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The effect of global climate change on infectious disease remains hotly debated

because multiple extrinsic and intrinsic drivers interact to influence trans-

mission dynamics in nonlinear ways. The dominant drivers of widespread

pathogens, like West Nile virus, can be challenging to identify due to regional

variability in vector and host ecology, with past studies producing disparate

findings. Here, we used analyses at national and state scales to examine a

suite of climatic and intrinsic drivers of continental-scale West Nile virus epi-

demics, including an empirically derived mechanistic relationship between

temperature and transmission potential that accounts for spatial variability in

vectors. We found that drought was the primary climatic driver of increased

West Nile virus epidemics, rather than within-season or winter temperatures,

or precipitation independently. Local-scale data from one region suggested

drought increased epidemics via changes in mosquito infection prevalence

rather than mosquito abundance. In addition, human acquired immunity fol-

lowing regional epidemics limited subsequent transmission in many states.

We show that over the next 30 years, increased drought severity from climate

change could triple West Nile virus cases, but only in regions with low

human immunity. These results illustrate how changes in drought severity

can alter the transmission dynamics of vector-borne diseases.
1. Background
Climate change and emerging infectious diseases are predicted to have substantial

impacts on human health [1,2]. However, predictions about how these threats will

interact and where disease risk will be greatest have been the subject of substantial

controversy [2–5]. Warming is most likely to increase disease risk in places where

transmission is primarily limited by low temperatures [3–5]. However, public

health efforts may limit the effects of climate on disease risk [6]. Similarly, pre-

cipitation and drought can have contrasting effects on vector population and

host–vector dynamics [7], further complicating prediction efforts.

Although climate change impacts on disease have drawn substantial atten-

tion, acquired immunity also plays a large role in disease dynamics [8,9]. Even

when herd immunity has traditionally been considered less important for disease

transmission (e.g. in cases when seroprevalence is low, or for zoonotic pathogens

for which humans are incidental hosts), host heterogeneity in risk of exposure

to vectors can increase the effective immunity far above measured levels [10].

The interaction of intrinsic and extrinsic factors makes it difficult to examine

immunity or climate alone [11].
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Figure 1. Mechanisms influencing WNV transmission. (a) Variables (blue) that influence human WNND cases (red) either positively (green arrows) or negatively
(black arrows), either directly, or via effects on mosquito populations (purple). Note that it is the product of mosquito abundance and prevalence that determines
risk to humans. (b – e) The fitted relationships for the temperature-dependent (b) biting rate [15], (c) mortality rate [16,17], and (d ) the inverse of the extrinsic
incubation period [18,19] (L.D.K., A. C. Matacchiero, A.T. Ciota & A.M.K. 2013, unpublished data) were used to generate (e) the resulting estimated relationships
between temperature and partial-R0 for West Nile virus for C. tarsalis (triangles, dashed lines), C. pipiens (circles, solid lines) and C. quinquefasciatus (cross-hatches,
dotted lines; see Material and methods). (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20162078

2

Predicting yearly epidemics of West Nile virus (WNV) is

emblematic of these challenges. Since the introduction of

WNV to the USA in 1999, there has been, on average, 50-fold

interannual variation in the number of cases in each state

where WNV occurs [12,13]. This enormous variability makes
public health allocation decisions difficult, and highlights the

utility of accurate predictions of future case burdens [14].

Transmission of vector-borne pathogens like WNV is influ-

enced by multiple climatic drivers (figure 1a). Temperature

is hypothesized to have unimodal effects on transmission,
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because increases in replication rates of pathogens and vectors

are eventually overwhelmed by accelerating decreases in

vector survival at high temperatures [5,20] (figure 1b–e).

Increased precipitation could either increase or reduce mosquito

abundance by creating breeding sites or flushing container-

breeding mosquitoes, depending upon the intensity [21,22].

