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ABSTRACT

The efficiency of distributed energy systems can be significantly increased through waste heat recovery from
industry or power generation. The technologies used for this process are typically dependent on the quality and
temperature grades of waste heat. To maximize the efficiency of cascade heat utilization, it is important to
optimize the choice of waste heat recovery technologies and their operation. In this paper, a detailed mixed
integer linear programming optimization model is proposed for waste heat recovery in a district-scale microgrid.
The model can distinguish waste heat quality for planning and operation optimization of distributed energy
systems. Heat utilization technologies are formulated in this developed model and categorized in different
temperature grades. The developed model is validated using four typical cases under different settings of system
operation and business models. It is found that the optimization model, by distinguishing waste heat tem-
perature, can increase energy cost savings by around 5%, compared to models that do not consider waste heat
temperature grades. Additionally, the results indicate that the developed model can provide more realistic
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configuration and technologies dispatch.

1. Introduction

A key component of distributed energy systems (DES) is the place-
ment of small-scale energy generation units close to end use loads [1].
DES can help avoid electricity transmission losses, enable flexible dis-
patch of generation technologies and increase system efficiency, as the
electricity generated is used locally and the system incorporates a
variety of advanced energy technologies [2]. Issues such as energy ef-
ficiency needs, rising energy costs, transmission and distribution in-
frastructure constraints, and sustainability concerns have increased the
attractiveness of DES. Due to the complexity of these systems, which
incorporate technologies such as solar photovoltaics (PV), thermal
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energy storage, power grids, microgrids, and absorption chillers, the
optimization of planning and operation are crucial [3]. The choice and
operation of waste heat recovery technologies (WHRT) is a key factor in
improving energy efficiency of the whole system. Internal combustion
engines (ICE) and gas turbines are the most important prime movers in
the DES, while their efficiencies are low, ranging from 30% to 50% and
30% to 40%, respectively [4] and resulting in large discharges of en-
ergy. In addition to these prime movers, there are many other sources of
waste heat that can be reused in a DES. A literature search [5] shows a
detailed estimation of the world waste heat sources in 2012, accounting
for about 71.8% of primary energy input. A number of research efforts
such as [6] have proven that with appropriate WHRTSs, the primary
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Nomenclature

T temperature (°C)

m mass flow rate (kg/h)
(08 specific heat (kJ/kgK)
Q absorbed heat

QC cooling (kWh)

H heating (kWh)

P power (kWh)

Cc cost

c unit cost

Ccp capacity (kW)

NG nature gas heat (kWh)
VA temperature binary
X install binary

b mass flow rate binary
n efficiency

Subscript

inv investment

op operation

mtn maintenance

pur purchase

sal sale

var variable

rat rated

m month

d day

h hour

ex exhaust

Acronyms

WHRT  Waste Heat Recovery Technology

ICE Internal Combustion Engine

CCHP Combined Cooling Heating and Power
CEU Cascade Energy Utilization

DES Distributed Energy System

MINLP  Mixed Integer Non-Linear Program
MILP Mixed Integer Linear Program

RC Rankine Cycle
ORC Organic Rankine Cycle

DARS Double-effect Absorption Refrigeration System
AHP Absorption Heat Pump

ARS Absorption Refrigeration System
DH Direct Heating

JW Jacket Water

NGC Natural Gas Chiller

EC Electric Chiller

NGB Nature Gas Boiler

EB Electric Boiler

HP Heat Pump

ST Solar Thermal

PV Photovoltaic Generation

EST Electrical Storage Battery

HST Heat Storage Tank

CST Cooling Storage Tank

DR Demand Response

COoP Coefficient of performance

HT Hight temperature

LT Low temperature

VCHP Vapor compression heat pump

energy ratio of cogeneration system can exceed 80%. As a result, re-
searching WHRTs with respect to the optimization issue in DES is an
important potential source of energy savings.

In this work, cascade energy utilization requires thermal-driven
technologies to be operated within its own suitable temperature range
of the heat source. In other words, the configuration and operation of
WHRTSs in DES should be based on energy equality. Proper configura-
tion and operation of these technologies, to match the energy quality
needed, can greatly improve DES efficiency. Without optimal system
design and operation strategies, these technologies can result in even
higher energy losses than a traditional energy system [4]. Additionally,
heat source temperatures that are too low to drive particular technol-
ogies, such as the Rankine Cycle, may lead to unreasonable optimiza-
tion results for DES in real applications. Consequently, it is crucial to
optimize planning and operation of different WHRTs according to en-

ergy quality.

2. Literature review

Many existing literatures have studied DES optimization problems.
The traditional DES optimization problem can be described simply as:
under constraints of load demand and equipment models, use a certain
algorithm to find the optimal solution for planning and operation of all
the technologies. In short, there are four key aspects to look at in this
process: the technology model, the objective function, the calculation
method, and load demand. Former studies usually focused on these four
aspects, as described below.

Technology modeling is a critical part of optimization. It can be
thermodynamic-based, correlation-based, or use an assumed constant
efficiency. Thermodynamic-based models are usually complex, so they
are limited to simple or well-studied system configurations [7]. Barelli
[8] established a thermodynamic model to observe the full functioning
of a DES under variable loads and defined the best operation condition
in terms of humidity percentage. Lecompte [9] proposed a detailed off-
design model of a DES, which allowed for selecting the optimal size of
the heat exchangers, the optimal mass flow rates, and other variables.
By contrast, complex systems can be optimized with correlation-based
models at the sacrifice of accuracies. Nonlinear performance curves
describing the off-design behavior of different technologies are the most
common method in many research efforts. For instance, one study
shows [10] that the efficiencies of internal combustion engine, boiler,
turbine, and pump were computed as a function of load in the DES
optimization model. Alvarado et al. [11] applied real manufacturer
data sheets for the technologies to represent their off-design perfor-
mance in the optimization model, which was named “data-driven
structure.” There are many research efforts in which most component
models are assumed to be a product of input energy and constant ef-
ficiency. For example, Stoppato et al. [12] invested a model for optimal
design and management of a cogeneration system in which most of the
equipment efficiencies were constant while they focused on the storage
modules and considered battery lifetime optimization.

The objective function is also significant in planning and operations
optimization for DES—this function determines whether to add a
technology, what the equipment size is, and how to operate various



kinds of equipment. Past research efforts show that there are four main
types of objective functions [13]: energy [14], exergy [15], economy
[16], and environment [17]. The objective function can also be for-
mulated for single-objective and multiple-objectives with weights that
can be defined by the method of “a priori articulation of preferences” or
“a posteriori articulation of preferences” [18].

