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Ruediger Wirth 
Paul O'Rorke 

Department of Information and Computer Science 
University of California, Irvine, CA 92717 

U nited States of America 

Abstract 

This chapter describes an inductive learning method that derives logic programs 
and invents predicates when needed. The basic idea is to form the least common 
anti-instance (LCA) of selected seed examples. If the LCA is too general it forms the 
starting poínt of a gneral-to-specific search which is guided by various constraints on 
argument dependencies and critica! terms. A distinguishing feature of the method 
is its ability to introduce new predicates. Predicate invention involves three steps. 
First, the need for a new predicate is discovered and the arguments of the new 
predicate are determíned using the same constraints that guide the search. In the 
second step, instances of the new predicate are abductively inferred. These instances 
form the input for the last step where the definition of the new predicate is induced 
by recursively applying the method again. We also outline how such a system could 
be more tightly integrated with an abductive learning system. 

1This is a revised and expanded version of Wirth, R., & O'Rorke, P. (1991) Constraints on predicate 
invention. In L. A. Birnbaum, & G. C. Collins (Eds.), The Eighth lnternational Workshop on Machine 
Learning (pp. 457-461). Evanston, IL: Margan Kaufmann. Research supported in part by National Sci­
ence Foundation Grant Number IRI-8813048, Douglas Aircraft Company, and the University ofCalifornia 
Microelectronics Innovation and Computer Research Opportunities Program. 
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1 Introduction 

In recent years there has been increasing interest in systems that induce first order logic 
programs. The approach of inverting resolution (Muggleton & Buntine, 1988; Rouveirol 
& Puget, 1989; Wirth, 1989) is particularly interesting because it offers a way to extend 
the vocabulary by inventing new predicates. However, the first implementations were too 
inefficient to be useful for larger applications. 

Quinlan's FOIL (Quinlan, 1990) was an advance towards more e:fficient induction 
algorithms for first order languages. Subsequently, Muggleton & Feng (Muggleton & 
Feng, 1990) presented a new system, called GOLEM, which is based on inverse resolution 
and which is also able to process large numbers of examples. But, despite their e:fficiency 
these two systems are highly dependent on the vocabulary and the form of examples that 
are given in advance. They cannot extend their vocabulary. 

This paper describes an attempt to overcome this limitation. We propose a new way 
to construct a first-order theory which allows for natural incorporation of background 
knowledge and the invention of new predicates. The method, implemented in a system 
called SIERES, is based on a general-to-specific search guided by constraints on the form 
of clauses. 

Unlike FOIL, which searches in a very unconstrained space, SIERES iteratively in­
creases the space by looking at increasingly complex clauses. lf it cannot construct a 
clause that covers the training instances in the current restricted space using known pred­
icates only, SIERES tries to invent a new predicate. There are sorne strict and heuristic 
conditions on the new predicate. lf the predicate can be constructed, SIERES continues 
to learn a general definition for it, abductively deriving new instances. 

Existing methods for inventing new predicates, for instance in the framework or inverse 
resolution like CIGOL (Muggleton & Buntine, 1988) or LFP2 (Wirth,1989) invent new 
predicates in order to reformulate a given set of clauses aiming at a more compact or a 
more comprehensible representation. Compaction is used for two purposes, compressing 
the theory and generalizing it. While there is a close connection between data compression 
and generalization, we claim that in the case of predicate invention it is beneficia! to keep 
them apart. Compaction remains an important criterion for evaluating hypotheses but 
for predicate invention it should not be the dominating one. 

2 Integrating Abduction and Induction 

This paper describes a novel learning method that integrates abduction and induction. 
Abduction is used to complete explanations and infer specific missing facts. Induction is 
used to invent clauses and predicates in order to extend the general theory and improve 
its explanatory power. 
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2.1 Learning Specific Facts by Synthesis 

Existing abductive learning methods learn while using general theories to construct ex­
planations of specific observations (O'Rorke, Morris & Schulenburg, 1990). The learning 
method is a form of abductive inference. Queries that do not ground out in known facts 
are treated as more or less plausible hypotheses on the grounds that if they were true 
they would complete explanations of the observations. 

