semi-infinite electrode while DERIV2 and POTFB are for a finite length

electrode. One must change the calling statement for POTFB and POTINF.

A sample output follows the computer programs.
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PROGRAM OPTCON(INPUT ,QUTPUT ,TAPE5=INPUT ,TAPE6=OUTPUT)

PROGRAM OPTCON

.PURPOSE

DETERMINE THE COST-OPTIMUM POROUS ELECTRODE AT THE
LIMITING CURRENT. PROGRAM WILL COMPARE THE MOST
ECONOMICAL FLOW-THROUGH OR FLOW-BY ELECTRODE
CONSIDERING COSTS BASED ON THE VOLUME OF THE
ELECTRODE, SEPARATOR AREA, AND PUMPING POWER.

SUBROUTINES REQUIRED
' COST CALCULATES ELECTRODE COST
FCNYL  DERIVATIVE OF FLOW-THROUGH COST
FCNY2  DERIVATIVE OF FLOW-BY COST

FCNY2 REQUIRES

POTFB  POTENTIAL DROP FOR FLOW~BY
ELECTRODE _

DERIV2 DERIVATIVE OF THE RATIO OF THE
SHERWOOD TO THE SQUARE OF THE
PECLET NUMBER WITH RESPECT TO
ALPHAD

POTFT POTENTIAL DROP FOR FLOW-THROUGH ELECTRODE
POTFB POTENTIAL DROP FOR FLOW-BY ELECTRODE
SECANT SECANT ITERATION ROUTINE

REVISED 7-11-83:

® 00 00 8060060060080 0060060600000 060060000600 06060600000 00600680C060D086060 060008

EXTERNAL FCNY1,FCNY2
COMMON/MAIN/ ALPHAL,A,B,CFOKAP,CSCV,CPCV,SMALLR,

1 NTERMS,FBPOT,FTPOT,SC,R

DIMENSION cr(2), CSCV(Z) CPCV(2)
DATA CSCV,CPCV/IOO0.0,1000.0,5.05-13,5.0E-13/

INITIALIZE IMPORTANT CONSTANTS

PARAMETERS FOR BENNION AND NEWMAN CORRELATION FOLLOW

A=Q.07054
B=0.5454

GUESSES FOR FLOW-THROUGH ITERATION FOLLOW
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CFOKP1=1.0E-7
CFOKP2=2.0E-7

[eNeNe!

OTHER PARAMETERS FOLLOW

IERR=0
NITER=40
NTERMS=500
SMALLR=0.28429
SC=1670
TOL=1.0E-06

c VALUES OF THE THREE ELECTRODE OPERATING PARAMETERS FOLLOW
ALPHAL=6.5
GAMMA=10.0
CFOKAP=1.0E-7

PRINT OUT IMPORTANT PARAMETERS

aan

WRITE(6,100) A,B,ALPHAL,SMALLR,SC,CSCV(1),CPCV(1),
1 CsCv(2),CPCV(2)

FIND MINIMUM FLOW-THROUGH COST

aQaon

WRITE(6,101)

CALL POTFT(ALPHAL,FTPOT)

X1=ALOG10(CFOKP1)

X2=ALOG10(CFOKP2)

CALL SECANT(FCNY1,X1,Y1,X2,TOL,IERR,NITER)
IF(IERR.EQ.1) GO TO 1000

CFKPMN=10.0**X1

SHPEMN=FTPOT*CFKPMN

CALL COST(SHPEMN,1,GAMMA,CVT,CST,CPT,CTMN)
WRITE(6,102) CFKPMN

WRITE(6,104) FTPOT,SHPEMN

WRITE(6,105) CVT,CST,CPT

WRITE(6,106) CTMN

NOW CALCULATE BEST FLOW-BY CASE
AND COMPARE IT TO FLOW-THROUGH CASE

OO0

DO 40 J=1,2
IF(J.EQ.2) GO TO 10
WRITE(6,103)
POT=FTPOT

GO TO 20

FOR FLOW-BY CONFIGURATION FIND OPTIMUM GAMMA

=000

0 WRITE(6,107)
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GAMMAL =GAMMA

GAMMA2=GAMMA/1.5

CALL SECANT(FCNY2,GAMMAl,Y1l,GAMMA2, TOL IERR,NITER)
IF(IERR.EQ.1) GO TO 1000

GAMMA=GAMMA1

WRITE(6,108) GAMMA

POT=FBPOT

DETERMINE FLOW-THROUGH COST
DETERMINE FLOW-BY COST AT OPTIMUM GAMMA

SHOPE2=POT*CFOKAP

CALL COST(SHOPE2,J, GAMMA CVT,CST, CPT ,CT(J))
WRITE(6,102) CFOKAP

WRITE(6,104) POT,SHOPE2

WRITE(6,105) CVT,CST,CPT

WRITE(6,106) cr(J)

