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ARTICLE

Deep learning-based detection and segmentation
of diffusion abnormalities in acute ischemic stroke
Chin-Fu Liu1,2, Johnny Hsu3, Xin Xu3, Sandhya Ramachandran1,2, Victor Wang 1,2, Michael I. Miller1,2,4,

Argye E. Hillis5,6, Andreia V. Faria 3✉ & The STIR and VISTA Imaging investigators*

Abstract

Background Accessible tools to efficiently detect and segment diffusion abnormalities in

acute strokes are highly anticipated by the clinical and research communities.

Methods We developed a tool with deep learning networks trained and tested on a large

dataset of 2,348 clinical diffusion weighted MRIs of patients with acute and sub-acute

ischemic strokes, and further tested for generalization on 280 MRIs of an external dataset

(STIR).

Results Our proposed model outperforms generic networks and DeepMedic, particularly in

small lesions, with lower false positive rate, balanced precision and sensitivity, and robust-

ness to data perturbs (e.g., artefacts, low resolution, technical heterogeneity). The agreement

with human delineation rivals the inter-evaluator agreement; the automated lesion quantifi-

cation of volume and contrast has virtually total agreement with human quantification.

Conclusion Our tool is fast, public, accessible to non-experts, with minimal computational

requirements, to detect and segment lesions via a single command line. Therefore, it fulfills

the conditions to perform large scale, reliable and reproducible clinical and translational

research.
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Plain language summary
Determining the volume and location

of lesions caused by acute ischemic

strokes - in which blood flow is

restricted to part of the brain - is

crucial to guide treatment and patient

prognosis. However, this process is

time-consuming and labor-intensive

for clinicians. Here, using brain ima-

ging datasets from patients with

ischemic strokes, we create an artifi-

cial intelligence-based tool to quickly

and accurately determine the volume

and location of stroke lesions. Our

tool outperforms some similar exist-

ing approaches, it is fast, publicly

available, accessible to non-experts,

and it runs on normal computers with

minimal computational requirements.

As such, it may be useful both for

clinicians treating patients and

researchers studying ischemic stroke.
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Stroke is a major cause of death and long-term disability in
US, with increasing mortality rates among middle-aged
adults1. Defining the stroke core in diffusion-weighted

images (DWIs), a magnetic resonance imaging (MRI) sequence
highly sensitive to the acute lesion, is a major benchmark for
acute treatment. The importance of fast locating and objectively
quantifying the acute damage has been reinforced by many stroke
trials2–5. Clinical research also relays on objective quantification
of lesions to access brain function (as lesion-symptoms studies6),
to stratify populations in clinically relevant groups, and to model
prognosis7–10. Due to the great variability of stroke population
and lesions in both biological and technical aspects, stroke
research depends on large datasets and, consequently, on auto-
mated tools to process them with accuracy and high levels of
reproducibility. Therefore, accessible tools that can fast and effi-
ciently detect and segment diffusion abnormalities in acute
strokes are well anticipated by the clinical and research
communities.

Traditional machine learning algorithms use texture features11,
asymmetric features12, abnormal voxel intensity on histogram13

or probabilistic maps of populations14,15, or advanced statistical
models such as support vector machine16 and random forest17, to
detect and segment diffusion abnormalities in acute strokes.
Although these methods represent resourceful statistical
approaches and can work reasonably in high-resolution images
and homogeneous protocols, the low-level features these methods
utilize such as intensity, spatial, and edge information reduce
their capability to capture the large variation in lesion pattern,
especially in typical clinical, low-resolution, and noisy data.

As the prosperous progress in deep learning (DL) in the past
two decades, several DL neural network models18–20, such as the
convolutional neural networks (CNNs), performed better brain
lesion detection and segmentation than traditional methods. A
landmark was the introduction of UNet21, to re-utilize coarse
semantical features via skip connections from encoders to deco-
ders in order to predict better segmentation. Further develop-
ments of UNet variants, such as Mnet, DenseUnet, Unet++, and
Unet3+22–24 optimized the features utilization. The emergence of
attention-gate techniques25–27 conditioned networks to focus on
local semantical features. Recent studies applied “attention
UNets”, for example, to predict final ischemic lesions from
baseline MRIs28,29. Nevertheless, segmenting medical images with
3D networks still remains a challenge.

The 3D networks suffer from issues like gradient vanishing and
lack of generalization, due to their complex architectures. Training a
large number of parameters requires a large number of training
samples, which is not typically available when utilizing real clinical
images. As a result, most prior DL methods20,30,31 were developed in
2D architectures, ignoring the 3D contextual information. In addi-
tion, they were mostly trained and/or tested on 2D lesioned brain
slices; therefore, they are not generalizable in clinical applications
where there is no prior information about the lesion location. More
recently, “2.5D” networks32, 3D dual-path local patch-wise CNNs,
DeepMedic31, and other CNNs proposed in the Ischemic Stroke
Lesion Segmentation (ISLES) challenge18, aimed to improve local
segmentation. However, they still do not fully utilize the whole-brain
3D contextual information which might lead to more false positives,
especially in “lesion-like” artifacts commonly seen in clinical DWIs.
Furthermore, previous networks were mostly evaluated on seg-
menting late subacute and chronic ischemic abnormalities in high-
resolution MRIs, with research-suited homogenous protocols32–34

which do not reflect the challenges of real clinical data. To our best
knowledge, Zhang et al.35 were the first to reveal the potential of the
3D whole-brain dense networks on low-resolution clinical acute
lesion segmentation. However, the relatively modest sample size
utilized (242 clinical low-resolution images for training, validating

and testing the models, plus 36 downsampled high-resolution images
to test for generalization), compared to the large amounts of trainable
parameters and high variations of stroke biological features, raises
questions about the generalization and robustness of the derived
models.

The requirement of large amounts of data for training and
testing DL models is a common challenge for achieving good
generalization and efficiency in practical applications. Artificial
data augmentation does not necessarily mirror the biological
heterogeneity of strokes, and imperfectly reflects the noise, low
resolution, and technical variability of clinical data. Models
developed in modest and homogeneous samples, or in artificial
augmented data, might be less efficient in heterogeneous and
noisy clinical samples36. Lastly, the lack of accessibility reduces
the potential generalization and translation of previous methods:
currently, there is no platform that allows regular users (not
imaging experts) to readily and rapidly detect and segment dif-
fusion abnormalities in acute stroke clinical images.