Because of the nonlinear model of the component and complex re-
lationship among optimal optimization variables, a DES optimization
problem is often modeled using mixed integer non-linear programming
(MINLP). Diverse approaches have been applied to solve a problem such
as genetic algorithm [19], simulated annealing [20], particle swarm
optimization [21], dynamic programming [22], artificial neural networks
[23], and evolutionary algorithms [24]. The large number of integer
variables and the nonlinear constraints, which originate when
considering multiple interconnected technologies and a long-time hor-
izon (such as one year with an hour-basis discretization), result in an
extremely challenging MINLP. Ommen et al. [25] conducted an em-
pirical comparison of the linear programming (LP), mixed integer linear
programming (MILP), and non-linear programming (NLP) methods. The
research concluded that MILP was the most appropriate model from the
viewpoint of accuracy and run time, using the linearization approach to
approximately model non-linear technologies. Therefore, many ap-
proaches have been proposed to convert the original MINLP into an
approximated MILP. The paper [26] showed that the MILP model can be
effective for DES optimization with more than 10,000 variables.

Active demand response (DR), defined as “changes in energy usage
implemented directly or indirectly by end-use customers/prosumers from
their current consumption injection patterns in response to certain
signals” [27], has been implemented to reduce peak energy usage and
utility bills [28] as well as to bring higher capacity factors and grids
security [29]. Owing to the challenges of DR, together with the un-
certainty inherent in renewables and wholesale market prices [30],
increasing efforts have researched applying DR to the DES optimization
process. In work done formerly by the authors of this paper [30], an
extremely detailed review of DR was described and a specific DES op-
timal model with DR was established. The case studied at a campus
indicated that 17.5% peak load reduction and 8.8% cost reduction could
be achieved with the DR model compared to the non-trivial baseline.

Overall, the research reported in the literature does not consider
variations in the energy quality of heat source. Waste heat is simply
calculated as the same energy quality and recovered to supply heating or
cooling by an assigned technology. Considering waste heat utiliza-tion,
there are three primary problem when treating waste heat as a
homogenous energy thermal quality in the process of DES optimization.
Firstly, if energy quality is much higher than the requirement of the
technology, it leads to waste of high quality energy and decreases the
efficiency of the whole DES (described as “energy degrading utiliza-tion”
in this work). Secondly, if the temperature of the heat source is lower
than the minimum temperature limit of certain technologies, it is not
feasible to use the heat to drive the equipment—this is described as
unreasonable “energy upgrade utilization.” Thirdly, owing to the former
two problems, a reasonable and detailed dispatch of the waste heat
resource could not be optimized. Consequently, it is critical to consider
energy quality when optimizing the planning and operation of DES.

Different temperatures of heat are suitable for different WHRTs. This
is especially important for waste heat recovery from multiple heat
sources of different energy qualities and for high-temperature heat
sources with a significant temperature drop after heat recovery. For
example, the ICE produces low-temperature jack water (about 90 °C)

[31] and high-temperature exhaust (about 400-800 °C) [32]. As a re-
sult, new approaches focused on cascade utilization based on thermo-
dynamic analysis are proposed. Lin et al. [33] made a detailed de-
scription of the principle “temperature match and cascade energy
utilization” and show several typical examples. Yang et al. [34] pro-
posed a high-efficiency double-effect absorption cycle with engine jacket
water as the heat source for a low-pressure generator and exhaust as the
heat source for a high-pressure generator in a tri-generation application.
Mohammadi [35] proposed a novel cogeneration system, in which the
waste heat of the engine exhaust was recovered by the organic rankine
cycle (ORC) and the absorption chiller in sequence, because the ORC can
use medium-temperature heat to produce elec-tricity of high energy
quality, and the absorption chiller is more suitable for low-temperature
heat. Hajabdollahi [19] investigated the effects of load demands on the
selection of optimum waste heat recovery tech-nologies. The waste heat
of ICE exhaust could be recovered by ORC, the absorption chiller, and
direct heating in order of energy quality levels; selection of the three
technologies was based on load demand. Han et al. [36] proposed a
novel high-efficiency hybrid absorption-com-pression refrigeration
system based on cascade waste heat utilization. The waste heat was used
to heat turbine vapor and then the solution in the absorption
refrigeration system in a series. Jing and Zheng [37] also used waste
heat to drive a turbine and absorption chiller. Chen et al.[38] used the
high-temperature portion of engine exhaust to drive thermoelectric
generators and the low-temperature portion to drive a waste heat boiler.

However, the existing literature which focuses on waste heat cas-
cade utilization as mentioned above only performed the thermo-
dynamic analysis of a certain specified DES, and did not optimize
planning and operation of the DES. When considering DES optimiza-
tion, both energy equality and load demand should be considered at the
same time, making the problem more complicated. Related DES opti-
mization research with cascade utilization is quite rare. Bischi et al.[39]
divided the thermal energy to high-temperature flow and low-
temperature flow in a MILP model for tackling the short-term sche-
duling problem. Gao et al. [40] proposed a methodology of energy
matching and optimization for a DES based on energy level analysis.
However, in Bischi et al.’s research [39] only two kinds of WHRTs were
used and only two energy levels were divided, which could not dis-
tinguish all of the suitable temperature ranges for different WHRTs.
Furthermore, this work only optimized DES operation, and did not
optimize planning. The methodology proposed by Gao et al. [40] is only
suitable for operation optimization of an already-designed combined
cooling, heating, and power system (CCHP).

In conclusion, there is a need to develop a detailed optimization
model for planning and operation of a DES by distinguishing input waste
heat quality. Hence, this study proposes a novel waste heat uti-lization
optimization model. In the model, the energy quality level of the heat
source is distinguished by temperature. Detailed temperature thresholds
for almost all common WHRTs are worked into the con-straints of their
models. The optimization model can select the most suitable WHRTs
based on energy quality and load demand while pro-viding detailed
operation dispatch for related energy equipment. Four cases are
investigated to show the effectiveness of this model. The calculated
results are compared with the model without distinguishing energy
quality in the base case. Based on the literature review for this section,
the model developed in this study can make the following original
contributions regarding DES:

1. A novel cascade energy optimization model, able to distinguish
energy quality, is developed for use in DES planning and operation.



The model allows users to choose appropriate WHRTs based on
energy quality and load demand.
2. The model avoids unnecessary heat upgrade utilization and effi-
ciency loss by utilizing waste energy in optimal temperature ranges.
3. Cascade energy utilization provides detailed optimal operation for
heat utilization in different temperature ranges. Results show a
significant increase in system efficiency.

In summary, the model developed in this study provides an optimal
method for waste-heat utilization strategy, delivering reasonable, effi-
cient and economical system planning and operation for a DES.

3. Energy equality matching for waste heat recovery technologies

As mentioned above, the work featured in this paper focuses on
optimizing the planning and operation of WHRTs based on energy
quality and load demand. The WHRT is a type of “passive” technology.
Unlike “active” technologies such as natural gas boilers or electrical
chillers, passive technologies rely on heat source energy quality to de-
termine whether the technology can be operated/used and energy
quality has a significant effect on energy efficiency. Temperature is an
important parameter to distinguish energy quality. Section 3.1 de-
scribes suitable temperature ranges for common technologies.

