UCSF UC San Francisco Previously Published Works

Title

Interactions Between HR-pQCT Bone Density and D3 Cr Muscle Mass (or HR-pQCT Bone Structure and HR-pQCT Muscle Density) in Predicting Fractures: The Osteoporotic Fractures in Men Study.

Permalink

https://escholarship.org/uc/item/5zp8f4q5

Journal

Journal of Bone and Mineral Research, 38(9)

Authors

Kirk, Ben Harrison, Stephanie Zanker, Jesse <u>et al.</u>

Publication Date 2023-09-01

DOI 10.1002/jbmr.4874

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, available at <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Peer reviewed

HHS Public Access

J Bone Miner Res. Author manuscript; available in PMC 2024 September 01.

Published in final edited form as:

Author manuscript

J Bone Miner Res. 2023 September ; 38(9): 1245–1257. doi:10.1002/jbmr.4874.

Interactions between HR-pQCT bone density and D₃Cr muscle mass (or HR-pQCT bone structure and HR-pQCT muscle density) in predicting fractures: The Osteoporotic Fractures in Men study

Ben Kirk^{a,b,*}, Stephanie L Harrison^c, Jesse Zanker^{a,b}, Andrew J. Burghardt^d, Eric Orwoll^e, Gustavo Duque^{a,b,f,g}, Peggy M Cawthon^{c,h}

^aDepartment of Medicine, Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Melbourne, VIC, Australia.

^bAustralian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia.

^cResearch Institute, California Pacific Medical Center, San Francisco, CA, USA.

^dDepartment of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA.

^eDivision of Endocrinology, Diabetes and Clinical Nutrition, School of Medicine, Oregon Health & Science University, Portland, OR, USA.

^fResearch Institute of the McGill University Health Centre, Montreal, QC, Canada.

^gDr. Joseph Kaufmann Chair in Geriatric Medicine, McGill University, Montreal, QC, Canada.

^hDepartment of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.

Abstract

We examined if an interaction exists between bone and muscle in predicting fractures in older men. Prospective data from the Osteoporotic Fractures in Men study was used to build Cox proportional hazards models. Predictors included HR-pQCT total volumetric BMD (Tt.BMD), trabecular BMD (Tb.BMD), cortical BMD (Ct.BMD) and cortical area (Ct.Ar) at distal radius/ tibia, HR-pQCT muscle volume and density (diaphyseal tibia), D₃-creatine dilution (D₃Cr) muscle mass, and grip strength and leg force, analyzed as continuous variables and as quartiles.

Andrew J. Burghardt: conceptualization; dataCuration; methodology; writingReviewEditing.

Eric Orwoll: conceptualization; dataCuration; methodology; writingReviewEditing.

Gustavo Duque: conceptualization; dataCuration; methodology; project Administration; supervision; writingReviewEditing.

^{*}Corresponding author: Dr Ben Kirk, Ph.D., Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western health, 176 Furlong Road, St. Albans, VIC, Australia 3021, Tel: +61 3 8395 8108, ben.kirk@unimelb.edu.au. Author contributions

Ben Kirk: conceptualization; dataCuration; formalAnalysis; investigation; methodology; project Administration; writingOriginalDraft. Stephanie L Harrison: conceptualization; dataCuration; formalAnalysis; investigation; methodology; writingReviewEditing. Jesse Zanker: conceptualization; dataCuration; methodology; writingReviewEditing.

Peggy M. Cawthon: conceptualization; dataCuration; formalAnalysis; fundingAcquisition; investigation; methodology; project Administration; supervision; writingReviewEditing.

Conflicts of interest

BK is supported by a research grant from TSI Pharmaceuticals which is unrelated to the content of this manuscript. PMC has grants to her institution from Nestle and Abbott outside of the work of this manuscript. All other authors have no conflicts of interest to declare regarding the content of this manuscript.

Incident fractures were self-reported every 4 months via questionnaires and centrally adjudicated by physician review of radiology reports. Potential confounders (demographics, comorbidities, lifestyle factors, etc.) were considered. 1,353 men (mean age: 84.2 ± 4.0 years, 92.7% white) were followed for 6.03 ± 2.11 years. In the unadjusted (continuous) model, there were no interactions (p>0.05) between any muscle variable (D₃Cr muscle mass, muscle volume, muscle density, grip strength or leg force) and Tt.BMD at distal radius/tibia for fractures (all: n=182-302; nonvertebral: n=149-254; vertebral: n=27-45). No consistent interactions were observed when interchanging Tt.BMD for Tb.BMD/Ct.BMD or for Ct.Ar (bone structure) at the distal radius/tibia in the unadjusted (continuous) models. Compared to men in Quartiles(Q) 2-4 of D₃Cr muscle mass and Q2-4 of distal tibia Tt.BMD, men in Q1 of both had increased risk for all fractures (Hazard Ratio (HR): 2.00; 95% confidence interval [CI], 1.24 - 3.23, p = 0.005) and nonvertebral fractures (HR: 2.10; 95% CI, 1.25–3.52, p < 0.001) in the multivariable-adjusted model. Confidence intervals overlapped (p > 0.05) when visually inspecting other quartile groups in the multivariable-adjusted model. In this prospective cohort study of older men, there was no consistent interactions between bone and muscle variables on fracture risk. Larger sample sizes and longer follow-up may be needed to clarify if there is an interaction between bone and muscle on fracture risk in men.

Keywords

Bone-muscle interactions; Sarcopenia; Osteoporosis; Fracture risk assessment

Introduction

Musculoskeletal health is compromised in old age due to the deterioration of bone density/ structure and muscle mass, both of which independently increase the risk of fractures ^(1,2). Categorical definitions of osteopenia/osteoporosis and sarcopenia also support the notion that these diseases are risk factors for fractures ^(3–5). A recent review of pre-clinical and human work ⁽⁶⁾ suggests that bone and muscle loss during aging is underpinned by shared mechanisms relating to chemical and mechanical cross-talk. Considering mechanical interactions, a recent study ⁽⁷⁾ showed strong site-specific associations between grip strength and radial cortical bone and chair stand force and tibial cortical bone, measured by HRpQCT. Indeed, it has been suggested that the joint loss of bone and muscle during aging, a concept known as osteosarcopenia (see reviews here: ^(8,9)), may increase fracture risk in older adults.

However, findings from prospective cohort studies examining bone-muscle interactions in fracture risk are mixed. In the MrOS study, older men with combined osteopenia/ osteoporosis (defined as T score below -1.0) and sarcopenia (defined as low appendicular lean mass adjusted for height plus slow gait speed and/or low grip strength) (HR: 3.79, 95% CI: 2.65–5.41) and men with osteopenia/osteoporosis only (HR: 1.67, 95% CI: 1.45– 1.93), but not sarcopenia alone (HR: 1.14, 95% CI: 0.62–2.09), had a greater risk of nonvertebral fractures than those with normal bone density and no sarcopenia ⁽¹⁰⁾. Older men enrolled in Concord Health and Ageing project found those with combined osteopenia/osteoporosis (defined as T score below -1.0) and sarcopenia (defined as low appendicular lean mass adjusted for height plus low grip and/or low gait speed) do not have an increased risk of

fractures compared to either osteopenia/osteoporosis or sarcopenia alone ⁽¹¹⁾. More recent work from MrOS showed that while physical performance measures (chair rise time, gait speed) are predictive of fracture risk, the association between DXA-lean mass and fractures is significantly attenuated following adjustment of bone density ⁽¹²⁾ and this finding has been reinforced by data from the Women's Health Initiative showing that DXA-lean mass offers poor predictive value for incident fractures ⁽¹³⁾. Other studies support these findings ^(14,15). A possible explanation for the discrepancy in these findings relates to the poor prognostic value of DXA-lean mass for fractures ⁽¹³⁾ (commonly used as a surrogate for muscle mass in sarcopenia definitions ^(3,16)) due to the influence of non-muscle tissues when compared to other muscle measures such as D₃Cr muscle mass ⁽²⁾ or muscle density ⁽¹⁷⁾ which predict fractures.

A previous MrOS study showed that low D_3Cr muscle mass is associated with incident fractures after adjusting for confounders, including BMD and FRAX probability ⁽²⁾. Muscle density (of the calf or gluteal region) has also emerged as a consistent predictor of incident fractures after adjustment for BMD in separate studies using pQCT or HR-pQCT ^(17,18). Other MrOS studies using HR-pQCT have demonstrated that volumetric BMD or bone structure (expressed as cortical area) are among the strongest predictors of incident fractures ⁽¹⁾. Yet the interactions between these bone and muscle variables (i.e., volumetric BMD and D_3Cr muscle mass; or cortical bone area and muscle density) in estimating the risk of fractures is currently unknown, as recently highlighted in an editorial ⁽¹⁹⁾. Given that muscle size and strength is suggested to be a determinant of bone density and structure ^(7,20), this question warrants investigation as it may influence future fracture risk assessments.

Here, we examined if there is an interaction between bone density or structure (measured by HR-pQCT) and muscle mass, volume or density (measured by D₃Cr or HR-pQCT) in estimating the risk of fractures in a prospective cohort study of older men. For instance, we examined whether the association between bone density or structure and fracture risk is the strongest in those with the lowest muscle mass, volume or density. Given the findings of previous studies ^(7,20), we also examined the interactions between muscle strength (measured by grip strength or leg force) and bone density or structure (measured by HR-pQCT) in predicting fractures. Physical performance measures (such as gait speed or chair rise time) were not considered in the analyses as previous studies have shown no relationship ⁽²⁰⁾ or weak relationships ⁽⁷⁾ with bone density/structure using pQCT or HR-pQCT.

