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Wealthy People and Fat Tails: An Explanation for
the Lévy Distribution of Stock Returns

Abstract

Although the Lévy (stable-Paretian) distribution of stock returns was first observed by
Mandelbrot 35 years ago, an explanation for this phenomenon has not yet been found.
Several extensive studies have recently shown that short-term rates of return on stock
indices and on single stocks are distributed according to the truncated Lévy distribution.
An apparently unrelated but well-documented fact is that wealth is distributed according
to the Pareto-law distribution at high wealth levels. In this paper we suggest that the
Lévy distribution of rates of return originates from the Pareto-law wealth distribution
among investors. We present a model which assumes i)a Pareto distribution of wealth
and ii)that the effect an investor has on the price of a stock is proportional (in a stochastic
sense) to the investor’s wealth. This model generates a truncated Lévy distribution of
stock returns. This result is robust to many variations of the basic model. The model
leads to the prediction that the parameter o of the Lévy rate of return distribution
should be equal to the Pareto constant a,, of the Pareto wealth distribution. Empirical
evidence from the U.S., the U.K. and France reveals a striking agreement between these
a-priori unrelated parameters (U.S.: oy = 1.39, a,, = 1.35; UK.: ap = 1.12, o, = 1.06;
France: oy = 1.82, o, = 1.83 ).

Keywords: Distribution of returns, Lévy, Stable-Paretian, Wealth Distribution, Pareto.



Introduction

Review

It has been long known that the distributions of returns on stocks, especially when
calculated for short time intervals, are not fitted well by the normal distribution. Rather,
the distributions of stock returns are leptokurtic, or "fat tailed”. Thirty five years

ago Benoit Mandelbrot (1963a, 1963b) proposed an exact functional form for return

distributions. Namely, he has suggested that log-returns are distributed according to the

symmetrical Lévy probability distribution defined by:

13, (0) =~ [ exp(~yAtges) cos(an)dg 1)
0

where L7 (z) is the Lévy probability density function at z, ap is the characteristic
exponent of the distribution, yAt is a general scale factor, 7y is the scale factor for
At =1, and ¢ is an integration variable. This distribution is also known as the ”stable-
Paretian” distribution. In order to avoid confusion, we will use only the term ”Lévy
distribution” throughout this paper.

Mandelbrot’s pioneering work gained support in the first few years after it’s pub-
lication (Fama 1963a, Fama 1963b, Fama 1965a, Roll 1968, Teichmoeller 1971, and
Officer 1972). Fama and Roll (1968, 1971) developed methodologies in order to esti-
maté the parameters of the Lévy distribution. Efficient portfolio selection in a market
with Lévy distributions was analyzed by Fama (1965b) and Samuelson (1967). Subse-
quent works, however, have questioned the Lévy distribution hypothesis (Hsu, Miller
and Wichern, 1974, Joyce, Brorsen and Irwin, 1989). By the definition of the stability
property of the Lévy distribution, the sum of independent Lévy random variables is also

distributed according to Lévy distribution (Lévy, 1925). Thus, if short-term log-returns
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Introduction

Review

It has been long known that the distributions of returns on stocks, especially when
calculated for short time intervals, are not fitted well by the normal distribution. Rather,
the distributions of stock returns are leptokurtic, or "fat tailed”. Thirty five years

ago Benoit Mandelbrot (1963a, 1963b) proposed an exact functional form for return

distributions. Namely, he has suggested that log-returns are distributed according to the

symmetrical Lévy probability distribution defined by:

Ly, (x) = -71; / ~ exp(—7Atg**) cos(gz)dg (1)
0

where L) (x) is the Lévy probability density function at z, oy is the characteristic
exponent of the distribution, yAt is a general scale factor, v is the scale factor for
At =1, and q is an integration variable. This distribution is also known as the ”stable-
Paretian” distribution. In order to avoid confusion, we will use only the term "Lévy
distribution” throughout this paper.

Mandelbrot’s pioneering work gained support in the first few years after it’s pub-
lication (Fama 1963a, Fama 1963b, Fama 1965a, Roll 1968, Teichmoeﬂer 1971, and
Officer 1972). Fama and Roll (1968, 1971) developed methodologies in order to esti-
maté the parameters of the Lévy distribution. Efficient portfolio selection in a market
with Lévy distributions was analyzed by Fama (1965b) and Samuelson (1967). Subse-
quent works, however, have questioned the Lévy distribution hypothesis (Hsu, Miller
and Wichern, 1974, Joyce, Brorsen and Irwin, 1989). By the definition of the stability
property of the Lévy distribution, the sum of independent Lévy random variables is also

distributed according to Lévy distribution (Lévy, 1925). Thus, if short-term log-returns



are distributed according to a Lévy distribution, longer term log-returns (which are the
sums of the short-term log-returns), should retain the Lévy distribution functional form.
However, from the empirical darta it is evident that as the time interval between price
observations grows longer, the distribution of log-returns deviates from the short-term
Lévy distribution, and converges to the normal distribution. This means that the log-
return distribution is not truly stable. Over the next few years, the Lévy distribution
temporarily lost favor, and alternative processes where suggested as mechanisms gener-
ating stock returns. The two main alternatives which where proposed are mixtures of
distributions (Clark 1973, Hsu, Miller and Wichern 1974, Pedrosa and Roll 1998), and
ARCH/GARCH processes (Engle 1982, Bollerslev, Chou and Kroner, 1990).