A simple abductive learning method called "synthesis" was proposed by Pople (Pople, 
1973). Technically, the method works as follows. Given an observation and a theory 
expressed as Horn clauses, backward chain in search of a proof justifying the literals of 
the observation. If two queries are generated that are unifiable, unify them and assume 
that the resulting literal is true. Since it enables one to explain two observations with 
the same hypothesis, Pople justified this operation in terms of Occam's Razor. Note that 
Pople's synthesis operation is non-deductive, so this method of abductive learning is a 
form of knowledge-level learning. In other words, if a literal is added to the theory by 
synthesis, it enlarges the deductive closure of the theory. 

2. 2 Learning General Facts by Anti-Synthesis 

Least general generalization LGG (Plotkin, 1970), or least common anti-instance LCA 
(Lassez, Maher & Marriot, 1988),2 can be used in an abductive framework to learn in­
teresting new literals that are generalizations rather than specializations of literals that 
appear in existing rules. Assuming that Q1 and Q2 are two queries that arise in explana­
tions of the same or different cases, Q = LCA(Qi, Q2 ) is a hypothesis that would explain 
Q1 and Q2 . 

This is a dual to Pople's synthesis operator; call it anti-synthesis. In synthesis, the 
queries Q1 and Q2 have to be unifiable. This is not necessary in anti-synthesis. The 
queries Q1 and Q2 could be ground literals involving the same predicate symbol but 
different arguments. In synthesis, the queries unify to a new literal ( their most general 
common instance). The queries both subsume this new literal. In anti-synthesis, the 
new literal Q is the least general common anti-instance of Q1 and Q2 • It subsumes Q1 

and Q2 but different substitutions might be used to get each instance. Like synthesis, 
anti-synthesis leads to new literals that improve the coherence of explanations. 

2.3 Learning New Clauses 

The LCA of abductive hypotheses serves as the initial candidate in our search for a clause 
that would enable us to complete an explanation. Assuming that the missing clause is 

2Plotkin's least general generalization is equivalent to L~ et al's least common anti-instance. Here 
we use the tenn LCA because it captures the meaning more precisely. 
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applicable to a set of abductive hypotheses, the head of the clause must be unifiable 
with each hypothesis, so it must be a generalization of these hypotheses. Unfortunately, 
the LC A of the abductive hypotheses is often overly general. During the generalization 
process important connections between input and output arguments are often lost. In 
this case, we specialize the learned clause by adding literals to its body such that the 
missing connections are restored. This enables us to acquire missing clauses other than 
unit clauses. 

There are different ways to specialize a clause (e.g. Kietz & Wrobel, 1991; Quinlan, 
1990; Shapiro, 1983) and different ways to constrain the search. In the next section we 
describe a method using a novel combination of constraints. 

3 The Method 

In the following description of the learning task and our method, we use the terminology 
of logic programming (Lloyd, 1987). 

3.1 The Task: Learning New Clauses 

Given: 

• background knowledge P and 

• a set of initial goals (training instances) E = {E1, ···,En} that follow fróm an 
unknown target program Ptarget:::) P, but not from P 

the learning goal is to construct a set of gefinite clauses Ctarget such that 

PU Ctarget f-sLD E. 

In other words, we want to extend a given theory to cover new examples. 

3.2 Strict Constraints on New Clauses 

Let us assume we are in a state with goals { Ei, · · · , En }3 where none of the clauses of the 
current program P is applicable to any of the Ei. We have to generate a new clause in 
order to complete the proof. 

Assuming that there is exactly one clause missing, there are two strict constraints on 
this new clause: 

3These goals could be either abductive hypotheses as described in the previous section or teacher 
provided training instances as in the usual inductive learning situation. 
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• Its head has to be unifiable with ali the Ei. 

• The clause has to produce the proper bindings for the output variables. 

These two strict constraints form the basis of our method. Since the head of the clause 
must be unifiable with all the instances it must be a common anti-instance and must be at 
least as general as the least common anti-instance (LCA). Often, the LCA is too general. 
The only way to specialize it is to view it as a unit clause and specialize this unit clause 
by adding literals. 