Methodology

Study design and population

This was a secondary analysis of existing data from the U.S. Osteoporotic Fractures in Men Study (MrOS), a multicenter observational study. MrOS was initially established to identify risk factors for fractures in men (such as bone loss) and has since expanded to identify how changes in other musculoskeletal components (such as muscle mass) contribute to fractures during aging. Between 2000–2002, MrOS enrolled 5994 ambulant men aged 65 years who are able to walk independently, free of bilateral hip replacement and able to adhere to study procedures ⁽²¹⁾. In 2014–2016, surviving men were recontacted and asked to perform a number of follow-up measures and a number of new measures; including HR-

pQCT evaluation of bone and muscle, D₃Cr muscle mass assessment, and muscle strength evaluation (grip strength and leg force (force plate)). For this secondary analysis, we used the data measured at 2014–2016 visit for the predictor variables of interest (HR-pQCT scans of bone and muscle, D₃Cr muscle mass, and muscle strength measures) and incident fractures reported after 2014–2016 up until early 2023. Covariates used in this analysis were collected at the same time as the predictors during 2014–2016. These variables and time points were chosen as they represented the primary aim of our study. Ethical approval for MrOS was previously received from the Institutional Review Boards for each participating center. Prior to enrolment, all men provided written informed consent. Further information on MrOS, including the study design, access to data, and publications can be found at: https://mrosonline.ucsf.edu/.

Predictor variables: bone and muscle variables

HR-pQCT: scans were performed by trained operators on the non-dominant arm (distal radius) and leg (distal and diaphyseal tibia) using XtremeCT II machines (Scanco Medical AG, Brüttisellen, Switzerland), except in the case where participants had metal artifacts, history of fracture or prolonged unloading (>6weeks) in the limb of interest. In these circumstances, the opposite limb was used. Quality control was performed daily at each center using phantoms. Cross-calibration using a standardized phantom showed excellent precision (coefficient of variation: <0.6%) between study centers. Analysis of imaging data (including the rating of image quality and removal of artifacts and outliers) was performed by a single trained operator to quantify musculoskeletal compartments, including total volumetric BMD (Tt.BMD, mg/cm³), trabecular BMD (Tb.BMD, mg/cm³) and cortical BMD (Ct.BMD, mg/cm³) at the distal metaphysis (radius and tibia) and muscle volume (mm³) and density (mg/cm³) at the 30% diaphysis (tibia only). Bone structural parameters included cortical bone area (Ct.Ar, mm²) at the distal metaphysis (radius and tibia). These procedures in MrOS have been described elsewhere ^(1,22).

 D_3Cr : whole body muscle mass (kg) was estimated using the creatine-(methyl-d3) dilution method ⁽²³⁾. This method assumes that around 98% of creatine is stored in skeletal muscle cells, and that following ingestion of a bolus dose of creatine the intramyocellular creatine is converted to creatinine at a constant rate of around 1.7% per day and excreted in urine ⁽²³⁾. It is assumed that around 1–5% of ingested creatine bypasses the muscle and is directly excreted in urine, termed spillage ⁽²³⁾. In MrOs, men ingested (30-mg) of D3-creatine and then provided a single, fasting morning urine sample 3–6 days (72–144 hours) later. The collection of urine was completed by either the participant returning to the clinic to provide the sample, or by having the participant produce the sample; this sample was then collected by study staff and brought into the clinic (the same day the sample was produced). A combination of high-performance liquid chromatography and tandem mass spectrometry were then used to determine the molecular weight of unlabelled and labelled creatine from the urine sample. These variables, along with a correction factor for spillage, were then used in a validated equation to calculate whole-body creatine pool size (g) and estimate skeletal muscle mass (kg)⁽²³⁾:

Spillage correction (mg) = $(\exp((1.2913 \times \ln(\operatorname{Creatine/Creatinine ratio})) + 0.7783)) \times 60$; Creatine pool size (grams) = $((0.06 - (\operatorname{spillage correction [mg]/1000}) \times (131.1/134.1))/$ percent D₃- Creatinine. Whole body skeletal muscle mass (kg) = Creatine pool size (g)/4.3 (g/kg). The coefficient of variation for this technique is 3.6% as reported by the validation study ⁽²³⁾.

Muscle strength: Grip strength (kg) was measured twice on each hand (left/right) using a Jamar handheld dynamometer. The maximum value from two tests was used in the analysis. Leg strength was estimated using a force plate. Men completed 3–5 countermovement jumps with full leg-extension on a force plate. Peak force (Newtons/kg of body-weight) from these attempts was then used in the analysis. These procedures have previously been described ⁽²⁴⁾.

Outcome variable: incident fractures

Participants self-reported fractures every four months (March, July and November) via questionnaires and/or by reporting fractures to study investigators during telephone interviews. The study physician verified fractures through radiology reports/radiographs. For the current analyses, fractures data were classified as any fracture, nonvertebral fracture, and clinical vertebral fracture. Further classification by anatomical site (e.g., hip or wrist) was not included in the present analysis due to the low number of events in these regions. Incident fractures data after 2014–2016 through to February 2023 (when this analysis was completed) were included. This standardized procedure for reporting fractures in MrOs has been published elsewhere ^(1,2).

Confounding variables

Potential covariates were based on variables known to influence the predictor (bone or muscle variable) and/or the outcome (fractures) in MrOs studies ^(1,2,24–26). These covariates were collected between 2014–2016 (at the same time as the predictors) and included participants completing questionnaires on demographic (age, race, clinical center), lifestyle (alcohol use, smoking, education level, physical activity score [PASE survey]) and medical status (number of comorbidities, previous falls, cognition (Modified Mini-Mental State Examination). Other variables included height (cm, stadiometer), limb length (mm), weight (kg, scales), fat mass (%, DXA Hologic 4500), grip strength (kg, Jamar handheld dynamometer, maximum value from two tests on each hand), gait speed (m/s, normal pace over 6 meter track) and time to complete chair-stands (s, using standardized chair). Note, height was used to calculate BMI in baseline characteristics but height was not included in the multivariable-adjusted models due to its strong collinearity with other variables in the model (particularly weight).

Statistical analysis

First, we reported baseline characteristics across quartiles of Tt.BMD at distal tibia and D_3Cr muscle mass as mean (SD) and number (%). To detect if the effect of muscle on these baseline characteristics varied by BMD level, we ran ANOVA tests for continuous variables and chi-square tests for categorical variables. Next, as we hypothesized that there would be a a synergistic effect between bone density (or bone structure) and muscle quantity

(or muscle strength) on fracture risk, we ran Cox proportional hazards models to examine if there was a significant interaction between these continuous variables in estimating the risk of fractures. These models included only main effect estimates and the interaction term, and were unadjusted for covariates. Finally, to observe if the effect of muscle on fracture risk varied by BMD level, combined quartiles of bone and muscle variables (Q1+Q1 [lower+lower], Q1+Q2-4 [lower+not lower], Q2-4-Q1 [not lower+lower], Q2-4+Q2-4 [not lower+not lower] were used as predictors, with quartiles Q2-4+Q2-4 (not lower+not lower) set as the referent group. These multivariate-models were fully adjusted for covariates: age, race, clinical centre, alcohol, smoking, comorbidities, limb length, weight, % fat, physical activity, cognition, fall history, grip strength, chair stands and gait speed. Data are reported as hazard ratios with 95% CIs. Statistical significance was set at p < 0.05.

Results

Population characteristics

Table 1 shows the full population characteristics divided into quartiles of distal tibia Tt.BMD (mg/cm³) and D₃Cr muscle mass (whole body; kg). 1,353 men with a mean age of 84.2 \pm 4.0 years (92.7% white) were included. During 6.03 \pm 2.11 years of follow-up, the incidence of nonvertebral fractures, clinical vertebral fractures and all fractures was 209 (15.5%), 35 (2.6%) and 244 (18.0%), respectively (Table 1). The incidence of fractures (irrespective of type) appeared higher for men in Q1 of both distal tibia Tt.BMD and D₃Cr muscle mass compared to Q2–4 of both (*p*<0.05).