3.1. Temperature ranges of common technologies

3.1.1. Rankine cycle and organic rankine cycle

Rankine cycle (RC) is a mature technology and has long been used
to recover high temperature exhaust heat for producing electricity [41].
A combined system using a gas turbine and RC can reach an efficiency
of approximately 60% [42]. This system uses water as a working fluid,
and the water needs to achieve a large superheat degree before entering
the turbine, so the heat source temperature is required to be relatively
high, usually higher than 400 °C [43].

The organic rankine cycle (ORC) operates similarly to the conven-
tional steam RC except it uses organic working fluid instead of water.
Efficiency in the ORC is approximately 5-20% [44]. ORC is the best
technology to convert heat into power when the temperature source is
in the range of 200-400 °C [45]. A variety of organic fluids can be used
in an ORC and they have different efficiencies. In literature [46],
working fluids are dived into high temperature (HT) and low tem-
perature (LT) working fluid. LT working fluids can use low temperature
heat (100-200 °C), resulting in efficiencies of about 5-10%. HT working
fluids are more suitable for higher temperatures and have higher effi-
ciencies (10-20%). Therefore, this paper divides ORC into HT and LT.

3.1.2. Absorption refrigeration system

The absorption refrigeration system (ARS) is one of the most com-
monly applied and commercialized cooling WHRTSs in DES. There are
single-, double-, and triple-effect absorption refrigeration systems;
temperature requirement increase respectively. Triple-effect systems
have not been applied widely in the market [47]. Table 1 shows the
temperature range for single- and double-effect ARS.

3.1.3. Vapor compression heat pump

The vapor compression heat pump (VCHP) can achieve temperature
lifts with significant consumption of electrical energy. The heat-source
temperature of the VCHP is usually lower than 30 °C, because high
temperatures increase gas temperatures before and after the com-
pressor, affecting the safety of the compressor [48].

3.1.4. Absorption heat pump

Absorption heat pump technology (AHP) replaces electrical con-
sumption with heat energy to achieve its effect. It can be divided into
the type-one absorption heat pump (1AHP) and type-two absorption
heat pump (2AHP). The former is also called a “heat increasing HP” and
uses high temperature heat to produce a large amount of middle tem-
perature heat. 2AHP is also called a “temperature-rising HP” or “ab-
sorption heat transformer.” This technology can convert low-tempera-
ture heat to middle-temperature heat with a lift of around 30-50 °C by a
single stage HP [50]. Table 1 shows suitable temperature ranges for
various HPs.

3.1.5. Direct heating (DH)

Low-temperature waste heat can be directly integrated into con-
ventional district heating networks. For example, average supply tem-
peratures are 86 °C in Sweden [47] and 70-120 °C in Denmark [53]. In
China, the literature showed three specifications of 95 °C/70 °C, 85 °C/
65°C, and 75 °C/55° [49]. Next generation low-temperature networks
are developing in order to utilize low-temperature heat.

3.2. Technology summary

Table 1 gives a summary of suitable temperature ranges for common
technologies and their performance coefficients. It should be noted that
the temperature ranges in this table are approximate, because the lower
limit temperatures are greatly affected by equipment and the form of
heat source. Fig. 1 shows an energy flow tower that describes the en-
ergy quality levels of common waste heat sources used in DES with
corresponding suitable technologies. In the energy flow tower, tech-
nologies are aligned with specific temperature ranges. The high-tem-
perature range can reduce its energy level to drive the low-level tech-
nologies with exergy loss if necessary, but not the other way around,
according to the second law of thermodynamics. Temperature con-
straints in Fig. 1 are included in the optimization model presented in
Section 4.

There may be several kinds of heat sources in an optimization
problem of DES, such as the industry waste heat, condensing heat from
a power plant, jacket water, and exhaust from the primary mover
(shown in Fig. 1). These heat sources can be divided into two classes.
The first class produces a large temperature drop after heat recovery,
such as exhaust. This kind of waste heat enables cascade utilization
using a variety of technologies according to energy quality levels and
load demand. Section 4 outlines these models as shown in the energy
flow tower (Fig. 1).

The second class of heat sources has only a small temperature drop
after heat recovery, such as jacket water. Jacket water temperatures out
of the engine are required to be around 90 °C; when returned to the
engine, temperatures must be about 70 °C [13]. As a result, this kind of

Table 1

Suitable temperature ranges for common technologies.
Technology Temperature Performance coefficient Application
VCHP [48] <30°C COP: 3-5 Heating
DH [49] > 60°C Efficiency > 0.8 Heating
2AHP [50] > 60-80°C COP: 0.4-0.5 Heating
ARS [51] 70-170°C COP: 0.4-0.8 Cooling
1AHP [52] > 120-240°C COP: 1.6-1.8 Heating
DARS [52] > 140-240°C COP: 0.8-1.2 Cooling
ORC [45-46] 100-400 °C Efficiency: 0.05-0.20 Electricity
RC [43] > 400°C Efficiency: 20-30% Electricity
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Fig. 1. Energy flow tower of waste heat recovery technologies.

heat source has a narrow interval of energy quality and the candidate
WHRTSs can be regarded in the same level of the energy flow tower.
Industry waste heat of high temperature can be grouped into class 1,
while that of low temperature and the condensing heat from power
plants can be grouped into class 2.

In this study, the prime mover is an ICE with the waste heat source
of exhaust and jacket water. Consequently, the two classes are re-
presented by these two kinds of waste heat source in the study. Other
kinds of waste heat source do not appear. Nevertheless, they can be
added using the same model of exhaust and jacket water conveniently.

4. Cascade energy optimization model

This model is aimed at optimizing planning and operation of the
DES, primarily focused on WHRTs. The optimal plan is the one that
minimizes discounted present value of all costs in the planning period
(i.e., operating cost plus investment costs). The optimization problem

Waste heat

for operational analysis is formulated as a mixed integer linear pro-
gramming problem and solved with Gurobi. This model can provide
alternative decisions to determine which technology should be installed
in the DES, capacity of the adopted technologies, and how much energy
should be produced by each technology every hour. System operations
for one year into the future are considered. The typical time step in the
operational model is one hour. The load days represent twelve months
with two representative days within the week (weekday and weekend).
As a result, total time steps are 576 (12 x 2 x 24).

The prime mover is the ICE, so there is exhaust and jacket water
waste heat to represent the two classes of heat source as mentioned
above in Section 3.2. The discharged exhaust temperature after heat
recovery is usually required to be higher than the acid dew point,
otherwise the equipment can be corroded [54]. The acid dew point is
determined by the sulphur content of the fuel, and it is assumed to be
100 °C in the study, which means the exhaust heat below 100 °C is
discharged. Therefore, the WHRT candidates are RC, ORC, double-ef-
fect ARS (DARS), single effect ARS, 1AHP, and DH. Since the jacket
water temperature is low and its recoverable temperature range is
small, the candidates are limited to ARS and DH, which are named
JWARS and JWDH in order to differ from exhaust. The active candidate
technologies include: natural gas chiller (NGC), electric chiller (EC),
natural gas boiler (NGB), electric boiler (EB), heat pump (HP), solar
thermal (ST), PV, and ICE. Storage technologies include electrical sto-
rage battery (EST), heat storage tank (HST), and cooling storage tank
(CST). Their technology parameters such as efficiency and cost are the
initial parameters set by the users. The load demand of electricity,
heating, and cooling can be satisfied by these technologies as shown in
Fig. 2. The mathematical models are described step by step in detail by
presenting the objective function and all the constraints.

