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Woo-koung Ahn (woo-kyoung.ahn@yale.edu) 
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New Haven, CT  06511 USA 
 

 
Abstract 

Current theories suggest that causal learning is based on 
covariation information.  However, information about the 
presence/absence of events (particularly causes) is frequently 
unavailable, rendering them unobserved.  The current paper 
presents a new model of causal learning, BUCKLE 
(Bidirectional Unobserved Cause LEarning), which extends 
existing models of causal learning by dynamically inferring 
information about unobserved causes.  During the course of 
causal learning, BUCKLE continually computes the 
probability that an unobserved cause is present on each 
occasion and uses the results of these inferences to adjust the 
strengths of the unobserved, as well as observed, causes. 
 
Keywords: Causal learning, inference, induction 

Introduction 
Current models of causal induction assume that the input 

available to reasoners comes in the form of covariation; how 
the causes vary with their effects.  Thus, a learner observes 
whether the presence or absence of a causal candidate is 
followed by the presence or absence of an effect, and 
translates these observations into beliefs about causal 
relations.  

Yet, in the real world, covariation is often not available. 
For example, acquiring information about the 
presence/absence of causes sometimes requires special 
methods (e.g., genetic influences on cancer).  Perhaps more 
commonly, causes are unobserved simply because learners 
cannot possibly consider all alternative causes of a 
particular event.  For instance, we do not know all possible 
causes for gender discrepancy in science. Thus, lacking 
information about the presence/absence of causes seems to 
be the rule rather than the exception. This paper presents a 
new model of causal learning, BUCKLE, which attempts to 
capture how people learn causal relations when information 
about causes is missing. 

BUCKLE 
BUCKLE (Bidirectional Unobserved Cause LEarning) 

assumes that the learning environment always includes an 
unobserved cause and learns by performing two steps during 
each trial.  The first step is to compute the probability that 
the unobserved cause is present.  The second step is to 
adjust the strengths of each cause-effect relationship using 
an error-correction algorithm.  

To compute the probability of the unobserved cause (u) in 
a situation with one observed cause (o) and one effect (e), 
BUCKLE applies Bayes theorem to the current beliefs about 
the strength of o and u (qo and qu respectively) and the prior 
belief about the probability of u being present (i.e., P(u) 
with we will always assume to be .5).  The following 
equations are for cases when qo and qu are believed to be 
generative in a current trial (see Luhmann & Ahn, 2006, for 
equations for other cases): 

P(u | o = 0,e = 0) = P(u)• (1- qu)
1- P(u)[ ]+ P(u)• (1- qu)[ ]

(1) 

 
P(u | o = 0,e =1) = P(u) • qu

P(u) • qu

=1 (2)  

 
P(u | o =1,e = 0) = (1− qo)•P(u)• (1- qu)

(1− qo)• 1- P(u)[ ]{ }+ (1− qo)•P(u)• (1- qu)[ ]
(3)  

 

P(u |o =1,e =1) =
P(u)• qo + qu − qo •qu( )[ ]

qo • 1−P(u)[ ]{ }+ P(u)• qo + qu − qo •qu( )[ ]{ }
(4) 

 
In words, Equation 1, for instance, shows the probability 

that u is present when o and e are absent. The denominator 
is the probability of e being present given that o is absent, 
which occurs when either u is absent, or u is present but 
fails to cause e.  The numerator of Equation 1 is the 
probability of the latter occurring (i.e., u being present).  
Once the probability of u is computed, the unobserved cause 
is treated just like an observed cause except that it is present 
with some probability. 

These equations allow BUCKLE to make several 
predictions.  For example, the probability of u should vary 
as a function of trial type (i.e., whether o and e are present 
or absent).  Also, note that Equation 2 is special.  This 
equation suggests that people should believe that u present 
with a certainty (i.e., P(u)≈1), when o is absent but e is 
present (i.e., what Luhmann & Ahn, 2003 call unexplained 
effects), because o and u are the only possible causes. 

BUCKLE’s second step is to use the observed and 
inferred information to adjust the strength of each causal 
relationship. BUCKLE learns via an error-correction 
algorithm.  Information about the state of the causes (i.e., o 
and u) is first used to predict how likely the effect is given 
BUCKLE’s current causal beliefs (i.e., qo and qo).  This 
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prediction is then compared with the actual 
presence/absence of the effect.  The difference between the 
predicted and actual states of the effect (the prediction error) 
forms the basis of learning.  BUCKLE predicts the effect 
according to equation 5: 

epredicted = P(e) = o•qo( )+ u•qu( )− o•qo( )• u•qu( )[ ] (5) 
In this expression, o=1 or 0 (when the observed cause is 

present or absent, respectively) and u=P(u| o, e). This 
expression (as well as Equations 1-4) assumes that causes 
combine in the manner of a noisy-OR gate (e.g., Cheng, 
1997; Danks, Tenenbaum, & Griffiths, 2003; Griffiths & 
Tenenbaum, 2005). 

