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Abstract

Many decision problems can be divided into three parts: Gen-
erating a set of options to consider, evaluating them, and
choosing the best. Prior models often assume that the “consid-
eration set” is established in a single step prior to evaluation.
Alternatively, people may dynamically and continually assess
whether to expand the consideration set based on the quality of
the actions considered so far. We use modeling to derive a sig-
nature property of dynamic consideration set construction and
then demonstrate it in two experiments on human participants.
Keywords: consideration; decision making; option generation

Introduction
In “open ended” decisions, such as what to eat for dinner, we
cannot feasibly consider every possible action (Smaldino &
Richerson, 2012). Rather, we evaluate a subset of the avail-
able actions. How is this “consideration set” constructed?

Much prior work models consideration set construction as
a single, pre-deliberative event (Gettys et al., 1987; Morris et
al., 2020; Hauser, 2014; Hauser & Wernerfelt, 1990; Kaiser
et al., 2013). First a set of options is defined, next each is
evaluated, and finally the best is chosen. It is a common expe-
rience, however, to have evaluated some options, found none
satisfying, and thus generated some more for evaluation. The
advantages of this “dynamic” strategy are clear: It makes full
use of all available information prior to each expansion of the
consideration set, rather than pre-committing to the set that
seems most advantageous ex ante.

A recent study by Callaway et al. (2022) provides sugges-
tive evidence of dynamic consideration set construction. Par-
ticipants explored a graphical representation of a decision tree
by using their mouse to reveal the payoffs at various nodes
before settling on a final sequence of actions to execute. The
process of node exploration was best described by an optimal
model of information search. This model includes both dy-
namic evaluation of which nodes to search, and also dynamic
evaluation of when to terminate search. Our work is similar
in spirit, focusing specifically on termination. It extends prior
work by investigating spontaneous and fully internalized cog-
nitive search, rather than an externalized analog.

First, following prior work (Sezener et al., 2019; Morris et
al., 2020; Callaway et al., 2022), we build a model of dynamic
consideration set construction. Next, we use this model to
demonstrate a key empirical signature of dynamic consider-
ation set construction: The final action considered tends to

be especially high in value, as compared to prior actions that
were considered but rejected. This signature is quite intuitive,
since the algorithm generates options just until a sufficiently
good one is identified. Next, we show empirically that peo-
ple exhibit this signature during decision-making. We con-
clude by considering the further steps necessary to develop a
unified model decision making: one that fully integrates the
processes of option generation and evaluation.

Model
We take as our starting point a recent model of value-based
consideration set construction (Morris et al., 2020). An agent
must choose between a large but finite set of actions. She has
available a noisy representation of each action’s value. For
each, she can derive a precise representation of its value, but
this takes time. The more she deliberates the better able she
is to choose the best option. But, deliberation carries an op-
portunity cost: Time spent deliberating delays the next choice
and its reward. The key question is how she can balance these
factors in order to maximize expected reward.

Prior work assumed a “static” model of consideration set
construction: An agent defines her full consideration set prior
to deliberation, next evaluates all actions in that set, and fi-
nally chooses the best (Kaiser et al., 2013; Smaldino & Rich-
erson, 2012; Morris et al., 2020). We contrast this with a
“dynamic” model in which she can deliberate over each item
introduced into the consideration before deciding whether to
make an immediate choice, or whether instead to expand the
consideration set. Our simulation has two goals. First, we ex-
plore when, and to what extent, the dynamic model achieves
its greatest advantage over the static model. Second, we iden-
tify unique behavioral signatures of each model that guide our
subsequent experiments.

The code for these simulations is available at https://
github.com/jonasalexander/thesis. The agent must
choose one of N different possible actions {A1, . . . ,AN}. Each
is associated with an approximate representation of its true
value V̂i =Vi + ε, where Vi is the true value and ε is Gaussian
noise. (One might interpret this as a model-free or context-
free value representation, which is often thought to be an eas-
ily retrieved but imprecise estimate). σ2 is the variance of
the noise, ε ∼ N(0,σ2). τ2 is the variance across actions, i.e.
V̂ ∼ N(µ,τ2).

