
Lawrence Berkeley National Laboratory
LBL Publications

Title
Software Deployment Process at NERSC: Deploying the Extreme-scale Scientific Software
Stack (E4S) Using Spack at the National Energy Research Scientific Computing Center
(NERSC)

Permalink
https://escholarship.org/uc/item/5zh5z08q

Authors
Siddiqui, Shahzeb
Shende, Sameer

Publication Date
2022-03-01

DOI
10.2172/1868332

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5zh5z08q
https://escholarship.org
http://www.cdlib.org/

Software Deployment Process at NERSC LBNL-2001458

Software Deployment Process at NERSC:
Deploying the Extreme-scale Scientific Software Stack

(E4S) Using Spack at the National Energy Research
Scientific Computing Center (NERSC)

Shahzeb Siddiqui (shahzebsiddiqui@lbl.gov), Sameer Shende (sameer@cs.uoregon.edu)

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

Berkeley, CA 94720

Report No. LBNL-2001458

Office of Advanced Scientific Computing Research
Office of Science

US Department of Energy

March 2022

1

Software Deployment Process at NERSC LBNL-2001458

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States

Government nor any agency thereof, nor the Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal responsibility for the

accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or the Regents of the University of California. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United States

Government or any agency thereof or the Regents of the University of California.

2

Software Deployment Process at NERSC LBNL-2001458

Table of Contents

Motivation 4

Background 5

The Journey of Deploying Software 6
Step 0 - Determine which system to deploy your software 7
Step 1 - Acquire Spack Configuration 8
Step 2 - Preparing Spack Configuration 9
Step 3 - Module Generation 14
Step 4 - Deployment Script 16
Step 5 - User Documentation 17
Step 6- Give back to the community 18

Recent Developments 20
Building E4S on Perlmutter 20
Automation 22
MPI Support 25
Container-based deployment of E4S 26
Testing E4S Post Deployment 28

Conclusion 32
How to Get Involved 33

Acknowledgement 34

Bio 35

3

Software Deployment Process at NERSC LBNL-2001458

Motivation
One of the many benefits of using a high-performance computing (HPC) system at a Department of
Energy (DOE) Office of Science (SC) HPC facility is the large number of software products, built and
optimized for the system. The HPC center staff and HPC vendors provide optimized software such as
libraries and even full scientific applications, ready to be used by users as building blocks to accelerate
scientific discovery. Behind each provided packaged software module are a large number of decisions -
which compiler, optimizations, variants/options - to build the software on the target system. And, even
before the software gets deployed, the software must be developed, tested, and maintained, including
deprecating old versions and ensuring compatibility across versions. The software lifecycle is complex
and is further convoluted by a web of interdependencies on other software.

In an HPC environment, the software lifecycle is even more complicated and requires a community to
address the many challenges. The Extreme-Scale Scientific Software Stack (E4S) is a community effort
supported by the Exascale Computing Project (ECP) to provide an ecosystem of open source software
packages for developing, deploying and running scientific applications on HPC platforms. E4S provides
unified and consistent deployment through a collection of Spack packages which can be used by users, a
development team, or site administrators at an HPC facility. E4S is a flexible software stack for HPC
systems that enables an end-user to install a subset of E4S packages for their development purpose, a
software development team to install their software product and integrate E4S spack builds into their
CI/CD process, or a site-administrator to install E4S on bare-metal or container system-wide for all users.

The utility of E4S extends beyond providing ready-made recipes for building some or all of E4S on a
particular machine. E4S releases can be used to identify reasonable default versions of software packages
that are known to be interoperable. Recipes for building on a system can be leveraged as a starting point
for similar or next-generation systems. For existing supported systems, E4S can be used to quickly learn
how to add a new package to a deployment not previously supported on the system. Much of the value of
E4S is not in specific recipes for specific systems, but rather in the general improvement of
interoperability of packages that comprise the software ecosystem, or documenting where versions of
packages are known not to be interoperable, as well as in documenting when certain packages are not yet
ported to a platform.

In 2021, National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley
National Laboratory released its first deployment of E4S/20.10 on the Cori supercomputer using the spack
package manager. NERSC wants to leverage E4S to provide an advanced, performant, stable and
supported HPC environment to its users. By being at the forefront of E4S deployment and testing,
NERSC is able to provide feedback to ECP Software Technology teams with build failures during
deployment so they can be fixed in future versions.

NERSC has since also deployed E4S on its newest supercomputer, Perlmutter, a Cray Shasta
supercomputer composed of 1,536 GPU-accelerated nodes with of AMD EPYC 7713 (Milan) CPUs and
NVIDIA A100 GPUs, a 35 PB all-flash Lustre scratch file system and the HPE Cray Slingshot 10 high
speed interconnect. Perlmutter is currently (2022) being augmented with 3,072 dual-socket CPU only
nodes updated to the Slingshot 11 network.

4

https://www.energy.gov/science/office-science
https://e4s.readthedocs.io/en/latest/introduction.html
http://exascaleproject.org
https://spack.io/
https://nersc.gov/
https://www.exascaleproject.org/research/#software
https://docs.nersc.gov/systems/perlmutter/system_details/
https://www.amd.com/en/products/cpu/amd-epyc-7713
https://www.nvidia.com/en-us/data-center/a100/

Software Deployment Process at NERSC LBNL-2001458

Even with software seemingly packaged and delivered with a bow like E4S, an actual system-wide
deployment is complicated and requires many decisions to make for site-specific customizations, e.g.
each system supports multiple compilers, compiler versions and MPI providers that impact how software
is deployed. Here, we describe the steps and lessons learned to deploy the E4S software stack at NERSC
to help users navigate their E4S deployment. The lessons learned can also guide future developers of
packaged community software on development-to-deployment requirements.

