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Introduction 
 
 The acuity of individuals’ approximate number 
system (ANS) is measured using a non-symbolic numerical 
discrimination task (e.g., Halberda & Feigenson, 2008) 
which is encapsulated by the Weber Fraction measure 
(Piazza & Dehaene, 2004). Children’s performance on this 
task is linked to symbolic arithmetic skills, standardized test 
scores and other long-term outcomes (e.g., Beddington et 
al., 2008; Libertus, Odic, & Halberda, 2012; Parsons & 
Bynner, 1997). To complete this task individuals must 
perceive relative quantity of non-symbolic numerosity and 
indicate their relative values. Numerosity is typically 
presented visually as sets of objects, though other modalities 
such as sound have been used (e.g., Jordan & Brannon, 
2006). Discriminability of numerical stimuli is thought to 
depend solely on the ratio-difference between values being 
compared if other perceptual factors are controlled for. Thus 
comparison of the same ratio difference, such as 20:25 and 
40:50 are equally discriminable and absolute value is not 
relevant. Thus individual performance on numerical 
discrimination in terms of accuracy and reaction time varies 
with the ratio differences and is independent of absolute 
value. This has been shown in a range of behavioral and 
neural data with adults (e.g., Barth, Kanwisher, & Spelke, 
2003), children (e.g., Barth, Mont, Lipton, & Spelke, 2005) 
and non-human primates (e.g., Nieder & Miller, 2004).  
 Research with adults contradicts the account that 
ratio is the sole predictor of discriminability in number 
comparison task. Though absolute value does not predict 
discriminability, the interaction of ratio difference and 
absolute value does (Prather, 2014). The interaction between 
absolute value is not typically reported because data 
including comparisons with small ratio differences and 
variations in absolute value are needed to clearly show the 
effect.  
 Though there is initial evidence of the effect of 
absolute value on numerical discrimination it is unclear if 
such an effect would be present with children, and if the 
effect varies across development. The consequences of such 
an effect in children are directly relevant to measures of 
numerical acuity. Measures of numerical acuity are used to 
evaluate a correlation to performance on symbolic, and 
other educational outcomes. If children’s performance 
varies across absolute value, which is not typically 
accounted for, then it is unclear the reported numerical 

acuity is the “true” measure of participants’ accuracy. 
Inclusion of varying absolute values may change the degree 
to which non-symbolic discrimination predicts other 
outcomes. 
 The current study employs behavioral 
experimentation and computational modeling to address the 
following questions: 1) is children’s numerical 
discrimination solely dependent on ratio difference or also 
an interaction between ratio difference and absolute value, 
2) do the factors contributing to children’s numerical 
discrimination difficulty change with development, 3) how 
might the neural coding involved numerical perception 
account for these behavioral effects? 

Experiment 1 

Method  
 
Participants 
Participants were children (n = 51) between ages of 5:5 and 
8:11  (median 7:5). A small group (n = 4) of participants 
were not included in the analysis due to selection bias on the 
numerical comparison task, indicated by selection of one 
side (left or right) on >80% of trials. Participants completed 
two tasks, a non-symbolic numerical discrimination task and 
a symbolic number-line estimation task.  Task order was 
counter-balanced across participants. The experiment 
comprised of a single laboratory session of approximately 
30 minutes. Experimental design was approved through the 
Indiana University Internal Review Board. 
 
Non-symbolic numerical comparison. 
 Each participant completed 51 trials of a forced choice 
comparison between pairs of sets of shapes presented 
simultaneously. The sets were comprised of squares that 
varied in area such that the two sets were matched in overall 
area, area of largest shape and area of smallest shape. 
Stimuli were presented to participants on laminated cards 
(8.5 x 11inches). Participants were not given a time limit but 
were instructed to answer as quickly as they could. Stimuli 
were presented in a randomized order. Stimuli were 
comprised of 17 ratio differences from 1.03 to 1.18, and 3 
absolute value sizes for each ratio difference. For example 
for the ratio 1.04 the comparisons 25:26, 50:52 and 75:78 
would be used. The location (left or right) of the larger 
value was counter balanced. Participants responded by 
pointing to which set they thought had a larger number of 
objects. 
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Results 
 Overall participants’ performance on the numerical 
discrimination task was M = 60%. We evaluated 
participants’ performance on the numerical comparison task 
using a series of logistic regression analyses. The 
correctness of each trial was predicted by the trial ratio 
difference, absolute value and their interaction. In each 
analysis we evaluate which set of factors best predict trial 
correctness. All regression analyses included participant 
identity and participant age as random factors. Each 
regression analysis includes 51 data points per subject. 
 