The agent can enter actions into her consideration set CS
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stochastically, in order of decreasing V̂i. This process is in-
stantaneous. But, every action entered into the consideration
set must be evaluated, which has some cost c≥ 0 (opportunity
cost, metabolic cost, etc.). Upon evaluation, the agent learns
the precise value of the action Vi. At any time the agent may
choose to perform an action in her consideration set, in which
case she earns value Vi associated with the chosen action Ai.

Unlike other models, in which Vi is estimated by accu-
mulating noisy unbiased samples (e.g. Callaway & Griffiths
(2019)), in our case the agent learns the exact value of the
action Vi in one step. Following Morris et al. (2020), we do
this for simplicity, but the key insights of our model are eas-
ily extended to an accumulator architecture where repeated
evaluation of each option is possible.

Static Agent Static agents first generate and then evaluate a
fixed number of options. Specifically, they construct a set of
the K actions with the highest V̂ , evaluate all of them at cost
K×c, and choose the best. This class of agents is identical to
those described in Morris et al. (2020) and also includes take-
the-first heuristic agents (Johnson & Raab, 2003) as a special
case for K = 1.

Dynamic Agent Alternatively, the dynamic agents adjust
the size of their consideration set based on the options already
evaluated. Following prior work (Callaway et al., 2022), we
construe information search as a Markov Decision Problem
(MDP) and approximate its solution by Monte Carlo meth-
ods. We do not, however, consider this a psychologically
plausible model of human decision-making. Rather, we use it
to derive empirical signatures of static versus dynamic mech-
anisms under idealized assumptions.

Because the dynamic agent cannot make a choice with-
out constructing a consideration set of at least one item, the
general problem she faces is whether to choose the current
best item in her consideration V b

i = argmaxiV (Ai ∈ CS), or
whether instead to consider more options.

To start in the simplest case, an agent who has evaluated
all options except for the last one (N − 1 options evaluated)
faces the following choice:{

V b
N−1

max(V b
N−1,VN)− c

(1)

In words, the agent can either choose V b
N−1 (thereby termi-

nating search), or can evaluate the next option and potentially
find a higher-value one (but will never choose a worse option,
hence max(V b

N−1,VN)). Thus, if the agent has evaluated N−1
options, she will evaluate the last option iff

E[max(V b
N−1,VN)|V̂N ]>V b

N−1 + c

The expected value of max(V b
N−1,VN) is conditioned on V̂N

because in our model this value is known to the agent. The
expectation term can be partitioned into the case where the
agent falls back on a previous better action and the case where
the last action ends up having the highest utility:

E[max(V b
N−1,VN)|V̂N ]

=
∫

∞

x=−∞

max(V b
N−1,x)Pr[VN = x|V̂N ]dx

= Pr[VN ≤V b
N−1|V̂N ] ·V b

N−1+
∫

∞

x=V b
N−1

Pr[VN = x|V̂N ] ·xdx (2)

If we recurse back the the ith decision, we have the follow-
ing choice:V b

i

max(V b
i − c, max

i< j≤N
Vj − ( j− i) · c) (3)

where the second term is V e:

V e
i = max

(
V b

i − c, max
i< j≤N

Vj − ( j− i) · c
)

Calculating V e, the expected value of continuing to evalu-
ate more actions, is difficult. There is no simple analytical so-
lution for V e because each of the actions have different values
of V̂ . In fact, this is the most mathematically significant dif-
ference between our approach and sequential search/optimal
stopping (“secretary”) problems with recall, which assume a
constant mean for all options (Ferguson, n.d.; MacQueen &
Miller, 1960). Similar to these formalizations, we model this
as an MDP where the actions correspond to cognitive opera-
tions the agent can perform and the states are defined by the
value of the best action so far (V b) and of the next option
(V̂i+1) (Callaway et al., 2022). Unlike similar models that
myopically compare termination to evaluating just one more
option (Gabaix & Laibson, 2005), our model looks ahead to
arbitrary depth.