Usually, overgeneralizations are discovered using negative examples. But there is a 
syntactic way to identify sorne important cases of overgeneralization which is is related 
to the second constraint above. If the input/output behavior of the target predicate is 
given, for example in the form of mode declarations (Shapiro, 1983), unbound output 
variables indicate overgeneralization and, even more importantly, provide guidance to the 
specialization process. 
Example: reverse/2. Let us assume we have a mode declaration reverse ( + ,-) specify­
ing that the first argument is an input while the second argument is the output.4 Now, let 
us look at the following three unit clauses, which could be the LCAs of sets of instances. 

reverse([A],[A]). 
reverse([A,B],[B,A]). 
reverse([AIB],[CID]). 

The first two are correct according to the intended meaning of reverse/2. For any input 
list containing one or two elements these two unit clause generate the correct reversed 
lists. The third one is overly general. In it, there is no connection between the input 
and output arguments at all. This predicate would be true for any two lists. If we view 
this unit clause as a procedure with the inode declaration specified above, the output 
variables would remain unbound because they do not also appear as input variables. 
These unbound output variables indicate overgeneralization. The need to bind them 
in the body of a clause provides guidance to the specialization process. The following 
definition of critical terms tries to capture this. 

Definition: Critical terms of the head of a clause are 

• output variables that do not appear in the input argumenta 

• input variables that do not appear in the output arguments 

• terms whose arguments are critica! variables 

4We use this notation throughout the paper. 
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Example: Given mode declaration reverse ( +, - ) , the critical terms of reverse([AIB], [CID]) 
are the members of the set {[AIB], A, B, [CID], c, D}. 

Critica! terms provide a focus of attention while searching for a literal to add to the 
clause and are used to determine arguments of the newly invented predicate. 

3.3 Heuristic Constraints on New Clauses 

In addition to these relatively strict constraints, we employ heuristic constraints, in other 
words a representational bias, on the types of clauses that are to be learned. These 
additional constraints serve to prune the search space and provide information necessary 
for the invention of new predicates. 

In meaningful clauses, the literals in the body are usually not independent of each 
other but share at least sorne variables. This dependency can be used to partially order 
the literals in a clause. 

Definition: A literal L2 depends on a literal L1 if 

• they share a variable V where 

• V is an output variable in L1 and 

• V is an input variable of L2 . 

Example: In a form of reverse/2 defined: 

reverse([AIB] ,[CID]):­
reverse(:B,E), 
add.-1ast(E,A,[CID]). 

with the mode declarations reverse(+, - ) , add.-1ast ( +, +, - ) the dependencies are as 
shown in figure l. The tail of the input list in the head is passed to the first literal of 
the body as an input. The output of this recursive call is passed as an input to the final 
literal of the body. This literal also takes the first element of the initial input to the head 
and its output is passed back to the head as the output computed by the clause. 
Example: In the form of merge sort defined: 

merge_sort([AIB],[CID]) :­
split([AIB] ,E,F), 
merge_sort(E,G). 
merge_sort (F, H) , 
merge(G,H,[CID]). 
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reverse([AIB], [CID]) 

\ 
add_last(E, A, [CID]) 

Figure 1: Dependencies in reverse/2 

merge7L, SL) 

split(L, L1, L~ 

merge_sort(L 1 , SL 1) merge_sort(L2, SL2) 

merge(SL 1, SL2, SL) 

Figure 2: Dependencies in merge_sort/2 
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Figure 3: Argument dependency graphs. The boxes represent literals where the root 
is the head of the clause. The arrows indicate the dependencies between these literals. 
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with the mode declarations merge_sort ( +, - ) , spli t ( +, - ) , merge ( +, +, - ) the depen­
dencies are as shown in figure 2. 

SIERES is provided with a set of argument dependency graphs (figure 3), a kind of 
schemata. These argument dependency graphs are not detailed templates for the clauses, 
as for instance the rule models of (Kietz & Wrobel, 1991), but specify the dependency 
relationships that are allowed. Input terms of literals in the body must be subterms of 
input terms of the head or subterms of output terms of previous body literals. At least 
one input argument of each body literal must be a subterm of one output argument of 
the immediately preceding body literal. The output arguments of the last literal must 
bind all output variables in the head that are not yet bound. The restriction to subterms 
of previous terms serves to avoid an infinite set of possible terms. 