SINCE THE INITIAL E4S DEPLOYMENT, NERSC CONTINUES TO DEPLOY NEW VERSIONS OF
E4S ON CORI AND PERLMUTTER AND PROVIDES THE LATEST INFORMATION ON THE E4S -
NERSC DOCUMENTATION PAGES.

Background
E4S is a collection of 100+ top-level scientific software packages needed for scientific computing in
high-performance computing (HPC) environments. E4S member packages must demonstrate
compatibility with the E4S community policies, including a production quality spack-based build and
installation procedure. The Department of Energy Office of Science (DOE SC) ASCR Facilities (NERSC,
OLCF and ALCF) are expected to build and deploy E4S on the pre-exascale systems, which helps to
ensure a consistent programming environment for users across facilities.

The HPC centers interested in deploying E4S on their facility system(s) should consider how it aligns
with their overall software update strategy, which takes into consideration planned system-wide upgrades
that may require a rebuild of the full software stack. Leveraging planned disruptive events can minimize
the overall system downtime for users. Deploying the entire E4S stack requires installing 500+ software
packages, including software dependencies, using a single compiler. Installation scales linearly as one
introduces additional compilers to build E4S. However, not all packages need to be installed and HPC
centers should take the time to determine which packages are beneficial to their user community. At
NERSC, we install a subset of the total E4S software stack system-wide, and of course users can install
and configure individual E4S software packages on their own.

In close collaboration with the ASCR facilities, the E4S team created a well-defined release strategy that
specifies a spack commit or branch along with a list of packages as part of the E4S release. The E4S team
is committed to quarterly releases with new versions of each package. A release will contain spack
configuration (spack.yaml) and reference commit, branch or tag of spack project to build E4S that will be
available on GitHub at https://github.com/E4S-Project/e4s. E4S adopted the Calendar Versioning scheme
(e.g. 22.02), with YY.MM format to indicate the year and month for E4S release. For more details on this
discussion, please see https://github.com/E4S-Project/e4s/issues/2.

E4S also provides architecture-specific container releases and GPU-based images in Docker and
Singularity image format. The E4S Download page describes how individual users may also download
and install E4S without any system-level privileges. These deployment options provide flexibility to
maximize user productivity. In general, users should consider the performance and portability trade-offs
between using containers or building E4S with Spack, targeting the specific architecture.

5

https://docs.nersc.gov/applications/e4s/
https://docs.nersc.gov/applications/e4s/
https://e4s-project.github.io/policies.html
https://www.energy.gov/science/ascr/advanced-scientific-computing-research
https://github.com/E4S-Project/e4s
https://calver.org/
https://github.com/E4S-Project/e4s/issues/2
https://e4s-project.github.io/download.html

Software Deployment Process at NERSC LBNL-2001458

The Journey of Deploying Software
E4S is released quarterly, however facilities may choose to install it bi-annually or annually. Although
E4S is intended to be easily deployed on systems, in practice, deploying E4S system-wide can be
complicated, at least initially, involving a trial-and-error process of determining which components work
on the target system. Each successive deployment can leverage the previous recipes and should shorten
the time to deployment.

FIGURE 1. E4S software deployment process for the Office of Science HPC facilities (NERSC, OLCF, ALCF)

6

Software Deployment Process at NERSC LBNL-2001458

In Figure 1, we outline the E4S software deployment process at the ASCR facilities. The release begins
with E4S providing a reference spack commit/branch along a reference spack.yaml that ASCR facilities
will acquire when building E4S on their system. The reference spack.yaml was built on the University of
Oregon HPC system and it’s worth noting that simple copy/paste won’t work, since site-specific
customizations are needed to take into account differences in system architecture, available compilers,
and operating system. Each facility will typically need to port the spack configuration for their system.

During the porting process, the facility will determine which packages to install, select their preferred
compilers and specify package preference to optimize for their system. In an ideal world, with no build
errors, building the E4S stack via spack install, which will build all packages from source, requires a few
hours of build time depending on the size of the chosen packages. In practice, the build time can take
substantially longer to address/debug any software build failures. We leverage Gitlab to automate the
entire software deployment process which allows us to analyze pipeline logs once the stack is built and
focus on any build failures. Without automation, one would have to run these steps manually on a
terminal.

Lesson Learned: Planning ahead based on site-specific resources and your community needs

Deploying a software stack as large as E4S customized for a site can typically take up to 6-8 weeks from
inception depending on the facility deployment process. At NERSC, the process is complete once
software is deployed as modules supplemented with user documentation. A significant portion of the
software deployment process is troubleshooting build errors that may arise from using different compilers
and MPI implementations, and working towards a full stack build with no errors. To build the entire E4S
stack, the number of software packages can be up to 500 including third party dependencies. At NERSC,
we are working on cutting down this deployment process to 2-3 weeks by automating the deployment
process and reducing the size of the E4S software stack we provide to end-users. With each version, we
expect to leverage existing software patches to reduce the total time.

Step 0 - Determine which system to deploy your software
The deployment process begins by determining which system(s) to install E4S and understanding the
architecture of the systems. At NERSC, we have two production systems, Cori and Perlmutter that are our
target systems for deploying E4S. For the first half of 2021, our focus was deploying E4S on Cori while
Perlmutter was getting ready for initial acceptance.

Cori has two primary system partitions, Intel Haswell and KNL, along with Haswell login nodes.
Currently, we build E4S on a Login node that is tuned to target the Haswell architecture which is
compatible with the KNL nodes, although it is not optimized for the architecture. Given the significant
time to build E4S for each node architecture, we decided to deploy E4S such that it will provide the
greatest impact to our users and help us understand the deployment process for building E4S in
preparation for Perlmutter.

7

https://github.com/E4S-Project/e4s/blob/master/environments/21.02/spack.yaml

Software Deployment Process at NERSC LBNL-2001458

Cori does not have any GPUs, therefore we were able to skip any E4S packages that require GPUs which
typically require CUDA as a software dependency. Shown below is an overview of the Cori system
architecture which can be found at https://docs.nersc.gov/systems/cori/.