In this study, we developed DL network ensembles for the
detection and segmentation of lesions from acute and early
subacute ischemic strokes in brain MRIs. Our network ensembles
were trained and validated in 1390 clinical 3D images (DWIs)
and tested in 459 images. The lesion core was manually deli-
neated in all the images, serving as “ground truth”. Furthermore,
we evaluated false positives on extra 499 DWIs of brains with
“not visible” lesions. To our best knowledge, this is the largest
clinical set ever used. We also tested our trained models on an
external population of 140 individuals scanned at the hyperacute
stroke phase and 24 h later (STIR dataset37). Our results show
that our model ensembles are in general comparable to 3D
pathwise CNNs (as “DeepMedic”) for lesion segmentation, per-
forming superiorly for detection and segmentation of small
lesions, with much lower false-positive rate. Our model is gen-
eralizable and robust on the external dataset, over the acute
phases. Finally, our model is readily and publicly available as a
tool with minimal implementation requirements, enabling non-
expert users to detect and segment lesions in about one minute in
their local computers, with a single command line.

Methods
Cohort. This study included MRIs of patients admitted to the
Comprehensive Stroke Center at Johns Hopkins Hospital with the
clinical diagnosis of ischemic stroke, between 2009 and 2019
(flowchart for data inclusion in Fig. 1). It utilizes data from an
anonymized dataset (IRB00228775), created under the waiver of
informed consent because the image is anonymized. We have
complied with all relevant ethical regulations and the guidelines
of the Johns Hopkins Institutional Review Board, that approved
this study (IRB00290649).

From the 2348 DWIs quality-controlled for clinical analysis,
499 images did not show visible lesion. These mostly include
transitory ischemic strokes (TIA) or strokes with volume under
the image resolution. They are called images with “not visible”
lesions and were used to calculate false positives in this study. The
other 1849 DWIs showed lesions classified by a neuroradiologist
as a result of acute or early subacute ischemic stroke, with no
evidence of hemorrhage. The lesion core was defined in DWI, in
combination with the apparent diffusion coefficient maps (ADC)
by two experienced evaluators and was revised by a neuroradiol-
ogist until reaching a final decision by consensus. This manual
definition was saved as a binary mask (stroke = 1, brain and
background = 0) in the original image space of each subject.

The DWIs with ischemic lesions were randomly split into a
training dataset (n= 1390), which was used to train and validate
all subsequent models, and testing dataset (n= 459), which was
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used exclusively for testing models. A second external dataset,
STIR, was used to test the generalization of our models in a
completely unrelated population (flowchart in Fig. 1). We have
complied with all relevant STIR regulations for data usage. From
the STIR dataset, we included 140 subjects scanned twice: at the
hyperacute stroke event (here called “STIR 1”) and up to 24 h
later (“STIR 2”). The longitudinal aspect of STIR enables to
evaluate the performance of our models according to the
stroke’s onset.

The demographic, lesion, and scanner profiles for all the
datasets are summarized in Table 1. The distribution according to
arterial territories (MCA > PCA > VEB > ACA) and the demo-
graphic characteristics reflect the general population of stroke
patients. MRIs were obtained on seven scanners from four
different manufacturers, in different magnetic fields (1.5T (60%)
and 3T), with more than a hundred different protocols. The
DWIs had high in-plane (axial) resolution (1 × 1 mm, or less),
and typical clinical high slice thickness (ranging from 3 to 7 mm).
Although a challenge for imaging processing, the technical
heterogeneity promotes the potential generalization of the
resulting developed tools. The demographics (age, sex, race, time
from symptoms onset, and NIHSS) and lesion characteristics
(e.g., volume, intensity, location) were balanced between training
and testing ischemic sets (Supplementary Table 1).

Lesion delineation. The lesion delineations were performed using
ROIEditor. The evaluators looked for hyperintensities in DWI and/or
hypo intensities (<30% average brain intensity) in ADC. Additional
contrasts were used to rule out chronic lesions or microvascular white
matter disease. A “seed growing” tool in ROIEditor was often used to
achieve a broad segmentation, followed by manual adjustments. The
segmentation was performed by two individuals highly experienced
in lesion tracing (more than 10 years of experience). In addition, they
were trained by detailed instructions and illustrative files, in a subset
of 130 cases (randomly selected 10% of the dataset). These cases were
then revised by a neuroradiologist, discussed with the evaluators, and
(blinded) retraced, revised, and re-analyzed after 2 weeks. The
interevaluator index of agreement, Dice score, in this set was
0.76 ± 0.14; the intra-evaluator Dice was 0.79 ± 0.12. Although this is
a satisfactory level of agreement, it demonstrates that human seg-
mentation is not totally reproducible, even when performed by

experienced, trained evaluators. After consistent consensus agreement
was achieved in the initial set, the evaluators started working on the
whole dataset. The neuroradiologist revised all the segmentation and
identified the sub-optimum cases that were subsequently retraced.
The segmentations were revised as many times as necessary until
reaching a final decision by consensus among all evaluators.

Image preprocessing. To convert the images to a common space,
where the next preprocessing steps will take place, we: (1)
resampled DWI, B0 (the image in the absence of diffusion gra-
dients), and ADC into 1 × 1 × 1 mm3, (2) skull-stripped with an
in-house “UNet BrainMask Network”, (3) used “in-plane” (IP)
linear transformations to map the images to the standard MNI
(Montreal Neurological Institute) template, (4) normalized the
DWI intensity to reduce the variability and increase the com-
parability among subjects, (5) “down-sampled” (DS) images to
reduce the memory resource requirement in the next steps (e.g.,
DL networks). Details of these procedures follow.

Automated skull stripping—BrainMask network. To decrease
computational complexity and time required for skull stripping,
we built an “UNet BrainMask Network” using DWI, B0 images,
and gold-standard brain masks. The gold standards brain masks
were generated as follows: first, all DWI and B0 images were
resampled into 1 × 1 × 1 mm3 and skull striped by a level-set
algorithm (available under ROIStudio, in MRIStudio38), with
W5= 1.2 and 4, respectively (see explanation about the choice of
parameters in MRIstudio website38). The brain masks were the
union of masking on DWI and B0. Then, these brain masks were
further manually corrected by our annotators, serving as ground
true for the “UNet BrainMask Network”.

To train our “UNet BrainMask Network”, all images are mapped
to MNI and downsampled to 4 × 4 × 4mm3. The final brain mask
inferenced by the network was then post-processed by the closing
and the “binary_fill_holes” function from Python scipy module,
upsampled to 1 × 1 × 1mm3, and dilated by one voxel with image
smoothing. The Dice agreement between the “gold-standard” brain
masks and those obtained with our network was above 99.9%, in an
independent test dataset of 713 brains. The average processing time
was about 19 s (against 4.3min taken by the level-set algorithm38),
making it suitable for large-scale, fast processing.

