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Species distribution models (SDMs) assume species exist in isolation and do

not influence one another’s distributions, thus potentially limiting their ability

to predict biodiversity patterns. Community-level models (CLMs) capitalize

on species co-occurrences to fit shared environmental responses of species

and communities, and therefore may result in more robust and transferable

models. Here, we conduct a controlled comparison of five paired SDMs and

CLMs across changing climates, using palaeoclimatic simulations and fossil-

pollen records of eastern North America for the past 21 000 years. Both SDMs

and CLMs performed poorly when projected to time periods that are tem-

porally distant and climatically dissimilar from those in which they were fit;

however, CLMs generally outperformed SDMs in these instances, especially

when models were fit with sparse calibration datasets. Additionally, CLMs

did not over-fit training data, unlike SDMs. The expected emergence of novel

climates presents a major forecasting challenge for all models, but CLMs may

better rise to this challenge by borrowing information from co-occurring taxa.
1. Introduction
Species distribution models (SDMs) remain among the most widely used

methods for forecasting regional- to global-scale changes in species distributions,

species assemblages and patterns of biodiversity in response to climate change

[1]. When modelling entities or attributes above the species level using SDMs, a

‘predict first, assemble later’ approach [2] is typically employed, wherein individ-

ual models are fitted and projected for each species, the mapped predictions

of which are then aggregated or ‘stacked’ to infer potential changes in com-

munity-level patterns such as species richness (e.g. [3]). An alternative, but

relatively rarely used, approach involves combining data from multiple species

to simultaneously analyse and map patterns of biodiversity at the community

level. This ‘assemble and predict together’ strategy [2] underlies community-

level models (CLMs) that fit a species co-occurrence matrix to environmental

variables to predict both community structure and the distributions of individual

species [2]. CLMs implicitly capture any process driving co-occurrence patterns,

including shared climatic requirements of species, responses to unmeasured

environmental variables and possibly biotic interactions [4]. SDMs implicitly

also capture these processes (by setting the boundaries of a species’ realized

niche), but do so in a manner that is isolated from the broader community context

in which species occur (a Gleasonian approach).

By simultaneously modelling all observed species within a region of interest

and incorporating information on co-occurrence, CLMs may have the potential

to predict species distributions and changes in community composition better

than SDMs [2], especially for large climatic shifts and novel climate regimes

where individual taxon–climate relationships may break down [5], but broader
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Figure 1. Temperature change and model comparison scheme. Solid line shows oxygen isotope data from 21 000 years ago (kyr BP) to the present from the North
Greenland Ice Core Project (GICC05) [25] with the 2005 Greenland Ice Core Chronology age model [26]. Dashed line is mean maximum temperature from climate
simulations used in this analysis. The Bølling – Allerød (B-A) and Younger Dryas (YD) Chronozones are highlighted in grey. The time periods used to fit SDM and CLM
models are indicated with shaded boxes/rectangles, while projected time periods are indicated with open ellipses. This is illustrated for the 10 kyr BP time period
(shaded box with thickened outline and grey arrows indicating projected time periods). Data were pooled for 15 to 14 kyr BP, 17.5 to 15.5 kyr BP and 21 to 15.5 kyr
BP when building models (shaded rectangles) and for 17.5 to 15.5 kyr BP, 21 to 15.5 and 21 to 18 kyr BP when projecting models (open rounded rectangles). The
number of localities used to fit models is indicated above the grey box representing the model fitting time period.
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biodiversity–climate relationships may remain comparatively

stable [6]. The potentially greater transferability of CLMs to

novel climates may be beneficial given the predicted emergence

of no-analogue climates in the near future [7,8]. However, these

ideas remain untested, and the relative ability of SDMs and

CLMs to simulate the past emergence of no-analogue commu-

nities is unknown. Ferrier & Guisan [2] suggested that CLMs

may effectively balance the assumptions underlying predic-

tions of community types (that species move together as fixed

community types in response to climate change—a Clement-

sian approach) versus the assumptions underlying predictions

of individual species distributions (that the environmental

variables shaping distributions may differ markedly between

species) by modelling multiple species in relation to a shared

set of environmental variables and by implicitly accounting

for other drivers of co-occurrence [9]. The palaeo-record

offers evidence that neither of these assumptions is fully valid

[10,11]. CLMs may implicitly account for any factors that

drive patterns of co-occurrence (including biotic interactions)

