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We consider the possible anomaly free Abelian discrete symmetries of the MSSM that forbid the μ-term
at perturbative order. Allowing for anomaly cancellation via the Green–Schwarz mechanism we iden-
tify discrete R-symmetries as the only possibility and prove that there is a unique Z

R
4 symmetry that

commutes with SO(10). We argue that non-perturbative effects will generate a μ-term of electroweak
order thus solving the μ-problem. The non-perturbative effects break the Z

R
4 symmetry leaving an exact

Z2 matter parity. As a result dimension four baryon- and lepton-number violating operators are absent
while, at the non-perturbative level, dimension five baryon- and lepton-number violating operators get
induced but are highly suppressed so that the nucleon decay rate is well within present bounds.

© 2010 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Supersymmetric extensions of the Standard Model (SM) are
very popular as they can solve the hierarchy problem, stabilizing
the electroweak scale against a high scale associated with new
physics. The simplest such extension, the MSSM, assumes the min-
imal number of new particle states. However there are several
problems that immediately arise in its construction associated with
terms in the Lagrangian that are allowed by supersymmetry and by
the gauge symmetry of the SM. At dimension three there is a Higgs
mass term with coefficient μ (as well as R parity violating terms
μi H Li), that, if unsuppressed, reintroduces the hierarchy problem
– the so-called μ-problem. At dimension four and five there are
baryon- and lepton-number violating terms that must be strongly
suppressed to prevent unacceptably fast nucleon decay.

Discrete symmetries play an important role in controlling these
terms. It is normally assumed that the MSSM should also be in-
variant under a Z2 matter-parity [1–3], that distinguishes between
lepton and down-type Higgs doublets. Such discrete symmetries
may be constrained by the requirement of anomaly freedom [4–6].
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This is certainly the case if they come from a spontaneously bro-
ken gauge symmetry. It is also the case if they come from a string
theory; for instance, in orbifolds they can arise as discrete rem-
nants of the Lorentz group in the compact space. It has also been
argued that non-gauge discrete symmetries are violated by gravi-
tational effects rendering them ineffective [4].

In this Letter we revisit the question what is the underlying
symmetry of the MSSM, focusing on anomaly free discrete sym-
metries to avoid the appearance of new light gauge degrees of
freedom. The symmetry should be capable of ensuring that the nu-
cleon is stable, at least within present bounds. Early attempts,
assuming the MSSM spectrum, classified low-order anomaly free
Abelian discrete symmetries, including R-symmetries, that can sta-
bilize the nucleon. Matter parity is anomaly free but allows di-
mension five nucleon decay operators [7]. A Z3 “baryon-triality”
is anomaly free that forbids both dimension four baryon num-
ber violation operators and dimension five nucleon decay opera-
tors but allows lepton number violating dimension four operators.
The combination of these two gives a Z6 “proton hexality” symme-
try [8] that forbids all dimension four baryon and lepton number
violating operators and dimension five nucleon decay operators.
However these symmetries allow the problematic μ-term; indeed
it was a requirement that it should be allowed.

Here we adopt a different philosophy and look for anomaly free
discrete symmetries that forbid both the μ-term and all dimen-
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sion four and five baryon and lepton number violating operators.
Of course an electroweak scale μ-term is needed but we argue
that it should arise through spontaneous non-perturbative break-
ing of the discrete symmetry thus solving the μ-problem. We
also require that, unlike baryon-triality or proton hexality (cf. [9]),
the discrete symmetry should commute with a simple Grand Uni-
fied group such as SU(5) or SO(10), thus readily preserving the at-
tractive features of Grand or string unification. In addition we re-
quire that all fermion masses, including neutrino masses, should
be allowed by the symmetry.

Remarkably we find that in the SO(10) case there is a unique
solution, a Z

R
4 R-symmetry. The symmetry may be broken non-

perturbatively generating a μ-term of the correct order plus di-
mension five baryon and lepton number violating operators that
are sufficiently suppressed to be consistent with bounds on nu-
cleon decay. A Z2 symmetry is left unbroken, equivalent to mat-
ter parity, that forbids the generation of dimension four baryon
and lepton number violating terms and ensures the LSP is stable.
The spontaneous breaking of the discrete symmetry leads to a po-
tential domain wall problem but we show this is avoided provided
a relatively mild constraint on the reheat temperature after infla-
tion is satisfied.