Results
Results are averaged across different parameter settings in or-
der to ensure robust conclusions, as in Morris et al. (2020).
Parameters were chosen to be ecologically plausible, to illus-
trate the key characteristics of the static and dynamic agents,
and to be comparable to existing literature. We let N vary
from 10 to 100 actions N = [10,20,50,100]. The cost of eval-
uation c ranged from from 0.1 to 10 c= [0.1,0.2,0.5,1,5,10],
which leads to consideration set sizes in line with empirical
estimates of 1-20 (Hauser & Wernerfelt, 1990; Johnson &
Raab, 2003). The standard deviation between actions τ varies
from 0.5 to 3 (τ = [0.5,1,3]), and the level of noise σ applied
to V̂ varies from 0.5 to 100 (σ = [0.5,1,3,5,7,10,50,100]).
We repeated this setup for 100 trials per parameter combi-
nation, and the agent took 1000 samples to approximate the
empirical distribution of max(V b,V ) for not yet evaluated V
and current best value, V b.

Dynamic Dominance The first key result of our simula-
tions is that the dynamic agent achieves meaningfully better
outcomes than the static agent. The size of this advantage de-
pends on the parameter settings. We focus on two especially
important factors: σ (the noise applied to V̂ ) and c (the cost
of evaluation).

The dynamic agent’s advantage is greatest in situations
where cognitive search is inefficient (figure 1), i.e. σ is large
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(relative to τ). Intuitively, when an agent can reliably retrieve
the best action in a single step (i.e. σ ≪ τ and in the extreme
case σ = 0), the optimal consideration set has size K = 1 for
both the dynamic and static model. In this case, the dynamic
agent cannot achieve better performance than the static agent.
As the process of value-guided consideration becomes nois-
ier, there is increasing advantage in terminating search flex-
ibly based on the quality of the options considered so far.
However the dynamic advantage starts to decrease again at
the other extreme: When σ grows too large relative to τ, con-
sideration becomes random. There is no more information in
V̂ about V , which degrades the ability of the dynamic agent
to accurately predict values of as-yet unconsidered options.
Though the advantage decreases, the dynamic agent still per-
forms better because it is able to flexibly terminate search
based on the values of actions already evaluated.

Figure 1: The dynamic advantage as a function of σ. To fa-
cilitate comparison, values are normalized so that expected
value of static evaluation is always 0 (for all σ), and the max-
imum expected value across settings of σ is set to 1. At σ= 0,
the static agent and the dynamic agent achieve equivalent per-
formance (both evaluate 1 option, which is guaranteed to be
the best). The dynamic advantage grows with σ until, at ex-
tremely large values of σ, the relative advantage decreases
again.

The dynamic model also shows the greatest relative advan-
tage for intermediate action costs (figure 2). At the extreme
of c = 0, the optimal agent evaluates all options exhaustively,
i.e. K = N. On the other hand, when the cost is very high,
very small consideration sets are strongly favored because the
cost of evaluation outweighs the potential benefits of poten-
tially finding a better option. At the extreme as c → ∞, the
optimal agent has K = 1. In between, for intermediate action
costs, consideration sets of intermediate size are advantaged
and the dynamic agent’s strengths are most rewarded.

Signatures of Dynamic and Static Processes In order to
empirically distinguish static from dynamic consideration set
construction, we need distinctive signatures of each process.
We demonstrate that a robust signature is the relative value of
considered options as a function of their serial position in the

Figure 2: The dynamic advantage as a function of c. To facili-
tate comparison, values are normalized so that expected value
of static evaluation is always 0 (for all σ), and the maximum
expected value across settings of σ is set to 1. As c → 0,
the static and dynamic agent achieve optimal performance by
exhaustively evaluating all options. As c grows larger, both
agents evaluate less options and the returns to being able to
dynamically construct consideration sets grows. At extremely
large values of c, the relative advantage decreases again be-
cause it is rarely favorable to evaluate more than one option.

consideration process.
Both classes of agents evaluate options in the descend-

ing order of V̂ , prioritizing early consideration of the most
promising candidates. One might expect that the average
value of considered options would monotonically decrease
with serial order. This is indeed the case for the static agent.
Thus, for the static agent, the Kth option (the last one evalu-
ated) will tend to have lower value than preceding options.