Interaction between bone and muscle variables in estimating the risk of fractures

In the unadjusted (continuous) model, there were no significant interactions (p>0.05) between any muscle variable (D₃Cr muscle mass, muscle volume, muscle density, grip strength or leg force) and Tt.BMD at the distal radius or tibia for fractures (all: n=182-302; nonvertebral: n=149-254; vertebral: n=27-45). There were no significant interactions (p>0.05) between any muscle variable (D₃Cr muscle mass, muscle volume, muscle density, grip strength or leg force) and Tb.BMD at the distal radius or tibia for fractures (all: n=182-302; nonvertebral: n=149-209; vertebral: n=27-45). There was some suggestion of an interaction between muscle density and Ct.BMD at the distal radius (p=0.077) and between leg force and Ct.BMD at the distal radius (p=0.036) for vertebral fractures (n=27-45). However, this finding was not consistent across other skeletal sites (i.e., interactions between muscle density and Ct.BMD at distal tibia (p=0.337) or leg force and Ct.BMD at distal tibia (p=0.244)), and was not significant in the models with a much larger number of events (all fractures, n=182-302, nonvertebral fractures, n=149-254). When considering a bone structural parameter, there were no significant interactions between any muscle variable (D3Cr muscle mass, muscle volume, muscle density, grip strength or leg force) and Ct.Ar at the distal radius or tibia for fractures (p>0.05). Tables 2–5 shows the full results of the continuous interactions models for for nonvertebral fractures, vertebral fractures and all fractures

Synergistic associations between bone and muscle variables in estimating the risk of fractures

Compared to men in Quartiles(Q) 2–4 of D₃Cr muscle mass and Q2–4 of distal tibia Tt.BMD, men in Q1 of both had increased risk for all fractures (Hazard Ratio (HR): 2.00; 95% confidence interval [CI], 1.24–3.23, p= 0.005) and nonvertebral fractures (HR: 2.10; 95% CI, 1.25–3.52, p <0.001) but the association for clinical vertebral fractures (HR: 1.81; 95% CI, 0.54–6.07, p= 0.340) was not significant in the multivariable-adjusted model. Confidence intervals overlapped (p>0.05) when visually inspecting other quartile groups in the multivariable-adjusted model. Results were similar (overlapping confidence intervals) when looking at the synergistic effects between other muscle variables (D₃Cr muscle mass, muscle volume or muscle density) and Tt.BMD at the distal radius or tibia (p>0.05) as well as when using a bone structural parameter (Ct.Ar at distal tibia) in the models. Figures 1–4 shows the full multivariable-adjusted quartile analyses for nonvertebral fractures, vertebral fractures and all fractures.

Discussion

In this prospective cohort study of older men, we sought to examine if an interaction exists between bone and muscle variables in predicting fractures. Findings revealed no consistent interactions between these measures of musculoskeletal health in predicting these adverse outcomes.

The basis of this analysis was that, 1) both low BMD and low muscle mass or muscle density independently increase the risk of fractures in previous MrOs studies ^(1,2,17) and thus there may be an synergistic effect on fracture risk and 2), both tissues can impact one another through biomechanical and biochemical mechanisms ⁽⁶⁾ and thus there may be an interactive effect on fracture risk [e.g., in men with very low BMD the impact of muscle on the risk of fracture may be stronger than in those with higher BMD and vice-versa]. Indeed, evidence (largely from animal work) shows that bone and muscle are influenced by the same factors (such as physical activity, nutrition and disease states) and affected by local crosstalk between bone, muscle and fat cells ⁽⁶⁾. Observational work in older adults have also shown that bone resorption markers are associated with poorer muscle function ⁽²⁷⁾. Strong site-specific associations have also been observed been upper- and lower-limb muscle strength and bone structural parameters ^(7,20). Thus, it has been suggested that both bone and muscle loss are biologically linked and the combined losses of these tissues in older adults may increase fracture risk ⁽¹⁹⁾.

However, our findings do not support a consistent interaction between bone and muscle on fracture risk. Two reasons may explain our findings. On one hand, it is possible that both lower bone density and lower muscle mass, volume or density (compared to either alone) do not render older men at a higher risk of fractures. On the other hand, it is well-established that a much greater sample size is required to estimate two-way interactions between independent variables compared to main effects in observational studies ⁽²⁸⁾. Considering this, in addition to the observed interaction between muscle density/leg force and Ct.BMD at the distal radius, a larger sample size and longer-follow up (greater number of events) may

have been needed to clarify if there is a multiplicative or additive effect of bone and muscle on fracture risk.

Previous work on this topic has involved the use of alternate approaches to examine the combined effects of osteopenia/osteoporosis and sarcopenia (osteosarcopenia) on fracture risk, which makes direct comparisons with our work difficult. In the Tasmanian Older Adult Cohort (TASOAC) study (1032 participants (52% women), 62.9 ± 7.4 years)), the risk of incident fractures over 10 years was not statistically higher is those with both osteopenia/ osteoporosis (BMD T-score less than 1 SDs) and sarcopenia (low ALM/BMI and low grip strength) compared to either alone. ⁽²⁹⁾ When continuous predictors were used, increasing BMD but not ALM/BMI was associated with a lower fracture risk (interactions between these continuous variables were not reported ⁽²⁹⁾). In the Concord Health and Ageing project of Australian men (1575 participants, 79.7 ± 6.5 years), the risk of incident fractures with both osteopenia/osteoporosis (BMD T-score less than 1 SDs) and sarcopenia (EWGSOP definition: low ALM/height², low grip strength and/or slow gait speed) was not higher compared to either condition alone nor were there any interactions between bone and muscle variables in the continuous analysis.⁽¹¹⁾ Other prospective cohort studies among older adults in North America (The Osteoporotic Fractures in Men study, USA)⁽¹⁰⁾ and South America (Alexandros; Chile) $^{(30)}$, as well as a recent meta-analysis on the topic $^{(31)}$, suggest the risk of incident fractures is not higher when comparing definitions of osteosarcopenia versus osteopenia/osteoporosis or sarcopenia alone. However, a very recent analysis of older outpatients (481 participants (~76% women), median age: 78 years)), showed the odds of recurrent fractures (2 vs 0-1) was higher in those with osteosarcopenia (SDOC: OR: 1.63, 95% CI: 1.03, 2.59; EWGSOP2: OR: 1.83, 95% CI: 1.12, 3.01) versus osteopenia/ osteoporosis and this was independent of the definition as well as confounders (14). In the same study, the low prevalence of sarcopenia in those with normal BMD (<10 participants) precluded any statistical comparison with this muscle disease. Lastly, this study showed a significant interaction between hip BMD and gait speed, whereby the effect of gait speed was in the opposite direction when hip BMD was high versus low $^{(14)}$.

Taking the above findings together, it is apparent that further research is needed to clarify if the combined assessment of bone and muscle variables offers additional risk for incident fractures in older adults and if so, which measures best predicts this risk. Elucidating this information is important so appropriate rehabilitation programs for fractures can be initiated in clinical practice to maintain the quality of life of older adults and reduce healthcare costs.

Aside from the comprehensive inclusion of demographic, lifestyle and clinical covariates, the main strength of our paper is the use of accurate imaging techniques to quantify volumetric BMD and bone structure (HR-pQCT), muscle mass (D₃Cr) and muscle density (HR-pQCT), all of which independently predict fractures $^{(1,2,17)}$. This is in contrast to previous studies $^{(10,11,14,29-31)}$ that used inferior imaging techniques such as DXA-lean mass (a surrogate measure of muscle mass) that show inconsistent associations with fractures $^{(12,13)}$. A recent study $^{(7)}$ also showed that older women with osteosarcopenia (defined as osteoporosis plus low grip strength and/or chair rise time by EWGSOP2) had significantly lower HR-pQCT cortical bone parameters but similar DXA values when compared to osteoporosis alone. This reiterates the advantage of using HR-pQCT versus DXA to examine

bone-muscle interactions in fracture risk. The main limitation of our analysis is the low number of events, particularly clinical vertebral fractures (n=27-45), which hindered our ability to detect any possible interactions. Our population was also limited to men and therefore our findings cannot be extrapolated to women, who are at higher risk of fractures ($^{(32)}$) and have different body composition than men. It is also noteworthy that the prevalence of osteosarcopenia is high in women attending fall and fracture clinics ($^{(14,33)}$). Future research on this topic should consider these factors.

To conclude, in this prospective cohort study of older men, there was no consistent interactions between bone and muscle variables on fracture risk. Larger sample sizes and longer follow-up may be needed to clarify if the assessment of both bone and muscle measures offers additional prognostic value for incident fractures in older adults. Further research should revisit this hypothesis in older people with age-related bone and muscle loss, and in individuals with comorbidities where fracture risk (and post-fracture mortality) may be heightened ⁽³⁴⁾. In this context, bone-muscle interactions may be informative.

Acknowledgements

The authors would like to thank the MrOS participants for taking part in the research study as well as the MrOS research group for granting access to the data. Finally, the authors would like to thank the Australian Institute for Musculoskeletal Science (AIMSS) for supporting this study.

Funding

The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG042180, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, R01 AG066671, and UL1 TR002369. Funding for the D3Cr muscle mass measure was provided by NIAMS (grant number R01 AR065268 (PMC)). GlaxoSmithKline provided in kind support by providing the D3Cr dose and analysis of samples.

Data availability

Analysed data is available in this manuscript. Raw data is available on the MrOS website (access is subject to approval): https://mrosonline.ucsf.edu.