In the 90’s the Lévy distribution hypothesis has made a dramatic comeback, and
with a twist. Recent extensive analysis of short-term returns has shown that price
differences, log-returns, and rates of return ! are described extremely well by a truncated
Lévy distribution. This is not a sharp truncation in the usual mathematical sense,
but rather, it describes a smooth fall-off of the empirical distribution from the Lévy
distribution at some value, (for a general picture of the empirical short-term rate of
return distribution, see figure 2). Mantegna and Stanley (1995) analyze tick-by-tick
data on the S&P 500 index and find excellent agreement with a Lévy distribution up
to six standard deviations away from the mean (in both directions). For more extreme
observations, the distribution they find falls off approximately exponentially. Similar
results have been found in the examination of the Milan stock exchange (Mantegna

1991), the CAC40 index (Zajdenweber 1994), individual French stocks (Belkacem 1996),

1Some studies examine the distribution of price differences, some of log-returns, some of rates of
return. As the focus is on a very sort term (a few seconds to a few days) all of the above are very closely
related. See also the discussion in section 1.B.4.



and foreign exchange markets (Pictet and Muller 1995, Guillaume et al. 1997, and Cont,
Potters and Bouchaud 1997).

Because the empirical log-return distribution is truncated, it is not precisely a
stable distribution. Rather, it is a ”pseudo-stable” distribution - a distribution which is
fitted well by the Lévy distribution in the central part of the distribution, but falls off,
or is truncated, at some value

Such a distribution exhibits the following behavior: for short time scales it behaves
like a stable distribution, but for longer time scales the truncation causes the distribu-
tion to converge to a normal distribution (Mantegna and Stanley 1994, Cont, Potters
and Bouchaud 1997). Thus, the observation that the empirical log-return distribution is
a truncated Lévy distribution explains both the short-term stable properties of the dis-
tribution, and the long-run convergence to the normal distribution (Akgiray and Booth
1988, Mantegna and Stanley 1995). For an extensive review of evidence and applications
of the Lévy distribution in finance, see Mandelbrot (1997).

The Problem

The revival of the (truncated) Lévy distribution awakens an old question: Why
are returns distributed in this very specific way? The first, and to the best of our
knowledge, the only explanation was suggested by Fama (1963a) and Mandelbrot (1963).
Their explanation is based the following mathematical result, proved independently by

Doblin and Gnedenko (1954):

Definition: A random variable 7 is said to be asymptotically Paretian if:

1—-F(z) — Diyz™ as x — o

(2)

F(—z) — Dyx™ as x — o0

where F is the cumulative distribution of z, and D, and D, are constants (Fama, 1963,
pg. 423).



Doblin-Gnedenko Result:

The sum of n i.i.d. random variables which are asymptotically Paretian with 0 < a <2
tends to the Lévy distribution with characteristic exponent « as n tends to infinity
(Gnedenko and Kolmogorov 1954, Feller 1971).

Remarks:

1. Equations (2) is equivalent to stating that the tails of the density function f(z) de-
crease asymptotically as a power-law: f(z) — Dyaz=*®) and f(—z) — Dyax~(+),
as r — 0.

2. The Doblin-Gnedenko result depends only on the properties of the "tails” of f(x).
The central part of the distribution does not matter.

3. For o = 2 the variance of z is finite and the Doblin-Gnedenko result reduces to
the familiar central limit theorem (the Lévy distribution with a characteristic exponent
ay = 2 is the normal distribution). For 0 < a < 2 the variance of « is infinite. Thus,
one can view the Doblin-Gnedenko result as an extension of the central limit theorem to
cases where the variance of the random variable is infinite.

Fama and Mandelbrot suggest that in order to explain the Lévy distribution of
returns one should model changes in prices as the result of many i.i.d effects that are
asymptotically Paretian distributed. In the spirit of the eflicient market hypothesis,
Fama and Mandelbrot suggest that the underlying forces which drive price changes are
bits of new information. In the words of Fama:

” As long as the effects of individual bits of information are asymptotically Paretian,
various types of complicated combinations of these effects will also be asymptotically
Paretian... As long as the effects of individual bits of information combine in a way
which makes the price changes from transaction to transaction asymptotically Paretian
with exponent a, then according to the conditions of Doblin and Gnedenko, the price

changes for longer differencing intervals will be stable Paretian with the same value of

a.” (Fama 1963a, pg. 426).



Thus, if the effects of bits of information are distributed according to some asymp-
totically Paretian distribution with exponent «, and if price changes are due to the
aggregate effect of many independent bits of information, then it follows from the Doblin-
Gnedenko result that price changes should be distributed according to the Lévy distri-
bution with a characteristic exponent «. This is a big step towards understanding the
distribution of price changes. However, following this track, one is left with the prob-
lem of explaining why the effects of bits of new information should be asymptotically
Paretian.

