
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Essays on the political economy of the environment; methods and applications

Permalink
https://escholarship.org/uc/item/5zf1c11j

Author
Sanford, Luke Coyne

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5zf1c11j
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Essays on the political economy of the environment; methods and applications

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Political Science & International Affairs

by

Luke Coyne Sanford

Committee in charge:

Professor Jennifer Burney, Co-Chair
Professor Margaret Roberts, Co-Chair
Professor John Ahlquist
Professor Prashant Bharadwaj
Professor Megumi Naoi

2021



Copyright

Luke Coyne Sanford, 2021

All rights reserved.



The dissertation of Luke Coyne Sanford is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2021

iii



DEDICATION

To Xiaomin: You hold me together and make me whole.

To Cassia for the perspective that you un-knowingly lent

To Izzi Woof.

iv



EPIGRAPH

What you make from a tree should be at least as miraculous as what you cut down.

—Richard Powers, The Overstory

v



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Introduction: The Political Economy of Natural Resources and the Environment . . 1

Chapter 2 Democratization, Elections, and Public Goods: The Evidence from Deforestation . 5
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Democracy and deforestation . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Trading the forest for the trees? . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Empirical Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Implications and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Heterogeneous Treatment Effects: agriculture and election type . . . . . . . 31
2.9 Levels of aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.10 Geographically weighted regressions . . . . . . . . . . . . . . . . . . . . . 38
2.11 Measures of competitiveness . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.12 Neighboring forest and lagged forest . . . . . . . . . . . . . . . . . . . . . . 43
2.13 Timing of Deforestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 3 Measurement and Inference using Satellite Data in Benin . . . . . . . . . . . . . . 57
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vi



Chapter 4 Discovery of Influential Text in Experiments Using Deep Neural Networks . . . . 109
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3 Discovering Influential Phrases: The Problem . . . . . . . . . . . . . . . . . 112
4.4 Method for Extracting Phrases Predictive of Human Decisions . . . . . . . . 114
4.5 Replication of an Experimental Conjoint . . . . . . . . . . . . . . . . . . . . 122
4.6 Censorship of Chinese Social Media Posts . . . . . . . . . . . . . . . . . . . 125
4.7 How do phrases used by the media influence peoples’ climate change opinions?128
4.8 Future Directions and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 141
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

vii



LIST OF FIGURES

Figure 2.1: Forest cover change across electoral systems . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.2: Forest cover change across levels of electoral competitiveness, regime type and
electoral system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.3: Forest cover change across electoral competitiveness, regime type, and electoral system 25

Figure A.1: Relationship between democracy regime type and forest cover change across forest
types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure A.2: Coefficient plots for forest type–elections . . . . . . . . . . . . . . . . . . . . . . . 34

Figure A.3: Coefficient plots for forest type–margin . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure C.1: Geographically Weighted Regression: Coefficient on Democracy . . . . . . . . . . 41

Figure C.2: Geographically Weighted Regression: Coefficient on < 20% Margin . . . . . . . . . 41

Figure C.3: Geographically Weighted Regression: Coefficient on < 20% Margin . . . . . . . . . 42

Figure C.4: Geographically Weighted Regression: Coefficient on < 10% Margin . . . . . . . . . 42

Figure 3.1: Mechanisms from land rights to productivity . . . . . . . . . . . . . . . . . . . . . 61

Figure 3.2: Components of the DML strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 3.3: Timeline of project rollout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 3.4: Neural network and random forest structures . . . . . . . . . . . . . . . . . . . . . 82

Figure 3.5: Overview of imagery in Benin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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ABSTRACT OF THE DISSERTATION

Essays on the political economy of the environment; methods and applications

by

Luke Coyne Sanford

Doctor of Philosophy in Political Science & International Affairs

University of California San Diego, 2021

Professor Jennifer Burney, Co-Chair
Professor Margaret Roberts, Co-Chair

Trying to study environmental politics is like trying to juggle flaming bowling pins while riding

a unicycle–it requires the acrobat to be good enough at both juggling (political science) and unicycle

riding (environmental science) that they do not immediately crash and burn. My attempt to do so is

below. In my dissertation I take three different approaches to answering questions which can contribute

to our understanding of the interface between the political forces and the environment. In the first I

explore electoral deforestation cycles, where deforestation rates are higher surrounding elections in young

democracies.These cycles are most pronounced when the elections are highly competitive, occur in

young or weakly institutionalized democracies, and are held in majoritarian systems where politicians

can effectively target voters with geographic policies. Here, a set of rules designed to expand political

xvi



power have the unintended consequence of increased environmental destruction. In the second paper

we develop a method for discovering and testing influential concepts and phrases in text. We adapt a

neural network with recurrent and convolutional layers designed to make the network’s decisions more

interpretable to a different task—to identify phrases and concepts which are highly persuasive to a reader.

We then apply this to climate change communication to try to uncover some of the most persuasive concepts

both for and against climate change mitigation. In it I evaluate the effects of receiving a formal land

title on the behavior of plot owners—usually smallholder farmers—using satellite imagery and machine

learning. This case speaks to a substantive question that drives millions of dollars in aid annually—how

can we reduce barriers to increasing productivity for the world’s poorest and least food secure regions.

It also demonstrates new methods which use existing data to more effectively evaluate future (or past!)

interventions. Specifically, I evaluate whether having the boundaries of one’s plot officially demarcated and

recorded and the ability to obtain a legal title increase the probability that part of the plot will be converted

from annual to perennial crops, whether there will be cropland expansion in the plot, and whether the

built-up area in these plots increases. I also test whether land titling results in land-sparing in surrounding

areas by increasing productivity on the intensive margin. To do this I develop a set of methods for using

satellite imagery to measure changes in land cover based on sub-annual variations in surface reflectance

of different wavelengths of light. This allows me to observe outcomes at an annual scale and detect

the proportion of plots under different types of landcover. Evidence from a pilot area of analysis shows

increased conversion from natural forest to cropland as a result of land formalization.

xvii



Chapter 1

Introduction: The Political Economy of

Natural Resources and the Environment

I study the political economy of environmental stewardship: how do citizens and politicians value

the preservation or exploitation of natural resources, and how are those values converted into actions and

policies? My research combines deep understanding of environmental processes and governance with

methods from computer vision and natural language processing that facilitate use of novel imagery and

text for causal inference around these questions. I firmly believe that environmental politics research is

interdisciplinary by nature and that understanding environmental processes is imperative to understanding

the politics of those processes. So far my research has been focused on three main projects: 1) Do elections

change the value that incumbent politicians place on forest preservation? 2) Do formal property rights

change how landowners value different land uses? 3) What concepts or phrases are most persuasive

when discussing enacting climate policy? I also develop methodological tools to answer these questions.

I develop methods for integrating data sources like satellite imagery and text into a causal inference

framework and I show how we can we make use of learned representations from machine learning

algorithms to understand causal processes of environmental politics.

In the first paper in my dissertation Chapter 2 titled “Democratization, Elections and Public

Goods: the Evidence from Deforestation” I find evidence of “electoral deforestation cycles” where on

1



average deforestation rates in election years are higher than those in non-election years. These cycles are

most pronounced when the elections are highly competitive, occur in young or weakly institutionalized

democracies, and are held in majoritarian systems where politicians can effectively target voters with

geographic policies. I use satellite measured global gridded forest cover data from 1982 to 2015, results

from all national-level elections held during that time period, and control variables including economic and

demographic variables. The research builds upon case studies of this dynamic during particular elections in

Kenya, Brazil and Indonesia to develop a theoretical framework for when we should expect elections to be

associated with higher rates of deforestation. I argue that in non-election years politicians have incentives

to preserve forests because of the flow of goods that they provide through ecosystem services and because

they will preserve forests to be “used” when they have the highest political value. During an election

year when the politician could plausibly lose, the future value of the flow of ecosystem services is greatly

reduced. Meanwhile the politician can maximize the political credit they get from allocating access to

forested land to people who are influential in the election—farmers in important districts or firms with

deep pockets, among others. This means politicians have much greater incentives to allow the exploitation

of forests during competitive election years than during non-election years. Furthermore, these effects

are likely to be most pronounced in settings where the politician is unlikely to be held accountable for

their actions (weakly institutionalized democracies) and where they can identify and target key voters

(majoritarian systems).

The second paper in my dissertation Chapter 3 is titled “The Effects of Land Tenure Security on

Agricultural and Environmental Outcomes in Benin: New Evidence from Satellite Data” which received

the best poster award at Political Methodology annual conference and Outstanding Student Presentation

Award at American Geophysical Union annual conference. In it I evaluate the effects of receiving a

formal land title on the behavior of plot owners—usually smallholder farmers—using satellite imagery

and machine learning. This case speaks to a substantive question which drives millions of dollars in aid

annually—how can we reduce barriers to increasing productivity for the worlds poorest and least food

secure regions. It also demonstrates new methods which use existing data to more effectively evaluate

future (or past!) interventions. Specifically, I evaluate whether having the boundaries of one’s plot officially

demarcated and recorded and the ability to obtain a legal title increase the probability that part of the plot

2



will be converted from annual to perennial crops, whether there will be cropland expansion in the plot, and

whether the built up area in these plots increases. I also test whether land titling results in land-sparing in

surrounding areas by increasing productivity on the intensive margin. To do this I develop a set of methods

for using satellite imagery to measure changes in land cover based on sub-annual variations in surface

reflectance of different wavelengths of light. This allows us to observe outcomes at an annual scale and

detect the proportion of plots under different types of landcover.

The statistical contribution comes from the use of a double machine learning estimator to use

pre-treatment satellite imagery to adjust for differences between titled and untitled land which are only

visible through characteristics of land cover. I compare results from two machine learning methods that I

developed specifically for this task: a random forest classifier combined with statistical time-series methods

and a deep convolutional neural network imported from natural language processing techniques. At the

moment the results are limited to one department of Benin but they show that plots which were demarcated

for titling showed had a higher conversion of forest to cropland and also a higher rate of conversion to

perennial crops. The paper’s new methods pave the way for many retrospective evaluations of similar

interventions, especially in places where treatment was not randomized or failed to include important

physical or environmental factors. I am in the process of developing methods which can incorporate

high-resolution imagery to improve the model’s ability to learn different characteristics of built up areas.

In a third coauthored Chapter 4 paper titled “Discovery of Influential Text in Experiments Using

Deep Neural Networks” we develop a method for discovering and testing influential concepts and phrases

in text. We adapt a neural network with recurrent and convolutional layers designed to make the network’s

decisions more interpretable to a different task—to identify phrases and concepts which are highly

persuasive to a reader. We developed methods to extract phrases from the intermediate layers to facilitate

the concepts in the text which were most influential. We validate the method on a conjoint experiment

where respondents were asked about the desirability of immigrants with different characteristics, showing

that if one didn’t know what the treatments were in the conjoint experiment we can still extract the

most influential treatments and their approximate effects. We then apply the model to climate change

communication.

In summary, the work in this dissertation advances our understanding of environmental politics by
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building new theories of the political economy of natural resource use and developing new methodological

tools to help test those theories. I hope that by taking a multi-faceted approach informed by fields outside

of political science I can edge the field a step closer to answering some of the difficult but important

questions which lurk on the horizon. I also hope that this research can be used to improve the lives of the

millions who depend on ecosystem services for their well-being or who are vulnerable to climate change

and environmental destruction.
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Chapter 2

Democratization, Elections, and Public

Goods: The Evidence from Deforestation

2.1 Abstract

This paper shows that over the last three decades competitive elections were associated with in-

creased deforestation. Protection of forested areas provides long-term, public goods while their destruction

provides short-term, private goods for particular voters. Politicians facing a competitive election offer

voters access to forested areas mainly for small-scale farming or commercial use of timber in exchange for

electoral support. I test this theory of political deforestation using satellite generated global forest cover

data and the results of over 1000 national-level elections between 1982 and 2016. I find that countries

which undergo a democratic transition lose an additional .8 percentage points of their forest cover each

year, that years with close elections have over 1 percentage point per year higher forest cover loss compared

to non-election years, and that as the margin of victory in an election decreases by 10 points the amount of

deforestation increases by .7 percentage points per year. These increases are on the order of five to ten times

the average rate of forest loss globally. This suggests democratization is associated with under-provision

of environmental public goods and contested elections are partially responsible for this under-provision.

Replication Materials: The data, code, and any additional materials required to replicate all
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analyses in this article are available on the American Journal of Political Science Dataverse within the

Harvard Dataverse Network, at: https://doi.org/10.7910/DVN/EF7R0Z.

2.2 Introduction

“If an election were held every year, there would be no forest left.”

–High level Kenyan official, December 19981

Leading up to Kenya’s first competitive election in 1992, President Moi signed a series of excisions

granting key voters access to protected forested areas [3]. The World Resource Institute noted, “Recent

forest loss has resulted from government approved, politically motivated, and dubiously legal excisions

of forest land from protected areas, reserves, and plantations” [1]. Decades earlier, [4] wrote “securing

the backing of the Mourides became more urgent with the advent of self-government in Senegal... the

government of Senegal curried favor with the Marabouts by giving them privileged access to publicly

subsidized inputs: fertilizers, mechanical equipment, land carved out from forest reserves...” (emphasis

added). Deforestation rates increase 8-10% in mayoral election years in Brazil [5, 6]. How widespread is

political deforestation, and what are the common mechanisms that underlie these electoral deforestation

cycles?

Deforestation is one of the most important environmental issues of our time. When forests are

cleared most of the carbon in their biomass is released into the atmosphere, accounting for over one third of

all greenhouse gas emissions [7]. Preventing deforestation is one of the most cost-effective climate change

mitigation measures [8]. Deforestation is also the leading cause of habitat loss and species extinction and

is associated with higher aridity, increased soil erosion, and lower water quality. Globally, only 6.2 million

square kilometers of the preindustrial 16 million square kilometers of forest remain [9], nearly 90% of

which is on publicly owned land. Recent estimates point to a slowing rate of deforestation but continued

tropical deforestation remains an important problem [10]. Because nearly 90% of remaining forests are

publicly owned, deforestation is a political problem.

Some argue that democratic governments tend to provide more public goods than autocratic

1The original quote appears in [1] and later appears in [2].
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governments, the provision of which improves the lives of those who democracies enfranchise [11, 12].

Others suggest that competitive elections in weakly institutionalized democracies incentivize politicians

to forgo public goods provision and instead target electorally influential people with private goods (for

example, [13, 14]). This paper adds nuance to the research on democratic governance and environmental

protection [15, 16] by considering the effects of competitive elections on The provision of environmental

public goods through forest protection.

I demonstrate that democratic transitions and closely contested elections in weakly institutionalized

democracies result in deforestation. I start with a trade-off politicians face: provide short-term, private

goods offered by cutting down forests or provide long-term, public goods offered by forest preservation.

When a politician faces a more competitive election the short-term electoral advantage they gain from

giving key voters access to forested land outweighs the long-term support a politician gains by preserving

forests. This results in increased rates of deforestation during competitive elections–as observed in Kenya

[3] or Brazil [6].

I test this theory globally using satellite derived data on deforestation from 1982 to 2016 [17]. I

combine this with national level electoral data, and economic and demographic covariates. Across all

countries with any forest from 1982-2016, forests in countries which undergo a democratic transition

have higher rates of forest loss after the transition than before, controlling for changes in population

and economic growth. Election years have higher rates of forest loss than non-election years in weakly

institutionalized democracies. Elections with smaller margins of victory are associated with a higher rate

of forest cover loss compared to elections with larger margins of victory in these countries. These tests

eliminate many alternative mechanisms including economic growth, population changes, time-invariant

characteristics of a location (such as topography or agricultural suitability), and year-to-year changes that

affect all cells similarly (such as global commodity prices).

In generalizing across such a wide array of countries over such a long time this paper is limited in

its ability to isolate specific causal mechanisms. Increased deforestation in an election year can occur as a

result of agricultural expansion, logging, mining, infrastructure expansion, or others. However, the decision

to allow destruction of forests so that other land uses can occur is one which is most likely to occur in weak

democracies in an election year–something which is both important and merits further investigation.
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This paper provides the first cross-national, longitudinal study of the link between elections and

deforestation using data generated from satellite imagery. I show that forests are a resource politicians can

use for political gain, and that electoral competition may lead politicians to prioritize short-term gain at

the expense of longer-term environmental public goods provision. This means that competitive elections

themselves, a foundational component of democracy, provide perverse incentives to cause long-term

environmental damage. This runs counter to the common conception of democracy as protective of natural

capital.

2.3 Democracy and deforestation

It is a stylized fact that democratic governments improve public goods provision resulting in welfare

gains for the majority of the population [11, 12], and that the mechanism that drives this relationship

is competitive elections [18]. This line of reasoning extends into the research on democracy and the

environment. Developed democracies tend to have higher levels of environmental protection and lower

levels of pollution than non-democracies [19] because of their tendencies to provide public goods [16, 20,

21] and reduce corruption [8, 22].

Other research clarifies when democracy reduces public goods provision and environmental

protection. Often in young or developing democracies an introduction or increase in political competition

can decrease the availability of public goods [14, 23], increase patronage politics [13, 24], and hurt the

poor [25]. Others have found that democracies are associated with worse environmental outcomes [26] and

specifically deforestation [20, 27] though these findings lack theoretical motivation.

Several case studies examine the link between electoral incentives and deforestation. [2] argues

that the destruction of several forest reserves in Kenya can be attributed to increased demand for patronage

in pre-election periods. Also set in Kenya, [3] argues that the introduction of multiparty elections in

1991 led to targeted excisions of protected forested land in areas pivotal for the election and deforestation

rates increased thereafter. [6] finds that in Brazilian municipalities where mayors run for re-election

deforestation rates are 8-10% higher than in non-election years. [28] discover “political logging cycles”

in Indonesia, where deforestation rates increase during competitive elections. These studies join brief
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observations by other authors that in competitive elections, politicians use protected forested areas as a

bargaining chip to win the support of key voters [4, 29, 30].

Natural sciences research identifies the mechanisms by which most deforestation occurs. The most

common land use transition over the last fifty years has been from forest to agricultural land and pasture.

Over the last thirty years, more than 80% of new agricultural land was previously forest [8]. Economic

growth causes deforestation through logging as well as infrastructure expansion and mining [31, 32].

Drawing on theories of electoral competition and public goods provision, case studies, and the

natural sciences literature on causes of deforestation, this paper systematically develops and tests a theory

of the link between deforestation and elections across countries. It contributes a general theoretical model

for when and where electoral deforestation cycles should be strongest. Methodologically and empirically,

this study adds higher quality data and panel methods to the debate on democracy and environment, and

performs the first cross-national tests of electoral deforestation cycles.

2.4 Trading the forest for the trees?

Kenya: A motivating case

Figure 1 shows the Mau Forest Reserve, an area of government-owned protected forest, more than

half of which has been converted into smallholder farms. The map on the left shows that the formally

protected (darker) area falls into three counties: Nakuru, Narok, and Bomet. The satellite image on the

right shows (light colored) cropland areas and (dark colored) forested areas. Nakuru county is an electorally

competitive county with a population of over one million divided among the major Kenyan tribes. Narok

county is a primarily Maasai county that consistently voted for the opposition to the incumbent Kenya

African National Union (KANU) party by a large margin in the 1990s and early 2000s. Bomet county has

consistently voted for KANU by a wide margin. Most of the forest preserve in Nakuru county has been

converted from forest to cropland (with the largest losses occurring around elections) while the majority

of the preserve in Narok and Bomet county remains standing. In the Mau Forest Reserve the important

difference was political: Nakuru was pivotal for control of the national legislature while Narok and Bomet’s

representatives were all but guaranteed to represent the opposition and incumbent parties respectively.
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President Moi and the KANU party distributed patronage in the form of explicit and de jure land grants to

voters in pivotal counties to maintain political control. [2] describes two possible benefits the ruling party

obtained through these land-grants: sell the timber to finance re-election campaigns or distribute the land

to potential supporters in exchange for their electoral support.

This and other anecdotes describe how deforestation can result from electoral competition at the

district level. If this is generally true then years with competitive elections should have higher rates of

deforestation at the national level, even if that deforestation is concentrated in competitive districts. I

generalize the theoretical mechanism for how and when politicians exchange trees for votes and then

consider the implications on a cross-national level using the overall competitiveness of national level

elections rather than district-level competitiveness. This allows observation of global patterns across the

many countries and years for which sub-national electoral returns are not available.

The value of forests

Protected2 forests are valuable to voters for several reasons. First, when left undisturbed, forests

provide ecosystem services to surrounding areas [33]. They host pollinators that are essential to seed

production and predators that control pest populations. Additionally, forests reduce air pollution, decreasing

respiratory and cardiac illnesses. They act as natural filters that purify water and help to recharge

groundwater basins that are important for agriculture. Forests mitigate floods and droughts by preventing

large fluctuations in the flow of rivers while preventing erosion and sediment loading that can make water

more difficult to consume and shortens the lifespan of dams [34]. Finally, they attract tourists and bring

foreign spending. Most of these benefits accrue to populations beyond those that are adjacent to the forest,

and fall somewhere on the spectrum of positive externalities (sediment reduction) to pure public goods

(CO2 emissions reduction) [35]. These benefits accrue slowly, for example flood mitigation would not be

apparent except in high-runoff events, and the effects of air quality on health can be latent for tens of years.

However there is growing evidence that negative environmental effects on voters’ livelihoods can reduce

support for an incumbent politician [36]. As a result, politicians who protect forests may receive some

additional electoral support from those who benefit from the public goods that forests provide.

2Protected means requiring government authorization for use.
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Forested land is also valuable through the sale of timber or the potential to use the land for crops or

other commercial purposes. The timber itself has value for firms which benefit from decreased protections

for forests [5, 28, 37]. More commonly or in conjunction with the above is commodity driven deforestation

where the value of removing forests comes from what replaces the trees [3]. Forested land is high in

nutrients like nitrogen and phosphorous and is extremely productive when converted to agriculture [38].

Rather than providing value over time, the value associated with cutting down forests is immediately

realized and clearly attributable to the politician who provided it. Furthermore, the stored value of forested

land accrues directly to the firm who is able to log the region or to the people who gain access to agricultural

land. This choice over the distribution of value from forests mirrors the choice faced by politicians in

electoral business cycles where politicians are more likely to increase spending in competitive districts and

on projects for which politicians can easily claim credit [39–41].

The mechanism of granting access to forests generally takes one of two forms: use permits or

property rights. Both of these mechanisms vary in their formality–they range from being transparent

and formal to hidden and informal. Use permits grant firms the right to log or mine an area of land, as

in Brazil and Indonesia [5, 28]. The politician can target a firm, which can provide jobs or economic

growth to a particular area, or can contribute additional money to the politician either through higher tax

revenue or political donations. Politicians can achieve a similar outcome by reducing protections or even

reducing enforcement of protections for forests; this strategy has lower target-ability but is less visible to

the general public. In either situation, continued use is often contingent on the re-election of the politician

who provided permits or reduced protection [42]. Property rights grant farmers the ability to clear forests

and plant crops or graze livestock with the understanding that those who benefit will vote for the politician

who provided those rights. The Kenya case is instructive for how this transaction occurs. Politicians can

either target a particular forested with reduced protection, benefiting the people who live nearby and can

expand onto the de-protected land or by granting property rights to a group of people whose votes the

politician wants to secure. Property rights may be reversible should the incumbent who provided the

property lose the subsequent election.

Forests differ from other classes of goods governments provide such as roads, clinics, and schools

[25, 43]. Forests take decades to regenerate and are thus a one-off opportunity in a political lifetime.
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Additionally the allocation of forested areas does not require government spending that trades off with

other projects. The exploitation of forests in the present only trades off with either their future exploitation

or the future public goods that they could provide. Even if the government absolutely discounted the

diffuse public goods that forested areas provide, it might choose to preserve some forested areas for future

use and smooth its consumption of forested areas [44]. The implication is that even if officials place little

or no value on the public goods forests provide, they should tend to preserve forested areas until the present

need for the goods exploitation of forests provides is greater than the expected future need for those goods.

In other words, politicians should only grant access when they need to provide short-term benefits to an

important group of constituents or when they are afraid they might lose the ability to grant access.

Political incentives

Seeking to stay in power, politicians possess two strategies with respect to forested areas: one is to

allocate some access to publicly owned forests to the constituents on whose support they rely. The other is

to protect forests and rely on the public goods protected forests provide to convince constituents that they

will be better off if the politician stays in power. A politician must distribute benefits in such a way that

they generate enough support to stay in power.

How will a politician use limited forest resources to maximize their chances of staying in power?

Most research focuses on how politicians supply goods to potential supporters. In an autocracy where a

politician must please a small winning coalition, providing private goods tends to be more efficient than

providing public goods [12], and we expect politicians to allocate more access to public forests [15, 16, 22].

In a democracy where the winning coalition is large, providing public goods is more efficient at generating

support, and politicians can be expected to preserve forest at a higher rate [11, 45, 46].

However, there are two demand-side reasons deforestation rates increase when a country transitions

from autocracy to democracy: the relative political empowerment of those who demand land and the

shortened political time horizons that come with regular elections. In a new democracy the selectorate

includes recently enfranchised small-holder farmers (or others who may benefit from deforestation) for

whom forested land is an extremely valuable resource [3, 29]. In an autocracy, the selectorate tends to
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consist of a small wealthy group of industrialists who do not have incentives to quickly deforest3 [47–50].

Note that this can occur in countries where agriculture plays a small role in the economy–all that is required

is the combination of newly enfranchised forest consumers. When a democratic transition occurs, the

political value of removing protections for forested land increases.

Weakly institutionalized democracies are more clientelistic because parties are weaker and their

promises are less credible in the mind of voters [51] and lower public goods provision [14]. The introduction

of additional electoral competition can exacerbate clientelism [13] by increasing the stakes of clientelist

relationships or by increasing the demand for clientelist goods [24]. Thus, after democratic transitions and

during close elections targeted forest allocation should be more likely, especially in weakly institutionalized

democracies.