and, therefore, could be advantageous given the well-

documented role of biotic interactions in mediating responses

of species and communities to climate change [12] and associ-

ated reshuffling of communities during current and past

environmental changes [13,14]. Another major advantage of

CLMs is an ability to model very large numbers of species,

including rare (or poorly sampled) species [15,16]. By detect-

ing shared environmental responses across species, CLMs

can ‘borrow strength’ from more common (or better sampled)

species and potentially produce better predictions than possible

from SDMs [2,17–19]. Thus, for predicting species distributions

and assemblages, CLMs allow fuller consideration of species

that might otherwise be excluded from SDM-based analyses

owing to an insufficiency of observations.

The extent to which the potential benefits of CLMs trans-

late into improved predictions remains unknown. Most CLMs

are multiresponse (i.e. multispecies) extensions of commonly

used SDMs (e.g. constrained quadratic ordination (CQO) is a

multiresponse version of generalized linear models (GLM)),

while other CLMs have no direct SDM counterpart (e.g. gener-

alized dissimilarity modelling). Previous studies that compared
the performance of SDMs and CLMs when predicting species

distributions, community composition and/or species richness

have had mixed results, with some studies finding that CLMs

tend to outperform SDMs [20–22], and others finding the oppo-

site [4,15,23,24]. Only one of these analyses directly compared

CLM and SDM predictions against observed changes in species

assemblages [15], and this analysis only compared one CLM

with one SDM. The analysis presented here is the first to com-

pare model predictions with observed species assemblages

using head-to-head evaluations of multiple SDM algorithms

and their direct CLM counterparts. In addition, previous

analyses have not tested the transferability of CLMs to predict

species distributions and community composition across

longer time periods (more than 25 years), across periods of

climate change similar in magnitude to that expected for this

century, and in no-analogue climates.

Here, we used fossil pollen from sediment cores in eastern

North America spanning the past 21 000 years (figure 1) to

perform the first comprehensive SDM and CLM model

comparison across the large and rapid climate changes of the

Late Quaternary in order to tease apart the differences in

SDMs and CLMs and to evaluate how these models may per-

form in predicting species distributions and assemblages

under climate change. The palaeontological record, in general,

and the fossil-pollen record of the Late Quaternary, in particu-

lar, provides a unique opportunity to test and compare

ecological forecasting models across periods of climatic and

biotic change [8,27]. We tested the ability of five SDM algor-

ithms and their direct CLM counterparts to predict observed

changes in fossil-pollen distributions and assemblages through

time and test whether simultaneously modelling co-occurring

taxa in a region increased model performance compared with

SDMs. By comparing SDMs with their direct CLM counter-

parts, we controlled for differences in predictive performance

among different classes of algorithms. We assessed how model

performance changes as a function of the climatic and compo-

sitional novelty between time periods, in order to estimate the

limits of model predictability and thereby provide guidelines

for future projections. Lastly, we tested the hypothesis that

CLMs have a higher predictive skill for rare taxa.
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2. Material and methods
(a) Setting
Since the Last Glacial Maximum (LGM—21 kyr BP (thousands

of years before present)), global mean temperature increased

from 38C to 58C, with periods of rapid (decadal- to centennial-

scale) warming and cooling (e.g. the Bølling–Allerød and Younger

Dryas onset and terminations; figure 1). Plant distributions [13] and

realized niches [11,28] shifted in response to these climate changes,

resulting in a reshuffling of taxon associations [13–14,29,30]. These

climatic and ecological changes in the past were characterized

by periods of climatic novelty and no-analogue communities as

compared to contemporary climates and communities. The last

deglaciation (21 kyr BP to present) is not an exact analogue for

contemporary climate change given lower CO2 concentrations,

different trends in insolation and temperature seasonality, and a

smaller human footprint; however, the two time periods share

similarities such as high rates of climate change, regions and times

with highly novel climates, species extinctions and increased

human pressure.
2817
(b) Taxonomic occurrences
Taxon occurrence data were from the eastern North America