Additionally, mosquito populations could either decline

during droughts due to reduced breeding habitat, or increase

in abundance due to increased habitat quality or reduced

predators [23]. Furthermore, drought—which is influenced by

both precipitation and temperature—could increase WNV

prevalence in mosquitoes via increased contact (due to host

movement to mosquito habitats [24]), or higher vector-to-

host ratios (due to drought-induced reductions in juvenile

birds [25,26]).

Our analyses build upon previous studies of climate–

WNV associations that were conducted over smaller state- or

county-level areas [7,27–31] or for shorter periods of time

[22,32,33], or that analysed dichotomized values of WNV

[34,35]. We have added key mechanistic drivers including

human population immunity and a temperature-dependent

R0, and we project WNV incidence, rather than changes in

the distribution or probability of above-average years

[32,35,36] or changes in vector populations [37] under future

climate change. We analysed the intrinsic (immune) and extrin-

sic (climate) factors driving interannual variation in West Nile

neuroinvasive disease (WNND) incidence across the continen-

tal USA since WNV introduction (1999–2013), and explored

potential mechanisms by analysing vector transmission data

from a WNV hotspot. State-level analyses allowed us to exam-

ine regional variation in WNV drivers that arise from varying

host and vector ecologies and infection histories in different

parts of the country. Specifically, we hypothesized that temp-

erature would be most important at the colder edges of

the vector distributions, and that immunity would be most

important in states that had previously had large epidemics.
2. Material and methods
(a) Models
We fitted annual numbers of human WNND cases, N, to the fol-

lowing model:

LnðNÞ ¼ LnðN0Þ þ lI þ aT þ vPþ dDþ gF, ð2:1Þ

where I is cumulative incidence (see the electronic supplementary

material, figure S1), T is the value of the mosquito species-

specific temperature-driven relative R0 value (using mean May–

August temperatures; see the electronic supplementary material),

P is total May–August precipitation, D is average May–August

values of the Palmer Drought Severity Index [38] and F is winter

severity (freezes: the number of weeks in the previous winter

with average temperature below 08C). The parameters l, a, v, d

and g are the fitted coefficients for these predictors.

We chose these weather factors because they were biologically

relevant to vector and host species involved in WNV transmission,

and they were correlated with WNV risk in previous local-scale

studies [27,28,39]. There was relatively low correlation among

these predictors; the maximum variance inflation factor was 2.17,

below a suggested cut-off of 3 [40]. We used county-level values

of these weather variables to create state-wide weighted averages,

with counties weighted by the relative number of WNND cases

recorded in each county between 1999 and 2009; county-level

WNND data after 2009 were not available from the Centers for Dis-

ease Control and Prevention (CDC). We used precipitation and
temperature data from May through August, because these are

the months when the majority of WNV infective mosquitoes

become infected [41].

We estimated three temperature-dependent R0 relationships,

one for each of the three most important WNV mosquito vector

species, using the fitted relationships for temperature-dependent

biting rates, mortality rates and inverse of the extrinsic incubation

period for Culex tarsalis, C. quinquefasciatus and C. pipiens (elec-

tronic supplementary material). To calculate the vector-specific

temperature–R0 curve shown in figure 1e, we derived the equation

for effective reproductive ratio. We inserted the fitted relationships

with temperature into the equation to estimate values of relative R0

at a given temperature for each mosquito species, which we used in

place of raw temperature values (electronic supplementary

material).

We constrained the parameters for the slope of the relation-

ship between log cases and both cumulative incidence (l) and

number of freezes (g) to be negative, and temperature-driven

R0 (a) to be positive, to reflect the biological mechanisms these

parameters represent. To fit this model at the national level, we

used a generalized linear mixed effects model by penalized

quasi-likelihood with a negative binomial distribution and log

link, allowing the slope of the immunity term to vary as a

random effect of state using function glmmPQL in the MASS

package in R v. 3.0.2. At the state level, we fitted the same

model (without the state random effects) using glm.nb in the

MASS package. There was no evidence of significant temporal

autocorrelation in the residuals of the fitted models. We excluded

initial years in which human WNND was found in less than 30%

of counties making up the final distribution in a state to ensure

we analysed trends only after full establishment. We also

excluded states with less than 10 total cases or less than 6

years of data. We performed analyses at the state level because

this is the highest spatial resolution for which the CDC provides

access to ArboNET data differentiated by case definition (e.g.