Fig. 1 Flowchart of data and analysis. The traced box shows the independent testing samples.
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Table 1 Population, lesion, and scanner profiles, per dataset.

Dataset Internal dataset External
dataset

Training—
ischemic

Testing—
ischemic

Testing—not
visible

STIR 1 STIR 2

Number of subjects 1390 459 499 140
Age in years (median [IQR]) 62.5 [52, 73] 62.0 [54, 72] 61.0 [52, 71] 73.0 [60.81]
Sex
Male 739 (53.2%) 256 (55.8%) 251 (50.3%) 64 (45.7%)
Female 651 (46.8%) 203 (44.2%) 248 (49.7%) 76 (54.3%)

Race/ethnicity
African American 591 (42.5%) 220 (47.9%) 236 (47.3%) 38 (27.1%)
Caucasian 384 (27.6%) 138 (30.1%) 190 (38.1%) 98 (70.0%)
Asian 30 (2.2%) 12 (2.6%) 9 (1.8%) 4 (3.9%)
Missing data 385 (27.7%) 89 (19.4%) 64 (12.8%) 0 (0.0 %)

NIHSS (median [IQR]; missing) 4.0 [1.0, 8.0]; 681 3.0 [1.0, 8.25]; 115 1.0 [0.0,
3.0]; 253

10.0 [5.5, 16.5]; 1

Symptoms onset to MRI
in hours
<2 65 (4.7%) 37 (8.1%) 27 (5.4%)
2–6 169 (12.2%) 65 (14.2%) 63 (12.6%)
6–12 122 (8.8%) 106 (23.1%) 60 (12.0%) <3 h ~24 h
12–24 349 (25.1%) 143 (31.2%) 177 (35.5%)
>24 108 (7.8%) 12 (2.6%) 43 (8.6%)
Missing data 577 (41.5%) 96 (20.9%) 129 (25.9%)

Lesioned hemisphere
Left 627 (45.1%) 196 (42.7%) 80 (57.1%)
Right 540 (38.9%) 210 (45.8%) N.A. 57 (40.7%)
Bilateral 223 (16.0%) 53 (11.5%) 3 (2.2%)

Vascular territories
MCA 806 (58.0%) 276 (60.1%) 111 (79.3%)
PCA 258 (18.6%) 79 (17.2%) N.A. 12 (8.6%)
VB 235 (16.9%) 67 (14.6%) 15 (10.7%)
ACA 91 (6.5%) 37 (8.1%) 2 (1.4%)

Lesion volume in ml
(median [IQR])
Any vascular territory 4.39 [1.05, 21.78] 4.62 [1.09, 27.84] 7.15 [1.44.28.36] 17.48

[3.21.64.43]
MCA 7.49 [1.78, 28.32] 6.58 [1.57, 44.23]
PCA 2.53 [0.61, 14.57] 2.92 [0.64, 15.16] N.A.
VB 1.35 [0.49, 8.94] 1.74 [0.39, 10.75]
ACA 3.39 [0.78, 8.72] 2.85 [0.89, 7.39]

Lesion contrast in DWI
(median [IQR])
Any vascular territory 3.31 [2.28, 4.51] 3.26 [2.23, 4.41] 1.67 [1.24, 2.48] 3.13 [2.31, 3.99]
MCA 3.28 [2.32, 4.50] 3.39 [2.47, 4.48] N.A.
PCA 3.20 [2.12, 4.39] 2.87 [2.13, 4.20]
VB 3.72 [2.49, 5.33] 3.39 [2.28, 5.16]
ACA 2.76 [2.05, 3.89] 2.24 [1.55, 3.31]

MRI manufacturer*
Manufacturer 1 (Siemens) 1207 (86.8%) 433 (94.3%) 457 (91.5%) 0 (0%)
Manufacturer 2 (Phillips) 13 (0.9%) 2 (0.4%) 5 (1%) 39 (27.9%)
Manufacturer 3 (GE) 142 (10.2%) 22 (4.8%) 29 (5.8%) 101 (72.1%)
Manufacturer 4 (other) 28 (2%) 2 (0.4%) 8 (1.6%) 0 (0%)

MRI magnetic field*
1.5 T 930 (66.9%) 269 (58.6%) 315 (63.1%) 104 (74.3%)
3.0 T 460 (33.1%) 190 (41.4%) 184 (36.9%) 36 (25.7%)

Voxel size in mm3

(median [IQR])
Height/width 1.20 [0.90, 1.29] 1.20 [0.60, 1.23] 1.20 [0.90, 1.30] 0.88

[0.86, 0.94]
0.88 [0.86, 0.94]

Thickness 5.00 [4.0, 5.0] 5.00 [4.0, 5.0] 5.00 [4.0, 5.0] 7.00 [4.0, 7.0] 7.00 [4.0, 7.0]

ACA, PCA, MCA stand for anterior, posterior, and middle cerebral artery territories, VB stands for vertebro-basilar territory. IQR stands for interquartile range. Statistical significant differences in
distributions between testing and training datasets are marked with “*”; P values are in Supplementary Table 3.
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IP-MNI and IP-MNI DS space. We used sequential linear
transformations (3D rigid translation followed by scaling/rotation
along x and y axis) to map B0, less affected by the acute stroke,
into JHU_MNI_B038, a template in MNI space. No rotation was
performed along the interslice coordinate (z axis), aiming to
preserve the image contrast and the continuity of manual anno-
tations, and to ameliorate issues related to the low resolution and
voxel anisotropy. We called this standardized space “in-plane
MNI"(IP-MNI). The IP-MNI images were then padded into
192 × 224 × 192 voxels, to facilitates the next step of “down-
sampling” (DS) by (2, 2, 4) in (x, y, z) axes and max-pooling
operations, which reduces the memory resource requirement in
DL networks. The voxel dimension of the downsampled images
are 96 × 112 × 48 voxels, which is called IP-MNI DS space.

DWI intensity normalization. Intensity normalization increases
the comparability between subjects and, as normalizing images to
a standardized space, is crucial for diverse image analytical pro-
cesses. Although the lesion might affect intensity distribution, we
assume that the majority of brain voxels are from healthy tissue
and can be a good reference for intra- and interindividual com-
parison. We used bimodal Gaussian function in Eq. (1) to fit the
intensity histogram of DWI and cluster two groups of voxels: the
“brain tissue” (the highest peak) and “non-brain tissue” (the
lowest peak at lowest intensities, composed mostly by cere-
brospinal fluid).

f ðxÞ ¼ a1exp � x � b1
c1

� �2
 !

þ a2exp � x � b2
c2

� �2
 !