CONTINUE

'CALCULATE RATIO OF FLOW-THROUGH COST TO FLOW-BY COST

CTR=CT(1)
WARNING MESSAGE PRINTED
IF(ALPHAL/GAMMA.LT.5.0) WRITE(6,110)

COMPARE CHEAPER FLOW-THROUGH COST IF
CFOKAP IS LESS THAN CFKPMN

IF(CFOKAP.GT. CFKPMN) GO ro 50
CTR=CTMN

WRITE(6,109)

RTC1l=CTR/CT(2)

WRITE(6,111) RTCl

STOP

FORMAT STATEMENTS FOLLOW

FORMAT(* */*VALUES OF PARAMETERS USED IN THE OPTIMIZATION*/
/* * %A = * F10.6
/* * *B = * F10.6
/* * *ALPHAL = * F10.4,
/* * *SMALLR = * F10.6,
/* * *SC = * F6,2//
/* * 20X,*CSCV*,11X,*CPCV*/
/*FLOW-THROUGH*, 5X,F10.2,5X,1PE10.3
/*FLOW-BY*,10X,0PF10.2,5X,1PE10.3//)
FORMAT(* */* * *OPTIMUM FLOW-THROUGH DESIGN*/)
FORMAT(* */* * *CFOKAP = * 1PE12.5/)

 FORMAT(* *//* * *FLOW—THROUGH CONFIGURATION*)



104
105

106
107
108
109
110

111

1000
115

OO0 00O0000000000000

FORMAT (* * *DELTA PHI = *,1PE12.5,5X,*SH/PE2 = %, 1PE12.5/)

FORMAT (*

FORMAT (*
FORMAT (*
FORMAT (*
FORMAT (*
FORMAT(*
1 *WARNING;
2 * R £ 5%)

FORMAT(* */* * *RATIO OF FLOW—TﬁROUGH TO FLOW-BY COST = *,

1 F10.6)

* *CY = * 1PE12.5,5X,*CS = *,1PE12.5,5%,
*CP = * 1PE12.5/)

* *CT = * 1PE12.5)

*//* % *FLOW-BY CONFIGURATION*//)

*/* % *OPTIMUM ALPHAD = * ,1PE12.5)

* *MINIMUM FLOW-THROUGH COST USED FOR COMPARISON*)

*,///* *’

SEMI-INFINITE FLOW-BY RESULTS NOT VALID,*,

ERROR PROCESSED HERE

WRITE(6,115) NITER

FORMAT (* *,/*NO CONVERGENCE AFTER*,1X,I3,1X,*ITERATIONS*/)

STOP
END

SUBROUTINE COST(SHOPE2,ITYPE,GAMMA,CVT,CST,CPT,CT)
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SUBROUTINE COST

PURPOSE CALCULATE THE TOTAL WEIGHTED SUM OF OPERATING AND

USAGE

CAPITAL COSTS FOR A FLOW-THROUGH AND FLOW-BY
ELECTRODE AT THE LIMITING CURRENT.

