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Real-Time Large-Scale Ridesharing with Flexible 
Meeting Points 

Executive Summary 
Many major cities in the United States are plagued by increasing traffic congestion, 
pollutant emissions, and inaccessibility to transportation. Ridesharing can be a means to 
solve these problems. This is a system where regular drivers provide rides to other 
passengers on their way to their destination. Ridesharing can provide flexible and 
inexpensive rides to passengers and increase transportation accessibility for economically 
disadvantaged individuals. By efficiently using empty spaces in personal vehicles, 
rideshare can reduce the need for a personal vehicle, traffic congestion, and pollutant 
emissions. 

For a rideshare system to be effective, passengers need to be matched with the drivers in a 
way that minimizes driver inconvenience. Therefore, the rideshare system needs to provide 
the drivers with good quality routes that minimize driver detours, waiting times, and 
distance traveled. These routes also need to be updated as passengers and drivers enter 
and exit the rideshare system and as the traffic conditions change. Therefore, the rideshare 
system needs to react in real time to the changing dynamics of the system. In this report, 
we propose such a rideshare system. We developed a routing framework based on a 
greedy insertion heuristic that can efficiently route thousands of requests in an hour with a 
very limited computation budget.  

One way to reduce driver detours is to incorporate flexible meeting points. In this system, a 
passenger may have to walk to their pickup point from their origin or walk to their 
destination from the drop-off point. By walking a certain distance, travel distances for both 
drivers and passengers can be reduced significantly. We incorporated this feature into our 
rideshare system.  

Also, to increase the adoption of the rideshare system, drivers and passengers can be 
compensated by the platform for their inconveniences. In many cases, providing rides to 
passengers may result in longer trip times for the drivers and other passengers in the 
vehicle. This may act as a detrimental factor in the adoption of rideshare. To remedy this 
and increase the passenger service rate of the rideshare system, we implemented an 
online incentive and cost-sharing system.  

To understand how the rideshare system affects traffic conditions, we incorporated 
simulation into our rideshare framework. This simulation module provides the rideshare 
system with the most updated condition of the road network so that the rideshare routes 
can be robust to changes in traffic conditions. Also, the simulation model facilitates the 
study of the benefits of introducing a rideshare system into realistic settings.  
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We conducted numerical experiments on two databases in two different contexts: urban 
and rural. For the urban area, we chose the New York Taxicab dataset. For the rural area, 
we constructed a database based on the area surrounding Kern and Tulare Counties, 
California. Numerical experiments on this dataset showed that our proposed framework 
could effectively route thousands of rideshare requests in real time. Also, passengers, on 
average, had to pay only about $1.68 in the urban area and $3.51 in the rural area for a ride. 
Results also show that incorporating flexible meeting points can reduce the drivers’ 
detours by 4% on average. Results from the simulation study revealed that ridesharing can 
reduce the total vehicle distance traveled by 13% on average in urban areas and 31% on 
average in rural areas. Sensitivity analysis of incentive budgets showed that incentivizing 
rideshare drivers and passengers can be a great way of increasing participation in the 
rideshare system and can increase passenger service rates significantly. 
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Introduction  
Traffic congestion is an ever-increasing problem in large metropolitan areas in the United 
States. Commuters lose hours every year stuck in traffic. According to the 2023 Urban 
Mobility Report, each commuter lost about 54 hours in 2022. In monetary terms, this 
amounts to $1259 per commuter per year. Nationwide traffic congestion results in 8.5 
billion lost hours and 3.3 billion gallons of wasted fuel. Major infrastructure projects have 
been undertaken to alleviate the problem, such as building freeways or adding more lanes 
to existing freeways. However, these road expansion projects cannot keep up with the 
increasing number of personal vehicles. These personal vehicles are also a highly 
inefficient mode of transportation compared to shared mobility options, as they have a low 
occupancy rate (Lasley, 2021). Many of the major cities in the U.S. have insufficient public 
transport options, making transportation inaccessible to economically disadvantaged 
individuals. Also, in most of the rural areas of the United States, public transportation does 
not exist. 

One way to reduce congestion and pollutant emissions and, at the same time, provide 
flexible and inexpensive transportation options is ridesharing. This is a system where 
regular drivers provide commutes to other people on their way to their destination. Since 
the drivers are regular drivers, their motivation to participate in the system is to reduce 
travel costs. By sharing the travel costs of the drivers fairly among the passengers, 
rideshare can provide inexpensive trips to commuters. At the same time, rideshare is more 
flexible than public transport such as buses or metro. A driver can pick up or drop off a 
passenger from their location of choice. Since the drivers are regular commuters using 
their own vehicles, ridesharing does not need a significant investment, as would be true for 
a mass transit system. 

In this study, we make a distinction between ridesharing and ride-hailing. We define ride-
hailing as a commercial service where professional drivers pick up and drop off 
passengers to make a profit. Popular services such as Uber and Lyft are ride-hailing 
services. Although these services are very popular, they have two disadvantages compared 
to ridesharing services. First, since the goal of the drivers and the platforms is to make a 
profit, they will generally charge a passenger more than a ridesharing service. Additionally, 
these services use surge pricing, where passengers will be charged a lot more in times of 
high demand. Second, these services add a lot of deadhead miles to a road network, 
worsening traffic congestion (Z. Li et al., 2021). Many times, these ride-hailing drivers have 
to drive empty in search of a customer or to go to a customer’s origin point. Ridesharing 
solves these problems. Ridesharing does not add many deadhead miles. If a vehicle is 
empty of passengers, then the driver can perhaps, with a slight detour, pick up another 
passenger or continue to their destination. In ridesharing, a passenger has to bear a 
fraction of the driver’s travel cost, making it much cheaper than ride-hailing.  
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To make ridesharing more appealing to drivers, we need to minimize excessive detours. 
Therefore, passengers need to be matched with drivers in a way that minimizes 
inconvenience to drivers. In a practical scenario, a ridesharing system is highly dynamic. 
Both passengers and drivers can enter or exit the system anytime. Also, traffic conditions 
in a city are constantly changing. We need to take these changes into account while 
designing efficient routes for drivers. In this report, we aim to address these issues. 

Flexible meeting points can be an effective way to reduce excessive detours. This is a 
system where the passengers agree to meet the driver at a specified meeting point to be 
picked up or dropped off. Passengers may have to walk a certain distance to the pickup 
point or from the drop-off point. Several research papers have been published on this 
issue, and they show that flexible meeting points can reduce travel times by up to 10% 
(Fielbaum, 2022; Fielbaum et al., 2021; X. Li et al., 2018).  

In a rideshare system, a driver may travel longer than desired to pick up and drop off a 
passenger. Also, if there are other rideshare passengers in the vehicle at the time, their 
drop-off time may also be delayed. These inconveniences can be a detracting factor in the 
adoption of rideshare. To alleviate this, an incentive system can be established where the 
system, perhaps subsidized by a public agency, will pay some of the costs of the drivers 
and passengers for the inconvenience caused. This will encourage more people to 
participate in the rideshare system. In exchange, the city will get reduced traffic congestion 
and pollutant emissions.  

In this study, we propose an online rideshare framework that can match passengers with 
drivers and provide efficient routes to drivers in real time. Our proposed framework is 
scalable to a city-scale network. We propose a mechanism for meeting point selection to 
minimize excessive driver detours. We also propose an online incentive and shared cost 
mechanism that can compensate drivers and passengers for inconveniences from a 
limited budget and share the cost of a ride fairly among passengers. Finally, we propose a 
machine learning-based prediction mechanism that can quickly predict future requests 
and redirect drivers to the future request location in order to increase passenger service 
rate. We utilize simulation to get updated travel times based on the traffic conditions on 
the road and also to study the effect ridesharing has on a city’s traffic congestion.  

The rest of the report is organized as follows. In the Literature Review section, we discuss 
some relevant literature, research gaps, and our contributions. In the Problem Description 
section, we describe our model mathematically and define our objective and the 
constraints. In the Proposed Framework section, we discuss our proposed methodology to 
solve the online ridesharing problem. In the Numerical Experiments section, we introduce 
our two datasets and the results and provide some insights. We end the report with 
Conclusions. 
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Literature Review 
In this section, we review recent literature on dynamic online rideshare routing. We also 
discuss the literature on rideshare prediction models, incentive systems, and cost-sharing 
mechanisms. We also discuss the existing research gaps in the literature and the 
contributions of this study. We start the literature review by discussing online or dynamic 
routing algorithms. 

Dynamic Vehicle Routing 

Dynamic vehicle routing (DVRP) is a system where vehicles have to be routed to demand 
points that are not known in advance. Demands arrive dynamically during the planning 
horizon, and the routing system has to reroute the vehicles to accommodate these new 
demands. Various exact and heuristic methods have been proposed to solve the dynamic 
vehicle routing problems. Since the execution time budget to solve the routing problems is 
very small, most literature proposes heuristics and metaheuristics to solve them as 
quickly as possible. These heuristics achieve speedy execution in exchange for loss in 
solution quality. We now discuss some of the literature in this area. 

One heuristic that has been used with great success is the insertion heuristic. The idea 
behind the insertion heuristic is that once a new demand arrives, the mechanism attempts 
to insert the request into the route in the most economical way. Ulmer et al. (2021) studied 
a dynamic vehicle routing problem (DVRP) with stochastic request arrival. They used an 
insertion heuristic, which incorporated an incoming request into the route or postponed 
the request to the next time step. In a previous paper, the same authors studied a same-
day meal delivery problem with dynamically arriving orders and random ready times (M. 
Ulmer, 2017). Meal delivery apps such as DoorDash or Uber Eats are popular, and this is an 
application area for DVRP. They used an insertion heuristic here as well. Fikar (2018) 
studied a grocery delivery problem where the authors used an insertion-based heuristic to 
schedule the pickups and deliveries. 