; ð1Þ

where ai, bi, ci are the coefficients of the scale, mean, and standard
deviation of Gaussian distribution. ai, bi, ci are calculated by least-
square fitting the bimodal Gaussian function to the intensity
histogram of individual DWI. DWI intensities are normalized to
make the “brain tissue” intensity with zero mean and one stan-
dard deviation. Supplementary Fig. 1A shows that the DWI
intensity distribution of voxels in a brain with ischemic lesions
(blue) and in a brain with “not visible” lesion (orange) prior to
(left column), and post-to (right column) intensity normalization.
We note that the preservation of the minor peak at high inten-
sities in the brain with ischemic lesion indicates the preservation
of the lesion contrast after normalization. Supplementary
Fig. 1B–D shows the distribution of DWI intensities in groups of
images, prior to and post-to intensity normalization. We note
that the distributions are much more homogeneous, and the
individual variations are smaller after intensity normalization.
More importantly, intensity differences between different mag-
netic fields and scan manufacturers are ameliorated after intensity
normalization. Our choice for this intensity normalization
approach is, therefore, based on its success to capture the contrast
between lesioned voxels and normal tissue voxels, while mini-
mizing variations in intensity range across subjects. The influence
of other intensity normalization approaches, from simple z score
normalization up to different self-supervised methods39,40, is
subject to further evaluation.

Lesion segmentation with unsupervised (“classical”) methods.
We tried two “classical” methods for lesion segmentation: (1)
“t-scores” maps of DWI and ADC for individual brains14, via
comparing them to the set of brains with “not visible” lesions, and
(2) ischemic probabilistic maps of abnormal voxels, here called
“IS”, via the modified c-fuzzy algorithms15.

T-score method14. After mapping all the images to a common
template (JHU-EVE MNI38), we computed the t-score maps of
DWI and ADC, tdwi, tadc, for each individual s compared to all

controls, as in Nazari-Farsani et al.14. The images were smoothed
by a Gaussian filter with different full width at half-maximum
(FWHM), Wfwhm. The lesion voxels were detected by threshold-
ing the t-scores maps (i.e., tdwi > σdwi, tadc > σadc) and thresholding
DWI intensities individually (i.e., tid > σid). These three thresholds
and FWHM were optimized by cross-validation in the training
dataset. We searched all parameters’ configurations as follows:
Wfwhm∈ {2, 3, 4, 5}, σdwi∈ {1, 1.5, 2, 2.5, 3, 3.5}, σadc∈ {1, 1.5, 2,
2.5, 3, 3.5}, σid∈ {1.5, 2, 2.5, 3, 3.5}. σdwi, σadc, and σid are in z
score scale, rather than percentage. Wfwhm is in the unit of the
pixel. The best model was Wfwhm= 4, σdwi= 2, σadc= 1, σid= 3.5.
The Dice and Net Overlap (defined as14) of the top four con-
figurations are summarized in Supplementary Table 2.

Modified c-fuzzy method15. We first created intensity mean and
standard deviation “templates” in IP-MNI space, Is,μ(x, y, z) and
Is,σ(x, y, z) for s= dwi and s= adc, separately, using the normal-
ized DWI and ADC of cases with “not visible” lesions. We then
modified and computed the dissimilarity equation for individual
DWI and ADC, Is(x, y, z) for s= dwi and s= adc, compared to
Is,μ(x, y, z) and Is,σ(x, y, z) similar as in Guo et al.15.

4Isðx; y; zÞ ¼ tanh
Isðx; y; zÞ � Is;μðx; y; zÞ

αsIs;σðx; y; zÞ

 !
ð2Þ

where αs is the parameter used for controlling sensitivity. The
probability map of abnormal low-intensity (H1) and high-
intensity (H2) voxels were computed as:

Is;H1 ¼
ð�4Isðx; y; zÞÞλs ; 4Isðx; y; zÞ< 0;

0; x ≥ 0

(
ð3Þ

Is;H2 ¼
ð4Isðx; y; zÞÞλs ; 4Isðx; y; zÞ> 0

0; x ≤ 0

(
ð4Þ

To generate the probabilistic maps of ischemic voxels, PIS, we
looked for these voxels to have abnormal high intensity (H2) in
DWI and abnormal low intensity (H1) in ADC compared to the
templates, and also relatively high intensity in its own individual
DWI, is defined as follows:

PISðx; y; zÞ ¼
Idwi;H2ðx; y; zÞ ´ Iadc;H1ðx; y; zÞ ´ ð1� Qðtidðx; y; zÞÞÞ; tidðx; y; zÞ≥ σ id

0; tidðx; y; zÞ< σ id

�
;

ð5Þ
where Q(⋅) is the standard normal distribution Q function, and
tid(x, y, z) is the t-score of DWI voxel intensity, compared to the
mean and standard deviation of the whole-brain voxels, μid and
σid, in each individual DWI. Like what was described for the
t-score method, the DWI and ADC images were smoothed by a
Gaussian filter with different FWHM. The six following
parameters’ combinations were optimized by cross-validation in
training dataset: Wfwhm∈ {2, 3, 4, 5}, αdwi∈ {0.5, 1, 1.5, 2, 2.5},
λdwi∈ {2, 3, 4}, αadc∈ {0.5, 1, 1.5, 2, 2.5}, λadc∈ {2, 3, 4}, σid∈ {2,
2.5, 3, 3.5}. σid is in z score scale, rather than percentage. Wfwhm is
in the unit of the pixel. The best parameters’ configuration was
Wfwhm= 2, αdwi= 1.5, λdwi= 4, αadc= 0.5, λadc= 2, σid= 2. The
performance in all datasets is summarized in Supplementary
Table 3.

As shown in Supplementary Fig. 2, the modified c-fuzzy
method performed better than the t-score method for lesion
segmentation. In addition, the t-score method performed worse
on our testing dataset (Dice about 0.37) than what is described by
the developers14 (Dice about 0.5) Therefore, the classical t-score
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method was considered insufficiently efficient to segment lesions
in our large and heterogeneous clinical dataset.

Lesion segmentation with Deep Learning: DAGMNet imple-
mentation details
3D DAGMNet architecture. The architecture of our proposed 3D
DAGMNet, depicted in Fig. 2, is equipped with intraskip con-
nections as UNet3+24, fused multiscale contextual information
block, deep supervision, L1 regularization on final predicts, dual
attention gate (DAG)25–27, self-normalized activation (SeLU)41,
and batch normalization. The details of the important compo-
nents and training techniques/parameters are outlined in the
following subsections.