CALL COST(SHOPE2,ITYPE,GAMMA,CVT,CST,CPT,CT)

DESCRIPTION OF PARAMETERS

SHOPE2

ITYPE

GAMMA

CvT
CsT
CPT

THE SHERWOOD NUMBER DIVIDED BY THE
SQUARE OF THE PECLET NUMBER
TYPE OF ELECTRODE CONFIGURATION

=] FLOW-THROUGH CONFIGURATION
=2 FLOW-BY CONFIGURATION

THE QUANTITY ALPHA*D (ONLY USED FOR
THE FLOW-BY CONFIGURATION)

VOLUMETRIC CAPITAL COST

SEPARATOR CAPITAL COST

PUMPING OPERATING COST

TOTAL COST ; WEIGHTED SUM OF
VOLUMETRIC, SEPARATOR, AND PUMPING
COSTS.
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SUBROUTINES REQUIRED
NONE

REVISED 8-18-1983
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.~ COMMON/MAIN/ ALPHAL,A,B,CFORAP,CSCV,CPCV,SMALLR,
1 NTERMS,FBPOT,FTPOT,SC,R
DIMENSION CSCV(2),CPCV(2)

- COMPUTE VOLUMETRIC ELECTRODE COST
CVT=ALPHAL/A*(SHOPE2/A)**(B/(2.0-B))
NOW CALCULATE SEPARATOR COST
FLOW-THROUGH ELECTRODE CALCULATED HERE
FACTOR=1.0
FLOW-BY ELECTRODE HERE
IF(ITYPE.EQ.2) FACTOR=ALPHAL/GAMMA
PE=(SHOPE2/A)**(-1.0/(2.0-B))

- ASOQ=FACTOR/PE
CST=CSCV(ITYPE)*AS0Q
CALCULATE PUMPING COST

DELTAP=ALPHAL/SHOPE2#*(150.0/36.0%SC+1.75/6 .O%PE)
CPT=CPCV(ITYPE)*DELTAP -

FINALLY CALCULATE TOTAL COST

CT=CVT+CST+CPT/SMALLR

RETURN

END

SUBROUTINE FCNY1(X,DCTDCF)

SUBROUTINE FCNY1

PURPOSE CALCULATE THE DERIVATIVE OF THE TOTAL COST FOR
FLOW-THROUGCH ELECTRODE WITH RESPECT TO THE
PARAMETER CFOKAP AT THE LIMITING CURRENT

USAGE CALL FCNY1(X,DCIDCF)
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DESCRIPTION OF PARAMETERS
X NATURAL LOGARITHM OF THE VARIABLE CFOKAP
DCTDCF DERIVATIVE OF TOTAL COST WITH RESPECT
TO THE VARIABLE CFOKAP
SUBROUTINES REQUIRED

NONE

REVISED 8-18-83

© 00 0 000000 000080000000 00020060 0000000000080 0000000CCIBELOLCERSIOIECEOIPEDS

COMMON/MAIN/ ALPHAL,A,B,CFOKAP,CSCV,CPCV,SMALLR,

1 NTERMS,FBPOT,FTPOT,SC,R

DIMENSION CSCV(2),CPCV(2)
CFKPMN=10.0%**X

CALCULATE SHERWOOD NUMBER OVER THE PECLET NUMBER SQUARED
SHOPE2=CFKPMN*FTPOT
CALCULATE DERIVATIVE OF VOLUMETRIC COST

DCVT=ALPHAL*B/(2.0-B)/A**(2.0/(2.0-B))*

1 SHOPE2**((2.0*B-2.0)/(2.0-B))

-

CALCULATE DERIVATIVE OF SEPARATOR COST
DCST=CSCV(1)/(2.0-B)/A**(1.0/(2.0-B) )*SHOPE2**( (B-1.0)/(2.0-B))
CALCULATE DERIVATIVE OF PUMPING COST
DCPT=~CPCV(1)*ALPHAL/SHOPE2*(150.0/36.0*SC/SHOPE2+
1.75/6.0*%A**(1.0/(2.0-B))*(3.0-B)/(2.0-B)/SHOPE2**
((3.0-B)/(2.0-B)))

CALCULATE DERIVATIVE OF TOTAL WEIGHTED COST
DCTDCF=(DCVT+DCST+DCPT/SMALLR)*FTPOT

RETURN

END

SUBROUTINE FCNY2(GAMMA,DCTDGM)

® 0 650 0806000000000 0080803006005000 0000606060000 0s800000e000060000000000

SUBROUTINE FCNY2
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PURPOSE CALCULATE THE DERIVATIVE OF THE TOTAL COST FOR
FLOW-BY ELECTRODE WITH RESPECT TO THE VARIABLE
GAMMA AT THE LIMITING CURRENT