fossil-pollen relative abundance dataset from Blois et al. [30],

with the following modifications: (i) we removed sites that had

marine/estuarine or unknown depositional environments,

(ii) pollen abundances were expressed as the pollen sum for a

particular taxon divided by the total sum for all genus-level

taxa, rather than divided by the total upland sum for the site

(which includes both genera as well as families and other

higher level taxa), and (iii) pollen relative abundances were

interpolated to 500-year time slices from 21 000 to present,

rather than 1000-year time slices. Pollen data quality was calcu-

lated as in Blois et al. [30], and for each time period, only sites

with a weighted quality value above 0.75 were included. If mul-

tiple sites fell within the same grid cell, their pollen abundances

were averaged. Taxa co-occurrences were within a grid cell,

with the majority of grid cells containing co-occurrences from

within a single lake sediment core. Following Nieto-Lugilde

et al. [31], the relative abundance pollen matrix was converted

to a presence/absence matrix after applying a threshold scaled

to 5% of the maximum abundance (see electronic supplementary

material, table S1 and figure S1). Because the majority of fossil-

pollen types considered here can be consistently identified,

absences are considered true absences. We chose the 19 most

abundant-through-time taxa at the generic level (see electronic

supplementary material), the lowest taxonomic level in which

most fossil pollen can be identified—except for Ostrya and

Carpinus (Ostrya/Carpinus), which are palynologically indistin-

guishable, and Ambrosia-type, which can include Iva. Even

though interspecific differences in climatic and ecological toler-

ances may differ from genus-level tolerances, the same problem

exists, although to a lesser extent, for populations within species

(e.g. [32]). In addition, pollen records best match forest inventory

data at the genus level [31]; thus, analyses at the genus level are

as appropriate as analyses at the species level, especially for

pollen data, but may introduce another source of uncertainty.

See Blois et al. [30] for a complete list of pollen types assigned

to each genus.
(c) Environmental variables
We used palaeoclimate simulations from the Community Cli-

mate System Model Version 3 (CCSM3) SynTrace transient

simulation with seasonally averaged model outputs saved at a

decadal time step from 21 kyr BP to the present [33]. Climate

variables were de-biased and downscaled to a 0.58 � 0.58 grid
(approx. 50 � 50 km) and processed to create yearly, quarterly

and monthly variables for every 500 years since 21 kyr BP. All cli-

mate variables are means across 200 years, centred on the 500

year time slices (e.g. the 1.5 kyr BP climate variables are averaged

across the years 1.6–1.4 kyr BP). From the original 27 variables

(nine yearly, quarterly and monthly), we chose six uncorrelated

variables (maximum temperature of the warmest quarter, mini-

mum precipitation of the driest quarter, maximum

precipitation of the wettest quarter, mean yearly potential evapo-

transpiration, mean yearly actual evapotranspiration and mean

yearly water deficit index) using a Pearson correlation coefficient

cut-off of 0.75 (see electronic supplementary material, figure S2).

(d) Model implementation
To enable direct comparison between the SDM and CLM versions

of each model-class, we compared five SDMs and their direct CLM

counterparts, covering a wide range of model-class types: (i) GLM

[34] and CQO [35]; (ii) generalized additive models (GAM [34])

and constrained additive ordination (CAO [36]); (iii) single and

multiresponse multivariate adaptive regression splines (MARS

and MMARS, respectively, [37,38]); (iv) single classification and

regression trees and multivariate regression trees (CARTs and

MRTs, respectively, [2,19,39–41]) and (v) single and multiresponse

artificial neural networks (ANN and MANN, respectively [42]).

A description of each model-class type is provided in the electronic

supplementary material, table S2. Models were fitted for 20

selected time periods and then projected to 12 time periods repre-

senting distinct climates through the Late Quaternary (figure 1).

For fitting models, we pooled taxon occurrence and climate data

for 15–14, 17.5–15.5 and 20–15.5 kyr BP to overcome low

sample sizes (number of localities) while covering as many time

periods as possible during the end of the last glacial period.

Similarly, for model projections, we pooled 17.5–15.5, 21–18 and

21–15.5 kyr BP. Data were split into 10 random partitions of train-

ing (70%) and testing (30%) sets and models were fit and evaluated

using each random set. All models were fitted with the same six

climatic variables (i.e. we did not perform variable selection)

with the exception of MARS/MMARS and CARTs/MRTs because

these algorithms build variable selection into their model fitting.