FIGURE 2. NERSC Cori system partitions

Step 1 - Acquire Spack Configuration
We acquire the spack configuration from E4S, such as the e4s/21.02 spack configuration which was
released in Feb 2021. This usually means copying the content of spack.yaml and storing this in a git
repository in NERSC gitlab server https://software.nersc.gov. The E4S team recommends using a
per-release tagged (e.g., e4s-22.02) branch of Spack that has been validated with the E4S Spack
configuration, and one that maintains release-specific patches as bugs are reported and fixed.

Some HPC facilities may choose to have a fork of spack in order to build E4S, which allows them to
update the spack source code to apply their preferred changes without relying on the upstream branch. If
one wants to maintain a fork, then one needs to have a deep understanding of the spack source code, or
use a tagged branch, when troubleshooting builds. We don't maintain a fork of spack because this further
complicates the deployment process to keep the fork in sync with upstream.

Lesson Learned: You can’t win them all - not all packages we planned to install are actually installed
each release.

During the spack builds, we discover build errors for certain software packages that did not support our
preferred compilers and runtime libraries on the target platform. First we try to troubleshoot the build
error by analyzing the build log to resolve the issue and if we require further assistance we contact the
spack community via slack or directly reach out to the package maintainer. If we need more visibility into
the issue we would report this to the spack issue tracker: https://github.com/spack/spack/issues. In the
future, we intend to report E4S build issues at the E4S issue tracking system at

8

https://docs.nersc.gov/systems/cori/
https://github.com/E4S-Project/e4s/blob/master/environments/21.02/spack.yaml
https://software.nersc.gov
https://github.com/spack/spack/issues

Software Deployment Process at NERSC LBNL-2001458

https://github.com/E4S-Project/e4s/issues, a one-stop site that will curate all E4S issues and coordinate
with individual package maintainers.

Someone from the spack community will apply a fix for our issue as a pull request to the spack develop
branch. However, we don’t change our version of spack provided by E4S to satisfy build errors, instead
we will defer these build errors in the next version of E4S. In the event of build failures, we try our best
by experimenting with different build options to address build error, if all else fails we skip the build and
document the issue. This process can be improved in the future as well.

Step 2 - Preparing Spack Configuration
Compiler Definition
The Cori system supports a wide range of compilers and versions, but for a large software stack
deployment, we need to be more selective and determine the compilers we want to use for building E4S.
On Cori, we select Intel and GCC as our preferred compilers. We have several versions of Intel and GCC
compilers installed that are accessible via modules. We select one version of the compilers (a stable and
widely used version) and define a compiler stanza in the spack configuration relevant for our system.

Shown below is our compiler stanza for the e4s/21.02 deployment. The compiler specs intel@19.1.2.254
and gcc@10.1.0 are the compilers used to build E4S. We use Cray compiler wrappers cc, CC, ftn for C,
C++ and Fortran wrappers, respectively. The modules section informs what modules should be loaded
when using the chosen compiler. On Cori we have PrgEnv-intel and PrgEnv-gnu modules which are
Cray provided modules in order to use Intel and GCC compilers that use Cray PE wrappers.

FIGURE 3. Spack Compiler
Definition for E4S/21.02

We plan to stick to one compiler version for gcc and intel
compiler when building the E4S stack on Cori even though we
may have several compilers installed on the system. In future
deployments, we will incorporate Cray compilers (PrgEnv-cray)
into the compiler suite when building E4S to broaden our
software support across the three compilers.

Lessons Learned: The compiler selection will impact which
packages can be built.

It's generally a good idea to use the gcc compiler since it is
widely supported by the open-source community and most
packages will be built successfully. You should target multiple
compilers and versions when building a software stack, for
instance we noticed that a few packages fail to build with
gcc/10.1.0 but when we try a different gcc version they were
built successfully.

If your HPC system is running the Cray Programming
Environment, it is a good idea to use the Cray provided

9

https://github.com/E4S-Project/e4s/issues
https://github.com/spack/spack/tree/develop

Software Deployment Process at NERSC LBNL-2001458

compilers which are accessible via modules PrgEnv-gnu, PrgEnv-intel, PrgEnv-cray, and
PrgEnv-nvidia. If your system supports NVIDIA GPUs, then it would make sense to use the NVIDIA
HPC SDK (nvhpc) compiler.

Package Selection
Although E4S has 100+ top-level software packages, not all are used by the NERSC user community. To
avoid software bloat and reduce the amount of work in deployment, we need to determine which packages
get installed along with the preferred compiler. In addition, each software package has a set of build
options called variants that can be configured in the spack configuration (spack.yaml). The package
versions that are provided by E4S typically are the latest versions of the software for the given spack
release and we copy these versions provided in E4S release.

The variants are selected by inspecting each package via spack info to see applicable build options
suitable for our system which requires insight into the specific system software stack. On Cori, generally
we enable support for openmp and mpi when applicable. In some cases we take variants provided by E4S
and copy them in our spack configuration. For example, when installing tasmanian we build the package
as follows: tasmanian@7.3 +blas +fortran +mpi +python +xsdkflags. Each spack package comes with
several variants along with default values for each variant. Shown below are the available variants for the
tasmanian package.

FIGURE 4. List of variants for Tasmanian spack package

We define a definition name e4s_intel and e4s_gcc to map spack packages that will be installed with gcc
and intel compiler. We skip some packages for various reasons, for instance we don’t want openmpi
installed in the E4S stack. Packages like parallel-netcdf and python extensions that start with py-* are
generally skipped. Some packages were skipped due to build failures.

