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Abstract 

We study how political preferences shaped California’s High-Speed Rail (CHSR), a large 

transportation project approved by referendum in 2008. Voters’ support responded significantly 

to the projected economic gains in their tract of residence, as measured by a quantitative model 
of high-speed rail matched to CHSR plans. Given this response, a revealed-preference approach 

comparing the proposed network with alternative designs identifies strong planner’s preferences 

for political support. The optimal politically-blind design would have placed the stations nearer 

to California’s dense metro areas, where it was harder to sway votes, thus increasing the projected 

economic gains. 
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1 Introduction 

The efficiency of transportation systems constitutes a central question in spatial economics. 
Using quantitative spatial frameworks, recent research has studied the optimality of transport 

networks, finding that inefficiencies are pervasive and that observed transport systems could have 

been designed in alternative welfare-improving ways. Recent studies include Fajgelbaum and Schaal 
(2020) and Allen and Arkolakis (2022) for highways, Brancaccio et al. (2024) for ports, Kreindler 

et al. (2023) and Almagro et al. (2024) for bus systems, and Frechette et al. (2019), Buchholz 

(2022), and Brancaccio et al. (2023) for taxis or bulk shipping. 
Why are transport networks inefficient? In this paper, we study the role of households’ and 

policymakers’ preferences in shaping the projects that are implemented. In the process of designing 

transport networks, policymakers may take into account the popular approval elicited by these 

projects, as well as distributional impacts among constituencies. Investments driven by these 

motives –for example, targeting areas to maximize political support– will generally differ from 

investments driven by aggregate welfare considerations alone. Quantifying these differences requires 

a methodology to estimate the weight that these motivations play in the planner’s preferences, as 

well as gauging whether, and by how much, public support responds to the economic impacts of 
transport investment projects. 

We make progress on these questions in the context of California’s High-Speed Rail (CHSR), 
one of the most expensive transport projects attempted in U.S. history. Proposition 1A, on the 

ballot in the 2008 general election, asked Californians whether they approved of initiating funding 

for the CHSR (it passed with 52.6% in favor). The features of the project that were known when 

voting –through business plans, environmental reports, and the ballot’s text– resulted from years-
long planning by authorities who anticipated putting the CHSR up to a public vote. We estimate 

Californian politicians’ and voters’ preferences, and study their role in shaping the proposed CHSR. 
To that end, we use a novel framework of optimal high-speed rail network design combined with 

voting data and CHSR planning data.1 

We first develop and estimate a spatial model that incorporates specificities of high-speed rail 
passenger travel. Then, using census-tract data, we estimate the relationship between favorable 

votes in the 2008 referendum and the expected local economic impacts of the CHSR predicted by 

the model. To address endogeneity concerns, we build instruments based on random station place-
ments along alternative CHSR designs entertained early in the planning process. We then embed 

the spatial model and the estimated voters’ responses into the problem of a politically-minded 

planner who decides where to locate stations. We estimate bounds on the policymakers’ preference 

parameters by comparing the actual CHSR design with alternatives that were not selected. Finally, 
we solve for the optimal station placements under alternative policymakers’ preferences. 

1Since it was approved by referendum in 2008, the CHSR has been mired in a myriad of financial, legal, and 
implementation troubles; doubts linger on whether it will ever be operational. We do incorporate the possibility of 
failure in the expectations of voters and policymakers, as we explain in detail below. Our focus is not on understanding 
why the project faced so much trouble, but on studying what its initial design reveals about the preferences of voters 
and policymakers for this infrastructure project, and on how these preferences shaped its design. 
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We summarize three main takeaways of our analysis. First, we find voters responded signifi-
cantly to the model-implied projected economic impact of the CHSR in their tract of residence. 
This result shows that economic voting may be a significant driver of policy preferences over trans-
port infrastructure. It also gives credibility to our estimated model as a predictor of the spatial 
distribution of economic impacts of the CHSR. Second, the CHSR design implies strong planner 

preferences for votes: deviations that would have increased aggregate welfare while reducing votes 

were not implemented, thus identifying a positive lower bound. Third, these preferences for votes 

partly shaped the network: the optimal politically-blind CHSR design would have concentrated 

stations closer to urban areas where it was harder to sway votes. In so doing, the projected gross 

economic benefits of the CHSR would have increased. We thus conclude that attaining popular 

approval was an important driver of the CHSR design. 
We now describe each step of our analysis. First, we develop and estimate a quantitative spatial 

model of high-speed passenger travel. The goal of the model is to obtain the distribution across 

census tracts of the relative real-income impacts of the CHSR, to then use voting data from the 

2008 referendum to estimate the responsiveness of votes to these relative impacts. Compared to 

canonical urban frameworks centered on commuting, such as Ahlfeldt et al. (2015) and Monte et al. 
(2018), our model includes three distinct features. First, while facilitating commuting into urban 

centers is an important role of high-speed rail systems (Zheng and Kahn, 2013), long-distance rail 
connections also confer benefits to infrequent business or leisure travelers. We incorporate these 

additional travel purposes and rely on the California Household Travel Survey to quantify the 

parameters determining their importance.2 Second, as CHSR usage would depend on access to 

competing travel modes, we include a choice over transport modes (between car, air, and public 

transit) for each origin-destination pair and travel purpose. Third, we incorporate that travel 
decisions depend both on travel time (as in standard frameworks) and on monetary trip costs, an 

a priori relevant feature given the low ticket prices announced by CHSR planners.3 

To estimate the key model parameters, we rely on gravity equations for commuting, leisure, and 

business travel across California’s census tracts. The resulting estimates reveal how travel time and 

cost differences by route are valued by Californians, as well as how preferences over different travel 
modes vary across regions, demographic groups, and travel purpose. Using the estimated model, 
we then simulate travelers’ choices over destinations and mode of transport in the hypothetical 
scenario in which the CHSR becomes available, and obtain as a result the spatial distribution of 
the potential real income effects of the CHSR across 7866 census tracts.4 

2We model long-distance business and leisure travel decisions as including an intensive margin, the number of 
trips, which we observe in the data. We model business travel as an input in production, with firms (rather than 
travelers) deciding the destination of business trips as a function of characteristics that make certain destinations 
more profitable for business connections. Through this channel, the high-speed rail network may affect TFP by better 
matching business travelers to business hubs. Bernard et al. (2019) and Dong et al. (2020) provide evidence that the 
high-speed rail in Japan and China, respectively, raised business or research productivity by facilitating face-to-face 
interactions. 

3The prices projected in the 2022 update to the CHSR business plan are considerably higher than the 2008 
forecasts. We account for both of these forecasts by considering alternative scenarios when quantifying our model. 

4Our setting is sparse, with about 15 million workers for about 64 million origin-destination pairs of census tracts; 
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Our model predicts that larger urban centers such as San Francisco or Los Angeles, and areas 

closer to the location of the planned CHSR railway stations, would on average benefit relatively 

more from the implementation of the CHSR; in contrast, more sparsely populated areas like Central-
Valley have lower potential gains. These model-based predictions are qualitatively consistent with 

existing empirical assessments of passenger transport systems.5 Moreover, as shown in the next 

step, the voting patterns in the 2008 referendum responded to these model-implied real income 

gains from the CHSR, providing validation of the model predictions. 
We compute these model-implied real-income gains of the CHSR using official CHSR business 

plans as available in two different years: 2008 (when the vote took place) and 2022. The 2008 

information turned out to be unrealistic: the construction of the CHSR progressed at a much 

slower pace and costs were higher than forecasted. In contrast, the 2022 CHSR business plan 

acknowledges risk, costs, and timeline increases. Whether we use the 2008 or the 2022 scenarios 

affects the level of economic impacts across tracts; for example, in our baseline model, we compute 

a slightly negative population-weighted net impact using 2008 cost projections, but a much stronger 

negative net impact under the 2022 scenario.6 However, the ranking of winners and losers does 

not change: the economic impacts when using 2008 and 2022 forecasts is highly correlated across 

census tracts. We use this distribution to estimate if there was a response of votes to expected real 
income impacts in the next step. 

In the second step, we estimate the elasticity of favorable votes in the 2008 referendum to the 

model-implied expected economic gains from the CHSR. Identifying this response is key for our goal 
of determining whether planning authorities took into account public support when deciding the 

design of the CHSR. By following a structural approach to measure the private economic benefits 

of a policy, we depart from the prior literature that tries to determine the role of those benefits 

in voters’ choices. These previous studies project votes on reduced-form variables that plausibly 

capture individual exposure to a policy.7 Our reliance on a structural model is essential to recover 

a structural elasticity and to characterize counterfactual optimal networks. 
Our structural approach is not exempt from identification challenges, crucially the possibility 

moreover, the long distance travel information that we use comes from travel surveys collected on limited samples. 
Consequently, to ensure that our estimates of model parameters are not affected by an incidental parameters problem, 
we follow the suggestion in Dingel and Tintelnot (2020) and project all travel costs and destination-specific effects 
on vectors of observed characteristics. 

5Recent studies of the the spatial impacts of public transit systems include Tsivanidis (2019) for rapid buses in 
Bogota, Severen (2021) and Tyndall (2021) for the light rail in Los Angeles and other US cities, Gupta et al. (2022) 
for the NYC subway, Zárate (2022) for subway lines in Mexico City, Khanna et al. (2023) for cable-car in Medellin, 
and Borusyak and Hull (2023) for the Chinese rail. Broadly speaking, these studies find positive impacts of proximity 
to transit connections on commuting flows, formal employment, wages, or land prices. Koster et al. (2022) finds 
employment losses for smaller areas connected to the Japanese high-speed rail. 

6We obtain smaller gross benefits (before capital costs) than the official numbers calculated by CHSR authorities 
using different methods than ours. 

7E.g., Van Patten and Méndez (2022), studying a referendum in Costa Rica on whether to sign a FTA with 
the U.S., project favorable votes on voters’ exposure to U.S. trade. Following Deacon and Shapiro (1975), many 
studies use ballots to draw inference about demand for private versus collective goods. Kahn and Matsusaka (1997) 
and Holian et al. (2013) correlate votes in ballot initiatives, including the CHSR Proposition 1A, with proxies for 
economic exposure such as industry of voters. Alesina and Giuliano (2011) review research that uses survey data to 
measure preferences for private vs. public value in income taxation. 
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that the model-implied economic benefits of the CHSR are correlated with other variables, such 

as preferences over public goods or political ideology, that also impacted voters’ support for the 

CHSR.8 We take several steps to deal with these identification challenges. First, we control for 

a host of tract-level covariates including county fixed effects, demographic characteristics, party 

affiliation, votes in related referenda, and distance to stations. Second, we instrument for the 

economic impact of the CHSR using alternative CHSR designs with random placement of stations 

across feasible routes, according to transport engineers, that were announced in years prior to 

the 2008 vote. Third, we conduct the estimation under different model specifications in terms of 
economic mechanisms and voters’ expectations on CHSR costs at the time of voting. 

Regardless of the model variant and the identification strategy, we find that voters are responsive 

to the model-based expected economic impact of the CHSR. Moreover, once we instrument, this 

elasticity is robust to the set of controls. Depending on whether 2008 or 2022 cost predictions are 

used, an extra 0.03-0.10 percentage points in local expected economic gains swayed one percentage 

point of local votes. This high responsiveness of votes to projected economic impacts implies 

that policymakers who value public support may have shifted the supply of infrastructure towards 

certain areas based on the marginal impact on public support, at the expense of where it may have 

been socially more desirable. 
In the third and final step, we estimate the preferences of a social planner designing the CHSR 

and then compute counterfactual optimal designs under alternative preferences. We model a policy-
maker choosing the distribution of stations along the technologically feasible routes linking Northern 

and Southern California, including the proposed CHSR and its main alternative along the Interstate 

5 highway. We assume that the observed CHSR maximized a weighted sum of two components: 
a sum of tract-specific real income impacts of the CHSR (with tract-specific Pareto weights as 

function of demographics), and the total voter support for the project.9 

To estimate the planner’s preferences, we follow a revealed-preference approach in the spirit of 
Goldberg and Maggi (1999) in international trade and Bourguignon and Spadaro (2012) in public 

finance. Our approach more specifically relates to Adão et al. (2023)’s analysis of U.S. tariffs. 
Like them, we use a fully-specified quantitative model to construct perturbations of the planner’s 

objective function in response to counterfactual policies, and then estimate the planner’s preferences 

that rationalize the observed policy as maximizing the value of the planner’s objective function. 
A challenge in our context is that closed-form solutions for optimal policies, which are typically 

used in the previous literature, are unavailable. Furthermore, marginal perturbations to stations’ 
locations have little identifying power. Our approach therefore uses discrete deviations from the 

observed station placement –for example, by shifting a CHSR station from its designated location to 

the next-largest urban area without a proposed station. In doing so, we derive revealed-preference 

moment inequalities following Pakes (2010) and Pakes et al. (2015). These deviations set bounds 

8Voting on subjective considerations, referred to as expressive voting in the political sciences literature (Hillman, 
2010), helps to rationalize phenomena such as high voting turnout (Brennan and Hamlin, 1998).

9Burgess et al. (2015) find empirical evidence that a president’s ethnicity or birthplace explains patterns of road 
investments in Kenya. 
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on the planner’s preferences; for instance, deviations that increase aggregate votes but reduce 

aggregate income define an upper bound on how much the planner likes the former relative to 

the latter. We use the moment-inequality inference procedure in Andrews and Soares (2010) to 

compute confidence sets for the planner’s preference parameters. 
Our results show strong planner preferences for votes: for an additional percentage point of 

favorable votes, the planner trades off up to 0.89% aggregate income gains using 2008 cost projec-
tions (or 0.14% using 2022 cost projections). The estimates also imply some preference for areas 

with a larger share of college graduates. The planner is, thus, far from utilitarian. 
Finally, we compute optimal networks under counterfactual planner preferences. The optimal 

CHSR design for an apolitical planner differs substantially from the proposed plan, with many 

stations located closer to the main metropolitan areas. The reason is these metro areas have low 

voting elasticities: they would have supported the CHSR regardless of private economic gains. 
Thus, in the absence of electoral motives, policymakers would have placed stations closer to these 

locations. Doing so would have increased by 15%-25% the projected gross economic benefits of 
the network, depending on what cost projections are used. Nearly all of this difference between 

the proposed CHSR and what would have been selected by a utilitarian planner comes from the 

preferences for votes, with the estimated heterogeneity in preferences over demographic groups 

playing a minor role. 
The paper proceeds as follows. Section 2 gives some background on the CHSR. Section 3 lays 

out our quantitative model of the CHSR’s economic impacts. Section 4 presents the estimation of 
the model parameters and the distribution of CHSR’s local economic impacts. Section 5 estimates 

the effect of these local economic impacts on votes. Section 6 embeds the model and voter re-
sponses into a planners’ problem to estimate its preferences and implement counterfactual optimal 
designs. Section 6 concludes. A full description of the model as well as details on data sources and 

implementation appears in the Online Appendix. 

2 Background 

In 1996, the California state legislature established the California High Speed Rail Authority 

(CAHSRA) to explore the creation of a high-speed rail network that would connect the main urban 

centers in northern California to those in southern California. In August 2008, the California 

legislature approved that Proposition 1A would appear on the ballot in the November 2008 general 
election. The proposition asked California voters to approve the issuance of nearly $10 billion 

in bonds to initiate funding for the CHSR, to be complemented by federal funding and private 

investors. 
The CHSR project described in Proposition 1A had to satisfy several criteria. First, it had 

to connect San Francisco to Los Angeles and Anaheim, and include stations in Sacramento, the 

San Francisco Bay Area, the Central Valley, the Inland Empire, Orange County, and San Diego. 
Second, it had to travel at 200 miles per hour or faster, making the trip from San Francisco to 
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Figure 1: CHSR Route and Proposition 1A Votes 

(a) California (b) LA County 

Los Angeles Union Station in at most two hours and 40 minutes. Third, the maximum number of 
stations in the entire network was 24. Fourth, it had to be completed by 2033. 

Proposition 1A was approved by 52.6% of votes. Participation amounted to 94% of voters who 

cast a vote for president. Figure 1 shows the share of positive votes on Proposition 1A in each 

census tract. Each point is the population centroid of a tract; in denser areas the entire tract is 

colored. Bright yellow areas were more supportive, while dark blue areas were less supportive. 
Broadly speaking, support was stronger in urban centers (Los Angeles, San Diego, San Francisco, 
San Jose, Fresno, and Sacramento) and declining in distance to the railway line. Counties of the 

greater San Francisco bay area (e.g., Marin and Sonoma) show clusters of strong support, while in 

Los Angeles the support is more concentrated in central areas. 
Construction began in 2015, suffering many technical, legal, and financing troubles since then. 

Construction is now focused on the Central Valley segment, a 180 miles-long stretch (out of about 

800 miles). The estimated total costs for Phase I, connecting San Francisco to LA, have doubled 

to around $100 billion in 2022 (California High Speed Rail Authority, 2022). 
Voters in 2008 may have expected that the description of the CHSR project in Proposition 1A 

was too optimistic. We incorporate this possibility into our analysis below, by considering voters’ 
expectations that align either with the projections in the 2008 plan or with updated projections 

released in 2022, which acknowledge the difficulties since the vote. 
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3 Framework 

This section gives an overview of the theoretical framework. We outline our assumptions on 

voters’ preferences as well as the model of the CHSR’s economic impacts. We defer the discussion 

of the planner’s problem to Section 6. 

3.1 Utility and Voting 

Consider a resident ω of a location i. Her utility uω (s) depends on whether the CHSR is 

approved to be built (s = Y for Yes) or not (s = N for No). We assume: 

uω (s) = E [ln W (i, s) | Ii] + ln a (i, s) + εu 
ω (s) . (1) 

The first component, E [ln W (i, s) | Ii], is the expected real income of residents of location i in 

state s. The expectation is taken over the distribution of future shocks to fundamental economic 

characteristics in all locations, conditional on the current information set Ii of residents of location 

i. We describe the term ln W (i, s) below in Section 3.2. The second component, ln a (i, s), captures 

other determinants of preferences for the CHSR that are common across all residents of location 

i, such as political affiliation or environmental preferences. Finally, εu 
ω (s) captures an individual-

specific component preferences. 
Individuals vote for the policy option s that delivers the highest utility. Aggregating over 

individuals, our setup corresponds to a probabilistic voting model, with the fraction of positive 

votes for the CHSR in location i defined as: 

v (i) = Pr [uω (Y ) > uω (N)] . (2) 

We assume the idiosyncratic shocks εu 
ω (s) are iid across residents and type-I extreme-value dis-

tributed with shape parameter θV : 

Pr (εu 
ω (s) < x) = e−e−θ V x 

. (3) 

Throughout the paper, for a generic variable X (i, s), we let 

X̂ (i) ≡ 
X (i, Y ) 
X (i, N) 

(4) 

denote the ratio of variable X (i, s) between an equilibrium where the vote is approved and where 

it is not. Then, the fraction of voters in location i that support the CHSR takes the standard logit 

form: 

v (i) = 
e θV (E[ln Ŵ (i)|Ii]+ln ̂a(i)) 

1 + e θV (E[ln Ŵ (i)|Ii]+ln ̂a(i)) 
. (5) 

In this expression, ˆ W (i) is the real income differences in location i depending on whether the CHSR 

vote is approved, while ˆ a (i) measures other determinants of preferences for the project. 
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3.2 Quantitative Model of High-Speed Rail 

We measure the economic impacts of the CHSR using as a basis a commuting model à la 

Ahlfeldt et al. (2015) augmented to allow for: long-distance leisure and business trips, a mode-of-
travel decision with origin-specific preferences over travel modes, a monetary cost of travel, and 

uncertainty over project completion when calculating welfare. We provide here an overview of key 

forces and measurement equations, and we refer to Appendix A for a full model description. As 

in the previous section, ˆ X means the ratio between the value of variable i when the CHSR vote is 

approved and when it is not. 
If the CHSR is approved, households expect to start paying right away a yearly tax t to fund the 

capital costs of the full CHSR project. Voters are however uncertain over the project completion: 
they expect the CHSR to be operational no sooner than T years after the vote, with a yearly 

probability of completion equal to p afterwards. Hence, if approved, the annualized net (log-) 

real-income impact of the CHSR is: 

ln Ŵ (i) = (1 − R) ln (1 − t)   
upfront tax 

+ R ln V̂ (i)   
net gain if completed 

, (6) 

where R ≡ (1 + r)−T p 
r+p is an effective discount rate that incorporates the time discount and 

non-completion risk, and where V̂ (i) captures net real income impacts of the CHSR conditional 
on becoming operational. The first term in (6) is an annualized expected upfront tax to be paid 

even before the CHSR is operational and the second term is a gain if the CHSR is completed (net 

of taxes that continue to be paid). 
To evaluate ˆ V (i), we assume residents of a location i choose a location where to work, and 

also make infrequent leisure and business long-distance trips.10 Travelers for any of these purposes 

(commuting, business, or leisure) perceive different destinations as imperfect substitutes. Travelers 

also make a choice of transport mode on each origin-destination pair, perceiving different travel 
modes as imperfect substitutes. Commuters choose between car, public transit, and walking/biking; 
and long-distance travelers choose between car, public transit, and air. 