This is not, however, the case for dynamic agents. Rather,
the last option the dynamic agent evaluates tends to be higher
in value than the previous options, because the dynamic agent
is more likely to halt the decision process after having con-
sidered a particularly good option. Intuitively, this captures
the essential property of the dynamic agent: if it considers a
particularly good option, it can terminate the search process.
Conversely, if the options evaluated so far are disappointing,
the dynamic agent can keep searching.

The dynamic model thus yields unique predictions when
comparing it to the static model (figure 3). We exploit this in
our experiments on human participants.

Experiments
We conducted two experiments in order to determine whether
people dynamically construct consideration sets sensitive to
the value of the candidate actions they have considered so
far. The first of these experiments involved a reanalysis of
data collected for and published in a prior study (Morris et
al., 2020). The second provided a conceptual replication
and extension of these results. Unlike previous experiments
(Sezener et al., 2019; Callaway et al., 2022), our experiments
did not externalize the cognitive search process but rather
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Figure 3: When simulating the considerations sets generated
by the dynamic model over a range of parameter settings, we
find that, on average, the probability of terminating evaluation
at a given an option increases with its value. For a fixed k =
5 agent the probability of terminating evaluation at a given
option decreases with its value. This is because the agent
tends to consider better items first. Here we adopt the exact
parameter settings from Morris et al. (2020), performing 10
simulations per setting.

sought to measure the natural, internal consideration set con-
struction processes.

Experiment 1
In the relevant part of Morris et al. (2020), N = 811 partici-
pants were recruited on Amazon Mechanical Turk and given
25 seconds to name the month of the year the third letter
of which, when spelled in English, is closest to “z”. After
providing their answer, participants were asked to list every
month that came to mind—i.e., to report their consideration
set. They were asked to list these months in the order that
they evaluated them.

While not truly open-ended, limiting the set of total op-
tions to the 12 months allowed us to conduct much more rig-
orous analyses of participants’ decision processes. Moreover,
we know that few participants evaluated all options (1.7% for
Experiment 1 and 10.7% for Experiment 2), so the problem
of consideration set construction does in fact arise. Finally,
we explicitly set up the task so that no answer was perfect, so
participants would always plausibly believe that they could
improve their expected point total by investing in further cog-
nitive search.

14 percent of participants in this experiment considered
months in a strictly chronological order (“January”, “Febru-
ary”, “March”, etc.), presumably due to familiarity and ease
of retrieval. We excluded these participants from the analysis
presented here (and we also adopted all the original exclu-
sions of Morris et al. (2020) for other comprehension rea-
sons), but the qualitative results are unchanged, and remain

statistically significant, even if we retain them.
We performed two complementary statistical tests on the

data. First, we conducted a logistic regression predicting
whether or not, following the recall and evaluation of a given
word, participants continued cognitive search or instead ter-
minated it (presumably by choosing the best word yet eval-
uated). The model’s predictor was the value of the most re-
cently recalled word. We also included order as a fixed ef-
fect in the logistic model in order to rule out its effects as
separate from the value itself. A limitation of this approach,
however, is that it treats a successive series of decisions by a
participant as independent events. Contrary to this assump-
tion, of course, there can be only one termination decision
for any given sequence of considered options. To account
for this feature of the data we also fit a Cox Proportional
Hazards model. For both tests, we found statistically signif-
icant results that confirmed our hypothesis (Logistic regres-
sion: β = 0.08±0.01, p < 0.001; Cox proportional hazards:
HR = 1.07[1.05,1.08], p < 0.001 ).

Figure 4: Probability of terminating evaluation at a given op-
tion, as a function of that option’s value, for Experiment 1.