Reference list

- Langsetmo L, Peters KW, Burghardt AJ, Ensrud KE, Fink HA, Cawthon PM et al. Volumetric Bone Mineral Density and Failure Load of Distal Limbs Predict Incident Clinical Fracture Independent HR-pQCT BMD and Failure Load Predicts Incident Clinical Fracture of FRAX and Clinical Risk Factors Among Older Men. Journal of Bone and Mineral Research. 2018;33(7):1302–1311. [PubMed: 29624722]
- Cawthon PM, Peters KE, Cummings SR, Orwoll ES, Hoffman AR, Ensrud KE et al. Association Between Muscle Mass Determined by D3 -Creatine Dilution and Incident Fractures in a Prospective Cohort Study of Older Men. Journal of Bone and Mineral Research. 2022;37(7):1213–1220. [PubMed: 35253257]
- Harvey NC, Orwoll E, Kwok T, Karlsson MK, Rosengren BE, Ribom E et al. Sarcopenia Definitions as Predictors of Fracture Risk Independent of FRAX[®], Falls, and BMD in the Osteoporotic Fractures in Men (MrOS) Study: A Meta-Analysis. Journal of Bone and Mineral Research. 2021;36(7):1235–1244. [PubMed: 33831257]

- 4. Kirk B, Zanker J, Duque G. Sarcopenia Definitions and Outcomes Consortium (SDOC) Criteria are Strongly Associated With Malnutrition, Depression, Falls, and Fractures in High-Risk Older Persons. Journal of the American Medical Directors Association. 2021;22(4):741–745. [PubMed: 32771358]
- Kanis JA, McCloskey EV., Johansson H, Oden A, Melton LJ, Khaltaev N A reference standard for the description of osteoporosis. Bone. 2008;42(3):467–475. [PubMed: 18180210]
- Kirk B, Feehan J, Lombardi G, Duque G. Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines. Current Osteoporosis Reports. 2020;18(4):388–400. [PubMed: 32529456]
- 7. Simon A, Schäfer HS, Schmidt FN, Stürznickel J, Amling M, Rolvien T. Compartment-specific effects of muscle strength on bone microarchitecture in women at high risk of osteoporosis. Journal of cachexia, sarcopenia and muscle. 2022;13(5):2310–2321. [PubMed: 35852049]
- 8. Kirk B, Miller S, Zanker J, Duque G. A clinical guide to the pathophysiology, diagnosis and treatment of osteosarcopenia. Maturitas. 2020;140:27–33. [PubMed: 32972632]
- 9. Kirk B, Zanker J, Duque G. Osteosarcopenia: epidemiology, diagnosis, and treatment—facts and numbers. Journal of Cachexia, Sarcopenia and Muscle. 2020;11(3):609–618. [PubMed: 32202056]
- Chalhoub D, Cawthon PM, Ensrud KE, Stefanick ML, Kado DM, Boudreau R et al. Risk of nonspine fractures in older adults with sarcopenia, low bone mass, or both. Journal of the American Geriatrics Society. 2015;63(9):1733–1740. [PubMed: 26310882]
- Scott D, Seibel M, Cumming R, Naganathan V, Blyth F, Le Couteur DG et al. Does Combined Osteopenia/Osteoporosis and Sarcopenia Confer Greater Risk of Falls and Fracture Than Either Condition Alone in Older Men? The Concord Health and Ageing in Men Project. The journals of gerontology Series A, Biological sciences and medical sciences. 2019;74(6):827–834. [PubMed: 30032209]
- 12. Harvey NC, Odén A, Orwoll E, Lapidus J, Kwok T, Karlsson MK et al. Measures of Physical Performance and Muscle Strength as Predictors of Fracture Risk Independent of FRAX, Falls, and aBMD: A Meta-Analysis of the Osteoporotic Fractures in Men (MrOS) Study. Journal of Bone and Mineral Research. 2018;33(12):2150–2157. [PubMed: 30011086]
- 13. Harvey NC, Kanis JA, Liu E, Cooper C, Lorentzon M, Bea JW et al. Predictive Value of DXA Appendicular Lean Mass for Incident Fractures, Falls, and Mortality, Independent of Prior Falls, FRAX, and BMD: Findings from the Women's Health Initiative (WHI). Journal of Bone and Mineral Research. 2021;36(4):654–661. [PubMed: 33450071]
- Kirk B, Zhang S, Vogrin S, Harijanto C, Sales M, Duque G. Comparing the Fracture Profile of Osteosarcopenic Older Adults with Osteopenia/Osteoporosis Alone. Calcified tissue international. 2023;112(3):297–307. [PubMed: 36436030]
- 15. Kirk B, French C, Gebauer M, Vogrin S, Zanker J, Sales M et al. Diagnostic power of relative sit-to-stand muscle power, grip strength, and gait speed for identifying a history of recurrent falls and fractures in older adults [published online ahead of print, 2023 Apr 14]. European geriatric medicine. 2023 doi:10.1007/S41999-023-00778-X.
- 16. Cegielski J, Brook MS, Phillips BE, Boereboom C, Gates A, Gladman JFR et al. The Combined Oral Stable Isotope Assessment of Muscle (COSIAM) reveals D-3 creatine derived muscle mass as a standout cross-sectional biomarker of muscle physiology vitality in older age. GeroScience. 2022 doi:10.1007/S11357-022-00541-3.
- Harvey NC, Orwoll E, Cauley JA, Kwok T, Karlsson MK, Rosengren BE et al. Greater pQCT Calf Muscle Density Is Associated with Lower Fracture Risk, Independent of FRAX, Falls and BMD: A Meta-Analysis in the Osteoporotic Fractures in Men (MrOS) Study. JBMR plus. 2022;6(12).
- Wang L, Yin L, Yang M, Ge Y, Liu Y, Su Y et al. Muscle density is an independent risk factor of second hip fracture: a prospective cohort study. Journal of cachexia, sarcopenia and muscle. 2022;13(3):1927–1937. [PubMed: 35429146]
- 19. Kirk B, Duque G. Muscle and Bone: An Indissoluble Union. Journal of Bone and Mineral Research. 2022;37(7):1211–1212. [PubMed: 35764095]
- Edwards M, Gregson C, Patel H, Jameson K, Harvey N, Aihie Sayer A et al. Muscle size, strength, and physical performance and their associations with bone structure in the Hertfordshire Cohort Study. J Bone Miner Res. 2013;28(11):2295–2304. [PubMed: 23633238]

- 21. Orwoll E, Blank JB, Barrett-Connor E, Cauley J, Cummings S, Ensrud K et al. Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study--a large observational study of the determinants of fracture in older men. Contemporary clinical trials. 2005;26(5):569–585. [PubMed: 16084776]
- 22. Orwoll ES, Blackwell T, Cummings SR, Cauley JA, Lane NE, Hoffman AR et al. CT Muscle Density, D3Cr Muscle Mass, and Body Fat Associations With Physical Performance, Mobility Outcomes, and Mortality Risk in Older Men. The journals of gerontology Series A, Biological sciences and medical sciences. 2022;77(4):790–799. [PubMed: 34529767]
- 23. Shankaran M, Czerwieniec G, Fessler C, Wong P yin A, Killion S, Turner SM et al. Dilution of oral D3 -Creatine to measure creatine pool size and estimate skeletal muscle mass: development of a correction algorithm. Journal of cachexia, sarcopenia and muscle. 2018;9(3):540–546. [PubMed: 29663711]
- 24. Cawthon PM, Orwoll ES, Peters KE, Ensrud KE, Cauley JA, Kado DM et al. Strong relation between muscle mass determined by d3-creatine dilution, physical performance, and incidence of falls and mobility limitations in a prospective cohort of older men. Journals of Gerontology -Series A Biological Sciences and Medical Sciences. 2019;74(6):844–852. [PubMed: 29897420]
- 25. Orwoll E, Blackwell T, Cummings SR, Cauley JA, Lane NE, Hoffman AR, Burghardt AJ, Evans WJ CP. CT muscle density, D3Cr muscle mass and body fat associations with physical performance, mobility outcomes and mortality risk in older men. The journals of gerontology Series A, Biological sciences and medical sciences. 2021 doi:10.1093/GERONA/GLAB266.
- 26. Cawthon PM, Blackwell T, Cummings SR, Orwoll ES, Duchowny KA, Kado DM et al. Muscle mass assessed by the D3-creatine dilution method and incident self-reported disability and mortality in a prospective observational study of community-dwelling older men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences. 2021;76(1):123–130. [PubMed: 32442245]
- Kirk B, Lieu N, Vogrin S, Sales M, Pasco JA, Duque G. Serum levels of C-Terminal Telopeptide (CTX) are Associated with Muscle Function in Community-Dwelling Older Adults. The journals of gerontology Series A, Biological sciences and medical sciences. 2022;77(10):2085–2092. [PubMed: 35018430]
- Heo M, Leon AC. Sample sizes required to detect two-way and three-way interactions involving slope differences in mixed-effects linear models. Journal of biopharmaceutical statistics. 2010;20(4):787–802. [PubMed: 20496206]
- Balogun S, Winzenberg T, Wills K, Scott D, Callisaya M, Cicuttini F et al. Prospective associations of osteosarcopenia and osteodynapenia with incident fracture and mortality over 10 years in community-dwelling older adults. Archives of Gerontology and Geriatrics. 2019;82:67– 73. [PubMed: 30716680]
- 30. Salech F, Marquez C, Lera L, Angel B, Saguez R, Albala C. Osteosarcopenia Predicts Falls, Fractures, and Mortality in Chilean Community-Dwelling Older Adults. Journal of the American Medical Directors Association. 2020;22(4):853–858. [PubMed: 32921573]
- 31. Teng Z, Zhu Y, Teng Y, Long Q, Hao Q, Yu X et al. The analysis of osteosarcopenia as a risk factor for fractures, mortality, and falls. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2021;32(11):2173–2183. [PubMed: 33877382]
- Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S et al. Clinician's Guide to Prevention and Treatment of Osteoporosis. Osteoporosis International. 2014;25(10):2359–2381. [PubMed: 25182228]
- 33. Huo YR, Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Muir SW et al. Phenotype of Osteosarcopenia in Older Individuals With a History of Falling. Journal of the American Medical Directors Association. 2015;16(4):290–295. [PubMed: 25512216]
- 34. Tran T, Bliuc D, Ho-Le T, Abrahamsen B, van den Bergh JP, Chen W, Eisman JA, Geusens P, Hansen L, Vestergaard P, Nguyen TV, Blank RD, Center JR. Association of Multimorbidity and Excess Mortality After Fractures Among Danish Adults. JAMA Network Open. 2022;5(10):e2235856. [PubMed: 36215068]