USAGE  CALL FCNYZ(GAMMA,DCTDCF)
DESCRIPTION OF PARAMETERS
GAMMA  THE QUANTITY ALPHA*D
DCTDCF DERIVATIVE OF TOTAL COST WITH RESPECT
TO THE VARIABLE GAMMA
SUBROUTINES REQUIRED
. DERIV2 CALCULATES THE DERIVATIVE OF THE SHERWOOD
NUMBER DIVIDED BY THE PECLET NUMBER SQUARED
FOR A FLOW-BY ELECTRODE OF FINITE LENGTH
POTFB  CALCULATES THE POTENTIAL DISTRIBUTION FOR A
FLOW-BY ELECTRODE OF FINITE LENGTH

REVISED 8-18-83
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COMMON/MAIN/ ALPHAL,A,B,CFOKAP,CSCV,CPCV,SMALLR,

1 NTERMS,FBPOT,FTPOT,SC,R

DIMENSION CSCV(2),CPCV(2)
CALCULATE ASPECT RATIO
R=ALPHAL/GAMMA

NOW GO GET THE DBRIVATIVE OF THE SHERWOOD OVER THE PECLET
NUMBER SQUARED WITH RESPECT TO THE VARIABLE GAMMA

CALL DERIV2(GAMMA,DSHDGM)

GO GET THE MAXIMUM MAXIMUM POTENTIAL DROP FOR THE FLOW-BY
ELECTRODE OF FINITE LENGTH

CALL POTFB(GAMMA,R,NTERMS,FBPOT,TOL)
SHOPE2=CFOKAP*FBPOT

CALCULATE THE DERIVATIVE OF VOLUMETRIC COST WITH GAMMA

DCVT=ALPHAL*(1.0/A)**(2.0/(2.0-B) )*B/(2.0=-B)*SHOPE2**

1 ((2.0*B-2.0)/(2.0-B))*DSHDGH

CALCULATE THE DERIVATIVE OF SEPARATOR COST WITH GAMMA
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DCST=CSCV(2) *ALPHAL/GAMMA/GAMMA*(1.0/A)**(1.0/(2.0-B))*
1 (GAMMA/(2.0-B)*SHOPE2**((B-1.0)/(2.0~B))*DSHDGM~
2 SHOPE2*#*(1.0/(2.0-B)))

CALCULATE THE DERIVATIVE OF PUMPING COST WITH GAMMA

DCPT=-CPCV(2)*DSHDGM*ALPHAL*(150.0/36.0%SC/SHOPE2**2+
1 1.75/6.0%A**((1.0)/(2.0-B))*(3.0-B)/(2.0-B)/SHOPE2**
2 ((5.0-2.0*B)/(2.0-B)))

FINALLY CALCULATE THE DERIVATIVE OF THE TOTAL COST
WITH GAMMA

DCTDGM=(DCVT+DCST+DCPT /SMALLR)
RETURN
END

SUBROUTINE DERIV2(GAMMA ,DSHDGM)
SUBROUTINE DERIV2
PURPOSE CALCULATE THE DERIVATIVE OF THE SHERWOOD NUMBER OVER
THE SQUARE OF THE PECLET NUMBER WITH RESPECT THE
VARIABLE GAMMA FOR A FLOW-BY ELECTRODE OF FINITE
LENGTH
USAGE CALL DERIV2(GAMMA ,DSHDGM)
DESCRIPTION OF PARAMETERS
GAMMA THE QUANTITY ALPHA*D :
DSHDGM THE VALUE OF THE DERIVATIVE OF THE SHERWOOD
NUMBER OVER THE PECLET NUMBER SQUARED WITH
RESPECT THE VARIABLE GAMMA
SUBROUTINES REQUIRED
NONE
REVISED 8-16-83
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COMMON/MAIN/ ALPHAL,A,B,CFOKAP,CSCV,CPCV,SMALLR,
1 NTERMS,FBPOT,FTPOT,SC,R

DIMENSION CSCV(2),CPCV(2)

REAL LAMBDA,LAMHAT ,MS1N

PI=3.14159265358979
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INITIALIZE SUMS

SUM1=0.0
SUM2=0.0
SUM3=0.0

. SUM4=0.0

SUM5=0.0

SUM6=0.0
DELTA=0.5
EXPAL=EXP(-ALPHAL)