Across origins, residents may vary in their preferences for each travel mode. E.g., everything else 

equal, some demographic groups may have a stronger preference for traveling by car than via public 

transit. Data on mode usage by census tract allows us to estimate these tract-specific preferences 

for modes of transport. However, the lack of data on CHSR usage implies that preferences for it 

must be assimilated to preferences for one of the available modes. We assume that, if available, 
the CHSR would be perceived as a perfect substitute for public transit in the case of commuters; 
and as a perfect substitute for air travel in the case of business and leisure travelers. Of course, 
someone initially traveling by car may switch travel mode and use the CHSR when available. 

10We let the development of the CHSR impact commuting and travel choices, but assume it does not impact 
residential choices. In Section 5, we show there is a significant response of voting decisions to own-tract economic 
outcomes, consistent with voters believing in 2008 that the economic impact of the CHSR in their location of residence 
will affect them in the future. An extension where workers face a constant per-period probability of migration would 
preserve a log-linear relationship between ˆ W (i) and ˆ V (i) as in (6), although with different structural parameters in 
that relationship. 

8 



To account for the possibility that workers may internalize to different extents the impact that 

the construction of the CHSR will have on equilibrium prices, we consider two model variants: a 

simple baseline model with fixed wages and land prices, and a more sophisticated general equilibrium 

model. 

Baseline Model In our baseline model, the economic impacts of the CHSR come exclusively 

from changes in the time and monetary cost of traveling, and from the tax required to finance 

the infrastructure. Given the microfoundation in Appendix A, the annual real-income change for 

residents of tract i if the CHSR becomes operational, ˆ V (i), can be written as follows: 

V̂ (i) = Ω̂C (i) Ω̂L (i) . (7) 

The component ˆ ΩC (i) equals the change in labor income net of commuting cost. More specifically, 
it captures commuters’ expected time savings and changes in travel costs, and it can be written as: 

Ω̂C (i) ≡ 

  
 

j∈J 

 

m∈MC 

λC (i, j, m) 
Î (i, j, m) 
τ̂ (i, j, m)ρ 

 θC 
 

1 
θ C 

. (8) 

In this expression, Î (i, j, m) is the change in disposable income (net of commuting costs and taxes) 

for a commuter from residence tract i to workplace tract j using transport mode m. As shown in 

appendix equation (A.34), 

Î (i, j, m) = −χ (i, j, m) p̂C (i, j, m) + (1 + χ (i, j, m)) (1 − t) ŷ (i, j) , 

where χ (i, j, m) is the share of commuting costs in disposable income for someone traveling from i 

to j through mode m before the CHSR is operational, p̂C (i, jC , mC ) is the change in the monetary 

cost of this commuting route, t is the tax levied to finance the CHSR’s capital costs, and ŷ (i, j) 

is the change in pre-tax income. In this baseline model, ŷ (i, j) = 1. Thus, in this baseline model, 
a commuter’s disposable income is impacted by the CHSR through only two channels: the train 

ticket price and the tax levied to finance the CHSR’s capital costs. In the general-equilibrium 

model, described below, ˆ y (i, j) includes changes in wages and in land rents. 
The term ˆ τ (i, j, m) in (8) is the change in travel time from i to j through mode m, converted 

into a dollar-equivalent value by the elasticity ρ. The elasticity θC captures the extent to which 

residents substitute across commuting destinations or travel modes when their relative appeals 

change. Finally, for each (i, j, m), the corresponding changes in time and monetary costs are 

weighted by the share λC (i, j, m), the fraction of tract-i residents that commute to j using mode m 

in the equilibrium without the CHSR. These shares capture heterogeneous tract-specific preferences 

over transport modes and commuting destinations. 
The second component of (7), ˆ ΩL (i), captures the economic impact of the CHSR on leisure 

travel. This term is also a weighted average of time and cost changes: 

Ω̂L (i) ≡ 

  
 

j∈J 

 

m∈ML 

λL (i, j, m) 
 1 

p̂L (i, j, m) τ̂ (i, j, m)ρ 

µLθL 

 

1 
θ L 

. (9) 
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The term λL (i, j, m) is the fraction of leisure travelers from i to j using mode m absent the CHSR, 
p̂L (i, j, m) is the change in the ticket cost of travel, ˆ τ (i, j, m)ρ is the monetary-equivalent change in 

the time cost of travel, and θL captures how substitutable destinations and transport modes when 

traveling for leisure. Compared to equation (8), the expression in equation (9) accounts for the fact 

that not all workers travel for leisure through the share of leisure travel in total expenditure, µL. 11 

Equations (7) to (9) completely determine the real-income effects of the CHSR in our baseline 

model. In short, these reduced-form equations capture weighted averages of time- and cost- changes 

from the CHSR, with tract-specific weights that capture the likelihood that the CHSR will be 

adopted given the observed travel patterns of each tract, and with elasticities that capture the 

value of time and the rate at which residents substitute travel modes and destinations. 

General Equilibrium Model Our general-equilibrium model (the “GE” model) nests the base-
line model. In this case, the CHSR further impacts local amenities, productivities, land rents, and 

wages. The annual real-income change ˆ V (i) is now given by the appendix equation (A.42). 
Total factor productivity can now change through two mechanisms. First, through standard 

spillover effects: as workers change their workplace location in response to the CHSR, worker density 

may change and, as result, location-specific productivities A (i) change. Second, through business 

trips, which now enter as a shifter of total factor productivity (see Appendix A.3 for details). As 

a result, total factor productivity in tradable goods changes as follows: 

Ω̂B (i) = Â (i) 

  
 

j∈J 

 

m∈MB 

λB (i, j, m) 
Â (j) 

p̂B (i, j, m) τ̂ (i, j, m)ρ 

µB θB 
 

1 
θ B 

. (10) 

Total factor productivity of a firm in i depends on productivity A (i) at that location and on 

productivity A (j) at the destination of business trips. It also depends negatively on the time and 

monetary cost of business trips. The term λB (i, j, m) is the fraction of business travelers from i 

going to j using mode m absent the CHSR. In turn, local productivities impact both wages and 

land rents through standard market clearing. Wages impact income of workers, while land rents 

in tract i are capitalized into housing values and, in this way, affect the income of that tract’s 

residents who are homeowners. 

4 Distribution of CHSR’s Local Economic Impacts 

In this section, we explain how we estimate the parameters of the economic model described in 

Section 3.2. We then describe the local income effects of the CHSR predicted by the model. 

11There are two key differences between (8) and (9). First, the change in the monetary cost of commuting travel 
p̂C enters as a negative additive shifter in disposable income Î (i, j, m) in (8), while the monetary cost of leisure travel 
p̂L enters multiplicatively in (9). Second, the role of the monetary cost of travel is modulated by the share of spending 
in leisure travel, µL, in (9). These differences reflect the different ways in which commuting and leisure travel enter 
in preferences. Spending on commuting is non-homothetic: travelers spend an amount of money commuting during 
a fixed amount of days through the year, with their remaining income divided between consumption, housing, and 
leisure trips. Spending across these items is then determined according to a homothetic function, with weight µL on 
leisure trips. 
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4.1 Data 

We conduct the analysis at the level of census tracts. Our sample covers 7,866 census tracts 

housing 98.5% of the statewide population. We rely on information on commuting flows from the 

2006-2010 American Community Survey (ACS) (U.S. Census Bureau, 2010b) and on leisure and 

business trips from the California Household Travel Survey (CAHTS) (California Department of 
Transportation, 2012) conducted between 2010 and 2012. The CAHTS records trips longer than 

50 miles over an 8-week period. To compute travel time across various transport modes, we rely on 

Google Maps for car and bus transit, and on official rail and air time schedules. The monetary cost of 
car travel is computed combining information on trip length with estimates of average driving costs 

per mile, while for bus, rail, and air we use information from the American Public Transportation 

Association (American Public Transit Association, 2010), the Bureau of Transportation Statistics 

(Bureau of Transportation Statistics, 2008b), and various rail operators. We construct time and 

monetary costs of traveling by the CHSR using information from the 2008 and 2022 CHSR business 

plan (California High Speed Rail Authority, 2008, 2022). We provide additional details on the data 

used in our analysis in Appendix B. 
In addition to the estimates discussed in Section 4.2, our counterfactual predictions also rely 

on tract-level information on the number of residents, labor income, land-rent income, the share 

of floor space used for housing, and share of local landowners (see sources in Appendix B). When 

computing the counterfactuals with general-equilibrium effects, we borrow spillover elasticities from 

the literature as detailed in Appendix B. The gravity estimates and the counterfactuals are imple-
mented at the census tract level using data from circa 2019.12 

4.2 Gravity Estimates 

The local real income effects of the high-speed rail, as determined by (7) to (10), depend on 

the fraction of commuters, leisure travelers, and business travelers by origin-destination and mode 

(λk (i, j, m) for k = C, L, B); the substitution elasticities θC , θL, and θB; and the parameters ρ, 
µL, and µB. These parameters determine the preferences of the residents of each census tract for 

traveling to each other tract by different transport modes and, as a result, inform the extent to 

which these residents would modify their trip destinations or mode of transport were the CHSR to 

become available. 
We summarize here our strategy to estimate these parameters and the resulting estimates, and 

provide additional details in Appendix D. 

Commuting There is a large literature estimating preferences for destinations in commuting 

decisions; e.g., Monte et al. (2018), Tsivanidis (2019), and Heblich et al. (2020). The specification 

12The fact that the model-implied local real-income impacts of the CHSR use data from 2019 implies that they rely 
on information that was not available to voters on occasion of the 2008 vote on Proposition 1A. Section 5 discusses 
how we account for this in our estimation of the weight that voters’ expected real-income from the CHSR had on 
their preferences for the CHSR. 
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of the worker’s commuting decision in our model, as detailed in Appendix A, enriches those baseline 

specifications in three dimensions. First, we allow for preferences over modes of transport that are 

heterogeneous across locations of residence. Second, we account for destination- and transport-
mode-specific monetary costs. Third, we allow labor income in a destination to depend on the 

worker’s place of residence, accounting in this way for heterogeneity in worker skill composition 

across origin tracts. These three elements impact the likelihood that residents of a particular census 

tract would use the CHSR for commuting, were it to become available. 
To estimate the parameter vector (θC , ρ) and the commuting share λC (i, j, m) for every origin, 

destination, and transport mode, we rely on the following relationship:13 

λC (i, j, m) = 

 
I(i,j,m) 
DC (i,m) 

 θC 
τ (i, j, m)−θC ρ 

 
j ′ ∈J 

 
m ′ ∈MC 

 
I(i,j ′ ,m ′) 
DC (i,m ′) 

 θC 
τ (i, j ′ , m ′)−θC ρ 

, (11) 

where I (i, j, m) is the disposable income of someone commuting from i to j by transport mode m, 
τ (i, j, m) denotes the travel time between locations i and j by mode m, and DC (i, m) is a preference 

shifter for transport mode m specific to commuters residing in location i. We consider three feasible 

modes of transport for commuting: MC = {private vehicle, public transport, walk/bike}. 
We perform the estimation in two steps. In the first step, we estimate θC and ρ using a Gen-

eralized Method of Moments (GMM) estimator that exploits variation in the choice of destination 

conditional on origin and transport mode. The estimates of θC and ρ are robust to assumptions 

on the taste shifters DC (i, m), which vary exclusively by origin and mode. Our estimates are 

θ̂C = 3.35 (with robust standard error equal to 0.10) and ˆ ρ = 0.21 (robust s.e. equal to 0.006). 
This last parameter captures the percentage increase in wages in a destination that would leave 

workers indifferent if commuting time were to increase by one percent. The estimate of ρ indi-
cates, for example, that workers would require a 10% higher wage to accept a job with 50% longer 

commute, an approximately 25-minute increase for the average commuter. 
In the second step, we estimate DC (i, m) for all origin census tracts and modes of transport. 

We model DC (i, m) as a function of observed origin-specific demographic covariates, XC (i), with 

mode-specific coefficients ΨC (m). We estimate these coefficients using again a GMM estimator, 
relying on observed variation across origins with different demographics XC (i) in their use of 
different transport modes. 

We present these estimates in Appendix Table A.1. The preferences over transport mode differ 

across census tracts; for example, tracts with larger shares of younger and more educated workers 

have a weaker preference for commuting by car, and tracts with larger shares of nonwhite residents 

have a stronger preference for public transport. These values of DC (i, m) impact the usage of 
modes of transport in addition to the impact that commuting times and monetary costs may have. 

Combining 
 
θ̂C , ˆ ρ


and the estimates of DC (i, m) with the expression in (11), we generate 

model-predicted commuting shares λC (i, j, m) for all origin-destination pairs and transport modes. 
We then use these shares in (8) to quantify part of ˆ W (i). 14 

13This expression and (A) correspond to an equilibrium without the CHSR as defined in Appendix A. 
14Dingel and Tintelnot (2020) recommend using model-implied predicted shares rather than directly observed 
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Business and Leisure Travel The model-predicted share of business or leisure trips with origin 

in census tract i and destination in a census tract j that use a mode of transit m is: 

λ̃k (i, j, m) = 

 
Zk(i,j) 

Dk(i,m) 

µkθk 
τ (i, j, m)−ρµk θk pk (i, j, m)−µkθk−1 

 
j∈J 

 
m∈Mk 

 
Zk(i,j) 

Dk(i,m) 

µkθk 
τ (i, j, m)ρµkθk pk (i, j, m)−µkθk−1 

(12) 

for k = L (leisure) or k = B (business). The shifter Zk (i, j) captures the leisure or business 

appeal of destination tract j among travelers from census tract i; Dk (i, m) is a preference shifter 

for using transport mode m among travelers for purpose k from i; τ (i, j, m) denotes the travel 
time between locations i and j by mode m; and pk (i, j, m) is the monetary cost per round trip. 
For both leisure and business travel, we consider three feasible modes of transport: MB = ML = 

{private vehicle, public transport, airplane}. Our procedure to estimate the parameters in (12) 

implements a two-step GMM estimator similar to that used to estimate the parameters in (11). 
In the first step, we condition on the estimate of ρ and estimate θk and µk for k = L, B. For 

leisure travel, our estimate of the coefficient on log travel time is µLθLρ = 0.46 (robust s.e. equal 
to 0.14). The estimate of the analogous coefficient in the case of business travel is µBθBρ = 0.59 

(robust s.e. equal to 0.22).15 Our estimates of the commuting equation described above imply a 

coefficient on log travel time of θBρ = 0.71, reflecting a higher disutility of time spent traveling in 

the case of commuting trips than in the case of leisure and business trips. 
As the expression in (12) illustrates, µk and θk are not separately identified. We thus calibrate µk 

using external data sources. For leisure travel, we set µL = 0.05, consistently with BLS information 

on U.S. households’ annual share of spending on travel, including transportation, food away from 

home, and lodging.16 For business travel, µB equals the share of the firm’s value added spent on its 

employees’ business travel. We set µB = 0.015 following industry reports.17 Given these calibrated 

values of µL and µB and our estimate of ρ, the coefficients on log travel time imply estimates of θL 

and θB equal to 43.8 (robust s.e. equal to 13.4) and 185.6 (robust s.e. equal to 68.2), respectively. 
Thus, travelers perceive business and leisure destinations as highly substitutable. 

In the second step, we estimate Zk (i, j) for all origin and destination census tracts by modeling 

these terms as a function of observed origin- and destination-specific covariates and a vector of 
coefficients on those covariates. Using the estimates of θk and ρ, the calibrated value of µk, the 

estimates of Zk (i, j) for all origin and destination census tracts, and the expression in (12), we 

generate model-predicted shares of long-distance trips ˜ λk (i, j, m), for k = L, B for all origin-
destination pairs and transport modes. 

shares to compute the implications of quantitative spatial models, in particular in sparse settings like ours. 
15This standard error uses information on monetary costs to measure pk (i, j, m). As described in Appendix C, 

these monetary costs are by construction highly correlated with travel time, generating collinearity. If we exclude 
pk (i, j, m) from our estimation, we obtain similar coefficients on log-travel time (µB θB ρ=0.55) but a much smaller 
robust standard error (equal to 0.04).

16The US Travel Association reports leisure travel spending in the ballpark of 800 billion USD for 2019 (U.S. 
Travel Association 2020 Answer Sheet), which as a share of that year’s US private consumption expenditure of 14,400 
billion (FRED) yields a similar share of 5.6%. 

17The US Travel Association and the Global Business Travel Association both report US business travel spending 
in the ballpark of 340 billion USD in 2019, which corresponds to about 1.5% of US GDP in that year. 
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4.3 Alternative CHSR Scenarios 

When computing the counterfactual real-income impact of the CHSR, we consider alternative 

scenarios in terms of the possible timeline and costs of the CHSR and in terms of economic forces 

included in the model, summarized in Table A.2. 
First, we consider a “2008 Business Plan” scenario which uses the information on the project 

published at the time of the vote (California High Speed Rail Authority, 2008). According to 

this plan, the full project would be operational by 2030, tickets would be set at 50% of the typical 
airfare, and the present value of the total capital cost of implementing Phase-I of the project (linking 

San Francisco to Los Angeles) would be $33 billion. Second, we consider a “2022 Business Plan” 

scenario, which uses the information from the 2022 updated business plan (California High Speed 

Rail Authority, 2022). According to this alternative plan, the full project would be completed in 

about double the number of years than announced in the 2008 plan, ticket prices are also doubled, 
and the present value of the capital costs for Phase I increase to at least $77 billion; furthermore, 
the probability that the forecasts of this alternative plan are satisfied is set to only 65%.18 

For each of these two scenarios, we compute counterfactual real-income impacts using both 

the baseline and the general-equilibrium models described in Section 3.2, using the system (A.32)-
(A.41) in Appendix A.8. 