DAGMNet was intuitively designed to capture semantical
features directly from input images at different receptive scale
levels, as MNet, and to segment lesions of various volumes with
consistent efficiency, via deep supervision at each level. This
aims to conquer the drawback that although big lesions can be
easily detected at different receptive scale levels in the original
generic UNet, small lesions features could be dropped after
downsampling pathway/max-pooling layer. Furthermore, The
introduction of the interskip connections between layers in
UNet structure and intraskip connections as UNet3+ help
model share and re-utilize features between different receptive
scale levels with lower computational complexity than Den-
seUNet and UNet++. The final fuse block combines all-scale
semantic features (from small lesion volume to large ones) to
generate the final predict output. At the end of the fusion block,
L1-regularization on predicts prevents the networks from false-
positive claiming.

To overcome the high variability in lesion volume, shape, and
location, DAG was utilized to condition the networks to
emphasize the most informative components (both spatial and
channel-wise) from encoders’ semantic features at each level prior
to decoders, increasing the sensitivity to small lesions or lesions
with subtle contrast. In DAG, spatial attention gate (sAG) was
used to spatially excite the receptive for the most abnormal
voxels, like the hyperintensity in DWI or predicts from the third
channel ("IS"). On the other hand, the channel attention gate
(cAG) was included to excite the most semantical/morphological
features associated to ischemic lesions from artifacts.

The inclusion of information from classical methods (“IS”) as
the third channel aimed to help the networks to focus on
abnormal voxels, even if in small clusters (small lesions). In
addition, the batch-normalization technique and SeLU activation
function aim to self-normalize the networks, avoiding the
gradient vanish problem usually faced in complex 3D networks.

Encoder and decoder. As shown in Fig. 2, each encoder or decoder
convolution block is composed with two consecutive convolution
layers with batch normalization and SeLU activation. The num-
ber of features at the first level is denoted as “Nf”. For our pro-
posed model, Nf was 32.

At the encoder part, input images were downsampled by
(2, 2, 2) to each receptive scale level and encoded by an encoder
convolution block with Nf= 32 for each level. At the second,
third, and fourth levels, the encoded features from the previous
level were concatenated with the features at the present level and
furthered encoded by an encoder block with feature number
2 ×Nf, 4 ×Nf, and 8 ×Nf, respectively.

At the decoder part, each level has an decoder convolution
block with deep supervision. The feature numbers of decoders at
the first, second, third, and fourth levels are Nf, 2 ×Nf, 4 ×Nf, and
8 ×Nf. The input for decoders at the first, second, and third-level
are features from dual attention gate concatenated with the

upsampled decoded features from the second, third, and fourth
level, respectively. The decoder at the fourth level only takes the
features from dual attention gate as input at the same level.

The final predict is fused by a fuse convolution block at the
end. The fuse convolution block takes concatenated features
decoded from decoders at each level as inputs. The intraskip
connection at each level to fuse convolution block was
implemented by transposing up-sampling layers.

Dual attention gate (DAG). DAG has two parts: channel attention
gate (cAG) and spatial attention gate (sAG). Both have two parts,
squeezing and exciting parts as depicted in Fig. 2a.

● cAG block could be considered as a self-attention
function intrinsically exciting the most important feature
channels. cAG squeeze all spatial features into a channel-
wise descriptor by a global average pooling layer and a
global max-pooling layer. The most activated local spatial
receptive fields would lead to the highest global average/
max for its corresponding channel. Then the channel-
wise dependencies are calibrated by a fully connected
dense layer with sigmoid activation to generate a set of
weights of the aggregated spatial information. Each
channel will be excited by its corresponding weight
post-to the cAG block.

● sAG block could be considered as a self-attention function
intrinsically exciting the most important receptive fields.
sAG squeezes channel-wise features into spatial statistics
with Global Maximum Pooling (GM pooling), Global
Average Pooling (GA pooling), and 1 × 1 × 1 convolution
layer. Any local spatial semantical features will be excited
by a 5 × 5 × 5 convolution layer with SeLU activation to
condition network’s attention locally. The sum of both
excited spatial local features from both inputs is further
calibrated by a 1 × 1 × 1 convolution layer with sigmoid
activation.

sAG and cAG both take two inputs: “input 1” from low-level
encoded features directly from images at the same receptive scale,
“input 2” is all accumulated encoded features from all previous
levels, including the current scale level.

SeLU: self-normalization activation function. Compared to recti-
fied linear unit (ReLU), SeLU activation function was reported to
have more power to reduce gradient vanish problem among more
complicated network structures. Besides, its self-normalization
makes the network learn more from morphological features and
be less dependent on image contrast. Hence, we used SeLU
activation function in our proposed networks.

Deep supervision. Deep supervision is adopted in our model to
learn hierarchical representations at each level. Each decoder and
the fuse block are fed into a 3-by-3-by-3 convolution layer with
sigmoid activation to generate side output, which is supervised by
our ground true lesion annotation at its corresponding level.

Loss function. To ameliorate the imbalanced voxel classes issue
(between the number of lesion and non-lesion voxels) and reg-
ularize the false-positive rate predicted by networks, a hybrid loss
function described in Eq. (6) was utilized to train our proposed
models.

Lfinal ¼ Lfuse þ ∑
4

i¼1
Li;side; ð6Þ

where Lfuse is the loss function supervised at the final output of
the fusion block Xfuse and Li,side is the loss function supervised at
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Fig. 2 Our proposed model for lesion detection and segmentation. a The architecture of the DAGMNet. In DAG, sAG stands for spatial attention gate and
cAG stands for channel attention gate. “Nf" denotes the number features (Nf= 32 for our final deployed DAGMNet). b Flowchart of the input image’s
dimension for training networks and flowchart of the lesion predict’s dimension for inferencing networks in IP-MNI (high-resolution) space.

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-021-00062-8 ARTICLE

COMMUNICATIONS MEDICINE |            (2021) 1:61 | https://doi.org/10.1038/s43856-021-00062-8 | www.nature.com/commsmed 7

www.nature.com/commsmed
www.nature.com/commsmed


the side output of the decoders at each level Xde,i as follows:

Lfuse ¼ wgdsLgds þ wbbcLbbc þ wrL1 ð7Þ

Li;side ¼ wgdsLgds þ wbbcLbbc; ð8Þ
where wgds= 1,wbbc= 1, wr= 1e− 5 due to hyperparameter
tuning, Lgds is the generalized dice loss function defined as42, Lbbc
is the balanced binary cross-entropy defined as21, and L1(p) is the
L1 regularization on all predicted voxels defined as

L1 ¼ ∑
ðx;y;zÞ

jpðx;y;zÞj; ð9Þ

where p(x, y, z) is the predicts from networks at (x, y, z) coordinates.
The loss function is optimized during training step by ADAM
optimizer with learning rate= 3E− 4. Learning rate will be factor
by 0.5 when loss function is on a plateau over 5 epochs with
minimum learning rate= 1E− 5.