'NOW CALCULATE SUMS TERM BY TERM

SPECIAL CASE FOR THE FIRST TERM

DO 10 I=1,NTERMS
SINHAR=0.0
COSHLM=0.0

CALCULATE EIGENVALUES

LAMBDA=(2.0*FLOAT(I-1)+1.0)*PI/2.0
LAMHAT=FLOAT(I~-1)*PI/R
MS1IN=(=1.0)**(I-1)
FACTOR=MS1N/LAMBDA/LAMBDA

. ARG=LAMBDA*R - =
TANHAR=1.0/TANH(ARG)

SPECIAL CASE FOR LARGE EIGENVALUES

IF(ARG.GT.650.0) GO TO 5
SINHAR=1.0/SINH(ARG)
TERM1=TANHAR*FACTOR
TERM2=SINHAR*FACTOR
TERM3=SINHAR*SINHAR*ARG*FACTOR
TERM4=TANHAR*SINHAR*ARG*FACTOR
GMMNLM=1 .0/ (GAMMA*GAMMA+LAMHAT *LAMHAT)

SPECIAL CASE FOR LARGE EIGENVALUES
IF(LAMHAT.GT.650.0) GO TO 6

COSHLM=1.0/COSH(LAMHAT)
TERMS=LAMHAT*TANH ( LAMHAT ) *COSHLM*GMMNLM*DELTA

-“TERM6=TERMS*MS1N

ADD TERMS TO SUMS

SUMl=SUM1+TERM1
SUM2=SUMM2+TERM2
SUM3=SUM3+TERM3

314
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SUM4=SUM4+T ERM4
SUM5=SUM5+TERM5
SUM6=SUM6+TERM6
DELTA=1.0
CONTINUE

NOW CALCULATE DERIVATIVE

DSHDGM=2 .0* CFOKAP* (SUM1+SUM3-SUM5/R+

1 EXPAL*(SUM6/R-SUM2-SUM4))

RETURN
END

SUBROUTINE POTFB(GAMMA,R,NTERMS,POT,TOL)

SUBROUTINE POTFB

PURPOSE CALCULATE THE MAXIMUM SOLUTION PHASE POTENTIAL DROP
FOR A FLOW-BY ELECTRODE OF FINITE ASPECT RATIO AT THE
LIMITING CURRENT.

USAGE CALL POTFB(GAMMA,R,NTERMS,POT,TOL)

DESCRIPTION OF PARAMETERS

GAMMA THE QUANTITY ALPHA*D

R ELECTRODE ASPECT RATIO

NTERMS NUMBER OF TERMS IN SUM

POT RESULTING MAXIMUM POTENTIAL DROP

TOL TOLERANCE IN POTENTIAL, EXPRESSED AS A

FRACTIONAL CHANGE TO THE SUM FROM THE
LAST TERM OF THE SERIES

SUBROUTINES REQUIRED
NONE

REMARKS PROGRAM CALCULATES MAXIMUM POTENTIAL DROP USING
AN INFINITE SERIES. ASSUMED BOUNDARY CONDITIONS
ARE ZERO FLUXES AT THE INLET, OUTLET AND ONE SIDE
OF THE ELECTRODE AND A CONSTANT POTENTIAL ALONG THE
OTHER SIDE OF THE ELECTRODE.

REFERENCE
FEDKIW, PETER, "OHMIC POTENTIAL DROP IN FLOW-THROUGH
AND FLOW-BY POROUS ELECTRODES", J. ELECTROCHEM. SOC.,
128, PP. 831-838, 1981.

REVISED 7-18-83
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REAL LAMBDA,LAMHAT ,MNS1N
PI=3.14159265358979

INITIALIZE SUMS

SUM1=0.0

SUM2=0.0

SUM3=0.0

SUM4=0.0

DELTA=0.5

DETERMINE POTENTIAL DROP TERM BY TERM
DO 3 I=1,NTERMS

INITTIALIZE TERMS

" TERM2=0.0

TERM3=0.0
TERM4=0.0

CALCULATE EIGENVALUES‘

LAMBDA=(2.0*FLOAT(I-1)+1.0)#*P1/2.0
LAMHAT=FLOAT(I~1)*PI/R
MNSIN=(-1.0)**(I-1)
FACTOR=MNS1N/LAMBDA/LAMBDA
TERM1l=1.0/TANH(LAMBDA*R)