Metaheuristics are also widely used in solving DVRPs, such as Tabu Search, Genetic 
Algorithm, and Adaptive Large Neighborhood Search (ALNS). Tabu Search is a 
metaheuristic where an initial solution is modified until the best solution is found. It 
diversifies the search by prohibiting some modifications. Ferrucci and Bock (2015) used 
Tabu Search to solve a DVRP with en-route detours. In their problem, a driver can be 
rerouted during their trip to a customer's location. As Tabu Search is fast, they solved 
multiple instances of static problems in parallel. Genetic Algorithm is another 
metaheuristic widely used in the literature. The idea behind the algorithm is to mix multiple 
good solutions to produce a better solution. Novaes et al. (2015) studied a problem where 
auxiliary vehicles could be sent to a customer's location if the planned vehicle would not 
reach the customer in time. They used a genetic algorithm to solve the problem. 
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Although not common, some literature has proposed exact methods to solve the DVRP. 
Since solving a routing problem is NP-hard, these exact methods can solve only small- to 
medium-sized problems. These methods usually also use re-optimization. This means 
whenever there is a change in the demand, the problem is solved again from the beginning. 
Monroy‐Licht et al. (2017) proposed a mixed integer linear program to solve the dynamic 
routing problem, which was solved from scratch with the newest information every time 
there was a failure to meet a new request. Amrouss et al. (2017) proposed an exact model 
for solving log-truck scheduling. The model was reoptimized anytime there was a change in 
the road network. For an extensive review of DVRP, we refer the readers to the review paper 
of Ojeda Rios et al. (2021). We now review some literature on rideshare routing and online 
rideshare routing. 

Dynamic Rideshare Routing Problem 

The rideshare routing problem has a limited set of drivers who have their own origin and 
destination instead of returning to the depot or some central location, as in the case of 
vehicle routing problems. Another difference is that, unlike VRPs, the drivers would like to 
reach their destinations with minimal delay. Therefore, they are not available throughout 
the planning horizon. These conditions make rideshare routing a more challenging problem 
to solve than the DVRP.  

Dynamic rideshare routing is a version of the rideshare routing problem where the 
passenger and drivers dynamically enter or exit the system. As such, the routing system 
has to react in real time to the changing number of drivers and passengers. Although some 
literature has been published on dynamic rideshare routing, they mainly focus on taxi 
routing or ride-hailing routing (Agatz et al., 2011; Bertsimas et al., 2019; Ma et al., 2015; 
Simonetto et al., 2019; T. Wang et al., 2023). Taxi routing is similar to the Pickup and 
Delivery Problem, where a potentially unrestricted number of vehicles are available to 
serve the passengers' requests, and the drivers do not have their own specific origin and 
destination. Bertsimas et al. (2019) developed a heuristic to solve the taxi routing problem 
in New York City. Although their approach used a mixed integer model, by clever 
preprocessing and sparsifying the potential matches, they solved a large problem within 
minutes. Alonso-Mora et al. (2017) proposed a tripartite graph-based ride-hailing driver-
passenger matching problem. They first constructed a graph of passengers who can share 
a ride. Then, they constructed another graph of those shared trips and drivers. Their 
matching algorithm then matched the drivers with the trips in the most optimum way. Xu et 
al. (2020) proposed a multi-hop ridesharing system where a passenger can be matched 
with multiple drivers along their route. This allowed for more flexibility and more ride 
availability. They proposed two efficient algorithms to solve this problem. 

Although most of the literature studied a myopic problem, some literature proposes a non-
myopic approach. In non-myopic approaches, future requests are predicted, and routes 
are modified to accommodate those future requests. Lowalekar et al. (2021) studied such 
a non-myopic approach for ride-hailing problems. They constructed all possible paths 
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through the road network offline. During the planning horizon, these offline paths were 
matched with requests and drivers by solving a mixed integer program. 

The literature discussed above all studies either ride-hailing or taxi routing problems. As 
mentioned before, these problems do not have driver origin-destination (OD) pairs, and 
drivers are usually available during the studied horizon to serve the passengers. The 
problem we study in this report is a dynamic ridesharing routing problem. Therefore, a 
different routing approach is necessary, which can solve this complicated problem with a 
minimal execution time budget and can scale to a city-scale network. We propose a greedy 
insertion-based heuristic to solve the large-scale dynamic rideshare routing problem. 
Next, we review some literature on incentives and shared cost mechanisms. 

Incentive and Shared Cost Mechanisms for Rideshare 
Systems 

In a rideshare system, drivers have to reach their destination within their time limits. As 
such, many drivers would be disinterested in participating in a rideshare system to avoid 
long ride times. Passengers would also like to reach their destination as quickly as 
possible. If a vehicle has to detour to pick up additional passengers, this may delay the 
drop-off of the passengers currently in the vehicle. This may detract some passengers from 
using the rideshare system. Providing incentives can be a way to solve this issue. 
Incentivizing people to participate in the rideshare system will benefit a city by reducing 
traffic congestion, pollutant emissions, and inaccessibility to transportation. Tafreshian 
and Masoud (2022) developed an incentive program that encouraged participation in the 
rideshare program. They provided behavioral incentives to drivers to extend their maximum 
ride time limits. Their proposed scheme is individually rational and budget-balanced. They 
studied a static system where the drivers and the passengers were known a priori, and 
incentives could be distributed equitably. Kumar et al. (2023) proposed an incentive 
system for economically disadvantaged drivers and passengers to promote fairness 
across various metrics. In this report, we study a dynamic rideshare system. Thus, we have 
to distribute the incentives from a limited monetary budget without knowing the future 
requests. We develop a system based on an online knapsack problem.  

Another important aspect of the rideshare system is to share the costs of the drivers 
among the passengers in a fair manner. Various cost-sharing mechanisms have been 
proposed in the literature. Cipolina-Kun (2023) used game theory and reinforcement 
learning to form coalitions among passengers to share incentives and share costs that 
satisfy individual rationality. Furuhata et al. (2014) proposed a proportional online cost-
sharing mechanism for a demand-responsive transit (DRT) system. They also put forth five 
desirable properties a cost-sharing mechanism should have. These are immediate 
response, individual rationality, budget balance, online fairness, and ex-post incentive 
compatibility. Hu et al. (2021) proposed a proportional online cost-sharing mechanism for 
ridesharing that satisfied these five properties and two additional properties. These were 
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reduced burden for the first passenger and fairness in cost sharing. We use their cost-
sharing mechanism to share the travel costs of the driver among the passengers. The next 
subsection reviews traveler request forecasting algorithms and simulation mechanisms. 

Future Request Prediction and Simulation Mechanisms 

Some literature has proposed machine learning-based methods to predict future requests. 
This prediction mechanism can be used in conjunction with a driver detour mechanism. In 
this case, if the likelihood of a future request is high, we can redirect a nearby driver to that 
location in anticipation of the request. This can increase the service rate of a rideshare 
system. To achieve this, an accurate and efficient request prediction mechanism is 
necessary. One way future requests can be predicted is by predicting a new graph of OD 
pairs for a future time period. Based on the historical OD graphs, Graph Neural Networks 
can predict where future requests will originate and where they will end. Wang et al. (2022) 
proposed a framework called 'Gallat', which used a graph attention network to predict 
passenger mobility. Shen et al. (2022) proposed a baseline gated attention neural network 
to predict the OD pairs. Their results showed that their model provided more accurate 
predictions than the Gallat Model. Cui et al. (2020) proposed a graph convolutional neural 
network to predict a city's traffic. Although the primary purpose of their model was to 
predict traffic, it can also be used to predict OD pairs for a rideshare network. However, in 
all of the studies mentioned above, the primary focus was to provide the most accurate 
prediction, and the execution time was not a concern. In our study, we need to predict 
future requests within a limited time budget. Therefore, we use a simpler prediction 
mechanism that can still provide accurate predictions and is computationally fast. 

We need to use the most updated travel times to make the rideshare routes practical. 
Traffic conditions are constantly changing, especially in large metropolitan areas. Also, 
adding a large number of rideshare vehicles to a road network can change the dynamics of 
a traffic system, which cannot be measured from a mapping or routing application such as 
Google Maps or Waze. Deriving these dynamics analytically is also not possible since an 
urban area can have tens of thousands of traffic signals, speed limit changes, or freeway 
ramps. One alternative is to use microscopic traffic simulation software such as VISUM or 
SUMO. Some studies in freight routing have successfully integrated simulation into the 
routing mechanism. Zhao et al. (2018) proposed a co-simulation optimization approach 
where the routing algorithm sent the routes to the simulation layer, which then, in turn, 
provided updated travel times to the routing algorithm. The routing algorithm then used the 
updated travel times to modify the routes and balance the load of the road network. This 
back-and-forth between the routing and simulation layers continued until no improvement 
in routing could be achieved. Chen et al. (2021) used a co-simulation optimization 
approach for freight routing, where they used simulation to get the best estimates of cost 
when non-internal combustion engine vehicles are incorporated into a fleet of diesel 
trucks. To the best of our knowledge, no ridesharing study has incorporated simulation into 
the routing framework. This simulation provides the most updated traffic and travel time 
data and enables us to study the effect of ridesharing in an actual road network. 
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In this study, our goal is to develop a framework for dynamic rideshare routing. We develop 
a greedy insertion algorithm for large-scale and real-time routing. We incorporate a 
meeting point selection mechanism that can quickly find the optimum meeting point for a 
passenger, resulting in more travel cost savings. We use a prediction-based driver detour 
mechanism that can redirect drivers in anticipation of future requests. We propose an 
online incentive and a shared cost mechanism. Additionally, we incorporate a simulation 
mechanism that provides us with the most accurate estimates of travel times in a road 
network. In the next section, we describe the problem mathematically. 
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Problem Description 
In this section, we mathematically describe the problem we are studying. As mentioned 
before, we are developing a system in which passengers' ride requests are dynamically 
matched to the drivers. Each passenger has an origin and a destination, a pickup time limit 
within which they must be picked up, and a maximum ride time limit within which they 
should be dropped off. In our problem, we assume pickup time window constraints are 
hard constraints and maximum ride time limit constraints are soft constraints. The 
maximum ride time limit constraints can be violated, albeit with a penalty. This may 
happen when adding another passenger to the route, which may delay their drop-off time, 
but pickup times still remain within their windows. However, in that case, we need to pay 
the passengers some incentives as compensation for their inconvenience. Drivers will 
have an origin and destination, a journey start time, and a maximum ride time limit. Like 
passengers, a driver's ride time limit is a soft constraint that can be violated. However, we 
also need to pay the drivers an incentive proportional to their ride time limit violation as 
compensation for their inconvenience. We assume a limited incentive budget, Β. The 
system's objective is to minimize the total distance traveled by all the drivers and the 
incentive payments to the drivers and passengers while serving as many passengers as 
possible. We also consider flexible meeting points for the passengers where they may have 
to walk to their pickup point or from their drop-off point if it minimizes the driver's detour. 
We represent the road network as a collection of nodes 𝑁 and edges 𝒜 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑁}. 
The nodes represent the junctions, and the edges represent the road segments. Each edge 
has an associated distance 𝑑𝑖,𝑗  and a travel time 𝑡𝑖,𝑗. We note that the travel times are the 
estimated travel times from the simulation framework that are updated at each planning 
epoch. The updating procedure and the simulation framework will be described in the next 
section. 