All Participants 
 Frist we examined which factors predicted 
performance on the numerical discrimination task for all 
participants as a group. Regression analysis 1 included only 
ratio difference as a predictor of trial correctness. Ratio 
difference was a significant predictor (b = 3.10, z = 3.19, p 
= 0.001). As expected larger ratio differences were 
associated with increased likelihood of a correct response. 
Regression analysis 2 included ratio difference and absolute 
value as predictors of trial correctness. Ratio difference (b = 
3.12, z = 3.20, p = 0.001) was a significant predictor while 
absolute value (b = -0.0002, z = 0.29, p = 0.76) was not. A 
comparison of regression analyses indicated that analysis 2 
did not account for more variance than analysis 1, X2 = 0.08, 
p = 0.76. 
 Regression analysis 3 included ratio difference, 
absolute value and their interaction as predictors. Ratio 
difference (b = 9.08, Z = 3.54, p < 0.001), absolute value (b 
= 0.049, Z = 2.51, p = 0.012) and their interaction (b = -
0.045, Z = 2.52, p = 0.011) were significant predictors of 
trial correctness. A comparison of regression analyses 
indicated that analysis 3 accounted for more variance than 
both analysis 1, X2 = 6.44, p = 0.001 and analysis 2 X2 = 
6.35, p = 0.01. Thus for the total set of participants 
performance is best described by the regression analysis that 
includes ratio difference, absolute value, and their 
interaction as significant predictors.  
 
Participants grouped by numerical discrimination 
performance 
 We then evaluated how predictors of participants’ 
numerical comparison score may vary based on their 
numerical discrimination score. Participants were split into 
three groups based on their overall numerical discrimination 
score, best performers, middle performers and worst 
performers. Participant age was positively correlated with 
numerical comparison performance, r = .49, t(45) = 3.77 p < 
0.001. Thus participants in the best scoring tertile tended to 
be older than those in the middle and worst tertiles. We use 
discrimination task score to evaluate the effect of 
development, as it is a more theoretically motivated 
selection variable than age per se.  
 For participants in the best performing tertile (n = 
16, median age = 8:1 years, 816 total trials) overall 
performance on the numerical comparison task was M = 

