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Abstract 
 

Production in many industries, such as construction and heavy manufacturing, 
relies on inputs from both lead firms and contractors. These firms’ joint productivity 
often hinges on their ability to share information and coordinate activities, suggesting 
that they have strong incentives to learn about each other’s personnel, procedures, and 
expertise. This learning differs from standard learning-by-doing in that it is relationship-
specific: its benefits are not appropriable outside the relationship in which the learning 
takes place. In this paper, I empirically examine the importance of relationship-specific 
learning using high-frequency data from oil and gas drilling. I find that the joint 
productivity of a lead firm and its drilling contractor is enhanced significantly as they 
accumulate experience working together. This result is robust to other relationship 
specificities. I also find that firms appear to recognize the benefits of joint experience: 
controlling for other specificities, lead firms are more likely to work with contractors 
with which they have substantial prior experience than those with which they have 
worked relatively little. 
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1. Introduction 

The outsourcing of productive activity is common in many industries, ranging from 

construction and heavy manufacturing to white-collar business services. Construction projects, 

for example, regularly involve multiple contractors and sub-contractors working under a lead, 

general contractor. Productive efficiency requires not only that each firm be adept at its own set 

of tasks, but that the firms effectively coordinate their activities and share information. Firms 

responsible for project design must align their efforts with the firms that actually carry out the 

construction, and general contractors must efficiently plan the overlapping activities of 

subcontractors to avoid delays. Consider Boeing’s recent launch of the 787 Dreamliner 

passenger jet, which involved nearly 30 firms contracted directly with Boeing, as well as 

countless additional subcontractors and suppliers. Collaboration amongst these firms has been 

central to the jet’s development and production—one manager publicly commented that 

“interpersonal communication skills and building relationships have become more important 

than ever” (Managing Automation 2007). 

The productivity benefits of inter-firm collaboration suggest that lead firms and 

contractors have strong incentives to learn about each other’s personnel, procedures, and 

expertise. Such learning can take place as the firms accumulate experience working together. For 

example, an accounting firm may improve the speed with which it prepares a client’s quarterly 

reports as its employees become familiar with the client’s personnel and accounts.1 This learning 

differs from standard learning-by-doing in that it is relationship-specific. The accounting firm 

will generally not be able to apply its knowledge of one client to augment its productivity with a 

different client.  

This paper empirically investigates relationship-specific learning through an examination 

of the oil and gas drilling industry. I find strong evidence that the accumulation of experience 

                                                 
1 Groysberg (2001) and Huckman and Pisano (2006) document evidence that an individual’s job performance is 
influenced by knowledge and skills that are specific to the firm in which he or she works. In this example, however, 
employees are acquiring knowledge and skills specific to their firm’s clients, rather than to their own firm. 
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specific to pairs of firms working together plays an important role in improving drilling 

performance. Such experience effects have not been identified in prior studies of learning-by-

doing, despite the fact that many of the industries often explored in learning studies involve 

substantial contracting and are likely subject to relationship-specific learning. Wright (1936), 

Alchian (1963), and Benkard (2000) investigate aircraft manufacturing; Joskow and Rose (1985) 

investigate power plant construction; and Argote et al. (1990) and Thornton and Thompson 

(2001) examine World War II shipbuilding. All of these authors confirm that performance in 

these industries improves with overall production experience, but do not assess whether some of 

the observed productivity increases are relationship-specific. 

Relationship-specific learning is important because its economic implications extend 

beyond its direct impact on firms’ productivity. In particular, it provides firms with an incentive 

to maintain stable contracting relationships. Relationship-specific learning creates intellectual 

capital that is not appropriable across different contracting partners; thus, a lead firm is likely to 

prefer a contractor with which it has substantial experience over one with which it has worked 

relatively little. An objective of this paper is to examine empirically the persistence of firm 

relationships in the drilling industry, and test whether observed contracting patterns are 

consistent with firms’ recognition of the benefits of joint experience. 