These dependencies are used to guide the general-to-specific search. Muggleton & 
Feng (1990) use such dependencies for detecting relevant literals in a specific-to-general 
search. 

3.4 Algorithm 

As mentioned in the description of the task, the algorithm is given as input background 
knowledge and training examples. In addition, the algorithm is given mode declarations 
of all known predicates and a sequence of argument dependency graphs. The output of 
the algorithm is a set of clauses C such that the examples follow from the new clauses 
and the background knowledge. 

The basic idea of the method (figure 4) is as follows. First, the LCA of the training 
instances is formed. If this is too general, a search for more specific clauses is conducted, 
subject to constraints that prevent the search from getting out of hand. New predicates 
are introduced as needed. 

The current implementation of SIERES constrains search using mode declarations and 
a limited sequence of argument dependency graphs. Critical output variables provide a 
focus of attention while searching for a specialization of an overly general unit clausé. 
The main goal of the search is to find a body that binds the critical output variables. 

The first step in the algorithm is to select a subset of the examples such that this 
subset will be covered by just one clause. 5 From this subset, SIERES selects a few 
examples which serve as a seed for the remainder. 

Then, SIERES selects an argument dependency graph. These graphs are ordered 
according to their complexity. SIERES starts with the simplest argument dependency 
graph and tries to find a clause that obeys the constraints of this graph. If such a clause 
cannot be found then a more complex dependency graph will be used for the next attempt. 

5Currently, this part is limited to splitting simple recursive predicates into instances of the base case 
and of the recursíve case. 
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SIERES keeps track of severa! copies of the argument dependency graph selected, 
one for the general clause which is supposed to be learned and one for each of the seed 
examples. The heads of all the clauses that are tried are the same regardless of the 
graph selected. The heads of the specific clauses are the seed examples, the head of the 
general clause is the LCA of the seed examples. The body of the specific clauses consist of 
facts from the background knowledge only. The general clause is the LCA of the specific 
clauses. 6 While constructing the body of the clauses there is a close interaction between 
the general and the specific clauses and information from both tlíe general and the specific 
graphs is exploited. 

At each step SIERES searches for ea.ch specific graph for a fa.et such that the con­
straints of the argument dependency graph are fulfilled and that the general clause, the 
LCA of the specific clauses, is legal, i.e. none of the literals has been generalized to a 
variable. Recall that input terms of literals in the body must be subterms of input terms 
of the head or subterms of output terms of previous body literals. Since this property 
must hold for both the general and the specific clauses in a coherent way, the general 
clause is used as a basis for determining potential input terms for the specific clause. The 
search space is considerably smaller this way. This interaction will become clearer in the 
example discussed in the following section. 

If a general clause can be found that fulfills all the constraints, the algorithm termi­
nates. If all but the last literal of the clause could be constructed, SIERES tries to invent 
a new predicate. The first problem is to determine the arguments of this predicate. As 
for the other body literals information from both the general and the specific clauses are 
used. The output terms of the new predicate are the critica! output terms that are not 
yet instantiated in the general clause. The input arguments are determined using the 
critica! input terms and the constraints from the argument dependency graphs. Critica! 
input terms that have not yet been used in the general clause constructed so far are taken 
as input arguments. This can be justified by an Occam's razor argument. If these input 
terms were not used there would be no reason to provide them. More input arguments are 
derived from the literals directly preceding the last literal in the argument dependency 
graph. The longest output terms of the literal that share all their constants with the 
output terms of the new predicate are also taken as input arguments. 

The next step is to find a definition for this new predicate. This is done in two 
steps. First, instances of the new predica.te are generated. Second, these instances are 
given as input to a recursive call to SIERES. If a definition for this new predicate can 
be constructed, the algorithm will stop. Otherwise, it will backtrack and try alternative 
solutions. 