We have a set of 𝑛 drivers, which we denote using the set 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝑚 
passengers, which we denote using the set 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚}. We assume that we do not 
know their information beforehand and their information is only known to us when they 
enter the system. Each driver 𝑣 and their relevant information is represented as 
{𝑂𝑣, 𝐷𝑣, 𝑎𝑣, 𝐿𝑣, 𝐼𝑣 , 𝑞𝑣, 𝑟𝑣, 𝑐𝑙𝑣, 𝑠𝑣, 𝑅𝑣}. 𝑂𝑣 and 𝐷𝑣  represents the origin and destination of the 
driver respectively. 𝑎𝑣 is the start time of their journey. 𝐿𝑣 is the maximum ride time limit. 
We assume all drivers allow a certain extension to their direct travel time. Therefore, 𝐿𝑣 is 
calculated as (1 + 𝑒𝑥𝑣)𝑡𝑂𝑣,𝐷𝑣

 where 𝑒𝑥𝑣 is the extension factor that the driver 𝑣 allows and 
𝑡𝑂𝑣,𝐷𝑣

is the estimated direct travel time between their origin and destination when a 
rideshare request is made. We assume the ride time limit constraint is a soft constraint, 
and the system pays an incentive to the driver proportional to the ride time limit violation, 
which we represent with 𝐼𝑣. 𝑞𝑣 is the capacity of the driver's vehicle. 𝑟𝑣 is the route assigned 
to the driver. Initially, when the driver enters the system, their route is just their origin and 
destination pair, i.e., 𝑟𝑣 = [𝑂𝑣, 𝐷𝑣]. As passengers are matched to the driver, the route is 
updated by the passenger’s pickup and drop-off points. 𝑐𝑙𝑣 represents the driver's current 
location in the road network. Finally, 𝑠𝑣 is the driver's status, which is represented by a 
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number from the set {0,1,2}. If it is 0, that means the driver hasn't entered the system yet. 
𝑠𝑣 = 1 means the driver is in the system currently, and we can assign passengers to their 
route. And 𝑠𝑣 = 2 means the driver has reached their destination and exited the system 
after having entered the system. In this case, we cannot assign any more passengers to 
them. 𝑅𝑣 is the set representing the passengers currently in the vehicle of driver 𝑣. In other 
words, these are the passengers who have been picked up but not dropped off. 

Similarly, the information about passenger 𝑝 is represented by 
{𝑂𝑝, 𝐷𝑝 , 𝑎𝑝, 𝑏𝑝, 𝐿𝑝, 𝐼𝑝, 𝑣𝑝, 𝑠𝑝, 𝑐𝑠𝑝,𝑊𝑝} where 𝑂𝑝 and 𝐷𝑝 are the passenger's origin and 
destination. 𝑎𝑝 is the earliest pickup time, whereas 𝑏𝑝 is the latest pickup time. A 
passenger must picked up from their origin within this period. For this study, we assume 
that a passenger's pickup time window starts when the passenger requests a ride. 
Therefore, the earliest pickup time is also the passenger's request arrival time. Similar to a 
driver, 𝐿𝑝 represents the maximum ride time for the passenger, and it is calculated 
similarly to that of a driver. 𝐼𝑝 is the amount of incentive paid to the passenger for violating 
their desired destination time, which is proportional to their ride time violation. 𝑣𝑝 is the 
driver matched to the passenger's request. 𝑠𝑝 is the status of the passenger request. If 
𝑠𝑝 = 0 then it means the system has received the passenger's ride request, and the 
passenger is yet to be assigned to a driver. 𝑠𝑝 = 1 means the passenger has been matched 
to a driver, whereas 𝑠𝑝 = 2 means the passenger has reached their destination and exited 
the system after entering it. 𝑠𝑝 = 3 means no match has been found for the passenger 
request, and the request has been rejected. In our problem, we keep the passenger in the 
system until their latest pickup time has passed. At that point, we reject the passenger's 
request and set 𝑠𝑝 to 3. 𝑐𝑠𝑝 is the shared cost of the passenger. A passenger shares some 
of the driver's travel costs. We use a proportional cost-sharing mechanism described later 
in the report.  Finally, 𝑊𝑝 represents the maximum walking distance limit of passenger 𝑝. 

We define the decision variable 𝜏𝑖,𝑣 as the time when the driver 𝑣 visits node 𝑖 ∈ 𝑁. Our 
proposed mechanism tries to insert each incoming request 𝑝 into the drivers’ routes in a 
way that minimizes the weighted objective that considers the sum of the distance traveled 
by the drivers and the incentives paid to the drivers and the passengers.  

When inserting a passenger request into a driver’s route, the following constraints must be 
satisfied. 

Each passenger must be picked up within their pickup time limits. 

𝑎𝑝 ≤ 𝜏𝑂𝑝,𝑣𝑝
≤ 𝑏𝑝 ∀𝑝 ∈ 𝑃, ∀𝑣 ∈ 𝑉 

Incentives for passengers are calculated as follows. Here, 𝑓1 is the incentive payment per 
unit of passenger’s ride time violation. 

𝐼𝑝 = 𝑓1 ∗ max (0, (𝜏𝐷𝑝,𝑣𝑝
− 𝜏𝑂𝑝,𝑣𝑝

− 𝐿𝑝))∀𝑝 ∈ 𝑃 
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Incentives for drivers are calculated similarly. Here, 𝑓2 is the incentive payment per unit of 
driver’s ride time violation. 

𝐼𝑣 = 𝑓2 ∗ max (0, (𝜏𝐷𝑣,𝑣 − 𝜏𝑂𝑣,𝑣 − 𝐿𝑣))∀𝑣 ∈ 𝑉 

The total incentives paid to the drivers and passengers must be within the budget. 

∑ 𝐼𝑝
𝑝∈𝑃

+ ∑ 𝐼𝑣
𝑣∈𝑉

≤ Β 

The number of passengers in the vehicle at a time must not exceed the vehicle's capacity. 

|𝑅𝑣| ≤ 𝑞𝑣 ∀𝑣 ∈ 𝑉 

In the next section, we present our proposed framework. 
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Proposed Framework 
We define the planning horizon as 𝑇. We divide the planning horizon into epochs of size 
Δ. We assume that 𝒯 represents the current time of the system. At each epoch, we process 
all the requests that arrived in the previous epoch. In other words, we process all the ride 
requests that arrive during [𝒯 − Δ,𝒯]. We also collect the information of any driver who 
entered the rideshare system during that period. For each request, we find the nearest 𝑘-
drivers and try to match the request to the driver, which results in the least amount of 
detour for the drivers and the least amount of incentives paid to the driver and the 
passengers. We determine the best route for the matched driver to include the newly 
matched passenger. After finding the best match, we determine the meeting point for the 
passenger if it reduces the driver's detours. At each epoch, we forecast any future requests 
and redirect any driver that is nearby to the future request location. We also perform a 
simulation run to get the best estimate of the travel times. These updated travel times are 
used in the next epoch. Our proposed framework for a single epoch is summarized in 
Figure 1. Next, we describe each of the components of our proposed framework in detail. 

 
Figure 1. Proposed Framework 
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Central Coordinator 

At the start of each epoch, the central coordinator collects all the information about the 
passenger requests and the drivers and sends all the information to the routing 
mechanism. After the routing mechanism has finished matching all the requests to the 
drivers and updated the driver routes, it sends this information back to the central 
coordinator. The central coordinator then sends the updated routes to the drivers. These 
routes are then executed during the following time epoch ([𝒯, 𝒯 + Δ]). The central 
coordinator also informs the passengers about the status of their request. If the request 
has been accepted and matched to a driver, the central coordinator informs the passenger 
about the driver's information and the shared cost the passenger pays. If any incentives 
need to be paid to the drivers and any passenger in that driver's vehicle due to the 
inconvenience caused by adding the new request to the driver, the central coordinator 
informs them about it. The central coordinator acts as an interface between the system 
and the drivers and passengers. In this study, we assume that the drivers follow the routes 
that the system provides. We also assume that passengers will not cancel their rides after 
they have been matched with a driver. 

Routing Mechanism 

The routing mechanism receives all the information about the drivers and passengers' 
requests from the central coordinator. The routing mechanism also receives the updated 
travel times from the simulation module. Using this information, the routing mechanism 
attempts to match the passenger requests with the drivers in the most optimum way 
possible and also updates the drivers' routes. Since we are studying a city-scale network, 
we have to deal with potentially up to 10,000 requests an hour. We must also provide the 
matchings and routes before the next planning epoch begins. Hence, our routing 
mechanism has an execution time budget of at most Δ, which is a few minutes for practical 
purposes. Therefore, the routing mechanism needs to match and route up to a thousand 
requests within a few minutes. Thus, we need to use a fast heuristic for routing. For this 
reason, we developed a greedy insertion heuristic for the routing mechanism. As we later 
show in the numerical experiments, this heuristic can match hundreds of requests within 
seconds while achieving a good solution quality. To make the routing procedure even 
faster, for each request, we only consider 𝑘-drivers that are nearby both spatially and 
temporally. First, we describe our clustering procedure. Then, we describe our greedy 
insertion heuristic. 