68.7%. Regression analysis 1 included only ratio difference 
as a predictor. Ratio difference was a significant predictor (b 
= 5.76, z = 3.30, p < 0.001) or trial correctness. Regression 
analysis 2 included ratio difference and absolute value as 
predictors of trial correctness. Ratio difference (b = 5.67, z 
= 3.24, p = 0.001) was a significant predictor while absolute 
value (b = 0.001, z = 1.06, p = 0.28) was not. A regression 
analysis comparison indicated that analysis 2 did not 
account for more variance than analysis 1, X2 = 1.14, p = 
0.28. 
 Regression analysis 3 included ratio difference, 
absolute value and their interaction as predictors of trial 
correctness. Ratio difference (b = 12.86, z = 2.80, p = 0.005) 
was the only significant predictor. Absolute value (b = 0.06, 
Z = 1.74, p = 0.082) and the interaction of ratio difference 
and absolute value (b = -0.05, Z = 1.70, p = 0.087) were not 
significant predictors. A regression comparison indicated 
that analysis 3 did not account for more variance than 
analysis 2 (X2 = 2.92, p = 0.08) or analysis 1 (X2 = 4.06, p = 
0.13).  
 For participants in the middle tertile (n = 15, 
median age 7:7 years, 765 total trials) overall performance 
on the numerical comparison task was M = 61.2%. 
Regression Analysis 1 included only ratio difference as a 
predictor. Ratio difference was not a significant predictor (b 
= 0.64 z = 0.37, p = 0.70). Regression analysis 2 included 
ratio difference and absolute value. Neither ratio difference 
(b = 0.68, z = 0.40, p = 0.69) nor absolute value (b = -
0.0006, z = 0.52, p = 0.60) were significant predictors of 
trial correctness. A regression analysis comparison indicated 
that analysis 2 did not account for significantly more 
variation than analysis 1, X2 = 0.27 p = 0.60. 
 Regression analysis 3 included ratio difference, 
absolute value and their interaction as predictors of trial 
correctness. Ratio difference (b = 9.38, z = 2.08, p = 0.03) 
absolute value (b = 0.07, Z = 2.06, p = 0.039) and their 
interaction (b = -0.06, Z = 2.08, p = 0.037) were significant 
predictors.  A regression analysis comparison indicated that 
analysis 3 accounted for significantly more variance that 
analysis 2, X2 = 4.36 p = 0.03 but not analysis 1 X2 = 4.63 p 
= 0.09. 
 For participants in the worst performing tertile (n = 
16, median = 6:5 years, 816 total trials) overall performance 
on the numerical comparison task was M = 50.6%. 
Regression Analysis 1 included only ratio difference as a 
predictor. Ratio difference was not a significant predictor of 
trial correctness (b = 3.05, z = 1.86, p = 0.06). Regression 
analysis 2 included ratio difference and absolute value as 
predictors. Ratio difference (b = 3.14, z = 1.91, p = 0.05) 
was a significant predictor while absolute value (b = 0.07, z 
= 0.99, p = 0.32) was not. A regression analysis comparison 
indicated that analysis 2 did not account for more variance 
than analysis 1, X2 = 0.98, p = 0.32. 
 Regression analysis 3 included ratio difference, 
absolute value and their interaction as predictors of trial 
correctness. Neither ratio difference (b = 3.10, Z = 1.88, p = 
0.48), absolute value (b = 0.95, Z = 0.51, p = 0.61) or their 
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interaction (b = -0.09, Z = 0.54, p = 0.58) were significant 
predictors1. A regression analysis comparison indicated that 
analysis 3 did not account for more variance than analysis 2 
X2 = 0.29, p = 0.58 or analysis 1 X2 = 1.28, p = 0.52. The 
lack of significant effect of ratio difference is due to the 
relatively low scores of this group of participants. Many of 
these participants were at or near chance. For the regression 
analysis it is important to note that an interaction between 
the two variables does not depend on either reaching 
significance independently. 

Experiment 1 Discussion 
 The significant contribution of ratio difference in 
predicting children’s numerical discrimination performance 
is consistent with prior research; larger ratio differences 
tend to be easier to discriminate. We also find that overall, 
participant performance is predicted by the interaction of 
ratio difference and absolute size. Regression analyses that 
include the interaction of ratio difference and absolute value 
account for more variance in participants’ data than other 
analyses. Simply, the results suggest that for numerical 
discrimination tasks ratio difference is not the sole predictor 
of performance, similar to recent findings with adult 
participants (Prather, 2014). 
 We also examined how the interaction between 
ratio difference and absolute value varies with development 
by reevaluating participant data when grouped by 
performance. Participants in this experiment were a 
heterogeneous group, with ages ranging from 5:5 to 8:11 
and discrimination scores ranging from chance to over 75%. 
We use a tertile spilt in performance to balance having 
sufficient data points in each analysis and also evaluating 
participant groups that performed differently. The results 
suggest that the predictors of numerical comparison scores 
vary with participants’ skill level. Participants in the best 
and worst performing tertiles did not show a significant 
interaction between ratio difference and absolute value. 
Only participants in the middle group showed a significant 
effect of the interaction of ratio difference and absolute 
value.  
 The conclusion from these results is that there is a 
behaviorally measurable effect of absolute value in 
numerical discrimination, which is present when 
considering all participants, is not present for all participant 
groups. The current results we suggest that the influence of 
absolute value varies across development, roughly following 
a U-shaped curve. This is demonstrated by the presence of 
the interaction effect in the middle tertile group but not best 
or worst tertiles. To examine if there is a principled reason 
to expect this effect we consider developmental change in 
the neural mechanisms involved in numerical perception in 
experiment 2.  
 