10

https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://spack.readthedocs.io/en/latest/basic_usage.html?#variants

Software Deployment Process at NERSC LBNL-2001458

FIGURE 5. List of spec definitions to specify which spack packages to install

11

Software Deployment Process at NERSC LBNL-2001458

Lesson Learned: Building software is an art, and beauty is in the eye of the installer

It’s worth noting that variant selection is an art which sometimes comes down to the installers preference
and our selection may not be consistent with the developers or users preference. There is no universal
selection for each package because this selection process depends on the system architecture, the
compiler, and system software stack. The variant selection is an important aspect when building packages
as it impacts how a package gets installed and our selection may not be optimal for all user needs. In
certain situations, we reach out to developers for recommendations on the package variants. There are
situations where certain variants are mutually exclusive, for instance some package X that can either
support openmp or pthreads so doing package X +openmp +pthreads is not allowed.

Package Preference
Most scientific software requires MPI, BLAS, and ScaLAPACK as
common dependencies when installing software, but on Cori we
choose not to build these from source since they are not optimized for
the system and are generally provided as vendor software (cray-libsci,
intel-mkl, cray-mpich). This typically requires one to specify
preferences to ensure spack doesn’t use the default preference to build
from source, and instead uses an alternative. In our spack
configuration, we leverage cray-libsci, intel-mkl and mpich as
preferences for mkl, mpi, blas and scalapack.

FIGURE 6. Install specs based
on definition list

The spack documentation has a detailed summary on build customization which can be found at
https://spack.readthedocs.io/en/latest/build_settings.html

FIGURE 7. Package Preference for
compiler and spack providers

Certain packages like cray-libsci, intel-mkl, mpich are
provided on our system which typically requires
setting a spack external to ensure spack will leverage
our preferred libraries provided by Cray. In the
example below we define cray-libsci as an external
module which maps to modulefile cray-libsci/19.06.1
which is available on Cori.

Lessons Learned: Grab a cup of coffee and take time
to read the dependency tree

During the package preference determination, we
analyze output of spack concretize or run spack spec
to see the dependency tree to determine if output seems
reasonable. In this process, we analyze each package
variant, the dependency tree such as what MPI
wrapper, blas provider is used. This process is time
consuming especially when one is trying to analyze
output of the entire software stack, which can be
hundreds of packages.

FIGURE 8. Spack external definition
for cray-libsci

12

http://www.netlib.org/blas/
http://www.netlib.org/scalapack/
https://spack.readthedocs.io/en/latest/build_settings.html
https://spack.readthedocs.io/en/latest/build_settings.html#external-packages

Software Deployment Process at NERSC LBNL-2001458

Figure 9 shows a concretized spec of hdf5, and its dependencies, we can see hdf5 +mpi is set in the
concretized output which means build HDF5 with MPI support and this leads to the cray-mpich
dependency which is an external package.

FIGURE 9. Concretized output of hdf5

FIGURE 10. Spack External Documentation with breakdown by spack package and description

In this process, we learned spack tries to do some interesting things like installing openssh, openssl, basic
linux utilities or even a scheduler like Slurm based on concretization preferences, which are redundant or

13

Software Deployment Process at NERSC LBNL-2001458

unoptimized for Cori. These types of selections need intimate knowledge of the system stack along with
analyzing output of spack concretize to see what gets installed. After several E4S software stack builds,
we documented a list of externals shown in Figure 10 that should be set which is applicable for a NERSC
system. Some of these externals may be applicable for your system.

Step 3 - Module Generation
Most HPC systems nowadays leverage modules to allow the user to easily interface with the software
stack and provide a consistent programming environment. A modulefile is a file that configures a
software package such as PATH and LD_LIBRARY_PATH to configure the user environment in order to
use the software with ease. Currently, there are two module systems in use, Lmod and
environment-modules which provide a module implementation that is widely used in the HPC
community. In environment-modules modulefiles are written Tool Command Language (TCL), while
Lmod supports both TCL and Lua modules with preference for Lua modules.

Spack provides a mechanism to generate modules in TCL and Lua format based on the module system.
On Cori we use environment-modules which support TCL based modules. During the module generation
process, we inform spack on the format of the modulefile. We avoid hash in modules and prefer having
modules in the format {name}/{version}-{compiler.name}-{compiler.version} which avoids module
conflicts when a package like hdf5@1.10.7 is installed with both compilers. Shown below is the spack
configuration for modules along with output of the spack generated modules. It’s worth noting we limit

FIGURE 11. Spack configuration for module generation and
output of generated modules

our module generation to
root specs and avoid
generating modules for
dependencies by setting
blacklist_implicits: true
which avoids explosion
of modules and higher
likelihood of module
conflicts. The
hash_length configures
the number of hash
characters to append to
each modulefile. For
every modulefile we set
a conflict on the same
name which adds a
keyword conflict to each
modulefile such that one
can’t load two instances
at same time.

14

https://software.nersc.gov/NERSC/spack-infrastructure/-/blob/main/spack-externals.md
https://lmod.readthedocs.io/en/latest/
https://modules.readthedocs.io/en/latest/
https://www.tcl.tk/
https://www.lua.org/

Software Deployment Process at NERSC LBNL-2001458

We provide an overarching modulefile to load the specific e4s stack version that corresponds to each
release of E4S. For instance on Cori we have three versions of e4s as shown below. The modulefile will
set up a spack instance used for deployment and update MODULEPATH with spack generated modules.

FIGURE 12. E4S modulefile used for accessing E4S stack

FIGURE 13. Spack configuration for install root
and module root

During production deployment we select the
location where spack will install the software and
modules which are defined using install_tree and
module_root. We install software on a shared file
system that is accessible on both login and
compute nodes, in this case the root directory

/global/common/software/spackecp is available for us to perform E4S deployment. We organize each
e4s deployments by version to support multiple releases.

Lessons Learned: What’s in a name? Just keep it short and sweet.