Request Processing and Clustering Mechanism 
After the routing mechanism has received all the incoming ride requests, it sorts the 
requests based on the request arrival time. If there are 𝑗 requests 𝑝1, 𝑝2, … , 𝑝𝑗  such that 
𝑎𝑝(1)

≤ 𝑎𝑝(2)
≤ ⋯ ≤ 𝑎𝑝(𝑗)

 then the routing mechanism sequentially processes the requests 
in order 𝑝(1), 𝑝(2), … , 𝑝(𝑗). Whether a request is accepted by the platform depends on the 
shared cost of other passengers and the incentive budget. If including a passenger in a 
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route increases the shared cost of the other passengers, or the incentive budget is 
exceeded by serving the request, it is rejected. This acceptance criteria is discussed later.  

For each of the requests in this time epoch, we identify all the drivers that are currently in 
the system and select the drivers who can reach the passenger’s origin before the 
passenger pickup time limit is exceeded. That is, we select the driver 𝑣 for passenger 𝑝 if, 

𝒯 + 𝑡𝑐𝑙𝑣,𝑂𝑝
≤ 𝑏𝑝 

Here, 𝒯 is the current time of the system and 𝑡𝑐𝑙𝑣,𝑂𝑝
 is the travel time between the driver’s 

current location in the road network 𝑐𝑙𝑣 and the passenger’s origin 𝑂𝑝. If there are more 
than 𝑘 drivers selected, we sort the drivers based on the distance between their current 
location and the passenger’s origin, 𝑑𝑐𝑙𝑣,𝑂𝑝

 in a nondecreasing order and select the first 𝑘. 
For each request, this process has a worst-case run time of 𝑂(𝑛 + 𝑛𝑙𝑜𝑔(𝑛)) where 𝑛 is the 
number of drivers in the system. 

Greedy Insertion Heuristic 
Since we are processing the request in order of their arrival time, it is intuitive that the last 
position in a driver's route may be the best location to insert a new passenger request. This 
is because, at the last position of the route, the vehicle is empty (all the passengers have 
already been dropped off), and the only location that is in the driver’s route is its 
destination. Therefore, in the last location, no incentives need to be paid to other 
passengers for their ride time limit violation. This is the idea behind our proposed greedy 
insertion heuristic. Given a passenger request and 𝑘-nearest drivers, our proposed 
heuristic attempts to find the best position in each of the driver's routes starting from the 
end. For each position, we calculate the cost of insertion. This cost is made up of two 
components. One is the travel distance, and the other is the incentives to be paid for the 
inconvenience to the driver and other passengers. If a worse position is found, we stop the 
search for a feasible location in that driver's route and move on to the next driver's route. 
After we have found all the feasible locations, we select the driver with the lowest insertion 
cost and insert the passenger's origin and destination. We now expand on the insertion 
cost calculation and our greedy insertion heuristic. 

Let us say we have an incoming passenger ride request 𝑝 with origin 𝑂𝑝 and destination 𝐷𝑝. 
From the clustering mechanism, we have identified the 𝑘- closest drivers 𝑣1, 𝑣2, … , 𝑣𝑘 . We 
start with driver 𝑣1. Let us say the driver's route is 𝑟𝑣1

=

[𝑂𝑣1
, 𝑍1, 𝑍2, … , 𝑍𝑙 , 𝑍𝑙+1, 𝑍𝑙+2, … , 𝑍𝑙+ℎ, 𝐷𝑣1

] where 𝑂𝑣1
 and 𝐷𝑣1

 are the driver's origin and 
destination and 𝑍1, 𝑍2, … , 𝑍𝑙 , 𝑍𝑙+1, 𝑍𝑙+2, … , 𝑍𝑙+ℎ are the other passenger's origin and 
destination nodes that have already been assigned to the driver. We start by trying to insert 
𝑂𝑝 in the (𝑙 + ℎ)𝑡ℎ position. To show how our heuristic calculates the costs, let us assume 
we want to insert 𝑂𝑝 in the (𝑙 + 1)𝑡ℎ position. We find the cost of insertion by first 
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calculating the cost of the distance increment 𝑐Δ𝑑 due to inserting 𝑂𝑝 in the (𝑙 + 1) 𝑡ℎ 
position. It is calculated as follows: 

𝑐Δ𝑑 = 𝑓3 ∗ (𝑑𝑍𝑙,𝑂𝑝
+ 𝑑𝑂𝑝,𝑍𝑙+1

− 𝑑𝑍𝑙,𝑍𝑙+1
) 

Here, 𝑓3 is the cost penalty per unit of the distance increment. Next, we need to calculate 
the incentives that need to be paid to the drivers and the passengers who are dropped off 
after the (𝑙 + 1)th position. To achieve this, we first calculate the time increment Δ𝑡. This is 
calculated as: 

Δ𝑡 = 𝑡𝑍𝑙,𝑂𝑝
+ 𝑡𝑂𝑝,𝑍𝑙+1

− 𝑡𝑍𝑙,𝑍𝑙+1
 

Then, the incentives for the passengers whose drop-off is between the (𝑙 + 1)𝑡ℎ and 
(𝑙 + ℎ)𝑡ℎ position are calculated as follows: 

𝐼𝑝 = 𝑓1 ∗ max (0, (𝜏𝑂𝑝,𝑣 + 𝛥𝑡 − 𝜏𝐷𝑝,𝑣 − 𝐿𝑝)) 

The incentives for the driver are calculated as follows: 

𝐼𝑣 = 𝑓2 ∗ max (0, (𝜏𝑂𝑣,𝑣 + 𝛥𝑡 − 𝜏𝐷𝑣,𝑣 − 𝐿𝑣)) 

 The total cost of insertion of inserting into (𝑙 + 1)th position is calculated as follows: 

𝑐Δ𝑑 + (𝐼𝑣 + ∑ 𝐼𝑝
𝑝 ∈ 𝑅𝑣

) 

We start from (𝑙 + ℎ)𝑡ℎ position and go backward until we have reached the driver’s 
current location in the route. For each position, we calculate the insertion cost. We also 
check for the feasibility of the insertion. If inserting a new request violates other 
passengers' pickup time limits, then that position is infeasible. We continue as long as a 
position with better insertion cost is found. If not, we stop.  

After we have found the best feasible location for 𝑂𝑝 in driver 𝑣 route 𝑟𝑣, we then find the 
best feasible position for 𝐷𝑝. The process is exactly the same. We start from the end of the 
route and stop when we have reached the insertion position of 𝑂𝑝 restricting the drop-off to 
be after the pickup.  

We save the best feasible position for both 𝑂𝑝 and 𝐷𝑝 and the associated insertion cost. 
After we have iterated through all the 𝑘 -closest drivers, we select the driver 𝑣∗ with the 
lowest insertion cost to be matched with the request 𝑝. We then insert the origin and 
destination in their respective best insertion position. Then, the updated route is sent to 
the meeting point selection module to select the optimum meeting points for the new 
passenger. The greedy insertion heuristic is summarized in Algorithm 1 (Figure 2).  
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Figure 2. Algorithm 1: Greedy Insertion 
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Meeting Point Selection Mechanism 

The meeting point selection mechanism selects the meeting point for the newly inserted 
requests. Let the newly inserted request be 𝑝 with an origin 𝑂𝑝 and a destination 𝐷𝑝. Given 
the route, the meeting point selection mechanism outputs the new pickup point 𝑂𝑝

′  and 
drop-off point 𝐷𝑝

′  which are at most 𝑊𝑝 apart from 𝑂𝑝 and 𝐷𝑝 respectively. Let, 𝑟𝑙𝑂𝑝

𝑥  and 
𝑟𝑙𝑂𝑝

𝑦  be the 𝑥 and 𝑦 coordinates of 𝑂𝑝 and 𝐴 and 𝐵 be the preceding node and succeeding 
node of 𝑂𝑝 in the route. Then, the problem is equivalent to finding a point 𝑋 in a circle 
centered around 𝑂𝑝 with radius 𝑊𝑝 such that the distance from 𝐴 to 𝑋 and then 𝐵 will be 
the shortest. This point can easily be found by solving the following quartic equation. 

4𝜐(𝜐 𝜔 − 𝜓2)𝑥4 + 4(𝜓2  − 𝜐 𝜔)𝑥3 + (𝜐 + 2𝜓 + 𝜔 − 4𝜐 𝜔)𝑥2 + 2(𝜔 − 𝜓)𝑥 + (𝜔 − 1) = 0 

Finding the positive and real numbered root for this equation gives us the 𝑥 coordinate of 
the desired point 𝑋. To find the 𝑦 coordinate, we can substitute 𝑥 into the following 
equation: 

𝑦 =
1 + 𝑥 − 2𝜐𝑥2

1 + 2𝜓𝑥
 

Where 𝜐 = 𝑂𝑝𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑇 𝑂𝑝𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝜓 = 𝑂𝑝𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑇 𝑂𝑝𝐵⃗⃗⃗⃗⃗⃗⃗⃗   and 𝜔 = 𝑂𝑝𝐵⃗⃗⃗⃗⃗⃗⃗⃗  𝑇 𝑂𝑝𝐵⃗⃗⃗⃗⃗⃗⃗⃗  . Here, 𝑂𝑝𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑂𝑝𝐵⃗⃗⃗⃗⃗⃗⃗⃗   are ℝ2 
vectors representing 𝑥, 𝑦 coordinates of points 𝐴 and 𝐵 considering 𝑂𝑝 at (0,0) of a ℝ2 
Euclidean plane. We take the positive and real number root of this equation and substitute 
them to the above equation to get the 𝑦 coordinate value. 

If there are multiple real positive roots of 𝑥 then we take the 𝑦 for which 𝑥 and 𝑦 are both 
positive. Then, the meeting point 𝑋 is given by 𝑋 = 𝑥𝑂𝑝𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑦𝑂𝑝𝐵⃗⃗⃗⃗⃗⃗⃗⃗  + 𝑂𝑝

⃗⃗ ⃗⃗  where 𝑂𝑝
⃗⃗ ⃗⃗  is the true 

position of the center 𝑂𝑝. If 𝑋 is not on a junction (node) of the network, we can quickly find 
the nearest junction to point X. Then the new junction is the new pickup point 𝑂𝑝

′  for 
passenger 𝑝. A closed-form solution exists to find the root of the quartic equation in 𝑂(1) 
time. Therefore, the new meeting point can be found in 𝑂(1) time. Given the preceding 
node and succeeding node, we can find the new drop-off point 𝐷𝑝

′  similarly. More details 
on the derivation of the quartic equation can be found in the study by Dessouky (2021). 
After the meeting points for the new request have been found, the routes are then sent to 
the incentives and cost-sharing mechanism. We describe this module next. 