Based on the prediction error, the strength of each cause 
is updated separately: 

Δqo =αoβ(e − epredicted )  (6) 
Δqu =αuβ(e − epredicted )  (7) 

The quantities α and β represent learning rates associated 
with the causes and effects, respectively.  A value of 0.5 
will be used for β.  When the observed cause is present, 
αo=αo-present where αo-present will be treated as a free 
parameter and allowed to vary between zero and one.  When 
the observed cause is absent, αo=αabsent=0.0.  For the 
unobserved cause, Equation 8 is used to compute a value of 
αu to take into account the fact that the unobserved cause is 
only present with some probability. 

αu = P(u)• (αu− present −αabsent )[ ]+αabsent  (8) 

When P(u)=0, this equation results in αu=0; when P(u)=1, 
αu=αu-present, just as for the observed cause.  For values of 
P(u) between 0 and 1, αu increases linearly and in 
proportion to the value of P(u).  The variable αu-present will 
be treated as a second free parameter and allowed to vary 
between zero and one. 

BUCKLE makes several novel predictions about the 
causal strength of unobserved causes.  For example, as 
explained above, unexplained effects should lead to the 
belief that u is present with a certainty in the presence of e.  
Thus, unexplained effects should act to greatly increase qu 
(because αu will also be maximal, see Equation 8).  Indeed, 
Luhmann and Ahn (2003) demonstrated that unobserved 
cause judgments were heavily influenced by the occurrence 
of unexplained effects. 

BUCKLE also makes predictions about the inferred 
probability of u.  For example, probability judgments should 
vary systematically depending on the presence/absence of o 
and u, as illustrated in Equations 1-4.  Furthermore, 
judgments about the presnce/absence of u should be related 
to qu.  For example, BUCKLE predicts that positive values 
of qu should be accompanied by beliefs about positive 

covariation between u and e (i.e., P(u|e=1) - P(u|e=0) > 0).  
Additionally, beliefs about the occurrence of the unobserved 
cause should be correlated with subsequent causal strength 
judgments.  These predictions will be further illustrated by 
using BUCKLE to simulate the experiments below. 

Experiment 1 
To test BUCKLE’s predictions, we used a learning setting 

with one effect, one observed cause, and one unobserved 
cause whose state (present vs. absent) was unknown to 
participants (see Figure 1).  Experiment 1 examines how 
well BUCKLE accounts for (1) people’s causal strength 
judgments, (2) people’s probability judgments of the 
unobserved cause, and (3) the relationship between these 
two judgments. 

Method 
Twenty-four Vanderbilt University undergraduates 

participated in Experiment 1. Stimuli consisted of novel 
electrical systems.  Each system contained one button 
whose state (pressed or not) was observable, one button 
whose state was unobservable and a single light.  The 
unobserved button was marked with a large question mark 
to denote the lack of presence/absence information (see 
Figure 1).  Participants were told that it was their job to 
determine how the systems worked and that they would be 
asked to judge the extent to which each button caused the 
light to turn on. 

Figure 2 illustrates the contingency between the observed 
cause and the effect for each of the four conditions.  The 
Zero condition contained both OE  and OE  observations 
with the contingency between o and e being zero (ΔP=0).  
The Perfect condition contained neither OE  nor OE  
observations (ΔP=1).  The remaining two conditions each 

Figure 1 – Example stimuli.  The unobserved cause is 
denoted by the large “?”. 

10 0 10 10 10 0 10 10
10 10 10 10 0 10 0 10

InsufficientZeroCondition

Contigency Structure

Unncessary Perfect

Figure 2 – The four contingencies used in Experiment 1 and 2.   
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constituted moderately strong relationships (ΔP=0.5).  The 
Unnecessary condition included OE  observations (i.e., 
unexplained effects), which render the observed cause 
partially unnecessary but completely sufficient. The 
Insufficient condition included OE  observations, which 
render the observed cause partially insufficient but 
completely necessary. 

Each participant saw all four conditions separately in a 
counterbalanced order.  For a given condition, participants 
received the included observations in a pseudo-random 
order.  On each trial, participants were presented with 
information about the presence/absence of the observed 
cause and the effect (e.g., Figure 1).  After receiving this 
information, participants were immediately asked to judge 
how likely the unobserved cause was to be present on that 
occasion.  This judgment was made on a scale of 1 (“Not at 
all likely”) to 9 (“Definitely likely”).  Once this judgment 
was made, the next trial began.  After all the observations in 
the condition were presented, participants were asked to 
judge the causal strength of the observed and unobserved 
causes. 