The Contribution of this Paper

In this paper we suggest an explanation for the exact functional form of the dis-
tribution of stock returns. We propose that the observed truncated Lévy distribution of
stock returns originates from the well-documented Pareto-law distribution of wealth. Our
explanation produces a surprising theoretical prediction which is empirically testable.
Namely, we argue that the characteristic exponent of the Lévy return distribution, ay,
and the Pareto constant of the wealth distribution, «,, should be equal. Note that
a-priori these two parameters do not seem to be related at all: one has to do with a
description of stock returns, while the other is typically used as a measure of wealth
inequality in a society. An empirical comparison of these parameters reveals a striking
agreement between oy and a,,, for each of the three countries investigated.

The explanation that we suggest for the truncated Lévy distribution of stock re-
turns extends and complements the Fama-Mandelbrot approach. We model price changes
as resulting from the aggregate effect of the actions of many investors (which can be
driven either by new information or by other reasons). We assume that the wealth of

investors is distributed according to the Pareto-law, and that the effect the action of an



investor has on the stock price is proportional (in a stochastic sense) to that investor’s
wealth. Both of these assumptions conform with evidence which has been previously
empirically documented (Steindl 1965, Atkinson and Harrison 1978, Persky 1992, Haus-
man, Lo and MacKinlay, 1992). These assumptions lead to an asymptotically Paretian
distribution of single-trade price changes. The price change measured over a certain
time interval is the aggregate of many of these single-trade changes, and according to
the Doblin-Gnedenko result it will be distributed according to the Lévy distribution.
Thus, in our model the Lévy distribution of stock price changes is driven by the Pareto
wealth distribution. As a result, the characteristic exponent of the Lévy price change
distribution oy, should be equal to the Pareto constant a,, of the Pareto-law wealth dis-
tribution. The model we suggest is very generic and robust, and it explains not only the
distribution of price changes, but also the distribution of rates of return, and log-returns.

Our model also provides an explanation for the truncation of the return distribu-
tion. The truncation of the return distribution in our model is a consequence of the
truncation of the wealth distribution - in any market with a finite number of individuals,
the wealth distribution is truncated at the wealthiest individual.

The paper is organized as follows. In section I we present the basic model, and
several generalizations. In section I we present empirical estimations of the characteristic
exponent of the Lévy rate of return distribution, and of the wealth distribution Pareto
constant, for three different countries. Section III concludes the paper with a discussion

of our main results.



I. The Model

The two basic assumptions that we make are:

i) Pareto-law wealth distribution at high wealth ranges:

for W>W, f(W)=Cw{Itew)
where W is wealth, and f(W) is the probability density function. The exponent a,, is
positive, and it is known as the Pareto constant. C is a normalization constant. Notice
that the Pareto-law distribution describes the distribution of wealth only at high wealth
ranges, W > Wy. It does not deal with the form of the wealth distribution for W < Wj.
ii) The effect that the action of an investor has on the stock price is proportional (in a
stochastic sense) to the investor’s wealth.

Assumption i), the Pareto-law wealth distribution, has been first empirically ob-
served by Vilfredo Pareto over one hundred years ago (Pareto 1897). It has been since
verified in numerous empirical studies, conducted in various countries at different times
(see, for example, Steindl 1965, Atkinson and Harrison 1978, Persky 1992, Levy and
Solomon 1997). For a review of the properties of the Pareto-law distribution, see John-
son and Kotz (1970). The Pareto-law provides a very good description of the empirical
wealth distribution in the range of the top 5-10% of the population (for 16wer wealth lev-
els, the empirical density function is typically described by the log-normal distribution).
In this paper we are interested only in individuals who are wealthy enough to actively
invest in the stock market. The group of investors typically corresponds to individuals
2

in the top-wealth range, which is described by the Pareto-law Thus, we assume a

2Mankiw and Zeldes (1991) report that only 11.9% of U.S. households hold more than $10,000 in
stocks. Only 1.8% of households hold more than $100,000 in stocks. Haliassos and Bertaut (1995) find
that the percentage of households owning stock increases dramatically with household income. Their
data implies that the top 1% of the population (by income) holds more than 57% of the stock market.
The top 5% of the population holds about 80% of the market.

7



Pareto-law distribution of wealth among investors 3. We do not make any assumption

regarding the form of the wealth distribution at the lower wealth range (W < Wp).

The second assumption seems natural: it is intuitive that on average the actions of
an investor with $100 million will effect prices roughly 10 times as much as the actions of
a similar investor with only $10 million. This is also consistent with models of constant
relative risk aversion, which imply that investors make decisions regarding proportions of
their wealth (see, for example, Levy and Markowitz 1979, Samuelson 1989), and with the
finding that the price impact of a trade is roughly proportional to the volume of the trade,
especially for high volume trades (see figure 4 in Hausman, Lo and MacKinlay, 1992).
To be specific, if the volume traded by an investor is (stochastically) proportional to the
investor’s wealth, and if the effect of a trade on the price is proportional to the volume
of the trade, then the effect that an investor’s trade has on the price is (stochastically)
proportional to the investor’s wealth.

The emergence of a Lévy distribution of returns is not sensitive to the specifics
of the model. In order to present the main idea of the proposed mechanism we would
like to start by considering an over-simplified model. We then move on to discuss more
realistic versions.