I focus first on countries which experience a democratic transition. This allows me to isolate the

relationship between political incentives and deforestation rates in the two different systems while holding

other conditions relatively constant. Based on the empowerment of farmers who demand cropland and the

introduction of elections which emphasize short-term political gains, I hypothesize that:

Hypothesis 1. Countries which transition regime type have higher rates of deforestation under democratic

government.

There are further observable implications for election and non-election years. Politicians have a

shortened time horizon ahead of a competitive election because they may not be reelected. Short horizons

reduce the value of the long-run goods forests provide and make the short-run benefits of granting access

to the land more appealing. Should the politician lose re-election, the long-term goods protected forests

provide are worthless to them, rendering the immediate increase in political support from immediate

allocation even more valuable in comparison. Additionally, if the politician is able to identify pivotal

voters, the efficiency of granting access to those voters likely exceeds the efficiency of providing public

goods. However, this comes at the expense of the increase in support generated by protecting forested

lands until they are allocated at some point in the future and the benefit the politician might get in a future

election by allocating those goods. Because of this, a politician should generally only choose to allocate
3This is for two reasons. The value for industrialists tends to come from selling timber products rather than planting crops

meaning that they would smooth their consumption of forest over time. Second, as the number of plausible consumers of forest
increases, the incentive to deforest now becomes stronger [44]
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forested land when they feel truly threatened, and only if institutions are weak enough that the politician

will face minimal backlash for these allocations. Given that autocracies rarely, if ever, have competitive

and meaningful elections and institutionalized democracies have mechanisms to punish politicians for

clientelist behavior, the following two hypotheses apply primarily to weakly institutionalized democracies.

Hypothesis 2. Election years will have higher rates of deforestation than non-election years.

Hypothesis 3. Years with competitive elections will have higher rates of deforestation than years with

non-competitive elections.

Finally, all of the hypotheses should be strongest in places where politicians can observe and target

key constituents. In a single-district proportional representation system policies which by their nature

target certain geographic areas are less likely to be useful than in majoritarian systems with low district

magnitude (like Kenya) where politicians can identify pivotal districts [52, 53].

Hypothesis 4. Majoritarian systems will amplify the effects of democratic transitions and elections on

deforestation compared to non-majoritarian systems.

2.5 Empirical Strategies

Data

The dependent variable for this study is the percentage point change in primary forest cover in

a .05o× .05o cell of land in one year. The total area of a cell is 30.25km2 near the equator, but as small

as 8.90km2 near the poles. Forest is characterized by the presence of vegetation with a canopy over 5

meters tall. The data used to construct this measure is from [17] which uses data from Advanced Very

High Resolution Radiometer instruments to measure vegetation cover over the globe on an annual basis.

This type of data is remarkable for a few reasons: the coverage is global, the method is accurate, and the

data are not susceptible to interference from parties that seek to conceal or misrepresent information. I use

data from 1982 to 2016, the full extent of the available data [10].

I extract the percent land-cover of forest of each cell in each year, resulting in 34 years of global

forest cover data, and calculate the year-on-year differences for the dependent variable. The dependent
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variable exhibits a unit root in levels, which suggests taking a first difference will produce more consistent

results than including a lagged dependent variable. Alternately, the dependent variable of interest is the

rate of forest cover change rather than the level of forest cover. A value of -1 for a cell indicates a one

percentage point loss of forest.

I merge national boundaries with this data, so each observation contains a unit level measure of

forest cover and a set of national-level independent variables. I exclude all observations that never have

forest cover from 1982-2016 because such places are never eligible to lose forest. Many areas gain forest,

particularly in China, Russia, and Canada where large scale tree planting or climatic changes have resulted

in more forests. Forest increases are included in the data but are difficult to link to a political event because

the different growth rates of various species of trees mean that new trees may take many years to appear in

the data. However, a slower than normal rate of gain in a particular year could indicate forest loss in some

parts of the cell.

Right-hand side variables come from several sources and are merged with forest cover data by

country-year. This analysis uses a dichotomous indicator of democracy from [54] for the democratic

transition test. They define a minimum threshold for both contestation and participation to determine

whether a country is a democracy or not in a given year. Data on election years and votes come from the

Database of Political Institutions (DPI) [55] and the V-Dem project [56]. The variable election year takes

a value of 1 if a national-level legislative election occurred in that country in a given year and 0 otherwise.4

[57] note that ideally researchers should use past vote swings and seats-votes elasticities to calculate

electoral risk, but even this is complicated by implicit assumptions about how effort maps to votes [58].

This is further complicated by two features of this study: seat-vote elasticities are not available for most of

the countries considered, and using previous vote swings requires 6 previous elections with relatively stable

parties. Because the focus of this paper is young democracies, previous elections both are not available

and do not provide good information on which to base an expectation of the competitiveness of the current

election. Instead, in the spirit of [57] I use the percent seat difference between the two largest parties.

This most clearly captures the margin by which the largest party holds the prime minister position in a

parliamentary system or the presidency in a two-party democracy as measured by [56]. Alternately, I use

4I use the V-Dem measure in the paper but the results are robust to DPI
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two measures derived from [55]: the difference between the incumbent coalition’s vote proportion and

0.5; and the difference between the incumbent coalition’s seat proportion and 0.5. For interpretability

I transform these variables so a value of 100 represents a tie election and a value of 0 represents one

party garnering 100% of the vote or seats5. I use the Polity IV data to divide countries into “autocracies”

(polityIV < -5), “anocracies” (polityIV ≤ 5 and ≥ 5) and “democracies” (polityIV > 5) [59]. Anocracies

are the weakly institutionalized democracies for which I expect electoral deforestation cycles to be most

pronounced.

I create a variable which is 1 if proportional representation is used in national legislative elections

and 0 otherwise [55]. This allows a test of Hypothesis 4 by isolating majoritarian systems where geographic

targeting is more feasible.

In each regression I include the following controls from the World Bank World Development

Indicators: per capita GDP (thousands of US Dollars), change in per capita GDP (% change), and change

in population (% change) [60]. Each is lagged by one year to prevent the inclusion of post-treatment

controls. This means a variable such as per capita GDP is included from time t− 1 and change in per

capita GDP is included as the change from time t−2 to time t−1. I also include a control for the amount

of forest remaining in a cell at the start of the year because I expect deforestation rates might be higher in

places that are partially forested than places that have 100% forest cover. Supporting Information Tables

A.1 and A.3 and Figure A.1 (pages 3-8) present specifications which include percent of the population

employed in agriculture and agriculture as a percent of the GDP.

I include unit and year fixed effects. The unit fixed effect absorbs any time-invariant characteristics

at the unit level, including location, country, elevation, average climate, soil type, etc. It also de-means

the forest cover loss variable, considering only deviations from the average forest cover loss in each cell.

Year fixed-effects absorb global-level changes specific to a single year, like food, lumber or fuel prices.

The remaining variation is composed of deviations from each observation’s average forest cover loss

that are also deviations from the global average forest cover loss in that year. Because election shocks

should appear only in cell-years that experience an election, this specification should control for most

5Formally: margin = 100− |% votesi −% votes j| where i and j are the two parties with the most seats, or margin =
|50−% votes or seatsi|×2 where i is the incumbent coalition.
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Table 2.1: Observations in different levels of aggregation

Number of forested cell-years 157,586,802

Number of forested cells 4,397,228

Number of countries with forested area 162

Number of country-Years 5,665

Number of elections 1,244

variables that are associated with both election years and deforestation. It should also control for most of

the non-political drivers of deforestation including economic and population growth. Simply, the variation

I explain is: changes in forest cover that are not associated with development, economic growth, population

growth, size of the agricultural sector, growth in the agricultural sector, and changes idiosyncratic to a

particular location or year.

I cluster standard errors at the country and year level to account for correlation in residuals between

cells in the same country, possibly over many years, and to account for correlation in residuals between

distant cells in the same year. This reduces the effective number of observations to a number much closer

to the number of country-years (thousands) instead of cell-years (tens of millions) (Table 2.1). A second

set of regressions reported below aggregates forested cells to the country level, generating a dependent

variable which is the average change in forest cover among forested cells in a country in a year. Supporting

Information Tables B.1 to B.3 (pages 8-10) aggregate to cells which are 100 times larger than those

described above, and level 1 and 2 sub-national administrative units. The country-level specification targets

the question “for a country experiencing a democratic transition or election, what is the national expected

rate of forest loss for forested areas” while the cell-level specification targets the question “for a patch of

forest, what is the expected rate of forest loss during a transition or election.” The cell level has a fixed

geographic area as the unit of analysis, so it tends to upweight countries with lots of forest. The country

level tends to upweight the effects on forests in countries without much forest.

Summary Statistics

There are approximately 4.4 million cells which ever have forest, 136 countries which have some

forest and appear in them sample, and 1,146 elections. Those elections predominantly occur in strong
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Table 2.2: Elections by Regime and Electoral type

Regime Type System Elections Margin <20 Margin <10

Anocracy PR 92 24 5

Anocracy Majoritarian 105 15 17

Autocracy PR 28 2 2

Autocracy Majoritarian 67 12 5

Democracy PR 144 64 36

Democracy Majoritarian 544 340 220

democracies, but 197 of them are in anocracies and 95 in autocracies. Only 22 elections in anocracies have

a margin of victory of less than 10 percentage points.

Test 1: Democratic Transitions

First, I test whether cells in democratic countries that experience regime type transitions transitions

have higher rates of deforestation than cells in non-democratic countries which experience such a transition.

The main independent variable is whether a country is a democracy, where democracies are coded 1 and

non-democracies coded 0. The dependent variable is percentage point change in forest cover for a cell in a

year. The main specification uses unit and year fixed effects which project out time-invariant characteristics

of each cell (and thus country):

ForestChangei,c,t = αi + γt + β1 ∗ Democracyc,t + λ ∗ Xc,t + δ ∗ Xi,t + ui,c,t (2.1)

β1 represents the within-country difference between years when a country was a democracy (according

to [54]) and years when that country was not. α and γ are cell and year fixed effects, Xc,t is a vector of

country-level controls, Xi,t is a vector of cell-level controls, and ui,c,t is the unexplained variation, clustered

at the country and year level.

This regression targets whether a patch of forest was more likely to lose forest under a democratic

or non-democratic regime. It gives each equal-sized area the same weight, focusing on the total amount of

deforestation. I focus on these cell-level regressions, however, I also present the country-level results in

Figure 2.1 and in Supporting Information Figures A.1 - A.3 (pages 3-7).
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Table 2.3: Regressions of forest change on democracy. 61 countries experienced a regime-type transition.
Columns 2 and 4 replicate the non-fixed effects specifications used in previous work

Cell Cell National National

Democracy −1.10∗ −0.35 −0.25 0.04
(0.44) (0.39) (0.29) (0.10)

Forest −0.77∗∗∗ −0.05∗∗∗ −0.56∗∗∗ −0.01
(0.03) (0.01) (0.06) (0.01)

PCGDP 0.08 0.00 0.11∗∗ 0.00
(0.05) (0.01) (0.03) (0.01)

∆ PCGDP −7.86 10.26 −9.33 26.70
(20.33) (28.39) (10.40) (16.96)

Pop Growth −0.13 −0.01 −0.08 −0.06
(0.27) (0.12) (0.08) (0.06)

Constant 1.78∗∗∗ 0.46
(0.31) (0.27)

FE cell + year none country + year none
Num. obs. 136743524 136743524 4375 4375
Adj. R2 (full model) 0.38 0.02 0.34 0.01
Adj. R2 (proj model) 0.37 0.02 0.26 0.01
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Hypothesis 1 is countries which transition regime type have higher rates of deforestation under

democratic government.

Table 2.3 shows that among countries that experience at least some years as a democracy and a

non-democracy, forested areas have about 1 percentage point greater forest cover loss during democratic

years compared to the nondemocratic years. Columns 2 and 4 show that without including fixed effects

this relationship is not detectable because it compares deforestation rates between fundamentally different

countries rather than within a single country. This change in forest cover is estimated to be negative

at a α = 0.05 confidence level in the cell-level specification. The rate of forest cover loss associated

with democracy is higher than the global average has been in any year since 1982. Democratization is

responsible for approximately nine million square kilometers of forest loss, or an area roughly the size of
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Brazil. This represents approximately 9% of the total forest cover as measured in 1982 lost in countries

which have experienced years as a democracy and non-democracy. Furthermore, this estimate is after the

main structural economic and demographic drivers of forest cover loss have been taken into account.

Hypothesis 4 posits that the effect of democratization will be stronger in majoritarian systems. To

test this, I run the following regression:

ForestChangei,c,t = αi + γt +β1 ∗Democracyc,t +β2 ∗PRc,t+

β3 ∗ (Democracyc,t ∗PRc,t)+λ ∗Xc,t +δ ∗Xi,t +ui,c,t (2.2)

The β1 coefficient can be interpreted as the the relationship between a democratic transition and

forest cover change for majoritarian systems. Figure 2.1 shows the democracy coefficient from the original

specification and the coefficient from this specification. When a country transitions to a majoritarian

system the forest cover loss associated with this transition is consistently large, negative and significant

across aggregation levels.

Democracy, country

Democracy, cell

−3 −2 −1 0
Percentage point change in forest cover per year

Majoritarian

All

Figure 2.1: Forest cover change across electoral systems

Coefficients for the regression in table 2.3. Dashed triangles correspond to columns 1 and 3, black circles are the
same regressions for transitions to democracies with majoritarian systems.

When the data are aggregated to a national level the effect size is smaller and not statistically

distinguishable from 0. This points to the possibility that the effect is more pronounced in countries with

more forested cells or that the effects are localized to hot-spots which carry little weight in the national-level

regressions. To further investigate I run geographically weighted regressions and regressions at different
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levels of spatial aggregation, including aggregating cells to 55km × 55km, and aggregating to first and

second level sub-national units. As [61] point out, identifying the ‘correct’ unit of analysis can be difficult

and lead to different results, so results from various levels of aggregation can be found in Tables B.1 - B.3

(pages 8-10) of the Supporting Information. When focusing on majoritarian systems the effect of a regime

type transition is larger and significant for all levels of aggregation, suggesting that geographic targeting is

for the political and ecological versions of this question.

Where previous results attempt to answer the question of whether democracies deforest more than

non-democracies, this paper poses a more tractable question: how do rates of forest cover loss change when

a country switches between being a non-democracy to being a democracy? This refrains from comparisons

between vastly different countries and instead relies on variation within countries over time. Second, by

including data at the cell area it allows me to ask a modified version of the question–for an area of forested

land, what is the likely result of having the country in which it is located change regime types. This focuses

on an effect which is substantively important: in the large countries where most of the remaining forest in

the world resides, what were the consequences of democratic transitions? The evidence shown here is that

democratic transitions are associated with higher rates of deforestation, especially when the transition is to

an electoral system with geographic targeting.

Test 2: Election years

Competitive elections create a unique set of incentives for politicians to allocate more forested

land to voters than they do in non-election years. I expect this to be strongest in weakly institutionalized

democracies and weak in both autocracies (where leaders’ positions of power are not contingent on

elections) and strong democracies (where institutions can prevent clientelism). A blunt test of Hypothesis

2 considers forest cover loss in all national-level election years across the government-type trichotomy and

compares it to forest cover loss in non-election years. Because business cycles are known to be connected

with elections and could drive deforestation, I control for change in per capita GDP from t−2 to t−1.

While this estimation strategy cannot rule out the possibility of some unobserved confounder, such a

confounder would have to cause elections and increase forest loss in many countries over the course of

multiple elections. Unit and year fixed effects prevent unit, country, or year-specific characteristics from
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confounding the estimates:

ForestChangei,c,t = αi + γt +β1 ∗Electionc,t +β2 ∗GovTypec,t+

β3(Electionc,t ∗GovTypec,t)+λ ∗Xc,t +δ ∗Xi,t +ui,c,t (2.3)

β1 represents the within-country difference between election years and non-election years for anocracies.

β2 represents the within-country difference between regime types. β3 represents the difference between

election-year effects for anocracies versus democracies or autocracies. The second and third panels only

include elections within the specified margin of victory. α and γ are unit and year fixed effects, Xc,t is a

vector of country-level controls, Xi,t is a vector of cell-level controls, and ui,c,t is the unexplained variation,

clustered at the country and year level. The goal is to isolate deviations from each cell or country’s average

rate of deforestation that cannot be explained by economic or demographic characteristics, and test whether

those deviations align with election years and close elections.

In an average election there is no more deforestation than usual. However, as the competitiveness

of the election increases so does the expected rate of deforestation, culminating in a two percentage point

increase in the rate of deforestation (Over ten times the average rate of forest loss in the Brazilian Amazon).

Columns 1-3 of Table 2.4 show results at the cell level. Election years themselves are not significantly

associated with forest change, but elections with less than a 20 point and less than a 10 point margin

of victory are increasingly associated with deforestation. Columns 4-6 show that when aggregated to a

national level these results at not significant. At the cell level the rows 4-6 show that in democracies the

effect of elections are counteracted, but row 7 supports the above conclusion that being in a democracy is a

net negative for forest cover.

Figure 2.2 shows this relationship across levels of aggregation and electoral system types. Refer

to Table 2.1 for the number of elections in each category. The top of Figure 2.2 shows the coefficients

from the first three rows of Table 2.4. The bottom half of the figure shows the results from the electoral

system regressions–at the cell level the point estimates are smaller but still significant. At the national level

focusing on majoritarian systems increases the precision of the estimates where competitive and close
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Table 2.4: Regressions of forest change on election year. Election years are subset by how competitive
they were: columns 1 is all election years, 2 is years with a margin of victory less than 20 points, 3 is
years with a margin of victory less than 10 points. Election year is interacted with regime type with
anocracy as the base case.

Cell Cell Cell National National National

Election Year −0.10 −0.12
(0.38) (0.23)

Margin < 20 −1.38 −0.39
(0.69) (0.38)

Margin < 10 −2.17∗∗ −0.37
(0.70) (0.35)

Election:Democracy 0.06 0.07
(0.37) (0.22)

Margin<20:Democracy 1.22 0.19
(0.76) (0.42)

Margin<10:Democracy 2.08∗∗ 0.16
(0.65) (0.41)

Democracy −0.91∗ −0.87∗ −0.96∗ −0.33 −0.38 −0.35
(0.37) (0.35) (0.37) (0.23) (0.23) (0.25)

Autocracy −0.50 −0.54 −0.56 0.11 0.21 0.21
(0.60) (0.63) (0.63) (0.38) (0.37) (0.37)

Forest −0.77∗∗∗ −0.77∗∗∗ −0.77∗∗∗ −0.55∗∗∗ −0.56∗∗∗ −0.56∗∗∗

(0.03) (0.03) (0.03) (0.06) (0.06) (0.06)
PCGDP 0.07 0.08 0.09 0.11∗∗ 0.11∗∗ 0.11∗∗

(0.06) (0.05) (0.05) (0.03) (0.03) (0.03)
∆ PCGDP 35.20 7.91 13.68 −1.48 1.93 3.14

(37.62) (29.47) (31.86) (10.02) (10.10) (10.21)
Pop Growth −0.14 −0.23 −0.18 −0.06 −0.08 −0.07

(0.27) (0.26) (0.27) (0.07) (0.06) (0.06)

Country + Year Fixed Effects Yes Yes Yes Yes Yes Yes
Num. obs. 132801614 118463788 110285677 4081 3701 3517
Adj. R2 0.38 0.38 0.38 0.34 0.35 0.35
Num. groups: Country 136 136 136 136 136 136
Num. groups: year 33 33 33 33 33 33
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Figure 2.2: Forest cover change across levels of electoral competitiveness, regime type and electoral
system

elections both have higher rates of deforestation than non-election years. When aggregated over elections

in anocracies I find that close elections are responsible for around additional 500,000 square kilometers of

deforestation, or larger than the size of the state of California.

In many countries we should expect sub-national variation in effect sizes due to variation in

importance or competitiveness across districts. This or specific locations of key constituencies should lead

us to expect only some parts of countries to exhibit higher rates of deforestation in election years. This

should bias against finding results because it averages across areas where no change in forest cover should

be expected.

Supporting Information Figures C.1 - C.4 (pages 11-12) show results of geographically weighted

regressions. Notably, the sub-equatorial region which has experienced the most intense deforestation in the

last 40 years also has the strongest relationship between elections and forest cover loss, stretching across

Brazil, Argentina, Uruguay, DRC, Congo, Angola, Indonesia and up into South Asia. This analysis also

shows heterogeneity within countries–something which merits analysis in future work.
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Figure 2.3: Forest cover change across electoral competitiveness, regime type, and electoral system

Test 3: Competitiveness

In this section the sample is restricted to years in which elections occurred, and close elections (in

which the margin of victory is low) are compared to elections where one party got a preponderance of the

votes. The independent variable measures the competitiveness of an election where 100 corresponds to a

tie vote between the two largest parties, 0 corresponds to an election in which one party got 100% of the

votes cast. This simplifies the interpretation of the coefficient–as elections get more competitive rates of

forest cover loss increase. Once again the main independent variable is interacted with the trichotomized

polity variable to isolate the effects in weakly institutionalized democracies. The main test includes unit

fixed effects6, and the same controls:

ForestChangei,c,t = αi +β1 ∗Competitionc,t +β2 ∗GovTypec,t+

β3(Competitionc,t ∗GovTypec,t)+λ ∗Xc,t +δ ∗Xi,t +ui,c,t (2.4)

β1 represents the within-country difference between election years and non-election years for anocracies.

β2 represents the differences between rates of deforestation in election years across regime type estimated

at a competitiveness of 0. β3 represents the difference between margin-of-victory effects for anocracies

versus democracies or autocracies. α is unit fixed effects, Xc,t is a vector of country-level controls, Xi,t is a

vector of cell-level controls, and ui,c,t is the unexplained variation, clustered at the country and year level.

6but not year FE because demeaning forest cover change only in cells which have an election by year doesn’t make sense and
loses several years in which there was only one election
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Table 2.5: Regressions of forest change on electoral competitiveness. Competitiveness is interacted with
government type with Anocracy as the base case.

Cell National

Competitiveness −0.06∗∗ −0.01
(0.02) (0.01)

Comp:Democracy 0.06 0.00
(0.03) (0.01)

Democracy −4.53 0.16
(2.52) (0.96)

Forest −0.71∗∗∗ −0.43∗∗∗

(0.03) (0.07)
PCGDP 0.07 0.14∗∗

(0.09) (0.05)
∆ PCGDP 43.02 12.29

(28.60) (35.22)
Pop Growth −0.03 −0.34

(0.47) (0.26)

FE cell country
Num. obs. 35346878 864
Adj. R2 0.35 0.22
Num. groups: Country 128 128
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table 2.5 shows that at the cell level a one percentage point increase in competitiveness is associated

with a 0.06 percentage point decrease in forest cover among election years in anocracies. While the previous

set of regressions compared election years to non-election years this regression compares competitive

to uncompetitive elections. However, the results are consistent with a ten percentage point increase in

competitiveness linked to a .6 percentage point decrease in forest cover, or the difference between a 20

point margin and a ten point margin. While the coefficient on the interaction between democracy and

competitiveness is not significant, it exactly cancels out the size of the anocracy competitiveness coefficient,

suggesting that the relationship between electoral competitiveness and deforestation is mitigated there. At

the national level the effect is not distinguishable from zero, likely for the same reasons cited above–that

elections in countries with large forested areas are driving the effect.

Figure 2.3 shows this relationship across cell and national levels of aggregation, and across

electoral systems. Here like above subsetting to majoritarian countries only marginally changes the

estimate of the effect size, and the two estimates are not significantly different. This test demonstrates that

the degree of competitiveness can have a large effect on the deforestation rate. Brazil’s average rate of

deforestation between 1982 and 2016 was -0.13 percentage points per year which means going from a tied

election to a 55-45 split would be expected to increase the deforestation rate by 50%.

A variety of other mechanism and robustness tests can be found in the Supporting Information:

Tests of heterogeneous treatment effects by forest type and agricultural influence in (A), different levels

of spatial aggregation results (B), geographically weighted regressions for the other tests (C), different

measures of electoral competitiveness (D), including neighboring and lagged forest as controls (E), and

examining the timing of deforestation with respect to elections (F).

2.6 Implications and Limitations

Implications

A number of influential papers argue that democratic governments are more likely to provide

public goods than non-democratic governments. [11] and [62] argue that more contestable political markets

decrease the monopoly rents the state can extract from its provision of public goods, implying that the more
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competitive the election, the more public goods politicians are likely to provide. This paper demonstrates

that in young or weakly institutionalized democracies this relationship does not hold; rather than politicians

choosing between state rents and public goods, politicians choose between strategies that maximize their

chances of victory, sacrificing long-term provision of public goods for short-term transfers of private

goods. As a result we should not expect political competiton to increase state production of environmental

public goods. Instead, political competiton may fuel exploitation of natural resources in a way that is more

consistent with [63]’s description of common pool resources. [51] and [23] argue that young democracies

are more prone to clientelism and corruption, which reinforces the effect observed in this paper.

[46] and [12] argue that because democratic politicians rely on the support of a larger subset of the

population to stay in power, providing public goods is a more efficient way to generate public support than

providing private goods. My findings run contrary to Deacon’s and Mesquita’s theses. First, they do not

consider differences in demand for different types of goods across different selectorates. When the newly

enfranchised population is largely agrarian, politicians may choose to distribute private goods with a higher

marginal utility to that population rather than providing public goods. Second, selectorate models do not

incorporate changes in the marginal utility of public or private goods leading up to an election. As the time

of an election grows nearer or if geographic targeting is easy politicians can exercise a price-discriminating

strategy where they distribute just enough goods to secure pivotal districts. When a politician can do this,

the efficiency of providing public goods decreases (because it essentially offers a single price for the vote

of a selectorate member) and politicians will choose to offer private goods (forest access) to low-price

members of the winning coalition even if doing so reduces the well-being of other constituents. This

effect may be amplified in places where the distribution of private goods is highly attributable but the

utility provided by ecosystem services is not easily attributable. [2] notes that as the attributability of

environmental destruction increased in Kenya, forest for votes exchanges became less common.