4.4 Impact of CHSR on Travel Time and Costs 

An important input to determining the counterfactual impact of the CHSR is the change in 

travel times and monetary costs caused by the introduction of the CHSR. Appendix C details the 

construction of the travel times and monetary costs in the settings with and without the CHSR. 
In short, we calibrate a multi-modal transport network for California (including travel by car, air, 
bus or rail, and bike) to match observed travel times from the data. We then allow travelers to use 

the CHSR, assuming that it is used only when it is beneficial in utility terms, given the time gain 

and ticket price, as described in Appendix A.6. 
The 2008 and 2022 CHSR business plans promised sizable potential travel time reductions. To 

gauge the size of the shock, consider potential CHSR use among “directly impacted” travelers: 
those originally using public transit (either bus or rail) when commuting, or those originally using 

public transit or air travel for long-distance trips. Of course, as the estimated model indicates, the 

CHSR may also draw travelers by altering their mode of transport (e.g., away from using the car) 

or the destination of their commuting, leisure, or business trips. 
As illustrated in Table 1, 1.4% of all commuters, 2.3% of all long-distance leisure travelers, and 

9.7% of all long-distance business travelers travel (in the observed equilibrium without the CHSR) 

on routes where the CHSR would be utility improving according to the model. Among these directly 

18As Phase-I was about 60% of the full project, we set the cost of the total project by adjusting the capital costs 
proportionally to the length of the full network. The 2022 plan expects that, by 2030, only the Central-Valley segment 
(180 miles) would have been completed; to obtain an expected completion date for the whole project, we extrapolate 
proportionally from this initial deadline assuming a constant time until completion per mile. 
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Table 1: The CHSR Shock 

% Initial Travelers Time Gain Cost Change 

Directly Better Off 2008 Business Plan 2022 Business Plan 

Pub. Trans. 
or Air 

median 75 ptile med 75p med 75p 

Commute 1.4% 34’ (38%) 53’ (48%) -21% -9% 3% 17% 

Leisure 2.3% 21’ (11%) 47’ (32%) -60% -50% -28% -13% 

Business 9.7% 12’ (5%) 26’ (12%) -63% -57% -31% -21% 

Note: The first column shows the fraction of all travelers within each travel purpose who, before the CHSR becomes 

available, travels on routes where the CHSR is utility-improving (considering both time savings and monetary costs) 

and therefore used when available, assuming that the CHSR may only directly replace public transit or air. The 

remaining columns show moments from the traveler-weighted distribution of time and cost changes across the origin-
destination-modes within each travel purpose where the CHSR is used when available. 

impacted travelers, the reductions in travel time are substantial. For example, the median time 

gain for a commuter via public transit is 38%. The monetary gains disappear for commuters with 

the higher projected ticket prices updated in the 2022 Business Plan, but these updated forecasts 

still predict large time and pecuniary gains for leisure and business travelers. The difference in the 

predicted monetary gains between commuters and long-distance travelers comes from the former 

using the relatively cheap public transit option and the latter using the more expensive air travel 
option. 

4.5 Distribution of the CHSR Impacts across Census Tracts 

We now compute the distribution across census tracts of the expected real-income effects of 
the CHSR, ˆ W (i), as defined in (6). Figure 2 plots real-income effects in the baseline economic 

model and the predictions of the 2008 Business Plan, and Figure 3 zooms in on the tracts in the 

San Francisco Bay Area and the Los Angeles county. Bright yellow tracts gain the most, and dark 

blue tracts lose the most. The effects are heterogeneous, with a small share of winning tracts. The 

top 10% of tracts experience real-income gains between 0.1% and 1.1% per year, while 70.3% of all 
tracts lose. When using instead the 2022 Business Plan, our baseline model predicts that 99.5% of 
all tracts lose. Table 2 describes the distribution of ˆ W (i) across model versions. 

The maps show an intuitive gradient of gains as a function of distance to the stations. However, 
distance is not the only determinant of gains from CHSR adoption; for example, travel patterns 

and preferences over (or ease of access to) different travel modes also matter, and they enter in 

our estimates through the gravity estimation. Appendix Table A.3 illustrates these determinants 

by showing regressions of the tract-level real-income changes on several covariates. The regressions 

confirm that tracts closer to stations gain more. However, tracts with a higher percentage of 
commuters by public transit or of long-distance travelers by air in the initial equilibrium also gain 
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Figure 2: Spatial Distribution of Real-Income Gains from the CHSR 

more, as CHSR stations tend to be close to standard rail stations and airports.19 In addition, tracts 

located in Los Angeles county gain more than what the regression covariates would predict. Central 
Valley locations like Fresno or Bakersfield gain less and the San Francisco Bay Area gains more, but 

only if general-equilibrium effects are not accounted for. These location-specific results illustrate 

the importance of accounting for the specific travel patterns of different regions of California. 
The distribution in space of the real-income gains of the CHSR is very similar across all model 

variants, with a correlation across census tracts that is greater of 90% across any two variants. 
I.e., the ranking of relative winners and losers is approximately the same, regardless of whether we 

incorporate general-equilibrium forces in the model, and regardless of whether we model the CHSR 

according to the 2008 or the 2022 projected costs, travel speed, and ticket prices. However, the 

level of the implied gains varies significantly depending on whether we incorporate in our analysis 

the predictions of the 2008 Business Plan or those of the 2022 Plan. In our baseline model (without 

GE effects), we obtain a population-weighted loss of -0.01% using the projections in the 2008 Plan, 
and a much larger aggregate loss of -0.31% using the projections in the 2022 Plan, as shown in the 

last column of Table 2. 20 

19Appendix Figure A.1 shows the spatial distribution of CHSR stations alongside rail stations (which belong to 
the public transport network) and airports.

20Using different methods than in our analysis, initial 2008 estimates by the High-Speed Rail Authority (California 
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Figure 3: Spatial Distribution of Real-Income Gains from the CHSR (SF and LA) 

(a) SF Bay Area (b) LA County 

Table 2: Distributional Impacts from the CHSR 

Moments of ˆ W (i) Pop-Weighted Avg 

p10 p50 p90 Gross Net 

2008 Business Plan -0.09% -0.04% 0.08% 0.13% -0.01% 

2008 Business Plan, with GE 0.01% 0.10% 0.27% 0.25% 0.13% 

2022 Business Plan -0.34% -0.32% -0.27% 0.04% -0.31% 

2022 Business Plan, with GE -0.32% -0.29% -0.27% 0.05% -0.28% 

Note: The first three columns reports moments from the annual real-income gain ˆ W (i) defined in (6). The last two 

columns are population-weighted average of ˆ W (i) across census tracts. The next to last column reports the weighted 

average before capital costs (setting the lump-sum tax t to zero in our calculations). The last column includes these 

costs. 

Appendix table A.4 further decomposes these aggregate effects into those stemming from the 

upfront tax and from the commuting, leisure travel, and business trips components defined in 

conditions (6)-(10). We find a substantial role for leisure and business trips in driving the aggregate 

impacts, with the gross benefits from leisure and business travel being at least as large as those 

from commuting across all cases. 

High Speed Rail Authority, 2008) estimated net present-discounted gains of $97bn in 2008 USD. In our baseline, the 
analog number is $-2.4bn. The project update to the 2022 CHSR business plan (California High Speed Rail Authority, 
2023) includes a benefit-cost analysis such that, if only “high-speed rail user benefits” are included (corresponding 
to the forces we include in the baseline model), the phase-I of the CHSR (from San Francisco to Los Angeles and 
Anaheim) leads to a present-discounted loss of $-15bn in 2021 dollars. Our 2022 scenario without GE, implemented 
on the full CHSR (instead of just phase-I), yields a loss of $-136.5bn in 2021 USD. The 2023 CHSR update also 
reports gains of $26bn for only phase I when “wider economic benefits for worker and firms” are further included in 
addition to rail user benefits. Our GE estimate for the 2022 case yields a loss of $-123.1bn for the full network. 
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5 Effect of Local Economic Impacts on Votes 

Armed with the estimated model of the real-income gains of the CHSR, we now estimate 

the parameter θV in (5), which determines the impact of expected real-income in shaping voters’ 
preferences for the CHSR. 

5.1 Estimation Strategy 

When estimating voters’ response to expected real income in the 2008 referendum, two potential 
identification issues arise. First, we may measure voters’ expected real-income gain from the CHSR 

with error. Second, there may be other determinants of voters’ CHSR preferences that are correlated 

with their expected real-income gain from the CHSR. While the first is an instance of measurement 

error in the covariate of interest, the second is an example of omitted variables correlated with that 

covariate. We discuss here these identification concerns and the strategies we follow to address 

them. 

Measurement Error We do not observe voters’ expectations of the CHSR’s real income impact, 
E 
 
ln Ŵ (i) | Ii 

 
in (5). Instead, we identify θV as the coefficient on the model-implied ex-post real 

income impact of the CHSR, which we thus use as proxy for voters’ expectations; i.e., our proxy 

is ln Ŵ (i), as defined in (6) and computed using the estimates described in Section 4.5. Because 

this proxy is constructed using information on realized fundamentals (such as productivities) from 

2019, we denote it in this section by Ŵ19 (i). Without loss of generality, differences between voters’ 
expectations and this proxy may be decomposed into two terms: (a) voters’ expectational error, 
denoted by ϵW,1 (i); and, (b) model misspecification, i.e., any mismatch between the true ex-post 

CHSR impact and that predicted by our model, denoted by ϵW,2 (i). Thus, we can write: 

E 
 
ln Ŵ (i) | Ii 

 
= ln Ŵ19 (i) − ϵ W,1 (i) − ϵ W,2 (i) . (13) 

If voters’ expectations are rational, the error ϵW,1 (i) is analogous to classical measurement error, 
biasing OLS estimates of θV towards zero. Any IV estimator that uses as instrument a variable 

that belongs to voters’ information set at the time of the vote avoids this source of bias (Dickstein 

and Morales, 2018). We present below estimates that use as such instrument the model-implied 

real-income impact of the CHSR constructed using fundamentals from 2008, denoted by ln ˆ W08 (i). 
If voters’ expectations are rational and the 2008 fundamentals belong to their information sets, 
this instrument will be mean independent of the expectational error ϵW,1 (i). If, furthermore, our 

model were to correctly capture the ex post economic impact of the CHSR, then the resulting IV 

estimator of θV would be unaffected by measurement error. 
Importantly, rationality of expectations is sufficient but not necessary for our IV estimator of 

θV to avoid measurement error bias. As discussed below, when estimating θV , we condition on a 

set of controls, one of them being the share of registered Democrats in each census tract. Thus, our 

IV estimator of θV is not affected by voters’ expectational errors even if voters have biased beliefs 
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about the real income impact of the CHSR, as long as the bias in expectations aligns with their 

party affiliation. 
Characterizing the bias due to the model misspecification error ϵW,2 (i) is more complicated, 

as it depends on which particular model aspect is inaccurate. We address this potential bias by 

exploring how robust our estimates of θV are to the alternative economic models described in Table 

A.2. As a reminder, these models differ in the projected CHSR capital costs (they either use the 

projections in the 2008 or the 2022 Business Plan) and in the economic forces incorporated in the 

model (they either abstract from or incorporate general-equilibrium effects). 

Omitted Variables The determinants of voters’ preferences entering through the component 

ˆ a (i) in (5) may be correlated with voters’ expectations of the CHSR’s real income impact. To 

limit the risk that our estimates of θV suffer from omitted variable bias, we introduce proxies for 

subjective considerations that may play a role in voters’ preferences for the CHSR. Formally, we 

assume that: 

ln ̂a (i) ≡ 
K 

k=1 

β̃kXk (i) + ϵa (i) . (14) 

We introduce three sets of covariates Xk (i). The first set proxies for voters’ ideology: it includes 

the tract-specific share of registered Democrats and the tract-specific vote shares in favor of two 

propositions, Prop. 10 and Prop. 1B, on clean energy and transportation projects, respectively.21 

We interpret the vote share in support of Prop. 10 as a proxy for voters’ environmental concerns, 
and the vote share in support of Prop. 1B as a proxy for voters’ willingness to back transportation 

infrastructure spending in general. The second set of covariates measures demographic characteris-
tics: the tract-specific share of residents who are nonwhite, college-educated, or under 30. Finally, 
the third set of covariates measures the time it would take voters in each tract to reach the closest 

CHSR station. This distance measure accounts for any correlation between the location of the 

CHSR stations and voters’ CHSR preferences that is not captured by the two other sets of co-
variates.22 In addition to these covariates, we control in all specifications for county fixed effects. 
Consequently, the identification of θV is based on variation across census tracts within counties. 

We conceptualize all these political, demographic, and proximity covariates, as well as the 

county fixed-effects, as controls that help us obtain consistent estimates of θV . The interpretation 

of the coefficients on these covariates is not relevant for our purpose; those coefficients may capture 

the impact of multiple treatments and, thus, may have multiple valid interpretations. For example, 
the share of registered Democrats in a tract may capture both differences in CHSR preferences 

21Prop. 10 (“Bonds for Alternative Fuels Initiative”), on the ballot at the same time as the CHSR, asked voters 
to authorize the government of CA to issue $5 billion in bonds for alternative fuel projects (it failed with 40.6% of 
votes in favor). Prop. 1B (“Transportation Bond Measure”), on the ballot in 2006, asked voters to authorize the 
government of CA to issue $19.9 billion in bonds for transportation projects (it passed with 61.4% of votes in favor). 
Source: ballotpedia.org. 

22Note that ln ˆ W (i) accounts for preferences for using different means of transport (car, public transit, airplane, 
or biking), as described in Section 4.2. Thus, the measure of distance to the projected CHSR stations included among 
the set of controls captures any effect on CHSR preferences of being close to CHSR stations other than the potential 
usage of the CHSR were it to become available, which enters through ln ˆ W (i). 
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driven by political ideology and differences in beliefs about the future real income impact of the 

CHSR. 

Instrument #1: Random Stations The covariates Xk (i) described above, together with 

ln ˆ W19 (i), account for a large share of the variation in vote shares across locations.23 All deter-
minants of voters’ CHSR preferences not controlled for by these covariates are accounted for by 

the term ϵa (i) in (14). If these omitted variables are correlated with the model-implied CHSR 

income impact, ˆ W19 (i), the OLS estimate of θV will be biased. If they are also correlated with the 

model-implied impact when fundamentals are set to their 2008 values, the TSLS estimate of θV 

that uses ln ˆ W08 (i) as an instrument will also be biased. 
Thus, we also present TSLS estimates of θV that rely on an alternative instrument that we build 

as follows: in a first step, we simulate one hundred counterfactual CHSR networks by randomizing 

the location of 24 stations along the projected CHSR railway line; in a second step, for each of 
these counterfactual networks and all census tracts, we compute the associated model-implied real-
income change using 2008 fundamentals; finally, in a third step, we compute the average of these 

real income changes across the one hundred simulated networks. More specifically, denoting the 

instrument by ˆ W IV 
08 (i), we build it as: 

Ŵ IV 
08 (i) = 

1 
100 

100 

n=1 

ln 
 
Ŵ cf 

08 (i, n) 
 

, (15) 

where ˆ W cf 
08 (i, n) is the model-predicted change in welfare in location i from the counterfactual 

CHSR design n built using 2008 fundamentals. 

Instrument #2: Random Stations and Random Paths We construct a second instrument 

where, instead of randomizing the location of stations along the projected CHSR railway line, we 

use information on three alternative railway lines that were considered in the early stages of the 

CHSR design process (US DOT, 2005); see Appendix Figure A.2. Relevant for the validity of this 

second instrument, these three alternative CHSR routes were selected as candidates to link Los 

Angeles to San Francisco on the basis of technical feasibility and cost savings.24 Thus, political 
considerations may have determined the final choice between the three alternative routes (and the 

location of the 24 stations), but they were not behind the decision to limit the set of possible routes 

to these three alternative railway lines. Hence, our second instrument uses the formula described 

in (15), where each counterfactual CHSR design n is determined by first drawing randomly one of 
these three potential routes, and then randomly locating the 24 stations along that route. 

As these two instruments incorporate information on neither the actual location of the 24 

projected stations (in the case of the first instrument) nor on the actually projected CHSR railway 

23The R-squared of the OLS estimated regression is above 0.9 in the specification with the largest set of covariates. 
24There are two possible routes from Northern to Southern California: along the coast or through the center of 

the state (along the I-5 highway or via the Central Valley). The topology of the coastal area makes it more difficult 
for trains to reach top speed and is costlier in terms of building. Along the Interstate 5, the terrain is flatter and 
construction is cheaper but the stations are farther away from population centers. The third option, via the Central 
Valley, ranks in between these alternatives in terms of both proximity to population and expected costs. 
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line (in the case of the second instrument), they may be valid even if the location of the CHSR 

stations (or the railway line, in the case of the second instrument) had been determined with 

the goal of favoring tracts with systematically larger or smaller values of the unobserved term 

ϵa (i). Moreover, as the instruments only use information on 2008 fundamentals, they will be mean 

independent of the expectational error ϵW (i) under the conditions discussed above. 

5.2 Estimates of Voter Preferences 

Combining (14) with (13) and (5), we obtain our estimating equation: 

ln 
 

v (i) 
1 − v (i) 

 

= θV ln Ŵ (i) + 
K 

k=1 

βkXk (i) + ϵ (i) , (16) 

where βk ≡ θV β̃k and where ϵ (i) ≡ θV (ϵa (i) − ϵW,1 (i) − ϵW,2 (i)) includes unobserved components 

of voters’ preferences, measurement error, and model misspecification error. In Table 3, we report 

OLS and TSLS estimates of θV and the βk’s. In this table, we compute the real-income impact of 
the CHSR using the economic model without general-equilibrium effects and the cost projections 

from the 2008 Business Plan (we discuss alternative specifications below). In the first four columns, 
we present OLS estimates for regression specifications that progressively account for a larger set of 
regressors. In column (1), we include no covariate other than the model-implied welfare impact of 
the CHSR. In column (2), we add proxies for political ideology; in column (3), we add variables 

that capture the demographic composition of each census tract’s residents; and, in column (4), we 

add as a control the log of the shortest time distance from each tract to its closest CHSR station. 
The OLS estimated value of θV equals 64.40 (with robust s.e. equal to 3.77) in the specification 

(4) with the largest set of controls. This estimate of θV is robust to whether we control for voters’ 
demographic characteristics or by the distance to the closest HSR station. The estimates of the 

coefficients on the various controls reveal that a larger support for the CHSR is predicted by the 

following census tract characteristics: a larger share of registered Democrats; a larger support 

for Prop. 10 (support for alternative fuel vehicles); a larger support for Prop. 1b (support for 

transportation projects); a larger share of residents who are white, college-educated, or under 30 

years of age; and proximity to a CHSR station. 
Columns (5) to (7) report IV estimates. Column (5) uses as instrument the 2008-based real 

income measure, column (6) uses the instrument that additionally randomizes the location of the 

stations alone, and column (7) uses the instrument that additionally randomizes the location of 
both the railway line. For the three instruments we obtain large first-stage F-statistics. 

The fact that the IV estimate of θV in column (5) that uses as instrument the 2008-based real 
income measure is larger than the OLS estimate (72.45 vs. 64.40) is consistent with the latter 

being downward biased due to voters’ expectational errors. The fact that the IV estimates of θV 

computed using both the random-station and the random-path instruments in columns (6) and (7) 

are smaller than that reported in column (5) reveals that the CHSR design favored census tracts 

whose residents were, for unobserved reasons, more predisposed to support the proposed CHSR. 
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Table 3: Estimates of Voting Equation 

Inst. Var.: None - OLS ln( ˆ W08) 
Random Random 
Station Path 

(1) (2) (3) (4) (5) (6) (7)

log( ˆ W19) 159.73a 72.35a 65.37a 64.40a 72.45a 66.97a 63.68a 

(6.11) (4.46) (3.58) (3.77) (4.49) (4.54) (5.29) 

Log-odds Dem. Sh. 0.30a 0.38a 0.38a 0.38a 0.38a 0.38a 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Environ.: Prop. 10 1.13a 2.41a 2.41a 2.40a 2.41a 2.41a 

(0.06) (0.05) (0.05) (0.05) (0.05) (0.05) 

Transp.: Prop. 1b 1.54a 0.81a 0.81a 0.80a 0.80a 0.81a 

(0.05) (0.04) (0.04) (0.04) (0.04) (0.04) 

Sh. non-White -0.17a -0.17a -0.17a -0.17a -0.17a 

(0.01) (0.01) (0.01) (0.01) (0.01) 

Sh. College 0.75a 0.74a 0.74a 0.74a 0.74a 

(0.01) (0.01) (0.01) (0.01) (0.01) 

Sh. Under 30 0.19a 0.19a 0.19a 0.19a 0.18a 

(0.03) (0.03) (0.03) (0.03) (0.03) 

Log. Dist. Station -0.00 -0.00 -0.00 -0.00 
(0.00) (0.00) (0.00) (0.00) 

F-stat 1783 966 850 

Num. Obs. 7861 7861 7861 7861 7861 7861 7861 

Note: a denotes 1% significance level. Robust standard errors in parenthesis. All specifi-
cations control for county fixed effects. 