Though not explicitly examined in this paper, relationship-specific learning also has 

implications that relate to the literature on transactions costs, contractual completeness, and the 

boundaries of the firm.2 An important strand of this research, pioneered by Williamson (1975, 

1979, 1985) and Klein et al. (1978), emphasizes the role of relationship-specific investments in 

driving long-term contracting and vertical integration. These authors argue that the rents 

generated by such investments can lead to opportunistic bargaining problems when the ex ante 

contract does not specify how the rents are to be divided. Moreover, Williamson (1979) argues 

                                                 
2 Ronald Coase (1937) was the first to emphasize the roles of control and transactions costs in defining firm 
boundaries. See Whinston (2003) and Gibbons (2005) for surveys of the literature on the theory of the firm, and 
Lafontaine and Slade (2007) for a survey of related empirical work. 
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that the relevant relationship-specific investments may be physical or intellectual in nature. Thus, 

relationship-specific learning and the intellectual capital it generates may play a role in 

promoting long-term contracts and vertical integration. 

The oil and gas drilling industry is well-suited for a study of relationship-specific 

learning for several reasons. First, there exists vertical separation between two types of firms that 

are involved in drilling: production companies (“producers”) and drilling companies.3 

Producers—for example, ExxonMobil and Chevron—are responsible for the technical design 

and planning of wells to be drilled, but do not actually drill wells themselves. Drilling is instead 

outsourced to drilling companies that own and staff drilling rigs. Second, learning is an important 

source of productivity growth in this industry. Drilling cost-efficiency, driven almost entirely by 

minimizing the time required to drill each well, requires the technical optimization of drilling 

procedures as well as effective teamwork between producer personnel and the rig crew.  

I have obtained well-level industry contracting and performance data, covering nearly 

20,000 wells drilled over 1991-2005, with which I track drilling efficiency for producers, rigs, 

and producer-rig pairs. My primary finding is that not only do producers and rigs learn from their 

own experience, they also benefit from relationship-specific learning. Specifically, a rig that 

works with only one producer will, on average, benefit from productivity improvements twice as 

large as those of a rig that frequently changes producers. I verify that this result is not driven by 

other specificities between producers and rigs that might cause certain firm pairings to drill more 

effectively than others. 

I also find that the pattern by which producer-rig pairs are formed and broken is 

consistent with firms’ recognition of relationship-specific learning’s benefits. In particular, when 

a producer has contracted with multiple rigs in the same county, and releases one of its rigs to 

another producer, the rig most likely to be released is that with the least producer-specific 

                                                 
3 As discussed further in section 2, this vertical separation allows producers to drill wells with greater spatial and 
temporal flexibility. 
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experience. Evidence suggests that this pattern is driven by learning effects rather than other 

producer-rig specificities. 

Beyond these primary results, I also test for the presence of cross-producer learning 

spillovers in the drilling industry. Such spillovers are generally important, as macroeconomic 

theory indicates that they are important drivers of economic growth (Parente 1994, Jovanovic 

and Nyarko 1996). However, when I analyze the productivity of producers working side-by-side 

in the same oilfield, I find little evidence of spillover effects. This result stands in contrast to 

other studies that identify modest learning spillovers in semiconductor manufacturing and 

shipbuilding (Irwin and Klenow 1994, Thornton and Thompson 2001). 

The remainder of the paper is organized as follows: section 2 provides general 

background information on the oil and gas drilling industry, and section 3 discusses industry 

mechanisms and incentives for learning-by-doing. Section 4 describes the data used in this study. 

Section 5 presents the empirical framework and estimation results for learning-by-doing by 

production companies, omitting the influence of the rigs they hire. This provides a baseline for 

section 6, which presents evidence of relationship-specific learning. Section 7 discusses 

relationship persistence between producers and rigs, and section 8 offers concluding comments. 