I.A The Over-Simplified Model

Assume:
1) The wealth of investors is distributed according to the Pareto-law, with a Pareto

constant a,,:

for W>W,, f(W)=Cw (Itew) (3)

3The effects of institutional investors are discussed in section II1.



Individuals with W < Wj, do not trade in the stock market.

ii) There is one traded stock in the market (which serves as a proxy for the index). At
every time period ¢, an investor is chosen at random, and she trades with the specialist.
With probability 1/2 the investor buys, and with probability 1/2 she sells. If the investor
buys the stock price goes up by 0.1 x W;, where W, is the wealth of the investor chosen
to trade at time t. If the investor sells the stock price goes down by 0.1 x W;.

Let us denote the single-trade price change at period ¢ as z;. In this model we

have:
probability
_(+0.1W, 1/2
Zt‘{-o.ma, 1/2 )

Notice that W, is a random variable with a continuous distribution, and therefore so is
z;. The price change z; will be in the range (z, z + dz), only if the wealth of the investor
chosen to trade at time ¢ is in the range (102, 10(z+dz)). An additional condition is that
the trade is in the appropriate direction (i.e., if z is positive it is not enough that the
wealth of the investor is in the range (102, 10(z + dz)), we also require that the investor

buys, rather than sells.) Thus, we have:

for 2 <0 Problz < z < z+dz] = 1/2Prob[10z < W; < 10(z + dz)] (5)

for z>0 Problz < z; < z+dz] = 1/2Prob[10z < W; < 10(z + dz)],

where the 1/2 comes from the equal probabilities of buying or selling. If we denote the
probability density function of a single-trade price change by g(z), equation (5) can be

written as:



for z<0 g(z)dz =1/2f(102)10dz (6)
for z>0 g(2)dz=1/2f(102)10d=

where f is the wealth probability density function. Writing f explicitly (using eq.(3)),

we obtain:

for 2<0  g(z) = 1/2f(102)10 = 1/2C(10z)"(+ew) 10 = ¢z~ (UHew), (7)

for z>0 g(z) =1/2f(102)10 = 1/2C(10z) "+ 10 = ¢z~ (Few),

where C’ is a new constant (C' = 1/2C107**). Notice that the distribution of g(z)
is a special case of an asymptotically Paretian distribution with D; = Dy = C’, and
exponent a,, (see the definition in eq (2), and remark 1). Let us denote the price change

after n independent trades by AP. This price change is simply:

n

AP = ZZt. (8)

t=1

As the z;’s are asymptotically Paretian with exponent «,,, according to the Doblin-
Gnedenko result, for a large number of trades, n, the distribution of AP converges to
the Lévy distribution with the same exponent «,,, which is the Pareto constant of the
wealth distribution. Thus, the price change distribution is a Lévy distribution with
characteristic exponent a; = .

I.B Generalizations
I.B.1 Truncated Wealth Distribution — Truncated Lévy Distribution
In the preceding analysis we have assumed a Pareto-law wealth distribution (eq.3).

This distribution goes all the way up to infinite levels of wealth. In any real market,

10



however, the wealth distribution is truncated at some value - the wealth of the richest
individual. In this section we show that this leads to a corresponding truncation of the
Lévy price change distribution.

Assume that the wealth distribution is truncated at some maximal wealth W,

B Cl/W—(l‘f‘aw), for Wo <W < Wmaz;
f(W) - {0’ for Wma:c <W (9)

As result of this, the single-trade price change z; is bounded:

max|z| = 0.1W, 0. (10)

(We do not change our assumption regarding the effect of investors on the price, equation
(4)). The truncation in the distribution of 2, in turn, leads to a truncation of the Lévy

distribution of AP, the price change after n trades:

max|AP| = n0.1Waz. (11)

While the truncation of the Lévy price change distribution is a general result, the sharp
nature of the truncation described in equation (11) is a consequence of our simplified
assumption regarding the effect of investors on price (equation (4)). A géneral stochastic
effect of investors on price, as discussed in the next section, tends to "smooth out” this
truncation.
I.B.2 Stochastic Effect on Price

In the over-simplified model above we assume that the investor’s effect on the
price is a deterministic proportion of the investor’s wealth. This, of course, is unrealistic.
There are many reasons why the effect an investor has on the price is stochastic: investors

may act upon new information which is of variable relevance and of variable precision.

11



Liquidity needs may also be stochastic. In this subsection we show that our result is
robust to investors’ actions having a stochastic effect on price.

Before deriving the general result consider a simple example: assume that investors
act on the arrival of new information, and suppose that there are two kinds of signals:
strong signals (which can be positive or negative), and weak signals (which again can
be positive or negative). Assume that all four possible signals are equally likely. If an
investor with wealth W; receives a strong signal she effects the price by 0.1W,. If she

receives a weak signal she effects the price by 0.05W,;. Thus, we have:

probability
+0.06W,, 1/4
) +o0w,, 1/4
“7 ) 010w, 1/4 (12
—0.05W,, 1/4

The price change z will be in the range (z,z + dz) in the following two circum-
stances:
a) the signal is strong, and the wealth of the investor chosen to trade is in the range
(102,10(z + dz)).
or:
b) the signal is weak, and the wealth of the investor chosen to trade‘is in the range
(202, 20(z + dz)).
For a positive price change z, we must add the requirement that the investor buys,
and vice versa for negative z. Since these two cases are symmetric (as in the previous
example), let us develop the price change probability distribution only for z > 0. We

have:

12



for z>0 Problz < z < z+dz] = 1/2Prob[strongsignal] Prob[10z < W; < 10(z+dz)]
+1/2Problweak signal]lProb[20z < W; < 20(z + dz)) (13)

Which can be rewritten as:
for 2>0 g(z)dz =1/4f(102)10dz + 1/4f(202)20d=. (14)

Writing f explicitly we get:

for 2>0  g(z) = 1/4C(102)~(+2w)10 4+ 1/4C(202)~0Fow)20 = /2~ (rew) - (15)

where C’ = 1/4C(107%» +20~*+). Again, the single trade price change distribution g(z)
is asymptotically Paretian with the exponent «,, and therefore the price change after a
certain period, which is the sum of many independent z,’s, will be distributed according
to the Lévy distribution with the same exponent a,.

The same result holds for the general case of a stochastic effect on prices. In the

general case we have:

2t = thh ' (16)
where §; is a stochastic proportionality factor, which is distributed according to some
distribution h(g), and is uncorrelated with W;. In this case there is a continuum of
combinations that can lead to a price change z. A price change z will occur whenever
¢;W; = z. Generalizing equation(12) we get:

e z,1 o z —(14a )l 1 —(1+an)
for >0 g(x)=1/2 [ h(@)f(C)2dg=1/2 [ h(@)C(>) Mt)—dg = ¢z~ e
0 q q 0 q q
(17)

13



where
o 1
"=1/2 )" dq.
¢ = 1/20 [ hla)( ;) *wdg

Once more, the single trade price change distribution is asymptotically Paretian with
exponent «,, and the Doblin-Gnedenko result tells us that the sum of many such in-
dependent price changes will be distributed according to the Lévy distribution with
ap = Q.
I.B.3 Variable Trading Frequency

In the preceding sections we have assumed that at time period ¢ only one investor
is chosen to trade with the specialist. This assumption can be relaxed to allow for a
stochastic number of investors to trade at each time period.

The stochastic price change due to the effect of a single trade is given by:

z=GW. (18)

In section [.B.2 it was shown that g(z), the probability density function of 2, is asymp-
totically Paretian with exponent «,,. Let us denote the sum of m i.i.d. random variables
zby Sy S, = 28 + 22 + ... + 2™, Notice that because the z’s are asymptotically Pare-
tian with exponent a,,, so is S,, (Gnedenko and Kolmogorov, 1954). Lét us denote the
density function of S,, by k. The number of trades taking place at a given time period

is a discrete random variable which we denote by m:

probability
]., ™
27 T2
m = (19)
m’ 7rm

14



The probability density function of an aggregate price change z; at time period ¢ is given

by:

9(z) = 3 Tonbin(2) (20)

m=1

where m is the number of trades, k,,(2;) is the density function of S,, at z, and the
summation is over all possible numbers of trades in a single time period. As the k,,’s
are asymptotically Paretian distributions with an exponent «,, so is 2, their weighted

average (if ki(z;) — diz; ) as z, — oo, and k;(z,) — d]-zt—(Ha“’) as z; — 00,

then m;k;(z:) + m;k;(z) — (md; + Wjdj)zt_<l+a‘“) as z; — 00, which implies that the
weighted average is also asymptotically Paretian).

As before, the price change after n time periods is:

n

AP = Zzt. (21)

t=1

As the z’s have been shown to be asymptotically Paretian with exponent a,,,
according to the Doblin-Gnedenko result, for a large number of trades, n, the distribution
of AP converges to the Lévy distribution with the same exponent a,,, which is the Pareto
constant of the wealth distribution. Thus, the result of the model is robust to a stochastic
number of trades at each time period.

I.B.4 Rates of Return Versus Price Differentials

Up to this point we have discussed only the distribution of price differences. What
about the distribution of rates of return, or log-returns? We would like to argue that con-
siderations similar to those discussed in the previous sections lead to a Lévy distribution
of rates of return and of log-returns as well.

This is pretty obvious if the price remains at a fairly constant level during the

15



The price change due to a trade is in nominal terms, and it is therefore proportional to

nominal wealth:

z=Fyg—PB= C?tth~ (24)

Substituting W} from equation(23) we obtain:

M
Pra = P = W/ (5), (25)
base
or:
Py — B Gt

WL (26)

Following the derivation in section I.B.2 we conclude that the rate of return r; is an
asymptotically Paretian variable with exponent «,,. From the Doblin-Gnedenko result it
follows that the sum of many i.i.d rates of return, Y, r¢, is distributed according to the
Lévy distribution with characteristic exponent «,,. The rate of return over an interval

of T time periods, Ry, is given by:

(1+ Rp) =T (1 + 1), ‘ (27)

As we are considering short time periods (up to about a month), the one-period rates of

return r; are small, and Rr can be approximated by:

T
RT ~ Z T¢. (28)
t=1

The distribution of rates of return R; is be closely approximated by the distribution

of Zthl r¢, which is the Lévy distribution with characteristic exponent o,,. Thus, the
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Lévy distribution of rates of return, and the equality ay = a,, for this distribution are
natural extensions of the same result which was derived for price changes.
As for log-returns, since we are considering short time periods, rates of return are

small, and log-returns are very closely approximated by:

P —P Py - P
! t)z t+1 t

Por,

P, (29)

If rates of return are distributed according to the Lévy distribution with a; = a,,
as argued above, the same is true for log-returns.
I.B.5 Asymmetric Price Processes

Up to this point we have assumed that the price process is symmetric. Namely, we
have assumed equal probabilities for buying and selling the stock, and as a consequence
the singe-trade price change distribution, g(z), was not only asymptotically Paretian, it
was also symmetric. This lead to a longer-term symmetric Lévy distribution of price
changes. Our result is robust to the relaxation of the symmetry assumption. If, for ex-
ample, the probability for buying is greater than the probability of selling, g(z) would no
longer be symmetric. However, it would still be asymptotically Paretian - it would satisfy
the conditions of equation (2), (with D; > Dj). As a result, the price change distribution
after many trades will tend to the a-symmetric Lévy distribution (see Mandelbrot 1963).

We are focused on the distribution of short-term price changes (or rates of return).
In the short term, we do not expect a strong drift in prices, and as a consequence,
the short-term price change distribution is not expected to be very a-symmetric. Indeed,
when examining the short-term empirical data, one finds that the a-symmetry negligible,

and that the symmetric Lévy distribution is a very good approximation for the empirical

distribution (see figure 2).
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II. Empirical Evidence

The model presented in this paper predicts that the characteristic exponent of the trun-
cated Lévy return distribution oy should be equal to the wealth distribution Pareto
constant a,,. In this section we estimate these parameters empirically for three coun-
tries: the U.S. the U.K. and France.
II.A Estimation of oy,

For the estimation of a;, we follow the methodology used by Mantegna and Stanley
(1995). They note that the density at 0 of the symmetric Lévy distribution given in

equation (1) is:

F(l/aL)

=L =
Do aL(O) WaL(yAt)l/aL

(30)

where [ is the Gamma function, At is the horizon for which rates of return are being
calculated, and + is the scale factor for At = 1 (for proof, see appendix A). Thus, the
probability density at 0 decays as At~/ Mantegna and Stanley estimate the density

at 0 for various time intervals At in order to estimate ay. They run the regression:

log[po(At)]; = A+ Blog[At]; +¢;, ‘ (31)

and estimate oy as —%. We employ the same technique.

Our data sets consists of:

S&P 500: all 1,780,752 records of the cash index between 1990-1995, obtained from the
Chicago Mercantile Exchange.

FTSE 100: all 75,606 records of the cash index between January 1997 and August 1997,
obtained from the Futures Industry Institute.

CAC 40: all 234,501 records of the cash index in 1996, obtained from the Bourse de Paris.

19



For each of these series we estimate the density po(At) by going over the entire
data set and calculating the rates of return for intervals of At. We count the number of
rates of return within the range —0.0001 — +0.0001 and divide this number by the total
number of observations, in order to get the probability of rate of return in this range.
Then we divide the result by the size of the range, 0.0002, in order to get the probability
density. We repeat this procedure for different sampling time intervals At. Our results
are reported in Figures 1-4. For the S&P 500 we obtain oy = 1.39 (Figure 1). The
standard error of this estimation is 0.04, the correlation coefficient is —0.987, and the
t-value is —33.8. This estimated value that we find for ay is close to the value of 1.40
reported by Mantegna and Stanley (1995) for the S&P 500, during the sample period
1984-89.

In order to verify that the empirical rate of return distribution is indeed fitted well
by the symmetric Lévy distribution with the estimated aj of 1.39, we compare these
two distributions in figure 2. The empirical distribution is calculated for 1-minute rates

4, Figure 2 shows an excellent agreement

of return, and the plot is semi-logarithmic
between the empirical and theoretical distributions up to rates of return in the order of
0.001, which are about six standard deviations away from the mean. For more extreme
returns, the empirical distribution falls off from the Lévy distribution. This is the so-
called truncation, which will be discussed below. It is interesting to note the secondary
peak of the empirical distribution at a rate of return of about —0.001. A similar bimodel
distribution was observed by Jackwerth and Rubinstein (1996). We do not have an

explanation for this phenomenon in the framework of the present model.

For the FTSE 100 we find oy = 1.12 (Figure 3). The standard error of this

4The empirical distribution is estimated by a non-parametric density estimate with a Gaussian kernel
and the "normal reference rule”, Scott (1992, pg. 131).
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estimation is 0.03, the correlation coefficient is —0.996, and the t-value is —59.7. This
number is close to the oy, value of 1.10 which is calculated from the 1993 FTSE 100 data
reported by Abhyankar, Copeland, and Wong (1995).

For the CAC 40 we find ap = 1.82 (Figure 4). The standard error of this estimation
is 0.05, the correlation coeflicient is —0.978, and the t-value is —35.9.
II.B Estimation of a,,

Estimating the Pareto wealth distribution exponent «,, requires data regarding the
"right-tail” of the distribution, i.e. data about the wealth of the wealthiest individuals.