We like to keep module names as short as possible, this means we don’t include hash names during
module generation which is the default behavior when spack generates modules. In our first deployment
of E4S, we included hash names as shown below. This can be inconvenient for users as they have a very
long modulename that they need to load such as module load adios2/2.6.0-intel-19.1.2.254-n4dtk4qs
to load the adios2 package.

Since the e4s/21.02 deployment and all future releases we don’t have any hash in modulefile naming.
In the module generation step, we run spack module tcl refresh to build the TCL modules. During
this process we can run into module conflicts which require unique module names. For example,
warpx/21.05 package has three modulefiles for the same version which require unique module
names.

This is because we have three instances of the warpx package that was installed with variants
dims=2, dims=3 and dims=rz so we have three unique module names to support all of the instances.
Shown below are the warpx packages installed from our e4s/21.05 deployment.

15

Software Deployment Process at NERSC LBNL-2001458

If you are deploying multiple software stacks like E4S, it’s a good idea to keep your software stack
behind a meta-module like e4s/21.02 as we did for our E4S deployment. With this approach, we are
able to support multiple E4S deployments at same time which has the following benefits

● Minimize output of module avail at startup modules, one has to load the e4s module
● Site administrators can easily deprecate stack by removing modulefile and also adding notice

in modulefile
● Avoid Name/Version conflicts in modulefile across different directories in MODULEPATH

(i.e two modulefiles called gcc/9.3.0)
● Users will be forced to run module load e4s/<version> to access stack followed by loading

some package (i.e module load petsc) compared to just module load petsc can cause scripts
to break if site-administrators update the version or remove modulefile.

Step 4 - Deployment Script
The deployment process for e4s/21.02 was initiated through GitLab CI by defining a gitlab job in
.gitlab-ci.yml. Shown in Figure 14 is the deploy job which does the production deployment. This process
will clone spack into the production path and install specs from buildcache which we did in advance and
generate the modulefiles. The deploy job is initiated once the entire stack can be rebuilt from source and
pushed to buildcache. The gitlab configuration for e4s/21.02 can be found at
https://github.com/spack/spack-configs/blob/main/NERSC/cori/e4s-21.02/.gitlab-ci.yml

FIGURE 14. Gitlab Deployment Job for e4s/21.02

16

https://docs.gitlab.com/ee/ci/yaml/
https://github.com/spack/spack-configs/blob/main/NERSC/cori/e4s-21.02/.gitlab-ci.yml

Software Deployment Process at NERSC LBNL-2001458

Step 5 - User Documentation
The last step for deployment is writing user documentation for our E4S stack on NERSC systems. Our
home page for E4S is https://docs.nersc.gov/applications/e4s/ where we have a separate documentation
page per E4S release. The user documentation goes through peer review and further testing to ensure
documentation is accurate. Shown below is a preview of our E4S documentation at NERSC, we have a
subpage with documentation for each E4S stack.

FIGURE 15. NERSC E4S Documentation

Recently, we outlined a support timeline for each E4S stack in order to deprecate older stacks in
preference of newer versions. This process will entail removal of modulefile, user documentation
and uninstall the software stack from the filesystem. Shown below is a preview of our E4S
Support Timeline.

17

https://docs.nersc.gov/applications/e4s/
https://docs.nersc.gov/applications/e4s/#e4s-support-timeline
https://docs.nersc.gov/applications/e4s/#e4s-support-timeline

Software Deployment Process at NERSC LBNL-2001458

FIGURE 16. E4S support timeline for each release on NERSC systems

Step 6- Give back to the community
We contribute back our spack configuration to https://github.com/spack/spack-configs in addition we
update the E4S Facility Dashboard as shown below. We want other HPC centers to contribute to this page
(https://e4s.readthedocs.io/en/latest/facility_e4s.html) as they deploy E4S on their system so we can see
where E4S has been deployed. The HPC community can benefit by seeing how other centers have
deployed E4S by sharing their spack configuration.

18

https://github.com/spack/spack-configs
https://e4s.readthedocs.io/en/latest/facility_e4s.html
https://e4s.readthedocs.io/en/latest/facility_e4s.html

Software Deployment Process at NERSC LBNL-2001458

FIGURE 17. Summary of E4S deployments at DOE facilities available in E4S Documentation

We will communicate our E4S deployment release with our NERSC and ECP user-base through NERSC
weekly emails and slack channel. This way we can coordinate efforts across the various ASCR facilities
and share best practices.

19

Software Deployment Process at NERSC LBNL-2001458

Recent Developments
E4S development and deployment at the ASCR facilities moves quickly. Here are details on some of the
latest developments.

Building E4S on Perlmutter
We will discuss some of our experiences building E4S on Perlmutter. In Oct 2021 we started the process
of building the most recent version of e4s at that time. We picked e4s/21.11 as the preferred version which
was released in Nov 2021. During this period we encountered several changes to the Cray Programming
Environment (CPE) over the span of 3 months with CPE 21.08, 21.10, 21.11 and 21.12. These changes
impact our compiler and package preference in our spack configuration. We went through 3 rebuilds of
Perlmutter E4S/21.11 over the span of three months with one rebuild being performed in April 2022.

Our compiler choice for Perlmutter is gcc and nvhpc compiler and cray-mpich as our preferred MPI
provider. One of the pain points was having to update the package external for cray packages such as
cray-mpich. For instance, we noticed that CPE 21.10 had cray-mpich version 8.1.10 but CPE 21.12
provided version 8.1.12. Furthermore, we also had cuda modules which were changed to cudatoolkit
which were provided by NERSC staff since we didn’t have a standalone cuda module.

FIGURE 18. Package preference for cray-mpich and cuda on Perlmutter for CPE 21.10 and 21.12

Cray provides an NVHPC compiler provided by NVIDIA which typically comes with 3 versions of cuda
in the same distribution. We ended up writing modulefiles for each cuda version mapping to the NVHPC
compiler. For instance cudatoolkit/21.3_10.2 refers to cuda version 10.2 from the NVHPC 21.3 compiler.