Results across Model Variants Appendix Table A.5 presents analogous estimates to those in 

columns (6) and (7) in Table 3, but using the alternative model variants described in Table A.2. 
The estimates of θV are larger under the costs and timeline projections from the 2022 Business 

Plan than under the projections in the 2008 Plan. Intuitively, this happens because there is a high 

correlation across tracts (greater than 91.2%) in the economic impacts predicted by the two model 
variants, but the variance of these tract-specific predictions is smaller when using 2022 information, 
resulting in a larger θV . 25 Conversely, the estimates of θV are smaller when the CHSR real-income 

impacts are computed using the model that incorporates general-equilibrium impacts; that model 
yields a distribution of ln ˆ W (i) that is very correlated with that predicted by the model without 

general equilibrium effects, but more dispersed, resulting in a smaller estimate of θV . 

Robustness Our estimates are robust to a range of alternative weighting schemes and sample 

selection criteria. Appendix Table A.6 presents estimates analogous to those in columns (6) and 

(7) in Table 3 but for specifications that weight the results in each tract by either the total number 

of votes (in columns (3) and (4)) or by the participation rate (in columns (5) and (6)). When 

weighting by the total number of votes, we obtain IV estimates of θV that are larger than the 

25The belief p that the CHSR will be successfully completed enters the calculation of ln ˆ W (i) by multiplying the 
per-period economic effects ln ˆ V (i), as shown in equation (6). Hence, a lower p, reflecting the more pessimistic beliefs 
included in the 2022 Business Plan, leads to lower variance of ˆ W (i). 
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baseline (unweighted) estimates. Conversely, weighting the results by the participation rate yields 

estimates very similar to those of the unweighted estimator. Columns (7) and (8) in Appendix 

Table A.6 show that the estimates of θV become somewhat larger when we redo our estimation 

dropping the nearly 3,000 census tracts that are less than 5km away from the railway line. 

5.3 Implications 

The estimates imply we cannot reject the joint hypothesis that voters in the 2008 referendum 

cared about the expected real income impact of the CHSR, and that this variable is correlated with 

our model predictions. Thus, they provide support for our estimated model as a predictor of the 

spatial distribution of the real-income effects of the CHSR. 
The estimates further illustrate that economic voting was a driver of policy preferences over 

the CHSR. Economic voting is a relevant driver of votes in electoral politics (Lewis-Beck and 

Stegmaier, 2000). However, when it comes to preferences over transport policies, case studies and 

survey evidence often point to low public support for projects with seemingly positive net economic 

impacts.26 In contrast, we show that changes in the expected economic impact of the CHSR had 

a significant effect on voters’ preferences. 
Our estimates also determine the additional real income needed to sway votes. Consider an 

alternative CHSR design that would have increased expected economic gains in location i by d ˆ W (i) 

percentage points, compared to ˆ W (i) in the actual CHSR design. This change would have affected 

the favorable votes in location i by 

dv (i) = 
θV v (i) (1 − v (i)) 

Ŵ (i) 
d Ŵ (i) (17) 

percentage points. Table 4 uses this formula to compute the real income change needed to sway 

an extra percentage point of votes in favor of the CHSR. Across model variants, 0.03 to 0.10 extra 

percentage points in economic gains swayed one percentage point of votes in the median tract. To 

put this number in perspective, the last column of Table 4 reports the standard deviation of income 

Table 4: Effect of Local Economic Impacts on the Vote 

Model Variant θV 
Income Gain to Sway Standard Deviation 

1 pp (median tract) of Income Gain 

2008 Business Plan 63.7 0.06% 0.12% 

2008 Business Plan, with GE 43.2 0.10% 0.14% 

2022 Business Plan 159.3 0.03% 0.05% 

2022 Business Plan, with GE 96.7 0.04% 0.05% 

Note: The θV corresponds to the IV estimate using the random routes instrument shown in Table A.5 for each model 
variant. The second column reports the 50th percentile of the distribution across tracts of the inverse of dv (i) /d ˆ W (i) 
in (17), which measures the extra gains ˆ W (i) required to sway 1% of votes around the equilibrium with the CHSR. 
The last column reports the standard deviation of the income gain ˆ W (i) across tracts. 

26An example is road pricing; see Verhoef et al. (1997), Schade and Schlag (2003), and Noordegraaf et al. (2014). 
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gains across tracts corresponding to each model variant. These numbers imply that, across model 
variants, one standard deviation in income gains swayed between 1.2 and 2.0 percentage points of 
local votes. 

Given the economic significance of these magnitudes, we conjecture that policymakers could have 

decided to allocate stations based on their impact on public support, at the expense of locations 

where stations were socially more desirable. We quantify this trade-off in the next section. 

6 Policymakers’ Preferences and Optimal Designs 

We consider the problem of a planner who decides where to locate the CHSR stations. This 

problem captures, in reduced form, a complex process leading up to the referendum involving politi-
cians and technical experts. Rather than modeling this process, we adopt an “as if” representation 

in which a hypothetical planner holds preferences over the welfare of different residents and over 

votes. We estimate the preferences of such social planner, identifying as a result the distributional 
biases emerging from this process.27 

To set up the planner problem, one could follow an approach such as Fajgelbaum and Schaal 
(2020) or Kreindler et al. (2023), where the planner designs the entire network with complete 

flexibility. In our case, this would amount to deciding both the location of the railway lines and 

of the stations. However, doing so would raise methodological challenges due to dimensionality. It 

would also force us to model and quantify the potentially heterogeneous costs of building rail lines 

at different locations. 
We can, instead, leverage that only a few alternative routes were identified as being feasible on 

the basis of cost and engineering considerations. More specifically, the CHSR was originally meant 

to connect Los Angeles and San Francisco, further branching out to San Diego and Sacramento 

in later phases. As discussed in Section 5.1, three possible routes linking Northern and Southern 

California were originally identified (US DOT, 2005): one ran along the coast, and the other two 

ran through the center of the state, either along the I-5 highway or through the Central Valley (see 

Appendix Figure A.2). The coastal route was subject to much higher costs, leaving the I-5 and the 

Central Valley routes as the two main options for policymakers to choose from; conditional on a 

route, policymakers had to decide the location of stations. 
In the upcoming sections, we use observed distribution of stations along the actual CHSR route 

to estimate planners’ preferences, and then compute counterfactual optimal distributions under 

alternative preferences along both the actual CHSR route and the main alternative along the I-5. 
Section 6.1 sets up the planner’s problem, Section 6.2 discusses how we estimate the planner’s 

preferences, and Section 6.3 solves for optimal station allocations with counterfactual planner’s 

preferences. 

27Baldwin (1987) points out that different political economy models map to a planner’s problem with group-
specific weights. Grossman and Helpman (2001) model lobby contribution games that map to a planner’s problem 
with sector-specific Pareto weights; more recently, Adão et al. (2023) estimate the Pareto weights across industries 
and skill groups of a hypothetical planner setting US tariffs. 
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6.1 Planner’s Problem 

Formally, the planner chooses the geographic coordinates d = {d1, ..., d24} of the 24 CHSR 

stations, where each di belongs to a set D of feasible coordinates. Each design d maps to a 

distribution of travel times and travel costs, and, through those variables, to a utility level of each 

agent ω if the design is approved (uω (Y ; d) defined in (1)) and to a share of favorable votes (v (i; d) 

defined in (5)). The planner’s valuation for design d given a realization of fundamentals is: 

W (d) ≡ 
I 

i=1 

λU (i) NR (i) Eω [uω (Y ; d) − uω (N)] + λV 

J 

i=1 

NR (i) v (i; d) . (18) 

The first term in (18) is a weighted sum across tracts i of the average (over agents ω living in i) 

expected utility gains from the CHSR being approved. This sum uses location-specific per-capita 

weights λU (i) that capture the planner’s preferences for each of the NR (i) residents of tract i. 
Thus, this term captures distributional impacts among constituencies. We define the λU (i) as 

functions of observed covariates Zk (i) (including a constant, Z0 (i) ≡ 1): 

λU (i) ≡ 
K 

k=0 

bkZk (i) . (19) 

The second term in (18) is the total number of votes in favor of the CHSR; when λV > 0, the 

planner attaches a positive weight to favorable votes. This term captures that policymakers may 

take into account the popular approval elicited by a transport infrastructure project. 
The design d0 that maximizes the planner’s objective function in (18) is: 

d0 = arg max 
d∈D 24 

E [W (d)] , (20) 

where the expectation is taken over future realization of the economic fundamentals, unknown at 

the time of designing the CHSR. Using the definition of uω in (1), and assuming voters’ information 

about fundamentals at the time of voting is as rich as the planner’s, the optimal design is 

d0 = arg max 
d∈D 24 

E 

 
J 

i=1 

λU (i) NR (i) ln Ŵ (i; d) + λV 

J 

i=1 

NR (i) v (i; d) 

 

. (21) 

Similar to voters, we assume the planner has rational expectations. Hence, for any design dn 

different from the optimal design d0: 

E 
 
W (dn) − W 

 
d0 
 

≈ 
J 

i=1 

λU (i) + λV 
∂v (i) 

∂ ln Ŵ (i) 

 

NR (i) ∆ ln Ŵ (i, dn) − ϵ (dn) ≤ 0, (22) 

where 

∆ ln Ŵ (i, dn) ≡ ln 
Ŵ (i; dn) 

Ŵ (i; d0) 

 

= ln 
 

W (i, Y, dn) 
W (i, Y, d0) 

 

(23) 

is the log difference between the real income generated by the design dn and that generated by 

the optimal design d0 , and where ϵ (dn) is the planner’s expectational error when evaluating the 

impact of the high-speed rail design. 
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6.2 Estimation of Planner’s Preferences 

We assume that the observed CHSR design corresponds to the optimal choice of the planner. 
Thus, according to (22), any deviation from the observed design must yield weakly negative returns. 
Condition (22) demonstrates how the trade-off between votes and real income in the planner’s design 

helps us identify the planner’s preferences. The planner has incentives to favor locations with higher 

Pareto weight λU (i) or higher returns in terms of votes, as captured by ∂v (i) /∂ ln ˆ W (i) defined in 

(17). Unchosen CHSR designs that increase the real income of a location i at the expense of some 

other location i ′ reveal an upper bound for λU (i) relative to λU (i ′). Similarly, unchosen CHSR 

designs that increase (reduce) aggregate (λU -weighted) real-income while reducing (increasing) 

aggregate votes reveal a lower (upper) bound for λV relative to the average of the λU (i)’s. 
A possible approach to estimate the parameters entering (18) would be to exploit differences 

in the planner’s payoff function in reaction to small perturbations to stations’ locations, much 

like Goldberg and Maggi (1999) and Adão et al. (2023) do for tariffs. In that case, we could 

derive moments from the first-order condition in (22) holding as an equality rather than as an 

inequality. However, in our empirical setting, this approach has little identification power due to 

all covariates of interest changing smoothly in space. Moreover, closed-form solutions for optimal 
policies, which are relied upon for implementation in the previous papers on tariffs, are unavailable 

in our case. Instead, we use a moment inequality estimator that exploits discrete (rather than 

marginal) deviations from the planner’s observed station placement, in which case we can construct 

moments from the first-order condition in (22) holding as a weak inequality. Specifically, we derive 

our moment inequalities following the revealed-preference approach introduced in Pakes (2010) and 

Pakes et al. (2015). We provide implementation details in Appendix F. 
The main shortcoming of our estimator is the absence of unobserved (to the researcher) deter-

minants of the planner’s payoff function (e.g., cost shocks) that may vary across locations. Allowing 

for such unobserved determinants in our setting would only be feasible if we could determine ex 

ante (i.e., for all parameter values) whether the decisions to place stations in any two locations 

are complements or substitutes (see, e.g., Jia (2008), Arkolakis et al. (2023), and Castro-Vincenzi 
et al. (2024) ). Unfortunately, in our setting, those decisions may be either complements or sub-
stitutes: depending on the placement of other stations, the planner’s gains from an extra station 

may decrease or increase as stations are added. Therefore, to implement our moment inequalities, 
we must model the unobserved terms as expectational errors of the planner. 

Construction of Perturbations and Moments To build the inequalities in (22), we first 

construct hundreds of perturbations to the distribution of stations along the proposed CHSR design. 
In each perturbation, one station is shifted to another location without a proposed station. The set 

of alternative locations is chosen to identify upper and lower bounds on the parameters: we use the 

peaks and troughs of the covariates Zk (i) and of the voting elasticity ∂v (i) /∂ ln ˆ W (i) along the 

CHSR rail line.28 We index each one-station deviation by n and let dn be the associated design. 
28Figure A.8 in Appendix F shows such peaks and throughs for a covariate Zk (i) that equals population density. 
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Figure 4: Example of Perturbation Identifying λ 

(a) Welfare Change (b) Voting Semi-elasticity 
Note: 

the figures show the ∆ ln ˆ W (i) for a specific perturbation using 2008 cost predictions, and the voting semi-elasticity 

at the initial equilibrium corresponding to our preferred estimate under those cost predictions. 

Figure 4 shows one such perturbation, where the station in downtown LA is shifted towards 

Anaheim. The map on the left shows the real-income differences with the actual design, ∆ ln ˆ W (i) 

in (23). The map on the right shows the voting semi-elasticity, ∂v(i)/∂ ln ˆ W (i). Downtown LA 

is a low-voting-gradient area as it strongly supports the CHSR, so increasing their residents’ real 
income barely changes votes in that location. Conversely, the areas closer to the new location 

of the station have higher voting elasticities with respect to real income. Thus, by shifting the 

station’s location, this perturbation redistributes real income from low-voting-gradient areas of LA 

to higher-voting-gradient places in Orange County. As this perturbation implies a reduction in 

the real-income component of the planner’s objective and an increase in aggregate votes, it helps 

identify an upper bound on the preference for votes λV relative to an average of the λU (i). 
For estimation, we build moment inequalities using mutually exclusive subsets of perturbations. 

Specifically, letting N be the set of all perturbations, each moment e = 1, .., E is defined as the 

average value m (Ne) of the perturbations to the planner’s objective, ∆W (dn) defined in (22), 
across a subgroup Ne ⊂ N : 

m (Ne) ≡ 
 

n∈Ne 

∆W (dn) ≤ 0 (24) 

for e = 1, .., E. As long as the subsets Ne are defined as a function of variables that belong 

to the information set of the planner, the assumption of rational expectations implies that the 

expectational errors ϵ (dn) in (22) are averaged out in m (Ne). 29 Then, using (19), we can rewrite 

29I.e., 
 

n ϵ (dn) 1 {n ∈ Ne} → 0 as 
 

n 1 {n ∈ Ne} → ∞. This result depends on two assumptions. First, for 
any perturbation n, the unobserved term ϵ (dn) is unknown to the planner at the time at which the optimal CHSR 
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the moment inequality e in (24), as 

m (Ne) ≡ 
 

n∈Ne 

 
K 

k=0 

bkZk (i) + λV θV v (i) (1 − v (i)) 

 

NR (i) ∆ ln Ŵ (i, dn) ≤ 0 for e = 1, .., E. (25) 

The inequalities in (25) provide E conditions that depend on observable covariates (Zk (i), 
v (i) (1 − v (i)), NR (i)), the model-generated real-income gains in each perturbation Ŵ (i, dn), and 

the previously estimated θV . Using these E conditions, we recover the K+2 parameters b0, .., bK and 

λV . We group perturbations that help identify upper and lower bounds for our various parameters 

(see Appendix F.1 for details). Because the conditions hold as inequalities, we compute confidence 

sets for the parameters {bk, λV } following Andrews and Soares (2010). This procedure identifies an 

admissible set of parameter values such that, for a given confidence level, we are unable to reject 

the hypothesis that the data was generated by a parameter vector within the set. 

Pareto Frontier Between Votes and Welfare To understand how we form the moment in-
equalities and how they identify our parameters, we discuss here a restricted case in which the 

planner has no preferences over the distribution of real income in space (the planner’s objective 

function has bk = 0 for k = 1, .., K). Instead, it holds preferences over a utilitarian component 

of real income,  
i NR (i) ln ˆ W (i; d), and over aggregate votes,  

i NR (i) v (i; d), with weights b0 

and λV , respectively. Because only λV /b0 is identified, we normalize b0 ≡ 1. Figure 5 plots all 
the perturbations, where the x-axis represents the (demeaned) total change in votes and the y-axis 

represents the change in the utilitarian component of the planner’s welfare. The actual CHSR 

proposal corresponds to the point (0, 0). 
As the only unknown parameter is λV , we form four moments m (Ne) by grouping the pertur-

bations according to how they fall in the four quadrants displayed in the figure. The lower-left 

quadrant groups perturbations that yield both lower utilitarian welfare and lower votes than the 

actual CHSR proposal, trivially satisfying our inequality conditions. In turn, perturbations in the 

upper-right quadrant imply greater welfare and higher votes, and can only be rationalized by the 

planner’s expectational errors. 
In contrast, the perturbations in the upper-left and lower-right quadrants suggest a trade-off 

between welfare and votes. The orange dots represent the two moments m (Ne), that average 

across all perturbation within the corresponding quadrant. The values for λV (relative to b0) 

consistent with these two moment inequalities are those that satisfy the condition y + λV x ≤ 0, 
with (x, y) the coordinates of each of the two moments depicted in the orange dots. Visually, this 

set corresponds to drawing a line through the origin with (negative) slopes xUL/yUL and xLR/yLR 

(where UL and LR denote the upper-left and lower-right quadrants, respectively) and taking the 

intersection of the areas between these lines, as represented by the purple area on the graph. The 

set is 0 ≤ −xUL/yUL ≤ λ ≤ −xLR/yLR . 

design was chosen; this is guaranteed by the assumption that ϵ (dn) exclusively incorporates expectational errors of 
the planner. Second, across the perturbations n included in the same subset Ne, the correlation across the different 
unobserved terms ϵ (dn) is sufficiently low such that the Law of Large Numbers applies. 
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Figure 5: Utilitarian Welfare vs. Votes 

As the figure illustrates, the perturbations in the upper-left quadrant identify a strictly positive 

lower bound on λV , while those in the lower-right quadrant identify an upper bound. Our estimation 

procedure extends this logic to multiple covariates. Appendix F gives additional details on how the 

perturbations and moments are constructed in the general case in which the unknown parameter 

vector includes bk for k = 1, . . . , K, and on how we implement the procedure in Andrews and Soares 

(2010) to compute confidence sets. 

Parameter Estimates Table 5 shows estimates of the b’s and λV under the baseline model 
using both the projections contained in the 2008 and the 2022 business plans. We present results 

for specifications that allow the planner’s Pareto weights to depend on population density, the share 

of college-educated residents, or the share of non-white residents. In the estimation, the parameter 

space is not restricted and, as a result, our confidence sets could include both positive and negative 

values for each parameter bk or λV . 
To simplify the interpretation, we standardize every covariate Zk(i) and normalize to 1 the 

population-weighted mean of the Pareto weights λU (i). Each parameter bk can thus be interpreted 

as capturing the impact of a one-standard deviation increase in Zk(i) relative to the average Pareto 

weight.30 For each specification and parameter, we report the 95% confidence set projected on the 

corresponding parameter. Column (1) of Table 5 corresponds to Figure 5. Columns (2) to (4) allow 

for one bk at a time, while column (5) reports an estimation with all the bk’s. 