 

2. The Onshore Oil and Gas Drilling Industry 

2.1 Production companies and the drilling problem 

Oil and gas reserves are found in distinct geologic formations known as fields that lie 

beneath the earth’s surface, and the mission of a production company is to extract these reserves 

for processing and sale. To operate in any given field, a producer must first obtain leases from 

the holders of that field’s mineral rights. A lease typically grants a right to operate in only a 

small part of a field, and most fields are operated and drilled by several distinct producers 
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holding different leases.4 In contrast to leases in the federal offshore continental shelf, which 

have been studied by Hendricks and Porter (1988) among others, there is no centralized process 

in Texas by which producers obtain leases. Instead, producers proactively approach the holders 

of mineral rights on the land that they wish to explore, who may then negotiate lease terms or 

organize a competitive bidding process. 

A field’s reserves are typically buried under many layers of rock that do not contain oil or 

gas. The objective of drilling a well is to penetrate these overlying rock layers to reach the oil 

and gas in the field. While the geology within any given field is quite homogenous, there is 

significant geologic variation across fields, particularly with regards to the depth at which they 

are buried. Some fields are found as shallow as 1,000 feet and can be drilled in a few days, while 

others are more than 20,000 feet deep and can require several months of drilling. The geologic 

composition of the rock that must be drilled through also varies considerably. Multiple layers of 

sandstone, shale, and limestone may be encountered as a well is drilled from the surface to its 

targeted depth in the field, and the types of rock encountered in one area will generally not be the 

same as those encountered elsewhere. 

Wells fall into two broad categories. “Wildcats” are those wells that are drilled into a 

previously unexplored field, and their goal is to assess whether the field will actually be 

productive. “Development” wells, on the other hand, are drilled into fields in which previously 

drilled wells already exist, and their goal is to enhance field production. Most wells are vertical 

holes; however, horizontal and directional wells are sometimes drilled when surface features 

make a vertical well impossible, or when doing so will improve the well’s ultimate production of 

oil and gas. These wells are technically more complex than vertical wells and may require 

substantially more time to drill. 

                                                 
4 Leaseholding producers within a field may sometimes “unitize” their holdings by pooling them together, agreeing 
on ownership shares in the pooled unit, and naming one of the producers as the unit operator. See Wiggins and 
Libecap (1985) for a discussion of the economics of unitization. 
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Even though producers do not physically drill their own wells, they do design wells and 

write drilling procedures. This arrangement is a response to the fact that the optimal drilling 

program for any well is a function of the specific geologic features of the field in which it is 

drilled. Producers typically have more geologic information than do drillers, due to their 

knowledge from seismic imaging and previously drilled wells, and are therefore better placed to 

make these engineering decisions.5 

 

2.2 Rigs and contracting 

The actual drilling of wells is carried out by drilling companies, which own drilling rigs 

and employ drilling crews. A typical onshore drilling rig is pictured in figure 1. Its primary 

features are a tall derrick, which allows pipe to be drawn in and out of the well, and a motor that 

spins the drill pipe and drill bit during drilling. The size of this equipment determines a rig’s 

“depth rating,” the depth to which the rig is recommended to drill. Apart from this depth rating, 

rigs generally do not have field or producer-specific characteristics. The exceptions to this rule 

are recently-built or refurbished rigs carrying computer equipment that eases the drilling of 

horizontal and directional wells. Because this equipment specificity may confound my analysis 

of relationship-specific learning, I ultimately omit horizontal and directional wells from the data. 

Rigs are mobile and can easily change locations within a field; however, moves of more 

than 50 miles typically require several days and result in the charging of fees to the producer 

requesting the move. When under contract, rigs operate 24 hours per day and 7 days per week, 

rotating crews in three 8-hour shifts. Industry participants have indicated that, while the average 

employment tenure of a rig crewman is approximately one year, the rig foreman usually stays 

with a rig for much longer, and tenures longer than five years are not uncommon. 