20

Software Deployment Process at NERSC LBNL-2001458

Most recently, we removed older versions of cudatoolkit modulefile and changed the modulefile name
format to exclude nvhpc version. These changes impacted our spack build and any system changes like
changes to modulefile need to be synced with our spack configuration. In addition we recently added
NVHPC 21.11 with intent of removing 21.9 in near future, so we are now planning to rebuild with the
latest compiler. Our initial deployment used gcc@9.3.0 compiler and nvhpc@21.9 however, gcc/9.3.0
modulefile was also removed, so now we are planning to use gcc/11.2.0. Shown below is our compiler
definition on Perlmutter, with the left image showing our first iteration and image on right showing our
updated compilers which we plan to use for our upcoming redeployment.

FIGURE 19. Compiler definition of gcc and nvhpc compiler on Perlmutter

On Jan 22, 2022 we released E4S/21.11 on Perlmutter which was our first deployment of E4S that was
based on CPE 21.12. The initial release consisted of 94 packages, we provided TCL and Lua based
modules generated by spack. We created a user-facing modulefile e4s/21.11-tcl and e4s/21.11-lmod that

21

Software Deployment Process at NERSC LBNL-2001458

can be used to access the same software stack but the main difference being the way modulefiles were
presented. For more details on this stack see https://docs.nersc.gov/applications/e4s/perlmutter/21.11/.

In parallel to our standard deployment, we provide a containerized deployment of E4S/21.11 on
Perlmutter which is a container image provided by the E4S team as part of their release process. The base
image is an Ubuntu container using gcc@9.3.0 compiler, we provide this as an alternative to our software
stack.

Lessons Learned: The first time on any system can be challenging - have patience

Perlmutter has gone through several changes in the past several months including upgrades to new CPE,
we anticipate a few rebuilds will be required until Perlmutter is stable which is expected when bringing a
new system into production.

The E4S/21.11 is based on spack version 0.17 which had some significant changes including the clingo
concretizer being the default going forward. This affected spack since it now required additional
dependency to be installed during the bootstrapping process. We first encountered that spack was unable
to bootstrap clingo on Perlmutter so we reported the issue https://github.com/spack/spack/issues/28315 to
spack project to get this resolved. Our current workaround was to install clingo via pip in order to satisfy
the dependency.

There was a bug in spack in how system detection worked https://github.com/spack/spack/issues/25914
which impacted how we do builds, we were unable to use spack command on Perlmutter which was a
serious issue and this issue was addressed promptly by spack team.

Automation
Recently we started a project to centralize our spack configuration and automate our spack deployments.
We leverage Gitlab to automate our deployments using scheduled pipelines to perform full source builds
of all of our spack stacks. This project is called spack-infrastructure and located at
https://software.nersc.gov/NERSC/spack-infrastructure.

We have set up a public facing repo on Github at https://github.com/NERSC/spack-infrastructure which is
a mirror of the original repo. In addition, we have user documentation available at
https://nersc-spack-infrastructure.readthedocs.io/en/latest/

22

https://docs.nersc.gov/applications/e4s/perlmutter/21.11/
https://github.com/spack/spack/issues/28315
https://github.com/spack/spack/issues/25914
https://software.nersc.gov/NERSC/spack-infrastructure
https://github.com/NERSC/spack-infrastructure
https://nersc-spack-infrastructure.readthedocs.io/en/latest/

Software Deployment Process at NERSC LBNL-2001458

FIGURE 20. NERSC Spack Infrastructure Project

We have configured a few scheduled pipelines that perform full source builds of our E4S for various
systems, these scheduled pipelines will mimic our production deployment but run in a unique directory
per CI job.

FIGURE 21. An Overview of Scheduled Pipelines for each spack stack

We have configured gitlab runners to run CI jobs on Cori, Perlmutter and our test systems so we can
perform builds on all of our systems where E4S will be deployed. Our spack builds are performed using a
single user account which avoids issues with differences between user environments.

Recently, we started building E4S using the spack develop branch which contains the bleeding edge of the
spack codebase where incoming PRs get merged. We build this stack on a weekly basis which will build

23

https://github.com/spack/spack/tree/develop

Software Deployment Process at NERSC LBNL-2001458

the latest for each software product as new versions are added in spack codebase. These stacks are
accessible via modules named e4s/spack-develop where we expose users with a spack instance.

We plan to leverage this stack as feedback into our E4S deployments and gain insight into what packages
can build successfully in future deployments. Take for instance our spack develop stack for Perlmutter has
deployed most recent versions of kokkos@3.5.00 whereas our most recent deployment (e4s/21.11)
contains kokkos@3.4.01. We have a high degree of confidence that packages installed via spack develop
pipeline will most likely build in our future E4S deployments and this will ease our deployment process
since this work is done in advance.

We recently deployed e4s/22.02 on Cori which followed a major system OS upgrade. The E4S
deployment contained 385 installed specs, the most we have built so far, and the entire deployment was
complete within 2 weeks. This stack was built with gcc@11.2.0 and intel@19.1.2.254, shown below is a
breakdown of specs by each compiler.

FIGURE 22. Breakdown of installed specs by compilers for e4s/22.02

We plan on supporting this
release till the end of Cori
lifetime (2023) and be our last
deployment of E4S on Cori.