Experiment 2 
 

 The following series of computational models 
demonstrate how developmental changes in the neural 
coding of number is the underlying mechanism of the 
behavioral effects reported in Experiment 1. Behavioral data 
shows the predictors of numerical discrimination scores 
vary with participants’ numerical discrimination skill. The 
interaction of absolute value and ratio difference was a 
significant predictor of numerical discrimination only for 
participants in the middle tertile. We demonstrate here that 
known characteristics of the neural coding of numerical 
perception, and how it changes with development, lead to 
this exact prediction. 
 The logic of these computational models is that 
behavioral errors, and neural coding “errors” are associated 
(Nieder & Merten, 2007). This is not to suggest that 
participants’ behavior is solely dependent on variations in 
these neural populations, but that it forms the basis for the 
patterns of behavior. A range of behavioral phenomena have 
been shown to be predicted by neural coding including the 
ratio distance effect, number-line estimation and operational 
momentum effects (Nieder & Dehaene, 2009; Prather, 
2012). 
 The characteristics of the neural coding of 
numerical perception have been described via both human 
neuroimaging studies and non-human primate direct 
recording (e.g., Nieder & Dehaene, 2009; Nieder & Merten, 
2007). The important characteristic for the current model is 
the “noise” associated with neural coding. Neural activity is 
typically reported through the mean spiking rate across 
some amount of time. For any neural population in addition 
to mean spiking rates that may be associated with numerical 
stimuli there is also variation in spiking rate. A neural 
population that fires at an average of 50Hz has an associated 
variation in the moment-to-moment firing rate. This noise 
around a given mean firing rate is illustrated by the 
coefficient of variation: standard deviation / mean. The 
coefficient of variation (CoV) for the neural populations that 
code for number varies with firing rate (Pearson, Roitman, 
Brannon, Platt, & Raghavachari, 2010; Roitman, Brannon, 
& Platt, 2007). Thus, the neural coding for larger numbers 
tends to have less “noise” than those for smaller numbers. 
The following computational investigation evaluates how 
neural coding of number with either a constant or changing 
CV may predict the behavioral results reported in 
experiment 1. 

Method 
 Computational model versions included 
experimental and control conditions each with three 
instantiations corresponding to the participant tertiles in 
experiment 1 for a total of 6 separate models. The model 
simulated neural coding associated with numerical stimuli 
using probabilistic tuning curves that were then applied to 
the numerical discrimination task. The model evaluated the 
same stimuli as seen by participants in experiment 1. 
Developmental change was modeled through the coefficient 
corresponding to the relative width of the neural tuning 
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curves. Narrow tuning curves have been shown to be 
necessary for accurate coding of number (Diester & Nieder, 
2008). Narrowing of the tuning curves increases precision 
and is generally associated with neurocognitive 
development. This has been illustrated in computational 
work in which narrowing of tuning functions of neurons 
contributes to modeling developmental changes in cognition 
(Schutte, Spencer, & Schöner, 2011; Simmering, Schutte, & 
Spencer, 2007).  