It is natural to ask why this industry is vertically separated, particularly given the 

relationship-specific learning effects identified in this paper. The answer lies in the spatial and 

                                                 
5 Very small producers, which drill infrequently and may not have engineering resources, sometimes outsource the 
planning and design function to the driller, particularly if the driller has experience in the same field.  
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temporal variation with which producers drill wells. The drilling activity of any producer 

fluctuates with oil and gas prices, and with its success in finding new fields. Successful wildcats 

and development wells often lead to additional drilling, while dry holes do not. The mobility and 

non-specificity of rigs allow them to smooth these fluctuations in drilling requirements across 

nearby producers. This smoothing minimizes overall rig capacity requirements, as well as rig 

transportation and mobilization costs, without requiring the producers to contract directly with 

each other. 

Producers typically contract with rigs for the drilling of one well at a time, though a 

producer and rig will write a multi-well contract when the producer is confident in its future 

demand for wells. Producers initiate the contracting process by issuing a request for quotation 

(RFQ) from drilling companies with rigs in the vicinity of the proposed well. The RFQ contains 

detailed technical specifications regarding the well to be drilled, including the well’s total depth, 

the diameters and lengths of steel well casing strings to be installed in the well, and the density 

of the “drilling mud” to be pumped through the borehole during drilling. The driller then 

includes in its bid, along with price, the identities of the rig and crew it proposes to drill the well. 

The RFQ also specifies which of two standard contract types will be used: “dayrate” or 

“footage.” In a dayrate contract, the drilling company provides a rig and crew to drill the well to 

the producer’s specifications, charging it a daily payment for the rig’s services. The producer is 

represented on the rig by one of its personnel, known as the “company man,” who directs the 

rig’s operations, typically in consultation with the rig’s foreman. In a footage contract, the rig is 

compensated at a rate set in dollars per foot drilled. This contract type is equivalent to a fixed-

price contract since the well’s depth is specified in advance in the RFQ. The producer may or 

may not place a company man on the rig. If present, he may monitor the rig’s activities and 

consult with the rig foreman on drilling decisions, but has no direct contractual authority.6 
                                                 
6 While the determinants of contract type have been examined by Corts (2004) in the offshore drilling industry, the 
effect of contract type on performance remains an unanswered empirical question. Research into this issue using the 
data discussed here requires controls for the endogenous choice of contract type and is therefore left as a topic for 
future research. However, in section 6.3, I do address the possibility that the learning analysis presented in this paper 
is affected by contract choice. 
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3. Productivity and Learning-by-Doing in Onshore Drilling 

In this paper, I use the time necessary to drill a well as the measure of drilling 

productivity. While this approach is necessitated by the fact that I lack well-level cost data, it 

parallels the way producers and engineers actually view drilling efficiency, and is arguably 

superior to using cost data were such information available. In practice, drilling engineers 

achieve cost savings almost entirely by reducing the time necessary to drill wells. Given dayrates 

that typically exceed $10,000 per day, saving a day’s worth of rig time is well worth the efforts 

of producers’ engineering teams.7 In addition, given a particular well and rig, there is little scope 

for substitution between drilling time and labor or capital. Rigs always work 24 hours per day 

and 7 days per week, and adding crew members cannot make the drilling bit turn more quickly. 

Most capital drilling inputs, such as the casing and tubing that are installed in the well, are fixed 

functions of the well’s depth. For these reasons, learning curve case studies in the petroleum 

engineering literature use drilling time as their performance metric, even though the authors 

typically have access to detailed cost data. Brett and Millheim (1986) argue that the drilling time 

metric is actually superior to a cost metric, since cost data are polluted by inconsistent 

accounting methods and variations in materials prices and rig rates. Moreover, rig rates are likely 

to be endogenous: the prices charged by rigs rise during periods of high drilling activity, which 

will create spurious correlation between drilling cost and experience. 

Producers have ample scope to learn from prior drilling experiences. Each new 

penetration into a field yields information regarding both the field’s geology and which drilling 

procedures work well in that geology. Many drilling decisions such as choice of mud density and 

bit selection depend critically on the types of rock encountered. Thus, learning on the part of 

field producers is technical in nature and tends to be very field-specific. This learning is well-

recognized within the drilling industry, and several published engineering case studies have 

                                                 
7 In the case of footage contracts, efficient well design, backed by historically low drilling times, can be used to 
obtain lower bids from drillers. Moreover, cutting days from a drilling program reduces a producer’s use of 
secondary contractors, such as those supplying fuel and water to the rig, yielding additional cost savings. 
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documented how lessons learned from experience have been applied to reduce drilling times. 