60f course, the LCA is not defined for clauses. But this is only a minor technical problem which can 
be overcome by viewing the specific clauses as terms. Then, the LCA is defined and the result can in 
turn be interpreted as a clause. 
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In arder to construct instances of the new predicate, SIERES takes the general clause, 
applies it to all the known instances of th.e target predicate, and abductively infers in­
stances of the new predicate to complete the proofs. The next section describes examples 
of learning sessions with SIERES. 

4 Examples 

In this section, we illustrate the method with examples. We give detailed descriptions of 
how SIERES learns append/3, reverse/2, and DeMorgan's law. 

4.1 Learning append/3 

Let us assume that we want to learn the definition of append/3 with the mode declaration 
append ( +, +, - ) . 7 At the beginning we have a set of training examples including 

append( [s] , [t], [s, t]) 
append( [], [t], [t]) 
append([d,e,f],[g,h],[d,e,f,g,h]) 
append([e,f],[g,h],[e,f,g,h]) 

The seed examples may be append( [s], [t], [s, t]) and append( [d ,e, f] , [g,h] , [d ,e, f ,g,h] 
SIERES starts out by forming the LCA of the seed examples 

append([AIB],[CID],[AIE]) 

but this clause is not acceptable because it does not produce the correct answers when ap­
plied to the initial goals. The query append( [s], [t] ,X) yields append( [s], [t], [s 1 E]) 
and the query append ( [d, e, f] , [g, h] , X) yields append ( [d, e, f] , [g, h] , [d 1 E] ) . These 
answers are overly general because they contain unbound output variables. Any instanti­
ations ofthese variables would make the goals true, e.g. append([s], [t], [s,applepie, 
honeypot] ) would be provable. All the variables in the clause except A are critica!. The 
critica! output variable E is especially important. 

SIERES searches for a specialization of the clause, starting with the next simplest 
argument dependency graph consisting of two literals. It initializes a general explana­
tion and two specific explanations for the training instances. SIERES assumes that the 
output argument of the body literal has to be the critica! output term E in the general 
graph and its corresponding instantiations in the specific graphs. Furthermore, the input 
arguments for the body literal have to be selected from the subterms of [A 1 B] and [C 1 D] 

7If we also want to consider append in different modes, we could simply add the corresponding mode 
declarations. SIERES would treat the different versions of append/3 as different predicates. 
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and their instantiations. Next, SIERES searches for predicates that could fit into these 
explanations under these constraints. In the background knowledge, it finds the facts 
append ( [] , [ t] , [ t] ) and append ( [e, f] , [g, h] , [e, f, g, h]), which would complete the 
specific clauses. By forming the LCA of these clauses SIERES finally obtains the clause 

append([AIB],[CID],[AIE]):­
append(B,[CID],E). 

4.2 Learning reverse/2 

This example employs abductive inference andrequires the invention of a new predicate. 
Let us assume that we are given a set of instances of reverse/2 including 

reverse([1,2,3],[3,2,1]) 
reverse([2,3] ,[3,2]) 
reverse([a] ,[a]) 
reverse ( [] , [] ) 

and that the seed examples are reverse ( (1, 2, 3] , [3, 2, 1]) and reverse ([a] , [a]). 
The LCA of the seed examples is reverse ([A 1 B] , [C 1 O]) with the critical input terms 
{[A 1 B] , A, B} and with the critical output terms {[e 1 O] , e, O}. 

SIERES starts with the simplest argument dependency graph consisting of two literals 
but cannot find a body literal that forms a legal solution. If it picked reverse it would 
produce a useless recursion where the recursive call were identical to the head. If it 
introduced a new predicate the arguIIients would be the same as for reverse and therefore 
no gain. 

Next, SIERES tries to find a clause consisting of three literals (see figure 5). The head 
of the clause is again reverse ([A 1 B] , [C 1 O]). The input arguments of the first literal of 
the body of the general clause ha ve to be selected from the set { [A 1 B] , A, B}. SIERES 
looks up the substitutions for [A 1 B] for the seed examples and looks for facts that unify 
with reverse ( (1, 2, 3] , X) , reverse ([a] , Y). Such facts could form the first body literal 
of the specific clauses. The only facts it can find are the same as the heads and thus not 
suitable. Then it tries the substitutions for A but cannot find any because they are not 
of the proper type. 