SDM and CLM pairs were tuned so that parameter complexity

was equal between the SDM and its CLM counterpart (see elec-

tronic supplementary material, table S3). For example, with

artificial neural networks, the number of nodes in the hidden

layer was set to 20 for each taxon in the SDM (ANN) as well as

for the CLM (MANN). To tune parameter values, models were

fit with the 0 kyr BP occurrence and climate data and then

the chosen parameters of the best model were propagated to the

other time periods, thereby controlling model complexity across

time. We also created step functions for variable selection and

training functions to tune models for the 0 kyr BP time period

and then projected these models to the selected 12 time periods,

in order to examine if variable selection and parameter tuning

influenced SDM and CLM performance (see the electronic

supplementary material). All models and analyses were run in R

v. 3.1.1 [43]. All R code, including the full list of R packages used

and citations, are available on GitHub (https://github.com/

fitzLab-AL/SDM-CLMcomp).

(e) Model evaluation
We evaluated the ability of models to predict taxa distributions

in terms of both discrimination and reliability (also known as

‘calibration’) [44], which are useful metrics when comparing con-

tinuous model outputs to binary observations of the presences/

absences. Reliability assesses the overall agreement between

observations and predictions, and in particular, whether the

model correctly predicts the probability that sites will be

occupied or unoccupied. Reliability was measured using the

https://github.com/fitzLab-AL/SDM-CLMcomp
https://github.com/fitzLab-AL/SDM-CLMcomp
https://github.com/fitzLab-AL/SDM-CLMcomp
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Brier score [45]. The Brier score is equivalent to mean squared

error but is applicable when comparing continuous probabilities

to mutually exclusive discrete outcomes, in this case the presence

or absence. The Brier score ranges from 0 to 1, in which 0

indicates complete agreement between observed and predicted

and 1 indicates complete disagreement. Discrimination quan-

tifies the ability of the model to correctly distinguish between

occupied and unoccupied sites (i.e. the extent to which predic-

ted probabilities for occupied sites are higher than those for

unoccupied sites), regardless of the correctness of the predicted

probability of occupation. We measured discrimination using

the area under the receiver operating characteristic curve

(AUC). AUC ranges from 0 to 1, with a value of 1 indicating

perfect agreement and 0.5 indicating model performance no

better than random. We also evaluated the ability of the

models to predict community composition by comparing

predicted and observed community composition at each

locality and examining their similarity using 1 2 Bray–Curtis

dissimilarity index. Bray–Curtis dissimilarity was calculated

between the predicted probabilities of occurrence and observed

presence/absence (in other words, observed absence is

represented by a probability of 0 and observed presence is rep-

resented by a probability of 1). We assessed the statistical

significance of differences in model performance between each

SDM/CLM comparison and overall SDM and CLM performance

using Wilcoxon tests on all 10 iterations for the 19 taxa for

each metric.

( f ) Model performance versus climatic and
compositional novelty

Model performance was evaluated against climatic and compo-

sitional (biotic) novelty to examine the extent to which models

can be reliably projected to new climatic regimes and no-analogue

communities. Climatic novelty for each combination of projected

and fitted time periods was calculated by averaging the minimum

Euclidean distances between an occupied grid cell for the time

period in which the model was fitted and all occupied grid cells

in the time period to which the model was projected [7,14],

based on the first and second principal component axes of a

PCA analysis on the six climate variables from all occupied grid

cells from all time periods, scaled to have unit variance. Similarly,

compositional novelty for each combination of fitted and projected

time periods was calculated as the mean of the minimum dissim-

ilarities in relative abundance between each site in the fitted time

period compared to all sites in the projected-to time period using

Bray–Curtis dissimilarity [14]. To determine whether SDM and

CLM performance was influenced by climatic novelty, compo-

sition novelty or by both factors, we built linear models between

model performance and each of the factors. We then evaluated

the linear models with the Akaike information criteria (AIC) and

calculated the AIC weights using the akaike.weights function in

the qpcR package.

(g) Model performance and number of occurrences
One of the proposed strengths of CLMs is that by pooling data

from all taxa they may better detect shared environmental

responses across taxa with fewer occurrences, leading to improved

predictions of their distributions. The number of occurrences (or

the presence records) available for modelling a given taxon is a

function of the number of available localities (sample size) and

the prevalence of the taxon (the proportion of these sites at

which the taxon of interest is present). The number of localities

in the fitted time periods varied between 72 and 276 (including

pooled time periods), potentially contributing to differences

in model performance between SDMs and CLMs. To examine

the influence of this on differences in performance between the
SDMs and CLMs, we subsampled the number of localities from