 
Modeling specifications 
 Simulations were evaluated using MATLAB 
(Mathworks) software. Neural tuning curves vectors were 
calculated for number values identical stimuli in the 
behavioral experiment. The initial vectors can be interpreted 
as idealized activation patterns to which some noise is added 
to determine the model output vectors. The index of the 
maximum value corresponded to the perceived number 
value. Variation in spiking rate, e.g. noise, is calculated as a 
change in the vector values by some percent taken from a 
random distribution, where the mean noise is zero. The 
range of noise distribution is equivalent to the coefficient of 
variation. The noise range varies with the mean spiking rate 
and the coefficient of variation (standard deviation/mean) 
also varies. Model instantiations used a coefficient of 
variation that was either constant or increased with firing 
rate. Neural data with non-human primates shows that the 
coefficient of variation increases with firing rate (Pearson et 
al 2010; Roitman et al., 2007). After the application of noise 
the vector output values were calculated, where the index of 
the maximum value of the vector equaled the output. The 
entire process of the application of random noise to the set 
of tuning functions was repeated 1000 times per model 
instantiation.  
 Simulations used vectors to represent spiking rates 
for neural populations that comprise the neural tuning 
functions. Each item in the vectors represents the relative 
activation level, in terms of spiking rate for a population of 
cortical neurons. Each simulation included one vector for 
each of the number magnitudes to be estimated. The values 
in each vector represent the relative activation (spiking 
rates) of number selective neurons. For example, the 
numerical value A was represented by the vector A(n1, n2, 
…n250), where the value for nx is the spiking rate for the 
neurons selective for the number magnitude A. For 
example, the activation value at index 5 corresponds to the 
mean spiking rate the neural population that respond 
maximally to visual display of 5 items.  

f (x) = he
−(x−m)2

2s2

 
 Activation values for each vector were calculated 
using a modified Gaussian distribution function that varies 
in height similar to a Poisson distribution. The maximum 
vale of the tuning curve h, varies with the numerical value 

(y), such that h = (121 – y). The relative width of the 
calculated curves varied with the value of S. The mean of 
the distribution, m is a constant set to 0. The distance 
between the target numerical value (T) and the current 
vector index (V) is defined as X = log20T – log20V. The 
method of defining X by logarithmic differences results in 
Gaussian functions that are symmetric on a log scale and of 
identical width. On a linear scale the functions vary in width 
and positive skew (skew merely refers to the fact that the 
function is not symmetric about the mean). Smaller values 
are both narrower and more skewed. The maximum spiking 
rate for large numbers is lower than for smaller numbers 
(e.g. Nieder & Dehaene, 2009). Similar equations have been 
used in prior computational work (Dehaene, 2007; Prather, 
2012).  
 The model instantiation with broad tuning curves 
(S = 1.5) corresponded to the low scoring numerical 
discrimination participant group. The model instantiation 
with medium tuning curves (S = 0.5) corresponded to the 
high scoring numerical discrimination participant group. 
The model instantiation with narrow tuning curves (S = 0.3) 
corresponded to the high scoring numerical discrimination 
participant group. Each model instantiation result is based 
on 1000 independent run-throughs of the model 
 