fever, encephalitis, etc.). We calculated the relative importance

of predictor variables based on the magnitude of coefficients of

standardized (Z-transformed) predictor variables. We performed

cross-validation of the fitted models by re-fitting the final models

while excluding each year of data sequentially, and using the

new fitted model to predict the excluded datapoints. We then

generated a prediction accuracy value for each state (electronic

supplementary material, table S2) as follows:

Pmod ¼ 1�
Pt

t¼2 ðPt � CtÞ2
Pt

t¼2 ðCt � Ct�1Þ2
, ð2:2Þ

where t is the year, P is the predicted value and C is the number

of cases. We chose an autoregressive null model since our model

showed immunity to be important in some states and a grand

mean null would always include the first year when there was

no immunity built up in the population.

(b) Historical meteorological and future climate
data sources

To build our predictive models, we used bias-corrected daily mini-

mum and maximum temperature and precipitation data from 1999

to 2013 in the National Centers for Environmental Prediction

North American Regional Reanalysis (NARR) data [42]. Owing

to biases in the NARR data that can affect the frequency of occur-

rence of critical biological thresholds [43], we bias-corrected

temperature and precipitation variables at the monthly scale

using Oregon State University’s monthly PRISM climate data as

our observational standard [44] (see the electronic supplementary

material). To project the influence of future climate change on the

prevalence of WNND cases, we used bias-corrected data from an

ensemble of 10 realizations of the International Center for Theoreti-

cal Physics regional climate model (‘RegCM4’) [45] using the
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RCP8.5 scenario, which is the IPCC scenario that is most consistent

with the recent trajectory of historical emissions [46] (electro-

nic supplementary material). Bias correction with historically

observed standards assumes that the structure of biases in the

historical period will remain similar in future projections [47].

(c) Future case projections
We generated projections for current and future numbers of

WNND cases using fitted models that included only the significant

predictors. We estimated mean current (MC) and extreme current

(EC) cases by taking the mean (MC) and 95th percentile (EC) of pro-

jections for each year using the 1999–2013 bias-corrected NARR

climate. For future projections, we estimated cases using climate

data from the years 2036–2049 for each of the 10 climate model

realizations in each year. We then averaged across years within

each of the model realizations to get 10 projected values (one for

each model realization), and calculated the mean (MF) and 95th

percentile (EF) of those values. Error bars include both the standard

error of the mean and the standard deviation of the residuals

between current projected and actual numbers of cases nationally

from 2003 to 2013 (after WNV had spread across the USA). Extreme

outliers (e.g. values for Michigan and one model realization in

Maryland) were excluded from the national case totals because

they resulted from a non-asymptotic relationship between R0 and

incidence (see the electronic supplementary material).

(d) Local mosquito data
Mosquitoes were collected from 15 counties in Colorado between

2003 and 2008 using CDC light and hay-infusion baited gravid

traps that were run one night per week from June to September.

Culex mosquitoes were pooled by species and tested for WNV

using reverse transcriptase polymerase chain reaction in pools

of up to 50 [48]. To determine whether there were more human

infections at a given level of entomological risk in the first

year, when all humans were naive, as compared with subsequent

years after immunity had built up, we tested for an effect of the

density of infected mosquitoes (DIM) and year (either 2003, or all

subsequent years combined) on the number of human WNND

cases. To do this, we used a generalized linear mixed effects

model with a negative binomial distribution and log link, treat-

ing county as a random effect, and using function glmmPQL

in the MASS package in R v. 3.0.2. We also used a generalized

linear model to test for relationships between drought and

vector abundance (using a negative binomial distribution) and

vector WNV prevalence (using a binomial distribution) in each

transmission season.