30We also demean the variable θV v (i) (1 − v (i)). As a result, the constant we estimate is b0 + 
λV E [θV v (i) (1 − v (i))] and captures the overall utilitarian motive of the planner, including what is inherited from 
the voting block. 
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Table 5: Planner’s Preferences Estimates 

(a) 2008 Business Plan 

Observable Confidence Sets 

(1) (2) (3) (4) (5) 

Density [-0.06, 1.10] [-0.07, 0.25] 
Share college [0.42, 0.53] [0.06, 0.44] 
Share non-white [-0.35, 0.53] [-0.30, 0.20] 
Votes [-0.03, 1.60] [0.39, 2.34] [0.55, 1.13] [0.24, 1.66] [0.64, 1.14] 
Constant [1.00, 1.00] [0.98, 1.00] [0.99, 0.99] [0.98, 1.01] [0.99, 1.01] 

(b) 2022 Business Plan 

Observable Confidence Sets 

(1) (2) (3) (4) (5) 

Density [-0.06, 1.10] [-0.06, 0.21] 
Share college [0.30, 0.53] [0.06, 0.44] 
Share non-white [-0.35, 0.53] [-0.30, 0.18] 
Votes [0.05, 0.26] [0.06, 0.37] [0.08, 0.14] [0.05, 0.27] [0.10, 0.18] 
Constant [1.00, 1.00] [0.98, 1.00] [0.99, 1.00] [0.98, 1.01] [0.99, 1.01] 

Notes: The brackets indicate the min and the max of the 95% confidence set for each covariate. 

Across all but one specification, our estimates indicate the planner has a strictly positive pref-
erence for votes. I.e., except for the case without any covariate in Column (1) of panel (a), the 

confidence set corresponding for the preferences over votes does not include 0. In our preferred 

specification in column (5), the coefficient on votes is centered at 0.89 using 2008 cost forecasts and 

at 0.14 using 2022 forecasts. These numbers mean that the planner is willing to give up 0.14% to 

0.89% additional real income gains for an extra percentage point of favorable votes. 
The confidence sets for the parameters entering the planner’s Pareto weights also indicate that 

the planner assigns a larger weight to welfare in census tracts with a larger share of college-educated 

residents. In turn, we cannot rule out that the planner’s weights are invariant to the census tract’s 

population density and share of non-white residents (since the λU (i) are defined as per-capita 

Pareto weights, the planner still assigns a larger weight to more populated tracts, even if the per-
capita Pareto weight does not vary with population density). In sum, the planner is far from 

the utilitarian benchmark. Appendix Figure A.4 shows the distribution of total Pareto weights 

λU (i) + λV θV v (i) (1 − v (i)) across tracts i implied by the centroid of our confidence set; these 

estimates imply a large variance in the Pareto weights. 

6.3 Optimal Station Placement with Apolitical Preferences 

To illustrate the importance of political and distributional considerations for the design of trans-
portation policy, we compute the optimal station placement under alternative planners’ preferences. 
The optimal station placement problem is non-convex due to substitutabilities and complementar-
ities across stations, as well as due to the sigmoidal function –neither convex nor concave– defining 
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the voting probabilities, v (i; d) in (5). To optimize, we use a procedure that combines the pertur-
bations from the estimation stage, simulated annealing, and a continuous optimizer. Appendix F.2 

provides details.31 

Optimal Stations Along the Actual CHSR Route We compare the proposed CHSR design 

to that preferred by an apolitical planner whose objective function does not depend on votes (i.e., 
λV = 0), thereby eliminating the planner’s incentives to assign higher real income to higher voting-
elasticity locations. We set the values of the remaining parameters entering the planner’s Pareto 

weight to the centroid of the confidence sets from column (5) in Table 5. 32 We restrict the planner 

to place all stations along actual CHSR route, and explore below the setting in which the planner 

places the stations along the alternative rail line along the I-5 highway. 
Figure 6 shows in red circles the stations that maximize the objective of the apolitical planner, 

in black diamonds the stations in the proposed CHSR design, and a color scale from blue to red to 

indicate the welfare changes in different locations. While not immediately apparent from the figure, 
the optimal design of the apolitical planner is quite different from the proposed one: the political 
motives shift stations away from high-density areas of Los Angeles and San Francisco. These 

locations have strong preferences in favor of the CHSR; as a result, the elasticity of the favorable 

vote share with respect to the real income of their residents is low. Hence, in the absence of political 
motives, several stations that, according to the original proposal, were located in suburban areas 

of San Francisco (such as San Jose), Los Angeles (Palmdale, Sylmar, Burbank) and San Diego 

(University City) are reallocated towards their corresponding metropolitan areas. 
The relocation of stations, and their associated income impacts, are shown in Column (1) 

of Appendix Table A.7. In line with our previous explanation, the largest welfare gains from 

eliminating political preferences arise from stations that move closer to dense urban areas, also 

causing the largest vote losses. 
To gauge the distributional impacts of political preferences, Table 6 displays the cross-sectional 

impact of the counterfactual CHSR design using the 2008 cost predictions. We find that locations 

with low voting elasticity experience the largest gains. This implies a redistribution of welfare 

towards high population density urban areas, which also feature a higher share of non-white resi-
dents. Appendix Figure A.6 zooms in on the Los Angeles region, displaying the real income changes 

(left panel) and the voting elasticity (right panel). The relocation of stations towards more central 
locations redistributes welfare towards the city center and away from the suburbs, in line with a 

general redistribution pattern towards high density areas that have low voting elasticity. 
As expected, aggregate real income increases and votes decrease when the planner does not care 

about votes. Compared to the impacts of original CHSR in Table 2, the gross population-weighted 

gains (without accounting for capital costs, which are kept constant when computing the optimal 
31We verify that our procedure yields the best outcome when each station is individually shifted over a 10 km 

range from the optimum. Appendix Figure A.5 shows this check. 
32Using the 2008 estimates from Panel (a) of Table 5, this implies: b = [0.07, 0.20, -0.07]. Appendix Figure A.3 

displays the topology of the confidence set from column (5) by showing pairwise projections for each combination of 
the parameters bk and λ. 
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Figure 6: Apolitical Planner, Optimal Stations along CHSR Route and Impacts vs. Proposed Plan 

Notes: The maps shows the change in the real income of each location, ∆ ln Ŵ (i, d∗ 
CHSR) defined in (23), when 

comparing the optimal design d∗ 
CHSR of an apolitical planner along the CHSR route and the proposed CHSR. The 

outcomes correspond to using the baseline model under the 2008 business plan. 

station placements) grow considerably, by 15% under 2008 costs, or by 25% under 2022 costs. The 

aggregate share of favorable votes declines only slightly (by 0.02 and 0.01 percentage points under 

2008 and 2022 costs, respectively), although as mentioned we observe considerable variance in the 

changes in votes across locations. 
The optimal station distribution of a utilitarian planner (λU (i) = 1 and λV = 0) does not 

differ significantly from the apolitical one, except that some stations are shifted from high to 

lower college-share areas, as illustrated for the case of San Diego in Appendix Figure A.7. The 

main beneficiaries from eliminating the planner’s preference for high college-share locations around 

University City are areas in downtown San Diego, whose population exhibits a mix of high and 

less educated residents. Compared to the proposed design, the aggregate welfare gains associated 

with the optimal placement of stations of the utilitarian planner are very similar to those obtained 

by the apolitical planner, suggesting that the key factor behind the lower aggregate welfare gains 

associated to the proposed CHSR is the weight that the actual planner put on votes. 
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Table 6: Apolitical planner, Welfare Gains across Covariates 

∆Real Income by Quartile 1st 2nd 3rd 4th 

Density 0.00% 0.00% 0.02% 0.05% 

Share college 0.02% 0.02% 0.01% 0.02% 

Share non-white 0.01% 0.01% 0.02% 0.04% 

Voting elasticity 0.04% 0.02% 0.01% 0.01% 

Notes: 2008 Business Plan estimates of real income gains of moving from proposed plan 

to apolitical optimum. Real income gains are population-weighted and computed within 

each quartile of the corresponding variable in each row. 

Optimal Stations Along the I-5 Highway Route The alternative I-5 route differs from the 

proposed one in that it provides a more direct connection between San Francisco and Los Angeles. 
It would have also served fewer destinations, by removing the Sacramento, Anaheim, and San Diego 

segments from the full network. 
A possible reason why the I-5 route was not chosen is preference for votes. To determine whether 

this could have been a key factor, we proceed in two steps. First, as we ignore the capital cost 

of the I-5 route, we estimate the value that makes the actual policymakers, under our estimated 

preferences, indifferent between optimally locating stations along the I-5 or along the proposed 

CHSR route. This procedure yields a cost of 44.0 billion USD, or 12% less than the capital 
costs assuming 2008 forecasts. Given costs greater than this value, our model rationalizes why the 

planner chose the actual CHSR over the I-5 route. 
Then, given these costs costs, we consider whether an apolitical planner would have preferred 

to optimally place stations along the alternative I-5 route or along the actual CHSR. Figure 7 

displays the I-5 route with optimal station placement of the apolitical planner, and shows the 

welfare changes relative to the proposed plan. Due to its smaller geographical coverage, the I-5 

route results in welfare losses for many locations along the Sacramento and San Diego branches. 
However, various locations in the greater San Francisco and Los Angeles areas benefit from a faster 

connection between the two large metropolitan areas and from a greater density of stations. 
Aggregating across tracts and weighting by population, we find a slight loss for the apolitical 

planner compared to the proposed CHSR. Thus, a planner with no preferences for votes would have 

also chosen the actual CHSR route, through the Central Valley, over the I5 route. We conclude 

that the route along the I-5 highway was not discarded due to the type of political preferences that 

we estimate.33 

33An alternative explanation is that the costs of the I5 route were in fact lower than our previous estimate, and 
that the route was discarded due to forces outside our model, such as a regional favoritism for the Central Valley 
beyond the preferences for demographic groups or votes that we have estimated. 
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Figure 7: Apolitical Planner, Optimal Stations along I5 Route and Impacts versus Proposed Plan 

Notes: The maps shows the change in the real income of each location, ∆ ln Ŵ (i, d∗
I5) defined in (23), when comparing 

the optimal design d∗
I5 of an apolitical planner along the I5 route and the proposed CHSR. The outcomes correspond 

to using the baseline model under the 2008 business plan. 

7 Conclusion 

We studied the role of policymakers’ and households’ preferences in shaping transportation 

infrastructure projects. We use the California High-Speed Rail as the basis of our study, leveraging 

the fact that we observe vote shares in favor of this project across California’s census tracts. 
The estimates reveal that voters did respond to the expected real-income impacts of the CHSR. 
So, in this context, economic voting was a significant driver of policy preferences over transport 

infrastructure. 
We posit that the proposed CHSR design represents the optimal choice of a planner, whose 

preferences we estimate using moment inequalities. Our estimator infers the planner’s preferences 

by comparing the value of the planner’s objective function under the proposed plan to that under 

alternative designs. We find that the planer selected a design that increased the total number 

of favorable votes in the 2008 referendum at the expense of alternative designs that would have 
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resulted in a smaller electoral support but larger aggregate welfare. We thus conclude that attaining 

popular approval was an important driver of the proposed design of the California High-Speed Rail. 
As a result of these preferences for gaining votes, stations were placed further away from the main 

metropolitan areas than it would have been optimal from an aggregate real income maximization 

perspective alone. Our economic model and moment inequality methodology may be generally 

applied to infer the considerations taken into account by policymakers in charge of the design of 
large and complex transport networks. 
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A Full Description of the Economic Model 

We model an economy with a set J of tracts, each tract i with a fixed resident population 

NR (i) and connected to other tracts by various transport modes. Residents consume a traded 

good, floor space, and leisure trips. They choose where to commute to work, where to take leisure 

trips, how many such trips to make, and what transport mode to use for each travel purpose 

and origin-destination pair. The discrete choices of destination and travel mode are governed by 

idiosyncratic shocks to residents’ preferences. Across tracts, residents are heterogeneous in average 

preferences over transport modes and leisure destination, efficiency units of labor, and ownership 

of the local floor space. 
Traded good firms produce using labor, floor space, and business trips with constant returns 

to scale. They choose where to send workers to business trips, how many such trips to make, 
what transport mode to use, and through what route in the transport network. The discrete 

choices of business travel destination and travel mode are governed by idiosyncratic shocks to 

firms’ productivity. Across tracts, firms are heterogeneous in terms of average preferences over 

transport modes and business destination, and productivity. In addition, tracts are heterogeneous 

in terms of the level of endogenous amenities enjoyed by their residents and the stock of floor space. 
All the transport modes operate constant-returns technologies using the tradeable good as input, 

with ticket prices covering the price of each trip. The CHSR network is constructed with a fixed 

investment financed from income taxes. The rollout of the CHSR endows the economy with an 

option of making faster or cheaper trips along some routes within specific modes compared to the 

status quo. 
In the presentation of the model, variables that are indexed by s may change either endogenously 

or exogenously based on whether the CHSR proposition passes (s = Y ) or not (s = N). 

A.1 Preferences 

When the CHSR status is s, the utility vω of an individual ω living in tract i who travels to jC 

for commuting and to jL for leisure, by transport modes mC and mL respectively, is: 

vω (i, jC , mC , jL, mL, s) = max 
C,HC ,TL 

B (i, s) 
C 1−µL −µH HµH 

C 

dC (i, jC , mC , s) 

 
qL (i, jL) B (jL, s) 
dL (i, jL, mL, s) 

TL 

µL 

εC 
ω (jC , mC ) εL 

ω (jL, mL) . 

(A.1) 



subject to the budget constraint: 

C + r (i, s) HC + pL (i, jL, mL, s) TL = I (i, jC , mC , s) (A.2) 

Expression A.1 indicates that consumers derive utility from the amenities of their place of res-
idence B (i, s) and from the consumption of tradeable commodities C, housing HC , and leisure 

trips TL, with Cobb-Douglas shares µH and µL. The amenity term B (i, s) may respond endoge-
nously to the local density of economic activity as detailed below. These workers face disutility 

dC (i, jC , mC , s) from daily commuting travel. The utility that they derive from leisure trips de-
pends negatively on time travelled dL (i, jL, mL, s) and positively on the quality of the destination 

visited, equal to a composite of an exogenous origin-destination component qL (i, jL) (capturing, 
for example, that residents of some locations may on average be more likely to have relatives in 

some other specific location) and the destination-specific amenity B (jL, s). The last two terms of 
(A.1), εC 

ω (jC , mC) and εL 
ω (jL, mL), are idiosyncratic preference shocks for commuting and leisure 

travel to each destination by each travel mode. 
The utility cost of travel is a power function of travel time τk (i, j, m, s) and depends on travel 

mode for both commuting (k = C) and leisure (k = L): 

dk (i, j, m, s) = Dk (i, m) τk (i, j, m, s)ρ for k = C, L, (A.3) 

where ρ is the elasticity of travel disutility to travel time and Dk (i, m) is a location-specific prefer-
ence for traveling through transport mode m. This term captures that workers in different tracts 

may have different tastes for different modes of travel, such as a preference for using cars over 

public transit. 
We turn now to describing the budget constraint A.2. In the expenditure side on the left, 

the price per unit of tradeable commodities (C) is normalized to 1 and the cost per unit of floor 
space for housing (H) is r (i, s). The monetary cost per round-trip leisure travel from i to j using 
travel mode m in state s is pL (i, j, m, s). The right-hand side of the budget constraint (A.2) is 
the disposable income, defined as gross income y (i, jC , s) net of taxes t (s) and annual commuting 
costs: 

I (i, jC , mC , s) ≡ (1 − t (s)) y (i, jC , s) − pC (i, jC , mC , s) TC . (A.4) 

The tax rate t (s) equals t if the CHSR is approved (s = Y ) and 0 otherwise. Gross income comes 

from two sources, labor and home ownership: 

y (i, jC , s) ≡ e (i) w (jC , s) + η (i) r (i, s) . (A.5) 

The returns to labor equal the efficiency units per resident of tract i, e (i), times the wage per effi-
ciency unit at destination, w (jC , s). So, within an origin tract, commuters to different destinations 

earn different wages based on w (jC , s); and, across origin tracts, commuters to the same destination 

earn different wages based on e (i) . The last term in (A.5) is the return to home-ownership, where 

η (i) is the locally owned floor space per resident. An increase in land rents r (i, s) reduces the real 
income of tract-i residents through the cost of housing, but it increases it through the returns to 

land as a function of η (i). 



Finally, the round-trip monetary commuting cost of traveling from i to j through means m in 

state s is pC (i, j, m, s). The annual commuting cost multiplies this per-trip cost by the number of 
working days through the year, TC . Unlike for leisure, where the number of trips TL is endogenously 

chosen, the number of commuting trips TC is fixed by the number of working days. The resulting 

demand system is quasi-homothetic, with homothetic demand over C, H, and TL after spending 

pC (i, jC , mC , s) TC annually on commuting. 

A.2 Indirect Utility and Welfare 

Maximizing out the solutions for consumption C, housing H and number of leisure trips TL, 
the solution to (A.1) gives indirect utility conditional on the origin, destinations, travel modes, and 
idiosyncratic preference shocks for destination: 

vω (i, jC , mC , jL, mL, s) = 
B (i, s) 

r (i, s)µH 

 
I (i, jC , mC , s) 

dC (i, jC , mC , s) 
εC 

ω (jC , mC ) 

 
qL (i, jL) B (jL, s) 

pL (i, jL, mL, s) dL (i, jL, mL, s) 

µL 

ε L 
ω (jL, mL) 

(A.6) 

Each resident ω makes discrete choices of destination and transport mode for both commut-
ing and leisure to maximizes indirect utility. These choices are represented by the quadruplet 

{jC , jL, mC , mL}. Destinations are chosen from the set of tracts J while the set of transport 

modes available for travel purpose k = L, C is Mk. We assume the idiosyncratic preference shocks 

for commuting and leisure travel εC 
ω (jC , mC ) and εL 

ω (jL, mL) to be IID Type-I extreme value 

distributed: 

Pr 
 
ε k 

ω (jk, mk) < x 
 

= e−e−θ kx for k = C, L, (A.7) 

where θk maps to the (inverse) of the dispersion of shocks across travel modes and destinations for 

travel purpose k = C, L. 
The average yearly real income of tract-i residents is defined as the expected value of indirect 

utility across the realizations of the εC 
ω and εL 

ω preference shocks, that is: 

V (i, s) = Eω 

 

max 
(jC ,jL,mC ,mL)∈J 2×MC ×ML 

vω (i, jC , mC , jL, mL, s) 

 

. (A.8) 

Using standard properties of the extreme-value distributions for the shocks εC 
ω and εL

ω , we can 

write this expression as:1 

V (i, s) ∝ 
B (i, s) 

r (i, s)µH 

ΩC (i, s) 
ΩL (i, s)µL 

, (A.9) 

with a constant of proportionality that is independent from i, and where ΩC (i, s) captures average 

1As an intermediate step, we exploit that the idiosyncratic preference shocks are independent, and so are the 
travel choices: 

V (i, s) = 
B (i, s) 

r (i, s)µH 
Eω 

 
max 

jC ,mC 

 
I (i, jC , mC , s) 

dC (i, jC , mC , s)εC 
ω (jC , mC ) 

 
Eω 

 
max 
jLmL 

 
qL (i, jL) B (jL, s) 

pL (i, jL, mL, s) dL (i, jL, mL, s) 

µL 

εL 
ω (jL, mL) 

 
. 



income net of commuting costs of residents of i, 

ΩC (i, s) = 

  
 

j∈J 

 

m∈MC 

 
I (i, j, m, s) 

dC (i, j, m, s) 

θC 

 

1 
θ C 

, (A.10) 

and where ΩL (i, s) is akin to a quality-adjusted price index for leisure trips for residents of i, net 

of travel costs: 

ΩL (i, s) ≡ 

  
 

j∈J 

 

m∈MC 

 
pL (i, j, m, s) dL (i, j, m, s) 

qL (i, j) B (j, s) 