24

Software Deployment Process at NERSC LBNL-2001458

MPI Support
We are working with the MVAPICH2 team from Ohio State University to experiment with mvapich2 as
an MPI provider for building the E4S stack on Perlmutter. The mvapich2-gdr is an optimized version of
mvapich that takes advantage of GPU Direct RDMA technology to improve inter-node data movement on
NVIDIA GPUs which is relevant for Perlmutter since we support NVIDIA A100 GPUs. Currently, we
are using cray-mpich as our MPI provider which is available on our system but we have run into build
errors with certain packages which expect mpi wrapper mpicc instead of cc. We plan on using cray-mpich
as the MPI provider for building the stack and introduce mvapich2 for building a subset of packages for
future e4s release. The collaboration between the E4S and the NERSC teams has helped install
MVAPICH2 and 87 packages with 575 total installed specs from E4S 22.02 as shown in the figures
below. These packages use mvapich2-gdr configured with SLURM and CUDA 11.5 on Perlmutter. The
total time for installation of these packages was less than one day! The E4S packages may be accessed
using the module or spack commands as shown below.

FIGURE 23. How to access e4s/22.02 stack built with mvapich2-gdr

25

https://mvapich.cse.ohio-state.edu/

Software Deployment Process at NERSC LBNL-2001458

FIGURE 24. Listing of E4S 22.02 packages built using MVAPICH2-GDR on Perlmutter

Container-based deployment of E4S
Besides bare-metal installation of E4S, NERSC also supports Shifter, a mature HPC container runtime
and both base and full-featured E4S images are installed on Perlmutter. These images contain 100+ HPC
and AI/ML packages (such as TensorFlow/PyTorch) with total 621 specs and support the A100 GPUs.
Shifter provides a viable deployment option for E4S where only one image needs to be downloaded and is
immediately available to all the users. They may continue to use module or spack commands to access the

26

https://github.com/NERSC/shifter

Software Deployment Process at NERSC LBNL-2001458

packages, as shown in the figure below. Using E4S base or full-featured containers, users may build their
own compact, custom configured containers to deploy on any HPC system.

FIGURE 25. Using E4S 22.02 container with Shifter on Perlmutter

The use of conda and the cuda environment in Shifter to use TensorFlow and PyTorch packages with
support for A100 GPU on Perlmutter is shown in the figure below.

27

Software Deployment Process at NERSC LBNL-2001458

FIGURE 26. Running TensorFlow from Shifter container

Testing E4S Post Deployment
We test our E4S stack post deployment, we utilize buildtest a testing framework to build and run tests on
HPC systems. We utilize gitlab to run a subset of E4S tests on Cori and Perlmutter for each of our E4S
stacks along with the shifter based container. Our test can be found on our NERSC gitlab server at
https://software.nersc.gov/NERSC/buildtest-nersc. Shown below is a listing of scheduled pipelines that
will run a subset of tests at different schedules. Since we have over 200+ tests we can’t run all of them at
once, but instead we run at different intervals.

28

https://buildtest.readthedocs.io/en/devel/
https://software.nersc.gov/NERSC/buildtest-nersc

Software Deployment Process at NERSC LBNL-2001458

FIGURE 27. Scheduled pipeline for testing E4S stack

buildtest will publish results to CDASH upon completion of all tests, shown below is an output from the
gitlab job that runs E4S tests on the Perlmutter system. Buildtest will show a link to CDASH report file
which can be viewed in your browser.

The CDASH report will contain metadata for each test such as name of test, test description, hostname,
start and endtime, test duration. CDASH will report the test failures in RED.

29

Software Deployment Process at NERSC LBNL-2001458

FIGURE 28. CDASH output for E4S runs on Perlmutter

Shown below is an output from one of our test which will validate trilinos package by testing Zoltan from
our shifter container on Perlmutter using two nodes. This test will calculate Preconditioned Conjugate
Gradient for problem Epetra::VbrMatrix which will run for 20 iterations.

30

Software Deployment Process at NERSC LBNL-2001458

FIGURE 29. Output for Trilinos Zoltan test in Shifter container

Shown below is the generated build script and test script by buildtest. The test will utilize image
ecpe4s/ubuntu20.04-gpu-x86_64:21.11 which is E4S 21.11 stack built with GPU support. The Zoltan
test is available in E4S Testsuite (https://github.com/E4S-Project/testsuite), test will allocate 2 nodes with
4 GPUs and run the test from shifter container via srun. In order to run the Zoltan trilinos test, we need
to load trilinos via spack load trilinos.

31

https://github.com/E4S-Project/testsuite

Software Deployment Process at NERSC LBNL-2001458

FIGURE 30. Build Script and Generated Test for Trilinos Zoltan

Conclusion
Managing an HPC software environment can be a challenging and time-consuming process for any HPC
center. Deploying a software stack requires intimate knowledge of the HPC system with in-depth
knowledge of the software packages to ensure each package is built optimally for the system. E4S
accelerates the development, deployment and use of HPC software, lowering the barriers for HPC users.
The E4S software stack community effort creates policies and necessary infrastructure to more easily and
quickly deploy software at extreme-scale.

The sheer size of the E4S deployment and the constant upgrades in cutting-edge HPC system technology
requires tight integration with HPC facility staff and across the community. The continued success and
development of E4S and similar efforts will need to additionally emphasize building the community of
support to maintain longevity and impact of the software. In particular, workforce development and
community building:

Workforce Development: The software deployment team is an integral part of HPC centers, and more
focused efforts are needed towards training our existing staff and/or increasing the workforce to support
initiatives like E4S at the facilities. An HPC center may have multiple HPC systems and if one wants to
deploy E4S for every system we should work towards a sustainable solution where we can deploy E4S
relatively quickly while having additional resources so work can be done in parallel. Across the three
DOE labs (NERSC, OLCF, ALCF) we noticed that the software deployment group is led by 1-2
individuals who are responsible for building the entire software stack for multiple HPC systems. Since
E4S leverages spack as the driver for building E4S stack, this means staff also need spack expertise and a
strong sense of how to design software stacks and interface through modules.