Results 
 
Model versions with varying coefficient of variation 
 For the narrow tuning curve model numerical 
discrimination performance was M = 83%. Performance 
was evaluated with a linear regression using ratio difference 
and absolute value as predictors for the percent correct for 
each trial (51 in total). Regression analysis 1 included ratio 
difference as a predictor. Ratio difference was a significant 
predictor of model performance, b = 3.33, t = 7.59, p < 
0.001. Regression analysis 2 included ratio difference and 
absolute value as predictors of model performance. Both 
ratio difference, b = 2.92, t = 20.05, p < .001 and absolute 
value b = 0.002 t = 20.19, p < 0.001 were significant 
predictors of model performance. Regression analysis 2 
accounted for more variance than model 1, F(1,48) = 
407.73, p < 0.001. Regression analysis 3 included ratio 
difference, absolute value and their interaction as predictors. 
Model performance was significantly predicted by ratio 
difference (b = 2.33 , t = 6.42 , p < .001), but not by 
absolute value (B = -0.002, t = 0.98 , p = 0.33) or their 
interaction (b = 0.004 , t = 1.76 , p = 0.084). Regression 
analysis 3 accounted for more variance than analysis 1 F 
(1,47) = 214.39 p < 0.001 but not analysis 2 F(1,47) = 7.59, 
p = 0.084. 
 The medium tuning curve model overall 
performance was M = 74%.  Regression analysis 1 included 
ratio difference as a predictor. Ratio difference was a 
significant predictor of model performance, b = 2.52, t = 
7.41, p < 0.001. Regression analysis 2 included ratio 
difference and absolute value as predictors of model 
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performance. Both ratio difference, b = 2.21, t = 15.40, p < 
.001 and absolute value b = 0.001 t = 15.24, p < 0.001 were 
significant predictors of model performance. Regression 
analysis 2 accounted for more variance than model 1, 
F(1,48) = 232.38, p < 0.001. Regression analysis 3 included 
ratio difference, absolute value and their interaction as 
predictors. Model performance was significantly predicted 
by ratio difference (b = 1.07 , t = 3.32 , p < .001), absolute 
value (b = -0.007, t = 3.18 , p = 0.002) or their interaction (b 
= 0.007 , t = 3.83 , p < 0.001). Regression analysis 3 
accounted for more variance than both analysis 2 F(1,47) = 
14.71, p < 0.001 and analysis 1 F(1,47) = 156.75, p = 0.001. 
 The broad tuning curve model overall performance 
was M = 60% (Figure 3). Regression analysis 1 included 
ratio difference as a predictor. Ratio difference was a 
significant predictor of model performance, b = 0.86, t = 
7.46, p < 0.001. Regression analysis 2 included ratio 
difference and absolute value as predictors of model 
performance. Both ratio difference, b = 0.77, t = 9.86, p < 
.001 and absolute value b = 0.0004 t = 7.74, p < 0.001 were 
significant predictors of model performance. Regression 
analysis 2 accounted for more variance than model 1, 
F(1,48) = 59.89, p < 0.001. Regression analysis 3 included 
ratio difference, absolute value and their interaction as 
predictors. Model performance was significantly predicted 
by ratio difference (b = 0.057 , t = 2.85 , p = .006), but not 
absolute value (b = -0.001, t = 0.82 , p = 0.41) or their 
interaction (B = 0.001 , t = 1.12 , p = 0.26). Regression 
analysis 3 accounted for more variance than analysis 1 
F(1,47) = 30.73, p < 0.001 but not analysis 1 F(1,47) = 1.25, 
p = 0.26. 
 For the computational model instantiations with 
varying coefficient of variation results demonstrate that the 
significant interaction between ratio difference and absolute 
value is only present of the middle-performing model. The 
best and worst performing model initiations do not show 
significant interactions.  
  
Model versions with constant coefficient of variation 
 For the narrow tuning curve model numerical 
discrimination performance was M = 80% (Figure 4-A). 
Performance was evaluated with a linear regression using 
ratio difference and absolute value as predictors for the 
percent correct for each trial (51 in total). Regression 
analysis 1 included ratio difference as a predictor. Ratio 
difference was a significant predictor of model performance, 
b = 2.99, t = 25.62, p < 0.001. Regression analysis 2 
included ratio difference and absolute value as predictors of 
model performance. Both ratio difference, b = 2.91, t = 
36.12, p < .001 and absolute value b = 0.0004 t = 7.57, p < 
0.001 were significant predictors of model performance. 
Regression analysis 2 accounted for more variance than 
model 1, F(1,48) = 57.38, p < 0.001. Regression analysis 3 
included ratio difference, absolute value and their 
interaction as predictors. Model performance was 
significantly predicted by ratio difference (b = 3.00 , t = 
14.53 , p < .001), but not by absolute value (b = 0.001, t = 