The dimension of the inputs and predicts during training and
inferencing. The networks were trained and inferenced in IP-MNI
DS space, which is 96 × 112 × 48 voxels. All images (DWI, ADC,
IS) in IP-MNI space were downsampled (DS) along x, y, and z
axis with stride of (2, 2, 4) into 16 smaller volumes in
96 × 112 × 48 × 3 voxels for 3-channel models, as shown in
Fig. 2b. The input shape of networks with 3 channels is
96 × 112 × 48 × 3.

During training step, as shown in Fig. 2b, one of these 16
downsampled volumes are randomly selected to be the inputs of
3-channel networks for each subject in a selected batch (batch
size= 4). This re-sampling strategy aims to increase the
robustness of our networks to the image’s spatial shifting and
inhomogeneity. To make efficient backpropagation for training
networks, the downsampled volumes were standard normalized
to zero mean and unit-variant within the brain mask region for
both DWI and ADC channels.

During inferencing step, the 16 lesion predicts from networks
in IP-MNI DS space were stacked according to the way their
inputs volumes were downsampled in the original coordinates, to
construct the final predict in IP-MNI space (Fig. 2c). Then, the
lesion mask was “closed” with connectivity 1 voxel. The predicted
lesion binary mask (predicted value > 0.5) in IP-MNI space was
then mapped back to individual original space. We refined the
final prediction by removing clusters with <5 pixels in each slice,
which is the smallest size of lesions defined by human evaluators.

Hyperparameter. For searching hyperparameters, such as weights for
loss functions and networks structures, 20% of subjects from the
training dataset were randomly selected as validation dataset, with the
same random states for all experiment models. In each experiment,
once the loss functions converged in validation dataset along the
training epochs (200 epochs at top, early stops at 100 epochs if
training and validation loss function converged early), we selected the
best model from the snapshot models at every 10 epochs in the
validation dataset. We chose maximum training epoch as 200
because most experiments of benchmark models converged after 80
to 120 epochs. For each experiment, we trained the same-type net-
works independently, with different training set and different
resampled validation set, at least twice to check if similar perfor-
mance would be achieved and avoid overfitting. Once the networks
parameters (including weights for loss or regularization, different
network layers, depth...etc.) were finalized according to their best dice
performance in the validation sets, we used the whole training
dataset, including the validation dataset, to train the final deployed
models and to make the loss function and dice scores converge to the
similar level as the previous experiment. This allowed us to fully use
all training dataset and capture the population variation. All Testing

datasets and the STIR datasets were totally unexploited till this step
was done.

System implementation. All the evaluated methods and models
were built with TensorFlow43 (tensorflow-gpu version is 2.0.0)
and Keras44 (2.3.1) framework on Python 3.6. Imaging processing
and analysis were built with Nibabel45, Scipy46, Dipy47, and
Scikit-image48,49. The experiments run on a machine with an
Intel Core (Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz) with 2
NVIDIA TITAN XP GPUs (with CUDA 10.1). The average
inference time over all testing dataset and memory requirements
are listed in Table 2.

Evaluation of efficiency and comparison among methods. The
performances metrics, Dice score, precision, sensitivity, and
subject detection rate (SDR), are defined as follows.

Dice ¼ 2TP
2TP + FN + FP

ð10Þ

Precision ¼ TP
TP + FP

ð11Þ

Sensitivity ¼ TP
TP + FN

ð12Þ

SDR ¼ the number of the subjects detected with lesions
the number of the total subjects in dataset

ð13Þ

TP, FP, and FN, respectively, denote the number of true positives,
false positives, and false negatives in the unit of the voxel. The
SDR represents the percentage of the subjects whose lesions are
detected. Therefore, high SDR indicates good performance in the
datasets of subjects with visible lesions (our testing dataset and
STIR) but indicates low performance in the dataset of subjects
with “not visible” lesions, because the predicted lesion voxels
would be false positives. Hence, in the dataset of subjects with
“not visible” lesions, it is false-positive SDR.

All models were compared to the manual delineation of the
stroke (used here as “gold-standard”) on original raw space. All
models were trained, validated, and optimized in the same
training dataset, and tested in the independent testing dataset and
in the external dataset, STIR. For fair comparison, all models were
designed to utilize similar number of trainable parameters, except
for DeepMedic, whose default network uses more trainable
parameters than all other networks (Table 2).

Besides comparing global performance in the whole brain, we
compared models’ performance according to lesion volume and
location (by vascular territories) and analyzed the Spearman
correlation coefficient of performance with the lesion volume and
contrast in DWI and ADC. The “scipy.stats” module is used to
calculate the Spearman correlation coefficient. The 95%CI for
SDR is calculated with z score= 1.96 and the 95% CI for the
Spearman correlation coefficient is calculated by Fishers’
transformation with z score= 1.96.

The lesion contrast in DWI, κDWI, and in ADC, κADC, are
defined as the ratio between the average intensity of the lesion
voxels and the average intensity of the “normal brain tissue”
voxels in DWI and ADC, respectively. High κDWI and low κADC
are expected in acute and subacute lesions which tend to be
“bright” in DWI and “dark” in ADC. Furthermore, false-positive
analysis was conducted on voxel- and subject-basis among the
499 images with “not visible” lesions.

Statistical significance testing. The statistical significance testing was
performed by ANOVA test in module “bioinfokit” for continuous
data, and by Chi-square test in “scipy.stats.chi2_contingency”module
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for categorical data. The statistical significance on the demographic,
lesion, and image profiles distribution between training and testing
datasets is shown in Supplementary Table 1. For race/ethnicity and
MRI manufacturer, we compared the major groups. For symptoms
onset to MRI time, we compared groups with onset time < 6 and
≥6 h. The statistical comparison among models’ performance in the
Testing and STIR dataset is shown in Supplementary Fig. 3. The
statistical comparison of models’ performance regarding to demo-
graphic, lesion, and image profiles is illustrated in Supplementary
Fig. 4.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Lesion segmentation with unsupervised (“classical”) methods.
An important question is how the lesion segmentation generated
by unsupervised classic methods for abnormal voxel detection

compares with DL; and whether the combination of supervised
and nonsupervised methods improves the performance. To
investigate these questions, we generated ischemic probabilistic
maps of abnormal voxels, here called “IS”, via the modified
c-fuzzy algorithms15 as detailed in Methods. The best model
(Supplementary Table 2) showed modest efficiency on the Testing
dataset (Dice: 0.45 ± 0.26) and in STIR 2 (Dice: 0.48 ± 0.28) and
was even less efficient in STIR 1 (Dice: 0.23 ± 0.22).