Anomaly cancellation proceeds via the Green–Schwarz (GS)
mechanism [7,10]. In recent years it has become clear that
anomaly free discrete symmetries of this type need not originate
from the so-called ‘anomalous U(1)’ but can have a string origin
[11,12] although, at least in heterotic orbifolds, there is a tight
relation between these symmetries and the anomalous U(1) [12].
The GS anomaly cancellation requires that the anomaly coefficients
be universal. Because these symmetries arise from string compact-
ifications, the effects that violate them are well under control, and
they can be viewed as approximate symmetries.

This Letter is organized as follows. We first show that only dis-
crete R-symmetries can satisfy the constraints discussed above.
Then we prove that, for the case the symmetry commutes with
SO(10), there is a unique discrete Z

R
4 symmetry which allows for

the usual Yukawa couplings and the Weinberg operator generat-
ing Majorana masses for the neutrinos; anomaly cancellation pro-
ceeds via the Green–Schwarz mechanism. We then consider the
phenomenological implications of the model, including the cos-
mological implications. Finally we comment on the possible origin
of this Z

R
4 symmetry and briefly discuss an explicit string-derived

model with the exact MSSM spectrum below the string scale with
this symmetry.

2. A unique ZZZ
R
4 symmetry for the MSSM

In this section we prove that with the minimal field content of
the MSSM there is a unique discrete symmetry with the following
features:

(i) Anomaly cancellation (allowing for a GS term).
(ii) Consistency with SO(10).

(iii) No μ-term at the perturbative level.
(iv) Quark, charged lepton and neutrino masses allowed.

Consider a ZN symmetry under which the matter superfields
have charge q( f ) . For the case ZN is an R-symmetry the fermion
components have charge q( f ) − 1 under the convention that the
superpotential W has Z

R
N charge 2. In general, the anomaly coef-

ficients are given by

AG–G–ZN =
∑

( f )

�
(
r( f ))(q( f ) − R

) + �(adj) · R, (1)

r

where G is the gauge group, q( f ) denotes the chiral superfield ZN

charge and �(adj) is the Dynkin index of the adjoint representa-
tion of G . For an R-symmetry R = 1, otherwise R = 0. The sum
runs over the irreducible representations r( f ) of G of the chiral
fields with Dynkin index �(r( f )). Our conventions are such that
�(M) = 1/2 for SU(M) and �(M) = 1 for SO(M). The condition of
anomaly cancellation corresponds to

AG–G–ZN = ρ mod η, (2)

where

η :=
{

N for N odd,

N/2 for N even.
(3)

In the absence of a GS term the constant ρ = 0. Allowing for a GS
term the anomaly cancellation condition is relaxed to the condition
AG−G−ZN = ρ for the (suitably normalised) gauge factors of the
SM.

We now impose the condition that ZN should commute with
SU(5) and assign discrete charges q10i and q5i

to the 10 and 5
representations making up family i. The coefficients for the mixed
SU(3)C and SU(2)L anomalies are

ASU(3)–SU(3)–ZN = 1

2

∑
i

[3 · q10i + q5i
− 4R] + 3R, (4)

ASU(2)–SU(2)–ZN = 1

2

∑
i

[3 · q10i + q5i
− 4R] + 2R

+ 1

2
(qH + qH̄ − 2R), (5)

where qH and qH̄ denote the ZN charges of the up-type and down-
type Higgs doublets, H and H̄ respectively.

Allowing for the GS term, anomaly cancellation (universality)
requires (cf. [13])

(qH + qH̄ ) = 4R mod 2η. (6)

This should be compared to the condition that a Higgs mass term
is allowed which is

(qH + qH̄ ) = 2R mod N. (7)

We immediately see that for a non-R-symmetry (R = 0) the
requirement that ZN commute with SU(5) means that the Higgs
mass term in the superpotential is allowed and the μ-problem re-
mains (cf. the similar discussion in [14]).

The situation is different for the case of an R-symmetry (R = 1)
and it is not difficult to demonstrate that there are solutions to
Eq. (6) that do not satisfy Eq. (7) and thus solve the μ-problem.
In fact one can show that any solution that forbids the dimension
five nucleon decay operators also forbids the μ-term and moreover
that N should be a divisor of 24. We will discuss the general case
elsewhere [15] but here we show that in the special case that ZN

commutes with SO(10) there is a unique solution to the anomaly
cancellation equations and that it does solve the μ-problem. In
this case q10i = q5i

= q where, to allow for interfamily mixing, the
charges must be family independent.

To generate masses for the quarks, charged leptons and neutri-
nos we require that the u- and d-type Yukawa couplings and the
Weinberg operator (LH)2 be allowed.1 This yields the following
conditions between the R-charges:

1 Allowing the Weinberg operator is equivalent to adding right-handed neutrinos
νc with charge 1. Then Yukawa couplings of νc and Majorana mass terms are also
permitted.
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Table 1
Z

R
4 charge assignment for the MSSM superfields.