Community Building: HPC centers can benefit from each other by sharing best practices in the software
deployment process, especially for centers that don’t have a well-established process or are trying to
deploy an E4S stack for the first time. This report is an effort to share more detailed deployment process
information with the community - a behind the scenes look. We encourage others to do similarly.

32

Software Deployment Process at NERSC LBNL-2001458

How to Get Involved
There are several ways to get involved to better support E4S at the facilities.

Are you an application developer for an E4S product that we install? We need your assistance in
troubleshooting the build errors. Each facility wants to accelerate the software deployment process and
provide as many software products as possible to satisfy the user's needs. However we need your help to
debug build failures during our deployment. You will need access to NERSC resources along with our
gitlab project https://software.nersc.gov/NERSC/spack-infrastructure/ which contains our spack
configuration along with build logs and current issues that need to be addressed. We will try to post these
issues in spack issue tracker to get more visibility. We can get you set up!

Are you an application developer or user of an E4S software package? We seek guidance on
package variants when building a package. Take for instance, trilinos which comes with several dozen
variants

trilinos +amesos +amesos2 +anasazi +aztec +belos +boost +epetra +epetraext +ifpack
+ifpack2 +intrepid +intrepid2 +isorropia +kokkos +ml +minitensor +muelu +nox
+piro +phalanx +rol +rythmos +sacado +stk +shards +shylu +stokhos +stratimikos
+teko +tempus +tpetra +trilinoscouplings +zoltan +zoltan2 +superlu-dist gotype=long_long

We are unsure if all of these variants are appropriate for our system. Some of these selections were
provided by E4S which we incorporated in our spack configuration. We leverage multiple compilers for
building E4S stack including gcc, cce, nvhpc, and intel and we would suggest application teams to
provide feedback into our decision process since we may choose incompatible compilers or compiler
versions.

Are you an application developer for an E4S software package that we install? We seek your
guidance in testing the software on our system. We are trying to increase test coverage for our e4s
deployment by having at least 1-2 sanity tests that can test the software product to increase confidence.
You will need access to NERSC resources and our gitlab server
https://software.nersc.gov/NERSC/buildtest-nersc with all of our E4S tests. We encourage user
contribution to help sustain this effort. Our focus is to test the software provided by E4S stack which will
be accessible via module load e4s. Currently we are trying to add tests for the latest E4S release with an
emphasis on developing tests for Perlmutter.

33

https://software.nersc.gov/NERSC/spack-infrastructure/
https://github.com/spack/spack/issues
https://software.nersc.gov/NERSC/buildtest-nersc

Software Deployment Process at NERSC LBNL-2001458

Acknowledgement
This work was supported by the Office of Science, Office of Advanced Scientific Computing Research of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was supported
by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security Administration.

We gratefully acknowledge Hai Ah Nam (LBNL, IDEAS-ECP Better Scientific Software Fellowship
Coordinator) for her many edits and guidance on this report and the feedback from the ECP E4S
collaboration and NERSC staff.

34

Software Deployment Process at NERSC LBNL-2001458

Bio

Shahzeb Siddiqui
Shahzeb Siddiqui is a HPC Consultant/Software Integration Specialist at Lawrence Berkeley National
Laboratory at NERSC. He is part of the User Engagement Team that is responsible for engaging with NERSC
user community through user support tickets, user outreach, training, documentation. Shahzeb is part of the
Exascale Computing Project (ECP) in Software Deployment (SD) group where he is responsible for building
Spack Extreme-Scale Scientific Software Stack (E4S) at the DOE facilities. He is the creator of few open
source projects including buildtest, lmodule and jobstats. Shahzeb has experience installing and managing
large software stack, managing HPC clusters including cluster managers (Bright Cluster Manager, Cobbler)
and configuration management tools such as Ansible.

Shahzeb Siddiqui started out his career in High Performance Computing (HPC) in 2012 at King Abdullah
University of Science and Technology (KAUST) while pursuing his Masters. His focus in HPC includes
Parallel Programming, Performance Tuning, Containers (Singularity, Docker), Linux system administration,
Scientific Software Installation and testing, Scheduler Optimization, and Job Metrics. Shahzeb has held
multiple roles in his HPC career in the following companies: Dassault-Systemes, Pfizer, Penn State, and IBM.
Prior to 2012, he was a software engineer holding multiple roles at Global Science & Technology, Northrop
Grumman, and Penn State.

Sameer Shende

Dr. Sameer Shende has helped develop the TAU Performance System, the Program Database Toolkit (PDT),
the Extreme-scale Scientific Software Stack (E4S) and the HPCLinux distro. His research interests include
tools and techniques for performance instrumentation, measurement, analysis, runtime systems, HPC container
runtimes, and compiler optimizations. He serves as a Research Associate Professor and the Director of the
Performance Research Laboratory at the University of Oregon, and as the President and Director of ParaTools,
Inc., ParaTools, SAS, and ParaTools, Ltd. He leads the SDK project for the Exascale Computing Project
(ECP), in the Programming Models and Runtime (PMR). He received his B.Tech. in Electrical Engineering
from IIT Bombay, and his M.S. and Ph.D. in Computer and Information Science from the University of
Oregon.

35

https://www.lbl.gov/
https://www.lbl.gov/
http://nersc.gov/
https://www.nersc.gov/about/nersc-staff/user-engagement/
https://www.exascaleproject.org/
https://www.exascaleproject.org/research-group/software-deployment-at-the-facilities/
https://e4s-project.github.io/
https://github.com/buildtesters/buildtest
https://github.com/buildtesters/lmodule
https://github.com/shahzebsiddiqui/jobstats
https://www.kaust.edu.sa/en
https://www.kaust.edu.sa/en
http://www.cs.uoregon.edu/research/tau/home.php
https://www.cs.uoregon.edu/research/pdt/home.php
https://e4s.io
https://nic.uoregon.edu/prl/home.php
https://www.uoregon.edu/
https://www.paratools.com/