General comparison of DL models’ performance. Our proposed
3D network, called “DAGMNet” (Fig. 2), was compared with
other generic benchmark networks, including FCN, UNet, and
DeepMedic. All models were compared to the manual lesion
delineation.

In general, “CH3” models that utilize three channel inputs
(DWI+ADC+IS, the probabilistic ischemic maps obtained by the
modified c-fuzzy method) performed slightly better than “CH2”
models (that have only DWI and ADC as inputs). This is
particularly noticeable in STIR 1, in a trade-off a slight increase in

Fig. 3 Performance of all models (DeeMedic, DAGMNet, UNet, FCN). The performance is shown according to testing dataset (a), vascular territory (b),
and lesion volume (c), S: small, M: medium, L: large. In each Whisker’s boxplot, the white square indicates the average; the black trace indicates the
median. The whisker is a representation of a multiple (1.5) of the interquartile range (IQR). False-positive and false-negative are in units of voxels, in the
original image space. All the sub-figures share the same legend as in sub-figure (c).
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false positives. It is likely that the extra “IS” channel conditions
the network attention to regions of abnormal voxel intensity. This
improves the model performance in most of the cases, as the
identified abnormal voxels truly correspond to lesions. On the
other hand, it might increase the false positives in a minority of
cases, in which the abnormal voxels correspond to DWI artifacts.

As depicted in Fig. 3 and Table 2, our proposed model,
DAGMNet_CH3, outperforms generic UNet and FCN in all the
testing datasets, with higher Dice scores and higher Precision.
This is particularly significant by comparing the performances of
DAGMNet and FCN in the Testing dataset and STIR 2
(Supplementary Fig. 3). This suggests the robustness and
generalization of our proposed model to external data. Compared
to DeepMedic, our proposed model shows higher Dice in the
testing dataset, comparable Dice in STIR 2, and lower Dice in
STIR 1, although all differences are not statistically significant.
DAGMNet_CH3 also shows significantly higher precision than
DeepMedic in the Testing dataset and STIR 2, but lower
sensitivity, with a higher number of false negatives in the Testing
set. On the other hand, DeepMedic detected significantly more
false positives than all other models, both subject-wise and voxel-
wise. For instance, DeepMedic claims false-alarm lesions in more
than 55% (twice as our model) of the “not visible” lesion cases.

Performance according to lesion volume and location. Taking
advantage of our large dataset, we stratified the testing dataset
into three comparable sized groups, according to the lesion
volumes. These groups contain subjects with lesion volumes
here called small, “S” (<1.7 ml, n= 152), medium, “M” (≥1.7 ml

and <14 ml, n= 144), and large, “L” (≥14 ml, n= 163). All the
models, except for FCN, perform comparably well in subjects
with large lesions, as shown in Figs. 3, 4, and Table 2. Our
proposed model and UNet have remarkably higher Dice in sub-
jects with small lesions. Specifically, our proposed model has
significantly higher Dice compared to DeepMedic (by average
Dice:+0.05, P value:=0.02), UNet_CH2 (by average Dice:
+0.06, P value= 0.03), FCN_CH3 (by average Dice:+0.14,
P value= 3.9E− 8), and FCN_CH2 (by average Dice:+0.17,
P value= 3.0E− 11).

By grouping lesions according to their location in the major
vascular territories (anterior, posterior, middle cerebral arteries—
ACA, PCA, MCA—and the vertebro-basilar—VB—territory),
we observed that all models had their worse performance in
ACA and their best performance in MCA (Fig. 3). As shown in
Table 1, the MCA lesions are, in average, larger than lesions in
other territories, while the ACA territory contains smaller
lesions with lower DWI contrast and is more prone to DWI
artfacts. Our models outperformed DeepMedic and generic UNet
in ACA and VB territories. Last, the trade-off between
precision and sensitivity was clear, for all the models, in MCA
lesions.

Performance according to affected hemisphere, population
demographics, and scanner profile. In general, all the models
performed consistently, regardless the affected hemisphere,
patients’ sex and race, symptoms onset to MRI time, scanner
manufacturers, and magnetic strengths, as indicated in Fig. 5 and
Supplementary Fig. 4. The only exceptions were DeepMedic and

Fig. 4 The probability density of the Dice score. The probability density (y axis) of the Dice score of different models in the Testing dataset; (a) is for all
subjects; (b), (c), and (d) are stratified by the lesion volume. All the sub-figures share the same legends as the sub-figure (d).
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FCN_CH2, that had significantly lower Dices in Manufacturer 3
(GE), compared to Manufacturer 1 (Siemens) with P values
0.0223 and 0.0413, respectively. However, this is interpreted with
caution given the small sample of Manufacturer 3 (GE) in the
Testing dataset.

Relationship of the models’ performance with lesion volume
and contrast. The models performance, represented by the Dice
agreement between the “human-defined” and the “network-
defined” (predicted) lesion positively correlated with the lesion
volume and lesion contrast in DWI, and negatively correlated
with the lesion contrast in ADC (Fig. 6). This means that, as
expected, large and high-contrast lesions are easy to define, both
by human and by artificial intelligence. Our proposed model has
the lowest correlation between the Dice and lesion volume.
Because the Dice score is sensitive to false positives, large lesions
tend to have higher Dice than small lesions even for methods with
uniform performance across lesion volumes. The decrease of the
correlation between Dice and volumes found for our proposed
method might result from its superior performance in small
lesions. The correlation between the human-defined lesion

volume versus the predicted lesion volume is high for all the
models (Table 2 and Fig. 6). Our proposed model showed the
highest correlation coefficient between the human-defined lesion
contrast versus the predicted lesion contrast, implying the highest
agreement with human annotation.