4.1. Objective function

The goal of optimization is to minimize overall annualized invest-
ment cost and annual operating cost of the whole energy system while

Natural gas
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Fig. 2. Schematic representation of the DES.



maximizing profit by selling surplus electricity and heating energy
outside the system:

. i id
minCeos = Cipy + Cop + Con + Cﬂlyd + C;lzilrlt_cgn _Cspzlzela[ (€8]

sal

where Ciny, Cop, Cmm are investment cost, operation cost, and main-
tenance cost, respectively. Cg,:‘,d and C;‘f,‘,“ are the purchase cost for
electricity and heat. nga'fd and C"* are sale profit of electricity and heat.
The detailed calculation of every item in Eq. (1) is conventional and can

be found in a literature search [30], so it is not described here.
4.2. Constraints

4.2.1. Energy balance

The DES must satisfy customers’ requirements for electricity,
heating, and cooling. Electricity loads can be met by PV arrays, the
prime mover, Rankine Cycle technology for waste heat recovery, bat-
teries, or grid purchases. Excess electricity produced by the district
energy system is considered as income.

ele_only grid_sal EC EB HP EST _sto
Doan ~ + Puan + Puan + Puan + Pudn + Prdn
__ pgrid_pur PV RC HTORC LTORC PRI EST_from
=Poan + Puant Puant+ Puan + Pudh + Puan+ Prai
2

Heat loads can be satisfied by the natural gas boiler, electrical boiler,
solar thermal, heat pump, WHRTSs of 1AHP and DH, and heat storage.

heat ] HST_sto _ 7yNGB EB HP ST 1AHP
Dplan + Huan + Huai™ = Huan + Hyan + Huan + Huan + Hungn
DH JWDH HST_frol
+ Hply + H O + | 3)

Cooling loads can be supplied by the electric chiller, natural gas chiller,
WHRTs including DARS, ARS, and cooling storage:

li CST_sto _ (y~NGC EC HP DARS ARS
Dyran® + QCui™ = QChian + QCran + QCplyp + QCrlay + QCin

+ QG + QCpai™ @

4.2.2. Technology model

This study is primarily focused on the optimization of WHRTs, so
their models are stated in detail here. Models for all active technologies
and storage technologies are reported in past work [30] and so are not
stated in detail here.

4.2.2.1. Constraints for exhaust waste heat recovery. The input energy of
the exhaust WHRT is calculated as:

Q% = (T —Tou ) m=Cy* )

Although the exhaust temperature out of engine (Tj) varies with
engine working conditions, it does not change much above the 40%
condition [55]. Consequently, in order to reduce the computation task,
the exhaust temperature is assumed as a constant value. The exhaust
mass flow rate is strongly associated with the input natural gas.
According to the experimental research on ICE [55], the relationship
between exhaust mass flow rate and input natural gas is approximately
linear. Therefore, it is defined as:

PRI _ PRI
M h = Kgas—exn NGin,d (6)

where Kkg.exn is @ constant coefficient and assumed as 0.000563
according to the experimental research [55]. The unit used for
consumed heat NGER/ | is kWh.

Exhaust is the main waste heat source used in the model and has a
large recoverable temperature range, so it can be recovered with a
variety of technologies based on energy quality levels, as shown in the

energy flow tower of Fig. 1. Exhaust can flow through the energy flow
tower and according to the energy quality and load demand, which
technologies should be used and how much energy should be recovered
by each technology can be optimized. The highest level in the tower is
the RC. Its absorbed heat and the generated electricity are calculated as:

QR n = ZEC (T ren)ftli,h)m;fd,hch (7)
Prlrffi,h = fod,h’?RC (8)

Therein, T57% , is the exhaust temperature at the RC inlet and T,i’f[li:h is
that at the outlet. Both values are optimal variables for operation: 77 is
RC efficiency and m,;;;; is associated with input natural gas as men-
tioned above, so it is also a variable, leading to nonlinearity of Eq. (7).
The equation is linearized after the description of the model. ZX$ , is a
binary variable that determines whether the exhaust temperature is
high enough to drive the RC.

Znman €10.1]

T > 40022,

>
Te1 < ZRG  (T*—400) + 400 ©)

The lower limit temperature to drive the RC is assumed to be 400 °C. It
can be seen from Eq. (9) that if the inlet exhaust temperature is lower
than 400 °C, ZRG , is 0, and the absorbed heat is 0 (as well as the RC
output). Otherwise, ZXG , is 1 which means T, (the exhaust tem-
perature out of the engine) exceeds 400 °C. Most WHRTSs can only uti-
lize part of the exhaust heat, so the outlet exhaust temperature cannot
be lower than a certain temperature, which depends on the technical
principle and equipment performance. For RC, research shows that the
lowest outlet temperature can be assumed as 150 °C [56].

Triain™ > Todn™ 2 T > 15025335 10)
Additionally, there are installment constraints for RC:

CPRAXRC < CPT < CPRGXRC (11)
0 < Prian < Cpgy 12)
In the next energy level of HT ORC, the output power is calculated as:
Quitn” = Zman Tman=Tman) MoanCs' 13)
PHIORC — QHTORC, HTORC 14)

HTORC .

The constrains of Z,, 43, are:

ZHIORC € o, 1]

Tein = 300Z,408
Tivin < Znah (T p=300) + 300 (15)
Toin > Toan = Tran > 100Z,159%C 16)

The inlet temperature of HT ORC must be lower than T,‘:'fﬁ » as shown in
Eq. (16). If there is RC in the high energy level and its outlet tem-
perature TZy, is higher than the lower limit of HT ORC (300 °C),
ZHIORC can be equal to 1. By contrast, if T4 ,is lower than 300 °C,
Z 08 is 0, which means the remaining exhaust heat cannot drive the
HT ORC and the output is 0. On the other hand, if the RC is not set at
“installed” or “operate,” T,fjfb:his optimized to be equal to T%, and the
HT ORC becomes the first stage.Instalment constraints are:

HTOR HTOR: HTOR
CPminO CXHTORC < CPra[ ORe < CPmaxO CXHTORC (1 7)

0< PH,QCLRC < CPHTORC (18)

m rat



The models for the remaining stages of WHRT are set up according to
the energy flow tower concept and similar to the two models described
previously. Therefore, they are not stated in detail here and their
models are attached in the Appendix. The energy flow tower concept
can be used not only with exhaust, but also with other waste heat
sources with large temperature gradients. For example, if the problem
includes another high temperature industry waste heat, it can be added
with the same model of exhaust, based on the energy flow tower, to be
optimized together.