the 1 kyr BP (276 localities) and 9 kyr BP (197 localities) time

periods at 50, 100, 150 and 200 (1 kyr BP only) localities and

reran the analyses. We also examined the effect of prevalence

(taxon rarity) on model performance to determine if CLMs

model rare taxa better than SDMs.
3. Results
When models were projected to climatically similar time

periods, both SDMs and CLMs had good ability to discrimi-

nate between occupied and unoccupied sites for individual

species (AUC scores more than 0.7), with SDMs tending to

outperform CLMs under these circumstances (figure 2a and

figure 3, top row). However, the opposite was true when

models were projected to climatically dissimilar time periods:

both SDMs and CLMs performed poorly and their relative

performance switched, with CLMs tending to outperform

SDMs (figure 2a), especially when forecasting from the

data-sparse LGM to more recent time periods (figure 3, top

row). This pattern is especially evident in the GLM–CQO

and GAM–CAO comparisons (electronic supplementary

material, figure S4a), in which GLM and GAM performed

particularly poorly relative to their CLM counterpart

when forecasting. MRTs and MMARS also had higher

AUC scores than their SDM counterparts, while ANN

and MANN performed similarly through time (electronic

supplementary material, figure S4).

In terms of model reliability (Brier score), SDMs and CLMs

predicted species’ probability of occurrence similarly when

projected to climatically similar time periods (figures 2b, and

3, middle row); however, when models were hindcasted or

forecasted to climatically novel periods, CLMs outperformed

SDMs. This pattern was observed in three of the five paired

model-class comparisons, except for GLM–CQO and GAM–

CAO (electronic supplementary material, figure S4b). For

these two model-classes, SDMs outperformed CLMs when

models were fitted in, and projected to, climatically similar

and temporally close time periods; however, they were similar

to the other model-classes in that the CLM consistently outper-

formed the SDM in climatically novel and temporally distant

time periods.

As with AUC and Brier scores, CLMs and stacked SDMs

predicted community composition better when models were

fitted in, and projected to, climatically similar time periods,

with stacked SDMs tending to outperform CLMs (figures 2c,

and 3, bottom row). When models were fitted and projected

to climatically novel time periods, the models exhibited equal

performance, with SDMs hindcasting slightly better and

CLMs forecasting slightly better (figure 3, bottom row).

When individual model-classes were examined, there were

no significant differences between the SDM and CLM

(electronic supplementary material, figure S4).

The performance of SDMs and CLMs tracked one another

as compositional novelty increased between the fitted and

projected time periods (figure 2d– f ), with subtle differences:

CLMs slightly outperformed SDMs at higher levels of com-

positional novelty according to the Brier Score, while SDMs

outperformed CLMs according to Bray–Curtis similarity

(1 2 Bray–Curtis dissimilarity) at high and low values of

compositional novelty. The inclusion of both climatic and

compositional novelty as predictors of model performance

is statistically supported over either variable alone (electronic
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supplementary material, table S4), suggesting that climatic

novelty and compositional novelty each have partially inde-

pendent effects on model performance. When each variable

was examined individually, compositional novelty was

statistically more supported than climatic novelty according

to all three metrics, the only exception to this being that cli-

matic novelty is more supported for SDM discrimination

(AUC).

The number of localities included in the model affected the

performance (AUC) of SDMs more than CLMs (figure 4). As

the number of localities decreased in the fitted time period

(1 kyr BP), the performance of CLMs projected to other time

periods did not change substantially according to all three

metrics examined, whereas performance of SDMs tended to

decrease (figure 4). We also observed this pattern in sample-

size sensitivity tests using the 9 kyr BP time period (electronic

supplementary material, figure S5). We found no evidence that

the predictive skill of CLMs was consistently superior to SDMs

for species with low prevalence (electronic supplementary

material, figure S6). While CLMs performed better than

SDMs at low prevalence for some taxa, other taxa showed

the opposite or no trend, indicating that CLMs did not model

rarer taxa better than SDMs overall.
4. Discussion
A major challenge in predicting future patterns of biodiversity

is accommodating the complex and shifting relationships

between the environment, species distributions and commu-

nities as the environment changes and communities reshuffle

in response to those changes [8]. For example, realized niches

can change as climates change [11], owing to changing biotic

interactions [46,47] and emergence of novel climates [10].

Here, we found that overall model transferability was low

(AUC , 0.65; 1 2 Brier score , 0.75; Bray–Curtis similarity ,

0.35) in the periods of greatest climatic and compositional

novelty, irrespective of whether SDMs or CLMs were used.