0.79 , p = 0.43) or their interaction (b = 0.0006 , t = 0.51 , p 
= 0.61). Regression analysis 3 accounted for more variance 
than analysis 1 F (1,48) = 28.38 p < 0.001 but not analysis 2 
F(1,47) = 0.26, p = 0.61. 
 The medium tuning curve model performance was 
M = 71% (Figure 4-B).  Regression analysis 1 included ratio 
difference as a predictor. Ratio difference was a significant 
predictor of model performance, b = 2.01, t = 24.79, p < 
0.001. Regression analysis 2 included ratio difference and 
absolute value as predictors of model performance. Both 
ratio difference, b = 1.97, t = 26.18, p < .001 and absolute 
value b = 0.0001 t = 3.11, p = 0.003 were significant 
predictors of model performance. Regression analysis 2 
accounted for more variance than model 1, F(1,48) = 9.69, p 
= 0.003. Regression analysis 3 included ratio difference, 
absolute value and their interaction as predictors. Model 
performance was significantly predicted by ratio difference 
(b = 2.03 , t = 10.46 , p < .001), but not absolute value (b = 
0.0005, t = 0.42 , p = 0.67) or their interaction (B = -0.0003 
, t = 0.31 , p = 0.75). Regression analysis 3 accounted for 
more variance than analysis 1 F (1,47) = 4.80, p = 0.01 but 
not analysis 2 F(1,47) = 0.09, p = 0.75. 
 The broad tuning curve model performance was M 
= 58% (Figure 4-C). Regression analysis 1 included ratio 
difference as a predictor. Ratio difference was a significant 
predictor of model performance, b = 0.77, t = 9.93, p < 
0.001. Regression analysis 2 included ratio difference and 
absolute value as predictors of model performance. Ratio 
difference, b = 0.76, t = 9.70, p < .001 was a significant 
predictor while absolute value b = 0.0005 t = 1.08, p =0.28 
was not. Regression analysis 2 did not account for more 
variance than model 1, F(1,48) = 1.18, p = 0.28. Regression 
analysis 3 included ratio difference, absolute value and their 
interaction as predictors. Model performance was 
significantly predicted by ratio difference (b = 0.85, t = 4.20 
, p = .001), but not absolute value (b = 0.0007, t = 0.50 , p = 
0.61) or their interaction (b = -0.0006 , t = 0.46 , p = 0.64). 
Regression analysis 3 did not account for more variance 
than analysis 1 F(1,47) = 0.69, p =0.50 or analysis 1 F(1,47) 
= 0.21, p = 0.64. 
 For the computational model instantiations with 
constant coefficient of variation results do not show 
significant interaction between absolute value and ratio 
difference for any of the model versions. Model tuning 
curve width and performance was not associated with a 
change in significant predictors of performance. For each 
model instantiation ratio difference was the sole predictor of 
performance. 
  
Experiment 2 Discussion 
 When the coefficient of variation (CoV) in neural 
firing increases with mean firing rate matches neural data 
computational results match the behavioral results in 
Experiment 1. For the changing CoV model a significant 
interaction of ratio difference and absolute value is present 
for the “middle tertile” instantiation and not the best or 
worst performing instantiations. The constant CoV models 
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performance were predicted by ratio difference only in all 
cases. These results suggest that the coefficient of variation 
in neural firing is a key aspect of the mechanism underling 
the interaction of absolute value and ratio difference. The 
characteristics of the neural tuning curves for the model 
version that best fits the behavioral data is consistent prior 
neural data (Pearson et al, 2010; Roitman et al., 2007) and 
consistent with recent adult data showing that increasing 
CoV models better account for performance on numerical 
discrimination task (Prather, in review). In sum, if we take 
into account all of the known characteristics of the neural 
coding of numerical perception the effects reported in 
experiment 1 are a logical consequence. Additionally both 
model versions demonstrate that narrower neural tuning 
curves are associated with better numerical discrimination 
as expect based on prior work (e.g., Nieder & Dehaene, 
2009; Prather, 2012). This suggests that the differences in 
behavior between participant tertiles may be due to 
differences in neural tuning curves.  

General Discussion 
 We show using a series of computational models 
that the changing precision of neural tuning curves and 
neural firing variation predicts the pattern of results reported 
in the behavioral data. Simply, if we assume neural coding 
that is consistent with neural data (Pearson et al., 2010; 
Roitman et al., 2007) the behavioral effects reported in 
experiment 1 or a logical consequence. Though the 
cognitive representation metaphors may be consistent with 
behavior, evaluation of underlying neural mechanisms is 
necessary for a full characterization of behavioral 
phenomena. We show here that using a computational 
model of known neural coding characteristic may lead us 
predictions of behavior beyond the scope of representational 
metaphors.  
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