Although our analysis suggests that participants used a dy-
namic process to construct and update their consideration set,
this experiment has some notable limitations. First, the ten-
dency to consider months in chronological order is an id-
iosyncratic feature of the experiment orthogonal to the pre-
diction of the static and dynamic models. Even though we
removed all participants that considered options in a strictly
chronological order, many more considered words in a partly
chronological order. For instance, 31 percent of participants
considered January first, more than the 8 percent one would
expect at random. Second, the distribution of value (i.e., dis-
tances of third letters from z) is quite irregular. Our second
experiment was designed to avoid these concerns.

Experiment 2
Experiment 2 was modeled on Experiment 1. Participants had
to memorize a list of words (this time, a set of semantically
unrelated words, in contrast to the 12 months used in Exper-
iment 1). Then, they were asked to name the word (from the
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Figure 5: For Experiment 1, the average value of considered
items, grouped by the total number of options evaluated, as
a function of evaluation order. Blue lines link non-terminal
evaluations, while a red line precedes the terminal evaluation.
Sequences of evaluation tend to terminate when especially
high options are discovered.

memorized list) whose third letter came closest to z (or, in
a counterbalanced condition, closest to a). As we intended,
participants were not be able to bias retrieval towards higher-
value words—i.e., σ ≫ 0.

Methods We presented participants with 13 nouns between
6 and 7 characters long. To encourage memory of the list,
we asked them to write a series of sentences incorporating
all 13 words. Pretesting of this procedure in a pilot study
suggested high ( 80%) and approximately evenly distributed
recall across the 13 words.

Next, we asked participants to name a single word from
the list and told them they would receive a monetary bonus
depending on how close the third letter of that word was to
either “a” or “z”, counterbalanced between participants. We
constructed the list with the intention of producing a uniform
distribution of third letter positions (i.e., one word’s third let-
ter was “a”, another’s was “c”, then, “e”, “g”, etc. through
“y”). Due to experimenter error, however, one list had two
words with the letter “m” and none with the letter “o”.

Finally, we asked participants for the words they had con-
sidered in answering the previous question, in the order they
had considered them.

We determined our sample size by generating synthetic
datasets from the generative models described above: the dy-
namic model, and a version of the static model in which the
consideration set size was determined randomly. To gener-
ate these synthetic data, the dynamic model was fit with the
following parameters: µ and τ, the mean and variance on V̂
were set to be as close as possible to uniform U(1, 26) which
is what participants would encounter in the experiment. This
meant setting µ = 13 for symmetry and τ = 8 for maximizing
the KS-Test metric. We set σ = 10 for large variance between

context-free and context-specific value. Finally, by setting the
cost of evaluation to 1, we achieved an average consideration
set size of 3-4, in line with empirical estimates (Morris et al.,
2020; Hauser & Wernerfelt, 1990). We then performed our
intended statistical analyses on these datasets, computing the
sensitivity and specificity of those tests when used to infer
the underlying data-generating model. When running these
simulations with a sample size of 100 at the conventional sig-
nificance threshold α = .05, we had a sensitivity of 100% and
a specificity of 98%. To be conservative, we selected a sam-
ple size of 200 in our experiment.

Just as in the analysis of Experiment 1, we conducted both
a logistic regression and a Cox Proportional Hazards model.
In both cases, our independent variable was the value of the
most recent word considered and the dependent variable was
whether the participant would terminate their cognitive search
process.

We excluded participants who failed a simple compre-
hension question checking their understanding of the reward
structure of the task (excluding 30 out of 225, 13%), those
whose final answer was not in the consideration set (25 out of
195, 13%), and those who are able to recall fewer than 50% of
the words (3 out of 170, 2%). We also excluded from analy-
sis any words present in the consideration set that were not on
the memorized list (19 out of 1246, 2%). We corrected par-
ticipants’ spelling errors when and only when they used the
correct spelling in the memory check (25 out of 1219 words,
2%); otherwise, these words were also excluded (113 out of
1359, 8%).

All of the above was preregistered on aspredicted.org, with
number 78848.

Results As intended, the value of words did not pre-
dict whether they were considered; the correlation between
value and the probability of consideration was 0.33 (t(11) =
0.78, p = 0.45).