In addition to the question of democratic provision of public goods, the findings have implications

for how we categorize the goods natural systems like forests provide when they are preserved. The default

framework for natural resources in political science work is Common Pool Resources (CPRs) as in [63].

These resources are notoriously hard to preserve because consumers face an N-player prisoners dilemma

game where defection from preservation is a strictly dominant strategy for each player [44, 64]. This
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paper characterizes forests differently: rather than only considering the value forests provide when they

are cut down or “consumed,” it evaluates the value these forests provide when they are preserved. The

ecosystem services outlined above are public goods (non-rival, non-excludable), which changes the way we

might think about their preservation. In non-election years, government control of the resources produces

an efficient outcome (contrary to what one might expect with a CPR). However, in election years CPR

problems begin to crop up. Perhaps forested areas are a class of goods that are best described as “public

goods with common pool resource problems.”

With this categorization, the CPR literature can offer some insight into why election years have

such an effect on forest change. [63] argues that rapid changes in the value of a common pool resource

can reduce the ability of any governance system to prevent overuse, but does not consider when political

systems themselves might induce this change. As elections approach the value protected forests provide

politicians (through the political support they help to generate) undergoes rapid changes. The value to a

politician of removing protections and granting access increases relative to the value of preserving that

resource, triggering a situation where the governance system (democratic governance) fails.

Limitations

A few limitations exist for these findings. These include the vast heterogeneity among countries

and years in the sample, and potential measurement issues for independent variables across such a

heterogeneous sample. These limitations generate possibilities for future work including testing the

hypotheses here with higher resolution data, exploiting surprise elections, and examining the factors that

might mediate the effect including political institutions, the demand for forested land, and the type of

forest. The results for democracy only apply to countries which switch regime type, not stable democracies.

The other effects are often estimated based on relatively few elections and as a result are more likely to be

idiosyncratic to the sample, but this is a fundamental limitation of the data and our political history.

Second, because the vote totals are an outcome of the level of deforestation there may be some

reverse causality. However,the rate of deforestation likely only explains a very small part of the variation

in electoral competitiveness (compared to vote-buying [30], constructing roads and clinics [43], and

agricultural taxation and subsidation [50]), limiting the size of the potential reverse causality bias. Future
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work could use pre-election polling results to directly measure the effect that deforestation has on voting

behavior ([3] uses a similar strategy).

This paper is limited in how it can address specific mechanisms. Using national election returns

means that I cannot assess whether politicians target core or swing voters, or whether the effect is driven by

particular sectors. It also means that deforestation as a result of electoral business cycles is observationally

equivalent to targeted allocation of protected forested land. I also cannot rule out the possibility that firms

try to extract timber faster when there is political uncertainty. While I expect these effects to be relatively

small compared to agriculturally and pastorally driven electoral deforestation cycles, they are potentially

important mechanisms.

2.7 Conclusion

To summarize, I argue that democratic transitions are associated with higher rates of deforestation,

competitive election years have higher rates of deforestation than non-election years, and the more

competitive an election the higher the rate of forest loss. Politicians choose to allow, induce, or even

subsidize deforestation to garner political support when they fear they might not be re-elected. Doing this

is costly for the politicians–they give up both the additional support the public goods provided by forests

might provide them as well as the ability to allocate that land in the future.

These findings are a first step towards demonstrating that natural resources might not fit neatly into

the democracy and public goods provision literature. This is in part because natural resources differ from

the “normal” public or private goods politicians offer their constituents in exchange for political support.

However, this is also because an electoral mechanism leads to changes in demand for particular types of

goods, leading politicians to take actions that do not seem efficient if one only considers the supply of

public and private goods. Finally, it shows natural resources that provide environmental services might

not fit neatly into a CPR framework, opening possibilities for new lines of research into environmental

preservation.

The policy implications of this work are twofold. First, international institutions should note that

democratic transitions and especially closely contested elections during a transition pose a threat to forests.
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Preventing forest cover loss is one of the most cost-effective methods to combat global warming, and

politically motivated deforestation is something a process that international environmental institutions

might be uniquely suited to address. Second, this research illuminates behavior by politicians that is

inefficient in the long-term as a contributor to deforestation. Recognizing the situations in which democratic

elections do not promote public goods provision but rather the provision of goods to a small politically

important subset of the population is an important first step towards understanding when democracy fails

to live up to its promise.

Chapter 2, in full, has been accepted for publication and is presented as it may appear in “Sanford,

L. Democratization, Elections, and Public Goods: The Evidence from Deforestation AJPS.”

2.8 Heterogeneous Treatment Effects: agriculture and election type

In this section I investigate heterogeneous treatment effects across forest type. In addition, for the

tests of democratization I investigate whether the effect is more pronounced for countries with a larger

share of agricultural workers or agriculture as a percent of GDP.

in Figure A.1 I find that the effects uncovered across forest types are not significantly different

from the effects in either tropical and subtropical forests nor from the effects in temperate and boreal

forests, as classified by [65]. Unconditional on level of aggregation or forest type the transition to a

majoritarian democratic system is always significantly associated with higher rates of deforestation–though

I should note that the samples for some subgroups are quite small.

Given the theory in the main text it would be easy to infer that countries with a larger share of

agricultural employment or economic activity would experience higher rates of deforestation after a regime

type change to democracy. The reasoning is that either of these conditions would translate to more political

power for that group and thus more incentive for politicians to allow deforestation. However, previous

research on the political power of the agricultural sector shows that there is not a monotonic relationship

between size of the sector and political power [53]. [66] point out that as the size of the agricultural sector

grows farmers face a collective action problem as a lobby group, so the power of farmers decreases with

the size of the agricultural sector. The tests presented in Figure A.1 and Table A.1 are consistent with
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Figure A.1: Relationship between democracy regime type and forest cover change across forest types
and three moderators: electoral system, agricultural percent of GDP, and agricultural percent of the
population. The coefficients shown are for the coefficient on democracy and represents the estimate of
the effect with agricultural employment or agricultural percent of GDP set to 0, or in purely majoritarian
systems (PR system set to 0).
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Table A.1: Regressions of forest change on democracy (Model 1) interacted with percent of workforce
employed in agriculture (Model 2), Agriculture as a percent of GDP (Model 3), and Electoral system
(Model 4). Note that it is possible though rare for nondemocracies to have a “voting system.” Control
variables are omitted for length.

Model 1 Model 2 Model 3 Model 4

Democracy −1.10∗ −2.18∗∗ −1.66∗∗ −1.86∗∗

(0.44) (0.62) (0.58) (0.62)
Ag employment −0.05

(0.03)
Ag emp:Democracy 0.05∗∗∗

(0.01)
Ag pct GDP −0.02

(0.04)
Ag pct GDP:Democracy 0.05∗

(0.02)
PR −0.21

(0.72)
PR:Democracy 1.16

(0.67)

Num. obs. 136743524 108628844 112662730 117037436
Adj. R2 (full model) 0.38 0.38 0.38 0.38
Adj. R2 (proj model) 0.37 0.38 0.37 0.37
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

this constraint on agricultural power–the size of the agricultural sector does not strongly moderate the

relationship between regime type transition and deforestation rate.

Table A.1 shows heterogeneous treatment effects by agricultural employment, agriculture share

of GDP, and electoral system. In all cases the main effect is negative and significant, but in both of

the agricultural interactions the interaction effect is positive and significant, indicating that the effect is

strongest in countries which do not have a large agricultural sector. The dynamic here merits further

research in future work.

Figure A.2 shows the results from Figure 4 in the main text broken out across forest types. Several

patterns emerge from this analysis. First, in the cell-level tests elections with a margin of victory of less

than 10 points are always significantly associated with forest cover loss. In national-level regressions these

close elections are almost always associated with forest loss-except for in all electoral systems and all

forest cover or tropical and subtropical forests. The mechanisms behind this finding deserve analysis in
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Figure A.2: Coefficient plots for forest type–elections

Relationship between elections with varying margins of victory and forest cover change across forest type and
electoral system.

future work. Second, in Majoritarian electoral systems the relationship between competitive (margin<20)

and close (margin<10) elections and forest cover change is always significant and negative with the sole

exception in temperate and boreal forests in competitive elections. Despite the fact that each of these

categories has relatively few elections there is suprising homogeneity in the results.

Figure A.3 shows results from Figure 5 in the main text broken out along forest types. What clearly

stands out is that the relationship is driven by temperate and boreal forests at the cell level and null in

tropical and subtropical forests. Future investigations of this effect will need to focus on the deforestation

mechanisms associated with different forest types and the years and countries which are driving this effect.

Table A.2 shows the results from the main text in Models 1-3 and shows that if I interact electoral

system with election year the results are present though smaller (and notably not significant for elections

with the smallest margin of victory). This is evidence that regime type is the more important dimension.

The results from Figure 4 in the main text further demonstrate that electoral system does not seem to matter

too much, at least in the cell-level regressions.

Table A.3 shows regressions where election years are interacted with agricultural share of employ-

ment (Models 1-3) and agricultural share of GDP (figures 4-6). The table shows all null effects–that there

are no detectable effects of agricultural strength on whether election years have higher rates of deforestation

(without accounting for regime type).
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Table A.2: Models 1-3 show the results across regime type and level of electoral competition from the
main paper, Models 4-6 show interactions between electoral system and level of electoral competition
(instead of regime type). Control variables are omitted for length.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Election Year −0.10 −0.20∗∗∗

(0.38) (0.05)
Margin < 20 −1.38 −0.34∗∗

(0.69) (0.10)
Margin < 10 −2.17∗∗ 0.16

(0.70) (0.11)
Election:Autocracy 0.14

(0.54)
Margin<20:Autocracy 2.56∗

(1.22)
Margin<10:Autocracy 3.95∗∗

(1.36)
Election:Democracy 0.06

(0.37)
Margin<20:Democracy 1.22

(0.76)
Margin<10:Democracy 2.08∗∗

(0.65)
Election:PR 0.35

(0.31)
Margin<20:PR 0.20

(0.30)
Margin<10:PR −0.49∗

(0.19)
PR 0.14 0.44 0.38

(0.81) (0.86) (0.88)
Democracy −0.91∗ −0.87∗ −0.96∗

(0.37) (0.35) (0.37)
Autocracy −0.50 −0.54 −0.56

(0.60) (0.63) (0.63)

Num. obs. 132801614 118463788 110285677 117028441 103133799 95218053
Adj. R2 (full model) 0.38 0.38 0.38 0.38 0.38 0.39
Adj. R2 (proj model) 0.37 0.37 0.37 0.37 0.37 0.37
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table A.3: Models 1-3 show interactions between election years of different levels of electoral compe-
tition and agricultural share of employment, Models 4-6 show interactions between election years of
different levels of electoral competition and agricultural share of GDP. Control variables are omitted for
length.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Election Year 0.09 0.06
(0.20) (0.25)

Margin < 20 −0.42 −0.44
(0.29) (0.36)

Margin < 10 −0.48 −0.74
(0.48) (0.55)

Ag employment −0.02 −0.02 −0.03
(0.03) (0.03) (0.03)

Election:Ag employment −0.01
(0.00)

Margin<20:Ag employment 0.00
(0.01)

Margin<10:Ag employment 0.00
(0.01)

Ag pct of economy −0.02 −0.03 −0.03
(0.05) (0.05) (0.05)

Election:Ag pct of economy 0.00
(0.01)

Margin<20 : Ag pct of economy 0.01
(0.02)

Margin<10 : Ag pct of economy 0.03
(0.03)

Num. obs. 107944319 96575335 90622563 112138852 100941895 95368927
Adj. R2 (full model) 0.38 0.39 0.39 0.38 0.38 0.38
Adj. R2 (proj model) 0.38 0.37 0.38 0.37 0.36 0.36
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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pp forest change per election year, 1 point decrease in margin

All
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Figure A.3: Coefficient plots for forest type–margin

Relationship between margin of victory and forest cover change across forest cover types and electoral systems.

2.9 Levels of aggregation

This section presents Tables 3-5 in the main text across different levels of spatial aggregation. The

extremes here are Cell and National, with intermediate levels of cells aggregated to one hundred times

the native resolution (about 55×55 km near the equator), second level adminstrative units, and first level

administrative units. The first two columns are implicitly weighted by forest area–countries which have

more forest will be weighted more highly but each cell is weighted equally. The third to the fifth tests are

weighted by adminstrative unit–for example each state or province receives equal weight regardless of the

amount of forest. This implicitly downweights the result of cells which are in adminstrative units with

many other forested cells. For example, the relationship uncovered in Liechtenstein is weighted equally

to the relationship uncovered in Brazil. I include smaller administrative units because I think of those

as possibly the “true” level of treatment–as the Kenya example shows, in many cases it is the electoral

competitiveness at the district or county level which determines whether deforestation occurs or not.
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Table B.1: Democracy results across levels of aggregation. 0.05 decimal degree is the cell level discussed
in the paper, 0.5 dd is aggregated to cells 100 times as large, L2 is level two administrative units, L1 is
level 1 administrative units, National is national borders as discussed in the paper.

0.05dd 0.5dd L2 L1 National

Democracy −1.10∗ −1.05∗ −0.85 −0.35 −0.25
(0.44) (0.40) (0.58) (0.35) (0.29)

Forest −0.77∗∗∗ −0.65∗∗∗ −0.63∗∗∗ −0.59∗∗∗ −0.56∗∗∗

(0.03) (0.04) (0.04) (0.05) (0.06)
PCGDP 0.08 0.06 0.09 0.12∗∗ 0.11∗∗

(0.05) (0.04) (0.05) (0.04) (0.03)
∆ PCGDP −7.86 −4.64 −18.86 −10.07 −9.33

(20.33) (15.49) (17.62) (9.02) (10.40)
Pop Growth −0.13 −0.13 0.05 −0.16 −0.08

(0.27) (0.19) (0.23) (0.09) (0.08)

Num. obs. 136743524 1545318 1300578 79914 4375
Adj. R2 (full model) 0.38 0.34 0.34 0.33 0.34
Adj. R2 (proj model) 0.37 0.31 0.30 0.27 0.26
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

2.10 Geographically weighted regressions

Geographically weighted regressions are a way of examining spatial heterogeneity in the results of

this analysis. In each GWR below every point corresponds to the coefficient of interest from a regression

which includes only cells within two decimal degrees from that point. The goal is to visually investigate

heterogeneities in the relationship tested by the regression.

2.11 Measures of competitiveness

This section explores the results of Tables 3 and 4 in the main text but with two other measures

of electoral competition. The first is the difference between the incumbent coalition’s vote share and 50

which measures how close that coalition was to winning/losing an election. This measure does not capture

the seat-vote elasticity discussed in [58] and only roughly captures the notion of incumbent victory or

loss, see for example the US election in 2016. It is pre electoral system so a small margin of victory in

the popular vote might not mean a close election in terms of seats or control of the executive branch. It is
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Table B.3: Regressions of forest change on electoral competitiveness. Competitiveness is interacted with
government type with Anocracy as the base case. 0.05 decimal degree is the cell level discussed in the
paper, 0.5 dd is aggregated to cells 100 times as large, L2 is level two administrative units, L1 is level 1
administrative units, National is national borders as discussed in the paper.

0.05dd 0.5dd L2 L1 National

Competitiveness −0.06∗∗ −0.05∗∗ −0.01 −0.01 −0.01
(0.02) (0.02) (0.02) (0.01) (0.01)

Comp:Autocracy 0.09∗∗∗ 0.08∗∗∗ 0.04∗ 0.04∗ 0.02
(0.02) (0.02) (0.02) (0.01) (0.02)

Comp:Democracy 0.06∗ 0.05∗ −0.00 0.00 0.00
(0.03) (0.02) (0.03) (0.02) (0.01)

Autocracy −5.99∗∗∗ −5.00∗∗∗ −1.14 −1.50 −0.95
(1.18) (1.10) (1.49) (0.77) (1.02)

Democracy −4.53 −3.87 0.78 0.42 0.16
(2.36) (2.05) (2.10) (1.30) (0.89)

Forest −0.71∗∗∗ −0.58∗∗∗ −0.58∗∗∗ −0.48∗∗∗ −0.43∗∗∗

(0.03) (0.04) (0.04) (0.04) (0.06)
PCGDP 0.07 0.05 0.18∗∗∗ 0.19∗∗∗ 0.14∗∗

(0.08) (0.07) (0.03) (0.05) (0.05)
∆ PCGDP 43.02 43.99 94.11∗ 52.08 12.29

(26.81) (22.68) (39.27) (30.80) (32.50)
Pop Growth −0.03 −0.13 −1.14 −0.46 −0.34

(0.44) (0.35) (0.56) (0.25) (0.24)

Num. obs. 35346878 397758 341318 17227 864
Adj. R2 (full model) 0.35 0.29 0.32 0.25 0.22
Adj. R2 (proj model) 0.27 0.20 0.23 0.12 0.07
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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<−10 −5 0 5 >10
Coefficient

Figure C.1: Geographically Weighted Regression: Coefficient on Democracy

The color of a cell corresponds to the relationship between democracy and forest cover change for the cells within
two decimal degrees of that cell. White cells are areas where there was no change, including places in which there
was never forest present. Grey cells indicate areas for which the coefficient of interest is not estimable because there
were no cells which had variation in regime type.

<−10 −5 0 5 >10
Coefficient

Figure C.2: Geographically Weighted Regression: Coefficient on < 20% Margin

The color of a cell corresponds to the relationship between election years and forest cover change for the cells within
two decimal degrees of that cell. cells included in the regression are weighted by their inverse distance to the target
cell. White cells are areas where there was no change, including places in which there was never forest present. Grey
cells indicate areas for which the regression failed, mainly due to no variation in whether there were any elections.
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<−10 −5 0 5 >10
Coefficient

Figure C.3: Geographically Weighted Regression: Coefficient on < 20% Margin

The color of a cell corresponds to the relationship between election years with a margin of victory of less than 20%
and forest cover change for the cells within two decimal degrees of that cell. White cells are areas where there was
no change, including places in which there was never forest present. Grey cells indicate areas for which the
regression failed, mainly due to no variation in whether there were any elections.

<−10 −5 0 5 >10
Coefficient

Figure C.4: Geographically Weighted Regression: Coefficient on < 10% Margin

The color of a cell corresponds to the relationship between election years with a margin of victory of less than 20%
and forest cover change for the cells within two decimal degrees of that cell. White cells are areas where there was
no change, including places in which there was never forest present. Grey cells indicate areas for which the
regression failed, mainly due to no variation in whether there were any elections.
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useful for single district PR systems, but those are places where geographic targeting already makes the

expected effect small. Tables 3 and 4 are replicated in Tables D.1 and D.2.

The second is the difference between the incumbent coalition’s seat share and 50 which implicitly

includes seat-vote elasticities, but fails to capture what [57] say is a better measure of competitiveness,

which is which party holds the prime minister position or the presidency. Tables 3 and 4 are replicated in

Tables D.3 and D.4.

Both measures have the expected sign and magnitude at the National level of aggregation but null

or opposite results at the cell level. Future work should investigate how electoral systems interact with

measures of competitiveness to help resolve this issue. Subnational measures of competitiveness would

also provide additional clarity.

2.12 Neighboring forest and lagged forest

In this section I explore what happens when a spatial lag of forest cover is included along with

previous forest cover, and when their functional form is modeled by a set of interacted fixed effects. In

theory the forest cover of neighboring cells should predict whether a cell will lose forest cover. Cells on

the edge of a forest are more likely to be deforested than those surrounded by forest, while cells which

have begun to be deforested but are not too close to 0 forest remaining should see the highest rates of

deforestation. To explore the degree to which this matters for this analysis I create a set of fixed effects for

each decile of forest cover and neighboring forest cover: 0-10 percent forest cover through 90-100 percent

forest cover for both previous forest cover and avrage neighbor forest cover. Then I interact these sets of

fixed effects and include them in regressions to achieve a closer approximation of the true functional form

of these variables. Below the paper tables are replicated with this set of fixed effects included.

2.13 Timing of Deforestation

The final test presented here explores the timing of the forest loss with respect to an election. I

expect deforestation rates to be highest in the time surrounding an election. The rate at which politicians
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Table D.1: Regressions of forest change on election year. Election years are subset by how competitive
they were: columns 1 is all election years, 2 is years with a margin of victory less than 20 points, 3 is
years with a margin of victory less than 10 points. Election year is interacted with government type with
Anocracy as the base case. Margin of victory is calculated as the absolute value of percent of votes for
the incumbent coalition minus the percent of votes of the opposition coalition.

Cell Cell Cell National National National

Election Year −0.10 −0.12
(0.38) (0.23)

Margin < 20 −0.51 −0.77∗

(0.74) (0.33)
Margin < 10 0.83∗ −1.42∗

(0.39) (0.58)
Election:Democracy 0.06 0.07

(0.37) (0.22)
Margin<20:Democracy 0.60 0.61

(0.69) (0.37)
Margin<10:Democracy −0.51 1.42∗

(0.33) (0.62)
Democracy −0.91∗ −0.90∗ −0.84∗ −0.33 −0.32 −0.34

(0.37) (0.39) (0.38) (0.23) (0.22) (0.23)
Autocracy −0.50 −0.54 −0.48 0.11 0.17 0.17

(0.60) (0.60) (0.59) (0.38) (0.36) (0.36)

Num. obs. 132801614 124713884 119285168 4081 3816 3697
Adj. R2 (full model) 0.38 0.38 0.38 0.34 0.35 0.35
Adj. R2 (proj model) 0.37 0.37 0.37 0.26 0.26 0.26
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table D.2: Regressions of forest change on electoral competitiveness. Competitiveness is interacted with
government type with Anocracy as the base case. Margin of victory is calculated as the absolute value of
percent of votes for the incumbent coalition minus the percent of votes of the opposition coalition.

Cell National

Competitiveness −0.03 −0.00
(0.02) (0.01)

Comp:Autocracy 0.00 0.01
(0.03) (0.02)

Comp:Democracy 0.03 −0.00
(0.02) (0.02)

Autocracy −1.20 0.91
(1.93) (1.41)

Democracy −4.19 0.66
(2.12) (1.66)

Forest −0.70∗∗∗ −0.47∗∗∗

(0.03) (0.07)
PCGDP 0.07 0.12∗∗

(0.05) (0.04)
∆ PCGDP 168.92∗ 31.61

(67.50) (32.33)
Pop Growth 0.34 −0.33

(0.49) (0.36)

Num. obs. 27696215 600
Adj. R2 (full model) 0.33 0.21
Adj. R2 (proj model) 0.21 0.03
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table D.3: Regressions of forest change on election year. Election years are subset by how competitive
they were: column 1 is all election years, 2 is years with a margin of victory less than 20 points, 3 is
years with a margin of victory less than 10 points. Election year is interacted with government type
with Anocracy as the base case. Margin of victory is calculated as the percentage of seats won by the
victorious coalition minus 50.

Cell Cell Cell National National National

Election Year −0.10 −0.12
(0.38) (0.23)

Margin < 20 0.17 −0.94∗∗

(0.66) (0.31)
Margin < 10 0.71 −0.31

(0.52) (0.27)
Election:Democracy 0.06 0.07

(0.37) (0.22)
Margin<20:Democracy −0.22 0.79∗

(0.65) (0.34)
Margin<10:Democracy −0.59 0.13

(0.50) (0.39)
Democracy −0.91∗ −0.84∗ −0.87∗ −0.33 −0.37 −0.37

(0.37) (0.40) (0.40) (0.23) (0.23) (0.24)

Num. obs. 132801614 118136134 110261053 4081 3572 3410
Adj. R2 (full model) 0.38 0.38 0.38 0.34 0.35 0.35
Adj. R2 (proj model) 0.37 0.37 0.37 0.26 0.27 0.27
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table D.4: Regressions of forest change on electoral competitiveness. Competitiveness is interacted with
government type with Anocracy as the base case. Margin of victory is calculated as the percentage of
seats won by the victorious coalition minus 50.

Cell National

Competitiveness 0.02 −0.01
(0.01) (0.01)

Comp:Autocracy −0.02 0.01
(0.02) (0.01)

Comp:Democracy −0.02 0.01
(0.01) (0.01)

Autocracy 1.05 0.13
(1.15) (0.78)

Democracy −0.04 −0.37
(0.91) (0.78)

Forest −0.69∗∗∗ −0.45∗∗∗

(0.03) (0.06)
PCGDP 0.09 0.12∗∗

(0.06) (0.04)
∆ PCGDP 125.60 21.30

(65.20) (25.69)
Pop Growth −0.02 −0.35

(0.40) (0.19)

Num. obs. 34499480 907
Adj. R2 (full model) 0.34 0.21
Adj. R2 (proj model) 0.24 0.09
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table E.1: Regressions of forest change on democracy. Fixed effects for each ten percent of lagged forest
cover and each ten percent of average neighbor forest cover and their interaction.

Cell Cell National National

Democracy −1.07∗ −0.42 −0.18 −0.04
(0.45) (0.33) (0.20) (0.09)

PCGDP 0.09∗ 0.01 0.04 0.00
(0.04) (0.01) (0.03) (0.01)

∆ PCGDP −6.67 22.88 12.81 27.14
(18.71) (25.31) (10.38) (17.18)

Pop Growth −0.10 0.00 0.03 −0.04
(0.29) (0.12) (0.06) (0.06)

Constant 0.12
(0.20)

Num. obs. 122497614 122497614 4375 4375
Adj. R2 (full model) 0.35 0.13 0.07 0.00
Adj. R2 (proj model) -0.04 0.00 -0.04 0.00
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table E.2: Regressions of forest change on election year. Election years are subset by how competitive
they were: columns 1 is all election years, 2 is years with a margin of victory less than 20 points, 3 is
years with a margin of victory less than 10 points. Election year is interacted with government type with
Anocracy as the base case. Fixed effects for each ten percent of lagged forest cover and each ten percent
of average neighbor forest cover and their interaction.