(e) Effective herd immunity
Previous research on fine-scale spatial variation in mosquito

abundance suggests that 90% of transmission occurs in just

20% of locations for vector-borne infections (averaged from

Woolhouse et al. [10]; figure 1a). While these data are for parasitic

diseases within Anopheles mosquitoes, the general principle of

heterogeneity has been found to be remarkably consistent

across a range of disease systems [49]. If 90% of WNV-infected

bites occur in a subset of 20% of a state’s population, the effective

herd immunity could be as much as 0.9/0.2, or 4.5 times, higher

than the seroprevalence that is calculated by assuming that 100%

of the population is at risk.
3. Results
Both intrinsic (immunity) and extrinsic (climate) drivers were

important predictors of WNND incidence, with immunity and

drought being the strongest predictors of the number of observed
annual WNND cases at the national and state levels (figures 2

and 3; electronic supplementary material, figures S2–S6 and

tables S1 and S2). Local data from Colorado, one of the states

hit hardest by WNV, further support a mechanistic link between

WNV incidence and drought and immunity. Drought was corre-

lated with elevated infection prevalence in the two most

important mosquito vectors in the state (C. pipiens and C. tarsalis),
but was uncorrelated with mosquito abundance (electronic sup-

plementary material, figure S7). Additionally, in the first year

that WNV had spread across the full state of Colorado, when

most of the population was naive, there were more human

cases than expected for a given DIM [48] than in subsequent

years (figure 3c; year coeff. ¼ 1.7, t¼ 12.7, p , 0.001; DIM

coeff. ¼ 0.2, t ¼ 13.8, p , 0.001). For instance, when the DIM

was one infected mosquito per trap-night, there were five pre-

dicted cases in the first year, compared with just one predicted

case in subsequent years. Temperature-driven R0 (calculated

using May–September mean temperature), winter severity (no.

of weeks below freezing) and total May–September precipi-

tation were weakly significant predictors at the national level,

and present in only 24%, 7% and 27% of states, respectively.

The explanatory power of state-level models was rela-

tively high, except in the few states where variation in cases

was uncorrelated with measures of climate and immunity.

The null model was the best fit in states with relatively few

cases (e.g. West Virginia and New Jersey), as well as in

some large, climatically variable states (e.g. Texas, Arizona,

New Mexico and Minnesota). Finer-spatial-scale analyses of

weather drivers in these larger states may reveal additional

weather drivers whose effects may have been masked when

averaged across a climatically variable state [27]. Addition-

ally, some of the unexplained variation may be due to

factors that we were unable to include in the model, such

as vector control efforts, and changes in virus genetics, host

resistance [50] or bird communities [51]. Models explained

an average of 58% of the non-stochastic variance in the

number of neuroinvasive WNV cases in the 38 states where

the best model was not the null (electronic supplementary

material, table S2). Similarly, cross-validation techniques

using the model to predict data not used to build the

model indicated that fitted models had a prediction accuracy

of 65% across the 31 states where they were a better predictor

than the null hypothesis value of the previous year’s case

burden (electronic supplementary material, table S2 and

figure S8). Prediction accuracies were highest in states

where immunity was a significant predictor. In addition,

models for states where immunity was not significant

occasionally predicted larger than observed epidemics in

some years (electronic supplementary material, figure S8).