4.2.2.2. Constraints for jacket water waste heat recovery. Jacket water is
an important part of engine waste heat and usually accounts for about
15-25% of input energy [20]. The proportion is assumed to be 20% in
the model.

Qun = 02NGR, 19)

Jacket water temperature is low and the recoverable temperature
difference is approximately 20 °C. Jacket water temperature must be
approximately 70 °C at the inlet of an ICE and around 90 °C at the outlet
[20]. Therefore, it can be only utilized by DH or ARS.

Hd = Qo rwon (20)
QCIHR = QI COPwags (21)

QB and Q)RS are the absorbed heat by JWDH and JWARS,
respectively. Their sum must be less than or equal to the amount of
jacket water waste heat:

TWDH TWARS w
Qmdn + Qndh < Qmdn (22)

The installation constraints of JWDH and JWARS are:

CpixDHXTWDH < prfa‘;VDH < CPT{LVXDHXIWDH (23)
CpixARSXJWARS < Cprja‘;VARS S CpI.IIIZ/XARSXIWARS (24)

4.3. Linearization

In order to linearize the constraints of energy balance for exhaust
WHRTSs, the exhaust mass flow rate is discretely uniformly:

Myfap = bime + byme + bsme + ...4+b,m, (25)
1, Mylqp = Me 1, mplqp = 2m,
b, = 02 = > --Dn

ex ex U3
0, My g < 2m,

1, Myap = 3m,
0, miq, <me

0, Mg < 3me"

{1, My ap = WM,

0, my'qy < nm, (26)

m, is the unit discrete value. n is the number of discrete sections. The
larger n is, the more precise optimization results are. However, a large n
value brings more binary variables, increasing the complexity of the
calculation task exponentially. After linearization, Eq. (7) becomes:

QRCn= C;xmezrﬁ,%,h(bl + by + b3 + "'+bn)(Triz)fb,h_Tri}f£h) 27)

5. Case study

In this section, four cases are selected to study the optimization
model. All of the study cases have the candidate technologies shown in
Fig. 2, except special mention. For the sake of simplicity, the same load
profile and operative cost assumptions are applied for all the cases,
except special statement. Case A is the base case and compares to the
optimization results with the traditional CCHP model such as in

[30,57], which cannot distinguish energy quality. In order to research
the optimization results under different business models, the heat
cannot be sold or purchased in Case B. In Case C, the lower temperature
limit of the RC is assumed to be higher than the exhaust temperature,
aiming at testing the function of screening out technologies based on
energy quality. The other initial conditions are the same as the base
case. In Case D, the investment cost for the heat tank is assumed to be
cheap in order to include energy storage modules in optimization re-
sults and use up the waste heat. The differences among the initial
conditions of the four cases are listed in Table 2. All of the calculation
gaps in the four cases are 102 and there are about 88,000 variables in
the model.

The demand profile, with one-hour time steps for the four cases, is
represented in Fig. 3, which is cited from the openEl website. As
mentioned above, the load days represent 12 months and two re-
presentative days within the week (weekday and weekend), so total
time steps are 576 (12 x 2 x 24) for one year. In order to analyze the
operation of the different technologies in detail, two typical days are
selected in all the below cases. Typical Day 1 represents the heating
season and typical Day 2 represents the cooling season. The main op-
erative cost assumptions and performance parameters of technologies
are listed in Tables 3 and 4, respectively.

5.1. Case A (base case)

This is the base case and compares to the optimization results from
the traditional CCHP model. In traditional CCHP models such as
[13-16,19], waste heat from the prime mover is calculated as the same
energy quality and recovered to supply heating or cooling with an as-
signed technology. The prime mover and WHRTs are usually packed
together as one module. By contrast, in this model the prime mover and
WHRTs are separated, which enables optimization of the selection and
operation of different WHRTSs according to energy quality and load
demand. For the sake of convenience, it is named the cascade energy
utilization (CEU) model in this paper. In order to compare the two
models, the traditional CCHP model is set up in the CEU model by re-
placing the part of WHRTs and the initial conditions of the two models
are the same, except for the waste heat recovery portions of the cal-
culation. In the CEU model, the waste heat is from jacket water and
exhaust. Jacket water waste heat is assumed to be 20% of input energy
and available exhaust heat is assumed to be 23.2% of input energy.
Therefore, the available waste heat in the CCHP model is assumed to be
43.2% of input energy and can be recovered to produce heating or
cooling. In the traditional CCHP model, a coefficient of performance
(COP) for the entire waste heat process is usually assumed when con-
verting to heating or cooling. Although this is not feasible for energy
consisting of different qualities, in order to compare with the CEU
model, the COPs for heating and cooling are assumed as 1.27 and 0.97,
which are calculated:

COPpeq; = (COP14gp-0.232 + 1)p;,-0.2)/0.432 (28)
Table 2
The difference among the initial conditions of the four cases.

Item Purchase heat Sale heat RC minTL HST unit  Candidate

cost technologies

Case A Yes No 400°C 10$/kWh  All included

Case B No No 400°C 10$/kWh  Without PV

Case C  Yes No 510°C 10$/kWh  With/without ORC

Case D Yes No 510°C 5$/kWh Without ORC

minTL means minimum temperature limit.



electrical load
6000

—heat load

—cool load

5000

Load

Jan Feb Mar Apr

May Jun

= 4000
= 3000
2000 AA
1000
0 A

Oct Nov Oct

July Aug Sep

Fig. 3. The load profiles of the four cases.

CORyo1 = (COPpags-0.232 + COPygs-0.2)/0.432 (29)

The optimization results for the technologies selected and their
capacities in the two model scenarios are shown in Table 5. For the CEU
model in this case, heat cannot be sold, but can be purchased in-
expensively, making electricity costs much more expensive than
heating costs. Consequently, it is more economical to produce elec-
tricity with RC or ORC than by recovering exhaust heat; RC is selected
owing to the sufficient exhaust temperature. Since the waste heat from
jacket water cannot produce electricity, it is used to supply heating or
cooling. It can be seen that the electricity produced by PV is minimal,
because sunlight is not abundant and PV costs are relatively high. Since
the exhaust temperature is high enough to drive DARS, it is configured
to recover exhaust heat during cooling days; the electric chiller is used
to supply cooling when there is not enough waste heat. The lowest
exhaust temperature output from the RC is assumed to be 150 °C in Part
4, so that the remaining exhaust heat still can be recovered by the DH
with cascade utilization. However, this segment of heat is small and the
heat purchase price is low, so considering the cost of DH equipment, it
is not economic to install. Figs. 4 and 5 describe the energy flow of the
entire DES in the two typical days. Therein, the value in every energy
flow is the sum of 24 h.