Cell Cell Cell National National National

Election Year −0.17 −0.19
(0.38) (0.28)

Margin < 20 −1.18 −0.59
(0.77) (0.50)

Margin < 10 −1.99∗ −0.42
(0.85) (0.48)

Election:Democracy 0.10 0.05
(0.36) (0.30)

Margin<20:Democracy 0.91 0.20
(0.83) (0.53)

Margin<10:Democracy 1.80∗ 0.10
(0.79) (0.54)

Democracy −0.81∗ −0.74 −0.85∗ −0.17 −0.23∗ −0.20
(0.39) (0.38) (0.40) (0.12) (0.11) (0.12)

Num. obs. 118807786 106171502 99157113 4081 3701 3517
Adj. R2 (full model) 0.34 0.35 0.35 0.08 0.08 0.08
Adj. R2 (proj model) -0.04 -0.04 -0.04 -0.04 -0.04 -0.05
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table E.3: Regressions of forest change on electoral competitiveness. Competitiveness is interacted with
government type with Anocracy as the base case. Fixed effects for each ten percent of lagged forest cover
and each ten percent of average neighbor forest cover and their interaction.

Cell National

Competitiveness −0.03∗ −0.02
(0.01) (0.01)

Comp:Autocracy 0.05∗ 0.02
(0.02) (0.02)

Comp:Democracy 0.03 0.00
(0.02) (0.01)

Autocracy −2.84∗ −1.51
(1.28) (1.11)

Democracy −1.98 0.48
(1.31) (0.82)

Num. obs. 35346878 864
Adj. R2 (full model) -0.00 0.01
Adj. R2 (proj model) -0.13 -0.17
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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will choose to allocate forested land will peak just before the election takes place for two reasons: the

ability of a politician to efficiently allocate resources increases as the election approaches, and voters

exhibit recency bias. First, as an election approaches a politician’s expected probability of winning that

election becomes more precise, so they can choose how much land to allocate to ensure victory without

wasting too much of the resource. Second, voters tend to exhibit some myopia and give more weight to

recent events than less-recent events. Simply, a politician wants the benefit a voter received from that

politician to be in the front of his mind when he goes to the ballot box [23, 67].

While one might expect deforestation to be a slow process and thus expect higher rates of deforesta-

tion for several years after an election, I expect deforestation associated with elections to happen quickly

for two reasons: opportunity costs of waiting and political uncertainty. Consider the two mechanisms

highlighted above: smallholder farmers converting forest to cropland and logging firms extracting timber.

Smallholder farmers have an incentive to clear forests quickly so they can plant crops during the next

growing season. Failure to do so would be to sacrifice a year’s worth of additional income. Furthermore, if

farmers have to relocate to obtain this additional land like they did in the case of the Mau forest reserve

in Kenya, their main priority is to clear the land and start growing crops. Alternatively, logging firms

have different incentives to exploit forested resources quickly: their access might be contingent on the

incumbent winning the upcoming election. Should a challenger win it would make sense for the challenger

to revoke access to a firm that supported their opponent. Knowing this, logging firms should extract as

much as possible quickly.

I test this by creating a lead and a lag of the competitive election variable (t−1 to t+1) to identify

the timing of deforestation. Table F.1 shows that the year of an election with less than a 10% margin of

victory in an anocracy has significantly higher rates of deforestation than other years while the years before

and after an election are not impacted to a degree which is statistically significant. This relationship is

strong across levels of aggregation.
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Table F.1: Regressions of forest change on close elections, with election leads and lags

Cell Cell, lead lag National National lead lag

Close Election −2.17∗∗ −1.52∗∗ −0.37 −0.52
(0.70) (0.48) (0.35) (0.49)

Close Lag −0.24 −0.38
(0.30) (0.59)

Close Lead −0.43 −0.94
(0.38) (0.75)

Close:Democracy 2.08∗∗ 1.47∗∗ 0.16 0.14
(0.65) (0.48) (0.41) (0.49)

Close Lag:Democracy 0.29 0.10
(0.36) (0.60)

Close Lead:Democracy 0.34 0.96
(0.37) (0.74)

Forest −0.77∗∗∗ −0.77∗∗∗ −0.56∗∗∗ −0.59∗∗∗

(0.03) (0.04) (0.06) (0.06)
PCGDP 0.09 0.09 0.11∗∗ 0.11∗

(0.05) (0.06) (0.03) (0.04)
∆ PCGDP 13.68 13.92 3.14 12.12

(31.86) (32.00) (10.21) (12.68)
Pop Growth −0.18 −0.18 −0.07 −0.01

(0.27) (0.28) (0.06) (0.08)
Democracy −0.96∗ −0.96∗ −0.35 −0.50

(0.37) (0.37) (0.25) (0.32)
Autocracy −0.56 −0.55 0.21 0.14

(0.63) (0.64) (0.37) (0.40)

Num. obs. 110285677 109946876 3517 2366
Adj. R2 (full model) 0.38 0.38 0.35 0.36
Adj. R2 (proj model) 0.37 0.37 0.26 0.26
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Chapter 3

Measurement and Inference using Satellite

Data in Benin

3.1 Abstract

In this paper I show that satellite imagery can be used to improve estimates of the effects of

programs or policies in settings where the location of the treatment is known and the outcome(s) of

interest are observable in satellite imagery. We often only observe where and when an intervention occurs

but lack an adequate control group with which to compare. I combine remote sensing methods with a

“double machine learning” strategy to account for confounds that appear (and may only appear) in the

satellite record, and which may contribute to both selection into treatment and outcomes of interest. In

non-experimental settings this approach thus allows researchers to directly control for confounders that

must otherwise be assumed away. I demonstrate this approach using both convolutional neural networks

and random forests and show how both can be used to take advantage of multi-spectral, high frequency

imagery. As a case study example, I apply this technique to estimate the effects of land tenure formalization

on landowner investment behavior in Benin, West Africa and find that conventional techniques would

over-estimate the effects of land titles on conversion from forest to cropland.
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3.2 Introduction

A rapid expansion in both data availability and new analysis have demonstrated the utility of

remotely-sensed data for capturing important on-the-ground outcomes in many settings. In addition, the

recent ubiquity of satellite observations with rapid return times contains a second exciting promise for

those who seek to estimate causal effects in settings where the location of the treatment is known and the

outcome(s) of interest (particularly economic, agricultural, or environmental) are observable in satellite

imagery. Here I demonstrate one set of methods that shows how time series land surface observations can

improve impact evaluations by isolating the effect of the intervention from confounds that my contribute to

both selection into treatment as well as outcomes. This method is particularly powerful because it accounts

for confounds which are encoded into the satellite record but do not need to be explicitly parameterized or

specified by the researcher.

This method is intended to be useful for anyone studying a geographically defined treatment with

an outcome which can be measured using remote sensing. However, as a case study and demonstration,

I here focus on land tenure formalization. Land tenure formalization has been a goal of international

organizations and governments around the world for the last 50 years and was intended to spur investment

by providing more secure property rights. However, these projects are almost never conducted at scale and

evaluated experimentally, leaving researchers with the difficult task of analyzing if, when, where, and how

these projects work. I begin with a brief introduction land tenure formalization for readers who may come

from a remote sensing background.

I then review the fundamental problem of causal inference using the potential outcomes framework,

how randomized control trials (RCTs) provide a solution to this problem, and what issues face the vast

majority of (non-RCT) studies like most land-tenure formalization efforts. Briefly, these issues arise when

those who receive a treatment (or policy) are different from those who don’t such that we would not expect

them to have the same outcome had they both received (or not received) the treatment. In this setting

researchers cannot identify whether observed differences in the treated and control groups are because of

the treatment or because of the initial differences. Remote sensing can resolve this issue by improving

measurement of those initial differences so they can be accounted for in the study.
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Briefly, the strategy is to use several years worth of satellite imagery from before the program was

implemented to uncover systematic differences between the treated and untreated groups. Specifically,

it seeks to uncover any pre-treatment differences which might affect whether the land will be eligible

to receive a title and any differences which affect what the land will be used for in later years. It uses

a procedure called “double machine learning” to adjust for those differences. Any confounding factors

which appear in satellite imagery can be adjusted for in this way, including many physical or environmental

factors which are otherwise difficult to measure. As long as these factors are encoded in satellite imagery,

they can be adjusted for; they need not be explicitly measured.

Finally, I demonstrate the power of this methodology by estimating the effect of a land-titling

reform in Benin on land use changes indicative of household investment, finding that places which received

titles were more likely to convert natural forest to cropland than similar places which did not receive titles.

This method is of broad applicability for remote sensing-based impact evaluation. It offers

researchers the ability to adjust for a range of potential confounding variables which are difficult or

impossible to measure using traditional methods. It also offers the possibility for impact evaluations of

large-scale, non-random policies, or more broadly the effect of political institutions on environmental

outcomes.

3.2.1 Land Titling

Land tenure formalization efforts begin from the foundational assumption that lack of formal

property rights prevents efficient use of land. Over 2.5 billion dollars have been spent on land titling efforts

over the last twenty years, and over 100 different studies have been conducted evaluating those efforts.

Unfortunately, few strong conclusions emerge from this literature, likely in part due to the lack of rigorous

measurement and reserach design associated with most interventions. [1] could find only four randomized

control trials (RCTs) out of over one thousand considered publications, and of 117 studies which aimed to

estimate the causal impact of land tenure security fewer than half were considered rigorous. Even among

the most rigorous studies the methods the methods used remain susceptible to environmental confounds

that may be associated with selection for titling in the first place.

Why is tenure formalization entrenched in development efforts? The potential pathways of impact
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are multiple: A land title could provide the owner with collateral and thus additional access to credit. Here,

the land serves as an asset which owners can leverage to improve their access to credit. The downstream

implications of additional access to credit are many, but include the ability to make additional investments

in the land. Land tenure formalization could make a landowner feel more secure in areas where land has

historically been seized or reallocated according to political whim or violence, and thus more willing to

undertake productivity improving investments. In this case a landowner is more certain that her land will

not be expropriated by the government or otherwise taken from her, making her more likely to invest

in the long-term productivity of the land. This might include forgoing several harvests so that she can

plant higher-value perennial crops. Finally tenure formalization could result in increased liquidity in land

ownership by facilitating purchases and sales [2–4]. Then the landowner would be able to sell her land to a

farmer for whom the land would be more productive. This too would result in higher productivity. These

mechanisms are outlined in Figure 3.1.

Other effects of land titling programs that are outside of the mechanisms proposed by [2] include

changes in labor-market participation and whether increased production occurs at the intensive or extensive

margin. Some recent evidence shows that land titling can result in a decrease in unproductive labor which

functions only to assert continued ownership of a parcel of land. This means that those formerly occupied

with this unproductive labor can seek employment in productive jobs, improving the overall welfare of

title-holding families through a mechanism wholly unconnected to agricultural productivity. Another line

of research investigates whether land titles can reduce the amount of land use conversion associated with

increased agricultural production. By incentivizing productivity-enhancing investments on land which is

already used for agriculture these programs may be able to reduce the amount of land which needs to be

converted to cropland to meet demand for agricultural products. This would generate positive externalities

in the form of continued ecosystem services from un-converted natural habitat.

Unfortunately the effects of land titling seem to vary significantly across contexts and experimental

designs[1, 3]. Agriculture in different agro-climatic zones has different characteristics and inputs, and

traditional land tenure varies both across and within countries. Studies differ in the type of land tenure that

they evaluate–sometimes offered by the government as part of a new policy, sometimes in conjunction

with the World Bank or another NGO. Perhaps most importantly, these differences affect the degree of
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Figure 3.1: Mechanisms by which formal land tenure can affect productivity. Source: [4]
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tenure security under traditional land tenure systems and the degree of tenure security after a title has been

assigned. If the difference is not large, or if agricultural behavior is not contingent on tenure security, we

could expect (and some studies find) negligible effect sizes [robinson_does_2014, 3].

The main outcome of interest of most studies is a productivity-enhancing investment. This takes

the form of soil-fallowing, use of fertilizer, improved seeds, mechanization, planting of non-crop trees,

terracing, or planting of perennial or tree crops[3].1 To date, no study that I am aware of has investigated

the relationship between land titling and use of irrigation to improve productivity.

Most studies of land titling projects have taken place in African countries, including at least

Rwanda [7], Madagascar[8], Ghana[2, 5, 6], Burkina Faso[9], Mali, Ivory Coast[6], Ethopia[10–12],

Uganda[13], Benin[14–18], and Niger[19]. However, because of variations in study design and local

context, there are few over-arching conclusions that can be drawn from the existing literature. The

conclusion that seems to enjoy the greatest support is an increase in tree-planting, either as way to prevent

soil erosion or in the form of perennial cash crops [1].

I focus on one empirical example: the effects of the Plan Foncier Rural (PFR) program conducted

by the Milennium Challenge Corporation to assign legal land titles to around 70,000 landowners in Benin.

To facilitate the land titling procedure, the borders of each titled plot were demarcated and recorded.

However, plots which were eligible for but did not receive a title were not similarly demarcated. I estimate

the effect that demarcation had on agricultural expansion, deforestation, expansion of built-up areas, and

the introduction of tree-crops. Previous work analyzing this program has found an increase in tree-crops

on treated parcels [14, 17] and a decrease in deforestation in areas adjacent to villages with treated parcels

[18]. For now (for computation reasons) I focus on the Department of Alibori in which 3074 parcels of

land from 33 villages received treatment.

1A difficulty for many previous studies is that many types of investment can serve to improve informal tenure security because
some traditional systems allow de-facto ownership of land through improvement to that land [5, 6]. This makes the problem of
identifying the effect of land titling on land improvement more difficult, especially outside the context of a randomized control
trial.
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3.2.2 Remote Sensing and Impact Evaluation

Satellite remote sensing is one of the fastest growing measurement methods in the social sciences.

Researchers have using night-lights data to measure economic outcomes for years [20] but have recently

begun to take advantage of multi-spectral daytime imagery to perform a broader array of measurement tasks

[21]. These include measuring population [22], income, poverty[23], urban expansion [24], urban damage

and rebuilding[25], infrastructure development [26], land cover and land use (especially deforestation)

[27, 28], agricultural practices and crop characteristics [29], or crop yields are necessary for the study of

many social science questions. With a public satellite record dating back to the 1970’s and instruments

with improved temporal, spectral, and spatial resolution coming online each year researchers have an

ever-expanding set of measurement strategies available.

In the land titling literature several studies have begun to rely on remote sensing to measure

outcomes of interest. [1] find 14 of their 117 studies use remote sensing. Remote sensing offers frequent

and high spatial resolution measurement of outcomes, particularly changes in land use. This has enormous

benefits. Researchers can cheaply extend their on the ground measurements, both across time (to evaluate

longitudinal impacts) and across space (to evaluate impacts across a wider study area). It also allows

researchers to avoid relying on respondents to accurately report the effects of a policy (when it might be in

their interest to misrepresent). Third, it allows analysis at a level of geographic aggregation which matches

the research question. Finally, and most importantly in this study, it allows researchers to adjust for factors

which can be measured in satellite imagery but are extremely difficult to otherwise adjust for.

Because of the ubiquity of satellite imagery, it is simple to match on the ground observations from

surveys to images which correspond to the timing and location of the observations. These ground truth

observations can then be used as training data in a machine learning algorithm to scale up measurement of

important outcomes across both space and time. Returning to the question of the impacts of land tenure, a

commonly studied outcome is tree-planting (an activity which has long-term benefits to the landowner

and thus should be more common among those who have higher land tenure security). A set of on the

ground measurements of whether farmers planted trees in certain locations can easily be scaled up using

those measurements as training data, leaving researchers with a measurement of the outcome variable at all
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locations rather than just those surveyed. Furthermore, with many measurements each year researchers can

observe the timing of responses to allow a more complete picture of when impacts occur.

Researchers are also not tied to ground-truth measurements collected by researchers who are truly

on the ground. Recent work in remote sensing uses very high resolution imagery to code outcomes which

are observable by humans. Researchers can use the google basemap to code many outcomes, including

construction of structures or infrastructure or changes in vegetation, and those observations can be scaled

up using more ubiquitous and available data at lower spatial resolutions [30]2.

The majority of land tenure impact evaluations rely on the subjects of the study to self-report

on the outcome of interest. This can be problematic if social desirability bias leads respondents to tell

researchers that some program was effective. Worse, if respondents believe that future aid or interventions

are contingent on the success of the study they may have incentives to misrepresent outcomes. Using

satellite imagery which cannot be manipulated by the subjects of the study avoids this issue.

Relatedly, researchers questions tend to imply a unit of analysis which might not agree with the

unit on which data is collected. For example, if the question is about the behavior of landowners it makes

sense to collect data at the plot or household level. However, if the question is about changes to productivity

or deforestation, data should be collected by spatial unit rather than household or plot so that the overall

aggregate effect can be identified. Using remotely sensed data allows researchers to aggregate up to the

appropriate level of analysis.

However, the use of satellite imagery comes with its own set of problems, many of which are

effectively outlined in [31] and [32]. One issue stands out–errors in measurement are likely to be correlated

with underlying environmental characteristics resulting in non-classical measurement error. Worryingly, if

the things which result in measurement error are also associated with whether a parcel of land is assigned a

land title then the measurement error can bias the results. For example: if an area has favorable growing

conditions (soil nutrients, access to water, etc.) then natural vegetation might be more likely to be mistaken

for cropland because of its increased productivity. Such an area might also induce a farmer to apply for a

land title to improve her security for that parcel of land. If this pattern is persistent (favorable areas are both

2In my analysis of land titling in Benin I hand code land cover classes using the google basemap and then scale that
classification up using landsat imagery.
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more likely to be mis-classified and to receive a title) then any relationship between titling and agricultural

area would be confounded by this measurement error.

Remote sensing also opens the possibility for researchers to include many more units in their

study, but this is only useful if those units are similar enough to those with a different treatment status to be

useful. In many land titling studies the treated units are known because they received a formal title, but the

appropriate control group is not3. Including more control units is only helpful if they contain information

about what would have happened to treated units had they been left untreated, and if that information is

able to be extracted despite the differences between those units and the treated units. In the land titling

example if researchers collect data on control units which either would never have been eligible for a title

(located in a national park, for example) or which cannot experience the same landcover transition as the

titled areas (because they are on extremely degraded land which is infrequently titled) then those units can

bias the results of an analysis if they are not properly accounted for.

In this paper I demonstrate how a “double machine learning” (DML) approach [33] can help

mitigate these issues with using satellite data and in doing so can also account for environmental and

physical characteristics of land which are likely to bias traditional methods.

3.3 Methods

I show that remote sensing, when paired with a DML approach to inference, can improve the way

that we conduct impact evaluation of land tenure formalization. The goal of this approach is to make sure

that the treated and untreated groups are as similar as possible across two dimensions: how likely they

were to receive a land title before titles were assigned, and what their eventual land cover would have been

had they received the opposite treatment assignment4. I use machine learning methods designed for remote

sensing applications to adjust both groups to ensure that a fair comparison is being made across these two

dimensions.

In this section I review the goal and fundamental problem of causal inference, how randomization

3Implementors rarely want to spend the time and money to demarcate plots which do not receive a title, and doing so is
unethical if land titles are expected to have a positive outcome.

4That is, we would like it to be the case that if no area had been treated, the average outcome of treated and control groups
would have been identical and that the average outcome of both groups would have been the same had they all received titles.
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helps, and the type of issues which arise without randomization. I contextualize this in the world of

land tenure formalization studies and give a short overview of the toolkit most frequently employed by

researchers. I show that pairing the use of satellite imagery with machine learning methods and a DML

approach can improve inference by allowing us to measure and adjust for important differences between

treated and control groups. Finally, I outline how this can resolve the two issues with using satellite imagery

described above.

3.3.1 Potential Outcomes

To understand the effect of receiving a land title on whether a farmer makes a productivity-

enhancing investment we must compare two different outcomes: what happened when the farmer received

her title, and what would have happened had she not received a title (but with all other factors the same).

The difference between those outcomes is the individual treatment effect of a land title on one subject. If

we expand this to a number of study subjects, some of whom received a title and some of whom did not,

we have the average treatment effect. The difficulty is in how we infer the outcome that we did not observe

for each individual or group. This dilemma is known as the fundamental problem of causal inference [34].

The field of causal inference is built around how to best estimate the difference between what would have

happened under a different treatment condition and what actually happened.

To clarify the process, I introduce some notation originally introduced by [34] and commonly used

in econometrics today [35, 36]. Define Y 1
i as the “potential outcome” of unit i had it received the treatment

and Y 0
i as the potential outcome of unit i had it not received the treatment. For any observation, both of

these exist, but only one is ever observed. For example, Y 1
i is what would occur on plot i had it received a

title, and Y 0
i is what would occur had it not received a title. Then δi = Y 1

i −Y 0
i is the treatment effect for

unit i, or how much of an impact a land title would have. The goal of most studies is to estimate an average

treatment effect, or ATE:

AT E = E[δi]

= E[Y 1]−E[Y 0]

= E[Y 1−Y 0]

(3.1)
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The AT E is the average difference between Y 1 (the potential outcome under treatment) and Y 0 (the

potential outcome under control). E[] is the expected value, usually operationalized as the sample average.

We only ever observe one potential outcome: the one which matches the observed treatment assignment.

In land tenure security studies each plot has two potential outcomes: what would have happened with

a title, and what would have happened without one. For each plot, we only get to see one of those–the

potential outcome which corresponds to the actual title status of the plot. We can only observe Y 1 for units

which received treatment and Y 0 for units which did not. We can write the observed Yi as:

Yi = DiY 1
i +(1−Di)Y 0

i (3.2)

Which simply gives the treated potential outcome if the unit is treated (leaving 1∗Y 1
i +0∗Y 0

i )

and the untreated potential outcome if the unit is untreated (leaving 0∗Y 1
i +1∗Y 0

i . Because we cannot

simultaneously observe Y 1 and Y 0, one common approach is to use the simple difference between the

treated and untreated groups:

AT E = E
[
Y 1 | D = 1

]
−E

[
Y 0 | D = 0

]
(3.3)

Here the AT E is the difference between the treated potential outcomes Y 1 of the treated group

D = 1 and the untreated potential outcomes Y 0 of the control group. D = 0. For this strategy to uncover

the true effect it must be true that the treated and control groups are similar across all the factors which

influence the outcome. In our example, this means that the titled and un-titled plots should have looked

exactly the same had they all been left with no title. The only setting where this is plausibly true is when

titles are randomly assigned or not assigned to an eligible group. Formally, I follow [36] and decompose

this estimator into two parts:

E
[
Y 1 | D = 1

]
−E

[
Y 0 | D = 0

]
=

E
[
Y 1]−E

[
Y 0]

+E
[
Y 0 | D = 1

]
−E

[
Y 0 | D = 0

] (3.4)

The first line is the simple difference in means estimator. The second line is the “true” average
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treatment effect which we would uncover if we knew all of the potential outcomes. The third line is a

“selection bias” term which will make our estimate of the AT E differ from the true value if it is not equal

to zero. It describes the difference in what would have happened absent treatment Y 0 across treated and

control groups (D = 1 and D = 0).5

An example of selection bias in the context of land titling is when certain areas which are fertile

are both more likely to receive a land title and more likely to be converted to tree crops. This can happen in

a number of ways, for example if those implementing the project want it to be successful they may choose

the most suitable areas to receive titles, or farmers on productive land may be more likely to apply for

titles. In either case the land which received a title was different from the land which did not. Specifically,

the titled land was more likely to be converted to tree crops even absent land titles. This means that

the untreated potential outcomes for the treated group E
[
Y 0 | D = 1

]
are not the same as for the control

group E
[
Y 0 | D = 0

]
resulting in an estimate of the ATE which is different from the true effect. Because

conversion to tree crops was already more likely on the titled land we could expect to see a difference

between titled and untitled outcomes even if the title truly had no effect. If there is a true effect of land

titles, we will observe an effect size which is larger than the true effect because of this selection bias.

Formally, if the treatment status is the result of a set of factors X , then D = g(X). If the potential

outcomes Y 1 and Y 0 are also a result of both treatment and those factors, Y 1 = m(X) and Y 0 = m(X) then

without accounting for X E
[
Y 0 | D = 1

]
−E

[
Y 0 | D = 0

]
6= 0 and

E
[
Y 1 | D = 1

]
−E

[
Y 0 | D = 0

]
6= E

[
Y 1]−E

[
Y 0]

This is also almost certain to happen when a researcher only knows the location of the title-

receiving areas and seeks to use remote sensing to measure what occurred in untreated areas. Here, the

researcher is almost guaranteed to select areas which have different potential outcomes than the treated

areas. Ideally, the researcher would only collect data from areas which were also eligible to receive titles

but were randomly selected not to, but in every case which I am aware of those areas were not demarcated

5I choose to focus on selection bias and rely on a homogeneous treatment effect assumption here for simplicity, as in [36].
For a discussion of heterogeneous treatment effect bias, see [35] and for a description of how this bias is also minimized by the
estimation strategy employed here see [33].
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(even if treatment was randomized). As a result, the researcher using remote sensing might gather data

from areas which are covered by water or in protected areas–two areas for which the potential outcomes

differ greatly from those in titled areas.

These examples illustrate that there must be balance across the treated and control groups potential

outcomes, or at least balance in the set of factors which influence potential outcomes and treatment.

There are a number of strategies available to researchers which can minimize selection bias and recover

the ATE. I begin by describing the gold standard for estimating the ATE: the randomized control trial

(RCT). A randomized control trial (RCT) is where a group of eligible units are selected and then each

unit is randomly assigned to either treated or untreated status. This automatically breaks and relationship

between X and D because D is generated exclusively as a result of some randomization process. This

means that (Y 1,Y 0,X)⊥⊥ D because D is randomly assigned, meaning that E
[
Y 1 | D = 1

]
= E[Y 1] and

E
[
Y 0 | D = 0

]
= E[Y 0]. The selection bias term disappears and the ATE can be estimated using the simple

difference in means (Equation 2). In the context of land titling, if a title is assigned or not according to a

coin flip then there cannot be any factors which influence selection into treatment other than the coin flip

and the groups are expected to be the same on average. In practice it is important to verify that there is

balance across observed characteristics of the treated and control areas.

Unfortunately randomization of assignment to treatment is often impossible or not feasible.