Q U c Ec Dc L H H̄
1 1 1 1 1 0 0

2q + qH = 2 mod N, (8)

2q + qH̄ = 2 mod N, (9)

2q + 2qH = 2 mod N (10)

with solution

qH = qH̄ = 0 mod N, (11)

2q = 2 mod N. (12)

Inserting this in Eq. (6) shows that N can take two values only,
N = 2 or N = 4. The Z

R
2 symmetry does not forbid the μ-term and

indeed there are no meaningful discrete R-symmetries of order 2
(cf. e.g. [16] for a recent discussion). We are therefore left with the
unique possibility of a Z

R
4 symmetry with Z

R
4 charges as given in

Table 1. This symmetry has been considered before in [17] using
the Giudice–Masiero mechanism [18] to generate the μ-term. An-
other version of this symmetry with ρ = 0 and extra matter has
been discussed in [19].

The last step is to check the remaining anomaly cancellation
conditions. Mixed U(1)–U(1)–ZN anomalies are often ignored as
they do not give meaningful constraints unless one knows the
normalization of the charges [10,8]. However, in the case of hy-
percharge Y the normalization is fixed by the underlying GUT.
The resulting U(1)Y –U(1)Y –Z

R
N anomaly condition is

AU(1)Y –U(1)Y –Z
R
N

= 3

5
·
{

2 ·
(

1

2

)2

[qH + qH̄ − 2] + 3(q5 − 1)

×
[

2

(
1

2

)2

+ 3

(
1

3

)2]
+ 3(q10 − 1)

×
[

6

(
1

6

)2

+ 3

(
2

3

)2

+ (1)2
]}

= ρ mod η. (13)

Note that this anomaly coefficient is not invariant under shift-
ing some discrete charges by multiples of N . That is, there are
equivalent Z

R
N charge assignments, leading to different anomaly

coefficients. We find that the true anomaly constraint is that there
has to exist a charge assignment under which the conditions of
anomaly freedom or anomaly universality are satisfied. For the
case of Z

R
4 ρ = 1 and η = 2. In this case, one may check that the

anomaly cancellation condition, Eq. (13), is satisfied for the choice
that both Higgs superfields have R charge −4 rather than 0.

The Z
3
N anomaly does not yield model independent con-

straints [6,12]; a more detailed discussion will be presented
in [15]. However there is one further anomaly cancellation con-
dition of interest, namely the grav–grav–Z

R
N graviton anomaly. It

too is often ignored as it can always be satisfied by adding SM
singlet fields but it is still of some interest because the existence
of additional light singlet states is potentially of phenomenological
interest. We have

Agrav–grav–Z
R
N

= −21 + 8 + 3 + 1 + 3
{

10 · (q10 − 1) + 5(q5 − 1)
}

+ 2(qH + qH̄ − 2) = 24ρ mod η. (14)

For the case of Z
R
4 this constraint is −9 − 4 = 24 mod 2 which

is not satisfied. Thus there must be additional SM singlet state(s)
with Z
R
4 charges si such that

∑
i(si − 1) is odd. We will discuss

what mass they may acquire shortly.

3. ZZZ
R
4 phenomenology

Clearly, the charge assignment given in Table 1 is consistent
with Grand Unification for matter. In SO(10) language it corre-
sponds to giving the 16-plet a Z

R
4 charge 1, such that the matter

fermions transform trivially, and Z
R
4 charge −4 =̂ 0 to the Higgs

fields contained in the 10-plet. Notice that successful doublet–
triplet splitting is required for these anomalies to be universal, i.e.
the Z

R
4 does not commute with SO(10) in the Higgs sector. This is

the usual doublet–triplet splitting problem that is most elegantly
solved in string unification via Wilson line breaking.

The structure of the renormalisable terms of the Z
R
4 model

is identical to that of the usual MSSM with matter parity with
the exception that the μ-term is absent. The terms of dimension
five differ in that the baryon- and lepton-number violating terms
Q Q Q L and U c U c Dc Ec are absent. However the dimension five
Weinberg operator (LH)2 is allowed and this generates Majorana
masses for the neutrinos. In an underlying Grand Unified theory
we expect these terms to be generated by the usual see-saw mech-
anism.