The WHRT selected significantly affects the efficiency of the entire
system. However, the limits of traditional CCHP models preclude the
optimization of WHRTs and efficient dispatch of waste heat utilization
according to energy quality and load demand, which will be described
in detail below. The objective function value of the traditional CCHP
model is 205943.2, while that of the CEU model is 196236.1—almost
5% higher. Consequently, the CEU model can improve the profit of a
DES and is more realistic for using waste heat of different quality in
engineering practice.

Figs. 6 and 7 describe the electricity balance and heat balance of the
CEU model during a typical day 1. During hours 1-5, the cost of elec-
tricity produced by the engine, including RC, is greater than the grid
price. Additionally, the heat can be purchased at a low price, so it is not

Table 4
The main performance parameters of technologies.

Technology

Parameter value

Photovoltaics
Solar thermal
Internal combustion engine

Natural gas boiler
Electric boiler
Natural gas chiller
Electric chiller
Heat pump
Rankine cycle

HT Organic Rankine Cycle
LT Organic Rankine Cycle

Double effect absorption
refrigerator

Absorption heat pump

Single effect absorption
refrigerator

Direct heating

Electric battery

Heat storage tank

Cooling storage tank

Solar efficiency: 0.15
Solar efficiency: 0.69
Thermal efficiency:
0.4

Efficiency: 0.9
Efficiency: 0.9

COP: 1.2

COP: 5.6

COP (heating): 3
Thermal efficiency:
0.18

Thermal efficiency:
0.17

Thermal efficiency:
0.08

COP: 1.2

COP: 1.6
COP: 0.7

Efficiency: 0.9
Charging efficiency:
0.9

Max charge rate:
0.25

Min SOC: 0.1
Charging efficiency:
0.9

Max charge rate:
0.25

Min SOC: 0.15
Charging efficiency:
0.9

Max charge rate:
0.25

Unit out ratio:0.15
Unit out ratio: 0.1

COP (cooling): 5

Discharging efficiency:
0.9
Max discharge rate: 0.25

Discharging efficiency:
0.8
Max discharge rate: 0.25

Discharging efficiency:
0.9
Max discharge rate: 0.25

Min SOC: 0
economical to produce heating with the waste heat. Therefore, the
engine is shut down and the electricity and heating are supplied by the
Table 3
The main operative cost parameters.
Cost item Value
Nature gas price ($/kWh) 0.03
Heat purchase price ($/kWh) 0.012
Heat sale price ($/kWh) 0.010
Time interval for electricity price 1th-5th 6th-8th 9th-11th 12th-18th 19th-21th 22th-24th
Electricity purchase price ($/kWh) 0.064 0.134 0.207 0.134 0.207 0.064
Electricity sale price ($/kWh) 0.054 0.114 0.176 0.114 0.176 0.054




Table 5
Optimization of equipment selection and capacity in Case A.

Technology Capacity/kW (CEU) Capacity/kW (CCHP)

ICE 960 Electricity 960, heat 1276, cooling 997
RC 87 /

DARS 668 /

JWDH 431 /

JWARS 335 /

EC 2868 2908

PV 392 (m?) 392 (m?)

grid and purchased heat, respectively. During hours 6-21, both the grid
price and the electricity sale price are more expensive than the power
generation cost of the engine, so the engine operates under the full load
and all surplus electricity is sold. At the same time, all the exhaust heat
is recovered by the RC to produce electricity. Although prices are low to
purchases heat, jacket water waste heat is free, so it is used to supply
heating and the remainder of needed heat is purchased. During hours
22-24, conditions are similar to hours 1-5; electricity is supplied from
the grid and heating is purchased. The electricity balance of the tradi-
tional CCHP model is similar to Fig. 6, except for the lack of RC.
However, it cannot optimize the best planning and operation schedule
for WHRTs (Fig. 8), so all of the heat is used to supply heating. Any
excess waste heat is discharged.

Figs. 9-11 describe the electricity, heating, and cooling balance of
the CEU model during a typical day 2. In this load day, the most eco-
nomical way to recover waste heat is to produce cooling. During hours
1-5 and 22-24, even though the waste heat is used up to produce
cooling, the whole operation cost of the cogeneration system is larger
than purchasing grid electricity to meet the electric load and drive the
electrical chiller, owing to the low grid price. As a result, the engine is
shut down and electricity, heating, and cooling are supplied by the grid,
purchase, and electrical chiller, respectively. During hours 6-21, the
engine runs under full load. According to optimization results, produ-
cing cooling is more economical than using grid electricity, so most of

natural gas
7751.

purchased heat

the time all of the exhaust waste heat and the jacket water waste heat
are used to produce cooling. At hour 6, because the cooling load is
small, part of the exhaust waste heat is used to produce electricity after
satisfying the cooling load. The jacket water cannot drive RC to produce
electricity, so it supplies heating. The conditions for hour 21 are similar.
The most economical way to supply heating is to purchase as mentioned
above, so at most of the time heat is purchased except for in hour 6
when jacket water heat is redundant to supply cooling. Fig. 12 is the
distribution of the exhaust heat. During hours 6 and 21 when the
cooling load is low, the exhaust drives the RC first and then the exhaust
temperature is still high enough to drive the DARS. During hour 6,
exhaust temperature coming out of the RC is 200 °C. Although the RC
can continue to recover exhaust heat until the exhaust temperature
reaches its lower limit (150 °C) and more jacket water is used to offer
cooling, the remaining exhaust heat cannot drive the DARS: the exhaust
heat below 150 °C will be wasted. Therefore, exhaust heat is only re-
covered above 200 °C, which represents the distinguishing energy level
and segmented utilization of this optimization model. The electricity
and heat balances of the traditional CCHP model are still similar with
those of the CEU model, except for the lack of RC, while its cooling
balance is simpler as shown in Fig. 13. When waste heat is in excess to
produce cooling, the redundant heat is wasted instead of driving the
RC.

5.2. Case B (waste heat sale)

In this case, conditions are the same as the base case, except that the
heat cannot be purchased or sold, and the PV is removed. This case is
aimed at studying the optimization results for different commercial
modes. The optimization of equipment selection and capacity are
shown in Table 6. It is expensive to supply heating using active tech-
nologies, such as natural gas boilers, owing to high natural gas prices,
so 1AHP is selected and given priority to recover exhaust heat during
the heating season. However, because the heat load is sometimes small
and there is redundant waste heat, RC is selected to produce electricity
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== Heating :
90.7
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== Natual gas heat
R 11908.5
sale to grid 15354.5
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- 74850 RC
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Fig. 4. Energy flow diagram for a typical winter (heating) day in Case A.
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Fig. 5. Energy flow diagram for a summer (cooling) day in Case A.

with the waste heat in order to improve the whole energy utilization
efficiency. During the cooling season, since the heat load is quite small,
DARS technology is applied to recover exhaust waste heat. Jacket water
waste heat only can be recovered by DH and ARS, so it is used to offer
heating during the heating season and primarily supply cooling during
the cooling season. According to optimization results, when waste heat
is not sufficient, the natural gas boiler and electrical chiller are the best
choices to supply heating and cooling.