−µLθL 

  

− 1 
µL θ L 

. (A.11) 

A.3 Tradeable Sector Firms 

In the tradeable sector, we assume an exogenous measure of firms in each tract.2 Tracts differ 
in their productivity A (j, s). Each firm uses floor space HY , labor NY , and business trips TB as 
inputs. A firm ω sending workers on TB business trips to destination jB using transport mode mB 

produces output according to the Cobb-Douglas production function: 

Yω (j, HY , NY , RB , jB , mB , s) = A (j, s) H
µH Y 
Y N 

1−µH Y 
−µB 

Y 

 
qB (j, jB ) A (jB , s) 
dB (j, jB , mB , s) 

TB 

µB 

εB 
ω (jB , mB ) . (A.12) 

Business trips are factor-productivity enhancing, capturing in reduced form that they promote new 

supplier or customers. Specifically, the returns to business trips depend on the productivity of the 

destination A (jB, s), on an exogenous origin-destination productivity match qB (j, jB) (capturing 

that firms in some locations may on average be more likely to find business partners in some specific 

locations), and negatively on a function of time traveled, captured by the function dB (j, jB, mB, s) 

defined as in (A.3). Finally, the return to business trips also depend on an idiosyncratic productivity 

shock εB 
ω (jB, mB) for the destination and travel mode for these business trips. We assume them 

to be IID Type-I extreme value distributed: 

Pr 
 
ε B 

ω (jB, mB) < x 
 

= e−e−θ Bx 
, (A.13) 

where θB is the (inverse) of the dispersion of shocks across travel modes and destinations for business 

travel. 
We assume that firms hire labor and floor space before observing the realizations of the idiosyn-

cratic business opportunity shocks. Then, they choose the business trip destination (from the set 
of locations J ), the transport mode (from the set of available modes MB), and the number of trips 
TB. Hence, a firm in j solves the problem: 

Π = max 
HY ,NY 

E 

 

max 
(TB ,jB ,m)∈(R+×J ×MB ) 

Yω (j, HY , NY , RB , jB , m, s) − pB (j, jB , m, s) TB 

 

− w (j, s) NY − r (j, s) HY , 

(A.14) 

where pB (j, jB, mB, s) is the monetary cost per roundtrip business trip. Because conditional on 

floor space and labor there are decreasing returns to the number of trips, we can solve for the 

number of trips TB, plug them back into the term within the expectation, and then integrate 

2We normalize the measure of firms to 1 in every tract. This is without loss of generality, given the heterogeneity 
in productivity and amenities already allowed across tracts. 



over realization of idiosyncratic business shocks using standard properties of the extreme value 

distribution defined in (A.13). 
After these steps, we obtain a closed-form solution for the expected output net of business costs 

(the term within brackets in (A.14)). Specifically, the firm problem over floor space and labor can 

be re-written as follows: 

Π = max 
HY ,NY 

 
ΩB (j, s) H

µH Y
Y N 

1−µH Y 
−µB 

Y 

 1 
1−µB − r (j, s) HY − w (j, s) NY . (A.15) 

where ΩB (j, s) is an endogenous TFP term that depends on both the TFP of the location A (j, s) 

and the distribution of business travel opportunities, 

ΩB (j, s) ≡ κBA (j, s) 

  
 

jB ∈J 

 

m∈MB 

 
qB (j, jB) A (jB, s) 

pB (j, jB, mB, s) dB (j, jB, mB, s) 

θB µB 

 

1 
θ B 

, (A.16) 

where we have denoted κB ≡ µµB 
B (1 − µB)1−µB . 

A.4 Travel Choices 

The travel decisions of workers and firms imply equations for shares and numbers of trips taken 

to a given destination. We use these equations to estimate key parameters of the model. Specifically, 
using standard properties of the extreme-value distributions for the shocks εC 

ω and εL
ω , the solution 

to (A.8) gives the fraction of residents from i that commute to j using transport mode m, 

λC (i, jC , mC , s) = 

 
I(i,jC ,mC ,s) 

dC (i,jC ,mC ,s) 

 θC 

 
j∈J 

 
m∈MC 

 
I(i,j,m,s) 

dC (i,j,m,s) 

 θC 
, (A.17) 

as well as the fraction of residents from i that travel for leisure to j through transport mode m: 

λL (i, jL, mL, s) = 

 
qL(i,jL)B(jL,s) 

pL(i,jL,mL,s)dL(i,jL,mL,s) 

µLθL 

 
j∈J 

 
m∈ML 

 
qL(i,j)B(j,s) 

pL(i,j,m,s)dL(i,j,m,s) 

µLθL 
. (A.18) 

Similarly, from the solution to the firm’s problem in A.14 and using standard properties of the 

extreme value shocks εB 
ω , the fraction of firms from j sending workers on business trips to jB takes 

the same functional form as (A.18): 

λB (i, jB, mB, s) = 

 
qB (i,jB )A(jB ,s) 

pB (i,jB ,mB ,s)dB (i,jB ,mB ,s) 

µB θB 

 
j∈J 

 
m∈MB 

 
qB (i,j)A(j,s) 

pB (i,j,m,s)dB (i,j,m,s) 

µB θB 
. (A.19) 

The last two expressions measure the shares of travelers (or firms) from location i making leisure 

(or business trips) to a destination. In the data, we observe the number of trips to each destination 

by travel purpose. In the model, the number of leisure trips from i to jL through means mL depends 

both on the share of travelers and on the intensity of travel. From the consumer problem (A.1), 
leisure trips are a constant share µL (i) of disposable income among location-i residents. Adding 

up this optimal choice across residents of i, we obtain that the total number of leisure trips from i 



to jL using mode mL is: 

TL (i, jL, mL, s) = λL (j, jL, mB, s) µL (i) 
NR (i) I (i) 

pL (i, jL, mL, s) , (A.20) 

where I (i) is the average disposable income among location i’s residents, itself a function of where 

they commute for work: 

I (i) ≡ 
 

j∈J 

 

m∈MC 

λC (i, j, m, s) I (i, j, m, s) . (A.21) 

Similarly, from the solution for TB from (A.14), the total number of business trips from i to jB 

through mode mB is: 

TB (i, jB, mB, s) = λB (i, jB, mB, s) 
µB 

1 − µB 

Y (i, s) 
pB (i, jB, mB, s) . (A.22) 

Using (A.20) and (A.22) we obtain the gravity equation (12) that we bring to the data. 

A.5 Spillovers 

Firm productivity and residential amenities may respond endogenously to the level of local 
activity. We use similar functional forms as Ahlfeldt et al. (2015) and assume that spillovers 

respond to the density of workers in the location and in the surroundings: 

A (j, s) = ZA (j) 

  
 

k∈J 

e−ρspillover 
A τmin(j,k,s) ÑY (k, s) 

H (k) 

  

γspillover 
A 

(A.23) 

B (i, s) = ZB (i) 

  
 

k∈J 

e−ρspillover 
B τmin(j,k,s) ÑY (k, s) 

H (k) 

  

γspillover 
B 

(A.24) 

where 

ÑY (j, s) = 
 

i 

λC (i, j, s) NR (i) (A.25) 

is the number of workers employed in j and H (j) is the available floor space, so that ÑY (j,s) 
H(k) worker 

density in j and τmin (j, k, s) is the fastest travel time across all modes over a given route. In 

Ahlfeldt et al. (2015), the congestion at residence (denominated B here) depends on how many 

people live around an area, while the agglomeration at destination (denominated A here) depends 

on how many people work around an area. Since we assume a fixed number of residents, in our 

case both spillovers are a function of the endogenous number of workers in the surrounding areas. 
Similarly, in Ahlfeldt et al. (2015), the surrounding density is discounted by the ρ elasticities times 

travel time. Since we have multiple travel mode, in our case we use the fastest travel time across 

all travel modes. 

A.6 High-Speed Rail Use 

The travel time τk (i, j, m, s) and the roundtrip monetary cost pk (i, j, m, s) introduced so far 

for each travel purpose k = C, L, B correspond to the route chosen in the transport network to 



travel from origin i to destination j through mode m for purpose k in state s. 
Without the CHSR (i.e. when s = N) we use the travel time corresponding to the fastest route 

by origin and destination for a given mode, and assign the monetary cost of this route. When the 

CHSR is available (i.e. when s = Y ), the CHSR is treated as a perfect substitute to traveling via 

public transit (for commuters or long-distance travelers) or by air (for long-distance travelers). That 

is, the CHSR is used within mode m for each pair (i, j) if and only if the CHSR-based time-cost 

pair (τ, p) leads to a higher indirect utility than the pre-CHSR one. 
Specifically, given the indirect utility (A.6), the commuting time and monetary cost when the 

CHSR is available, {τC (·, Y ) , pC (·, Y )}, is the solution to: 

max 
{τC(·,N),pC(·,N)},{τCHSR(·),pCHSR(·)} 

(1 − t) y (i, j, Y ) − pTC 

τρ . (A.26) 

Similarly, as implied by the indirect utility (A.6) and by the definition of business productivity 

(A.16), the time and monetary cost for a leisure (k = L) or business (k = B) traveler when the 

CHSR is available is the {τk (·, Y ) , pk (·, Y )} that solves 

min 
{τC(·,N),pC(·,N)},{τCHSR(·),pCHSR(·)} 

pτ ρ . (A.27) 

A.7 Equilibrium Conditions 

Equilibrium in the labor market of tract i dictates that the demand for efficiency units of labor 

in a location equals the supply of efficiency units to that location, N (i, s): 

NY (i, s) = 
 

j∈J 

λC (j, i, s) e (j) NR (j) 

   
≡N(i,s) 

(A.28) 

where λC (j, i, s) fraction of commuters from j to i through any mode: 

λC (j, i, s) ≡ 
 

m∈MC 

λC (j, i, m, s) . (A.29) 

Next, using the solution for consumer demand for floor space from (A.1) and for firm’s demand 

for floor space and labor from (A.14), the equilibrium in the housing markets is: 

NR (i) 
µH (i) I (i) 

r (i, s) 
+ NY (i, s) 

w (i, s) 
r (i, s) 

µHY (i) 
1 − µHY (i) − µB (i) 

= H (i) , (A.30) 

where the first term in the left-hand side is the demand for floor space coming from residents of i, 
the second term is demand coming from firms located in i, and H (i) is the supply of floor space 

in i. Finally, since tradeable firms operate subject to constant returns, the zero-profit conditions 

resulting from (A.14) dictates: 

w (j, s)1−µB−µH Y r (j, s)µH Y = κΩΩB (j) (A.31) 

for some constant κΩ that is a function of µB and µHY . 
An equilibrium consists of distributions of land prices r (j, s), wages w (j, s), and supplies of 

labor into tradeables NY (i, s), such that: 
i) the land market clearing condition (A.30) holds for all tracts; 



ii) the labor market clearing condition (A.28) holds for all tracts i; and 

iii) the zero-profit condition (A.31) holds for all tracts j. 
Note that the system of equations defined by (A.30)-(A.31) include as unknowns the endogenous 

productivity term Ω (j), the agglomeration and amenity spillover functions A (j, s) and B (i, s), and 

the average income I (i). Using (A.16), (A.23), (A.24), and (A.21), all these endogenous variables 

can be expressed as functions of the endogenous variables {r (j, s) , w (j, s) , NY (i, s)} which define 

the equilibrium. 

A.8 System for Counterfactual Analysis 

In this section we derive the system that we implement when running counterfactuals. For this, 
we now move to express the equilibrium value of every endogenous outcome in a scenario where 

s = Y relative to its value in an equilibrium where s = N . We let 

X̂ (·) ≡ 
X (·, Y ) 
X (·, N) 

be the ratio of variable X between its equilibrium value when s = Y (so that the CHSR will be 

built with some probability) and when s = N (the CHSR is not built). 

CHSR Shock Starting from an initial equilibrium, the previous system of equilibrium conditions 

is impacted by potentially different travel times and monetary travel costs. Specifically, the shock 

to the system is given by time changes, 

τ̂k (i, j, m) 

and by monetary travel cost changes, 

p̂k (i, j, m) 

for each travel purpose k = C, L, B (commuting, leisure, or business travel). The pre- and 

post-CHSR levels of these variables are defined in (A.26) and (A.27). On route-mode combi-
nations (i, j, m) where travelers do not choose CHSR, these shocks are τ̂k (i, j, m) = p̂k (i, j, m) = 

1. On route-mode combinations where CHSR is preferred to the pre-existing mode then either 

τ̂k (i, j, m) < 1, p̂k (i, j, m) < 1, or both. To construct these shocks, we use the pre- and post-CHSR 

travel times and costs following the discussion in Section A.6. When s = Y , then disposable income 

also changes with the tax rate in a common away across locations: 

1 − t = 1 − t. 

Equilibrium System in Relative Changes The equilibrium response to {ˆ τ (i, j, m) , p̂k (i, j, m) , 1 − t} 

consists in changes in land rents r̂ (i), wages ˆ w (i), and labor supplies ˆ NY (i) such that: 
i) The land market clears, i.e. (A.30) holds in the counterfactual equilibrium, which implies: 

r̂ (i) = 
HC (i, N) 

H (i) 
ˆ I (i) + 

 

1 − 
HC (i, N) 

H (i) 

 

ŵ (i) N̂Y (i) , (A.32) 



where HC ≡ NR (i) µH(i)I(i) 
r(i,s) is the aggregate housing demand in i and ˆ I (i) is the change in average 

income of residents of i defined in (A.21), 

ˆ I (i) = 
 

j∈J 

 

m∈MC 

λC (i, j, m, N) 

I (i, N) 
λ̂ C (i, j, m) Î (i, j, m) , (A.33) 

where the change in disposable income next of taxes and commuting costs for commuters from i to 

j using mode m is 

Î (i, j, m) = (1 + χ (i, j, m)) (1 − t) ŷ (i, j) − χ (i, j, m) p̂C (i, j, m, N) , (A.34) 

where χ (i, j, m) ≡ TCpC(i,j,m,N) 
I(i,j,m,N) is the share of commuting costs in disposable income in the pre-

CHSR scenario, and where the change in pre-tax income is 

ŷ (i, j) = 
 

1 − 
e (i) w (j, N) 

y (i, j, N) 

 
ˆ I (i) + 

e (i) w (j, N) 
y (i, jC , N) 

ŵ (j) , (A.35) 

and, from (A.17), ˆ λC (i, j, m) is given by: 

λ̂C (i, jC , mC ) = 

 
Î(i,jC ,mC ) 

d̂C (i,jC ,mC ) 

 θC 

 
j∈J 

 
m∈MC 

λC (i, j, m, N) 
 

Î(i,j,m) 
d̂C (i,j,m) 

 θC 
(A.36) 

ii) the labor market clears, i.e. (A.28) holds in the counterfactual equilibrium, which implies 

N̂Y (i) = 
 

j∈J 

 
λC (j, i, N) e (j) NR (j) 

N (i, s) 

 

λ̂C (j, i) (A.37) 

where, in the supply side in the right-hand side of (A.37), ˆ λC (j, i) is given by 

λ̂C (j, i) = 
 

m∈MC 

 
λC (j, i, m, N) 

λC (j, i, N) 

 

λ̂C (j, i, m) . (A.38) 

iii) the zero-profit condition (A.31) holds in a counterfactual scenario, i.e. 

ŵ (j)1−µB −µH Y r̂ (j)µH Y = Ω̂B (j) , (A.39) 

where, from (A.16), ˆ ΩB (i) is given by (10) in the text. 
From (A.23), the agglomeration component of TFP in ˆ ΩB changes according to: 

Â (j) = 

  
 

k∈J 

ÑY (k, N) /H (k)  
k ′ ∈J e

−ρspillover 
A τmin(j,k ′ ,N) ÑY (k ′ , N) /H (k ′) 

e−ρspillover 
A τmin(j,k,B) ˆ̃NY (k)

  

γspillover 
A 

(A.40) 

where from (A.25) the change in the number of workers employed in j is: 

ˆ̃NY (j) = 
 

i 

λC (i, j, N) NR (i) 

ÑY (j, s) 

 

λ̂C (i, j) . (A.41) 

for λ̂C (i, j) defined in (A.38). 



A.9 Welfare Changes 

From (7) to (9) we obtain the following expressions for the welfare change: 

V̂ (i) = 
B̂ (i) 

r̂ (i)µH 

 

Ω̂C (i) Ω̂L (i) . (A.42) 

The commuting component ˆ ΩC (i) changes according to (8), with Î (i, j, m) in that expression given 

by (A.34). The leisure changes according to 

Ω̂L (i) ≡ 

  
 

j∈J 

 

m∈ML 

λL (i, j, m) 
B̂ (j) 

p̂L (i, j, m) τ̂ (i, j, m)ρ 

µLθL 
 

1 
θ L 

. (A.43) 

In these expressions, endogenous amenities component ˆ B (i) satisfies a similar equation to ˆ A (j) in 

(A.40): 

B̂ (j) = 

  
 

k∈J 

ÑY (k, N) /H (k)  
k ′ ∈J e

−ρspillover 
B τmin(j,k ′ ,N) ÑY (k ′ , N) /H (k ′) 

e−ρspillover 
B τmin(j,k,B) ˆ̃NY (k)

  

γspillover 
B 

. 

(A.44) 

Conditions (7) and (9) in the text follow from (A.42) and (A.43) when we set ˆ B (i) = r̂ (i) = 1. 

B Data Sources 

Geographic Units The analysis is conducted at the tract level. Our sample comprises 7866 out 

8057 census tracts in California’s mainland that are populated and have positive employment and 

no missing data (U.S. Census (2008b)and U.S. Census Bureau (2010a)). These tracts account for 

98.5% of the state’s population and 97.6% of all tracts. 

Voting We obtain data on the number of favorable and negative votes by precinct for Proposition 

1A and for other ballots in 2006 and 2008 from the UC Berkeley’s Statewide Database (University 

of California, Berkeley (2008)). We also use their crosswalk to construct a tract-level dataset of 
votes. 

Commuting Data on commuting flows are taken from the American Community Survey (ACS) 

(U.S. Census Bureau, 2010b). The American Community Survey reports tract-to-tract data on 

commuting by transport mode as a part of the Census Transportation Planning Products.3 To 

measure commuting flows, respondents answer the question: “At what location did this person 

work LAST WEEK?”. We construct the flows excluding work-from-home workers, corresponding 

to less than 5% of statewide workers in this period. In addition, to measure the mode of travel, 
respondents are asked: “How did this person usually get to work LAST WEEK?”. We classify car, 
truck, or van as the “car” mode. We classify the bus, subway, commuter rail, light rail, or ferry as 

3The LEHD also reports commuting flows by origin and destination based on administrative data linking em-
ployees home locations with their employer’s location. As we do not observe the frequency at which these trips are 
taken, these origin-destination flows may not reflect regular commuting. 



the “public transit” mode. Finally, we classify the remainder, which includes biking and walking 

as the “walking or biking” mode. 

Leisure and Business trips Leisure and business trips are compiled from the California House-
hold Travel Survey (CAHTS) conducted between 2010 and 2012. The CAHTS records trips longer 

than 50 miles taken over a 8-week survey period. 18,008 households and 68,193 trips appear in 

the dataset. The data include information on the origin, destination, and residence census tract 

of each trip, the number of people on each trip, the travel mode, and the purpose of the trip. We 

classify each trip into a leisure trip if the purpose includes entertainment, vacation, shopping or 

visiting friends and family. The top leisure destinations are Disneyland, Yosemite, Mission Beach 

(San Diego), Downtown San Francisco, and Downtown San Diego. We classify each trip into a 

business trip of the purpose includes business meetings, conventions, or seminars. The top business 

destinations are the State Capitol in Downtown Sacramento, Downtown Los Angeles, Downtown 

San Francisco, and Downtown San Diego. Taken together, leisure and business trips account for 

84% of all trips in the survey. The remaining trips include combined business and pleasure trips, 
medical trips, school-related activities, and trips for which the purpose is not stated. 