	N	# of fractures			HR (95% CI)	P-value
D ₃ Cr Muscle Mass + HR-pQCT Tt.BMD Distal Tibia						
Muscle Mass Q2-Q4 + Distal Tibia Tt.BMD Q2-Q4	786	93	• •		REF	
Muscle Mass Q2-Q4 + Distal Tibia Tt.BMD Q1	229	56	•	—	2.14 (1.51, 3.04)	0.005
Muscle Mass Q1 + Distal Tibia Tt.BMD Q2-Q4	230	33			1.17 (0.73, 1.87)	0.509
Muscle Mass Q1 + Distal Tibia Tt.BMD Q1	108	27	—•		2.10 (1.25, 3.52)	<0.001
HR-pQCT Muscle Volume + HR-pQCT Tt.BMD Distal Tibia						
Muscle Volume Q2-Q4 + Distal Tibia Tt.BMD Q2-Q4	605	95	· •		REF	
Muscle Volume Q2-Q4 + Distal Tibia Tt.BMD Q1	159	39	_ ●		1.99 (1.32, 3.00)	0.001
Muscle Volume Q1 + Distal Tibia Tt.BMD Q2-Q4	159	18	-		0.93 (0.54, 1.61)	0.800
Muscle Volume Q1 + Distal Tibia Tt.BMD Q1	95	26		•	2.49 (1.50, 4.13)	<0.001
D3Cr Muscle Mass + HR-pQCT Tt.BMD Distal Radius						
Muscle Mass Q2-Q4 + Distal Radius Tt.BMD Q2-Q4	775	87	· •		REF	
Muscle Mass Q2-Q4 + Distal Radius Tt.BMD Q1	230	55)	2.21 (1.55, 3.14)	<0.001
Muscle Mass Q1 + Distal Radius Tt.BMD Q2-Q4	230	26	_•—		1.00 (0.60, 1.66)	0.987
Muscle Mass Q1 + Distal Radius Tt.BMD Q1	105	31		•	2.46 (1.49, 4.06)	<0.001
HR-pQCT Muscle Volume + HR-pQCT Tt.BMD Distal Radius						
Muscle Volume Q2-Q4 + Distal Radius Tt.BMD Q2-Q4	571	66	· •		REF	
Muscle Volume Q2-Q4 + Distal Radius Tt.BMD Q1	170	44	 ●	—	2.12 (1.41, 3.17)	<0.001
Muscle Volume Q1 + Distal Radius Tt.BMD Q2-Q4	171	16			0.71 (0.39, 1.30)	0.267
Muscle Volume Q1 + Distal Radius Tt.BMD Q1	75	23		•	- 2.84 (1.71, 4.72)	
				1 1	7	
			0 1 2	3 4	5	

Figure 1.

Multivariable-adjusted hazard ratio (with 95% CI) for nonvertebral fractures across quartiles of Tt.BMD (mg/cm³) and D₃Cr muscle mass (kg) or Tt.BMD (mg/cm³) and muscle volume (mm³). Models are adjusted for age, race, clinical centre, alcohol, smoking, comorbidities, limb length, weight, % fat, physical activity, cognition, fall history, grip strength, chair stands and gait speed.

	N	# of fractures		HR (95% CI)	P-value
D3Cr Muscle Mass + HR-pQCT Tt.BMD Distal Tibia					
Muscle Mass Q2-Q4 + Distal Tibia Tt.BMD Q2-Q4	786	14	· •	REF	
Muscle Mass Q2-Q4 + Distal Tibia Tt.BMD Q1	229	9	—•—	2.50 (1.05, 5.96)	0.039
Muscle Mass Q1 + Distal Tibia Tt.BMD Q2-Q4	230	6	- -	0.78 (0.25, 2.45)	0.664
Muscle Mass Q1 + Distal Tibia Tt.BMD Q1	108	6		1.81 (0.54, 6.07)	0.340
HR-pQCT Muscle Volume + HR-pQCT Tt.BMD Distal Tibia					
Muscle Volume Q2-Q4 + Distal Tibia Tt.BMD Q2-Q4	605	12	· •	REF	
Muscle Volume Q2-Q4 + Distal Tibia Tt.BMD Q1	159	7	- -	2.17 (0.83, 5.69)	0.115
Muscle Volume Q1 + Distal Tibia Tt.BMD Q2-Q4	159	5	- -	1.52 (0.50, 4.62)	0.465
Muscle Volume Q1 + Distal Tibia Tt.BMD Q1	95	7	• • • • • • • • • • • • • • • • • • •	- 3.87 (1.32, 11.3)	0.013
D3Cr Muscle Mass + HR-pQCT Tt.BMD Distal Radius					
Muscle Mass Q2-Q4 + Distal Radius Tt.BMD Q2-Q4	775	15	• •	REF	
Muscle Mass Q2-Q4 + Distal Radius Tt.BMD Q1	230	8	- -	1.51 (0.60, 3.78)	0.382
Muscle Mass Q1 + Distal Radius Tt.BMD Q2-Q4	230	5	•	0.48 (0.12, 1.83)	0.279
Muscle Mass Q1 + Distal Radius Tt.BMD Q1	105	5		1.70 (0.52, 5.52)	0.380
HR-pQCT Muscle Volume + HR-pQCT Tt.BMD Distal Radius					
Muscle Volume Q2-Q4 + Distal Radius Tt.BMD Q2-Q4	571	10	· •	REF	
Muscle Volume Q2-Q4 + Distal Radius Tt.BMD Q1	170	8	•••••	2.36 (0.91, 6.12)	0.078
Muscle Volume Q1 + Distal Radius Tt.BMD Q2-Q4	171	8	•	2.30 (0.81, 6.55)	0.118
Muscle Volume Q1 + Distal Radius Tt.BMD Q1	75	4	•	3.31 (0.98, 11.1)	0.053
			0 2 4 6 8 10	-	

Figure 2.

Multivariable-adjusted hazard ratio (with 95% CI) for vertebral fractures across quartiles of Tt.BMD (mg/cm³) and D₃Cr muscle mass (kg) or Tt.BMD (mg/cm³) and muscle volume (mm³). Models are adjusted for age, race, clinical centre, alcohol, smoking, comorbidities, limb length, weight, % fat, physical activity, cognition, fall history, grip strength, chair stands and gait speed.

	N	# of fractures				HR (95% CI)	P-value
D3Cr Muscle Mass + HR-pQCT Tt.BMD Distal Tibia							
Muscle Mass Q2-Q4 + Distal Tibia Tt.BMD Q2-Q4	786	106				REF	
Muscle Mass Q2-Q4 + Distal Tibia Tt.BMD Q1	229	67	<u> </u>	•		2.37 (1.72, 3.27)	<0.001
Muscle Mass Q1 + Distal Tibia Tt.BMD Q2-Q4	230	39	_ — —			1.13 (0.73, 1.74)	0.588
Muscle Mass Q1 + Distal Tibia Tt.BMD Q1	108	32	•			2.00 (1.24, 3.23)	0.005
HR-pQCT Muscle Volume + HR-pQCT Tt.BMD Distal Tib	oia						
Muscle Volume Q2-Q4 + Distal Tibia Tt.BMD Q2-Q4	605	87	· •			REF	
Muscle Volume Q2-Q4 + Distal Tibia Tt.BMD Q1	159	48				2.09 (1.44, 3.04)	<0.001
Muscle Volume Q1 + Distal Tibia Tt.BMD Q2-Q4	159	23	_•—			0.98 (0.60, 1.60)	0.936
Muscle Volume Q1 + Distal Tibia Tt.BMD Q1	95	32	— —	•		2.58 (1.63, 4.09)	<0.001
D3Cr Muscle Mass + HR-pQCT Tt.BMD Distal Radius							
Muscle Mass Q2-Q4 + Distal Radius Tt.BMD Q2-Q4	775	103	· •			REF	
Muscle Mass Q2-Q4 + Distal Radius Tt.BMD Q1	230	64		•		2.15 (1.55, 2.97)	<0.001
Muscle Mass Q1 + Distal Radius Tt.BMD Q2-Q4	230	31				0.87 (0.55, 1.40)	0.579
Muscle Mass Q1 + Distal Radius Tt.BMD Q1	105	36		•	_	2.32 (1.46, 3.67)	<0.001
HR-pQCT Muscle Volume + HR-pQCT Tt.BMD Distal Rad	lius						
Muscle Volume Q2-Q4 + Distal Radius Tt.BMD Q2-Q4	571	79	•			REF	
Muscle Volume Q2-Q4 + Distal Radius Tt.BMD Q1	170	53		—		2.14 (1.48, 3.09)	<0.001
Muscle Volume Q1 + Distal Radius Tt.BMD Q2-Q4	171	24				0.87 (0.52, 1.43)	0.573
Muscle Volume Q1 + Distal Radius Tt.BMD Q1	75	26		•		2.68 (1.67, 4.30)	<0.001
			г т				
			0 1 2	3	4		

Figure 3.