Discussion
Although several multicenter and clinical trials2–5 as well as
lesion-symptom mapping studies6 reinforced the need for the
quantification of the acute stroke core, there is a gap to be filled
by free and accessible technologies that provide fast, accurate, and
regional-specific quantification. Commercial platforms50 are
restrictive and do not provide the 3D lesion segmentation
required for lesion-based studies or for objective clinical appli-
cation. Refining methods and disseminating technologies to
improve the current lesion estimation will enable better tuning
parameters of clinical importance, improving individual classifi-
cation, and modeling anatomicofunctional relations more reliably
and reproducibly. We proposed a DL model for acute ischemic
lesion detection and segmentation trained and tested on 2348
clinical DWIs from patients with acute stroke, the largest dataset

Fig. 5 Performance of all models (DeeMedic, DAGMNet, UNet, FCN) in the Testing dataset. The performance is shown according to (a) lesion
hemisphere, (b) scanner manufacturer, (c) MRI magnetic field, (d) patient’s race, (e) patient’s sex, and (f) symptom onset to MRI time. In each Whisker’s
boxplot, the white square indicates the average; the black trace indicates the median. The whisker is a representation of a multiple (1.5) of the interquartile
range (IQR). All the sub-figures share the same legends as sub-figure (c).
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employed so far. We further tested this model on an independent,
external dataset of 280 images (STIR). The utilization of a large,
biologically, and technically heterogeneous dataset, overcomes
previous limitations of DL models developed in much smaller
datasets, as their questionable generalization potential36. The use
of real clinical data, which usually imposes extra challenges to
image processing, such as low resolution, low signal to noise, and
lack information from multiple contrasts, guarantees the
robustness of the developed models for large-scale, real scenario
applications.

Our proposed model (DAGMNet) showed superior perfor-
mance than generic models such as UNet and FCN, and
DeepMedic, in our independent testing dataset. Our method
was significantly superior on segmenting small lesions, a great
challenge for previous approaches, while presenting low rate of
false-positive detection. This might be a result of the use of
large amounts of training data, as well as a contribution of the
attention gates and the full utilization of brain morphology by
our 3D network, which increases the robustness to technical
and biological DWI artifacts. This superiority was evidenced by
our method’s high performance in vascular territories that
contains small lesions and are artifact-prone such as ACA and
VB (illustrative examples in Fig. 7). The balanced precision
and sensitivity, and the lower dependence on stroke volume and
location compared to other methods, make our model well
suited not only for lesion segmentation but also for detection,
an important component for clinical applications. In addition,
our proposed pipeline showed stable performance regardless

the affected hemisphere, population profile and scanner
characteristics, other important conditions for large-scale
applications.

In the external testing dataset (STIR), our method’s perfor-
mance was again superior or rivaled with that of others. An
exception was the lowest Dice achieved in STIR 1, compared to
DeepMedic. STIR 1 contains patients with hyperacute strokes
(subtle hyperintense or normal intense lesions in DWI). These
types of lesions are less frequent in patients with acute and early
subacute strokes in our training dataset and particularly chal-
lenging for whole-brain-wise networks, compared to local
patch-wise networks like DeepMedic. Similarly, our method
produced less accurate segmentation in a few cases (n= 4) with
large, late subacute lesions in STIR 2, that presented subtle
intensity contrast in their boundaries (example J in Fig. 7).
Note, however, that the advantage of segmenting hyperacute
lesions and lesions with subtle contrast was traded-off by the
low precision and high false-positive rate of DeepMedic in
SITR. The incorporation of the patients with hyperacute strokes
in our training dataset, a follow-up local patch-wise segmen-
tation network, and/or using DL techniques like transform
learning might ameliorate these issues and are in our future
plans. Last, a common source of failure for all methods was
errors in skull stripping that increased false positives outside
the brain contour. This only occurred in a small number of
STIR images (n= 7) that presented a high level of background
noise due to an outdated acquisition protocol, therefore, is
unlikely an issue for future applications.

Fig. 6 Correlation between lesion features and segmentation performance, and correlation between lesion features as segmented manually or
automatically. The first three columns are scatter plots of lesion features (volume, DWI, and ADC contrast) versus Dice score of the different models
(rows) in the Testing dataset (n= 459). They show how the models perform in lesions of diverse volume and contrast. The last three columns are the
metrics of volume, DWI, and ADC of the lesions as traced by human evaluators (“true”) vs. as predicted by the different models (rows). Volumes are in ml.
ADC values are in 1e− 4mm2/s. Spearman’s correlation coefficient and 95% CI are in Table 2. The DWI contrast metrics are defined in “Methods”.
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The automated DL models (our proposed DAGMNet, Deep-
Medic, and Unet) achieved comparable lesion quantification
performance to our experienced evaluators, because their agree-
ment with human delineation was close to the interevaluator
agreement (Dice: 0.76 ± 0.14, as described in Methods). Among
all the tested models, our proposed model showed the highest

correlation between the contrast of the predicted lesion and the
human-defined lesion, indicating the highest agreement with
human evaluation. Still, we noticed circumstantial disagreements
of our method with the human evaluators in 24 cases (5% of the
testing set), in which the retrospective radiological evaluation
favored the results of the automated segmentation, particularly
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regarding to the boundaries definition (Fig. 7H). Similarly, by
reviewing the “false-positive subjects” (cases in which models’
predicted lesions but were initially classified as “not visible”
lesions by visual radiological inspection), we identified 29 cases in
which the lesion was identified in retrospect, in the light of our
method’s prediction (example in Fig. 7I). This illustrates the
possible advantages of automated methods in reliability and
reproducibility.

In addition to be accurate on lesions detection and segmen-
tation, robust to data perturbs (e.g., DWI artifacts, low-resolution
sequences, low signal to noise ratio, heterogeneous datasets), and
generalizable to external data, our proposed method is fast: it
utilizes half of the memory required by its closest competitor,
DeepMedic, inferring lesions in half of the time (less than a
minute, in CPUs) (see Table 2). All these factors make it
potentially suitable for real-time applications. Regardless of all
these advantages, a method has no massive utility if only the
developers or highly expert analysts are able to use it. Therefore,
we made our method publicly accessible on https://
www.nitrc.org/projects/ads51 and ref. 52 and readily useful to
run in CPUs with a single command line, and minimal installa-
tion requirements. To the best of our knowledge, this study
provides the first DL networks for lesion detection and segmen-
tation, trained, and tested over 2000 clinical 3D images, available
to users with different levels of access to computational resources
and expertise, therefore representing a powerful tool for clinical
and translational research.

Data availability
The source data for the main result figures in the manuscript are available at https://
zenodo.org52. The original images used for training and testing the models derive from
retrospective clinical MRIs and are not publicly available, due to their sensitive
information that could compromise research participant privacy. These data can be
requested with appropriate ethical approval by contacting Dr. Andreia V. Faria
(afaria1@jhmi.edu). The STIR data were used under approval from the STIR steering
committee for the current study, and so are not publicly available. These data are
however available from the STIR/Vista Investigators upon reasonable request to Dr.
Marie Luby (lubym@ninds.nih.gov).

Code availability
The tool described in this study is publicly available at https://www.nitrc.org/projects/
ads51 and at https://zenodo.org52.
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