By simultaneously modelling all co-occurring taxa in a region,

CLMs outperformed SDMs for the most novel climates and

when forecasting from the data-sparse periods of the Pleisto-

cene. This is most likely because CLMs (i) identify the

primary climatic gradients driving biodiversity patterns and

thereby buffer against idiosyncratic changes in individual

species–environment relationships that can reduce the per-

formance of SDMs and (ii) are more robust to small sample

sizes (fewer localities or total number of presences and

absences, but not necessarily taxon prevalence).
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(a) Model performance and transferability
Overall differences between the combined averages (i.e. across

all iterations, taxa and model types) of SDMs and CLMs were

small (AUC , 0.1; Brier score , 0.15, Bray–Curtis similarity ,

0.15). Small differences were to be expected, given that the

algorithm for each SDM/CLM pair is essentially the same

and differed only in whether the response was univariate or

multivariate. Additionally, all models were fitted with the

same climatic variables and each SDM/CLM pair was fitted

with the same parameter complexity. However, average differ-

ences between SDMs and CLMs remained small even when

models were permitted to choose the environmental variables

and complexity of parameters (AUC , 0.1; Brier score , 0.15,

Bray–Curtis similarity , 0.15). Neural networks (ANN and

MANN) were a notable exception to this pattern as ANN out-

performed MANN more frequently when variable selection

and parameter complexity were chosen using a step function

(electronic supplementary material, figure S3). The more

revealing aspect of this analysis is the inability of models to

predict patterns of biodiversity in novel climates with different

community compositions. The transferability of a model

between time periods is affected by the extent to which

biological patterns are controlled by climate, the stability

of these relationships between the two time periods of inte-

rest and the adequacy of the data. Modelled individual

taxon–climate relationships (SDMs) and composition–climate

relationships (CLMs) will break down as climates become

increasingly novel relative to our reference window and new

taxon associations emerge in response to these climates.

Thus, model performance is expected to decline as climates

become increasingly distant from modern analogues, for

which taxon–climate and community–climate relationships

are poorly understood [7,10,30]. Our results clearly demon-

strate this decline (figure 2a–c). SDMs exhibited greater

declines in their ability to predict taxon occurrences than

CLMs under increasingly novel climates (figure 2a,b),

suggesting that CLMs may be able to extrapolate taxon occur-

rences beyond known climatic regimes better than SDMs,

though perhaps only marginally so. The higher performance

of CLMs in predicting taxon occurrences in the most novel

communities (figure 2e) is somewhat surprising given that

SDMs allow individualistic responses while CLMs are some-

what more constrained [2,15]. Our analysis suggests that

enough information was maintained about taxa associations
along climate gradients that CLMs could borrow strength

and make more informed predictions using low sample

sizes. This result did not hold up for discrimination

(figure 2d); however, discrimination capacity in SDMs

depends on the representativeness of the environmental

domain and therefore is a context-dependent property [48]

and may not be a good measure of model transferability in

this case. SDMs consistently over-fit the training data in this

study (electronic supplementary material, figure S7) and

others [4] (but see [15]), whereas CLMs showed less over-

fitting, perhaps because they were constrained by multi-taxa

inputs. This may explain why SDMs tended to have higher

predictive skill for temporally adjacent time periods,

whereas CLMs predicted better in novel climatic regimes and

no-analogue communities than their SDM counterparts.

The relative discrimination capacity of SDMs and their

CLM counterparts varied, with some SDMs generally outper-

forming their CLM counterpart (i.e. GLM, similar to Baselga

& Araújo [4] and Bonthoux et al. [15], and GAM), while some

CLMs generally outperformed their SDM counterpart (i.e.

MMARS, similar to Leathwick et al. [38], and MRTs). ANN

and MANN performed similarly, possibly given their use

of a machine-learning algorithm designed for both univariate

and multivariate analyses [42]. Model reliability (Brier score),

on the other hand, clearly shows the superiority of all CLM

algorithms to accurately predict the presence/absence, as

discussed above.