Both logistic regression and the Cox Proportional Haz-
ards test indicated that participants were significantly more
likely to terminate search following the evaluation of high
value words (logistic regression: β = 0.06±0.02, p < 0.001;
Cox proportional hazards: HR= 1.06[1.04,1.09], p< 0.001).
This result held when adding order as fixed effect in the lo-
gistic regression β = 0.07± 0.02, p < 0.001. (Order is al-
ready inherently incorporated in the Cox Proportional Haz-
ards model).

Discussion
Our results suggest a dynamic process of consideration set
construction in open-ended problems: People generate a can-
didate solution, evaluate it, and then decide whether or not
to generate another. Thus, in our experiments, the higher in
value a considered option was, the more likely participants
were to terminate cognitive search.

Although we present a model of this process, it is com-
putationally demanding and thus a poor candidate as an
algorithmic-level description of human psychology. Instead,
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Figure 6: Probability of terminating evaluation at a given op-
tion, as a function of that option’s value, for Experiment 2.

Figure 7: For Experiment 2, the average value of considered
items, grouped by the total number of options evaluated, as
a function of evaluation order. Blue lines link non-terminal
evaluations, while a red line precedes the terminal evaluation.
Sequences of evaluation tend to terminate when especially
high options are discovered.

we use it to identify an empirical signature of dynamic ver-
sus static consideration set construction that we exploit in our
experiments.

A key direction for future research, then, is to character-
ize the computationally efficient algorithms that people use to
decide whether to continue or cut off further evaluation (Call-
away et al., 2022). We have shown that deriving the optimal
stopping point involves a computationally expensive search
over a deep decision tree. One family of heuristic approaches
would be to approximate the value of continued search via a
shallow search—for instance, estimating the expected value
of considering just one more item before deciding (Russell &
Wefald, 1991; Gabaix & Laibson, 2005). Such a strategy is in
keeping with prior research showing that one can often make
good decisions about whether to take an action by sampling

as few as one possible outcome from a generative model (Vul
et al., 2014).

Another direction for future research is to consider differ-
ent forms of option generation. Here, we focused princi-
pally on a value-based approach: i.e., preferentially retrieving
those options which have been most valuable in previous con-
texts (Morris et al., 2020). Another key contributor to the op-
tion generation process is semantic knowledge (Zhang et al.,
2021). For instance, when attempting to think of what to eat
for dinner, one might search semantic associates of “restau-
rant”, “groceries” etc.

Indeed, prior research shows that cognitive search for good
actions has a hierarchical structure (Kalis et al., 2013; Klein
& Wolf, 1998). For instance, in choosing where to have din-
ner, one might begin by considering a variety of Chinese
restaurants, then a variety of Italian restaurants, etc. We
know that hierarchy and abstraction is often important for
making decision-making computationally efficient (Russell
& Norvig, 2010, p. 406), so this may be an important way
in which efficient dynamic consideration set construction can
be accomplished. An interesting question, analogous to the
one we pursue here, is how people know when to stop “for-
aging” for options in one semantic space, or at one level of
abstraction (Kalis et al., 2013; Klein & Wolf, 1998), and in-
stead switch to another.

Our results also offer an interesting counterpoint to some
previous studies of heuristic decision-making. For instance,
it has been claimed that a good heuristic approach to decision
making is to “take-the-first” option that comes to mind. Simu-
lations performed by Morris et al. (2020) show that this holds
under some circumstances, but not under most. As evidence
favoring a take-the-first model, Johnson & Raab (2003) and
Musculus et al. (2019) show that, when people are given a de-
cision problem, the quality of options generated by those who
consider just one option tends to exceed the average quality of
options generated by those who consider several. We show,
however, that precisely this pattern is predicted by the dy-
namic model: Those who happen to think of a very good first
option cease generating new options, while those who do not
continue searching. In other words, deciding to generate only
one option does not cause it to have high value; rather, having
high value causes a first option to be the only one considered.

The more we learn, the more impressive our decision-
making abilities seem. We find that humans dynamically ad-
just the process of option generation in order to balance the
benefits of finding better candidate options against the oppor-
tunity cost of delaying action. This illustrates another way
in which the study of decision-making must account for the
process by which options are generated.
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