The French almanac Quid provides wealth data on the top 162,370 individuals in
France. This data is in aggregate form, i.e. the numbers of individuals with wealth
exceeding certain wealth levels are reported. According to the Pareto-law (eq. (3)), the
number of individuals with wealth exceeding a certain level W, should be proportional

to W_w:

NW > W,) = N/°° F(W)dW = NC /°° w-reogy = e (39
Wz W

Ay
where N(W > W,) is the number of individuals with wealth exceeding W,, and N is
the total number of individuals. When plotting N(W > W,) as a function of W, on
a double-logarithmic graph, one expects the data points to fall on a straight line with
slope —ay,. Figure 5 is a double logarithmic plot of N(W > W,) as a function of W, for
the French data provided by Quid. This figure shows an excellent agreement between
the empirical wealth distribution and the Pareto-law. In order to estimate v, for France

we run the regression:

log[N(W > W,)]; = A+ Blog[W,]; + € (33)
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The absolute value of the slope of the regression line, which is the estimate for «,,
is 1.82. (Standard error =0.03, correlation coefficient =-0.999 t-value =-59.5).

For the U.S and the U.K. the available data regarding the wealthiest people is
more detailed but also more limited in scope. For these countries, lists with the ranking
and wealth of the several hundreds of wealthiest individuals are published. We use
the methods suggested by Levy and Solomon (1997) in order to estimate a,, from these
data. A Pareto law distribution of wealth with exponent «,, implies the following relation

between the rank of an individual in the wealth hierarchy and her wealth:

W(n) = An~Vew (34)

where n is the rank (by wealth), and W is wealth. The constant A is given by A =
(%)—1/%’ where N is the total number of individuals in the population, and C' is the
normalization constant from equation (3); (for a mathematical derivation of this relation
see appendix B).

For the U.S. we obtain data from the 1997 Forbes 400 list. Wealth as a function

of rank is plotted in double logarithmic form in figure 6. Running the regression:

log[W(n)}; = A+ Blog[n]; + ¢ (35)

we estimate the slope of the regression as —0.74. This is the estimation of —1/a,,
and it corresponds to an estimation of a, = 1.35 for the U.S. The standard error of
this estimation is 0.005. We would like to clarify that we do not assume that only the
wealthiest 400 individuals determine the S&P rate of return distribution. Rather, we use
the data that we are able to obtain in order to estimate the Pareto constant for the entire

upper wealth range. Our estimation of a,, = 1.35 for the U.S.| is close to the estimate

22



of a,, = 1.35 — 1.42 which is obtained by the data provided by (1996) regarding the
percentage of wealth held by the top 1%, 5%, and 10% of the population (see appendix
C).

For the U.K. we obtain data from the Sunday Times Rich List 1997. The data
are plotted in Figure 7. We obtain a slope of —0.94 which corresponds to a value of
1/0.94 = 1.06 for o, (standard error 0.004).

The summary of our empirical results appears in Table I. This evidence shows a

striking agreement between the values of o, and o for the three countries investigated.

Table 1
Qay, Ay
U.S. 1.39 £+ 0.04 1.35 + 0.005
U.K. 1.12 £+ 0.03 1.06 £+ 0.004
France 1.82 £+ 0.05 1.83 4+ 0.030

II1. Discussion

In this paper we show that a (truncated) Pareto-law wealth distribution and a
proportionality between the wealth of an investor and the effect the investor has on
stock price, lead to a (truncated) Lévy distribution of stock returns. This result is
based on a mathematical theorem by Doblin and Gnedenko. Our result is robust to
different variations of the model, such as a stochastic effect of a trade on price, variable
trading frequency, and asymmetric price processes. The model suggested leads to a
surprising prediction of an equality between the a-priori unrelated wealth distribution
Pareto constant «.,, and the Lévy return distribution exponent «y. Empirical evidence
from the U.S., the U.K., and France, provides striking confirmation of this prediction.

Our model suggests that the cut-off of the Lévy return distribution is due to the

cut-off in the wealth distribution. This is hard to confirm empirically, since we do not
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know the distribution of the stochastic proportionality factor, ¢ (see equation (16)).
However, a rough back-of-the-envelope calculation shows that the orders of magnitude
are right. Suppose that the wealthiest person in the economy has a wealth W,,,, and is
invested 100% in stocks. If this investor would take all of her money out of the market
in a "single trade”, the market capitalization would change from M to M — W, and
the rate of return generated would be —Wﬁz. Thus, the maximal single trade rate of
return should be in the order of magnitude of —Wﬁ% The wealth cut-off in the U.S. is in
the order of magnitude of about $10 billion, and the U.S. stock market capitalization is
about $10 trillion. Thus, we would expect the fall-off from the Lévy return distribution
to occur at rates of return in the order of 0.001. Figure 2, shows that the fall-offs do
occur roughly in this range.

This paper suggests an explanation for the Lévy rate of return distribution in
terms of the distribution of wealth among individual investors. How do institutional
investors fit into this picture? Institutional investors usually have freedom to choose
the stocks which go into their portfolio, but typically they do not have a great deal of
discretion about the stock-bond mix of their portfolio. As a consequence, the main effect
institutional investors have on the level of the index, is when they increase or decrease the
overall size of their stock portfolio. This happens when individual investors deposit or
withdraw money to/from their accounts. Thus, in the context our model, the institution
serves as a middle-man: instead of trading directly with the specialist, individuals may
trade through an institution. The return generating mechanism is not altered: changes
in the index are still due to the actions of the individual investors. Hence, the results
derived in this paper are robust to the introduction of institutional investors.