Multivariable-adjusted hazard ratio (with 95% CI) for all fractures across quartiles of Tt.BMD (mg/cm³) and D₃Cr muscle mass (kg) or Tt.BMD (mg/cm³) and muscle volume (mm³). Models are adjusted for age, race, clinical centre, alcohol, smoking, comorbidities, limb length, weight, % fat, physical activity, cognition, fall history, grip strength, chair stands and gait speed.

Page 15

	N	# of fractures		HR (95% CI)	P-value
A) Muscle Density + Ct.Area Distal Tibia					
Muscle Density Q2-Q4 + Ct.Area Q2-Q4	607	74	•	REF	
Muscle Density Q2-Q4 + Ct.Area Q1	157	35	•	1.85 (1.19, 2.86)	0.006
Muscle Density Q1 + Ct.Area Q2-Q4	157	22	●	1.15 (0.69, 1.93)	0.599
Muscle Density Q1 + Ct.Area Q1	97	26	•	2.59 (1.54, 4.35)	<0.001
B) Muscle Density + Ct.Area Distal Tibia					
Muscle Density Q2-Q4 + Ct.Area Q2-Q4	607	15	•	REF	
Muscle Density Q2-Q4 + Ct.Area Q1	157	5	e	1.05 (0.37, 3.00)	0.932
Muscle Density Q1 + Ct.Area Q2-Q4	157	7		1.64 (0.61, 4.45)	0.330
Muscle Density Q1 + Ct.Area Q1	97	4	e	1.06 (0.28, 4.00)	0.931
C) Muscle Density + Ct.Area Distal Tibia					
Muscle Density Q2-Q4 + Ct.Area Q2-Q4	607	93	•	REF	
Muscle Density Q2-Q4 + Ct.Area Q1	157	38	—	1.55 (1.03, 2.33)	0.035
Muscle Density Q1 + Ct.Area Q2-Q4	157	28	●	1.12 (0.70, 1.77)	0.640
Muscle Density Q1 + Ct.Area Q1	97	31	••	2.29 (1.43, 3.68)	<0.001
		r O	1 2 3 4		

Figure 4.

Multivariable-adjusted hazard ratio (with 95% CI) for A) nonvertebral, B) vertebral and C) all fractures across quartiles of HR-pQCT distal tibia Ct.Ar (mm²) and HR-pQCT muscle density (diaphyseal, calf, mg/cm³). Models are adjusted for age, race, clinical centre, alcohol, smoking, comorbidities, limb length, weight, % fat, physical activity, cognition, fall history, grip strength, chair stands and gait speed.

Author Manuscript

Table 1.

Population characteristics by quartiles (Q) of Tt.BMD (distal tibia, mg/cm³) and D₃Cr muscle mass (whole body; kg).

	Q1 Tt.BMD (120.20-249.40 mg/cm ³) + Q1 Muscle Mass (11.7-21.18kg)	Q1 TtBMD (120.20-249.40 mg/cm ³) + Q2-4 Muscle Mass (21.19-37.71kg)	Q2-4 Tt.BMD (245.10- 479.4mg/cm ³) + Q1 Muscle Mass (11.7-21.18kg)	Q2-4 Tt.BMD (245.10- 479.4mg/cm ³) + Q2-4 Muscle Mass (21.19-37.71kg)	P value
Sample size, <i>n</i> =	(N= 108)	(N= 230)	(N= 229)	(N=786)	
Age (years), mean \pm SD	87.90 ± 4.46	86.26 ± 4.28	83.75 ± 3.69	83.13 ± 3.40	<0.001
White, n (%)	100 (92.59)	211 (91.74)	211 (92.14)	718 (91.35)	0.961
Education level, n (%)					
<hi>high school</hi>	4 (3.70)	13 (5.65)	7 (3.06)	23 (2.93)	0.429
high school	16 (14.81)	40 (17.39)	33 (14.41)	112 (14.25)	
college/grad school	88 (81.48)	177 (76.96)	189 (82.53)	651 (82.82)	
Smoking status, n(%)					
Never	60 (55.56)	114 (49.57)	113 (49.34)	394 (50.13)	0.678
Past	46 (42.59)	114 (49.57)	112 (48.91)	386 (49.11)	
Current	2 (1.85)	2 (0.87)	4 (1.75)	6 (0.76)	
Drinks per week, n(%)					
<1 drinks/week	56 (51.85)	133 (58.59)	101 (44.10)	363 (46.30)	0.004
1-13 drinks/week	43 (39.81)	82 (36.12)	119 (51.97)	385 (49.11)	
14+ drinks/week	9 (8.33)	12 (5.29)	9 (3.93)	36 (4.59)	
Number of medical conditions, n (%)					
0	65 (60.19)	137 (59.57)	153 (66.81)	525 (66.79)	0.033
1	25 (23.15)	61 (26.52)	59 (25.76)	193 (24.55)	
2+	18 (16.67)	32 (13.91)	17 (7.42)	68 (8.65)	
Body mass index (kg/m ²), mean \pm SD	24.89 ± 3.31	25.30 ± 3.05	26.65 ± 3.51	27.42 ± 3.62	<0.001
Percentage fat mass, DXA, mean \pm SD	27.44 ± 6.73	27.70 ± 5.91	27.18 ± 6.16	27.89 ± 5.63	0.422
$D_3 Cr \ muscle \ mass, kg, mean \pm SD$	18.79 ± 1.90	19.35 ± 1.38	25.36 ± 3.01	25.91 ± 3.27	<0.001
$D_3 Cr$ muscle mass/weight, kg, mean \pm SD	0.27 ± 0.04	0.27 ± 0.04	0.31 ± 0.04	0.32 ± 0.05	<0.001
Muscle volume (diaphyseal, calf), mm ³ , mean \pm SD	26833.10 +/- 6774.74	27560.41 +/- 5442.77	29503.61 +/- 5413.74	31430.17 +/- 6434.00	<0.001

J Bone Miner Res. Author manuscript; available in PMC 2024 September 01.

Kirk et al.

	Q1 Tt.BMD (120.20-249.40 mg/cm ³) + Q1 Muscle Mass (11.7-21.18kg)	Q1 Tt.BMD (120.20–249.40 mg/cm ³) + Q2-4 Muscle Mass (21.19–37.71kg)	Q2-4 Tt.BMD (245.10- 479.4mg/cm³) + Q1 Muscle Mass (11.7-21.18kg)	Q2-4 Tt.BMD (245.10– 479.4mg/cm ³) + Q2-4 Muscle Mass (21.19–37.71kg)	P value
Muscle density (diaphyseal, calf), mg/cm ³ , mean \pm SD	9.15 +/- 4.68	11.00 +/- 4.73	11.53 +/- 4.20	12.79 +/- 4.25	<0.001
Tt.BMD, distal radius, mg/cm ³ , mean \pm SD	216.40 ± 43.17	286.60 ± 49.88	223.25 ± 38.95	295.78 ± 53.35	<0.001
Tb.BMD, distal radius, mg/cm ³ , mean \pm SD	135.30 +/- 32.24	181.41 +/- 33.92	138.47 +/- 26.64	181.30 +/- 35.52	<0.001
Ct.BMD, distal radius, mg/cm^3 , mean \pm SD	744.98 +/- 69.75	794.70 +/- 66.16	763.12 +/- 63.90	816.13 +/- 59.55	<0.001
Ct.Ar, distal radius, mm^2 , mean \pm SD	53.83 +/- 10.16	63.50 +/- 12.04	59.28 +/- 10.32	70.46 +/- 13.37	<0.001
Tt.BMD, distal tibia, mg/cm^3 , mean \pm SD	211.62 ± 27.35	299.40 ± 39.58	217.34 ± 24.86	304.12 ± 42.01	<0.001
Tb.BMD, distal tibia, mg/cm ³ , mean \pm SD	135.30 +/- 32.24	181.41 +/- 33.92	138.47 +/- 26.64	181.30 +/- 35.52	<0.001
Ct.BMD, distal tibia, mg/cm ³ , mean \pm SD	744.98 +/- 69.75	794.70 +/- 66.16	763.12 +/- 63.90	816.13 +/- 59.55	<0.001
Ct.Ar, distal tibia, mm ² , mean \pm SD	102.86 +/- 23.14	139.47 +/- 26.14	114.75 +/- 20.52	151.79 +/- 26.22	<0.001
Grip strength, kg, mean \pm SD	28.67 ± 9.14	30.31 ± 8.85	36.69 ± 8.80	36.29 ± 9.62	<0.001
Leg force (newtons/kg body weight)	15.72 +/- 1.66	16.26 +/- 1.84	16.51 +/- 1.90	16.93 +/- 1.83	<0.001
Chair stands per 10 seconds, mean \pm SD	2.75 ± 2.18	3.32 ± 1.85	3.58 ± 1.69	4.06 ± 1.62	<0.001
Gait speed, m/s, mean \pm SD	0.93 ± 0.26	1.01 ± 0.24	1.08 ± 0.23	1.12 ± 0.23	<0.001
Physical activity score (PASE), mean \pm SD	92.68 ± 63.05	107.25 ± 70.17	123.73 ± 66.65	124.61 ± 60.96	<0.001
Mini Mental score, mean \pm SD	91.05 ± 7.29	91.39 ± 6.86	92.36 ± 7.19	92.84 ± 6.61	0.006
Previous falls, n(%)	45 (41.67)	98 (42.61)	78 (34.06)	263 (33.46)	0.038
Incident nonvertebral fractures, n (%)	27 (25.00)	33 (14.35)	56 (24.45)	93 (11.83)	<0.001
Incident vertebral fractures, n (%)	6 (5.56)	6 (2.61)	9 (3.93)	14 (1.78)	0.059
Incident all fractures, n (%)	32 (29.63)	39 (16.96)	67 (29.26)	106 (13.49)	<0.001
Follow up time (years), mean \pm SD	4.85 +/- 2.38	5.20 +/- 2.22	5.99 +/- 2.14	6.44 +/- 1.90	<0.001

J Bone Miner Res. Author manuscript; available in PMC 2024 September 01.