Figs. 14 and 15 describe the electricity balance and heat balance in a
typical day 1. During hours 1-5, despite the fact that grid electricity
price (0.064$/kWh) is lower than the power generation cost of the
engine (0.075//kWh), waste heat from exhaust and jacket water can
meet the heat load, avoiding using the natural gas boiler with its ex-
pensive operation cost. Therefore, it is more economical to use the
cogeneration system than offer heating and electricity separately. In
order to meet the heat load by the waste heat, the extra electricity is
sold to the grid. On the other hand, when the waste heat amount is
enough to meet the heat load, the engine is shut down. Otherwise, the
redundant waste heat only can be recovered by RC to produce
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Fig. 7. Heat balance in the CEU model during a typical day 1 of Case A.

electricity; this is not the best strategy because of the low grid price and
electricity sale price. During hours 6-21, since both the grid price and
the electricity sale price are higher than the power generation cost of
the engine, the engine operates under the full load and all the surplus
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Fig. 6. Electricity balance in the CEU model during a typical day 1 of Case A (a. supply, b. demand).
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Fig. 8. Heat balance in the traditional CCHP model during a typical day 1 of
Case A.

electricity is sold. As mentioned above, heat load takes top priority, but
during this period the waste heat is redundant for supplying heating
except during hours 9 and 10. Therefore, exhaust waste heat should be
utilized in segments with a part of it recovered by the RC. Fig. 16 shows
the distribution of exhaust energy utilization. It should be noted that,
although the 1AHP has the priority, the RC needs high quality energy to
drive, so exhaust heat should be first recovered by the RC (Fig. 16). In
hours 9 and 10 waste heat is not sufficient, so all waste heat is used to
supply heating using 1AHP and JWDH. The remaining heat load is
supplied by the natural gas boiler. During hours 22-24, conditions are
similar to hours 1-5.

Figs. 17-19 describe the electricity, heating, and cooling balance
during a typical day 2. During a typical day 2, the heating load is met in
priority and then the rest waste heat is used to supply cooling. During
hours 1-5, the heat load is more economically provided by the cogen-
eration system as mentioned in typical day 1. Since the heat load is
quite small, the engine runs under low load as well. Therefore, elec-
tricity generated by the engine is not sufficient and the grid supplies the
remainder of needed electricity. Because the amount of waste heat is
small and because supplying heating is the priority, cooling is primarily
generated using the electric chiller. During hours 6-21, the engine
operates under the full load owing to the low grid price. After satisfying
the small heat load, most of the waste heat is used to produce cooling.
In hour 6, because both the heat and cooling loads are small, extra
waste heat is recovered by the RC. In the other hours, there is not en-
ough waste heat to meet the cooling load, so the electrical chiller is
used. Conditions of hours 22-24 are similar to hours 1-5. It should be
noted that, at most times, the heating load is supplied by jacket water
heat with low energy quality so that more exhaust heat can drive the
DARS with higher energy quality requirements and better efficiency.
This shows the model’s ability to distinguishing energy levels and cas-
cade utilization as well.
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Fig. 10. Heat balance of the CEU model during a typical day 2 of Case A.
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Fig. 11. Cooling balance of the CEU model during a typical day 2 of Case A.

5.3. Case C (high lower limit temperature of RC)

Conditions are the same with base Case A, except that the lowest
temperature to drive the RC is assumed to be 510 °C. Case C is aimed to
prove that this optimization model can screen out the technology that
cannot be driven by the heat source. Since the exhaust temperature is
not high enough to drive RC, there is no RC in the optimization results
as shown in Table 7. By contrast, ORC is a suitable technology to re-
cover low temperature waste heat as mentioned in Section 3, so it is
selected in the optimization results. Since both the ORC and RC are used
to offer electricity, and other conditions are the same as in the base
case, operation is also nearly the same as the base case. It is not shown
again here.

If the ORC is not the candidate technology (because of some reason
such as user preference), exhaust waste heat only can be recovered by
1AHP or DH during the heating season. Then the optimization results
for this case are shown in Table 8. Although the 1AHP can produce
much more heat than the DH, its investment and operating costs are
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Fig. 9. Electricity balance of the CEU model during a typical day 2 of Case A (a. supply, b. demand).



RC mDARS m discharge

1 3 5 7 9 11 13 1517 19 21 23
Time [hour]

D
S
(=]

Temperature [°C]
=

Fig. 12. Exhaust energy distribution during typical day 2 of Case A.

= EC = CCHP—-cooling load
5000

§ 4000

7 9 11 13 15 17 19 21 23
Time [hour]

1 3 5

Fig. 13. Cooling balance of the CCHP model during a typical day 2 of Case A.

Table 6
Optimization of equipment selection and capacity in
Case B.
Technology Capacity (kW)
ICE 960
RC 87
1AHP 890
DARS 668
JWDH 431
JWARS 335
NB 3370
EC 2868

greater. Additionally, heat purchase price is low, leading to a low profit
of supply heating by waste heat. As a result, the less expensive DH is the
optimal choice. The other equipment and their capacities are the same
as the base case.
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Except for the heat balance during typical day 1, other energy
balances without ORC are quite similar to those in the base case, so they
are not described in detail here. Fig. 20 describes the heat balance
during a typical day 1. During hours 1-5 and 22-24, the engine is shut
down for the same reason as the base case. The electricity and heating
are supplied by the grid and purchasing heat, respectively. During
hours 6-21, the engine runs under full load. Both exhaust and jacket
water waste heat are used to supply heating. When the heat load is
small, there is redundant waste heat, but it cannot be sold or stored, so
it is discharged. As shown in Fig. 21, the final discharge exhaust tem-
perature is periodically much higher than 100 °C.

5.4. Case D (with heat storage)

The former Case C shows the necessity of heat storage. In order to
use up the waste heat, the unit investment cost of the heat tank is as-
sumed to be ($5/kWh). Consequently, the heat tank appears in the
optimization results; its capacity is 3647 kW. Other equipment is the
same as that in Case C. Because the other initial conditions of cases D
and C are the same, the operation of cooling and electricity balance is
the same as well, and they are not shown again. In this case, only heat
balance is analyzed.

As shown in Fig. 22, during a typical day 1, during the hours 6-7,
13-17, and 19-21 when the waste heat is greater than the heat load, the
redundant segment is stored in the heat tank. Therefore, exhaust heat
and jacket water heat can be fully used. The stored heat releases to
supply heating when the waste heat is not sufficient, which can reduce
the amount of purchased heat. Since there is a limit on the maximum
discharge rate of the heat tank, the stored heat sometimes cannot meet
the heat demand alone; purchased heat is required (such as at hours
8-10). Similarly, during a typical day 2 as shown in Fig. 23, in hours 6
and 21 when the cooling load is small, the redundant waste heat is
stored and releases at another time.