Wages We use data on wages by workplace Census tract and residence Census tract from the 2008 

and 2019 samples of the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination 

Employment Statistics published by the U.S. Census (U.S. Census (2008a)). The LEHD reports 

the number of workers in each workplace-residence Census tract pair who have monthly earnings 

below $1,250, between $1,250 and $3,333, and above $3,333. To construct an average wage along 

each route, we first measure average earnings within each of these three bins within California using 

the individual level American Community Survey samples in 2008 and 2019. We use these bins 

and our estimates of average earnings within each bin to compute average earnings among workers 

within each workplace-residence tract pair.4 

Population and Demographics We define the number of working-age residents NR (i) entering 

in the model quantifications using the distribution of commuters originating in each census tract 

from each ACS with a re-scaling to match the working-age population of California according to 

the BLS. 
We measure share of non-white residents, occupational composition, the share of residents with 

a college degree, and demographic covariates by census tract from the 2006-2010 and 2015-2019 

American Community Survey five-year estimates. 

Construction of Additional Variables Using the previous sources we construct additional 
variables needed for the implementation of the model. We construct disposable income y (i, jC , N) 

in (A.5) using its definition as the sum of labor income and locally owned land rents. We construct 

4We use the 2012-2016 sample because the 2016-2020 sample is not yet available, and also encompasses the start 
of the COVID-19 pandemic, which saw large changes in commuting patterns. 



the land rent component of income as η (i) r (i, N) ≡ ηR(i)r(i)HC(i,N) 
NR(i) , where ηR (i) is the share of 

homes that is owner-occupied from ACS and r (i) HC (i, N) are residential home values from ACS 

transformed to annualized rent-equivalent values. We measure the share of land used for residential 
purposes, HC (i, N) /H (i) entering in (A.32), using Zillow’s ZTRAX data . We construct the 

disposable income I (i, jC , mC , N) defined in (A.4) using y (i, jC , N), the round-trip commuting 

costs described in the next section, and TC = 250 commuting trips throughout the year. 

Additional Parameter Calibration We calibrate the remaining parameters using estimates 

in the literature. We assume that the share of firm expenditure on floor space is µH,Y = 0.20, 
in line with Valentinyi and Herrendorf (2008). We use estimates from Ahlfeldt et al. (2015) to 

calibrate the productivity and amenity spillovers from equations A.23 and A.24. Specifically, using 

their preferred estimate from Table V, column 3, we assume:γspillover 
A = 0.071, γspillover 

B = 0.155 and 

ρspillover 
A = 0.361, ρspillover 

B = 0.759.

C Transport Network Details 

Transport Network We construct a transport network to calibrate times and costs from each 

census tract origin to each census tract destination, for each possible transport mode: car, public 

transit (combining bus and rail stations), air travel, biking, and CHSR. The centroid is defined 

as the geographic centroid of the most populous Census block within each tract. We construct 

the road network based on the 2010 primary and secondary road shapefile for California obtained 

from the U.S. Census, which we transform into a graph. We connect the tract centroids to the road 

network by creating links from the centroids to closest node on the road network. The resulting road 

network has 72790 edges and 71957 nodes, of which 7866 nodes correspond to the tract centroids 

in our analysis. 
To this network, we add a rail network with 185 train stations obtained from California’s 

Department of Transportation for 2013, which is the closest available year to 2008.5 We construct 

the air network including the 10 largest airports in California: LAX, SFO, SAN, OAK, SJC, SNA, 
SMF, ONT, BUR, LGB. We include the 24 unique air routes operating among these airports 

according to the Bureau of Transportation 2008 airline ticket dataset (Bureau of Transportation 

Statistics, 2008a).6 For the CHSR, we obtain a shapefile of the planned route and stations at the 

time of the vote in November of 2008 from the University of California at Davis.7 This shapefile 

includes the planned 24 stations plus two potential stations (Irvine and Tulare). We exclude these 

two additional stations, as a total of 24 stations is consistent with the description of the network 

in the original CHSR bill passed by the California legislature before the 2008 vote. 
The resulting multi-modal transport networks includes the road network expanded with tract 

centroids, rail stations, airports, and the CHSR. We create artificial edges that connect the rail 

5Available at: https://geodata.lib.utexas.edu/catalog/stanford-xd213bw5660. 
6Available at: https://www.transtats.bts.gov/DatabaseInfo.asp?QO_VQ=EFI&Yv0x=D. 
7Available at: https://databasin.org/datasets/7a9f1867f2e24a1e97ab10419a73b25a/. 

https://geodata.lib.utexas.edu/catalog/stanford-xd213bw5660
https://www.transtats.bts.gov/DatabaseInfo.asp?QO_VQ=EFI&Yv0x=D
https://databasin.org/datasets/7a9f1867f2e24a1e97ab10419a73b25a/


stations, airports, and CHSR stations to their closest node on the original road network. Figure 

A.1 displays the roads, rail stations, airports, and CHSR line with stations used throughout the 

paper. 

Travel Times We calibrate speeds by private car and public bus by assigning a travel time to 

each edge of the road network to match travel times by car only and by public transit only from 

Google Maps on a random sample of 10,000 origin and destination tracts. We assign travel times 

by multiplying the arc-length kilometer distance of each edge by its average speed, using one among 

5 possible speed categories for each edge depending on its features (primary urban, primary rural, 
secondary urban, secondary rural, and artificial centroid-node link). We add a time constant to 

every trip that is independent from distance and captures waiting times. 
All fastest routes are computed using the fast marching method. The fastest route via car is 

computed on the calibrated road network. The fastest route via public transit is defined as the 

fastest between traveling via public bus or via rail for each origin-destination pair. The fastest route 

via rail assumes that travelers use a car to the stations nearest to the origin and destination tracts, 
excluding origin-destination pairs where driving times to rail stations are greater than 2 hours 

one-way or the nearest station to the origin and destination tracts are the same. We use station-to-
station rail times available in the websites of rail systems in California (ACE Rail, Amtrak, BART, 
CalTrain, Coaster, and Metrolink) and wait time of 17 minutes at the origin rail station. 

Fastest routes on bike on the road network are calculated assuming an average speed of 20 km 

per hour in urban environments. 
The fastest travel time by air is computed assuming road speeds to and from airports, allowing 

travelers to use any airport regardless of distance to origin and destination tract, using flight times 

from Google Maps and assuming a wait time of 90 minutes at the origin airport. 
Paths and times via CHSR are defined similarly to via rail, with travelers using the stations 

closest (by car) to the origin and destination tracts. We use planned speeds between contiguous 

stations of the CHSR network from the 2008 Speed Rail Authority’s Business Plan (California High 

Speed Rail Authority, 2008). Specifically, from the 2008 business plan we assign a speed of either 

125, 175, or 220 miles per hour. The resulting pairwise travel times between all stations closely 

match those reported between major stations. In Section 6.3, when optimizing over stations along 

the alternative I5 design, we set the speed on each point of the I5 route equal to the speed on its 

closest point along the original CHSR design. 

Travel Costs For car, the cost of travel from each origin to each destination on a given route is 

computed based the per-mile cost of fuel assuming a cost of $3.50 per gallon8 and fuel efficiency 

of 21 miles per gallon9 . The cost of traveling via bus equals the average one-way adult bus ticket 

price in the county where the origin census tract is located, according to the American Public 

Transportation Association (American Public Transit Association, 2010), and complemented with 

8Source: 2008 Los Angeles Almanac, available at http://www.laalmanac.com/energy/en12.php. 
9Source: US Department of Energy, available at https://www.fueleconomy.gov/feg/byclass/Midsize_Cars2008.shtml/. 

http://www.laalmanac.com/energy/en12.php
https://www.fueleconomy.gov/feg/byclass/Midsize_Cars2008.shtml/


data from each county’s website when necessary (average bus fare across all counties is $2.15). A 

fixed and variable per-mile cost of traveling via rail is estimated for the Amtrak Capital Corridor 

in Northern California and applied to the entire rail network. This estimation yields a rail fare 

with a fixed cost of $2.92 and an extra cost of $0.20 per mile. The cost of air travel on every 

route is set to the average one-way ticket cost of $151 across routes according to the Bureau of 
Transportation Statistics.10 To calculate the ticket price of the CHSR, we use as basis either the 

$55 ticket price from LA to San Francisco from the 2008 Business Plan (California High Speed Rail 
Authority, 2008) or the update of this number to $110 in the 2022 plan (California High Speed Rail 
Authority, 2022). We project these costs to the full HSR network using the fixed cost estimated 

for the Amtrak Capitol Corridor. 

Figure A.1: Transport Network 

Note: the figure shows the transport network used throughout the paper, including roads, rail stations, airports, and 

the CHSR. 

10Available at https://www.transtats.bts.gov/DatabaseInfo.asp?QO_VQ=EFI&Yv0x=D . 

https://www.transtats.bts.gov/DatabaseInfo.asp?QO_VQ=EFI&Yv0x=D


D Implementation of the Gravity Equations 

D.1 Commuting 

We discuss the details of how we estimate the parameters of the gravity equation for commuting 

in 11. First, we measure disposable income I (i, j, m), defined in A.4, as the difference between labor 

income and commuting costs. Consistent with the model, the labor income term is the product 

of an origin-specific component e (i), which accounts for the possibility that workers that reside in 

different locations have different human capital, and a destination-specific component w (j), which 

accounts for productivity differences across workplaces. We estimate these origin- and destination-
specific components using the following estimating equation: w data (i, j) = exp (˜ e (i) + ˜ w (j)) +
ε (i, j), where wdata (i, j) denotes the observed average wage of workers who reside in i and work 

in j, ẽ (i) ≡ ln (e (i)), ˜ w (j) ≡ ln w (j), and ε (i, j) accounts for factors affecting observed average 

wages that cannot be accounted for by an origin-specific and a destination-specific fixed effect. We 

assume that ε (i, j) does not impact workers’ commuting decisions and is mean-independent of the 

origin- and destination-specific components; e.g., it captures either measurement error in wages 

or wage shocks unexpected at the time of making commuting decisions. We take this approach 

because we do not observe wdata (i, j) for every (i, j) pair. 
Second, we consider as feasible commuting choices any pair of origin and destination census 

tracts in CA and transport mode such that the travel time is either less than 4 hours (when using 

either car or public transport) or less than 2 hours (when biking). As a result, we use about 33 

million origin-destination pairs between which it is feasible to commute by car, 21 million pairs for 

public transit, and 5 million pairs for bike. For all of the 7,866 potential origin locations considered 

in our analysis, there is at least one destination that may be reached by car and at least one 

destination may reached by public transport. 
Finally, because our information on commuting comes from a finite sample of residents, we 

allow for the possibility that the observed commuting shares λobs 
C (i, j, m) differ from the true ones, 

λC (i, j, m), by a term errorC (i, j, m) that captures sampling error: λobs 
C (i, j, m) = λC (i, j, m) +

errorC (i, j, m). 
We perform the estimation in two steps. In the first step, to estimate θC and ρC , we use 

variation in the choice of destination conditional on origin and transport mode. We use the two 

moment conditions 

E 

 
λobs 

C (i, j, m) 
j ′ λ

obs 
C (i, j ′ , m) 

− λC (i, j, m) 
j ′ λC (i, j ′ , m) 

 

X (i, j, m) 

 

= 0, (A.45) 

where X(i, j, m) = (ln (I (i, j, m)) , ln τ (i, j, m))′ . We build sample analogues of these moment 

conditions by averaging across origins i, destinations j, and modes of transport m. 
In the second step, to estimate the preferences DC (i, m) that residents of a census tract i have 

for a particular transport mode m, we model the origin- and mode-specific term DC (i, m) as a 

function of observed origin-specific covariates XC (i) with mode-specific coefficients ΨC (m): 

DC (i, m)−θC ≡ exp (ΨC (m) XC (i)) . (A.46) 



The vector XC(i) includes a constant, the share of residents who own a car, the share of residents 

who are under 30, the share of college-educated residents, the share of nonwhite residents, the log 

median income, and the log population density. To estimate these parameters, we use variation 

across origins in the share of commuters that use each transport mode m. Specifically, we use the 

mode m-specific moment conditions 

E 

  
 

j 

λ obs 
C (i, j, m) − 

 

j 

λC (i, j, m)

  XC (i) 

 

= 0. (A.47) 

We build a sample analogue of these mode-specific moment conditions by taking an average across 

all origin census tracts i. 

D.2 Business and Leisure 

We describe the details of our procedure to estimate the gravity equation for long-distance leisure 

and business trips in (12). The size of the sample containing information on leisure and business 

trips is much smaller than that containing information on commuting trips and, in particular, 
contains no information for the residents of certain census tracts, making it impossible to estimate 

as free parameters the origin-destination and origin-mode unobserved effects Zk (i, j) and Dk (i, m) 

in (12). To sidestep this data limitation, we write Zk (i, j) and Dk (i, m) as a function of observable 

characteristics. Specifically, we let:  
Zk (i, j) 
Dk (i, m) 

µkθk 

≡ exp (γk (m) + ΨkXk (j)) (A.48) 

for k = L, B, where γk (m) is a mode and travel purpose-specific shifter, Ψk is a vector of purpose-
specific parameters, and Xk (j) is a vector of observed characteristics. In our empirical specification, 
XL(j) includes proxies for the amenity value of a destination: the log distance between j and the 

closest beach, a dummy variable for whether j is in a national park, the share of workers in j 

employed in the hospitality sector, and the log total population. The vector XB(j) includes the 

share of workers in management roles in the destination tract and its log total population. 
We measure the share of business and leisure trips ˜ λk (i, j, m), travel time τ (i, j, m), and travel 

costs pk (i, j, m) as indicated in Section 4.1. Given the limited size of our sample on business 

and leisure trips, we account for sampling error in our measure of ˜ λk (i, j, m), which we denote as 

λ̃obs 
k (i, j, m).

The separate identification of θk and ρ arises from the response of ˜ λk (i, j, m) to the travel time 

variable τ (i, j, m) and the monetary cost term pk (i, j, m). While we follow standard procedures to 

measure travel times and, thus, are reasonably confident of its accuracy, our measure of the mon-
etary cost of traveling between any two census tracts likely suffers from substantial measurement 

error. Consequently, we treat the term pk (i, j, m) merely as a control and its associated coeffi-
cient as a nuisance parameter, and assume that ρ equals the corresponding parameter entering the 

commuting equation. 
We estimate the remaining parameters following a two-step estimation approach similar to that 



described in Section D.1 for commuting. In the first step, we identify θk and βk through the 

following moment condition: 

E 

 
λ̃obs 

k (i, j, m) 
j ′ ∈Jk 

λ̃obs 
k (i, j ′ , m) 

− λ̃k (i, j, m) 
j ′ ∈Jk 

λ̃k (i, j ′ , m) 

 

Xk (i, j, m) 

 

= 0, (A.49) 

for k = L, B, where Xk(i, j, m) = (Xk(j), ln τ (i, j, m) , ln pk(i, j, m))′ . 
For each origin tract i, the moment above sums over j ′ in the denominators of the left hand side 

of (A.49). In the case of trips performed by airplane, we further exclude from the choice set those 

pairs of origin and destination tracts for which the travel time by airplane is larger than by car. The 

sample analogue of the moments in (A.49) averages over approximately 24 million pairs of origin 

and destination tracts among which it is feasible to travel by airplane, and over approximately 52 

million pairs of tracts that may be reached by car or public transport. 
In a second step, after normalizing the mode-specific shifter γk (m) to equal zero for m = 

airplane, we identify γk (m) for m = private vehicle and m = public transport using variation 

across origins in the share of travelers that use each transport mode m, through the following 

m-specific moment conditions 

E 

  

j 

λ̃ obs 
k (i, j, m) − 

 

j 

λ̃k (i, j, m) 

 

= 0. (A.50) 

We build a sample analogue of these mode-specific moment conditions by taking an average across 

all origin census tracts i. 



E Additional Tables and Figures 

x

Table A.1: Commuting Equation Estimates, Second Step 

(1) (2) (3) (4) (5) (6) (7) (8) 

Public Transport 
Constant -1.05a -0.00 0.17 -0.93a -2.69a -4.47a -8.00a -15.69a 

(0.05) (0.13) (0.29) (0.12) (0.10) (1.56) (0.34) (1.09) 

Sh. Car Owners -1.18a 0.49b 

(0.16) (0.22) 

Sh. Under 30 -2.68a -2.57a 

(0.59) (0.33) 

Sh. College-educated -0.24 -1.26a 

(0.25) (0.21) 

Sh. Nonwhite 3.78a 2.96a 

(0.24) (0.18) 

Log Median Inc. 0.31b 0.91a 

(0.14) (0.09) 

Log Pop. Density 0.94a 0.61a 

(0.05) (0.03) 

Private Vehicle 

Constant 0.95a -3.29a 2.52a 1.36a 0.39a -5.30a -0.38c -15.74a 

(0.04) (0.10) (0.25) (0.09) (0.08) (1.20) (0.22) (0.82) 

Sh. Car Owners 5.07a 5.84a 

(0.12) (0.17) 

Sh. Under 30 -3.50a -1.53a 

(0.50) (0.24) 

Sh. College-educated -0.94a -0.84a 

(0.19) (0.16) 

Sh. Nonwhite 1.29a 1.91a 

(0.21) (0.14) 

Log Median Inc. 0.56a 0.85a 

(0.11) (0.07) 

Log Pop. Density 0.18a 0.35a 

(0.03) (0.02) 

Num. Obs. 23593 23593 23593 23593 23593 23593 23593 23593 

Note: a denotes 1% significance; b denotes 5% significance; and c denotes 10% significance. Robust 

standard errors are displayed in parenthesis. All specifications are conditional on the estimates 

θ̂C = 3.35 and ρ̂C = 0.21. The mode of transport excluded from the specification is “walk/bike.” 



Table A.2: Model Variants 

Indirect impacts Costs and Expectations 

(land, wages, spillovers) 
Capital and Completion Probability 

Maintenance Costs and Timeline 

2008 Business Plan no 
2008 Forecasts 

2008 Business Plan, with GE yes 

2022 Business Plan no 
2022 Forecasts p = 0.65, T = 33 

2022 Business Plan, with GE yes 

Note: this table summarizes the differences across counterfactual scenarios. In the third column, T is the minimum 

number of years after the vote until the full CHSR project is operational, and p is the probability that it will become 

operational in each year after T if it has not done so before. 

Table A.3: Determinants of Heterogenous Gains from CHSR 

2008 2008 GE 2022 2022 GE 

(1) (2) (3) (4) 

b b b b 

Distance to nearest CHSR station -0.00024∗∗∗ -0.00039∗∗∗ -0.00007∗∗∗ -0.00011∗∗∗ 

% public transit in commuting 0.01223∗∗∗ 0.01272∗∗∗ 0.00488∗∗∗ 0.00520∗∗∗ 

% air in long distance travel 0.00852∗∗∗ 0.02653∗∗∗ 0.00139∗∗∗ 0.00416∗∗∗ 

LA fixed effect 0.00027∗∗∗ 0.00042∗∗∗ 0.00012∗∗∗ 0.00010∗∗∗ 

SF Bay Area fixed effect 0.00005∗∗ -0.00016∗∗∗ 0.00009∗∗∗ -0.00000 

Central Valley fixed Effect -0.00011∗∗∗ 0.00015∗∗∗ -0.00005∗∗∗ 0.00002∗∗ 

R2 0.864 0.809 0.859 0.774 

N 7,866 7,866 7,866 7,866 

Note: The table shows, for each model variant, an OLS regression of the tract-level real-income change, ˆ W (i), on 

covariates. “Distance to nearest CHSR station” is the tract centroid’s log-distance to the nearest CHSR station; “% 

public transit in commute” is fraction of residents who, in the observed equilibrium without the CHSR, commute via 

public transit; “% air in long distance” is fraction of residents who, in the observed equilibrium without the CHSR, 
make long distance trips via air (defined as an average of that fraction for business and leisure travelers); and the 

LA, SF Bay Area and CV fixed effects correspond to dummies for whether the census tract is within LA county, one 

of the SF Bay Area counties, or one of the 18 counties in California’s Central Valley, respectively. 