Results 
Causal Strength Judgments. Figure 3 shows participants’ 

mean causal strength judgments.  To examine how causal 
strength judgments varied across the four contingencies, we 
performed a 2 (OE present/absent) X 2 (OE present/absent) 
repeated measures ANOVA on causal judgments of the 
unobserved causes.  This analysis revealed a significant main 
effect of OE  information, F(1, 22) = 26.59, p<.0001, because 
participants gave much higher ratings on conditions with OE  
observations (M=72.60, SD=28.77) than on conditions 
without OE  observations (M=41.47, SD=35.69).  No other 
main effects or interactions were significant.  Note that these 
results imply that the strength of the unobserved cause is not 
simply inversely proportional to that of the observed cause 
(e.g., in the Insufficient condition) as one might expect given 
an account that emphasizes discounting (e.g., Thagard, 2000).  
These results also closely mirror those of Luhmann and Ahn 
(2003) who found that observations of OE  exerted a 
particularly strong influence on causal strength judgments. 

We applied BUCKLE to the exact same set of observations 
in the exact same order that participants received them.  
BUCKLE’s final causal strength estimates accounted for 81% 
of the variance in participants’ causal judgments (RMSD of 
13.25).  Importantly, BUCKLE accounts for the large 
influence of OE  observations on judgments of the 
unobserved cause. 

Probability Judgments.  Figure 4 shows, broken down 
by condition and trial type, participants’ mean probability 
judgments of the likelihood that u is present in a trial.  
Individual one-way repeated measures ANOVAs were 
performed on each of the four conditions with trial type as 
the independent factor.  The effect of trial type was 
significant in three of the four conditions (all p’s < .05) and 
marginally significant in the Perfect condition (F(1,23) = 
3.67, p=.068).  Thus, as predicted by BUCKLE, participants 
appear to be making varied, but systematic inferences about 
the presence of the unobserved cause (cf. Rescorla & 
Wagner, 1972).  Also, note that the unobserved cause was 
judged to be most likely present during OE  observations 
(unexplained effects) as predicted by BUCKLE’s (see 
Equation 2). 

To quantitatively evaluate the fit between participants’ 
estimates and BUCKLE’s predictions, we compared 
participants’ average probability judgments for each trial 
type (e.g., OE , OE ) in each condition with BUCKLE’s 
estimates.  BUCKLE’s estimates provided a good fit, 
accounting for a significant amount of variance in 
participants’ judgments (R2=.86, RSMD=1.48).  These 
results (collapsed across condition) are shown in Figure 5. 

It is also interesting to note that participants’ probability 
judgments imply a positive correlation between the presence 
of the unobserved cause and the presence of the effect.  This 
can be seen by looking at the marginal averages below each 
matrix in Table 2; the unobserved cause was judged to be 
more likely to occur when e was present than when e was 
absent.  This finding makes sense given that participants’ 
causal strength judgments of the unobserved cause were 
greater than zero in all four conditions.  Current theories of 

5.8 5.8 5.38 3.41 4.4 4.1 4.1 5.25 3.76 4.51
7.51 2.15 4.83 7.84 1.82 4.83 3.16 3.16 2.7 2.7
6.66 2.15 6.61 2.62 4.1 3.16 5.25 3.23

Unncessary Perfect InsufficientZeroCondition

Likelihood(u ) O
O E E

Figure 4 – Probability judgments from Experiment 1.  Marginal averages below each matrix illustrate that participants’ 
believe the unobserved cause to vary with the effect. 

O
O E E

O
O E E

O
O E E

Figure 3 – Causal strength judgments from 
Experiment 1.  Error bars illustrate standard error and 
the diamonds illustrate BUCKLE’s estimates. 
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causal learning, including BUCKLE, imply that positive 
covariation should accompany positive causal judgments. 

Taking this idea a step further, there should have been a 
strong relationship between participants’ beliefs about the 
occurrence and strength of the unobserved cause.  To 
evaluate this prediction, we compared participants’ 
probability judgments from OE  trials and OE  trials (these 
were the only trial types shared across the four conditions).  
If participants believed the unobserved cause varied with the 
effect, they should have judged the unobserved cause to be 
more likely present on OE  trials and less likely on OE  
trials.  If participants did not believe that the unobserved 
cause covaried with the effect, they should have believed 
that the probability of the unobserved cause was more 
similar on these two trial types. 