Finally SIERES tries the substitutions for B and looks for facts that unify with 
reverse ( [2, 3] , X) and reverse ( [ ] , Y). This time the search is successful and SIERES 
augments the specific clauses to 

reverse([1,2,3],[3,2,1]) :­
reverse([2,3], (3,2]), 
??? 

11 



and 

reverse([a],[a]) :­
reverse ( [] • [] ) • 
??? 

The general clause is adapted by forming the LCA 

reverse([AIB] ,[CID]) :­
reverse(B,E), 
??? 

The argument dependency graph requires that one input argument of the last literal 
must be E and its instantiations. SIERES might find two facts for reverse/2 with these 
input argument but their output arguments would not meet the additional requirement 
of binding all critica! output terms. Thus, no known predicate fits and SIERES invokes 
he invention procedure. 

The output arguments for the new predicate are the critica! output terms that are not 
yet bound, i.e. [C 1 D] . The input arguments are the output terms of the preceding literals, 
i.e. E and all critica! input terms that have not yet been used, i.e. A. In our example this 
leads to the clause 

reverse([AIB],[CID] :­
reverse(B,E), 
new(A,E, [CID]). 

This definition is not complete because new/3 is not yet defined. SIERES takes the 
rule above and applies it to ali the known instances of reverse/2. Assuming that these 
instances are provable using this clause, SIERES abductively infers instances of new/3 to 
complete the proofs. These instances will then be used to derive a definition of the new 
predica te. 

Using the same mechanism as described above, SIERES derives the following definition 
for new/3: 

new(A. [].[A]) 
new(A,[BIC],[BID]) :­

new(A,C,D). 
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4.3 Learning DeMorgan's Law 

This example also requires the invention of a new predicate and illustrates the role of 
critica! terms in a slightly different context. The goal is to learn the definition of a 
predicate equiv/2 which implements DeMorgan's law for an arbitrary number of terms. 
The first argument of equiv/2 is the input argument and is a negated conjunction. This 
expression is to be transformed into an equivalent disjunction of negations. 

We start out with the following instances. 

equiv(not(and([a])),or([not(a)])) 
equiv(not(and([a,b])),or([not(a),not(b)])) 
equiv(not(and([c,d,e])),or([not(c),not(d),not(e)]) 

The LCA is equiv(not (and( [A 1 B])), or( [not (A) 1 C])) but it is too general so SIERES 
seeks to specialize it using the next simplest argument dependency graph. SIERES ini­
tializes general and specific clauses as in the previous examples. The critical terms are 
B and C. Note that for the definition of equiv/2 there is no need to consider A or the 
function symbols and, or and not. The definition of critical terms takes care of this into 
account. 

SIERES is unable to complete these clauses using existing predicates so it invents 
a new predicate with the critica! terms as the arguments. SIERES then completes the 
special explanations by assuming the following-. 

new13( [], []) 
new13([b], [not(b)]) 
new13([d,e],[nÓt(d), not(e)]) 

The general clause corresponding to tnese specific clauses is 

equiv(not(and([AIB])),or([not(A) IC])) ·­
new13(B,C). 

This clause is acceptable provided that SIERES can construct a general definition for 
new13/2 that also helps explain additional instances of equiv/2. 

In order to learn a definition for new13/2, SIERES first needs to construct more 
instances. This can be done by applying the definition of equi v /2 to different instances, 
e.g. equiv(not (and( [d, e])), or( [not (d) ,not (e)])). This way, SIERES automatically 
constructs a training set for the new predicate, which can be used to learn its general 

· definition. 
Ultimately, SIERES learns the following program. 
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equiv(not(and([AIB])),or([not(A)IC])):­
new13(B,C). 

new13( [], []). 
new13([AIB],[not(A)IC]):­

new13(B,C). 