SPECIAL CASE FOR LARGE EIGENVALUES

IF(R*LAMBDA.GT.650.0) GO TO 1
TERM2=1.0/SINH(R*LAMBDA)

SPECIAL CASE FOR LARGE EIGENVALUES

IF(LAMHAT.GT.650.0) GO TO 2
TERM3-DELTA/(LAHHAI*LAHHAT+GAMHA*GAMMA)/COSH(LAMHAI)
TERM4=MNS1N*TERM3

ADD TERMS TO SUMS

SUM1=SUM1+FACTOR*TERML
SUM2=SUM2+FACTOR*TERM2
SUM3=SUM3+TERM3
SUM4=SUM4+TERMSG
DELTA=1.0

CONTINUE
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CALCULATE POTENTIAL DROP FROM SUMS

POT=2.0*GAMMA*(SUML-EXP(-GAMMA*R)*(SUM2+1.0/R*SUM4 )+1.0/R*
SUM3)-1.0

CALCULATE TOLERANCE
TOL=2.0*GAMMA* (FACTOR*TERM1 -EXP(—-GAMMA*R) *
(TERM1*TERM2+1.0/R*TERM4)+1.0/R*TERM3)/ (POT+1.0)

RETURN
END

SUBROUTINE POTFT(ALPHAL,POT)
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SUBROUTINE POTFT

PURPOSE CALCULATE THE MAXIMUM SOLUTION PHASE POTENTIAL DROP
FOR A FLOW-THROUGH ELECTRODE AT THE LIMITING CURRENT.

USAGE  CALL POTFT(ALPHAL,POT)
DESCRIPTION OF PARAMETERS

ALPHAL THE QUANTITY ALPHA*L
POT RESULTING MAXIMUM POTENTIAL DROP

SUBROUTINE REQUIRED
NONE

REMARKS PROGRAM CALCULATES MAXIMUM POTENTIAL DROP
FOR A FLOW-THROUGH ELECTRODE. BOUNDARY CONDITIONS
USED ARE A FIXED UPSTREAM POTENTIAL AND ZERO
FLUX DOWNSTREAM AT THE END OF THE BED. THE CASE
FOR ALPHAL GREATER THAN 700 IS TREATED AS A SPECIAL
CASE.

REVISED 6-25-83
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THETA=0.0
SPECIAL CASE FOR LARGE ALPHAL

IF(ALPHAL.GT.700.0) GO TO 1
THETA=EXP(-ALPHAL)
POT=1.0-(1.0+ALPHAL)*THETA
RETURN

END
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SUBROUTINE SECANT(FCNY,X1,Y,X2,TOL,IERR,NITER)

SUBROUTINE SECANT

PURPOSE PERFORM AN ITERATION USING THE SECANT METHOD ON
A ONE-DIMENSIONAL FUNCTION.

USAGE  CALL SECANT(FCNY,X1,Y1,X2,TOL,IERR,NITER)
DESCRIPTION OF PARAMETERS

FCNY FUNCTION TO BE ITERATED UPON.
X1 FIRST GUESS FOR INDEPENDENT VARIABLE.
FINAL VALUE OF INDEPENDENT VARIABLE
. IS RETURNED HERE.
- 4 FINAL VALUE OF DEPENDENT VARIABLE IS
RETURNED HERE. DEPENDENT
VARIABLE IS ITERATED TO ZERO.

X2 ' SECOND GUESS FOR INDEPENDENT VARIABLE.
TOL ITERATION TOLERANCE EXPRESSED AS A
FRACTION CHANGE OF THE INDEPENDENT
VARIABLE.
- IERR ERROR FLAG.
- =1 IF NUMBER OF SPECIFIED ITERATIONS

ARE EXCEEDED.

NITER NUMBER OF ITERATIONS. IERR IS ASSIGNED A
VALUE OF ONE IF THE NUMBER OF
ITERATIONS EXCEEDS THIS PARAMETER.

SUBROUTINES REQUIRED
FCNY SUBROUTINE TO EVALUATE THE INDEPENDENT
VARIABLE FOR A GIVEN VALUE OF THE
DEPENDENT VARIABLE..