Author Manuscript

R
θ
q
Ца

Continuous interactions terms (p values) between Tt.BMD (at distal radius and tibia) and muscle variables in predicting fractures.

$\begin{array}{c c} \operatorname{ss}(\operatorname{kg}) \\ \operatorname{inber} & P \\ \operatorname{ents} & \operatorname{value} \\ 0.790 \\ 0.339 \\ 0.339 \\ 0.330 \\ \operatorname{ss}(\operatorname{kg}) \\ \operatorname{ss}(\operatorname{kg}) \\ \operatorname{ss}(\operatorname{kg}) \\ \operatorname{ss}(\operatorname{kg}) \\ \operatorname{ss}(\operatorname{kg}) \\ \operatorname{inber} & P \\ \operatorname{value} \\ val$	Muscle volume (diaphyseal, calf) (mm ³)Pcalf) (mm ³)SampleNumber P SampleNumber P $valsize (n=)of eventsvalval9871490.79.710181570.2$	seal,	Muscle density (diaphyseal,	sity (dianhys	loo	•			, 1		
Sample size (n=)Number of eventsP value13401990.33913532090.79013532090.79013532090.790Luces P P Luces P P SampleNumber 			call) (mg/cm ²)	n ³)	cai,	Grip strength (kg)	ıgth (kg)		Leg force (weight)	Leg force (newtons/kg body weight)	body
13401990.33913532090.790Lures $D_3 Cr muscle mass (kg)$ 0.790 Lures $D_3 Cr muscle mass (kg)$ 0.790 Day Cr muscle mass (kg) 0.678 0.678 SampleNumber P 135335 0.634 Day Cr muscle mass (kg) 0.634 Day Cr muscle mass (kg) 0.634 SampleNumberSampleNumberfor events $palue$		P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value
13532090.790turesD_3Cr muscle mass (kg) D_3Cr muscle mass (kg)SampleNumber P Size ($n=$)0.6781340330.6781353350.634 D_3Cr muscle mass (kg) D_3Cr muscle mass (kg)D_3Cr muscle mass (kg)		0.736	987	149	0.291	1669	246	0.627	1172	171	0.309
ebral fractures D ₃ Cr muscle mass (kg) D ₃ Cr muscle mass (kg) Sample Number Size $(n=)$ of events $palue$ MDdistal 1340 33 0.678 MDdistal 1340 33 0.678 MDdistal 1353 35 0.634 MDdistal 1353 35 0.634 MDdistal 1353 35 0.634 ImpCum ³) D ₃ Cr muscle mass (kg) $radue$ Sample Number P size $(n=)$ of events $palue$		0.288	1018	157	0.600	1683	254	0.977	1178	173	0.912
$\begin{tabular}{ c c c c c c } \hline D_3Cr muscle mass (kg) \\ \hline B_3Cr muscle mass (kg) \\ \hline Sample & Number & P \\ size (n=) & of events & value \\ mbdistal & 1340 & 33 & 0.678 \\ mbdistal & 1340 & 33 & 0.678 \\ mbdistal & 1340 & 33 & 0.678 \\ \hline mbdistal & 1353 & 35 & 0.634 \\ mbdistal & 1353 & 0.634 \\ mbdistal & 1353 & 0.678 \\ mbdistal & 1340 & 0.678 \\ mbdistal & 1440 & 0.678 \\ $	-										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Muscle volume (diaphyseal, calf) (mm ³)	seal,	Muscle den calf) (mg/cı	Muscle density (diaphyseal, calf) (mg/cm ³)	eal,	Grip strength (kg)	ıgth (kg)		Leg force (weight)	Leg force (newtons/kg body weight)	body
$ \begin{array}{ c c c c c c c c } \mbox{MDdistal} & 1340 & 33 & 0.678 \\ \mbox{is (mg/} & & & & \\ \mbox{MDdistal} & 1353 & 35 & 0.634 \\ \mbox{(mg/cm}^3) & & & & & \\ \mbox{moder} & & & & & \\ \mbox{moder} & & & & & \\ \mbox{ractures} & & & & & \\ \mbox{ractures} & & & & & \\ \mbox{Sample} & & & & & \\ \mbox{size (n=)} & & & & & & \\ \mbox{of events} & & & & & & \\ \mbox{size (n=)} & & & & & & & \\ \mbox{of events} & & & & & & \\ \mbox{size (n=)} & & & & & & & \\ \mbox{of events} & & & & & & & \\ \mbox{size (n=)} & & & & & & & & \\ \mbox{of events} & & & & & & & \\ \mbox{of events} & & & & & & & \\ \mbox{of events} & & & & & & & \\ \mbox{of events} & & & & & & & \\ \mbox{of events} & & & & & & & \\ \mbox{of events} & & & & & & & & & \\ \mbox{of events} & & & & & & & & \\ \mbox{of events} & & & & & & & & \\ \mbox{of events} & & & & & & & & \\ \mbox{of events} & & & & & & & & & \\ \mbox{of events} & & & & & & & & \\ \mbox{of events} & & & & & & & & \\ \mbox{of events} & & & & & & & & & \\ \mbox{of events} & & & & & & & & & & \\ \mbox{of events} & & & & & & & & & & & & & \\ \mbox{of events} & & & & & & & & & & & & & & \\ \mbox{of events} & & & & & & & & & & & & & & & \\ \mbox{of events} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{ll} \text{le} & \text{Number} \\ n=) & \text{of events} \\ (n=) \end{array} $	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value
1353 35 0.634 D3Cr muscle mass (kg) Sample Number size (n=) of events	30	0.995	987	30	0.262	1669	42	0.686	1172	27	0.078
D_3Cr muscle mass (kg)SampleSampleNumbersize $(n=)$ of events	31	0.419	1018	31	0.471	1683	45	0.401	1178	27	0.871
scle mass (kg) Number P of events value			1								
Number P of events value	Muscle volume (diaphyseal, calf) (mm ³)	seal,	Muscle density calf) (mg/cm ³)	Muscle density (diaphyseal, calf) (mg/cm ³)	eal,	Grip strength (kg)	ıgth (kg)		Leg force (weight)	Leg force (newtons/kg body weight)	body
	$ \begin{array}{ll} \text{ole} & \text{Number} \\ n=) & \text{of events} \\ (n=) \end{array} $	P value	Sample size (<i>n</i> =)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (<i>n</i> =)	Number of events (n=)	P value
Tt.BMDdistal 1340 234 0.564 987 radius (mg/ cm ³) mg/ 0.564 987	182	0.857	987	182	0.381	1669	293	0.746	1172	203	0.687
Tt.BMD distal 1353 244 0.931 1018 tibia (mg/cm ³) <	190	0.275	1018	190	0.572	1683	302	0.708	1178	204	0.951

Kirk et al.

Author Manuscript

Author Manuscript

Table 3.

Continuous interactions terms (p values) between Tb.BMD (at distal radius and tibia) and muscle variables in predicting fractures.