5 Related work 

SIERES is similar to FOIL (Quinlan, 1990) in that both construct clauses by searching 
for the best additions to the body of a partially constructed clause. FOIL, however, 
performs a search based solely on information theoretic heuristics. FOCL (Pazzani et 
al. 1991), an extension of FOIL, uses (possibly incorrect) background knowledge as a 
hint which predicates might be related to each other and to support the information 
gain heuristic's choice of the relevent predicates. Disjunctive definitions follow naturally 
from FOIL's and FOCL's control structure. FOIL and FOCL differ from SIERES in 
their restriction to function free clauses and their inability to extend the vocabulary 
automatically. Additionally, FOCL has serious problems with recursive definitions. 

Our method is also related to RDT (Kietz & Wrobel, 1991), which also performs the 
general-to-specific search considering more and more complex clauses. RDT uses rule 
models to specify the shape of the clauses. Rule modela are much more specific than 
argument dependency graphs in that they specify exactly the variables of the lit~rals. 
There is no handle for predicate invention. Argument dependency graphs are more flexible 
because the dependencies between literals are expressed at a more abstract level which 
provides the constraints for the arguments of the new predicates. 

GOLEM (Muggleton & Feng, 1990) constructs a least generalization with background 
knowledge and reduces this potentially huge clause according to severa! restrictions of the 
hypothesis space. Mode declarations and argument dependencies are used to generalize 
clauses. All literals that do not fit in a graph structure are deleted. GOLEM tries to 
avoid the overgeneralization problem with LC A by taking background knowledge into 
account and uses the RLGG (Muggleton & Feng, · 1990). SIERES recovers from the 
overgeneral.ization of the LCA by using the background knowledge to special.ize it. 

Both FOIL and GOLEM as developed so far, have no real handle for inventing new 
predicates. FOIL has no notion about the processing of the terms of the clauses. All 
terms, i.e. variables in FOIL's case, are equal. Consequently, there is no criterion for 
choosing which variables to use in a new predicate. The information gain heuristics does 
not apply because nothing is known about the predicate to be invented. 

GOLEM inverts a whole sequence of resolution steps. Hit would start considering 
new predi cates at each step without any hint what they are supposed to be good for, the 
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search space would explode. 
The main advantage of SIERES compared to GOLEM or FOIL and FOCL is its ability 

to invent new predicates. In this respect, SIERES adds aspects from CIGOL (Muggleton 
& Buntine, 1988) and LFP2 (Wirth, 1989). However, the reason for introducing new 
predicates is different. In CIGOL and LFP2 the new predicates are introduced to compress 
the program. Both systems essentially check the knowledge base whether the introduction 
of a new predicate could result in a more compact representation. The invention procedure 
is not constrained by what the new predicate is supposed to be good for. Experience with 
LFP2 showed that this method leads to situations where a definition of an invented 
predicate was not general enough and had to be "re-invented" in a slightly different way. 
At the same time many interesting and useful predicates which could have been suggested 
by the operators did not pass the compaction filter. 

CLINT-CIA (De Raedt & Bruynooghe, 1989) uses second order clause schemata to 
suggest useful new concepts to the user. These new concepts are not needed to prove 
anything new. Their purpose is to make theories more comprehensible and to allow the 
system to use a simpler learning bias. In this respect, CLINT-CIA is similar to LFP2 but 
different from SIERES. 

The invention procedure in SIERES is goal-directed or demand-driven (Wrobel, 1988). 
This goal direction provides the context for the invention. The argument dependency 
relations and the critica! terms both focus the search and specify what the new predicate 
is supposed to do. 

Another distinguishing feature of SIERES is that it <loes not rely on a human oracle to 
evaluate the invented predicates as CIGOL, LFP2, and CLINT-CIA do. It only requires 
that the new predicate must allow the instances of the target predicate to be proved. 

6 Current Status, Limitations, and Future Work 

The ideas described in this paper have been implemented in an experimental system which 
has been tested on several logic programs including reverse/2, append/3, DeMorgan's 
law, and the following definition of merge sort. 

merge_sort([AIB],[CID]) :­
split([AIB],E,F), 
merge_sort (E, G), 
merge_sort (F ,H), 
merge(G,H,[CID]). 