REVISED 7-11-83
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COMMON/MAIN/ ALPHAL, A,B,CFOKAP,CSCV,CPCV,SMALLR,

1 NTERMS,FBPOT,FTPOT,SC,R

DIMENSION CSCV(2),CPCV(2)
N=1

EVALUATE FUNCTION FOR INITIAL GUESSES

CALL FCNY(X1,Y1)
CALL FCNY(X2,Y2)
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c COMPUTE NEW VALUE FROM PREVIOUS GUESSES
c
1 XCHG=(X2-X1)/(Y2-Y1)*Y2
X3=X2-XCHG
c -
C LIMIT MAXIMUM CHANGE IN ITERATED VARIABLE
C
IF(ABS(XCHG) .GT .ABS(0.5*X2)) X3=X2*(1.0-SIGN(0.5,XCHG))
CALL FCNY(X3,Y3)
c .
C DETERMINE IF ITERATION TOLERANCE HAS BEEN MET
c
IF(ABS((X3-X2)/X3).LT.TOL) GO TO 2
C
C DETERMINE IF SPECIFIED NUMBER OF ITERATIONS
c HAS BEEN EXCEEDED
C
IF(N.GT.NITER) GO TO 3
c
C IF NOT TRY AGAIN !
C
X1=X2
X2=X3
Y1=Y2
Y2=Y3
N=N+1
GOTO 1
C
c SUCCESS ! RETURN VALUES
c
2 X1=X3
Y=Y3
WRITE(6,101) N
101 FORMAT(* *,14,* ITERATIONS WERE REQUIRED*)
RETURN
C
C RETURN AN ERROR
C
3 IERR=1
RETURN
END
SUBROUTINE DERIV1(GAMMA,DSHDGM)
c
C ® 0 00 0 00 08 0000000 PO OO O O PO 0L L OPT 000N 0P O OO OL OO0 e Nl
C
C SUBROUTINE DERIV1
c
c PURPOSE CALCULATE THE DERIVATIVE OF THE SHERWOOD NUMBER OVER
C THE SQUARE OF THE PECLET NUMBER WITH RESPECT THE
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VARIABLE GAMMA FOR A FLOW-BY ELECTRODE OF INFINITE
. LENGTH
USAGE CALL DERIV1(GAMMA,DSHDGM)
DESCRIPTION OF PARAMETERS
GAMMA THE QUANTITY ALPHA*D :
DSHDGM THE VALUE OF THE DERIVATIVE OF THE SHERWOOD
 NUMBER OVER THE PECLET NUMBER SQUARED WITH
. RESPECT THE VARIABLE GAMMA®
SUBROUTINES REQUIRED
NONE
REVISED 8-23-83

COMMON/WAIN/ ALPHAL,A,B, CFOKAP cscv, CPCV SMALLR,

- 1 NTERMS,FBPOT,FTPOT,SC

DIMENSION CSCV(Z) CPCV(2)
REAL LAMBDA,MS1N
‘PI=3.14159265358979

DETERMINE OPTIMUM STARTING TERM FOR SUMS

ISTART=IFIX((2.0*GAMMA/PI~-1.0-NTERMS)/2.0)
IF(ISTART.LT.1) ISTART=l
"ISTOP=ISTART+NTERMS

INITIALIZE SUMS

SUM1=0.0 .
SUM2=0.0
SUM3=0.0

CALCULATE SUMS TERM BY TERM

DO 10 I=ISTART,ISTOP
LAMBDA=(2.0*FLOAT(I-1)+1.0)*PI/2.0
MS1N=(=-1.0)**(I~-1)

DENOM=L AMBDA*LAMBDA~GAMMA*GAMMA
TERM2=MS1N/DENOM
TERM3=MS1N/DENOM/DENOM
SUM2=SUM2+TERM2

SUM3=SUM3+TERM3

CONTINUE

ASYMPTOTIC LIMIT FOR GAMMA GOING TO INFINITY FOLLOWS



OO0

OO0 0O00O00O00000000000000000000000

OO0

321

SUM1=0.91596559417722*4.0/P1/P1

FINALLY CALCULATE DERIVATIVE

DSHDGM=CFOKAP* (SIN(GAMMA) /(COS(GAMMA ) **2)+
1 2.0*%(SUML-SUM2)-4.0*GAMMA*GAMMA*SUM3)

RETURN '

END

SUBROUTINE POTINF(GAMMA,NTERMS,POT,TOL)
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SUBROUTINE POTINF

PURPOSE CALCULATE THE MAXIMUM SOLUTION PHASE POTENTIAL DROP
FOR A FLOW-BY ELECTRODE OF INFINITE ASPECT RATIO AT
THE LIMITING CURRENT.