Table A.4: Gain by Type of Travel 

2008 Business Plan 2022 Business Plan 

+GE +GE 

Upfront Tax -0.09% -0.09% -0.28% -0.28% 

Commute (net of tax) 0.04% 0.02% -0.04% -0.03% 

Leisure 0.05% 0.05% 0.01% 0.01% 

Business - 0.06% - 0.01% 

Total -0.01% 0.13% -0.31% -0.28% 

Note: This table splits the aggregate welfare change (defined as a population-weighted average of the ˆ W (i) in (6)) 

into the upfront tax component (1 − R) ln (1 − t) paid prior to the CHSR being operational (in the first row) and the 

annualized net gain conditional on the CHSR being operational, R ln ˆ V (i). This net gain is further decomposed, from 

(7), into its commuting component ˆ ΩC (i) in (8) and the leisure component ˆ ΩL (i) in (9). The gains from commuters 

are computed as coming from their time and cost savings from HSR, net of taxes paid while the CHSR is operational, 
holding gross income constant. The “+GE” case also includes amenity spillovers and wage changes in this term. 

Figure A.2: Potential CHSR Routes (1996) 

Note: the figure shows a digitization of the three planned routes reprinted in page 113 of part 1 of the 2005 CHSR Envi-
ronmental Impact Report (US DOT, 2005), available at https://hsr.ca.gov/wp-content/uploads/docs/programs/eir-
eis/State_Wide_EIR_EIS_Volume_1_Part_1_of_3.pdf. These three routes (Central Valley, I5, and Coastal) are 

used to construct the instrument #2 in Section 5. The route in red is the actual planned CHSR as of the 2008 vote. 

https://hsr.ca.gov/wp-content/uploads/docs/programs/eir-eis/State_Wide_EIR_EIS_Volume_1_Part_1_of_3.pdf
https://hsr.ca.gov/wp-content/uploads/docs/programs/eir-eis/State_Wide_EIR_EIS_Volume_1_Part_1_of_3.pdf


Table A.5: Estimates of Voting Equation, Alternative Models, All Covariates 

Model: 2008 Plan 2008 Plan, GE 2022 Plan 2022 Plan, GE 

Inst. Var.: 
Random Random Random Random Random Random Random Random 
Station Path Station Path Station Path Station Path 

(1) (2) (3) (4) (5) (6) (7) (8) 

log( ˆ W19) 66.97a 63.68a 50.23a 43.16a 177.58a 159.28a 123.45a 96.66a 

(4.54) (5.29) (3.64) (4.30) (11.59) (13.11) (9.26) (10.53) 

Log-odds Dem. Sh. 0.38a 0.38a 0.38a 0.38a 0.38a 0.38a 0.38a 0.38a 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Environ.: Prop. 10 2.41a 2.41a 2.41a 2.43a 2.40a 2.41a 2.39a 2.42a 

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) 

Transp.: Prop. 1b 0.80a 0.81a 0.86a 0.86a 0.82a 0.82a 0.90a 0.88a 

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Sh. non-White -0.17a -0.17a -0.15a -0.15a -0.16a -0.16a -0.15a -0.15a 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Sh. College 0.74a 0.74a 0.75a 0.75a 0.74a 0.74a 0.76a 0.76a 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Sh. Under 30 0.19a 0.18a 0.18a 0.18a 0.19a 0.19a 0.17a 0.17a 

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Log. Dist. Station -0.00 -0.00 -0.00 -0.01b -0.00 -0.01c -0.01b -0.01a 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

F-stat 966 850 1093 1108 1111 810 1229 974 

Num. Obs. 7861 7861 7861 7861 7861 7861 7861 7861 

Note: a denotes 1% significance level. Robust standard errors in parenthesis. All specifications control for 

county fixed effects. Columns (1) and (2) present baseline estimates. Columns (3) and (4) present results 

for the model that incorporates general equilibrium effects. Columns (5) and (6) present results for the 

“pessimistic” model, which assumes a 0.5 probability that the CHSR is completed in 24 years. Columns (7) 

and (8) present results for a version of the model that allows the CHSR to be a perfect substitute to traveling 

by car. 

Table A.6: Estimates of Voting Equation, Alternative Weighting and Sample Selection Criteria 

Baseline Weighting - Num. Votes Weighting - Participation Selection - ≥ 5km line 

Inst. Var.: 
Random Random Random Random Random Random Random Random 
Station Path Station Path Station Path Station Path 

(1) (2) (3) (4) (5) (6) (7) (8) 

log( ˆ W19) 66.97a 63.68a 90.50a 83.21a 65.97a 62.33a 89.14a 86.47a 

(4.54) (5.29) (6.16) (7.19) (10.54) (8.31) (7.62) (9.20) 

Log-odds Dem. Sh. 0.38a 0.38a 0.41a 0.41a 0.42a 0.42a 0.40a 0.40a 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Environ.: Prop. 10 2.41a 2.41a 2.34a 2.35a 2.23a 2.24a 2.50a 2.50a 

(0.05) (0.05) (0.05) (0.06) (0.17) (0.17) (0.06) (0.06) 

Transp.: Prop. 1b 0.80a 0.81a 0.87a 0.86a 0.90a 0.90a 0.82a 0.82a 

(0.04) (0.04) (0.05) (0.05) (0.09) (0.09) (0.05) (0.05) 

Sh. non-White -0.17a -0.17a -0.23a -0.23a -0.21a -0.21a -0.31a -0.30a 

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) 

Sh. College 0.74a 0.74a 0.74a 0.74a 0.71a 0.72a 0.72a 0.72a 

(0.01) (0.01) (0.01) (0.01) (0.03) (0.03) (0.02) (0.02) 

Sh. Under 30 0.19a 0.18a 0.23a 0.23a 0.23 0.23 0.26a 0.26a 

(0.03) (0.03) (0.03) (0.03) (0.14) (0.14) (0.03) (0.03) 

Log. Dist. Station -0.00 -0.00 0.00 0.00 -0.01 -0.01 -0.00 -0.01 
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) 

F-stat 966 850 1332 979 1162 1244 665 531 

Num. Obs. 7861 7861 7861 7861 7861 7861 7861 7861 

Note: a denotes 1% significance level. Robust standard errors in parenthesis. All specifications control for county fixed 

effects. Columns (1) and (2) present baseline estimates. Columns (3) and (4) present results where each census tract is 

weighted by the number of votes in the HSR referendum. Columns (5) and (6) present results where each census tract 

is weighted by the participation rate in the HSR referendum. Columns (7) and (8) present results where we exclude 

census tracts that are less than 5 km away from the railway line. 



Figure A.3: 95% Confidence Set for Planner’s Parameter Estimates 

Notes: 2008 Business Plan estimates. Pairwise projections of the 95% confidence set from column (6) in Table 5 in 

spherical normalization (see Appendix F.1). In blue are denoted all the points 
� 
b∗ 

k, b∗ 
j

 
such that there exists a vector � ⃗

b, λ 
 

with bk = b∗ 
k and bl = b∗ 

j which belongs to the confidence set. 

Figure A.4: Distribution of Planning Weights 

Notes: 2008 Business Plan estimates. Histogram of the effective planning weights, defined as λU (i) + 

λV θV v (i) (1 − v (i)), from specification (5) in Table 5. The parameters are normalized so that the population-
weighted mean of the Pareto weights is 1. 



Table A.7: Stations in the Apolitical Planner vs. Proposed Plan (2008 Business Plan) 

(1) (2) (3) (4) (5) (6) 

Station Distance (km) ∆Welfare (%) ρdensity ρshare college ρshare non-white ρvoting semi-elasticity 

Sacramento -1.61 -0.0001 0.046 0.019 0.11 0.029 

Stockton 2.31 -0.0001 0.029 0.077 -0.0076 -0.01 

San Francisco 5.63 0.0044 0.46 0.17 0.11 -0.59 

Modesto -0.13 0 -0.066 -0.12 -0.054 0.07 

SFO 7.85 0.0007 0.09 0.052 0.0027 -0.12 

Palo Alto 18.24 0.0007 0.046 0.068 0.066 -0.061 

San Jose -4.66 0 0.068 0.1 -0.016 -0.086 

Merced -1.01 0 -0.0039 -0.0074 0.0083 -0.004 

Gilroy 0.01 0 0.0088 -0.044 -0.031 -0.0084 

Fresno 1.13 0 -0.066 -0.086 -0.0092 0.041 

Bakersfield -3.39 0 -0.017 -0.0085 -0.033 0.041 

Palmdale 46.9 0.0013 0.15 -0.0014 0.052 -0.026 

Sylmar 35.86 0.0051 0.46 -0.12 0.28 -0.19 

Burbank 5 0.0013 0.28 -0.03 0.14 -0.089 

Ontario -4.97 0.0004 0.049 -0.014 0.053 -0.013 

Los Angeles 0.19 0.0004 0.4 -0.063 0.16 -0.19 

City of Industry -23.5 0.0033 0.35 -0.15 0.23 -0.12 

Riverside -10.8 0.0006 0.035 -0.044 0.05 0.018 

Norwalk -8.09 0.0023 0.15 -0.048 0.15 0.022 

Anaheim -0.03 0 -0.29 0.068 -0.2 0.022 

Murrieta -11.64 0.0002 0.017 -0.07 0.031 0.0017 

Escondido -0.04 0 -0.00089 0.035 -0.098 0.072 

University City 5.93 0.0002 0.015 0.0051 -0.064 0.02 

San Diego -5.09 0.0003 0.043 0.082 -0.062 0.028 

Notes: 2008 Business Plan estimates. Column (1) reports the distance in km between the optimal location and the proposed 

station. A positive number indicates a movement towards San Diego, negative towards San Francisco. Column (2) reports the 

change in aggregate welfare in basis points (%) given the Pareto weights λU (i) between the optimal station placement minus the 

welfare corresponding to moving only the corresponding station back to its original location in the proposed plan. In columns 

(3)-(7), ρX show the correlation between ∆ log ˆ W (i) and the corresponding covariate X in that one-deviation counterfactual 
from the proposed plan. 



Figure A.5: Apolitical Planner, Robustness of Optimal Design 

Notes: 2008 Business Plan estimates. Each panel displays how aggregate welfare is affected when moving the indicated 

individual station by about ±10km around the optimal location. Optimal stations are indicated in red, the proposed ones in 

black (sometimes outside). 



Figure A.6: Apolitical Planner, Welfare vs. Votes in L.A. 

(a) Welfare Change (b) Voting Semi-elasticity 
Notes: 

2008 Business Plan estimates. 

Figure A.7: Utilitarian Planner, Welfare vs. Share College in San Diego 

(a) Welfare Change (b) Share College 
Notes: 

2008 Business Plan estimates. 



F Appendix to Section 6 (Planner Preferences) 

This section contains additional details on the implementation of the planner’s preference esti-
mation and optimal station location problem. 

F.1 Planner’s Preferences Estimation 

Design of the perturbations As indicated in subsection 6.2, our estimation relies on a mo-
ment inequality estimator based on a set of perturbations n ∈ N of the CHSR design that yield 

inequalities of the form 
J 

i=1 

 

b0 + 
K 

k=1 

bkZk (i) + λV ∇v (i) 

 

NR (i) ∆ ln Ŵ (i, dn) − ϵ (dn) ≤ 0, (A.51) 

where ∇v (i) ≡ θV v (i) (1 − v (i)) is the semi-elasticity of votes to real income. We generate these 

perturbations with the aim of identifying upper and lower bounds on the parameters b and λV . 
For each covariate Z ∈ Z = {Z1, . . . , ZK , ∇v}, we construct a set of potential locations L (Z) cor-
responding to peaks and troughs of Z along the proposed CHSR lines. We order these locations as 

a function of their distance to San Francisco along the CHSR outline. To illustrate this procedure, 
Figure A.8 displays the variation in population density along the proposed CHSR outline highlight-
ing its peaks and troughs as potential station locations (green) in comparison to the proposed ones 

(red). 
For each covariate Z, we then define a set of perturbations N (Z) by moving each station 

Figure A.8: Potential Station Locations based on Population Density 

Notes: Smoothed population density n̂ (i) = 
J

i ′=1 n (i ′) e−ρdist(i,i ′) where ρ = 100 and dist(i, i ′) is the arc-degree 

distance between Census tracts i and i ′ . The x-axis is an indicator of the location between San Francisco (x = 0) 

and San Diego (x = 1) as a fraction of the entire CHSR length, with Los Angeles corresponding to x ≃ 0.7. Potential 
locations for stations are identified as local peaks and troughs and indicated in green. 



s = 1 . . . 24 individually by a certain number of steps k = −Nsteps . . . − 1 (towards San Francisco) 

and k = 1 . . . Nsteps (towards San Diego) among the set of potential locations. In our baseline 

specification, we choose Nsteps = 2, which, for a number of 24 stations, generates 24 × 4 = 96 

perturbations per covariate. 
Our final set of perturbations N = ∪Z∈Z N (Z) is the union of these covariate-specific pertur-

bations. In our largest specification (using as covariates population density, the share of college-
educated residents, the share of non-white residents and votes) we obtain 4×96 = 384 perturbations 

to identify 5 parameters (b0, ..., bK and λV ). 

Moment Conditions To lighten notation, we rewrite the welfare inequality (A.51) for pertur-
bation n (i.e, design dn) as 

∆W (dn; γ) ≡ 
K+2 

k=1 

γkXk (n) − ϵ (dn) ≤ 0, 

where γ = (b0, b1, . . . , bK , λV ) is the vector of parameters we want to estimate and 

X (n) ≡ 

  

 
i NR (i) ∆ ln Ŵ (i, dn) 

i NR (i) ∆ ln Ŵ (i, dn) ZT 
1 (i) 

. . .  
i NR (i) ∆ ln Ŵ (i, dn) ZT 

K (i) 
i NR (i) ∆ ln Ŵ (i, dn) ∇v (i) 

  

. 

To obtain upper and lower bounds on each parameter γk, we create a set of moments indexed 

by e = 1, . . . , E with E = 2 × (K + 2). Each moment is associated to a particular sign of the 

component Xk evaluated in 2008 at the time when the CHSR was designed. More precisely, for 

e = 1, . . . , E, we define the moment 

m̂e (γ) = 

 
n∈Ne 

∆W (dn; γ) 

|N | 
and associated standard deviation 

σ̂e (γ) = 

 
n∈Ne 

(∆W (dn; γ) − m̂e (γ))2 

|N | 

 1
2 

, 

where Ne = 
 
n ∈ N | X2008 

e (n) ≥ 0 for e = 1, . . . , K + 2 and Ne = 
 

n ∈ N | X2008 
e−(K+2) (n) ≤ 0 

 

for e = K + 3, . . . , E. Since the subsets Ne ⊂ N are created using information from 2008, we can 

use the moment condition that E 
 
ϵ (dn) |I2008 = 0. Following the Modified Method of Moments 

from Andrews and Soares (2010), we construct the statistics 

ˆ Q (γ) = 
E 

e 

 

max 
 

|N | m̂e (γ) 
ˆ σe (γ) 

, 0 
2 

. 

We construct a 95% confidence set over parameter γ as 

Γ = 
 

γ | ˆ Q (γ) ≤ cv95 (γ) 
 

, 



where the critical value cv95 (γ) is computed by bootstrap. 

Normalization The estimation procedure runs into the problem that the planner weights γ are 

not uniquely determined since for any positive real number z > 0, z ×γ give the exact same planner 

preferences. We use two different types of normalizations: 

• To guarantee having a bounded confidence set, we use a spherical normalization during the 

estimation stage, requiring that 
 

k 

 
γsphere 

k 

2 
= 1. 

• When reporting the result and to make the parameters more directly interpretable, we nor-
malize γ so that the population-weighted average of λU (i) is 1 across locations. Specifically, 
the means that for any γsphere, we define 

γ norm 
k ≡ 

γ sphere 
k 

z (γsphere) 

where 

z 
 
γsphere 

 
= 
 

i 

NR (i) γ0 + 
K 

k=1 

γ sphere 
k Zk (i) 

 

. 

Since the covariates Zk are normalized to have mean 0 and standard deviation 1, γnorm 
k can 

be interpreted as is the relative impact on the per-capita Pareto weight of having covariate 

Zk one standard deviation above its mean. 

F.2 Planner Optimization 

Procedure The optimal station location problem is highly non-convex optimization due to the 

presence of a sigmoidal functional form of the voting block (neither concave nor convex) and 

competing complementarities (convex) and substitutabilities (concave) arising in the placement of 
stations. The optimization problem requires the use of non-convex techniques. The optimization 

is done in three sequential steps. 
First, we use the information in the precomputed perturbation set N used for estimation. For 

each station s, we identify the perturbation n ∈ N with the highest welfare among those that 

shifted the location of station s, and evaluate a new CHSR design in which station s is set to that 

best location. If total welfare increases, we accept this location; if not, we keep the initial location 

and move on to the next station. 
Second, we use a simulated annealing method. A randomly selected station is shifted among the 

potential locations that were considered when constructing the perturbations. The new location 

is accepted with a probability that depends on the welfare obtained (1 if welfare increases, and a 

positive probability even if welfare decreases). 
Third, we implement a continuous optimizer. This final step attempts to refine the local op-

timum obtained by the previous two steps by using a continuous optimizer (specifically, we use 

simplex or interior-point algorithms). We parametrize the CHSR outline with a cubic spline over 

its coordinates, allowing us to evaluate welfare over a continuous set of station locations. 



These efforts to globally explore the candidate set of station locations do not guarantee identi-
fication of the global optimum. Nonetheless, we verify that our final result is a good candidate by 

checking that it yields the highest possible welfare when each station is moved individually within 

a range of 10 km from the proposed optimum along the CHSR outline, as shown in Figure A.5 for 

the case of the apolitical planner using 2008 cost predictions. 

Dealing with Expectations Errors The planner’s objective function is defined as the expec-
tation of future welfare, evaluated using information available in year 2008. We cannot compute 

the expectation term in practice. To deal with this issue, we adopt the same strategy that we used 

in the estimation: for each potential design d, we evaluate the planner’s objective using time T 

data (when the CHSR was projected to be in service) and introduce a forecast error term ϵ (d; γ) 

for each given set of planner weights γ = (b; λ), defined as 

ϵ (d; γ) = 
 

i

λU (i; b) NR (i) ∆ ln Ŵ (i, d) + λV 

 

i 

NR (i) v (i; d) 

− E 

  

i 

λU (i; b) NR (i) ∆ ln Ŵ (i, d) + λV 

 

i 

NR (i) v (i; d) | I 2008 

 

. 

When computing optimal station locations for a counterfactual set of planner weight γ = (b, λV ), 
ϵ (d; γ) is unknown. When optimizing, we assume that the uncertainty driving the forecast error 

is independent of the planner’s preferences and set ϵ (d; γ) ≡ ϵ (d; ̂γ) where ˆ γ is the estimated 

planner’s weights. To evaluate ϵ (d; ̂γ), we use the property that design d is not optimal under the 

estimated preferences γ̂, i.e., that  

i 

λU 

 
i; ̂b 
 

NR (i) ∆ ln Ŵ (i, d) + λ̂V 

 

i 

N (i) v (i; d) − ϵ (d; ̂γ) ≤ 0. 

To avoid penalizing alternative CHSR designs, we adopt the lowest possible value for ϵ (d; ̂γ) and 

set it to 

ϵ (d; ̂γ) ≡ max 0, 
 

i 

λU 

 
i; ̂b 
 

NR (i) ∆ ln Ŵ (i, d) + λ̂V 

 

i 

NR (i) v (i; d) 

 

. 
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