Of course the critical question is, how the μ-term is generated.
There are two ways this can happen, either by a D-term of the
form X† H H̄ [18] or via an F -term of the form Y H H̄ [20] where
X , Y may be a single field or a composite operator (cf. also the
discussion in [21]). The Z

R
4 -charge of X and Y must be 0 and 2 re-

spectively and a μ-term is generated if the F -term of X or the A
term of Y acquires a vacuum expectation value (VEV). Both cases
break the Z

R
4 symmetry leaving a Z2 symmetry unbroken that, to-

gether with invariance of the Lagrangian under a change of sign of
the fermion fields, is equivalent to the usual R-parity of the MSSM.
Such a breaking is necessary to allow for gaugino masses. In fact
we expect such breaking of the symmetry to occur through non-
perturbative effects since the Z

R
4 is anomalous in the absence of a

GS term.
As discussed in the next section, a plausible origin of such non-

perturbative terms is through a hidden sector that dynamically
generates a vacuum expectation value for the superpotential via a
gaugino condensate. This corresponds to identifying Y with W , the
latter being the order parameter of Z

R
4 breaking. In this case the

μ-term is of O(〈W 〉/M2) where M is the messenger field mass.
For the case of gravity mediation (SUGRA) M is the Planck mass
and W is also the order parameter for SUGRA; 〈W 〉/M2

P = m3/2 is
the gravitino mass. A specific realization in string theory will be
briefly discussed in the next section and in more detail in [15].

There remains the question of the additional SM singlet states
that were required to cancel the grav–grav–Z

R
N graviton anomaly.

Their charges are such that
∑

i(si − 1) is odd and so there must
be at least one state, S , with even Z

R
4 charge. However, the GS

mechanism requires the presence of a light axion, and the ax-
ino contribution turns out to cancel the grav–grav–Z

R
4 anomaly.

The minimal realization of our Z
R
4 symmetry is therefore a setting

in which supersymmetry is broken by the dilaton type multiplet S
containing the axino/dilatino; details will be given elsewhere [15].
It is remarkable that gravitational anomalies lead us to introduce
this sector, such that supersymmetry is broken “outside the MSS-
M”, consistently with phenomenological requirements. That is, the
missing spin-1/2 field is needed to give mass to the gravitino. As
discussed above, the VEV of the hidden sector superpotential rep-
resents an order parameter for Z

R
4 breaking.

We can now determine the phenomenology of the Z
R
4 model

after supersymmetry breaking. The residual Z2 matter parity en-
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sures that the renormalisable terms are identical to those of the
usual MSSM with no baryon- or lepton-number violating terms. It
also ensures that the supersymmetric partners of SM states can
only be pair produced and that the LSP is stable and a dark matter
candidate. The μ-term is of the same order as the other visi-
ble sector supersymmetry breaking terms and thus the model has
completely solved the μ-problem. The lowest order baryon- and
lepton-number violating terms occur at dimension five, but these
operators are strongly suppressed by a non-perturbative factor of
O(〈W 〉/M4

P). For the case of SUGRA this is of O(m3/2/M2
P) and is

negligible such that the dimension six proton decay operators will
be dominant.

Finally we should consider the cosmological implications of the
model. Since it involves a spontaneously broken discrete symmetry
one must worry about domain walls being produced in the early
universe and dominating the energy density today. A general dis-
cussion of walls resulting from the breaking of discrete symmetries
has recently appeared [22] (see also [23]) and we refer the reader
to it for details appropriate to various choices of the messenger
scale. For the case of gravity mediation the domain walls form at
the intermediate scale of O(1012 Ge V). Provided the Hubble scale
during inflation is below this scale, domain walls have sufficient
time to form and then they will be inflated away. However to avoid
recreating them it is necessary that the reheat temperature after
inflation should be less than O(1012 Ge V). Given that the gravitino
and thermal moduli destabilization [24] bounds require a reheat
temperature much below this we conclude that the domain walls
in this case do not introduce a significant new problem for SUGRA.
Of course one must still deal with the Polonyi problem [25] asso-
ciated with the energy released if there are light moduli fields but
this is not affected by having an underlying Z

R
4 symmetry.

4. String theory realization

Compactified string theories often generate discrete gauge sym-
metries in the low energy effective Lagrangian so it is appropriate
to ask if they can provide the origin of the Z

R
4 . In particular, (het-

erotic) orbifolds are known to incorporate discrete R-symmetries
in their effective field theory description. These R-symmetries are
discrete remnants of the Lorentz group of compact space. Specifi-
cally, some of these constructions exhibit a Z

R
4 , reflecting the dis-

crete rotational symmetry of a Z2 orbifold plane T
2/Z2.