Incentive and Shared Cost Mechanism 

As mentioned before, this module calculates the shared costs the new passenger and any 
passengers currently assigned to the driver need to pay. It also calculates the incentives 
that need to be paid and, based on the remaining incentive budget, makes a request 
acceptance or rejection decision. We now describe the module. 
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As mentioned before, we have a limited budget Β for the incentives. We have to pay 
incentives to drivers and passengers for the inconvenience caused by serving a new 
passenger from this budget without knowing how much incentives we have to pay for 
future requests. This problem is similar to the online knapsack problem, where the 
problem is to include the best set of items that maximize the value without exceeding the 
weight of the knapsack and not knowing the value of the future items. In our case, the 
capacity of the knapsack is our budget. The weights are the incentives we have to pay to 
serve a passenger, and the value is the benefit we get from serving a passenger. We 
assume that the benefit of serving a passenger is the cost savings of not taking a taxicab to 
the passenger's destination. In this case, we can use the acceptance criteria proposed by 
Chakrabarty et al. (2008). Our platform accepts a request if the following criterion is met. 

𝛼𝑝

𝛽𝑝
≥ 𝛹(𝛾𝑝) 

Where 𝛹(𝛾) = (
𝑈𝑒

𝐿
)
𝛾
(
𝐿

𝑒
). Here, 𝛼𝑝 is the benefit of accepting a request 𝑝. 𝛽𝑝 is the 

incentive to pay for accepting the request 𝑝. 𝑈 and 𝐿 are the upper and lower limits of the 
benefit-incentive ratio. 𝑒 is the base of the natural log. And, 𝛾 is the fraction of the budget 
used so far. As long as 𝑈 is not too high or 𝐿 is not too low, the criterion makes sure the 
budget is not exceeded. Therefore, it is easy to show that our procedure satisfies the 

budget balance criteria. This algorithm has an approximation ratio of ln (
𝑈

𝐿
) + 1.  

For calculating the shared cost, we use the Proportional Online Cost Sharing (POCS) 
mechanism proposed by Hu et al. (2021). This mechanism satisfies the five desirable 
properties of cost-sharing outlined by Furuhata et al. (2014). This includes Immediate 
Response, Online Fairness, Individual Rationality, Budget Balance, and Ex-Post Incentive 
Compatibility. The shared cost mechanism is given in Algorithm 2 (Figure 3). The 
mechanism works by forming coalitions between the passengers with the same shared 
cost per demand (distance between origin and destination).ZStep 1 calculates the cost of 
the route with and without request 𝑝. 𝑐𝑟  is the cost of the route 𝑟 and 𝑐𝑟\𝑝 is the cost of the 
route without request 𝑝. 𝑐𝑝

𝑚 is, therefore, the marginal cost of inserting request 𝑝, which is 
calculated in step 2. 𝑐(𝑖,𝑝)

𝑎  is the coalition cost per demand value. Steps 3-5 calculates the 
shared cost per demand value for each of the passengers in the vehicle. Steps 6-8 of the 
algorithm forms the coalition among the passengers and calculate the shared cost for 
each of the passengers. For more details and proof of the properties, we refer to the papers 
by Furuhata et al. (2014) and Hu et al. (2021). After calculating the shared costs, we check 
if any of the passengers had their shared cost increased due to inserting passenger 𝑝. If 
this is the case, we reject the request 𝑝. 
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Figure 3. Algorithm 2: POCS Mechanism 

We next describe our prediction mechanism. 

Prediction Mechanism 

One way we can increase the passenger service rate is by predicting where a request is 
likely to happen and redirecting any nearby drivers to that location in anticipation of the 
request. To achieve this, we collect historical data on past requests and train a machine 
learning model on this data to predict future requests. We construct a time series for each 
of the OD pairs in the network and train a LightGBM model to predict future requests. 
LightGBM is a fast version of the gradient-boosted regression trees, which forecast with 
limited execution time and good accuracy (Ke et al., 2017). This forecast determines how 
many requests will occur in each of the nodes in the next time epoch. To convert these 
numerical forecasts into likelihood, we assume the request arrival follows a Poisson 
distribution. We chose the Poisson distribution because it  applicable for both low and high 
number of arrival requests. Then, analyzing the past data, we can determine the Poisson 
arrival rate 𝜆. Let us assume that the forecasting model determines there will be 𝐹𝑖  
requests at node 𝑖 in the next time epoch. Then, if we have seen 𝐹𝑖

′ requests so far at node 
𝑖, we can determine the probability of seeing 𝐹𝑖 − 𝐹𝑖

′ requests using a Poisson CDF: 

Pr = ∑
𝜆𝑘𝑒−𝜆

𝑘!

𝐹𝑖−𝐹𝑖
′

𝑘=0

 

If Pr  is greater than some predetermined threshold, we search for a nearby driver who 
does not have any passengers assigned to it and redirect the driver to the node. The node is 
inserted into the driver's route. If a request happens, then the driver will be matched to that 
request. If not, the platform compensates the driver for the detour if their ride time limit is 
exceeded. 
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Simulation Mechanism 

To make the driver's routes more effective, we need to use the updated travel times in the 
road network to get a better understanding of the traffic situation. This makes the planned 
routes more robust to the traffic condition. We can get the updated travel times via sensor 
data installed in the junctions. However, these data do not incorporate the effect the 
ridesharing routes have on the traffic conditions of the network. Also, without sensor data 
in every junction, we cannot estimate the traffic situation. In most US cities, junctions 
(traffic signals, freeway ramps) do not have sensors installed. In this case, traffic 
simulation can be useful in getting a better estimate of travel times. In our study, we use 
the open-source traffic simulator SUMO (Simulation of Urban Mobility) (Krajzewicz, 2010). 
Although some studies in the literature used other simulation software such as PTV VISIM 
and VISUM, we choose SUMO because it is open source and free to use and provides an 
easy-to-use API for Python which our other proposed mechanisms are developed, allowing 
a seamless connection with other modules. Given a road network and the number of 
vehicles on every edge, it provides the most updated travel times. Also, it allows for the 
simulation of custom routes. Therefore, we can use this traffic simulation software to 
simulate our ridesharing system and understand its effect on a city's traffic network.  

Before the planning horizon begins, we perform a simulation run from the historical traffic 
data in the road network. If historical data is unavailable, we can assume a probability 
distribution of traffic throughout the network. This simulation run provides the initial 
estimates of the travel times. At the end of each epoch, we run the simulation again but 
with rideshare routes included. If a passenger is rejected, we assume the passenger takes 
a taxi or uses a personal vehicle. We simulate these trips as well as the rideshare trips. We 
update the travel times based on this simulation output, which will be used in the next 
epoch to match drivers with passengers and plan the routes. The SUMO simulation 
software can also output statistics about the road network. This includes the average 
duration of each route, the average time vehicles were stuck in traffic jams, and the time 
loss due to the high traffic volume in the network. Analyzing these outputs can 
demonstrate the benefits of the rideshare system in alleviating traffic jams in a city. 

Overall Framework 

We next summarize the overall framework. Algorithm 3 (Figure 4) shows the summary. 
Before the planning horizon begins, we perform a simulation run based on the historical 
traffic data or a probabilistic distribution of traffic if historical traffic data is unavailable. 
We also gather historical data on ride requests and train our forecasting model on the 
data. We do the training offline to save time during the planning horizon. After the planning 
horizon begins, at the start of each epoch, the central coordinator collects information 
about all the incoming ride requests and drivers that arrived during the previous epoch. 
This information is then sent to the routing mechanism. The routing mechanism uses the 
distance data and the most updated travel time data to match the ride requests with the 
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drivers currently in the system. It modifies the routes of the drivers who were matched with 
a ride request using our proposed greedy insertion routing algorithm. These planned routes 
are then sent to the meeting point selection mechanism, which then selects the optimum 
meeting points for the matched requests and sends the information back to the routing 
mechanism. These routes and all relevant information are then sent to the incentive and 
shared cost mechanism. This mechanism calculates the shared costs and the incentives 
that need to be paid and makes an acceptance decision for the requests. After all the 
incoming requests have been processed, the prediction mechanism forecasts requests for 
the next epoch and redirects drivers to locations with a high probability of future requests. 
We also perform a simulation run of the traffic and the rideshare routes, and based on the 
output, we update the travel times. We then move on to the next planning epoch. 

 
Figure 4. Algorithm 3: Proposed Framework 
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Numerical Experiments 
In this section, we present the numerical experiments conducted. We perform numerical 
experiments on two datasets—one in an urban setting and the other in a rural setting. For 
the urban experiments, we chose the New York Taxicab and Limousine Commission 
dataset. For rural experiments, we chose the area of Tulare and Kern Counties, California. 
First, we describe the urban dataset, and then we examine the performance of our 
proposed methodologies. We evaluate how our proposed methodologies scale up to large-
scale rideshare networks. We investigate how ridesharing can help alleviate a city's traffic 
congestion problem and how beneficial flexible meeting points are. Then, we describe the 
rural dataset and conduct the same set of experiments. All the experiments were 
conducted on an Intel Xeon computer with 32 GB of RAM. All the codes for the mechanism 
were written using Python 3.12.0. We also used the SUMO (Simulation of Urban Mobility) 
software as our simulation tool. We now describe our urban dataset. 