USAGE CALL POTINF(GAMMA,NTERMS,FLBYPT,TOL)
DESCRIPTION OF PARAMETERS

GAMMA THE QUANTITY ALPHA*D

NTERMS NUMBER OF TERMS IN SERIES

POT RESULTING MAXIMUM POTENTIAL DROP

TOL TOLERANCE IN POTENTIAL EXPRESSED AS A
FRACTIONAL CHANGE IN THE SUM FROM THE LAST
TERM IN THE SERIES ‘

SUBROUTINE REQUIRED
NONE

REMARKS PROGRAM CALCULATES MAXIMUM POTENTIAL DROP IN THE
LIMIT OF AN INFINITELY LONG ELECTRODE. BOUNDARY
CONDITIONS USED ARE ZERO FLUXES AT THE INLET,
OUTLET AND ONE SIDE WALL OF THE ELECTRODE WITH
A CONSTANT POTENTIAL CONDITION ALONG THE OTHER
SIDE WALL.

REVISED 8-23-83
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REAL LAMBDA,MNSIN
PI=3.14159265358979

CALCULATE OPTIMUM STARTING TERM
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ISTART=IFIX((2.0*GAMMA/PI-1.0~NTERMS)/2.0)

IF(ISTART.LT.1l) ISTART=1
ISTOP=ISTART+NTERMS

SUM POTENTIAL TERM BY TERM

SUM=0.0

DO 10 I=ISTART,ISTOP
LAMBDA=(2.0*FLOAT(I-1)+1.0)*PI1/2.0
MNSIN=(-1.0)**(I-1) ,
TERM‘MNSIW/(LAMBDA*LAMBDA-GAMMA*GAMMA)
SUM=SUM-~TERM

CONTINUE

CALCULATE POTENTIAL DROP

SUM=SUM+0.91596559417722%4 .0/P1/PI
POT'Z.O*GAMMA*SUM+1.0/COS(GAMHA)—I.O

CALCULATE TOLERANCE
TOL=2. O*GAMMA*TERM

RETURN
END

322
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Sample Output for Program OPTCON
VALUES OF PARAMETERS USED IN THE OPTIMIZATION

A= .070540
B = .545400

ALPHAL = 6.5000
SMALLR =  .284290
SC = 1670.0
cscv CPCV
FLOW-THROUGH 1000.00 5.000E~-13
FLOW-BY 1000.00 5.000E-13

OPTIMUM FLOW-THROUGH DESIGN
6 ITERATIONS WERE REQUIRED
CFOKAP = 2.55770E-07
DELTA PHI = 9.88724E-01 SH/PE2 = 2.52886E-07
CV = 8.36936E-01 CS = 1.80448E-01 CP = 1.10199E-01

CT = 1.40501E+00

FLOW-THROUGH CONFIGURATION

CFOKAP = 1.00000E-07

DELTA PHI = 9.88724E-01 SH/PE2 = 9.88724E-08

CVv = 5.88531E-01 " CS = 9.46162E-02 CP = 3.30053E-01

CT = 1.84412E+00
FLOW-BY CONFIGURATION

7 ITERATIONS WERE REQUIRED
OPTIMUM ALPHAD = 5.12539E+00

CFOKAP = 1.00000E-07
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DELTA PHI = 3.15881E+00l SH/PE2 = 3.15881E-07
CV = 9.09728E-01 CS = 2.66654E-01 CP = 8.58641E-02

CT = 1.47841E+00

WARNING; SEMI-INFINITE fLOW—BY RESULTS NOT VALID, R < 5
MINIMUM FLOW-THROUGH COST USED FOR COMPARISON

RATIO OF FLOW-THROUGH TO FLOW-BY COST = .950352 .

w
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