Making extensive use of the methods to determine the rem-
nant symmetries described in [26], we were able to find examples
realizing the Z

R
4 just introduced, based on the Z2 × Z2 orbifold

model derived in [27] and similar models, which have three T
2/Z2

planes. These models have vacua with the exact MSSM spectrum, a
large top Yukawa coupling, a non-trivial hidden sector, etc. In what
follows, we briefly discuss a vacuum exhibiting the Z

R
4 discussed

above, defering a detailed description to a subsequent publica-
tion [15].

We found a configuration in the model [27] in which the Z
R
4

arises as a mix of the orbifold Z
R
4 symmetries and other symme-

tries. The configuration is defined by assigning VEVs to some stan-
dard model singlet fields, which break the symmetries at the orb-
ifold point, i.e. discrete R-symmetries, discrete symmetries coming
from the space group selection rules and the gauged continuous
symmetries are broken down to GSM × Z

R
4 × Z2. The VEVs also

provide mass terms for the exotics, which are massless at the orb-
ifold point, and allow us to cancel the one-loop Fayet–Iliopoulos
term associated with the one anomalous U(1)anom of the heterotic
orbifold model.

Matter fields, of which we obtain precisely three generations,
are identified as fields with Z

R charge 1. There is one mass-
4
less Higgs pair (with R charge 0) at the perturbative level,
which (partially) originates from the extra components of the ten-
dimensional gauge fields, hence μ ∼ 〈W 〉/M2

P , as discussed in
[28]. Details will be given in [15]. Unfortunately, the additional Z2,
which we cannot break, forbids some Yukawa couplings such that
the charged lepton and d-type Yukawa couplings Ye and Yd have
rank 2.

The presence of the unwanted Z2 shows that the vacuum is
most likely not fully realistic. Nevertheless our findings imply that
the Z

R
4 , which we have identified solely by bottom-up consider-

ations, can arise in potentially realistic string compactifications,
where the symmetry has a clear geometrical interpretation. These
models have an exact matter parity, a built-in solution to the
μ-problem and do not suffer from the dimension five proton de-
cay problems. As they are string-derived (and hence UV complete),
we can specify the non-perturbative effects that appear to violate
the ‘anomalous’ Z

R
4 in more detail. The (universal) anomalies are

canceled by the Green–Schwarz mechanism. That is, the imaginary
part of the dilaton S shifts under the discrete transformations. As
a consequence, terms of the form

Wnp ⊃ e−bS(AH H̄ + κi jk� Q i Q j Q k L�), (15)

where b is a constant and A and κi jk� are constants built of some
VEV fields, are Z

R
4 covariant, i.e. have R charge 2. Such terms

can be interpreted as being a consequence of some hidden sec-
tor strong dynamics (the model under consideration has a hidden
SU(3)). Since the Higgs pair (partially) originates from the ten-
dimensional gauge fields, we can assume that the scale of super-
symmetry breaking and the expectation value of the superpotential
are related to this strong dynamics by 〈W 〉/M2

P ∼ Ae−bS (cf. [28]).
Hence, we obtain a μ-term of the order of the gravitino mass with
μ = Ae−bS ∼ 〈W 〉/M2

P = m3/2 and coefficients of the dimension
five proton decay operators as small as ∼ 10−15/MP, i.e. well be-
low experimental bounds [29].

5. Summary

Supersymmetric extensions of the SM promise to eliminate the
hierarchy problem. However they also introduce serious potential
problems and to be viable they must evade the μ-problem and the
problem associated with new baryon- and lepton-number violating
terms. This suggests that there should be an additional underlying
symmetry capable of controlling these terms.

In this Letter we have considered the anomaly free Abelian dis-
crete symmetries that forbid the μ-term perturbatively. Remark-
ably, if one also requires that the symmetry should simply be
consistent with SO(10) unification, there is a unique solution, a Z

R
4

discrete R-symmetry. At perturbative order it forbids dimension
four and five baryon- and lepton-number violating terms. Being
anomalous in the absence of Green–Schwarz terms one may ex-
pect the symmetry to be broken non-perturbatively, most likely
through a gaugino condensate. At the non-perturbative level, both
the μ-term and dimension five proton decay operators may arise,
while the dimension four operators are still forbidden by a non-
anomalous subgroup of Z

R
4 that is equivalent to matter parity.

The magnitude of the dimension five terms is such that the lim-
its on nucleon decay are readily satisfied. Inflation can ensure that
the domain walls that are produced when the discrete symmetry
is broken are not significant provided a mild upper bound on the
inflation scale is satisfied.

Discrete R-symmetries can result from compactified string
models as discrete remnants of the Lorentz group of the compact
space. We illustrated this in the context of a semi-realistic orbifold
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model and showed how it gives rise to the MSSM spectrum below
the string scale with a Z

R
4 discrete R-symmetry.
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