Description of the Urban Dataset 

For numerical experiments in the urban setting, we choose the New York Taxicab and 
Limousine Commission dataset (New York (N.Y.) Taxi And Limousine Commission, 2019). 
This dataset contains data about taxi trips in New York City from 2009 to the present. It 
contains data on over a billion trips of yellow, green, and black taxis and ride-hailing 
vehicles (Uber and Lyft). NYC government has divided New York City into 263 zones for 
data collection purposes. Each entry in the dataset contains the pickup zone number, the 
drop-off zone number, pickup time, trip duration, trip distance, fare paid, taxicab id, and 
other information. For our experiments, we chose the records of ride-hailing vehicles 
(defined in the dataset as For-Hire Vehicles). We focus on the trips from January 1st to 
December 31st, 2023. We use the data from January to November as training data for our 
machine learning model. For constructing test instances, we focus on the trips occurring in 
December 2023. We further focus only on trips starting and ending in Manhattan. The 
Manhattan borough is divided into 69 zones. A map of the zones provided by the NYC Taxi 
and Limousine Commission is shown in Figure 5. Among them, five zones are islands that 
are only reachable by waterways and no road connecting them. Hence, we exclude them 
from consideration. To construct instances, we randomly sample rows from the dataset 
with pickup times between 4 pm and 5 pm. We chose this time period because traffic 
conditions are at their peak between these hours. An hourly distribution of the number of 
vehicles throughout the day in Manhattan is shown in Figure 6. This Figure 6 was obtained 
by analyzing the data from traffic sensors installed throughout Manhattan. This data can be 
found at https://catalog.data.gov/dataset/traffic-volume-counts. We use this distribution 
data to simulate random traffic in the road network. We construct both driver and 
passenger information from the NYC taxicab dataset. We assign the pickup zones as the 
origins and the drop-off zones as destinations for both drivers and passengers. We assign 
the pickup times as the request time for passengers or journey start time for drivers. To 
construct the pickup time limit for passengers, we added 15 minutes to the request time. 

https://catalog.data.gov/dataset/traffic-volume-counts
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We assume all drivers and passengers allow a 50% extension to their direct travel time. To 
get the distance matrix, we use OpenStreetMap router API. This API gives us the distance in 
kilometers. We also use OpenStreetMap to download the road network map for 
Manhattan, which we use for the SUMO simulation software.  

For experimentation purposes, we assume our planning horizon is 1 hour. We set the 
planning epoch to be 5 minutes. That means every 5 minutes, our proposed framework 
processes all the request data and sends them to the routing mechanism. As mentioned 
before, a passenger's pickup time limit is 15 minutes after their request time. That means 
our framework needs to assign the passenger to a driver's route, and that driver must pick 
up that passenger within 15 minutes of the passenger's request time. We set the 
passengers' walking limit to 0.84 kilometers. That means a passenger is willing to walk a 
maximum of 0.84 kilometers to or from their meeting point from their originally requested 
origin or destination. For each passenger request, our routing mechanism considers the 20 
closest drivers. The travel cost of a driver is $0.187/km, which includes fuel cost, 
maintenance cost, and vehicle depreciation cost. We set a driver's fuel cost to be $0.097 
per kilometer. We got this number by assuming a vehicle's average gas mileage to be 20 
miles/gallon or 32.19 km/gallon in the city and the average gas price of $3.16/gallon in New 
York City (https://gasprices.aaa.com/?state=NY). The average maintenance cost of the 
vehicle is assumed to be $0.06/km, and the average depreciation cost is assumed to be 
$0.03/km (https://newsroom.aaa.com/wp-content/uploads/2022/08/2022-
YourDrivingCosts-FactSheet-7-1.pdf). This travel cost is used to calculate a passenger's 
shared cost. We set the hourly incentive budget to be $2,000. In a later subsection, we 
study how changing this budget will affect the performance of the rideshare system. The 
upper and lower limits of the benefit-incentives ratio are set to 10 and 1, respectively. For 
all the drivers and passengers, we assume the system will pay $1.00 per minute violation 
of their maximum ride time. The parameters and their values are summarized in Table 1. 

https://gasprices.aaa.com/?state=NY
https://newsroom.aaa.com/wp-content/uploads/2022/08/2022-YourDrivingCosts-FactSheet-7-1.pdf
https://newsroom.aaa.com/wp-content/uploads/2022/08/2022-YourDrivingCosts-FactSheet-7-1.pdf
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Figure 5. Taxi Zones in Manhattan; source: (New York (N.Y.) Taxi And Limousine 
Commission, 2019) 

 
Figure 6. Traffic Volume Distribution in Manhattan throughout the Day 
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Table 1. Parameters and Their Values for the NYC Dataset 

Parameter Values 
Planning Horizon,𝑇 60 minutes 
Planning time epoch, Δ 5 minutes 
Pickup time limit,𝑏𝑝 Pickup start time (request time), 𝑎𝑝+15 

minutes 
Hourly incentive budget, Β $2000 
Travel cost per km $0.187 
Number of nearby drivers, 𝑘  20 
Passenger walking limit, 𝑊𝑝 0.84 km 
Driver ride time extension factor, 𝑒𝑥𝑣 0.5 
Passenger ride time extension factor, 𝑒𝑥𝑝 0.5 
Incentive payment per minute of maximum 
ride time violation, 𝑓1 and 𝑓2 

$1.00 

Penalty for per kilometer distance 
increment, 𝑓3 

$1.00 

Upper limit of the benefit-incentive ratio, 𝑈 10 
Lower limit of the benefit-incentive ratio, 𝐿 1 

Next, we discuss the performance and scalability of our proposed framework on various-
sized instances. 

Performance of the Proposed Framework in the NYC 
Dataset 

In this subsection, we report the performance of our proposed framework on instances of 
different sizes. The number of drivers in the rideshare system ranges from 1,000 to 5,000. 
The number of passengers range from 1,000 to 10,000.  

We first study the effect ridesharing has on a city's road network by running our simulation 
software on two scenarios. In one scenario, we do not have any ridesharing. We assume 
everyone uses their own vehicles to reach their destination and drive solo. In this case, we 
simulate the routes consisting of the origin and destination pairs of all the passengers and 
drivers, as well as other traffic on the road network. In the second scenario, we simulate a 
ridesharing system where some of the passengers have been picked up or dropped off by 
rideshare drivers. In this case, we assume the passengers whose requests were not 
accepted will travel solo using a private vehicle to their destination. In this scenario, we 
simulate the rideshare route, unserved passengers OD routes, and other traffic in the road 
network. From the simulation output, we report the total vehicle distance traveled, average 
waiting time, and average time loss. The total vehicle distance traveled is defined as the 
distance traveled by the rideshare drivers and the passengers whose requests were not 
accepted who we assume to drive solo. The waiting time is the amount of time a vehicle is 
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not moving. This may be due to traffic congestion, waiting at a traffic signal, or a stop or 
yield sign. The time loss includes the waiting time plus any additional time loss by driving at 
a speed less than the speed limit. We report these parameters for two scenarios and the 
improvement we get in these parameters by introducing a rideshare system to a city. The 
improvements are calculated using the following formula: 

(Output from solo driving scenario-Output from ridesharing scenario)
Output from solo driving scenario

 

The results are shown in Table 2. From the Table 2, we can see that ridesharing can reduce 
the total vehicle distances traveled in a city by 13% on average across all test instances. 
This improvement decreases as the instances grow larger. This is due to the low service 
rates with respect to the number of passengers for larger instances, as can be seen in 
Table 3. Regarding average waiting time and time loss, we see ridesharing can reduce 
those by 4% and 3% on average, respectively. Therefore, ridesharing can also reduce time 
loss due to traffic congestion. We gain two insights from these results. First, rideshare can 
significantly reduce the total vehicle distance traveled, reducing traffic congestion and 
pollutant emissions. Second, increasing the rideshare service rate can further reduce the 
total vehicle distances traveled.
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Table 2. Total Vehicle Distance Traveled, Waiting Time, and Time Loss across All Instances in Solo Driving vs. 
Ridesharing 

No. 
Drivers 

No. 
Passe
ngers 

Solo Driving Ridesharing % Improvement 
Total 

Vehicle 
Distance 
Traveled 

(km) 

Avg. 
Waiting 

Time 
(min.) 

Avg. 
Time 
Loss 

(min.) 

Total 
Vehicle 

Distance 
Traveled 

(km) 

Avg. 
Waiting 

Time 
(min.) 

Avg. Time 
Loss 

(min.) 

Total Vehicle 
Distance 
Traveled 

Avg. 
Waiting 

Time 

Avg. 
Time 
Loss 

1000 1000 17508.12 8.95 13.67 13093.00 8.94 13.65 25% 0% 0% 
1000 2000 27471.58 9.03 13.80 22782.50 8.49 13.23 17% 6% 4% 
2000 2000 36119.72 9.84 14.60 29875.36 8.88 13.65 17% 10% 6% 
2000 4000 55753.34 9.48 14.34 49217.40 9.11 13.94 12% 4% 3% 
3000 3000 55112.00 9.36 14.20 47641.44 8.98 13.73 14% 4% 3% 
3000 6000 84087.10 9.29 14.27 76493.86 8.81 13.68 9% 5% 4% 
4000 4000 73763.52 8.08 13.12 64550.22 7.95 13.11 12% 2% 0% 
4000 8000 112017.70 9.21 14.18 103583.72 8.94 13.96 8% 3% 2% 
5000 5000 93043.14 9.20 14.19 84526.00 8.72 13.69 9% 5% 4% 
5000 10000 140571.71 9.55 14.60 132259.20 9.34 14.41 6% 2% 1% 

Average 69544.79 9.20 14.10 62402.27 8.82 13.71 13% 4% 3% 
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Next, we report the passenger service rate, budget usage rate, average occupancy per 
vehicle, and the average trip distance of the rideshare vehicles. The results are shown in 
Table 3. From the Table 3, we can see the average passenger service rate is 34%. The 
budget usage rate is 100% across all instances. The hourly incentive budget stays at 
$2,000 across all instances. As the instances grow larger, there is not enough budget to 
provide incentive payment to drivers and passengers for their maximum ride time violation. 
Therefore, we cannot service more passengers without violating other drivers' and 
passengers' maximum ride time limits. As a result, the service rate decreases with 
increasing problem instance sizes. The average occupancy rate also decreases as the 
passenger service rate decreases. The average occupancy rate is 1.44 across all problem 
instances. The average distance traveled by a rideshare vehicle is 10.75 kilometers. In a 
later subsection, we will investigate how changing the incentive budget affects the 
rideshare service rate. 