We used the fitted models described above, along with an

ensemble of high-resolution climate model simulations [45], to

estimate current and future WNND cases in each state. The

models project an average of 991+683 WNND cases each

year under average current climate conditions and 2013 levels

of acquired immunity, whereas up to 1331+712 cases could

occur in a relatively intense year (95th percentile of projected

cases) driven by climate variation (figure 4a). Climate change is

projected to nearly double the mean WNND burden (1814+
783 cases) by the mid-twenty-first century, while the 95th per-

centile is likely to increase by a factor of 2.5 (3297+1123 cases),

assuming current immunity levels and no viral evolution that

substantially increases competence in hosts or vectors, or

allows re-infection of previously exposed individuals.
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4. Discussion
WNV has been called ‘unpredictable’ because of enormous

local- and continental-scale variability in WNV incidence,

and variation in avian host and mosquito vector ecology

[14]. However, our results suggest that models that incorpor-

ate mechanistic hypotheses and both intrinsic and extrinsic

drivers can improve the accuracy of predictions for complex

multi-host, multi-vector pathogens like WNV. We found

that the primary drivers of interannual variation in WNV

across the USA include drought and immunity, and that

increases in drought could potentially double WNV epidemic

intensity nationally, with epidemics in areas of low immunity

being even larger.

The projected future increase in WNV incidence is pri-

marily due to a doubling of the drought index. The positive

relationship between drought and WNV infection prevalence

in Colorado mosquitoes suggests that drought alters trans-

mission in this state not by reducing mosquito abundance,

but by increasing infection prevalence. This could occur if

lower avian reproduction [52] increases the vector–host

ratio, or if patterns of host–vector contact are altered due to

congregation [24] or avian stress [53]. Similarly, dry

summer soil moisture conditions have been positively corre-

lated with WNV prevalence in Culex mosquitoes in
New York [39] as well as with spatial variation in the preva-

lence of the closely related Usutu flavivirus in Culex
mosquitoes in Italy [54]. Increased aridity is projected in

many regions of the USA in spite of increases in mean pre-

cipitation [55,56], highlighting the importance of

considering moisture availability directly rather than relying

on precipitation as a proxy measure, because precipitation

alone was a poor predictor of WNV cases in most states.

The impact of immunity at both the national and state

levels was evident through a large reduction in human

cases in response to increasing cumulative incidence. At a

local level, during the first year that WNND reached epi-

demic levels across Colorado (and a majority of humans

were naive), the number of human cases for a given DIM

was higher than in subsequent years (figure 3c). This differ-

ence in human cases at the same level of entomological risk

suggests that human immunity rather than bird immunity

was driving the decrease in incidence, because bird immunity

can only affect human infections via mosquito infection, and

this is already taken into account by using DIM as the predic-

tor. Because humans are dead-end hosts for WNV, human

immunity does not reduce transmission between mosquitoes

and birds, but reduces human WNV cases by depleting

the susceptible human population. Human immunity has
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ditions. Error bars include both the standard error of the mean projected values and the standard deviation of the residuals between current projected and actual
values. (b) Summed totals of current maximum number of yearly cases and projected future cases with and without immunity in states where immunity was (grey)
or was not (black) significant.

Figure 3. (Opposite.) Climate, immunity and WNND cases. (a) Yearly WNND cases and fitted model (line) in nine representative states, and projections of the
number of future cases under mean (M) or extreme (E—95th percentile) climate conditions for either current (cross-hatch) or future (star) climate projections.
Error bars include both the standard error of the mean projected values and the standard deviation of the residuals between current projected and actual
values. (b) Colours/shading indicate the significant variables in the fitted models by state with pie-charts showing their relative importance. (c) Human WNND
cases and abundance of infected mosquitoes in Colorado when all humans were naive (2003, filled points, coeff ¼ 0.99, F1,175 ¼ 173.1, p , 0.001) and in sub-
sequent years (2004 – 2008, open points, coeff ¼ 0.72, F1,787 ¼ 285.5, p , 0.001). Variables were power transformed (1/4) to equalize leverage and linearize the
relationship. (Online version in colour.)
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frequently been dismissed as a factor in patterns of WNV

incidence, because estimates of population-wide seropreva-

lence are uniformly low (less than 14%) [57,58], indicating

most of the population remains susceptible. However, hetero-

geneity in the risk of mosquito exposure means that only a

small subset of the population is likely to be at risk for

WNV, and the effective seroprevalence may be 4.5-fold

higher [10] (see Material and methods).