Nonvertebral fractures	actures														
	D ₃ Cr mus	D ₃ Cr muscle mass (kg)		Muscle volu calf) (mm ³)	Muscle volume (diaphyseal, calf) (mm ³)	seal,	Muscle der calf) (mg/c	Muscle density (diaphyseal, calf) (mg/cm ³)	ieal,	Grip strength (kg)	gth (kg)		Leg force (weight)	Leg force (newtons/kg body weight)	ody
	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value
Tb.BMDdistal radius (mg/ cm ³)	1340	199	0.626	987	149	0.855	987	149	0.726	1669	246	0.327	1172	171	0.421
Tb.BMDdistal tibia (mg/cm ³)	1353	209	0.435	1018	157	0.309	1018	157	0.680	1683	254	0.806	1178	173	0.559
Vertebral fractures	res														
	D ₃ Cr mus	D ₃ Cr muscle mass (kg)		Muscle volt calf) (mm ³)	Muscle volume (diaphyseal, calf) (mm ³)	seal,	Muscle der calf) (mg/c	Muscle density (diaphyseal, calf) (mg/cm ³)	ieal,	Grip strength (kg)	gth (kg)		Leg force (weight)	Leg force (newtons/kg body weight)	ody
	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (<i>n</i> =)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value
Tb.BMDdistal radius (mg/ cm ³)	1340	33	0.731	286	30	0.942	987	30	0.936	1669	42	0.815	1172	27	0.373
Tb.BMDdistal tibia (mg/cm ³)	1353	35	0.725	1018	31	0.647	1018	31	0.735	1683	45	0.639	1178	27	0.382
All fractures															
	D ₃ Cr mus	D ₃ Cr muscle mass (kg)		Muscle volu calf) (mm ³)	Muscle volume (diaphyseal, calf) (mm ³)	seal,	Muscle der calf) (mg/c	Muscle density (diaphyseal, calf) (mg/cm ³)	ieal,	Grip strength (kg)	gth (kg)		Leg force (weight)	Leg force (newtons/kg body weight)	ody
	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (<i>n</i> =)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value
Tb.BMDdistal radius (mg/ cm ³)	1340	234	0.876	987	182	0.985	987	182	0.658	1669	293	0.363	1172	203	0.801
Tb.BMDdistal tibia (mg/cm ³)	1353	244	0.684	1018	190	0.189	1018	190	0.911	1683	302	0.692	1178	204	0.367

Kirk et al.

Note, to tests whether there was a synergistic effect of bone and muscle variables on fracture risk, we ran Cox proportional hazards models including only main effect estimates and the interaction term. Data are unadjusted for covariates. No significant interactions were observed ($\mathcal{P}0.05$).

Author Manuscript

4
θ
q
Та

Continuous interactions terms (p values) between Ct.BMD (at distal radius and tibia) and muscle variables in predicting fractures.

Nonvertebr	Nonvertebral fractures														
	D ₃ Cr musc	D ₃ Cr muscle mass (kg)		Muscle volı (mm ³)	Muscle volume (diaphyseal, calf) (mm ³)	eal, calf)	Muscle den (mg/cm ³)	Muscle density (diaphyseal, calf) (mg/cm ³)	eal, calf)	Grip strength (kg)	gth (kg)		Leg force (1 weight)	Leg force (newtons/kg body weight)	dy
	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value
Ct.BMD distal radius (mg/cm ³)	1340	199	0.932	286	149	0.318	789	149	0.138	1669	246	0.720	1172	171	0.328
Ct.BMD distal tibia (mg/ cm ³)	1353	209	0.544	1018	157	0.744	1018	157	0.787	1683	254	0.610	1178	173	0.431
Vertebral fractures	ractures														
	D ₃ Cr musc	D ₃ Cr muscle mass (kg)		Muscle volı (mm ³)	Muscle volume (diaphyseal, calf) (mm ³)	eal, calf)	Muscle den (mg/cm ³)	Muscle density (diaphyseal, calf) (mg/cm ³)	eal, calf)	Grip strength (kg)	gth (kg)		Leg force (1 weight)	Leg force (newtons/kg body weight)	dy
	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value
Ct.BMD distal radius (mg/cm ³)	1340	33	0.509	987	30	0.702	987	30	0.077	1669	42	0.967	1172	27	0.036
Ct.BMD distal tibia (mg/ cm ³)	1353	35	0.773	1018	31	0.808	1018	31	0.337	1683	45	0.288	1178	27	0.244
All fractures	S														
	D ₃ Cr musc	D ₃ Cr muscle mass (kg)		Muscle volı (mm ³)	Muscle volume (diaphyseal, calf) (mm ³)	eal, calf)	Muscle den (mg/cm ³)	Muscle density (diaphyseal, calf) (mg/cm ³)	eal, calf)	Grip strength (kg)	gth (kg)		Leg force (1 weight)	Leg force (newtons/kg body weight)	dy
	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value
Ct.BMD distal radius (mg/cm ³)	1340	234	0.923	987	182	0.198	987	182	0.239	1669	293	0.817	1172	203	0.510

J Bone Miner Res. Author manuscript; available in PMC 2024 September 01.

Kirk et al.

\geq
7
7
ō
¥
~
മ
S
0
Ξ.
¥

Nonverteb	Nonvertebral fractures														
	D ₃ Cr muse	D ₃ Cr muscle mass (kg)		Muscle volu (mm ³)	ume (diaphys	eal, calf)	Muscle den (mg/cm ³)	(uscle volume (diaphyseal, calf) Muscle density (diaphyseal, calf) Grip strength (kg) nm ³) (mg/cm ³)	eal, calf)	Grip stren	gth (kg)		Leg force (1 weight)	Leg force (newtons/kg body weight)	dy
	Sample size (<i>n</i> =)	Sample Number size (n=) of events (n=)	P value	Sample size (n=)	Sample Number size (n=) of events (n=)	P value	Sample size (n=)	SampleNumbersize $(n=)$ of events $(n=)$	P value	Sample size (<i>n</i> =)	Sample Number size $(n=)$ of events $(n=)$	P value	Sample Number size $(n=)$ of events $(n=)$	Number of events (n=)	P value
Ct.BMD distal tibia (mg/ cm ³)	1353	244	0.658	1018	190	0.649 1018		190	0.972 1683	1683	302	0.856 1178	1178	204	0.410

Note, to tests whether there was a synergistic effect of bone and muscle variables on fracture risk, we ran Cox proportional hazards models including only main effect estimates and the interaction term. Data are unadjusted for covariates.

Author Manuscript

Autho
r Manu
uscript

Table 5.

Continuous interactions terms (p values) between Ct.Ar (at distal radius and tibia) and muscle variables in predicting fractures.

Nonverte	Nonvertebral fractures	ş													
	D ₃ Cr muse	D ₃ Cr muscle mass (kg)		Muscle volt (mm ³)	Muscle volume (diaphyseal, calf) (mm ³)	eal, calf)	Muscle den (mg/cm ³)	Muscle density (diaphyseal, calf) (mg/cm ³)	al, calf)	Grip strength (kg)	gth (kg)		Leg force (1 weight)	Leg force (newtons/kg body weight)	dy
	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value
Ct.Ar distal radius (mm ²)	1340	199	0.367	286	149	0.946	789	149	0.271	1669	246	0.609	1172	171	0.881
Ct.Ar distal tibia (mm ²)	1353	209	0.911	972	148	0.754	1018	157	0.693	1683	254	0.373	1178	173	0.135
Vertebra	Vertebral fractures														
	D ₃ Cr muse	D ₃ Cr muscle mass (kg)		Muscle volı (mm ³)	Muscle volume (diaphyseal, calf) (mm ³)	eal, calf)	Muscle den (mg/cm ³)	Muscle density (diaphyseal, calf) (mg/cm ³)	al, calf)	Grip strength (kg)	gth (kg)		Leg force (1 weight)	Leg force (newtons/kg body weight)	dy
	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value
Ct.Ar distal radius (mm ²)	1340	33	0.597	786	30	0.800	987	30	0.141	1669	42	0.535	1172	27	0.338
Ct.Ar distal tibia (mm ²)	1353	35	0.649	1018	31	0.738	1018	31	0.187	1683	45	0.232	1178	27	0.569
All fractures	ures														
	D ₃ Cr muse	D ₃ Cr muscle mass (kg)		Muscle volt (mm ³)	Muscle volume (diaphyseal, calf) (mm ³)	eal, calf)	Muscle den (mg/cm ³)	Muscle density (diaphyseal, calf) (mg/cm ³)	al, calf)	Grip strength (kg)	gth (kg)		Leg force (1 weight)	Leg force (newtons/kg body weight)	dy
	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value	Sample size (n=)	Number of events (n=)	P value
Ct.Ar distal radius (mm ²)	1340	234	0.526	987	182	0.853	987	182	0.412	1669	293	0.919	1172	203	0.993

J Bone Miner Res. Author manuscript; available in PMC 2024 September 01.

Г

\rightarrow
~
—
-
Z
0
\geq
\geq
la
/lan
la
lanu
lanu
lanus
Anusc
lanuscr
Anusc
lanuscr

Nonverte	Nonvertebral fractures	s													
	D ₃ Cr musc	D ₃ Cr muscle mass (kg)		Muscle volu (mm ³)	ıme (diaphyst	al, calf)	Muscle den (mg/cm ³)	Muscle volume (diaphyseal, calf) Muscle density (diaphyseal, calf) Grip strength (kg) (mm ³) (mg/cm ³) (mg/cm ³) (mg/cm ³)	al, calf)	Grip stren	gth (kg)		Leg force (1 weight)	Leg force (newtons/kg body weight)	dy
	Sample Number size $(n=)$ of events $(n=)$	Number of events (n=)	P value	Sample Number size (n=) of events (n=)		P value	Sample Number size $(n=)$ of events $(n=)$	Number of events (n=)	P value	Sample size (n=)	Sample Number size $(n=)$ of events $(n=)$	P value	Sample Number size $(n=)$ of events $(n=)$	Number of events (n=)	P value
Ct.Ar distal tibia (mm ²)	1353	244	0.914	1018	190	0.920 1018	1018	190	0.611 1683		302	0.849 1178	1178	204	0.274

Note, to tests whether there was a synergistic effect of bone and muscle variables on fracture risk, we ran Cox proportional hazards models including only main effect estimates and the interaction term. Data are unadjusted for covariates. No significant interactions were observed (p-0.05).