Although others found CLMs better predicted community

composition than SDMs [21,49], our analysis shows the oppo-

site (figure 2c,f, and 3, bottom row; also see [23]). The one

exception was forecasting from the LGM, where CLMs pre-

dicted community composition better than SDMs, likely

because there were fewer localities during the LGM compared

with more recent time periods, and CLMs were better than

SDMs at predicting taxon occurrences with few sampling

localities (figure 4). Neither stacked SDMs nor CLMs predicted

community composition into novel climates particularly well

(figure 2c). As compositional novelty increased, both SDMs

and CLMs predicted community composition poorly, but on

average, SDMs better predicted community composition

(figure 2f ). This mean result was largely driven by the super-

iority of GLM and GAM to predict community composition

(electronic supplementary material, figure S4c). The SDM

and CLM versions of the other three model-classes predicted
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community composition equally. Overall, results suggest

that CLMs may not be able to capture emergent community

properties in extreme instances of climatic and compositional

novelty any better than stacked SDMs owing to individualistic

taxon responses [15].

The differences in model performance and transferability

between SDMs and CLMs is not owing just to the emergence

of novel climates or the emergence of novel communities;

rather, both are necessary to fully explain variation in model

performance (electronic supplementary material, table S4).

Climatic and compositional novelties were positively correlated

until compositional novelty reached a plateau (figure 2g). This

pattern was recovered for the 19 taxa in this analysis as well

as all 109 taxa available in the original dataset and has been

observed both temporally (this analysis, but see [14]) and

spatially [50]. At the point at which compositional novelty pla-

teaued in this analysis (compositional novelty approx. 0.3 and

climatic novelty approx. 0.5) there was a shift in model perform-

ance across all metrics, after which model performance

stabilized (figure 2a– f). After this threshold, model perform-

ance was mostly influenced by climatic novelty, when CLMs

predicted distributions better than SDMs, further suggesting

the superiority of CLMs when projecting to novel climates.
(b) Model performance and number of occurrences
The number of occurrences available to model a taxon’s distri-

bution, which itself results from the interplay between the

number of available localities and taxon prevalence, drove

differences between model performance. When fitted with

few localities, CLMs may have outperformed SDMs because

of their multiresponse nature in which they can ‘borrow

strength’ across taxa. On the other hand, when more localities

were available, parameter estimation from SDMs was as

good as or better than CLMs. Interestingly in our study,

when sample size effect was removed, taxon prevalence was

inconsistently correlated with model performance (electronic

supplementary material), nor was there any consistent differ-

ence in the effect of prevalence on the predictive skill of

SDMs and CLMs. It has been hypothesized [2,51] and demon-

strated [17–19] that CLMs improve predicted distributions of

rare taxa by incorporating information on co-occurrences

with other taxa that have similar environmental tolerances

(but see [15,19]). Whether or not CLMs ‘borrow strength’ to

support rare taxa is complex—Bonthoux et al. [15] found that

CLMs improved the understanding of rare species patterns

but did not predict their distributions better than SDMs. Here

we suggest that the superior predictive ability of CLMs may

not be just the result of their ability to model rare taxa but

also because they are more robust to low numbers of localities.

Overall, the difference in predictive performance of SDMs

versus CLMs was modest even when variable selection and
parameter complexity were introduced [19]. Similar to this

study, several previous analyses examining the model perform-

ance of CLMs against SDMs reported slight differences or

mixed results [4,15,22,24], indicating that model performance

may be case-dependent and related to individual taxon–

environment relationships [4]. Model performance might also

be influenced by inaccurate palaeoclimatic simulations as well

as uncertainties in the pollen data and age models, or missing

important covariates such as CO2 concentrations [6]. However,

SDMs and CLMs should be equally affected by these uncertain-

ties and therefore are unlikely to affect the main conclusions and

comparative analyses presented here.
5. Conclusion
Both SDMs and CLMs performed poorly when projected into

novel climates and assemblages. This finding calls into question

the dependability and utility of using empirical models to

project future distributions and communities. Overall, however,

our results both reveal a path towards better predictions of

future ecological assemblages given the large magnitude of cli-

matic change expected for the future and highlight the need for

better approaches given the expected increase in compositional

novelty [7,52]. We confirm that CLMs are a similar or modestly

superior approach to SDMs for modelling the responses of

species diversity and distributions to climate change. Although

CLMs are no better at predicting community composition than

stacked SDMs [23] (but see [21]), they generally have higher

predictive skill (with respect to discrimination and reliability)

under conditions of novel climates and low taxon occurrences.

For these reasons, CLMs deserve greater attention, application

and examination than they have received to date.
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