Table 3. Passenger Service Rate, Budget Usage Rate, Occupancy Rate, and Trip 
Distance per Vehicle Across All Instances 

No. 
Drivers 

No. 
Passengers 

Passenger 
Service Rate 

(%) 

Percent 
Budget 

Used 

Avg. 
Occupancy 
per Vehicle 

Trip 
Distance 

per Vehicle 
(km) 

1000 1000 89% 100% 1.89 12.34 
1000 2000 41% 100% 1.82 12.35 
2000 2000 49% 100% 1.49 10.57 
2000 4000 25% 100% 1.49 10.95 
3000 3000 36% 100% 1.36 10.40 
3000 6000 18% 100% 1.35 10.48 
4000 4000 32% 100% 1.32 10.16 
4000 8000 14% 100% 1.27 10.22 
5000 5000 22% 100% 1.22 9.97 
5000 10000 10% 100% 1.21 10.10 

Average 34% 100% 1.44 10.75 

Next, we report the average shared cost, the percentage of rideshare participants receiving 
incentives, and the average incentive payment across all instances in Table 4. The average 
shared cost was $1.68, which is significantly lower than what a ride-hailing or taxi ride 
would cost. Therefore, ridesharing can be an effective way to provide low-cost rides to 
commuters. The average percentage of participants receiving incentive payments is 20%. 
A decreasing pattern can be seen in the percentage of participants receiving incentive 
payments. As we have seen in Table 3, the budget usage rate is 100% across all instances, 
and the incentive budget is fixed at $2,000. Therefore, as the number of participants 
increases, the percentage of participants receiving incentive payments decreases. The 
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average incentive payment is $2.94. From this discussion, we can conclude that rideshare 
can provide low-cost and flexible rides to passengers and alleviate a city’s traffic 
congestion and pollution problem. 

We next report the execution times in Table 5. In this Table 5, we report the average 
execution time of the proposed routing, meeting point section, and simulation mechanism 
per planning epoch. From the Table 5, we can see that our routing procedure is fast and 
scalable for a city-sized network. On average, the routing mechanism takes about 1.76 
seconds per planning epoch of 5 minutes. Even for instances with 5,000 drivers and 10,000 
passengers, our proposed greedy insertion heuristic takes about 4.00 seconds per 
planning epoch. Also, the meeting point selection procedure is fast, taking only 0.16 
seconds on average. The only time-consuming step is the simulation. Each run of the 
simulation takes about 123.70 seconds on average. The maximum time it took was 206.38 
seconds (3.43 minutes). From the results, we can conclude that our proposed framework 
can solve the rideshare routing and meeting point selection problem on a city-scale 
network within the planning epoch of 5 minutes. 

Table 4. Average Shared Cost, Incentive Recipient Rate, and Incentive Payment 
Across All Instances 

No. 
Drivers 

No. 
Passengers 

Avg. Shared 
Cost ($) 

Percent 
Participating 

Receiving 
Incentive 

Avg. Incentive 
Payment ($) 

1000 1000 1.63 52% 3.11 
1000 2000 1.64 31% 3.46 
2000 2000 1.76 25% 2.95 
2000 4000 1.66 18% 3.05 
3000 3000 1.75 19% 2.79 
3000 6000 1.65 13% 2.90 
4000 4000 1.73 15% 2.69 
4000 8000 1.66 16% 2.52 
5000 5000 1.72 11% 2.78 
5000 10000 1.64 7% 2.95 

Average 1.68 20% 2.94 
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Table 5. Execution Time of Our Proposed Framework Across Different Problem 
Instances 

No. 
Drivers 

No. 
Passengers 

Avg. Routing Exec. 
Time (s) 

Avg. MPS exec. 
Time (s) 

Avg. Sim. Exec. 
Time(s) 

1000 1000 0.35 0.16 102.45 
1000 2000 0.55 0.15 206.38 
2000 2000 0.68 0.13 108.28 
2000 4000 1.31 0.16 104.38 
3000 3000 1.21 0.17 108.81 
3000 6000 2.19 0.17 105.84 
4000 4000 1.84 0.16 170.23 
4000 8000 3.25 0.17 107.86 
5000 5000 2.25 0.15 113.39 
5000 10000 4.00 0.16 109.42 

Average 1.76 0.16 123.70 

Effect of Flexible Meeting Points 

In this subsection, we study the effect of flexible meeting point selection. We compare the 
total travel distance of flexible meeting points to the total travel distance where we do not 
have any flexibility in meeting point selection. In the second case, the drivers have to go to 
the passenger's originally requested origin or pickup points. The results are shown in Table 
6. From the results, we can see that incorporating meeting points and allowing passengers 
to walk up to 0.84 kilometers can reduce the total distance traveled by the rideshare 
drivers by 4% on average. Also, a decreasing trend in improvement can be seen as the 
instances get larger. This is because, for larger instances, the total distance traveled by all 
the drivers is much larger than the distance savings we get from passengers' walking. Also, 
for larger instances, the service rate is lower. This is reflected in the average walking 
distances per rideshare passenger, which also decreases as the problem instances grow 
larger. Because of these two reasons, we see a decreasing trend in distance savings. If we 
look at Table 5, we see that the meeting point selection mechanism only takes about 0.16 
seconds per planning epoch (5 minutes in these experiments). Also, although we set the 
maximum walking distance limit to 0.84 km, on average, passengers have to walk only 0.39 
kilometers to achieve the lowest driver detour. Therefore, incorporating flexible meeting 
points can be extremely beneficial in reducing driver detours and encouraging drivers to 
participate in the rideshare system.  
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Table 6. Total Travel Distance in Flexible Meeting Points vs. No Meeting Points 

No. 
Drivers 

No. 
Passengers 

Total Travel Distance (km) % 
Improvement Flexible Meeting 

Points 
No Meeting 

Points 
Avg. 

Walking 
Distance 

(km) 
1000 1000 12341.72 13609.88 0.48 9% 
1000 2000 12346.81 13455.72 0.45 8% 
2000 2000 21134.64 22251.43 0.40 5% 
2000 4000 21904.89 23024.58 0.39 5% 
3000 3000 31185.95 32396.23 0.39 4% 
3000 6000 31448.43 32575.05 0.38 3% 
4000 4000 40657.96 41510.26 0.33 2% 
4000 8000 40871.18 41988.24 0.36 3% 
5000 5000 49837.38 50909.44 0.35 2% 
5000 10000 50494.10 51551.25 0.35 2% 

Average 31222.31 32327.21 0.39 4% 

Effect of Incentive Budget on the Performance of the 
Rideshare System 

In this subsection, we study how changing the budget for incentives can affect the 
performance of the rideshare system. We take an instance with 5,000 drivers and 5,000 
passenger requests in an hour, and we increase the budget from $1,000 to $10,000. We 
investigate the effect the incentives budget plays on the passenger service rate and the 
budget usage rate. Figure 7 shows the change in passenger service rate with the change in 
the incentives budget. As we can see from the Figure 7, when the incentive budget is low, 
the passenger service rate is also low. In these cases, we do not have enough budget to 
pay incentives to the drivers for their inconvenience. As a result, drivers are unwilling to 
take a detour to pick up or drop off other passengers, and fewer passengers are assigned 
to the drivers. As the budget increases, we see an increasing trend in the percentage of 
passengers served, which increases up to 59% with a $6,000 budget. From the figure, we 
can see increasing the budget beyond this does not change the passenger service rate. 
This is because of the passenger's pickup time window constraints. The remaining 
passengers cannot be served irrespective of the incentive budget. In this case, no driver is 
nearby to serve those requests within the passenger’s pickup time window. Since 
increasing the passenger service rate decreases the total vehicle miles traveled, as we 
have seen previously, increasing the incentive budget and encouraging participation in the 
rideshare system can be a great way to reduce the traffic congestion and pollution problem 
of densely populated urban areas like Manhattan. In our experiments, the optimum budget 
is $6,000 per hour. 



 
31

 

Next, we look into the budget usage rate. This is shown in Figure 8. An inverse pattern of 
Figure 7 is seen in Figure 8. When the budget is low, the entire budget will be used to 
incentivize drivers and passengers. This stops at $5,000, beyond which the budget use 
decreases.  

 
Figure 7. Change in the Percentage of Passengers Served with Change in Budget 
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Figure 8. Change in the Percentage of Budget Used with Change in Budget 

Next, we describe our rural area dataset and examine the performance of the rideshare 
network on this dataset. 

Description of the Rural Dataset 

We now show how rideshare systems perform in a rural area where the population is 
sparse, and public transport is not available. However, the rideshare literature does not 
offer any dataset in this regard. Therefore, we construct our own dataset. We chose the 
area centered around the town of Delano, California. The area sits between Kern County 
and Tulare County. Although there are many areas like this throughout the United States, 
we wanted to focus on California, especially the valley area, due to its geographic 
proximity. This area has two towns in the middle, Delano and McFarland. The area 
surrounding these towns is mostly farmlands with sparse population density. This area 
provides a perfect opportunity to study the rideshare system in the rural area. A map of the 
area is provided in Figure 9. The map is sourced from Google Maps. 

We prepare the dataset in a similar way to the New York Taxicab Dataset. Like that dataset, 
we divide the area into 54 zones. A demonstration of this is shown in Figure 10. Since we do 
not have any rideshare or taxicab dataset, we generate the data randomly. driver and 
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passenger origin and destination were generated randomly. Similarly, driver journey start 
time and passenger pickup start time were also generated randomly. For the rural dataset, 
we assume the passenger's pickup time window is 30 minutes. Distance between all the 
nodes in the road network was obtained from the OpenStreetMap router API. All other 
parameters and their values used in the experiments are similar to the NYC dataset. They 
are summarized in Table 7. Since there is no historical data available, we do not use the 
prediction mechanism for the rural dataset. In the next section, we discuss the 
performance of the rideshare system in a rural area. 