Each participant’s average probability judgment for OE  
trials was subtracted from their average probability 
judgment for OE trials separately for each condition.  This 
composite score served as a measure of the degree to which 
participants believed the unobserved cause to covary with 
the effect on these trials.  Note that the composite for each 
condition was computed using identical observations.  
Nonetheless, the composite accounted for nearly all the 
variance in participants’ average causal strength judgments 
(R2=.96). 

To test whether BUCKLE mirrored these beliefs, we 
computed a composite score (as before) using BUCKLE’s 
probability estimates during OE  and OE trials.  Just as for 
participants’ judgments, BUCKLE’s composite scores 
accounted for 99% of the variance in BUCKLE’s final 
unobserved cause strength estimates. 

 

Summary 
The results of Experiment 1 illustrate several important 

points.  First, participants were able to provide systematic 
causal judgments of causes that were not observed.  Our 
own model, BUCKLE, suggests that these judgments result 

from a sophisticated learning process that replaces the 
missing information inferentially.  Thus, the second finding 
was that, as predicted by BUCKLE, learners make dynamic 
inferences about the occurrence of unobserved causes.  
Judgments about the probability of the unobserved cause 
varied as a function of whether the observed cause and the 
effect were present.  The third finding was that probability 
judgments varied, even during identical observations, across 
the different contingencies and did so systematically.  
Causal strength judgments of the unobserved causes were 
accompanied by predictable judgments about how the 
unobserved cause occurred in the presence and absence of 
the effect. 

These findings suggest that people’s beliefs about the 
occurrence of the unobserved cause are intimately related to 
the strength of that cause.  Note that this is exactly what 
happens with observed causes.  The perceived strength of an 
observed cause is intimately related to its presence/absence.  
The difference in the current situation is that participants 
must infer the presence/absence of the cause on their own.  
The fact that learning otherwise continues as normal is a 
testament to the resilience of the responsible processes. 

BUCKLE accounts for the relationship between 
probability and strength judgments and suggests that the 
probability judgments being made on a trial-by-trial basis 
provide the basis for learning and subsequent causal 
strength judgments. Thus, BUCKLE argues that the 
perceived strength of the unobserved cause cannot be 
separated from beliefs about the way in which the 
unobserved cause occurs.  Experiment 2 further explores 
this claim. 

Experiment 2 
One critical aspect of the learning process described by 

BUCKLE is that causal strength estimates are updated in a 
sequential manner as each observation is made.  This differs 
from approaches that compute causal strength over all 
available data once enough observations have been 
accumulated (e.g., Cheng, 1997; White, 2002).  An 
interesting consequence of this is that the order in which 
observations are encountered should influence the final 
causal strength estimates.  This is because the probability of 
u being present depends on qu and qo, which, according to 
BUCKLE, change over time.  Altered probability judgments 
might then lead to altered causal strength judgments as we 
saw in Experiment 1. 

To test this possibility, we used the set of trials 
summarized in Figure 6.  This set of trials was divided into 
two blocks.  One of the blocks contained unexplained 
effects (analogous to the Unnecessary condition) and the 
other did not (analogous to the Insufficient condition).  
These two blocks could be ordered in one of two ways; the 
block containing unexplained effects could be presented 
either first (early-unexplained-effects condition) or second 
(late-unexplained-effects condition) as shown in Figure 6.  
Note that, because the only manipulation was the order of 
the two blocks, participants had always seen the same set of 

1

2

3

4

5

6

7

8

9

Trial Type

 

Figure 5 – Likelihood judgments for each trial 
type collapsed across contingency.  Error bars 
illustrate standard error and the diamonds 
illustrate BUCKLE’s predictions (again collapsed 
over contingency) 

OEOE OEOE
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observations by the end of the sequence.  Thus, any 
differences between orders cannot be a result of the number 
or type of trials. 

BUCKLE predicts that the judged strength of the 
unobserved cause will differ between the two orderings.  
Consider the early-unexplained-effects condition.  During 
the first block of this condition, the unexplained effects will 
lead to the unobserved cause being perceived as strong (as 
illustrated in Experiment 1).  When the second block 
(without unexplained effects) is encountered, the strong 
unobserved cause will be interpreted as covarying strongly 
with the effect (also illustrated in Experiment 1).  For 
instance, a learner would believe that the unobserved cause 
would likely be present during OE trials but likely absent 
during OE  trials.  These inferences should lead to further 
increases in the strength of the unobserved cause. 