Government programs typically have objectives which are not compatible with randomization, and

randomizing access to a beneficial program like access to formal land titles can anger constituents.

Practitioners are also often resistant to RCTs because demarcating and evaluating areas is expensive, and if

those areas are not titled then doing so can seem like a waste of money. As a result, very few RCTs exist in

the land titling literature [1] and I am unable to find a study which included plot-level randomization. The

closest example I could find was the Plan Foncier Ruraux program in Benin, where out of 576 villages

eligible to receive land titles, 300 were randomly selected. In the treated villages, villagers were allowed to

apply for the project and have their plots demarcated free of cost. In the untreated villages, no demarcation

occurred. Randomization guarantees that the potential outcomes for the treated and control villages are

equal, but does not provide any guarantee at the plot level.

Without knowledge of how treatment to the PFR was assigned inside the villages, we do not know
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which parts of the untreated villages would have gotten titles had the village be selected for treatment.

The initial problem is that untreated plots are not even defined (because they were never demarcated) and

thus outcomes cannot even be measured. If we instead use a pixel in a remote sensing image as the unit

of analysis then untreated units are defined (pixels in untreated villages) and treatment status is 1 for all

pixels in plots in treated villages and 0 for all pixels in untreated villages. Even setting aside the fact that a

“village” does not have demarcated boundaries, the potential outcomes under treatment or control are not

equivalent for treated and control units. This is because to be treated a pixel must both be in a (randomly

assigned) treated village and in a non-randomly assigned titled plot. The process of deciding which land

within a village is demarcated almost ensures that the treated areas have different potential outcomes than

untreated areas.

For example, treated points do not occur in village centers where commercial property, communal

areas, and most roads are located. These places are very likely to have their (treated and untreated) potential

outcomes be “built up.” In the untreated villages, and without any additional information, some pixels will

be sampled from built up areas which would not have been eligible for a title. This is the most obvious

of many possible situations which all but guarantee that E
[
Y 1

]
6= E

[
Y 0

]
. Areas which are forested and

far from a road are also both less likely to receive a title and more likely to remain forest, both with and

without being titled. Note that these issues arise in one of the most carefully conducted RCTs evaluated by

two of the only four studies which evaluate RCTs found by [1].

This suggests a strategy where we only sample control points from areas which are sufficiently

similar across dimensions which might influence both assignment of treatment and post-treatment land

cover. Using measured demographic or economic data to perform this selection is precisely the matching

approach used by a number of land tenure formalization studies. More generally, this approach boils down

to finding all of the factors X which might result in E
[
Y 1

]
6= E

[
Y 0

]
and adjust for those things by selecting

control areas such that p(D = 1 | X) = p(D = 0 | X).

In the Benin PFR setting, even though treatment was randomly assigned, we cannot use the RCT

to evaluate impacts at the plot level using satellite data. Because control plots were never demarcated, the

best we can do is to say that while suitable control plots exist, we do not know where they are located.

A simple difference in means approach will be biased by which areas the researcher chooses to use as
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untreated areas unless those areas are similar enough to the treated plots. The matching strategy described

above is one of the strategies used to evaluate programs which are not RCTs.

Without an RCT, the next best way to evaluate a program is to attempt to model the selection

into treatment process sufficiently well that you only compare places which were identically likely to

receive treatment ex-ante (treatment model, for example matching), or to model the outcome process

sufficiently well that conditional on some other factors the potential outcomes of treated and control units

are equivalent (outcome model, for example multivariate regression).

The data that a researcher would wish for in this setting includes all the information which went

into determining which areas received a title and all the information which determines what the ultimate

land cover classification will be. These include things like distance to village center, distance to roads,

characteristics of the land like soil characteristics, access to water, rainfall, temperature, elevation, aspect,

latitude, the skill of the farmers working there, access to other inputs, ecosystem service provision, and

many others. Once in possession of this data, the researcher would attempt to adjust for this set of covariates

X to recover the ATE.

The assumption that a specified set of covariates are sufficient to recover the ATE is often called

“conditional ignorability,” and written (Y 1
i ,Y

0
i )⊥⊥D | Xi = x. This can be read “Treatment is as-if randomly

assigned among units with the same values of X.” Without going further into details, conditioning on X

recovers:

E
[
Y 1 | D = 1,X = x

]
−E

[
Y 0 | D = 0,X = x

]
=

E
[
Y 1 | X = x

]
−E

[
Y 0 | X = x

] (3.5)

With the third line of equation (4) equal to zero via the conditional ignorability assumption [36]. 6

As long as X captures all of the information used to assign a title then once we adjust for these factors the

treated and untreated areas will be equally likely to receive the treatment, like in an RCT. For example, if

for each treated point we find a control point which shares the same X (all of the above factors: distance

to roads, soil quality, etc.) then we are comparing points which were equally likely to be selected for

treatment, like in an RCT.
6We also require the “common support” assumption, which is 0 < Pr(Di = 1 | X = x)< 1 or that for any values of X it is

possible to have received either treatment status.
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Alternatively, if X captures all of the information necessary to predict the untreated potential

outcome Y 0 then once we condition on X the untreated potential outcomes for the two groups will be

equal, meaning E
[
Y 0 | D = 1,X = x

]
−E

[
Y 0 | D = 0,X = x

]
= 0. For example, if we know that absent

treatment, a place is more likely to be converted to tree crops if it has better access to water and higher

quality of soil then if we only select control points which are similar to the treated points on those two

characteristics we will be making a fair comparison and would expect to see no difference between the

groups if the title did not have any effect on land use.

The many approaches–including matching, fixed effects, and DiD–described by [1] as “rigorous”

studies are all attempts to condition on some observed variables. However, we are always limited by the

data which we posses. Broadly, these studies do not control for environmental characteristics, including

many of those mentioned above: soil characteristics, access to water, rainfall, temperature, elevation,

aspect, latitude, the skill of the farmers working there, access to other inputs, ecosystem service provision,

etc. The reason for this is that these can be extremely difficult to measure. However, remote sensing studies

can either directly gather or use satellite imagery to measure many of these things!

This suggests two possible approaches. One is to use remote sensing data to generate estimates of

all of the potential confounders that we can think of and then adjust for those via some estimator (regression,

matching, etc.). The other is to find a way to directly use the imagery as X and let a model determine which

features of the image are important. In this paper suggest the second. The approach can use a number of

different estimators (and estimands) but here I focus on a simple case: a linear regression of an outcome Y

on treatment status D and some covariates X . With the conditional ignorability assumption along with a

constant treatment effect assumption (E[Y 1
i −Y 0

i | Xi] = E[Y 1−Y 0 | Xi]∀i) and a linearity assumption (Y is

a linear, additive function of D and X) we can say that B1 is an unbiased and consistent estimator of the

ATE [36]:

Y = β0 +β1D+ γX + ε (3.6)

where β0 is an intercept, β1 is the coefficient on the vector of treatment statuses D, γ is a vector of

coefficients corresponding to the control variable matrix X , and ε is a vector of residuals.
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If we seek to use satellite images themselves as the controls, the linearity assumption is very

unlikely to hold. That is, the land cover class is not likely to be a linear function of the reflectances of

different wavelengths of light over time (and those of the pixel’s neighbors). Instead, I imagine that there

are a number of potentially important features encoded as a complicated, non-linear function of satellite

imagery. In fact, when remote sensing researchers use a neural network or random forest or other machine

learning classifier to predict characteristics of the land using satellite imagery, they are approximating one

such complex, non-linear function. To include such a function we need a variation of regression called

“partially linear regression” [37]:

Y = β0 +β1D+m(X)+U, E[U |X ,D] = 0,

D = g(X)+V, E[V |X ] = 0
(3.7)

where Y is the outcome variable, D is the treatment, X is a vector of controls, g() and m() are some

(non-linear) transformations, and U and V are vectors of residuals. In this type of model we do not have

the linearity assumption for the covariates and can substitute any functions for g() and m().

The double machine learning approach [33, 38] estimates a partially linear model where g() and

m() can be estimated using machine learning methods appropriate for very high dimensional covariates.

[38] show that issues associated with regularization bias and overfitting in ML estimators can be overcome

by employing Neyman-orthogonalization and sample splitting. This results in a N−1/2 consistent estimate

of the treatment effect which is not biased by variables which can be represented as functions of satellite

images.

[38] suggest the following process:

Estimate: D = ĝ(X)+Û

Estimate: Y = m̂(X)+V̂

Estimate: β̂1 from V̂ = β0 +β1Û + ε

73



where each of Û and V̂ are estimated out of sample through a sample-splitting process. Here the goal is to

estimate effect (β1) of some policy (D) on an outcome in a location in a given year (Y ). X includes all of the

images taken of that plot of land for some time before the policy began in addition to any other covariates

that the researcher wishes to model. ĝ() and m̂() are obtained through estimating suitable machine learning

algorithm–ideally one which has shown some success in other satellite imagery applications.

More concretely, this process involves splitting the sample (say into 10 groups), estimating ĝ() and

m̂() using 9/10 of the data and generating Û and V̂ with the remaining 1/10 of the data, repeating until each

group has been used to generate Û and V̂ . Then, Û and V̂ have been generated through a sample-splitting

process and orthogonalized and can be used to estimate β1 in a linear regression[39], having had nuisance

parameters partialled out [40, 41].

One useful property of this estimation strategy is that it is doubly-robust, meaning that if either ĝ()

or m̂() approximate the true functions g() and m() sufficiently well then the estimate will be unbiased7.

Stated differently, if a confounder is captured in either the treatment assignment model or the outcome

model it will not bias the estimate of β1. A correct specification of the treatment model or the outcome

model generates (Y 1
i ,Y

0
i )⊥⊥ D | Xi = x, removing the possibility for bias.

A variety of estimators can be used to approximate the g() and m() functions with N−1/4 con-

vergence (as this achieves N−1/2 convergence of the overall estimator), and recent results indicate that

deep neural networks can achieve this under many conditions [43]. While this result does not necessarily

hold for deep, convolutional networks, it would be straightforward to pre-train the convolutional layers

on a different set of points and then apply transfer learning so that the model used is simply a fixed

transformation (by the convolutional layers) followed by a deep neural network. Doing so would explicitly

satisfy the assumptions in [43] but has been left to future work. Random forests also achieve a N−1/4

convergence rates, as demonstrated by [44].8

In practice, doubly-robust estimators can minimize bias by adjusting for both the major causes

of treatment status and the major causes of the outcome, meaning that any remaining confounder is a

relatively minor cause of each of the treatment and outcome. Another way to think of this is that any unit

7This also helps to take care of regularization bias as shown in [38, 42]
8Other assumptions necessary for the machine learner include that the distribution of the outcome does not have unbounded

moments, the common support assumption, and that neither the outcome or the treatment can be perfectly predicted [38].
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for which we can use pre-treatment information to perfectly predict treatment status is not useful to us

because it does not contain any useful couterfactual information. If a treated unit is unique enough in its

characteristics to be predicted perfectly, that uniqueness makes it difficult to generate a counterfactual for.

Similarly, if a unit’s eventual landcover can be perfectly predicted by satellite imagery before treatment was

assigned, then it does not provide any useful information on the effect of a treatment. The more difficult it

is for a good model to predict both the treatment status and the outcome using pre-treatment imagery, the

more useful it is in estimating the causal effect of the treatment.

This corresponds to the use of Û and V̂ . X is pre-treatment satellite imagery, and g() is a model

tuned to predict treatment. The easier it is for the model to correctly predict the treatment, the less useful

that observation is, and the smaller the treatment residual. The more difficult it is, the more useful the

observation is because of its similarity to units with the opposite treatment status. The model m() is tuned

to predict eventual landcover class from pre-treatment imagery, and like above the better able predict, the

less useful the observation. The more different the predicted and true landcover classes, the larger V and

the more likely it was that treatment had an effect on that outcome.

3.3.2 Inference with Imagery

Below I describe the specifics of how satellite imagery is used as an input to two machine learning

models: a random forest paired with a harmonic regression (RF) and a deep, convolutional neural network

(NN). Similar models have been shown to be extremely effective in measurement of landcover [45]. A

more thorough description of the models and their estimation of land cover classification in Benin are in

the Supporting Information.

3.3.3 Estimation strategy

I demonstrate how to implement a double machine learning estimator which estimates the effect

of some geographically known treatment while using a series of satellite images to adjust for possible

confounders. The researcher must know the locations of treated units–either as points or as polygons–and
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the date at which treatment occurred. They must also have access to satellite imagery9 from before

treatment was assigned, generally at least a year of bi-weekly images (as in Landsat or Sentinel). The

researcher may also have access to other variables, including the geographic characteristics of treated

areas (slope, aspect, elevation, distance to urban center, etc.). The untreated units may be known (as in

the experimental setting) or unknown, in which they may comprise all of the untreated areas subject to

constraints based on previously measured covariates (within the same administrative unit, or with a certain

distance of treated units, for example).

With this information in hand, we proceed with four steps: measurement, the outcome model, the

treatment model, and the inferential model. The measurement step is where I record the outcome(s) of

interest for each unit in the study. These measurements may come from an off-the-shelf remotely sensed

measure, for example forest cover [27], they may come from an on the ground survey, or they can be

generated using remote sensing data (this is what I do in the Benin case).

In the outcome model I use satellite imagery from the years directly preceding treatment to predict

the outcomes from the measurement model: Y = m̂(X)+V̂ . This uses the information contained in that

imagery to try to estimate the outcome, and then keeps only the part of the outcome which cannot be

predicted using that data. If this m̂(X) model does a good job of approximating what the land would have

looked like without the land title, then what is left over can be attributed to the title. V̂ represents this

left-over variation.

In the treatment model I use satellite imagery from the years directly preceding treatment to predict

the treatment status of each unit: D = ĝ(X)+Û . This uses the imagery to estimate where treatment will

occur, and then keeps only the portion of the treatment which cannot be predicted. This ensures that the

remaining variation in treatment Û is conditionally independent of any confounders which appear in those

images. Alternately, this generates a treatment variable which is balanced across treatment groups after

accounting for factors which appear in the satellite imagery. If this model accurately approximates the

relationship between confounding variables and treatment, the estimates of the treatment effect will be

unbiased.
9I assume this imagery shows surface reflectance and has had clouds and their shadows masked. Also that there are enough

cloud-free images over the time period to obtain a good model.
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Figure 3.2: Components of the DML strategy for satellite imagery. A corresponds to the measurement
model with hand-labeled landcover classes–however if the researcher is using an off the shelf measure of
the outcome this does not require a model. B estimates the non-linear component of the outcome model
and partials out functions of the satellite imagery and other variables which influence the dependent
variable, producing V̂ . C estimates the non-linear component of the treatment model and partials out any
functions of the satellite imagery and other independent variables which predict treatment producing Û .
D is the inferential model which is linear in β̂1 with potential confounders “concentrated out” [33]

In the inferential model we compare the adjusted outcomes to the adjusted treatment using a linear

regression to recover the ATE. If either ĝ(X) or m̂(X) approximates either the land cover outcome or the

selection into treatment process, the estimate of the ATE generated by β̂1 will be unbiased.

This is laid out in figure 3.2 where boxes with solid lines represent models and boxes with dotted

lines represent data. The classification model (Panel A) is used to generate the dependent variable (if one

does not already exist) for each unit in the study. The prediction models (Panels B and C) take satellite

imagery and other data and cross-fit the models to estimate treatment status and outcome status. The

inferential model (Panel D) estimates the treatment effect with possible confounders partialled out by the

machine learning models.
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3.4 Results

3.4.1 Benin Application

To demonstrate the methods explained above I consider an empirical example: the effects of the

Plan Foncier Rural (PFR) program conducted by the Millennium Challenge Corporation to assign legal

land titles to around 70,000 landowners in Benin. To facilitate the land titling procedure, the borders

of each titled plot were demarcated and recorded. However, plots which were eligible for but did not

receive a title were not similarly demarcated. I estimate the effect that demarcation had on agricultural

expansion, deforestation, expansion of built-up areas, and the introduction of tree-crops. Previous work

analyzing this program has found an increase in tree-crops on treated parcels [14, 17] and a decrease in

deforestation in areas adjacent to villages with treated parcels [18]. For now (for computation reasons) I

focus on the Department of Alibori in which 3074 parcels of land from 33 villages received treatment, but

future iterations of this project will expand the study area to the whole of Benin.

3.4.2 Benin PFR

The Plan Foncier Rural or PFR is a policy experiment which has been implemented in various

forms across several African countries. One objective of the program is to improve agricultural productivity

by increasing land tenure security. While originally designed to protect natural resources from encroach-

ment, the project was scaled up in Benin with the involvement of the Millennium Challenge Corporation

(MCC) in 2006. The project seeks to formalize traditional land rights within customary practices through

the following steps. 1) an informational campaign to make villagers aware of how the process will work.

2) A study to record all land claims in the village and resolve any differences. 3) A topographic survey to

demarcate all agreed-upon land parcels with cornerstones and digitally record the bounds of those parcels.

4) Plots demarcated in 3) are associated with their owners based on the results of 2). At the time of the

follow up survey in 2011 and published by [14] owners had not received formal titles, and later in a 2015

follow up only about 30% of titles had been claimed [17].

The implementation of the PFR program in Benin took place mainly from 2009-2011 included

over 70,000 plots distributed throughout 283 villages spread across all 12 departments. NGOs went to each
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Figure 3.3: Timeline of project rollout. Source: [14]

treated village and set up meetings where landowners worked to resolve land disputes and then set out to

demarcate the boundaries of each plot. This process included recording existing or placing new markers

on the corners of plots of land and then recording those markers as well as the geographical positioning

system coordinates of the boundaries of the plot. The NGOs also recorded individual attributes of the

owners.

In 2011 a follow-up survey was conducted where a group of landowners from both treated and

untreated villages were asked to answer questions about their beliefs and behavior. This report found that

people whose plots were demarcated by the program were more likely to plant trees and to plant perennial

cash crops (likely highly correlated with tree planting). They also found that women were more likely to

fallow their land, possibly a sign of improved tenure security. On the other hand, yields for female land

owners were lower than those for men on demarcated plots [14]. In the 2015 follow-up survey households

in treated villages had a 1.7 % increase in tree planting and a 2.4% increase in perennial crops. It also

found that women experienced the largest increases in perceived tenure security and this resulted in a

decision to shift production from plots which had been demarcated to non-demarcated areas further from
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the village [17].

The goal of work on land tenure is to determine the effect of land tenure status on the behavior

of those who received the intervention. The best practice for conducting these studies is to randomize an

aspect of assignment of formal titles and then to follow up with a sample of those who received a title and

a sample of those who didn’t. [14] claim to be the first evaluate a randomized allocation of land titles.

Randomization occurred within a group of eligible villages, with approximately 300 selected to be eligible

to receive titles. Follow-up surveys were conducted in 2011 [14] and 2015 [17]. In each case a sample of

people whose land was mapped (and to whom land rights were attributed) were compared with a sample

who were from control villages. Among land tenure studies this study was very well done, with strong

randomization and multiple follow-up periods. However, it suffers (though not as badly as many) from

several issues which make this type of study extremely difficult.

3.4.3 Benefits of a remote sensing and DML approach

In Benin two follow-up surveys were conducted–one in 2011 (the year the program roll-out

concluded) and one in 2015. This is already better than most land-tenure studies in which only one

follow-up survey is conducted [1], but will miss any effects which take more than five years to appear.

Given that to date fewer than 30% of plots which received the treatment have had their titles retrieved it

seems sensible to allow for further follow-ups (at the 10-year mark, for example). Using remote sensing

imagery allows continuous measurement of the outcomes of interest. Additionally, using satellite imagery

allows researchers to measure alternative outcomes retrospectively. In the Benin case I also evaluate the

effect of land titles on cropland expansion, built up area, and natural forest.

The PFR program in Benin is one of the few studies which has randomized treatment with formal

land titles [1, 17]. However, randomization occurred at the village level, but treatment occurred at the

individual level, with many plots (and individuals) within a village failing to get their plots demarcated (see

Figure 3.5 panel B). This means that a comparison between a random individual in a control village and a

person whose plot was demarcated in a treated village is not a good comparison–we cannot be sure that a

random individual from the control village would have had their plot demarcated had their village been

selected for treatment. The probability of receiving a title is higher for the recipient individual from the
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treated village than the random individual from the control village–they each have the same probability of

having their village selected for treatment, but the treated individual had their land titled, where we don’t

know if the individual from the control village would have. Aggregation to the village level eliminates this

problem but makes it impossible to investigate heterogeneous treatment effects (for example, whether the

effects vary by gender of the land owner) and drastically reduces power. The double machine learning

approach allows me to model the likelihood of receiving a title for each location within villages, allowing

me to account for confounders which might determine treatment at the sub-village level.

3.4.4 Empirical Strategy

The empirical strategy proceeds along the lines of the Figure 3.2. First I estimate a measurement

model (using the neural network and random forest summarized in Figure 3.4 which are trained on

hand-labeled 2019 landcover data and classifies any location’s landcover based on the preceeding three

years of satellite imagery along with location specific covariates. This is treated as the dependent variable.

Then, two additional models are estimated. First, the probability of treatment for each unit is estimated

using satellite imagery from 2006-2008 (before treatment was assigned) along with the other covariates.

Seperately, the probability of each landcover class in 2019 is estimated using the same pre-treatment

imagery and covariates. These predictions are subtracted from the true values, concentrating out the

nuisance functions in each partially linear model. Finally, the residuals from the outcome model are

regressed on the residuals from the treatment model, generating an estimate of the treatment effect. This is

shown in Figure 3.2

3.4.5 Estimating land cover (measurement)

I regularly sample one out of every 100 pixels within 8km of any plot and inside the plots,

excluding a buffer of 60m around all plots to prevent spectral contamination. Without knowledge of which

villages were selected to be controls generating an ideal sampling strategy is difficult, but as far as I can

tell the villages which were eligible for treatment are tightly clustered together. This sampling strategy

likely misses some of the true control villages but more densely samples areas which are nearby the treated

villages. Because many plots are smaller than 300 by 300 meters and unlikely to be sampled I also sample

81



Figure 3.4: Neural network (left) and random forest (right) structures. For more detail see the Supporting
Information
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the centroid of each plot to make sure that plots each have at least one sample, though this may affect the

result if farmers act differently in the centers vs edges of plots. This process generates 10,520 points from

3,074 treated plots and 79,889 untreated points. The treated points are assigned a unique identifier for the

point and also for the plot. The mean and median points per plot are 3.5 and 2 respectively. Untreated

points are assigned an individual ID and a group ID, where groups are associated with square shaped areas

2km on a side. These groups have between 1 and 42 points in them with a mean and median of 28 and

30 respectively. These are combined with the plot IDs to generate geographic clusters which are used for

cross-fitting and cluster-robust standard errors.

Data is extracted for each point (imagery and rainfall from 2005 to 2019 and location data from

2010) and the classifiers explained in the measurement section are applied. I save the class with maximum

probability and the probabilities for each class.

While using the discrete classes is consistent with what one would do taking an off the shelf

classification, I choose to use the class probabilities for two reasons. First, the discrete classes are sensitive

to thresholding–by changing the threshold at which something is assigned to a class researchers can modify

their classifiers to do better or worse at a particular class. Second, using only discrete classifications
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Figure 3.5: Panel A shows the outline of the Alibori department (dark black outline) in Benin (light
black outline). The grey shaded areas are the regions from which untreated points are sampled, the black
regions are the treated plots from which treated points are sampled. Panel B shows a village, located in
the red box in Panel A. Note that it is difficult to predict which parts of the village will receive a title,
even if the location of the village is known. Also note the plot-size discrepancies, and that plots cover
a variety of different land classes. Panel C shows a series of high-resolution ( 1m) images of a region
where some natural forest (dark brown) and some annual cropland (light brown) is converted to perennial
tree-crops. Panel D shows how a time series of one of the bands (Normalized difference vegetation index,
or NDVI) can differentiate between land cover classes. The neural network described here uses both the
cross-sectional differences (orchard NDVI is almost always greater than the other classes) and time-series
features (cropland has the largest seasonal swings) to measure the dependent variable and adjust for
potential confounders.
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Figure 3.6: Estimates from neural network (NN) and random forest (RF) models predicting treatment
from 2006-2008 imagery. Top left is the distribution of NN predictions. Top right is the distribution of RF
predictions. Bottom row shows the density of probability estimates by true class. Note that because there
are approximately eight times as many untreated as treated points, the count of (true) untreated points is
higher than of (true) treated points except at very high probabilities (around 0.8) for both models.

needlessly throws away information and hides uncertainty.

3.4.6 Estimating Û

I estimate the treatment assignment model using satellite imagery from 2006-2008, before treat-

ment was assigned in 2009-2011. Applying 10-fold cross fitting where assignment to each fold is done by

cluster ID. This ensures that the out-of sample estimation of assignment is not done using the immediate

neighbors of most points. Results from the two models are shown below in figure 3.6. Currently the

RF model is has much higher accuracy and lower error than the NN model, though they are correlated

(R2 = 0.44). Residuals Û are generated by subtracting the predicted probability from the true value (D−D̂),

or partialling out the part of treatment which can be predicted from how a place looks from space between

2006 and 2008. This corresponds to Figure 3.2 Panel C.
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3.4.7 Estimating V̂

I use the 2006-2008 imagery and covariates to estimate 2019 land cover classes using the same

NN and RF models. I use the same 10-fold cross-fitting procedure using cluster ID. The RF is better able

to predict landcover class probabilities than the NN, though both are able to perform the task with some

accuracy. Not shown in the figure, there are positive correlations between RF and NN predictions for each

class. Also note that the NN is predicting the classes from the NN measurement model and the RF is

predicting classes from the RF measurement model. Residuals V̂ are generated by subtracting estimated

probabilities of each class from their measured probabilities (Ylandcover− Ŷlandcover). This partials out what

we can predict about 2019 landcover using 2006-2008 imagery. This corresponds to Figure 3.2 Panel B.
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Random Forest Predictions

Neural Net Predictions

Figure 3.7: Estimates from neural network (NN) and random forest (RF) models predicting land cover
class probability in 2019 using 2006-2008 imagery. Top panel shows spatial distribution of predictions
for each landcover class for RF. Second panel shows measured probabilities of each class compared
to predicted probabilities–color represents the number of scatter plot points in that bin. Third panel
shows spatial distribution of predictions for each landcover class for NN. Fourth panel shows measured
probabilities compared to predicted probabilities. Best fit lines are in black.
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3.4.8 Results: Estimating β̂1

I estimate the equation V̂ = β0 +β1Û + ε once for each landcover class, with standard errors

clustered at the cluster ID level. The results are shown in figure 3.8. The land titling program in Albori

province resulted in an increase in cropland area in treated plots and a decrease in natural forest. There is

no detectable effect for built-up areas or for orchard. Both the NN and RF models reach nearly exactly the

same conclusion despite large differences in how they are constructed and the estimates they produce at

each stage.