Although increased drought severity could approximately

double the number of WNV cases annually, the projected

increase would have been even greater without the limiting

role of immunity, and the actual increase in WNV incidence

may be smaller if herd immunity in human populations

increases before drought increases. Without the observed

build-up of human immunity, the number of projected

future cases would be sixfold higher nationally (11 673+
1921 cases; figures 2 and 4b). Nonetheless, despite accumulat-

ing immunity, the number of WNND cases in each state does

not always decline over time, because entomological risk

varies from year to year [48], and both transmission and the

build-up of herd immunity is spatially heterogeneous. In

states where acquired immunity is already relatively high,

intense future WNND epidemics are unlikely (electronic

supplementary material, figure S9). For example, no more

than 18 WNND cases are projected to occur in Wyoming

under current or future climate conditions, which is less

than 20% of the previous maximum of 92 cases. This state
recorded only five and two WNND cases in 2014 and 2015,

respectively, years not used to build the models [59]. How-

ever, states with above-average immigration or birth rates,

or changes in human behaviour or age structure that increase

their exposure to vectors or likelihood of developing the neu-

roinvasive form of the disease [57], and thus the at-risk

population, could lead to more cases than projected in regions

with high estimated immunity. Additionally, viral mutations

that would allow WNV to re-infect previously exposed indi-

viduals could limit the effect of immunity. Furthermore, in

states where there was little evidence of accumulated

human immunity, such as Virginia, models suggest that up

to 163 WNND cases could occur in an extreme year under

future climate conditions, which is over eight times higher

than the previous maximum of 20 cases. Our results thus

identify states most likely to experience future WNV epi-

demics, which could be used by federal agencies to allocate

control resources. An important question for future research

is how population immunity in humans will change with

variable yearly WNV transmission, and population turnover

through births, deaths and immigration.

The effects of temperature observed at finer spatial scales in

other studies may be less apparent at the state level, or after

accounting for immunity, and warmer temperatures may

increase incidence in areas that are on the edge of being suitable

for transmission [27,35] (electronic supplementary material), as

is the case for malaria [4]. Previous studies have demonstrated
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positive effects of temperature and precipitation on vector

abundance [60–63], which can affect vector-borne disease

transmission [64]; however, the strong effects of drought on

infection prevalence in mosquitoes may overwhelm these

effects in some areas (electronic supplementary material).

The anticipated regional variability in which predictors

were most important can be partly explained by vector ecology

and geography. For instance, temperature-driven R0 values

tended to explain WNND cases in the northern range limits

of C. quinquefasciatus, as well as in several far northern states

(e.g. Montana, Idaho and Michigan). This is consistent with

the idea that warming at northern boundary edges will push

temperatures into more optimal ranges for transmission [3,5].

Winter freezes appear to be most important in extreme

southern portions of the USA where vectors may be more

poorly adapted to freezing temperatures. Precipitation had

generally positive effects in the eastern portion of the country

and negative effects in the west, consistent with the idea that

container-breeding mosquitoes may benefit from rain that

fills containers, while higher rain could increase wetland per-

manence and predation [22,23]. Additionally, irrigation

appears to influence WNV transmission in the western USA

[65], which could alter the importance of rainfall for

mosquito populations there.

Our analyses, which incorporated laboratory-derived

temperature–R0 relationships and immunity as a key intrin-

sic driver, has allowed us to determine the dominant

drivers of WNV incidence across the USA. The projected

future increase in WNV in the USA indicates a need for

increased resources for WNV surveillance, mitigation and

research, at a national scale. Furthermore, our results can

improve allocation of WNV mitigation resources in areas
where drought is a major driver, because the drought index

(PDSI) is calculated in real time. Because drought severity

is likely to alter transmission of other vector-borne diseases

in ways not captured by analyses of temperature and precipi-

tation alone, variations and changes in drought severity

should be examined as potential drivers of disease dynamics.
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