The Doblin-Gnedenko result holds for random variables which are independent.
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Therefore, in order to employ this powerful result, in this paper we have assumed that
the single-trade price changes are independent. However, the Doblin-Gnedenko result can
be generalized in some circumstances to random variables which are dependent (Davis
1983, Avram and Taqqu 1986, Jakubowski 1993, Samorodnitsky and Taqqu 1994). These
generalizations may allow the extension of the results presented in this paper to cases
in which the stock’s volatility is auto-correlated. It would be very interesting to explore
the conditions under which these results can be generalized to include ARCH/GARCH

processes. Extensions of the model in this direction is left for future work.
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Appendix A

Lemma:
P(1/ar)
=(0)= — 12
Po ( ) WQL(VAt)l/O‘L (36)
Proof:
From the definition of L} (z) in equation (1):
1 foo 1 oo
L3,(0)= = [ exp(~1Atg™) cos(q0)dg = = [~ exp(—yAtg™)dg.  (37)

1
Define a new variable u = yAtq*t, and note that dg = azl(’yAt)‘l/aLu(q_l)du. Sub-

stituting in equation (37) we obtain:

1 100 (-1 —1)
v — _ =
L. (0) = mor (YA er /0 exp(—wurme du. (38)
Recalling that the integral is the definition of I'( a—lL), we have:
I'(1/op)
L) = 39
2 (0) o (yAt)l/er (39)
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Appendix B

The relationship

W(n) = An~Y/ow (40)

holds, if and only if the wealth probability density function is given by the Pareto-law:

for W>W, f(W)=Cw({Itew) (41)

-1/
where n is the rank, W is wealth, the constant A is given by A = ( NC) / ,and N is
the total number of individuals in the population.

(41) — (40)

Assuming the Pareto-law (eq. 41), the number of individuals with wealth exceeding

W is given by:

n(W N/ f(x dT—NC’/ o) _ Ny, (42)

Ay

The wealth of the n’th wealthiest individual is therefore given by:

W) = () 0V (43)

(40) — (41)

The relation (40) can be written as:

n= (=) (44)

The number of individuals with wealth in the range (W, W +dW) is — 2% (as the wealth

goes up, the rank goes down). Thus, the probability density function f(W) is given by:
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1 dn

W) = -5 (45)

Writing the derivative :—V”V explicitly (from equation (40)), and using the definition of A,

(A= <%’é—>_l/aw), we obtain:

Oy o — o — [a%
FW) = (WA W)W OFee) = gy =(tew), (46)

For other derivations of this relationship, see, for example Takayasu (1990).

28



Appendix C

Wolff’s (1996) findings regarding the holdings of the top 1%, top 5%, and top 10% of

the U.S. population in 1992 are reported in table II below:

_Table II
k P,
1% 37.2%
5% 60.0%
10% 71.8%

In this table P, denotes the percentage of total wealth held by the top & percent of the
population. A Praeto-law wealth distribution with exponent a,, implies the following

relationship for any two £’s:

P, kiy1-2
ﬁz—; = (é) (47)

(See proof below). Employing this relationship we can estimate a,, for the U.S. by using
the data in table II. By comparing the holdings of the top 1% with the holdings of the

top 5% we obtain:

372 ,0.01y1-L
00~ o)

which yields a,, = 1.42. A similar comparison of the holdings of the top 1% with the
holdings of the top 10% yields a,, = 1.40. Comparing the holdings of the top 5% with
the holdings of the top 10% yields «a,, = 1.35.

A Praeto-law wealth distribution with exponent «,, implies the following relationship for

any two k’s:
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Py, kiy1-2&
e
Proof:

The number of individuals with wealth exceeding a certain value W}, is given by Z—SW{ G
where N is the total number of individuals (see equation (42) in appendix B). This
number of individuals corresponds to a percentage k = %Wk_"w of the population. The

above result can be restated in the following way: the wealth of the poorest individual

in the top k% of the population is given by:

Wi = (F22) 75 (48)

The aggregate wealth held by the top k% of the population is given by:

l—oqy
W, % =

NCVew
(E=—

Qg — 1

N[ fWYWdW = NC | W Freuydiy ==
Jwy Wi O — 1
(49)
where the last equality is obtained by substituting W}, from equation (48). The percentage

of wealth held by the top k% of the population is:

1 NCYew
P = (l—l/aw)k(l—l/aw) 50
¥ I/Vtotal< Qyy — 1 )aw , ( )

where Wie is the total wealth of all the population. Comparing the percentage of
wealth held by the top k1% of the population, with the percentage of wealth held by the

top k2% of the population, we obtain:

P kiy1-2=
F’;:-:(k—;) . (51)
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Note: In the above proof we have assumed that the Pareto-law wealth distribution holds
for all wealth levels. However, it is straightforward to show that the above result is also
valid if one assumes a Pareto-law distribution in the high wealth range but a different
wealth distribution in the low wealth range (as long as the k’s are in the high wealth

range in which the Pareto-law wealth distribution holds).
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