I compare the estimates obtained by the DML approach with three other approaches that re-

searchers might choose and which do not account for confounders possibly present in satellite data. The

first is a cross-sectional approach (Figure 3.9) using only classifications from 2019 and latitude, slope,

elevation, and distance to city as covariates. Here the estimates produced with the two different sets of

classifications diverge, with the NN model (more accurate at the measurement stage) producing much larger

estimates. Though the direction and significance is the same, the point estimates are much larger. This

also demonstrates a case when non-classical errors may be present: the differences in model predictions

may be due to an error in the classification correlated with the probability of receiving treatment. This is a

model which a researcher might use if they only had access to a single year of classifications and hoped to

generate a suitable control group by sampling points nearby the treated areas.

The second estimator is a 1-1 matching estimator using the four location covariates: latitude,

slope, elevation, and distance to city. Each treated point is matched to one unique untreated point based

on euclidean distance in the covariate space. A researcher who wanted to non-parametrically control for

the location covariates might use this approach. The estimates produced here are nearly identical to those

produced in the cross-sectional estimator. Both of these approaches are likely biased because land which

has crops is more likely to be assigned a title than land with natural forest.

The final estimator is a fixed-effects model where the researcher has access to a panel of classifica-

tion probabilities for each landcover type. Two-way fixed effects are used to account for any time-varying

confounders which affect all units equally, and unit fixed effects account for any location-specific con-

founders, including the four covariates included in the cross-sectional model. The coefficients are all
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Figure 3.8: DML Method estimated effects and 95% confidence intervals of the Benin PFR program on
the prevalence of four different landcover classes.
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Figure 3.9: Cross-sectional estimated effects and 95% confidence intervals of the Benin PFR program
on the prevalence of four different landcover classes using 2019 landcover and geographic covariates.
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Figure 3.10: 1-1 Matching estimated effects and 95% confidence intervals of the Benin PFR program on
the prevalence of four different landcover classes.

much closer to zero in this specification, but RF and NN measurement models generate very different

conclusions. The NN model suggests an increase in orchard area and a decrease in cropland, while the RF

measurement model suggests only an increase in cropland. Results are shown in Figure 3.11.

The consistency of the DML estimator despite differences in RF and NN classifiers at every stage

suggests that the DML classifier is able to adjust for measurement error in the initial model. Though the

RF measurement model most frequently mis-classifies cropland and natural forest and the NN model

over-classifies orchards, the estimates of the PFR program are very similar. This suggests a DML approach

when a researcher suspect non-classical measurement error [32].

3.5 Discussion

This differs from the findings of previous studies of the PFR project which estimated an increase in

perennial orchard crops due to the titling project. In this very standard follow-up, between 4,000 and 5,000

households were surveyed across treated and control villages, and the researchers found an increase in

perennial crops in both 1-year and 5-year follow ups. Neither of the effect sizes exceeded three percentage

points, suggesting that there may have been more tree crop planting in about 2,100 of the 70,000 treated
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Figure 3.11: Two-Way Fixed Effects estimated effects and 95% confidence intervals of the Benin PFR
program on the prevalence of four different landcover classes.

plots. Also note that these results are self-reported and at the parcel level and so cannot tell us what the

change in landcover was.

There are several reasons why these findings might be different. First, previous studies treat the

parcel as the unit of analysis meaning that even if a small portion of the parcel is converted to perennial

crops, the whole plot is measured as having increased perennial crops. This paper uses a fixed area as the

unit of analysis making it more likely to uncover a small effect size as even parcels with perennial crops

tend to only have a small fraction of the total area with those crops. Second, my analysis only investigates

approximately 3,000 treated parcels in one department, and the effects may vary across agro-climatic zone

or ethnic composition of the region. A third possibility is there may be a discrepancy between what people

report in surveys and what is visible in satellite imagery. Finally, the presence of one or more confounders

which is unmeasured in previous studies but can be captured using remote sensing data might change the

measured results.

More broadly, the methods employed in this study allow for the analysis of all 70,000 treated plots

rather than a small sample of survey respondents, potentially yielding more power to test hypotheses about

whether the effects land tenure formalization differ by gender. Similarly, Benin spans several agro-climatic

zones from a wet, tropical climate in the south suitable for palm plantations to arid Sahel in the north
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where tree crops are cashews and shea trees. It also allows us to investigate differences across political

characteristics of Benin’s departments and ethnic characteristics of the farmers.

Outside of the Benin case, this methodology can be retroactively applied to any land tenure project

where cadastral information was recorded, allowing re-analysis of many past projects or long-term follow

up analyses. The potential is also not limited to land tenure security studies. Any intervention which has a

geographically delineated treatment area and confounders which could be visible in satellite imagery could

benefit from the strategy outlined above. In areas where there is not good data on why certain areas were

selected for an intervention (environmental protection, agricultural assistance, etc.) this strategy can help

to generate balance on any factor which changes how land is used (and thus appears in satellite imagery).

Like any procedure for observational data this procedure is not guaranteed to achieve an unbiased

estimate of the treatment effect which one could achieve through randomization and a precise and unbiased

measurement strategy. While some types of confounders can be adjusted for, others might still bias the

results.

The network used to approximate the ĝ() and m̂() functions should be able to detect a variety of

possible confounders. These include the pre-treatment landcover class and variations in that class which

predict treatment or the outcome. For example, if a location is covered by annual crops before treatment is

assigned, that would make it more likely to be assigned treatment and more likely to be cropland in 2019

(compared to, for example, the large amount of publicly owned, natural forest in Alibori). However, among

annual cropland areas, if those crops begin to grow earlier in the season than other areas it might mean

that there is access to a water source, making that location both more likely to be owned (and thus receive

treatment) and more likely to transition to perennial crops because of the suitable location. Similar remote

sensing methods have been shown to detect crop type, crop yields, use of fertilizer or irrigation, income,

and ecosystem health, among other things, all of which are potential confounders. More research is needed

on how well the methods proposed here can account for various classes of confounding variables.

However, confounders which are not apparent in satellite imagery can still pose problems. I outline

two examples of issues which could bias evaluations of land tenure which are unlikely to be resolved using

the DML satellite imagery approach. A first example is savings: farmers who have some money saved are

more likely to be able to afford the fee which is associated with obtaining a copy of the legal title and to
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afford the inputs necessary to switch some of their land to perennial crops. If those savings do not affect

the farmer’s behavior in a way which is visible in satellite imagery they will induce bias in the estimate of

the treatment effect. A second example is someone who has the skills necessary to grow perennial crops

but who has not done so because of low land tenure security. This individual is more likely to attempt to

obtain a title and more likely to to switch to perennial crops. Because the farmer’s skills are not visible

until they switch to perennial crops this is not something which can be adjusted for using satellite imagery.

There are several other issues which should be addressed in future work. First, to my knowledge

there is not yet a result which demonstrates that deep, convolutional networks achieve the necessary n−1/4

rate of convergence necessary for valid confidence intervals. At present this is a necessary assumption,

though it could be sidestepped by using a transfer learning approach. This would entail pre-training the

convolutional part of the network and then freezing those weights but allowing the fully connected layers

to update in the training. Then the network would just take a fixed transformation of the imagery input and

run it through a deep neural network, which has been shown to have the n−1/4 property[33, 43].

A second issue is obtaining proper standard errors for treatment estimates in this approach. This is

complicated by data and measurement issues, propagation of errors across the DML approach, and more

standard issues like spatial autocorrelation. While formal methods like Conley might be incorporated, a

likely best-first-step approach would be boot-strapping the entire process over sub-samples of data.

A final potential area for future research is to further test whether the approach suggested here can

adjust for the non-classical errors issue described in [32]. If the same model is used for both measurement

and for de-biasing the estimate, then the bias in the measurement may be concentrated out by the m̂()

function. For example, imagine that the geography of a region results in natural forest being frequently mis-

classified as perennial crops in the measurement model. This will bias the estimated effect of land titling if

that geography also plays a role in assignment of land titles. Because the geographic characteristics which

result in mis-classification will likely also appear in pre-treatment satellite imagery they will automatically

be removed from the outcome variable used in the estimation of the ATE. While theoretically this should

be the case, further research is necessary to establish under which conditions this applies.

This is one of the first papers to show the potential for using satellite imagery to directly help with

inference (rather than measurement). It is clear that features which can be measured in satellite images
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are potentially confounders in many applications in which the outcome is observable in satellite imagery,

and the double machine learning approach is a way to control for those confounders using state of the art

remote sensing techniques. I show how the can be used in the Benin land titling setting, showing that land

titling resulted in increased cropland expansion in titled areas and an decrease in forest.

3.5.1 Dimensions of imagery

Satellite images are a matrix of pixels where the length of a pixel edge is the “spatial resolution”

of of the image. Some commercially available imagery has a spatial resolution of 0.3 meters, but the

most commonly used publicly available imagery has a maximum resolution of 10m (Sentinel 2) or as

low as 1000 meters (MODIS). Spatial resolution determines the minimum size of an object which can be

studied directly. Each pixel contains measurements for reflectance of different wavelengths of light. These

include wavelengths which the human eye can percieve (450-520 nanometers is the color blue, 520-600

is green, 600-690 is red) as well as wavelengths which are both shorter and longer than we can perceive.

“Spectral resolution” is the number of wavelengths which are measured. Different surfaces and materials

have different spectral signatures, so higher spectral resolution can better distinguish the composition

of the surface of an object in a pixel. “Temporal resolution” is the frequency with which a location is

revisited and imaged by an instrument on a satellite. An object in a pixel may move or change over time so

a higher temporal resolution allows researchers to identify the date at which changes occur. In particular,

phenological patterns of vegetation over time can be useful for measuring land cover.

Different satellite-mounted instruments face tradeoffs in these three types of resolution. For

example, the MODIS sensor has a temporal resolution of 1-2 days, a spectral resolution of 36 different

wavelengths or “bands” and a spatial resolution of 250-1000 meters (varying by band). The Landsat 7

Thematic Mapper sensor has a temporal resolution of 14 days, a spectral resolution of 7 bands, and a

spatial resolution of 30m. These tradeoffs determine the shape of the tensor which researchers can use to

study a particular area. Take a 1km × 1km area in which a researcher wants to measure an outcome. Using

MODIS a researcher would have a 365 × 36 × 1 × 1 array of input data for that location. In contrast,

using Landsat TM, the researcher would have a 26 × 7 × 33 × 33 array of input data. While an in-depth

discussion of the tradeoffs for measurement of each is beyond the scope of this paper, the remote sensing
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community has come up with sophisticated strategies for using particular sensors (or combinations of

sensors) to measure outcomes of interest.

3.5.2 Machine Learning Models

The general set of algorithms I describe build upon state of the art methods for remote sensing

using publicly-available imagery, making them more accurate and more robust to inter-annual variation

and changes in geography. Additionally, these algorithms are designed to work across contexts and be

useful for researchers in a variety of settings. The goal is to take at least one year of multi-spectral satellite

images, potentially with missing data due to cloud cover, and accurately classify an outcome of interest to

the researcher. To do this I compare two classifiers: a random forest which takes the coefficients from a

harmonic regression on pre-defined remote sensing indices (NDVI, EVI, NDBI10) as inputs, and a deep

convolutional neural network which takes the raw data as inputs.

Broadly, the challenge for any machine learning model is to take high-dimensional data, summarize

it into useful “features” and then use those to solve a classification or regression problem. Here, the problem

is to take a year’s worth of satellite images of a particular location across multiple spectral bands to detect

the type of landcover at that location. This may not seem like “high dimensional data” because there are

nine spectral bands (measured by the Landsat ETM+ sensor) and 12 months (after monthly averaging, up

to 26 images without), resulting in “only” 108 variables. However, the information which we know is

useful for the classification problem is a complicated function of these variables. A traditional approach to

this problem might be to use the difference between the maximum and minimum NDVI and some threshold

values to estimate landcover where NDVI is NDV I = (NIR−Red)
(NIR+Red) , clearly a non-linear transformation as in

[46]. This suggests that to be effective, a classifier must be able to discover and use the extremely large

number of non-linear transformations of those 108 inputs.

The fundamental question in remote sensing measurement papers is how to approach this problem.

There are two general approaches: generate researcher-designed features designed to capture some aspect

of known physical or biological processes and use those in classification, or feed in raw data and let a

10These stand for “Normalized Differenced Vegetation Index”, “Enhanced Vegetation Index”, and “Normalized Differenced
Built-up Index” and are all functions of the spectral bands which highlight certain land cover types or characteristics
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machine learning algorithm “discover” features. In this paper I present two approaches. The first is a

hybrid approach which makes use of several often-used indices and the knowledge that vegetation tends

to follow an annual cycle in its growth resulting in a harmonic pattern. It summarizes that pattern in six

variables representing mean value, overall trend, and annual and semi-annual harmonic frequencies of each

index. These variables are then used as inputs in a random forest classifier (Figure 3.12). The second takes

the raw data approach, by feeding the raw data (each year as a 13×12 matrix) into a deep, convolutional

neural network (Figure 3.13).

Each of these classifiers is designed to target two sources of information. First, different types

of surfaces reflect and absorb different wavelengths of light, resulting in a “spectral signature” which is

useful for classification. Different types of vegetation have different spectral signatures, though differences

between vegetation classes are often not large. Second, different species of plants undergo annual patterns

of growth, responding to seasonal changes in climate. These phenological patterns affect the spectral

signatures of vegetation over time. The classifiers used in this study are designed to make use of both

cross-sectional differences in the spectral signatures of locations, and the time-series information in

phenological patterns of vegetation. Both models have relatively few degrees of freedom, and do not

require vast amounts of training data–the deep neural network has 7,912 trainable parameters (over two

orders of magnitude fewer parameters compared to similar methods [45]) and converges quickly and

consistently with the data used in this study which was hand-labeled in 12 hours by one researcher.

The models are augmented with several other sources of data designed to improve (nearby) out of

sample prediction. Both use slope, elevation, monthly mean rainfall, and distance to major city as inputs.

Preliminary evidence suggests that while these do not improve prediction on out of sample points in the

same year, they do improve prediction when a model trained on some years is applied to other years.

As the application focuses on the PFR program as implemented in the Alibori department, all

training data is sampled from that area. I used the high-resolution Google basemap from 2019 to hand-label

200 polygons of each of four landcover classes: builtup areas, annual cropland, perennial (tree) cropland,

and natural forest. As tree crops are by far the most rare, this sampling was done by attempting to identify

tree crops across the range of latitude and longitude spanned by Alibori, labeling those, and in the spatial

vicinity of each parcel of tree crops also identifying an area of each of the other land classes. This stratified
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sampling approach maintains balance across classes in the training data. I sample 25 points from each

labeled polygon from the year 2019 and assign each point a label corresponding to the landcover identified

in that polygon. To augment the amount of training data I have, I assume that there has been minimal

landcover change in the training data and use the 2019 labels for data from the years 2016-2019. While

this introduces some noise into the training data it allows for a more complex machine learning model[47].

Using Google Earth Engine’s javascript API I extract surface reflectances after cloud and cloud

shadow pixels have been masked (using Landsat 7 ETM+ images), total monthly rainfall (using the

CHIRPS dataset), as well as slope and elevation from a digital elevation model and distance to a major city

(measured in the year 2000). The imagery and rainfall data is extracted for each year from 2014 to 2019.

Random Forest

Data proparation for the random forest classifier begins by generating NDVI11, NDBI12, and

EVI13. For each year of labels (2016-2019) I take the three years up to the target classification year (for

example, 2019 labels are associated with imagery and rainfall from 2017-2019). For each point, I run a

harmonic regression with an intercept, a slope term, annual sin and cos terms, and semi-annual sin and cos

terms on each of NDVI, NDBI, EVI, and rainfall. Then, for each point-year label there are six harmonic

regression terms for each of the four time-series inputs, as well as the slope, elevation, longitude, and

elevation of the point. These serve as the inputs to the random forest model.

The random forest model [48] contains 500 trees with five variables randomly sampled at each

split. 75% of the data are used for training, with 25% held out for testing. The training/testing split is

stratified on the sampled cluster, so each group of four polygons is assigned either training or testing to

prevent data leakage. I use data from each year for training and testing, but also test on out of sample

locations and years in table 3.3.

Table 3.1 shows the confusion matrix from the RF model with all inputs. The most common

misclassification errors are across natural forest and cropland, potentially because some of the areas labeled

11NDV I = (NIR−Red)
(NIR+Red)

12NDBI = (SWIR−NIR)
(SWIR+NIR)

13EV I = 2.5∗(NIR−Red)
(NIR+6∗Red−7.5∗Blue+1)
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cropland in 2019 were converted from natural forest since 2016. Table 3.2 shows the classification specifics

across the four classes.

Table 3.1: Confusion matrix for the random forest model. 76% overall accuracy.

builtup cropland natforest orchard

builtup 5864 609 364 333
cropland 347 5422 1269 545
natforest 112 1219 4050 309
orchard 266 770 579 4582

Table 3.2: Statistics by class for the random forest model.

Sensitivity Specificity Precision Recall F1 Balanced Accuracy

Class: builtup 0.89 0.93 0.82 0.89 0.85 0.91
Class: cropland 0.68 0.88 0.72 0.68 0.69 0.78
Class: natforest 0.65 0.92 0.71 0.65 0.68 0.78
Class: orchard 0.79 0.92 0.74 0.79 0.77 0.86

Table 3.3 shows six different combinations of input variables and their overall accuracy. Row 1

corresponds to the RF explained above. Row 2 does not include Longitude or distance to city, and loses 3%

classification accuracy. Row 3 uses only imagery and rainfall and no location specific characteristics. Row

4 uses only imagery (no rainfall). Row 5 uses only NDVI, a common approach of many who use remote

sensing data to measure vegetation. For 6 uses only location specific data. Rows 7-9 use 2016-2018 as

training data and then predict on out of sample locations for 2019.

I expected geographic characteristics and rainfall to significantly improve performance on out of

sample years, but there is a relatively small decrease in accuracy from a model which uses all inputs to one

which uses only imagery, suggesting that at least in the context of Alibori there is not much to be gained

from including slope, elevation, latitude and distance to city.
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Table 3.3: Overall accuracy for random forest with various inputs and predictions on years which are
in or out of sample. Imagery consists of NDVI, NDBI, and EVI. Location refers to slope, elevation,
longitude, and distance to city.

imagery rainfall location year_out_of_sample accuracy

1 yes yes yes no 0.76
2 yes yes slope and elevation no 0.73
3 yes yes no no 0.72
4 yes no no no 0.70
5 NDVI no no no 0.60
6 no no yes no 0.47
7 yes yes yes yes 0.66
8 yes no no yes 0.63
9 no no yes yes 0.47
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Figure 3.12: Random Forest classifier

Builtup:             0.08
Cropland:         0.63
Natural Forest: 0.22
Orchard:   0.07

NDVI is shown, but 
EVI, NDBI, and 

precipitation are also 
used as inputs

For each input I 
calculate: intercept, 
slope, annual and 

semi-annual harmonics

For each input I 
calculate: intercept, 
slope, annual and 

semi-annual harmonics

Features are used as inputs to a 
random forest model with 500 trees, 
up to 5 variables considered at each 

split
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Neural Network

Following [45] I use one dimensional convolutional neural network which takes one year’s worth

of satellite imagery across all available bands of the image. This data is augmented with location specific

data about the slope, elevation, latitude, and distance to major city of each location.

The neural network is constructed to learn spectral time-series representations of phenological

characteristics of vegetation. It learns to recognize how different types of vegetation in different conditions

responds to changes in the seasons. Following the result in [45] for now I use only the time series and

spectral variation, and not the spatial information to perform the classification. This means that the

network cannot recognize spatial features represented by more than one pixel. [45] found that in crop

classification such spatial features did not improve the performance of their network, even with very high

resolution satellite imagery. The possibility of including spatial features, especially in built environments,

is something which I hope to explore in later work.

Figure 3.13 shows the structure of the network which I use for all three machine learning tasks:

measuring the outcome of interest, estimating the treatment nuisance function, and estimating the outcome

nuisance function. Though the approach is similar to [45] the structure is slightly different. Notably, this

network includes monthly rainfall as well as static covariates to improve classification. Because I expect

most researchers to have less training data I estimate fewer parameters (by a factor of over 100) and attempt

to make the network more robust to missing data from cloudiness and more targeted at plant phenology.

Other ongoing work compares some of the features in neural networks for land cover classification.

Data preparation for the Neural Network (NN) follows these steps: 1) generate NDVI, NDBI, and

EVI variables. 2) Aggregate all imagery to the monthly level. 3) Normalize all variables by subtracting

the mean and dividing by the standard deviation. 4) For any missing values, replace with positive 10–a

number outside of what is observed in the data. The NN learns to ignore these values. 5) Like the RF,

associate labels with the previous three years of imagery and rainfall. The input to the neural network for

each point-year is a 13×36 matrix of band-months and a 4×1 vector of location inputs.

The NN begins with a dropout layer, randomly deleting 20% of the input values to prevent over-

training. Then are two 1-dimensional convolutional layers where the network learns to identify features
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which are useful for classification. The first 1-D Conv layer considers all of the bands, three months at a

time. There are 32 filters which can each learn a representation, so this layer returns 32 activations for each

“season,” or a 32×12 matrix. The second 1-D conv layer does the same, but considers a year at a time,

returning a 32×3 activation-year matrix. These are fed into a max-pooling layer, which just takes the

maximum activation of each feature across the three years, returning a 32×1 vector of activations. These

are fed through a dropout layer, and then a 32-unit fully connected layer, allowing the network to represent

non-linear functions of those feature activations. The static variables are concatenated to the 32 unit dense

layer, fed through another dense layer, and then to the final layer with four units, each of which represents

one of the landcover classes. These are constrained to sum to 1 and can be interpreted as probabilities of

the different classes.

For each location I get three years of monthly average reflectance data for the 9 bands that Landsat

7 ETM+ natively records as well as three calculated bands: Normalized difference vegetation index (NDVI),

Enhanced vegetation index (EVI), and Normalized difference built-up index (NDBI) which are used to

better distinguish vegetation characteristics and built-up areas. A 13th channel is added with monthly total

precipitation. This means that each point is represented by a 13×36 matrix of band values. Each band is

standardized to be mean 0 and standard deviation 1. Missing data (mostly due to cloud cover) is filled with

the value 10, well outside the distribution of observed values after standardization.

Each matrix is first passed through a dropout layer where 20% of values are randomly deleted.

This is to help prevent overfitting, or where the network learns to uniquely match certain patterns to specific

units. The data is then passed through two consecutive one-dimensional convolutional layers. Each has 64

filters. The first has a filter width and stride of three, meaning it takes the first three months and tries to

identify up to 64 distinct patterns across all 13 bands (called channels in the computer vision literature).

For that first location it outputs 64 “activations” which reflect how well the first three months of input

data match the patterns learned by the network. It then strides three months over, and looks for the same

patterns over the months 4-6, again producing 64 activations for that location. This continues through all

36 months, resulting in 12 sets of 32 activations.

The second convolutional layer sees 12 time periods with 32 channels (corresponding to the 64

activations from the previous layer). The second layer has a width and stride of 4, corresponding to one
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year of inputs. This produces three sets of 64 activations from these filters, a measurement of how well

each year fits one of 64 different patterns. These are then passed through a max pooling layer which

just takes the maximum activation across the three years. These are the “features” which are used for

downstream classification.

The information is passed through another dropout layer, and then a dense layer with 32 nodes,

each of which produces a weighted average of the features (or node values) in the previous layer passed

through the ReLU function. Then, the activations of those 32 nodes are concatenated with (standardized)

static characteristics of the location of the unit (slope, elevation, latitude, and distance to major city). The

data is then passed though another dropout layer, another dense layer, and finally a classification layer.

I use an RMSprop optimizer and a categorical cross-entropy loss function with a default learning

rate of 0.01. I use a batch size of 256 and a maximum of 250 epochs, though the models tend to converge in

fewer than 50 epochs in most cases. While these hyper-parameters can be tuned to particular applications,

this setup should be suited to a broad range of tasks and is intended to work out of the box.

Table 3.4 shows the confusion matrix from the RF model with all inputs. The most common

misclassification errors are when orchard is misclassified as cropland, or when cropland is misclassified as

natural forest. Table 3.5 shows statistics by landcover class–builtup and orchard have the highest balanced

accuracy, but orchard has the lowest precision, indicating that the network over-classifies orchard.

Table 3.4: Confusion matrix for the neural network model. 90% overall accuracy.

builtup cropland natforest orchard

builtup 5805 284 77 64
cropland 122 5139 481 128
natforest 21 332 5668 219
orchard 53 507 355 6320

Sensitivity Specificity Precision Recall F1 Balanced Accuracy

Class: builtup 0.97 0.98 0.93 0.97 0.95 0.97
Class: cropland 0.82 0.96 0.88 0.82 0.85 0.89
Class: natforest 0.86 0.97 0.91 0.86 0.88 0.92
Class: orchard 0.94 0.95 0.87 0.94 0.91 0.95

Table 3.5: Statistics by class for the neural network model.
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Table 3.6 displays a similar exercise, where the neural net is given various inputs and overall

accuracy is assessed. Surprisingly, there is not much variation as long as the imagery is used. There is no

decrease in accuracy with the removal of the location specific covariates or the rainfall data. Performance

decreases when inputs are limited to the calculated indices, and especially when limited to NDVI.