In contrast, consider the late-unexplained-effects 
condition in which the unexplained effects are encountered 
at the end.  In this situation, at the end of the first half, the 
unobserved cause will be perceived as weak (as illustrated 
in Experiment 1).  Only once the unexplained effects in the 
second block are encountered will the perceived strength of 
the unobserved cause will begin to increase.  However, 
compared to the early-unexplained-effects condition, there 
are far fewer trials acting to increase the perceived strength 
of the unobserved cause.  Thus, the unobserved cause will 
be perceived as stronger when encountering unexplained 
effects in the first block than when encountering them in the 
second block. 

Method 
Fifty undergraduates from Vanderbilt University 

participated for partial fulfillment of course credit.  The 
stimulus materials were similar to Experiment 1.  The 
statistical properties of the system are summarized by the cell 
frequencies illustrated in Figure 6. 

The sole manipulation in this experiment was the order in 
which trials were presented to participants.  There were two 
orderings used, each of which consisted of two blocks.  One 
block contained OE  trials but not OE  trials.  The other 
contained OE  trials but not OE  trials.  In the early-
unexplained-effects condition, participants first saw the block 
containing OE  trials followed by the block containing OE  
trials.  In the late-unexplained-effects condition, participants 
saw the two blocks in the reverse order.  Although there were 
two blocks, there was nothing noting the change from one 
block to the other, and as far as participants were concerned, 
they were experiencing a continuous stream of observations. 

 The procedure of Experiment 2 was the same as 
Experiment 1 except that probability judgments were not 
elicited.  After completing observations, participants were 
asked to judge the causal strength of each cause.  Each 
subject saw both orders instantiated with different color 
buttons with the order of the two sequences counterbalanced 
across participants. 

Results 
As Figure 7 illustrates, despite identical sets of 

observations, the unobserved cause was judged to be 
significantly stronger in the early-unexplained-effects 
condition (M = 73.50, SD = 25.90) than in the late-
unexplained-effects condition (M = 61.66, SD = 27.79), 
t(49)=2.89, p < .01.  Using the exact same set of 
observations in the exact same order that participants 
received them, BUCKLE’s estimate of the unobserved 
cause’s strength was higher in the early-unexplained-effects 
condition (qu=69.19) than in the late-unexplained-effects 
condition (qu=64.28). 

Discussion 
The model proposed here, BUCKLE, learns about 

unobserved causes using two steps.  First, BUCKLE infers 
the probability of the unobserved cause using its current 
beliefs.  Second, BUCKLE adjusts its beliefs about the 
strength of causal relationships via error correction. Despite 
its relative simplicity, BUCKLE appears to accurately capture 
a significant variety of aspects of people’s causal learning. 

First, BUCKLE’s estimates of the causal strength of the 
unobserved cause mirrored those of participants. Second, 
Experiment 1 demonstrated that BUCKLE’s estimates of the 
probability of the unobserved cause matched participants’ 
own judgments.  Currently, BUCKLE is the only model in 
the field that can make such predictions. For instance, the 
model proposed by Rescorla and Wagner (1972) also 
acknowledges the existence of an unobserved cause.  
However, because this cause is treated as a part of an 
unchanging context, the Rescorla-Wagner model has no way 

early 
unexplained effects 

late 
unexplained effects O

O
E E
4 0 

4 4 

Figure 6 – The design of Experiment 2.  Two blocks of 
trials were presented in two orders.  
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Figure 7 – Causal strength judgments from 
Experiment 2.  Error bars illustrate standard error 
and the diamonds illustrate BUCKLE’s estimates.
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of accounting for dynamic changes in the probability of an 
unobserved cause. 

Third, and perhaps more interesting, was the relationship 
we observed between participants’ judgments of the 
occurrence of the unobserved cause and their subsequent 
strength judgments of the unobserved cause.  This finding 
reaffirms the idea that causal judgments are based on 
covariation.  What is novel about this finding is that 
participants were not given any covariation information about 
the unobserved cause.  The covariation between the 
unobserved cause and effect had to be generated by the 
participants themselves. 

Fourth, BUCKLE accounted for the order effect found in 
Experiment 2. Such order effects pose problems to all models 
that provide causal strength estimates only at the end of 
learning (e.g., Cheng, 1997, White, 1992). 

One potential criticism is that the current results may have 
been obtained simply because participants were constantly 
reminded of a possibility of unobserved cause during learning 
(i.e., Figure 1). However, Luhmann and Ahn (2003, 
Experiment 1) found that even when participants were 
explicitly allowed to refuse judgment, they were still willing 
to provide causal strength estimates for unobserved causes. 
These results suggest that the inferences about unobserved 
cause occur spontaneously and naturally. They also indicate 
the importance of further investigating the role of inferences 
on unobserved cause in explaining human causal learning. 
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