5.5. Summary of cases

The model presented in this paper is intended to help actual heat
utilization engineering project design and operation. Real building load
data are used for validation the model’s capability. Four case scenarios
are studied. The base Case A indicates that the DES for a real demand
load can use the model to configure the optimal waste heat recovery
technologies from a variety of candidates, as well as other equipment.
Because of the energy equality distinguishing function, this model can
help users to plan and operate a more efficient and cost-effective DES
than the traditional CCHP model. Case B shows that the model gives
users a totally different result when the business model changes,
especially a very detailed dispatch of waste heat segmented utilization,

isale Melectric load

1200
1000
800
600
400
200

Electricity [kWh]

1113 15 17 19 21 23
Time [hour]
(b)

Fig. 14. Electricity balance during a typical day 1 in Case B (a. supply, b. demand).
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Fig. 16. Exhaust energy distribution during a typical day 1 in Case B.

which is a good reference to operate the real DES and make it more
efficient. Case C proves the function of screening out the technologies
that cannot be driven by the heat source to make the optimization re-
sults more reasonable in engineering practices. Finally, Case D shows
that the energy storage modules can be included in the results when
necessary. Based on the case study, even though the model is developed
for multi-segment waste heat utilization, results show that a DES may
only use two or three temperature segments. The conclusion on system
configuration is in line with actual engineering project experience.

6. Conclusion
Waste heat is a common energy type in many industrial application

and distributed energy systems. Utilizing waste heat efficiently is an
important research topic with great potential for energy and cost
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Fig. 18. Heat balance during a typical day 2 in Case B.

mEC = JWARS 2 DARS —-cooling load
5000
—
£ 4000
e~
‘:D 3000
& 2000
g
O 1000
0
1 35 7 91113151719 2123
Time [hour]
Fig. 19. Cooling balance during a typical day 2 in Case B.
Table 7
Optimization of equipment selection and capacity in
Case C.
Technology Capacity (kW)
ICE 960
HT-ORC 82
DARS 668
JWDH 431
JWARS 335
PV 392 (m?)
EC 2868

savings. Several energy technologies can function under different waste
heat inputs to produce electricity, heating, or cooling. In order to dis-
tinguish different waste heat thermal energy quality in distributed
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Fig. 17. Electricity balance during a typical day 2 in Case B (a. supply, b. demand).



Table 8
Optimization of equipment selection and capacity in
Case C without ORC.

Technology Capacity (kW)
ICE 960

DH 501

DARS 668

JWDH 431

JWARS 335

PV 392 (m%)

EC 2868
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Fig. 20. Heat balance during a typical day 1 in Case C.
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Fig. 21. Exhaust energy distribution during a typical day 1 in Case C without
ORC.
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energy system planning and operation optimization, a novel and de-
tailed mixed integer linear programming optimization model based on
energy cascade utilization is proposed in this study. This study defines
an energy flow tower and setup operation temperature thresholds for
each technology. The developed model is validated in four typical cases
and compared with the traditional model where different waste heat
temperature grades are not considered.

The developed model can distinguish energy quality and perform a
detailed optimal selection of waste heat recovery technologies for dif-
ferent types of heat sources based on the load demand and energy
quality. This function can avoid unreasonable energy upgrade utiliza-
tion and efficiency loss due to energy degrade utilization, making the
optimization results more realistic and efficient. Furthermore, the
model can give a detailed operation schedule of different waste heat
recovery technologies by segmented utilization, making full use of
waste heat. Because of these advantages, the model can increase energy
cost savings by around 5% compared with traditional models with no
temperature grade differentiation. This amount of energy saving should
be interpreted as a realistic estimation of the additional energy saving
due to energy cascade utilization based on a technologically con-
strained model. Compared to previous works, the proposed method can
fully leverage the energy cascade mechanism by putting forward a
detailed investment and dispatch strategy.

In summary, the model developed in this study can produce more
reasonable, economical and efficient optimization results for the con-
figuration and operation of a distributed energy system by using waste
heat based on energy equality. In the future, ongoing research will
consider the part-load performance of equipment to make this model
more practical for engineering applications. Additionally, high tem-
perature heat storage will be added to the model to improve waste heat
utilization during the operation period as well as other types of heat
source with the proposed method of energy tower.
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Fig. 22. Heat balance during a typical day 1 in Case D (a. supply, b. demand).
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Fig. 23. Heat balance during a typical day 2 in Case C (a. supply, b. demand).

Appendix A

A.1. Exhaust heat recovery by double-effect absorption refrigeration system (DARS)

Energy balance of DARS:
2Ade§ ZrEARS Tm dn— Trixd WM nCp'

Q mDﬁRhS' QDARS co  PDARS

Capacity constraints of DARS:
Cpnlzi/[ale XDARS Cpg{ms < Canlg(RS XDARS
Temperature constraints of DARS:
ZDARS & [0, 1]
TS n > ZhaR 200

TS, < ZPARS (T, —200) + 200

TE% w2 Traan = ZR485 100

A.2. Exhaust heat recovery by absorption heat pump of the first type (1AHP)

Energy balance of 1AHP:

QM = (T =T )M n C
HIAHP QlAHP COPlAHP

Capacity constraints of 1AHP:
Cpr]l._lfil:{leAHP S Cprla/l&HP S Cpr];:XHPXlAHP
Temperature constraints of 1AHP:

Zyir e o, 1]
Zy2418 200
ZYAHP (T3, —200) + 200

dn =
Toidn <

Taiin > Tran > Zndn 100

A.3. Exhaust heat recovery by low temperature y(LT ORC)

Energy balance of LT ORC:

LTORC _ LTORC x5
QLITRE = Zy oRe (T =T Mg n

LTORC LTORC, LTORC
Podh = Qumdn 1

Capacity constraints of LT ORC:

LTORC v LTORC LTORC LTORC ywLTORC
CPrin. X SCpy SOy X

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)



Temperature constraints of LT ORC:

ZEORC e o, 1]

Toian 2 2'550;150130

LTORC

deh< mdoh —130)+130

5" LTORC
Toian 2 Toan = Zuidhe 100

A.4. Exhaust heat recovery of absorption refrigeration system (ARS)

Energy balance of ARS:

ARS
Qum.dn

”
Zinion (T =) Mican G
Q& = QuanCOPRS
Capacity constraints of ARS:
cplﬁilflSXARS < Cp;;\tRS < CprﬁaRfXARS
Temperature constraints of ARS:
Znin €10,1]
Tiven = Zimgn110
A
o (T

TE9 L, < Z, e —110) + 110

TEG 2 ToGn > Znks,100

A.5. Exhaust waste heat recovery by direct heating (DH)

Energy balance of DH:

QY = Z P (T =T d M 4 CF

mdh—dehU

Capacity constraints of DH:

DH yDH DH DH yDH
C'pmin}( < Cpmt < CpmaxX
zbH . eo,1]
Toin = Zmdn70
TE0h < Z2H (T 4=70) + 70

Temperature constraints of DH:

ex7 DH
in > Toan > ZhH 4100
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