Table 3.6: Overall accuracy for neural network with various inputs and predictions on years which are in
or out of sample. Imagery consists of all nine ETM+ bands, NDVI, NDBI, and EVI. Location refers to
slope, elevation, longitude, and distance to city.

imagery rainfall location year_out_of_sample accuracy

1 yes yes yes no 0.90
2 yes yes slope and elevation no 0.89
3 yes yes no no 0.89
4 yes no yes no 0.89
5 NDVI,NDBI,EVI yes yes no 0.84
6 NDVI yes yes no 0.80
7 no no yes no 0.29
8 yes yes yes yes 0.87
9 yes yes slope and elevation yes 0.85

10 yes yes no yes 0.88

There is a much smaller decrease in performance on out of sample years using the NN than the RF

model suggesting the features that the NN detects are more robust to temporal variation. Like in the RF

model, introduction of rainfall and location specific characteristics weakly improve the performance of the

model,

I compare these classifications to what one would obtain using off the shelf data. Copernicus’s

global land cover layers are 100m spatial resolution and have five years of coverage and a number of

different landcover classes, making it perhaps the most suitable landcover dataset for this study [30]. I

extracted labels from Copernicus 2019 landcover layer [49] and aggregated the classes into the most

comparable classes, then compared those to the labels I assigned using the google basemap:

Table 3.7 shows that While there is impressive agreement in the builtup class, things are muddied

afterwards. This demonstrates that one issue with using off the shelf satellite products is that even very

high quality products may not contain the classes one wishes to study (in this case tree crops). A second

issue is that global landcover datasets are impressive because of their global reach and consistency, but
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Table 3.7: Confusion matrix of hand-labeled classification on the vertial axis and classifications from
Copernicus on the horizontal axis.

builtup cultivated forest other veg unknown

builtup 6675 340 15 140 0
cropland 110 5870 210 1160 233
natforest 0 1690 1575 2191 234
orchard 105 3010 1710 1122 250

often inaccurate in a specific context, even when that context is an entire country. I suspect this is one of

the leading causes of the non-classical errors described in [32].

This suggests that each of these classifiers would improve upon an off the shelf measure of

landcover and would extend the researcher’s ability to measure land cover in the target region in years

when global landcover datasets are not available.
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Chapter 4

Discovery of Influential Text in

Experiments Using Deep Neural Networks

4.1 Abstract

We propose a method for discovering and testing influential concepts in media experiments. We

apply a network with a recurrent and convolutional layer to experiments where unstructured text is given

as treatment. Following existing models, our RCNN includes an intermediate layer specifically designed to

make neural network classifications more interpretable. However we use this layer for a different purpose

– to identify coherent phrases and sentences that are highly predictive of a human decision. We develop

methods to interpret the filter layers of these RCNNs to facilitate the discovery of concepts within the text

that are likely to have had the largest impact on the outcome. We validate our method by replicating a

conjoint experiment on immigration using unstructured text in place of conjoint treatments. In addition,

we apply the method to climate change communication where we discover which phrases that exert the

most influence on learning and forming opinions about climate change. Last, we use our model to discover

phrases that are predictive of censorship of Chinese social media posts.
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4.2 Introduction

Political decision making is often influenced by writing and speech – humans might influence

each other’s vote choice through persuasion in conversation, make decisions about what political causes

to donate to based on evidence put forward in documents or newspapers, or decide to turn out to vote or

participate in a protest based on text messages, reminders, and social media posts. Experimental methods

for estimating the impacts of text on human evaluation have been widely used in the social sciences. Most

of these methods randomly assign texts to subjects, treating a random portion of subjects to a treatment

text that is edited in particular way to be different from a control text. For example, framing experiments

change one portion of a news article to estimate the effect on the way facts are presented on the opinions of

the respondents [1]. Audit and correspondence experiments send the identical texts to decision makers,

for example bureaucrats and legislators, varying only the name of the author of the text or some other

attribute of the text to estimate the effect of the edited text has on the response of the person who receives

the text (see [2] for a review). More complex experiments vary a number of aspects of the text than just

one component, in what are commonly known as factorial or conjoint designs [3–5].

However, these methods have a set of well known drawbacks. First, concerns about power typically

allow very few treatment texts to be used in media experiments, and therefore give researchers very few

degrees of freedom in research design. Because they can use only a handful of treatment texts, researchers

are required to know the types of texts that are likely to have the largest impact on the outcome before

conducting the study. Further, even when researchers know the concepts they would like to test in a media

experiment, they can only test a small number of incarnations of this concept in any given design. This

creates questions about the generalizability of the experiment as well as about the interpretation of what

aspect of the treatment text had an effect on the outcome [6].

A new literature in computational social science has sought to randomly assign unique texts to

respondents and then discover treatments from these unstructured texts that have an effect on a particular

outcome. [7] develop a groundbreaking model for identifying topics that affect an outcome, as well as

an overarching framework for discovering latent treatments that have a causal effect on an outcome. [8,

9] follow their lead to use a neural network to identify the effect of a particular word on an outcome,
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controlling for covariates that might also be correlated with the text and the outcome. These efforts

continue a long trend in statistics and computer science of mining texts for influential features that predict

an outcome [10, 11] and other work that has sought to relate text to metadata [12–15].

We extend these efforts by offering an additional method of identifying concepts from texts that are

predictive of an outcome. We posit that there are a number of applications in which human decision making

pivots not on a set of topics or a single word, but on a section of text rather than the text in its entirety.

These sections of text can be of varying length – sometimes just one word, sometimes a full sentence,

sometimes an entire paragraph may influence the decision maker. Further, the same concept expressed in a

pivotal section of text might be expressed in many different ways, complicating their discovery. Existing

tools that focus on the full text to extract topics, on just individual words or fixed n-grams within the text

may not be able to identify the pivotal components of decision making in these domains.

We develop a neural net with recurrent and convolutional structures that can use large numbers of

human decisions to recognize sections of text of varying length that are predictive of a decision. Because

our model relies on vector representations of words, these sections of text can be unique within the

corpus and still be identified as predictive of the outcome. Our model draws inspiration from models

for interpretable deep neural nets such as [16] by building an intermediate layer that identifies coherent

phrases that are predicted to be most important to the outcome. It extends these methods by mapping

identified phrases onto a vector that allows for clustering of the phrases into treatments and by allowing for

the inclusion of non-textual metadata to enhance the predictive power of the model.

Last, we discuss how discovery of phrases predictive of an outcome with our method can be

used to design follow up experiments to test their causality. Examining the text the model selects from

documents can generate ideas of useful vignette experiments that could be used to test discoveries in a

more controlled setting. In areas where follow up experiments are not possible, researchers can use our

method to create categories and test the impact of these categories on an outcome in held out data [17].

Our model adds to a growing literature in computer science of using neural networks for causal inference

[18–21].

We proceed as follows. First, we describe the set up of the problem. Second, we describe our

method to extract phrases that predict human decisions. Third, we validate the method by showing that
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it can select treatments from a conjoint experiment where the treatments are expressed in unstructured

text. Last, we apply our method to two datasets: an experiment of the influence of news article about

climate change on learning and forming opinions about climate change and extracting phrases that are

highly predictive of censorship decisions in Chinese social media posts.

4.3 Discovering Influential Phrases: The Problem

We consider the problem where a researcher has a set of N unique texts W1 . . .WN and a set of

N outcomes Y1 . . .YN . For example, newspaper articles may have been randomly assigned in a survey

experiment to respondents who are then asked their opinion of a policy, social media posts may be reviewed

by censors who then make a decision of whether to allow them, or personal statements could be submitted

to employers who then decide whether or not to hire. The researcher believes that the texts may have

influenced the outcome, but does not know what aspect of the text influenced the outcome. The challenge

for the researcher is to identify the latent categories that may have had an effect on treatment [6].

Researchers have a few tools available to them already to try to identify influential components

of the text in this setting. First, they could use a set of tools to identify influential words or sets of words

that are highly predictive of the outcome. A large set of methods in statistics have been developed to

select influential features that are highly predictive of an outcome [22]. This is often done with some

variant of regressing Y on the words within the texts with some regularization. Some of these methods

have been adapted specifically for identifying influential words in social science problems [10, 11, 23] or

when conditioning for other covariates [8]. Most of these methods can be generalized to look for effects of

distinct two or three character sets of words on the outcome as well.

As an alternative to identifying single word or n-gram predictors of an outcome, [7] develop a

topic model, the Supervised Indian Buffet Process (sIBP), that allows researchers to identify the latent

topics (probability distributions over words) that may have had an effect on the outcome. This innovation

allows researchers to discover how the amount the text talks about a particular topic may have an effect on

an outcome, increasing the flexibility of the discovery of treatments within texts. [7] then use the model to

estimate the Average Component Marginal Effect [4] of each individual topic on the outcome and discuss
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the conditions under which this estimate is causally identified.

While these new and exciting models estimate the impact of topics or particular words on an

outcome, they focus mainly on the effects of single words or single topics on decision making, which

are not relevant to all domains. The influence of a particular word might not be that meaningful, as even

when it is replaced it might not change the meaning of a text that much. Individual words that are highly

correlated with an outcome may not be particularly interpretable because they may not retain enough

context to understand the nuance of the decision. Using n-grams is one way to model context, but in

conventional methods this approach leads to parametric explosion.

Topic models employ all words within the text, but in some domains they may put unnecessary

weight on portions of the text that are not relevant. There are domains where a particular phrase or section

of the text may be influential and the remainder of the text irrelevant. In court, for example, the decision

of the judge may turn on one particular fact of the case, while the rest of the text about the case may be

largely irrelevant or procedural. Bureaucratic decisions might rely on one particular phrase, for example, a

complaint may be routed to a certain institution because it contains a particular phrase or saying or a social

media post might be removed from the Internet because it included a particular phrase that is sensitive to

the government. While topic models may be able to pick up components of important phrases, it can be

difficult to trace topics back to these phrases and other words within the document may overwhelm the

model.

To this end, we develop a model that allows us to elicit phrases of varying length that are predictive

of an outcome. Because long phrases are typically not repeated in text, we design the model to pick up

even unique phrases that are correlated with an outcome and share similar ideas. Our model makes the

following contributions:

1. Recognize phrases of varying length that are predictive of an outcome.

2. Allow for highlighted phrases to flexibly express the same idea.

3. Map identified phrases to a common vector for interpretability.

4. Allow for the inclusion of non-text covariates to aid in prediction.
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4.4 Method for Extracting Phrases Predictive of Human Decisions

We design a neural network with recurrent and convolutional structures in order to address these

requirements. We combine two major innovations into our RCNN. The first major innovation that we

bring from [16] is writing a neural network that produces both an accurate classification, but also a concise

rationale for that prediction. The second is extracting quantities of interest from the network which tell us

the relationship between the network’s learned representations and the dependent variable–a method which

has been used extensively in understanding image-processing networks but rarely in text-processing [24].

The summary of the structure of this network is as follows, which we outline in more detail below.

We extend [16] in passing the data first through a generator function (composed of two RNN layers and a

FCN layer) which emphasizes certain words in the original text and de-emphasizes others. Unlike [16],

however, we do not exclude less important words completely, but create a weight for each word between 0

and 1. This allows the model to consider important sections of the text most heavily in predicting the final

outcome.

We then pass this weighted text through an encoder function (a CNN layer, a max-pooling layer

and a fully connected layer) that uses the weighted text to predict the outcome. Similar to [16], we include

a cost function that consists of a function of the prediction error1 and penalties for more total words

(enforcing sparsity) and more groups of words (enforcing coherency) in the phrase. However, the relative

simplicity of our model in comparison to [16] allows us to extract document and word activations from the

final CNN layer in order to identify phrases that have similar effects across the corpus.

Pre-processessing

We first tokenize each text convert it to lower case. We pad each text so that they are all of the

same length. Texts are converted into a sequence of vectors using a set of word embeddings.2 The padded

portions of the text are represented by word embeddings of all 0’s.

1We use binary crossentropy.
2In the main results, we use word embeddings of depth 300 from fastText in the main results: https://fasttext.cc/docs/en/

crawl-vectors.html
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Figure 4.1: Outline of the model for extracting phrases. Round layers are composed of multiple parts
explained in greater detail in following figures.
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Network Detail

For the generator portion of the model, we pass each text through a recurrent layer which outputs

a new length-300 vector at the location of each input word, generating another sequence of 100 depth 300

word embeddings. This forward recurrent layer is followed by a reverse recurrent layer of the same type.

The objective of these recurrent layers is to condition the meanings (embeddings) of each word on the

words that precede and follow it in the text. This is followed by a fully connected layer on the embedding

dimension which takes a weighted sum of the new embeddings and passes it through a logistic function to

generate a weight between 0 and 1. These weights represent the relative importance of each word for the

downstream classification task.

We follow the notation in [25] to describe various layers and operations in the network. Allow

xi ∈ Rk to be the embedding vector of word i with depth k embeddings.3 A text is a sequence (padded

to length 100 if necessary): x1:100 = x1⊕ x2⊕ ...⊕ x100. The recurrent unit which we use takes two

inputs: the previous state of the hidden layer hi−1 and the embedding vector of the current word xi and

produces a new vector hi which is passed through an activation function and then used for the next state.

hi = f (Whi−1 +Wxxi) where f (·) is the hyperbolic tangent function. This produces a new sequence of

vectors h1:100 which are reversed and fed through a second recurrent layer producing a new set of h1:100

Finally, each embedding vector h in the sequence is fed through a fully connected layer to generate a single

weight zi which is the output of the generator: zi = σ(Zhi +b) where σ(·) is the logistic function and b is

a bias term.

We then multiply the weights from the generator by the original word embeddings to create a

text in which some words are more heavily emphasized than others, where at the extremes a weight of

0 essentially removes the word and a weight of 1 preserves the original intensity of the meaning. The

weighted word ai = xizi and the weighted text is a1:100 is sequence of weighted original word embeddings.

The new weighted text is then passed to a convolutional layer with a flexible filter width and a

number of filters which can be changed depending on the task we are performing. The convolutional layer

essentially tests the degree to which some representation is present in the filter window. Phrases with

similar meanings will produce similar activations for the same filter. The convolution operation uses a filter

3i refers to the position of that word in the input text throughout the network.
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Depth of embeddings
Backward contextual 

new embeddings

Forward and backward 
contextual new 

embeddings

Z-layer

Figure 4.2: Detail view of how text passes through the generator. The inputs are word embeddings
which pass through a forward and backward recurrent layer and then through a fully-connected layer.
The final fully connected layer generates a value between 0 and 1 for each word based on the contextual
embeddings.
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Depth of embeddings
Number of filters (4)

Max Pooling Covariates

Logistic Regression

Classification

Figure 4.3: Detail view of how text passes through the encoder. The inputs are word embeddings
weighted by the generator which compose the rationale. Here we have four filters and two covariates.

p∈R jk which takes j weighted words as inputs and produces a new feature ci: ci = g(p ·ai:i+ j−1+b) where

g(·) is the ReLu function. This generates a feature map c = [c1,c2, ...c100− j+1] for each filter-document

combination. We refer to these c as “filter activations.” This generates a matrix of filter activations

C ∈ Rm×98 where m is the number of filters.

Each document is then summarized in a max pooling layer which keeps only the highest activation

of each filter for a document, ĉ = max(c) If our convolutional layer has n filters, this layer produces a

vector of length n for each document where each element is the maximum activation of that filter for the

given document. Finally these activations are concatenated with any covariates that the researcher wants to

include and fed through a fully connected layer which takes a weighted average of these values and then

pushes that average through a logistic function to generate a value between 0 and 1. ŷ = σ(Y (ĉ⊕a)+by)

where Y is a weights matrix, a is a vector of covariates and by is a bias term. This value corresponds to

the prediction of the binary dependent variable. This final layer is a logistic regression of the output on

covariates and document filter activations.

Each of the many parameters in the above model are randomly initialized and updated with respect

to a loss function using backpropagation and stochastic gradient descent. We use a loss function similar to

[16]: a cross entropy loss for categorical outcome prediction and penalties which penalizes high weights
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Input Text

generator

z-layer

Weighted Text

preventing sea level rise is important but difficult in this political climate

Encoder

classifications
WTP?

cost (for training)

0.7 0.9 0.9 0.9 0.1 0.3 0.2 0.8 0.5 0.6 0.9 0.9

preventing sea level rise is important but difficult in this political climate

preventing sea level rise is important but difficult in this political climate

Filters:

Figure 4.4: Detail view of how a text passes through the network. The z-layer tells the network which
words to select, the rationale is a new text that the encoder uses to generate its classification. The loss
function is composed of prediction error, a sparsity loss, and a coherency cost.
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on individual words and encourages high weights to be consecutive within the text; encouraging sparsity

and coherency in the word activations layer. Cross-entropy loss is L (z,x,y) =−∑
N
c=1 log(p̂) where p̂ is

the predicted probability of the true class, a function of (x,y,z). At the z-layer stage the network saves both

∑
l
i=1(zi) and ∑

l
i=1 |zi− zi−1| where z is the vector corresponding to the weights for each word, i indexes

words in the original text and l is the maximum length of input text. These represent the sparsity and

the coherence of the rationale respectively. We introduce a target sparsity target from which we penalize

deviations on a batch-level. This encourages the average sparsity to be near the target, though some

individual documents can have much higher or lower sparsity. The cost function for the entire network is

the a weighted sum of the sparsity, coherency, and cross-entropy loss:

cost(z,x,y) = L (z,x,y)+λ1 ∗ (
l

∑
i=1

(zi)− target)2 +λ2 ∗
l

∑
i=1
|zi− zi−1|

The weights λ1 and λ2 and the target sparsity target can be adjusted to improve the quality of the rationale.

4.4.1 Interpretability

This structure provides two complementary ways to interpret latent factors that might contribute

to the outcome. First, it allows for the identification of phrases of varying length that may be expressed

differently across the text. For each document, the model provides a weight for the importance of each

word within the text. Similar to [16], this cost function incentivizes the model to only select high weights

when the word is very important and to cluster high weights together in coherent phrases. Phrases within

each document that consistently have high weights are the parts of the original text which the network

chooses to upweight because they have predictive power–meaning they are also the parts of the original

text the researcher should pay attention to if she wants to understand how text influences the decision of

the subject. Because the weights assign to each word vary between zero and 1, the model allows us to

flexibly find longer or shorter phrases by setting a threshold to extract phrases consisting of words above a

certain weight. It also allows the researcher to find words or phrases which consistently receive high (or

low) weights across the entire corpus, suggesting that phrase is relatively important (unimportant) in the

prediction.

120



We can then borrow from research on interpretability of deep neural networks (see [26] for a

survey) to use word and document filter activations to cluster phrases with similar effects on the outcome.

Remember that the encoder consists of a single convolutional layer, a max-pooling layer, and a fully

connected layer. The fully connected layer is a logistic regression of the dependent variable on document-

level filter activations and covariates. The max-pooling layer summarizes the matrix of filter activations

with a vector of the maximum activation across each document. The convolutional layer learns matrices

of word embeddings which are predictive of the outcome and produces an “activation” for each group of

words (length depending on the filter width) which is higher if the words match the representation which

the network has learned to recognize.

With these three layers we can identify the marginal effects of a filter activation from the weights in

the fully connected layer much how one would interpret the coefficients in a logistic regression. However,

because filters are amorphous representations which the network has learned to predict the outcome those

coefficients are not directly interpretable. To help understand the concepts learned by each filter we can

check which documents have the highest activation for any filter by examining ĉ and read those documents

to determine what the filter is capturing. Additionally we can examine the set of feature maps for each

document c to see which phrases are maximally activating the filter. Applied across documents this method

can find the set of phrases in the corpus which are most representative of the learned filter representation.

We also generate plots which show filter activations for a single filter across all documents (all ĉ1’s across

the corpus) on the x-axis and observed outcome y on the y-axis to observe in what part of the activation

space the differentiation occurs (if at all). We then compare phrases with high activations to those with

middling and low activations to try to understand what the filter is capturing. We also examine the phrases

which occur most frequently in the top 100 or 300 activations. With this information we can say that the

increased presence of a concept captured by a filter is correlated with a higher or lower probability of a

particular outcome. We also search over all c to find the phrases which generate the highest and lowest

predicted outcomes when individually pushed through the final fully connected layer.

In all of the analysis we seperate training, validation and test sets. We train the model on the

training data and use the validation set loss and accuracy to help determine when to stop training the model

to prevent overfitting. We then use the test set to conduct the analysis described above. We find that if we
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use the training set to evaluate interpretability the model often overfits–all filters are significantly correlated

with the outcome most of the time. In the test set, we find that in our experiments and simulated data that

we are unlikely to discover a false positive, consistent with recommendations from [17].

Our method can help researchers test hypotheses in two types of research designs. First, it can be

paired with observational data to learn how phrases are associated with an outcome of interest. Second, it

can constitute the discovery portion of a larger experimental design where a researcher attempts to learn

impactful treatments which “occur in the wild” and then test those treatments in a controlled experimental

setting. In follow up experiments, research can isolate the treatments, eliminating the problems associated

with correlations within the text of the treatment documents. We explain this process in more detail in the

Climate Change Communication section.4

4.5 Replication of an Experimental Conjoint

To evaluate whether the model can pick up the components of human decision making, we first

apply the model in a replication of a conjoint experiment. This evaluation tests whether the model is

able to identify the conjoint treatments that have the largest effects on the outcome when these treatments

presented as unstructured text rather than as experimental treatments. If the model works well it should be

able to select the effective conjoint treatments from the unstructured text.

To do this, we replicate [27] who present 18,300 profiles of asylum seekers to 1,830 survey respon-

dents from a handful of European countries. [27] randomize nine attributes of the asylum seeker’s profile

to these respondents, including the asylum seeker’s gender, age, reason for migrating, country of origin,

consistency of asylum testimony, religion, language skills, vulnerability, and previous occupation. They

then ask respondents to separately evaluate each profile and decide between profiles. The randomization of

attributes allows them to estimate the impact of any individual attribute on the respondents’ ratings.

Because there are only nine attributes that are randomized in the experiment, [27] can identify the

largest treatment effects through a simple linear regression. However, we assume as a hypothetical that the

4While the estimates from our model themselves could be interpreted causally with some rather stringent assumptions, we
encourage researchers interested in causality to use our method to discover treatments that they can then test in a more controlled
experiment in new data.
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researcher did not know which aspects of the text were considered treatments and that the profiles were

presented to respondents as unstructured text. Would the researchers have been able to use our model to

identify the most promising treatments from the text itself?

To test this, we created text descriptions of the profiles based on the attributes assigned to them.

For example, we would use the following text description for a respondent that was assigned to an asylum

profile of an unemployed, Christian, physically handicapped, twenty-one year old woman from Kosovo

with major inconsistencies in her application who is seeking better economic opportunities and speaks

fluent English:5

major inconsistencies. female. kosovo. twenty one years. unemployed. physically handi-
capped. seeking better economic opportunities. christian. speaks fluent english.

We randomize the order of the appearance of the treatments in the unstructured texts so that the

model is unable to judge importance simply by placement. We then used the model with five filters to

identify phrases within the text that it estimated to be the most predictive of the ultimate rating. We use the

binned binary rating from [27] as the ultimate outcome we seek to predict.

If our method works, it should highlight words associated with the most effective treatments in the

conjoint and be able to identify the direction of these treatments’ impact on the outcome. In Figure 4.5,

we show the results of the experiment. On the left, we include the nine categories of attributes and show

the text that makes up each different level of each attribute. We highlight the phrases of the text that were

predicted to most increase the outcome (in blue) and most decrease the outcome (in red). The right hand

side of Figure 4.5 shows the point estimate of the effect size in the original study.

As you can see, the model easily separates out the phrases related to each individual treatment. In

addition, it picks up only the phrases from the unstructured text that were most associated with treatment

and correctly identified the direction of the effect. It identifies the most phrases in the treatment with the

largest effect – seeking better economic opportunities as opposed to persecution. In other cases, it identifies

the category of the treatment with the largest effect – for example, highlighting major inconsistencies and

victim of torture as an influential phrases.

Figure 4.6 shows the relationship between each of the five filters and the outcome, as well as the

5Here we use English for convenience, but the original profiles indicated the language that was native to the respondent.
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●

−.1 0 .1
Effect Size in 
 Original Study

Asylum testimony:
no inconsistencies . ●

minor inconsistencies . ●

major inconsistencies . ●

Gender:
female . ●

male . ●

Country of Origin:
syria . ●

afghanistan . ●

kosovo . ●

eritrea . ●

pakistan . ●

ukraine . ●

iraq . ●

Age:
twenty one years . ●

thirty eight years . ●

sixty two years . ●

Previous Occupation:
unemployed . ●

cleaner . ●

farmer . ●

accountant . ●

teacher . ●

doctor . ●

Vulnerability:
none . ●

post traumatic stress disorder . ●

victim of torture . ●

no surviving family members . ●

physically handicapped . ●

Reason for Migrating:
persecution for political views . ●

persecution for religious beliefs . ●

persecution for ethnicity . ●

seeking better economic opportunities . ●

Religion:
christian . ●

agnostic . ●

muslim . ●

Language Skills:
speaks fluent english . ●

speaks broken english . ●

speaks no english . ●

Figure 4.5: The left hand side of this figure shows the nine attributes randomized in the conjoint. We
highlight the phrases that were predicted to have the most positive (blue) and negative (red) impact on the
outcome. The right hand side of shows the point estimate of the effect size in the original study.
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phrase most associated with each filter. The five filters of the model are respectively most associated with

each of the phrases with the largest impact on the outcome, including seeking better economic opportunities,

persecution, victim of torture, major inconsistencies, and speaks no (English). It also correctly identifies

the direction of the impact of each of these filters on the outcome.

4.6 Censorship of Chinese Social Media Posts

We now apply our model to another example – which posts Chinese Internet companies decide to

remove social media posts from the web based on directions from government censors [28–30]. Censors

in China remove posts from the web using a combination of keyword and phrase searching and hand

filtering [31]. In this section, we use the model to identify sets of phrases that are likely to have attracted

the attention of the censors and therefore are highly predictive of censorship.