 
Figure 9. Map of the Rural Area 
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Figure 10. The Rural Dataset Broken Down into Zones 

Table 7. Parameters and Their Values for the Rural Dataset 

Parameter Value 
Planning Horizon,𝑇 60 minutes 
Planning time epoch, Δ 5 minutes 
Pickup start time, 𝑎𝑝 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑇) 
Driver journey start time, 𝑎𝑑  𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0, 𝑇) 
Pickup time limit,𝑏𝑝 Pickup start time, 𝑎𝑝+30 minutes 
Hourly incentive budget, Β $1000 
Travel cost per km $0.187 
Number of nearby drivers, 𝑘  20 
Passenger walking limit, 𝑊𝑝 0.84 km 
Driver ride time extension factor, 𝑒𝑥𝑣 0.5 
Passenger ride time extension factor, 𝑒𝑥𝑝 0.5 
Incentive payment per minute of maximum 
ride time violation, 𝑓1 and 𝑓2 

$1.00 

Penalty for per kilometer distance 
increment, 𝑓3 

$1.00 

Upper limit of the benefit-incentive ratio, 𝑈 10 
Lower limit of the benefit-incentive ratio, 𝐿 1 
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Performance of the Rideshare System in the Rural 
Dataset 

For the rural dataset, we perform experiments on instances of smaller sizes than the NYC 
dataset to investigate the performance of the ridesharing system in an area with a sparse 
population. Both the number of drivers and the number of passengers ranges from 100 to 
1,000. We report the same set of output parameters as for the NYC dataset. 

Table 8 shows the simulation output for the rural area. Similar to Table 2, we compare the 
total vehicle distances traveled in two scenarios: solo driving and ridesharing across all 
test instances. From the Table 8, we can see that ridesharing can reduce the total vehicle 
distances traveled by 31%. From this discussion, we can say that ridesharing can 
significantly reduce the total vehicle miles traveled. 

Table 9 shows the passenger service rate, the budget usage rate, the average occupancy 
per vehicle, and the average distance traveled by the rideshare vehicles. As we can see 
from the Table 9, the average passenger service rate is 79% compared to 33% in the NYC 
dataset. The difference is due to the smaller scale of the rideshare system. Although the 
incentive budget is 50% of the Manhattan experiments, due to the smaller number of 
requests per hour, more incentives can be paid, resulting in a higher passenger service 
rate. However, a decreasing trend in passenger service rate can be seen with the 
increasing size of test instances. Since the incentive budget is the same for all test 
instances, as the number of drivers and passengers increases, a lesser percentage of 
participants can be incentivized, as can be seen in the 4th column of Table 10, resulting in a 
lower passenger service rate. This is also reflected in the budget usage rate, which 
increases with increasing sizes of the problem instances and goes to 100% for larger 
instances. The average occupancy rate also decreases with increasing test instance sizes. 
This is again due to the decreasing passenger service rate. The geographic sparsity of the 
rural dataset is reflected in the average trip distance of rideshare vehicles. For the rural 
dataset, the average trip distance is 25.50 kilometers, more than double the average trip 
distance for the NYC dataset. 
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Table 8. Total Vehicle Distance Traveled across All Instances in the Rural Dataset 

No. Drivers No. 
Passengers 

Total Vehicle 
Distance 

Traveled in 
Solo Driving 

(KM) 

Total Vehicle 
Distance 

Traveled in 
Ridesharing 

(KM) 

Improvement 
(%) 

100 100 3770.62 2884.25 24% 
200 200 7622.68 5809.50 24% 
300 300 11434.61 8325.27 27% 
400 400 14928.65 10693.06 28% 
500 500 18848.31 13049.27 31% 
600 600 22803.69 14962.32 34% 
700 700 26536.56 16792.47 37% 
800 800 30055.35 19600.68 35% 
900 900 33915.53 22217.25 34% 

1000 1000 37919.08 25711.51 32% 
Average 20783.51 14004.56 31% 

Table 9. Passenger Service Rate, Budget Usage Rate, Average Occupancy Rate, and 
Average Trip Distance per Rideshare Vehicle Across All Instances in the Rural Dataset 

No. 
Drivers 

No. 
Passengers 

Passenger 
Service Rate 

(%) 

Percent 
Budget 

Used 

Avg. 
Occupancy 
per Vehicle 

Trip 
Distance 

per Vehicle 
(km) 

100 100 100% 22.91% 2.00 28.84 
200 200 100% 47.21% 2.00 29.05 
300 300 99% 69.71% 1.99 27.67 
400 400 99% 85.22% 1.99 26.73 
500 500 87% 100.00% 1.87 26.02 
600 600 76% 100.00% 1.76 24.77 
700 700 70% 100.00% 1.70 23.85 
800 800 57% 100.00% 1.57 23.01 
900 900 55% 100.00% 1.55 22.69 

1000 1000 49% 100.00% 1.49 22.34 
Average 79% 82.51% 1.79 25.50 

Table 10 shows the average shared cost of the passengers, the percentage of participants 
receiving incentives, and the average incentive payment. The average shared cost of the 
passengers is $3.51, which is double the shared cost of the NYC dataset. This increase is 
due to spatial sparsity of the origin and destination of the passengers and drivers. 
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However, the shared cost is still significantly lower than ride-hailing services. The 
percentage of the participants receiving incentive payment decreases as the size of the 
test instances increases. This is due to the decreasing passenger service rate and the fixed 
incentive budget. The average incentive payment is $4.87. From this discussion, we can 
conclude that ridesharing can be beneficial in rural areas by providing cheap and flexible 
commutes to people where public transport is not available, and ride-hailing services are 
either not available or costly. The passenger service rate is also high for the rural case, 
although the number of rideshare participants is lower than in an urban area. 

Table 10. Average Shared Cost, Incentive Recipient Rate, and the Average Incentive 
Payment Across All Instances in the Rural Dataset 

No. 
Drivers 

No. 
Passengers 

Avg. 
Shared 
Cost ($) 

Percent 
Participants 
Receiving 
Incentive  

Avg. Incentive 
Payment ($) 

100 100 3.59 45% 4.65 
200 200 3.70 42% 5.31 
300 300 3.57 47% 4.99 
400 400 3.38 45% 4.73 
500 500 3.39 39% 5.04 
600 600 3.56 34% 4.82 
700 700 3.52 31% 4.65 
800 800 3.50 24% 5.12 
900 900 3.43 23% 4.69 
1000 1000 3.50 21% 4.65 
Average 3.51 35% 4.87 
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Conclusions 
In this study, we developed a framework for a real-time large-scale online rideshare 
system where a user can request a ride at any time, or a driver can enter or exit the system 
anytime. We developed a greedy heuristic for routing, a meeting point selection 
mechanism for flexible pickup or drop-off point selection, and a prediction mechanism for 
forecasting future ride requests and repositioning drivers. We also proposed an incentive 
system that incentivizes more people to participate in the rideshare system. We also 
integrated simulation software into our routing mechanism, which can simulate the 
rideshare routes and other traffic and provide the most up-to-date information about the 
travel time and traffic conditions of a road network. We performed numerical experiments 
on two datasets: one in New York City and one in Tulare and Kern Counties, California. 
Results from the numerical experiments show that ridesharing can be an effective way of 
providing flexible commutes to people at a fraction of the cost of a taxicab or ride-hailing 
service. Rideshare can also help improve the traffic congestion in an area, as can be seen 
from the simulation output. Also, our proposed incentive system can be extremely helpful 
in increasing the adoption of rideshare. As the results show, as the budget for incentives 
increases, the passenger service rate also increases. Our proposed framework can solve 
the driver-passenger matching and driver-routing problem in a city-scale network with 
10,000 requests per hour. Thus, our framework is highly scalable. 

Our proposed framework, numerical experiments, and results can be helpful to city 
officials. They can use our framework to launch a rideshare service that is incentivized by 
the government to reduce traffic congestion as well as increase accessibility to cheap 
transportation. Also, transportation planners can use our incentive mechanism to promote 
carpool ridesharing. Results from the simulation can help transportation planners 
understand the benefits of the rideshare system. This framework can also be applied to 
other major cities such as Los Angeles, Chicago, or San Francisco, where public 
transportation is insufficient to serve the large population. 

Future research can look into developing routing algorithms based on exact solution 
procedures. Although our proposed algorithm can route hundreds of requests within 
seconds, it is based on a greedy heuristic. Exact methodologies that are scalable can 
provide even more distance savings and serve more passengers. Another direction of 
future work can be parallel matching algorithms. Although these parallel matching 
systems have been implemented for ride-hailing services, for ridesharing services these 
algorithms have not been explored. Future research can investigate parallelly running the 
simulation mechanism alongside the routing mechanism. This will improve the 
computational efficiency of the system. The system can update the travel times whenever 
the simulation module finishes. 
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Data Summary 
Products of Research  
One of the main research products of this research will be peer-reviewed journal articles, 
book chapters, and/or conference proceedings targeted toward the transportation science 
research community, plus supplemental materials such as tables, numerical data used for 
graphs, etc. The resulting algorithms will be published in peer-reviewed journals. 

Data Format and Content  
All research products will be available online in digital form. Manuscripts will appear in a 
common document-viewing format, such as PDF, and supplemental materials, such as 
tables and numerical data, will be in a tabular format, such as Microsoft Excel 
spreadsheet, tab-delimited text, etc. The New York Taxicab Dataset is found in PARQUET 
format. 

Data Access and Sharing  
All participants in the project will publish the results of their work. Papers will be published 
in peer-reviewed scientific journals, books published in English, conference proceedings, 
or as peer-reviewed data reports. Beyond the data posted on USC websites, primary data 
and other supporting materials created or gathered in the course of work will be shared 
with other researchers upon reasonable request, at no more than incremental cost and 
within a reasonable time of the request or, if later, the filing of a patent application covering 
the results of such research. 

All the data used in this research report can be found at Figshare: 
https://dx.doi.org/10.6084/m9.figshare.28119947. This includes the maps in the XML 
format, distance data, coordinates of the zones, all the data in the tables, and the data for 
the graphs. The New York Taxicab and Limousine Commission Dataset can be found at: 
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page  

Reuse and Redistribution  
USC's policy is to encourage, wherever appropriate, research data to be shared with the 
public through internet access. The university will regulate this public access to protect 
privacy and confidentiality concerns, as well as to respect any proprietary or intellectual 
property rights. Administrators will consult with the university's legal office to address any 
concerns on a case-by-case basis, if necessary. Terms of use will include requirements of 
attribution along with liability disclaimers in connection with any use or distribution of the 
research data, which may be conditioned under some circumstances.  

https://dx.doi.org/10.6084/m9.figshare.28119947
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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