As a consequence of the current relatively tight argument dependency constraints, 
quick sort and reverse/2 as defined below are not learnable. In both clauses the 
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second argument of append is a term constructed from terms stemming from different 
literals. 

quick_sort([HIT],Sorted) ·­
partition(H,T,L1,L2), 
quick_sort(L1,SL1), 
quick_sort(L2,SL2), 
append(SL1,[HISL2],Sorted). 

reverse([AIB],[CID]) :­
reverse(B,E), 
append(E,[A],[CID]). 

This suggests that the current constraints may be too restrictive. So one of our aims is 
to explore variations on the constraints looking to improve the space of learnable concepts 
while avoiding combinatorially explosive search. 

More important research issues include the following. The current method learns one 
clause at a time and is not yet capable of learning arbitrary disjunctive definitions. Stahl 
(1991) developed a method for splitting the training set such that each subset is very 
likely to be covered by just one clause. The next implementation of SIERES will incor­
porate this technique. It will also abandon the fixed sequence of argument dependency 
graphs and employ a more flexible, heuristic general-to-specific search. Together, these 
two improvements are expected to overcome this current limitation. 

The use of LCA as a basis for learning raises important questions about the quality of 
the seed examples. LCA is very susceptiple to chance regularities such as coincidentally 
having the same constant at the same position of the terms that are to be generalized. It 
is not yet fully understood what makes good examples for LCA but sorne heuristic criteria 
are available. One heuristic is to avoid having the same constants in different examples 
whenever possible. If the examples contain recursive data structures as terms good seed 
examples should have terms of different depths and should have both shallow and deep 
terms. Ling (1991) discusses the problem of good examples and representative data sets 
from a different perspective. 

So far the system is mostly inductive. Abduction is restricted to assuming new facts 
about the new predicate to be invented. This is fairly safe because the system itself defines 
the meaning of the predicate and it can assume whatever it wants as long as the target 
predicate is correctly defined. However, the abductive aspects could be strengthened at 
various points. Currently, SIERES makes a closed world assumption while constructing 
the specific clauses.8 This assumption is not always justified, especially if SIERES is 

8This closed world assumption does not extend to the meaning of the target predicate. As in any 
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integrated with an abductive system as outlined in section 2. Relaxing the closed world 
assumption would allow SIERES to assume new facts for the target predicate. 

We believe that SIERES provides a good framework for exploring interactions between 
inductive and abductive learning. So far we touched only a small part of this vast area. 
Further investigations have to reveal its true potential. 

7 Conclusion 

We have described a learning method, implemented in a system called SIERES. The 
method integrates abduction and induction in a natural way and provides a good starting 
point for further investigations Constraints provided by syntactic least common anti­
instance, critica! terms, and argument dependency graphs focus a general-to-specific 
search for new clauses. These constraints are also exploited for predicate invention. 

The method invents new predicates in three steps. In the first step, the need for 
a new predicate is discovered and its arguments are determined. The second step uses 
abduction to infer more instances of the new predicate. The third step uses these instances 
for inducing a general definition of the new predicate. 
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sieres(Predicate,Examples, Theory, ADGs): 
Until Examples provable from Theory 

Select Examples' ~ Examples 
Select Seed ~ Examples' 
Select an argument dependency graph ADG E ADGs 
Let G be an instance of ADG 
Set head(G) = lca(Seed) 
For all E E Seed 

Let SE be an instance of ADG 
Set head(SE) =E 

Subject to constraints associated with ADG 
For all E E Seed 

instantiate /Jody(SE) with facts from Theory 
G = lca(SE) 

If the last literal in body( G) remains uninstantiated 
NewPred = new_predicate(G) 
Examples" = generate_examples(NewPred, Examples, Theory, G) 
sieres(N ewPred, Examples', Theory, ADGs) 

Figure 4: Pseudo-code for SIERES 
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rev([AIBJ, [CID]) :- rev([AIBJ, [CID]) :· 

rev(B, E), 

.· .-

rev([2,3],[3,2D, rev([], []}, 

rev([AIBJ, [CID]) :-

rev(B, e), 

new(E, A, [CID)). 

Figure 5: Learning reverse/2 
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