Previous work has sought to reverse engineer censorship events or discover online keyword lists

that censors use to filter [28, 32, 33]. Here, we use large numbers of examples of posts to observationally

reverse engineer phrases that are likely to have been used in filtering posts in order to decide what to censor.

To do this, we use 10,000 examples of censored social media posts and 10,000 examples of uncensored

social media posts taken from the Weiboscope data set [34], a project which followed 14,387,628 social

media users on the Chinese social media website Weibo in 2012, recording which and when users’ social

media posts were removed from the Internet.

To extract phrases related to censorship, we used the network to predict censorship from the text of

the post. Since Chinese texts generally do not include spaces, we first segmented the texts so that we could

apply the model directly. We then used pre-trained Chinese word embeddings of dimension 300 trained on

Wikipedia using fastText,6 a filter width of 3 and 20 filters to extract both what phrases are likely to predict

censorship and the direction in which they are likely to predict censorship. Our model resulted in an out of

sample accuracy of 0.80.

The model resulted in 9 filters positively correlated with censorship, 10 filters negatively correlated

with censorship, and 1 filter uncorrelated with censorship. Of the nine filters, three pick up on phrases

6See [35], Chinese word embeddings were retrieved from https://github.com/facebookresearch/fastText/blob/master/
pretrained-vectors.md
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Figure 4.6: Each of five filters estimated by the model and the phrase that loads most highly on the
filter. The model picks up the phrases with the largest impact on the outcome, including seeking better
economic opportunities, persecution, victim of torture, major inconsistencies, and speaks no (English). It
also correctly identifies the direction of the impact of each of these filters on the outcome.
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Table 4.1: Strongest Filter Phrases Associated With Censorship

Phrase Translation

饥荒饿死 3600万 Famine that starved 36 million
被暴徒殴打 Beaten by a mob
甘肃省委常委 Gansu Provincial Party Committee Standing Committee
爱国主义信仰 Patriotism
抢劫国有资产 Robbery of state-owned assets
市委书记—— Party secretary
变相颠覆国家 Disguised subversion
劳动人民在 Working People
人民谋和平 People want peace
人民书记人民 People’s secretary, people
习近平书记领导 Xi Jinping Secretary leader
中央 经济会议 Central economic conference
中国民主前途 China’s democratic future

that indicate the post was retweeted, indicating that posts that are retweeted are likely to get censored.

Three reflect emojis that are predictive of censorship; interestingly the “anger” emoji is strongly associated

with censorship in this data. The last three (and strongest) filters reflect political phrases. Table 4.1 shows

phrases from the filter most associated with censorship. These phrases are all what we would expect might

be likely to be censored: phrases about the 1959 Great Famine, details of which are scrubbed from official

history; phrases related to collective action, such as mobs, democracy, subversion and patriotism (2012

saw large numbers of “patriotic”, anti-Japanese protests); and phrases related to the government, including

Party Secretaries and Standing Committees. Importantly, many of these phrases occur only once within the

corpus, but the model is able to flexible learn them and related phrases even though they are unique.

In contrast, the phrases that the model predicts are least likely to be censored (reported in Table

4.2) are very benign. They have to do with love, include a lot of exclamation points, or are related to

advertisements. Other phrases that are predicted to be associated with low levels of censorship include

wishes of happy birthday and encouraging phrases. These phrases are largely consistent with what we

know from the current literature about what is censored in China [28, 30, 32, 36], a further validation of

our approach.
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Table 4.2: Phrases Associated with Lowest Censorship

Phrase Translation

11点开抢 Opens at 11
！！ !!

! ! 吧 ! !! right? !
! love your [爱 love your love

! your is so good ! your is so good
11点开 Opens at 11
>> http : >> http :

! ! !!
美[爱 beautiful love

! ! !!
bb < 3 bb < 3

with bb < 3 with bb < 3
包邮】11点 Shipping 11 o’clock

! ! 吧 right?

4.7 How do phrases used by the media influence peoples’ climate change

opinions?

Last, we apply our model to climate change communication to see whether the model can identify

the phrases from news articles about climate change that influence how respondents learn and form opinions

about climate change. As the number of studies on public opinion about climate change ballooned in

recent years some researchers have voiced concerns about how treatments (messages) are conceived of and

used across studies [37]. In particular there seems to be no best practice for choosing what treatment to

use in a survey experiment, with researchers generally relying on intuition, personal experience, literature

suggestions, or baseline studies to develop treatments. While researchers generally settle on interesting and

relevant treatments, their ultimate choice often causes problems for the generalizability of their findings–

do conclusions about a particular treatment generalize to treatments with similar meaning but different

wordings? How are people exposed to the tested treatment in texts that they might encounter outside of the

lab?

In this section, we proceed in three parts. First, we describe the design of the survey and experiment.
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Second, we describe a power analysis we conducted before running the survey to ensure that we would

have sufficient data to pick up effects. We then apply our model to the data we collected from the survey to

identify key clusters of phrases which occur “in the wild” and are associated with a shift in learning about

climate change and climate change beliefs.

Design of Survey and Experiment

We used the Google News API to harvest 335 news articles about the a report detailing the

risks of climate change released by the UN Intergovernmental Panel on Climate Change on October 18,

2018. We divided these articles into 1,323 paragraphs which constitute our treatments. We ran a survey

on Mechanical Turk with waves on 05/29/2019, 06/27/2019 and 07/10/2019 where participants were

asked to read a randomly selected paragraph drawn from the 1,323 paragraphs. Following reading the

paragraph, respondents answered four questions about their climate change opinions in addition to a set of

demographic and political questions and several attention checks. The four questions are representative

of the most commonly used four outcome measures in the climate change literature (for example, see

[38–44]):

1. Do you believe that climate change is being caused by human activities? (yes, maybe, no)

2. In your view, is climate change a very serious problem, somewhat serious, not too serious, or not a

problem?

3. Do you think climate change should be a low, medium, high, or very high priority for the President

and legislature of the United States?

4. Would you be willing to support a policy which reduces the effects of climate change but increases

your taxes by $150? (yes, no) 7

We also asked subjects to fill in the blank in the following sentence: “Temperatures are likely to

rise by ___ degrees Celsius between 2030 and 2052 if global warming continues at its current pace and if

the world fails to take rapid and unprecedented measures to stem the increase, a U.N. report said.”

7[39] find that the inflection point for willingness to pay is $177 which we round down to $150.
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Finally we ask questions about respondents’ age, gender, education, race, marital status, state of

residence, vote in 2016 presidential election, political donations, engagement in public affairs, party and

party strength of affiliation. In total, we collected 4,108 responses.

Simulated Data and Power Analysis

Before collecting any responses, we simulated a variety of outcomes that were known functions of

the text and some covariates to test whether our model would be able to identify the phrases which we used

to generate the data. We report the results of one set of those tests here which we believe is most similar to

the application in real data.

We created a dataset which consists of each treatment four times, or 5,292 total treatment units.

For each unit we created two binary latent treatments for simulation purposes. The first is 1 if the phrase

“climate change” appears in the text and 0 otherwise. The second is 1 if at least one of the phrases “degree

celsius” or “degrees celsius” appears and 0 otherwise. We hope to be able to recover these phrases using

our model. We also generate two binary covariates: gender and party, each is a draw from a binomial

distribution with probability 0.5. We generate outcomes as a draw from a binomial distribution with

probability p = 0.2+α ∗CC+α ∗DC+ 0.3 ∗ party+ 0.2 ∗ gender where CC is the “climate change”

indicator and DC is the “degree(s) celsius” indicator. We set α and β equal to 0.2, 0.1, and 0.05 in

three different tests to see whether under general circumstances which we estimate to be similar to our

experimental conditions we are able to recover the known coefficients on CC and DC. We initialize the

model with two different target generator selection rates: 20% selection and 100% selection. We find that

in every case the network is able to recover a positive relationship between a filter which is maximally

activated by one or both phrases in a test set.

We initialize the network with 5 filters of width 3, n = 5, j = 3, and let the model run until the

development set loss is minimized. We then apply the model to a test set consisting of only units which

the model has not yet seen. From the test set we observe several intermediate values which tell us which

features the network is using to classify each unit. These include:

1. The words which receive the highest average weights in the rationale
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Table 4.3: Frequency of top 100 filter activations for Filter 2 in 20% effect simulation (only presenting
phrases that appear more than once.)

phrase frequency

panel on climate 58
threat of climate 5

attractive ones, climate 3
1.5 degrees celsius 2
caused by climate 2
impacts of climate 2

2. The filter(s) which are most highly associated with a particular outcome

3. The phrases which most highly activate each filter

4. The texts which have the highest activations for each filter

5. The phrases which have the highest or lowest predicted outcome

With depth 300 word embeddings the generator part of the model contains 180300 parameters

which makes the generator unable to effectively learn in a sample of less than 1% that size. As such,

we use 100% generator selection for this application, unlike in the censorship and conjoint example,

where we have enough data to extract the weighted text. To examine 2) we regress the outcome y on

the document filter activations and covariates ĉ⊕a in the training set and the test set to identify which

filters have a consistent effect on the outcome. We find that with 10% and 20% effect sizes the covariates

consistently have the correct direction and are strongly correlated with the outcome and two filters emerge

with strong correlations with the outcome. In the 5% case only one filter emerges with a strong and

signficant correlation with the outcome.

Our model is able to pick up the simulated phrases. We find that in the 10% and 20% case one filter

is consistently activated by the phrases with the word “climate” (including “panel on climate,” “convention

on climate,” “avert global climate,” “agreement on climate,” “threat of climate” and others, see Table

4.3). The other is activated by a set of phrases which consist of either “1.5” or “2” followed by “degree(s)

celsius.” (Table 4.4). We plot the marginal effects of these filters in Figure 4.7.

In the 5% effect case one filter is consistently positive and is most frequently and most highly
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Figure 4.7: Plot of marginal effects of filters 2 and 3 in simulated data with 20 percent effect size

Table 4.4: Frequency of top 100 filter activations for Filter 3 in 20% effect simulations (only presenting
phrases that appear more than once.)

phrase frequency

1.5 degrees celsius 18
panel on climate 14

(2.7 degrees fahrenheit) 5
0.9 degrees fahrenheit 3

1 degree celsius 3
2 degree celsius 3
2 degrees target, 3

3.6 degrees fahrenheit 3
one degree celsius 3
1.5 degree celcius 2

1.5 degrees celsius, 2
2 degrees celsius 2

2 degrees of 2
2.7 degrees fahrenheit 2

2015 paris climate 2
3 degrees of 2
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Table 4.5: Frequency of top 100 filter activations for Filter 1 in 5% effect simulations (only presenting
phrases that appear more than once.)

phrase frequency

panel on climate 6
not even on 5

temperature rise to 4
average temperatures were 3
framework convention on 3

limit warming to 3
paris agreement on 3

an increase of 2
from lack of 2

limiting warming to 2
pre industrial levels. 2

the costs and 2

activated by the phrases “intergovernmental panel on" and “1.5 degrees celsius" and their synonyms (Table

4.5).8 In this case, the model picks up on a phrase that is almost always adjacent to climate change

(“intergovernmental panel on”), but not climate change itself. Below a 5% effect size we are sometimes

but not consistently able to identify effects of filters associated with our simulated treatments. On the other

hand, we have not found any false positives where a filter consistently identifies an effect which we did not

simulate. This suggests that we should be able to pick up phrases with a 5% effect size or larger.

This exercise demonstrates that we may be able to uncover treatments with effect sizes as small as

5% under a reasonable set of assumptions about our data. We follow this with a validation in the actual

data.

Estimating the Impacts of Text on Learning: Survey Data

After collecting 4,108 responses, we first use the text to identify phrases associated with learning

about climate change in our data. We use the fill in the blank question to measure learning:

“Temperatures are likely to rise by ___ degrees Celsius between 2030 and 2052 if global
warming continues at its current pace and if the world fails to take rapid and unprecedented

8We observe a similar pattern in the censorship and conjoint examples where the model sometimes picks up two different
phrase clusters in one filter if they have a similar effect size.
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Figure 4.8: Plot of marginal effects of filter 2 and filter 3 in where the outcome variable is whether
someone filled out the correct answer to the question about global temperature increases.

measures to stem the increase, a U.N. report said.”

We create a binary outcome variable from the fill in the blank question above which is 1 if

respondents responded with the correct answer, and 0 otherwise. The information necessary for the correct

answer to this question appears in many of the news articles, so we expect that respondents who receive

this information will fill in the “correct” answer. However, some news articles point out that temperatures

have already increased by 1 degree and are likely to increase by another 0.5 degrees, or talk about the

dangers of a 2 degrees world, which might confuse respondents. Our analysis should be able to point to

both the text of the article that contributes to learning and the text of the article that might cause confusion.

After running our model, we find two filters which are strongly positively associated with reporting

the correct answer. The first positive filter is most associated with the concept of global temperatures,

indicating that if the paragraph the respondents received mentioned global temperatures, respondents were

more likely to respond to the question correctly. This filter picks up phrases such as “average global

temperature,” “limit global temperature,” and “in global temperatures” (Table 4.6). It also frequently picks

up the phrase “1.5 degrees celsius,” which is the correct answer to the question.

The second positive filter the most highly activating phrases are “paris agreement goal,” “incheon,

south korea,” and “c and ipcc,” indicating that if the respondent received a paragraph about the goals of the

paris agreement or the IPCC report, they were more likely to respond correctly to the question (Table 4.7).

We plot the marginal effects of these two filters on the outcome in Figure 4.8.

There is no filter which is strongly negatively associated with putting an incorrect answer, though
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Table 4.6: Frequency of top 300 filter activations (only displaying frequency greater than 3)

phrase frequency

of global warming 44
limiting global warming 38

limit global warming 30
on global warming 27

in global temperatures 17
the global temperature 13
in global temperature 9

limit global temperature 9
to limit temperature 8
1.5 degrees celsius 6

average global temperatures 6
a global temperature 5

help limit temperature 5
lower global warming 5
made global warming 5

with global temperatures 5
allowing global temperatures 4

considering global temperatures 4
course, global temperatures 4

limit global average 4
of global average 4
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Table 4.7: Frequency of top 300 filter activations for Filter 2 in learning about climate change (only
displaying frequency greater than 3)

phrase frequency

_ the ipcc 21
incheon, south korea 17

scale," the un 15
in south korea 14

document, the un 11
_ the special 10

_ the un 7
"preventing an extra 6

2c, the un 6
society, the ipcc 6

_ "the ipcc 5
c an ipcc 5

a south korean 5
hitting this goal 5

rise. the ipcc 5
_ "a un 4

_ "the un 4
_ tropical nations 4

"a new un 4
c, an ipcc 4

2c. the ipcc 4
from south korea 4
monday, the ipcc 4
the associated un 4

will. the ipcc 4
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all three of the other filters have negative weights. We examine the phrases which are most associated

with putting an incorrect answer in Table 4.8. These phrases highlight several organizations that talked

about temperature rises above and beyond 1.5 degrees. The phrase “the united nations” (as opposed to “the

un”) tends to appear in documents which lead with the amount of warming which has already occurred,

pointing out that the world is on track for a 3 degree rise in temperatures. The phrase “world meteorological

organization” occurs in documents which contain information about several different scenarios but focuses

on the previous 2 degree target. The phrase “oceans and unleash” occurs in paragraphs which talk about the

dangers of an additional degree of warming. While these phrases are not direct evidence of a relationship

they might suggest that hypothetical discussions about larger rises in temperatures may have confused

respondents. The following are the texts with the identified phrases italicised:

“incheon: avoiding global climate chaos will require a major transformation of society and the
world economy that is unprecedented in scale, the united nations said monday in a landmark
report that warns time is running out to avert disaster. earth s surface has warmed one degree
celsius (1.8 degrees fahrenheit) — enough to lift oceans and unleash a crescendo of deadly
storms, floods and droughts — and is on track toward an unliveable 3oc or rise.”

“u.n. world meteorological organization (wmo) secretary general petteri taalas told reporters
in geneva: there is clearly need for a much higher ambition level to reach even a 2 degrees
target, we are moving more toward 3 to 5 (degrees) at the moment.”

“earth s surface has warmed one degree celsius (1.8 degrees fahrenheit) enough to lift oceans
and unleash a crescendo of deadly storms, floods and droughts and is on track toward an
unliveable 3c or 4c rise.”

Estimating the Impacts of Text on Opinions: Survey Data

We use the willingness to pay additional taxes for implementation of a policy that addresses

climate change as the main dependent variable for this study, though we test the others as well. We find

one filter that is marginally negatively associated with the outcome in the final layer of the model, though

in the test set this relationship is inconsistent and the filter is unassociated with the outcome when we

correlate it with the outcome independent of the other filters.

The words which have high activations for this filter are also not highly consistent (Table 4.9),

though the most frequently appearing phrases in the top 300 activations seem to be related to efforts to
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Table 4.8: Frequency of top 300 words negatively associated with learning (only presenting phrases that
appear more than once.)

Phrase Count

the united nations 95
world meteorological organization 23

petteri taalas told 16
oceans and unleash 15

the united states 13
nations to fight 10

overtime swiftly approved 9
reefs as soon 9

coral reefs would 8
body studying climate 5

miguel arias cañete 5
nations inter governmental 5

planet would not 5
climate protection department 4

corals from being 4
nations environment programme 4

new united nations 4
the united nation 4
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Table 4.9: Phrases describing filter with negative association of willingness to pay for climate policy.

Phrase Count

of heat could 45
bill hare, an 14

net zero emissions. 8
net zero by 7

paris agreement pledge 7
act than previously 5

climate action by 5
climate agreements endorsed 5

crops such as 5
100 year old 4

action to slash 4
an environmental economist 4

climate agreement in 4
fuels as an 4

in poland that 4
in poland to 4

packed. two deputy 4
so trump finds 4

been released today 3
clean energy company 3

climate action as 3
contradicting trump officials)but 3

donald trump declared 3
drastic action needed 3

fossil fuel industry, 3
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counteract climate change and possible obstacles to them, including political agreements (“paris agreement

pledge”, “climate agreements endorsed”). This suggests that discussion of negotiations or stalemate may

reduce people’s willingness to try to counteract the problem. However, given the low correlation and

inconsistency of the filter we caution against over-interpreting this result.

A different metric suggests that the text is predictive of decisions, but that we perhaps lack the

sample size to identify how. If we replace each text with the word “a” and run the model including only

covariates we find that both the loss increases and the prediction accuracy decreases. In the validation and

test sets we achieve prediction accuracy of between 64% and 65% when we only include covariates, but

69% to 70% when we include the text. As such we believe that the model must be learning predictive

features in the text but that the measurement and interpretation of the effect of those features is noisy.

Given this we turn to 5) from above: finding the phrases from the text which generate the most

positive and most negative predictions in isolation. The top 100 phrases most associated with willingness

to pay are all a number followed by “degrees fahrenheit” or “degrees celsius” or the phrase “the world

meteorological organization.” The phrases most associated with a lack of willingness to pay are less

cohesive, but most include the terms “emissions,” “fossil fuels” or “carbon dioxide.” We view this as

suggestive evidence that documents which are directly about the report may increase willingness to pay

for mitigation while documents which focus on the changes society will have to make may decrease

willingness to pay.

Several of the covariates which we include have strong effect sizes which mirror those found in the

climate change communication literature: democrats are nearly 20% more likely to say they are willing to

pay than independents while republicans are 12 percent less likely to to say they are willing to pay. People

with a college education are about 7% more likely to say they are willing to pay.

We tested the model on two other outcome variables: the degree to which people thing global

warming is a serious problem (dichotomized between those who think it is a “very serious problem” and

those who think it is “somewhat serious,” “not too serious” and “not a problem” to get the outcome as close

to a 50/50 split as possible), and the level of priority that the government should commit to climate change

(dichotomized at “very high” or “high” vs “low” or “medium”). In each case the filter activations were not

significant predictors of the outcome. Particularly in the question about how serious of a problem climate
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change is the text did not seem to have much of an effect at all, with almost no increase in prediction

accuracy from using the text and very low coefficients on the filter activations.

Because of the simulation exercises and ability to uncover phrases that are predictive of learning

in the text, we are reasonably confident that the model should be able to uncover treatments which have

an effect size of greater than 5%. The noise in our results suggests that the effects of the text which we

presented to respondents are small or noisy or both, and that we need additional power if we want to be

able to uncover those effects.

4.8 Future Directions and Conclusion

In this paper, we develop a new model to extract flexibly expressed and length phrases from text to

evaluate their impact on the outcome. We incorporate ideas from other methods originally developed to

understand machine classification can be used to understand how human decisions might be influenced

by text, specifically by discovering influential phrases that are highly predictive of a human decision.

Once we have discovered phrases we believe may influence a decision, we can test these hypotheses in

follow up experiments. For example, we plan to use the clusters of phrases described above as treatments

in conjoint or audit experiments to test whether these concepts and phrases indeed have a causal effect

on decision makers. In the context of the censorship example, this could mean using the phrases that

predict censorship in an audit experiment to determine the effect of each phrase on censorship without the

presence of confounders. In the climate change example, we plan to design a follow-up experiment where

survey respondents are treated with some of the influential phrases we identified within our analysis. Our

method is uniquely suited to bridge observational and experimental methods because the outputs of the

observational phase can be used directly in the experimental phase.

Appendix: Background on Neural Networks

Neural networks are an exciting subset of machine learning techniques, recently demonstrating

the ability to perform tasks that experts deemed impossible just a few years ago. In [45] used a (now very

simple) neural network to predict interstate conflict with some success, but it was not until recently that
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they began to really capture the imaginations of social scientists. While most of the advances in computer

science have come in increasingly difficult classification problems, we seek to add to the growing literature

that use neural networks to explain a phenomenon rather than simply predict it.

Neural networks (like other machine learning methods) are a method for classifying observations

or predicting the outcome from set of training examples. Neural networks shine in their ability to learn

complex representations in the data and their flexibility in fitting extremely complicated functional forms.

More concretely, in their most simple form they are able to discover and fit high-order and interactive

components of a classical regression. Because of this flexibility, they are extremely useful for modeling

new data types, including text (where the meaning of a word’s representation depends on the context),

images (where the meaning of a pixel’s value depends on that pixel’s neighbors), sounds, and videos.

Neural networks exhibit great variety in their structure, with particular classes of networks designed

to work well on particular problems or data sources. Similar to how a social scientist using regression might

use ordinary least squares, logit, and negative binomial models to fit different data generating processes,

a researcher using neural networks might use fully-connected network (FCN) layers, recurrent neural

network (RNN) layers, convolutional neural network (CNN) layers, or some combination of the above to

answer questions based on different types of data. However, all neural networks share some similarities.

First, neural networks take tensors as input variables, for example color intensities in red, green,

and blue bands, n-dimensional word embeddings, or 1-hot word embeddings. Most commonly input

values are scalars or vectors. These tensors are then passed through subsequent layers, with each layer

composed of a number of “neurons.” Each neuron is a linear combination of some or all of the neurons

in the previous layer, generally with an “activation” function applied to scale the output of that function

to the [0,1] or [0,inf) interval. The network ends with an output layer where there is one node for each

continuous output variable and/or one node for each class if the output us categorical. Thought of in this

way, a logistic regression can be expressed as a neural network with the number of inputs equal to the

number of independent variables, and one output neuron in the second layer that takes a linear combination

of all of the inputs and applies a logistic activation function to generate a value between 0 and 1. Similarly,

OLS is the same network, but without the activation function to scale the output.

Most neural networks have more than simply an input and an output layer. To gain an intuition
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for how this works, imagine a structural model where a researcher uses independent variables to predict

some intermediate regressors, and then uses those regressors to predict a final outcome. In that model,

the intermediate regressors are a “hidden layer” in a “deep neural network.” Today most neural networks

consist of many hidden layers.9

Optimization of the parameters in a neural network is facilitated by an algorithm called back-

propagation, whereby the derivative of the parameters of the last layer is taken with respect to the loss,

those parameters are adjusted based on the gradient of the loss function, and then the loss is propagated

backward into the network with the gradients adjusted at each layer. Because the number of parameters is

very large for more complicated neural networks they tend to take significant computational power and

many examples to train (although there is much research focusing on decreasing the data requirements of

neural networks, see [47, 48]).

We now focus on neural networks designed for particular types of data. First, we consider RNNs,

a type of neural network designed for data that has linear or temporal dependencies like text. A recurrent

neural networks starts with the first observation in a time series, then employs a structure that takes a

function of the first and second observations and outputs a tensor with the same dimensions as the input,

then applies that function to the output of the previous round and the next observation, and so on. In this

way, it uses previous observations to compute the effect of each subsequent observation on the outcome.

For text, such a network would read in the first word in a string, then use the meaning of that first word to

modify the meaning of the second word, then use that meaning to modify the meaning of the third word,

and so on. RNNs frequently use stacked forward and backward layers to capture forward and backward

dependencies in the text. This allows RNNs to use context to interpret the meaning of text, and RNNs are

extremely effective at translation, summarization, and other NLP applications [49–53].

CNNs were invented for image processing and are designed to consider blocks of pixels at a time.

These networks are able to learn recurring patterns (representations of certain shapes or objects across

blocks of pixels) that are predictive of the outcome variable. Deep CNNs tend to learn low-level features

like lines, curves and textures, gradually combine those to form higher-level representations of objects,

9An important result in the neural networks literature is the Universal Approximation Theorem – that a fully connected neural
network with a single hidden layer with a finite number of neurons can approximate any continuous function with arbitrarily high
precision [46].
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and then use the presence of those objects to classify the image. More recently, CNNs have been used

successfully in sentiment classification tasks in text [25, 54]. Instead of learning common representations

in blocks of pixels, the network is able to learn representations contained in groups of words (n-grams).

These networks only consider local order within the n-gram, but are better able to capture features that

require multiple words to express.

Chapter 4 is coauthored with Sanford, L. Roberts, Margaret and Li, Kevin. The dissertation author

was a lead author of this chapter.
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So long and thanks for all the fish.

—Douglas Adams
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