See, for example, Brett and Millheim (1986) and Adeleye et al. (2004). 

Because rigs are not involved in well design and planning, rig-level learning is less 

technical in nature than is producer-level learning. Instead, rigs’ learning effects are based on 

developments in each crew member’s skills and on improved teamwork. These performance 

improvements generate clear economic benefits to a rig and its drilling company when the rig 

contracts on a footage basis, but indirect benefits exist under dayrate contracts as well. Industry 

participants have indicated that rig reputations are well-known by producers, and that rigs that 

are known to have effective, experienced crews can command a dayrate premium over other rigs. 

Also, because the producer’s company man is present on the rig on a dayrate contract, he can 

observe the efforts of the rig foreman and crew very easily. In an environment in which repeat 

contracting is very common, this observability of effort can create implicit incentives to perform 

well, as shown theoretically by Corts (2007). 

Finally, and of principal importance in this paper, there exists scope for relationship-

specific learning between a producer and a rig. Many specific mechanisms of such learning are 

possible. The rig’s crew may become familiar with the producer’s particular drilling procedures, 

or the company man may improve his knowledge of the capabilities of the rig and its crew. In 

addition, the ability to rapidly solve drilling problems—for example, a loss in the circulation of 

drilling mud or the sticking of pipe in the wellbore—is an important determinant of drilling 

efficiency. Industry participants have indicated that these problems are more easily solved if the 

company man and rig foreman have developed a working relationship that allows them to 

collaborate effectively.  
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4. Data 

The central empirical challenge of this paper is to separate the impact of relationship-

specific learning from the effects of other, non-relationship-specific forms of learning. My 

approach uses two datasets of drilling activity in Texas. I obtained the first of these from the 

Texas Railroad Commission (TRRC), Texas’s regulator of oil and gas drilling activity. These 

data consist of well-level records of every well drilled in the state from 1977-2005. Each 

observation identifies the field and county in which the well was drilled, and the identity of the 

producer that drilled the well. I take the number of days required to drill each well as the 

difference between the well’s completion date and the date drilling began. This latter date was 

not regularly recorded until 1991: only 42% of observations have a drilling time prior to this 

date, compared to 90% afterwards. I therefore focus my analysis on the 1991-2005 period.8 

Each record in the TRRC data also indicates the well’s depth, whether the well was 

drilled to produce oil or gas, and whether the well is vertical, horizontal, or directional. Because 

horizontal and directional wells are typically best drilled with specialized rigs, I omit these wells, 

comprising 21% of the data, from my analysis. 

The TRRC data do not include the identities of the drilling rigs that drilled each well. I 

therefore obtained information on rig activity from Smith Bits (SB). Smith Bits is a manufacturer 

of drilling bits, and its field sales force issues weekly reports on all onshore rig activity in North 

America. These reports give each rig’s location, by county, on every Friday from 1989 to 2005, 

and also provide the identity of the production company to which the rig is contracted. Each 

observation also includes the depth of the well being drilled, the rig’s depth rating, and whether 

the well is being drilled for oil or for gas.9 Unlike the TRRC data, the unit of observation in the 

                                                 
8 While the TRRC asks producers to report date drilling began for all their wells, this reporting is not rigorously 
enforced. Beyond these missing data, 3.7% of the observations from 1991-2005 have drilling times that are clearly 
erroneous or technically infeasible. I drop wells with drilling times that are negative, wells with drilling times 
greater than 180 days, and wells that are more than 3,000 feet deep and (implausibly) reported to have been drilled 
in a single day. The incidence of these observations and those with missing drilling times does not appear to be 
correlated with the experience variables that I ultimately use in my analysis. 
9 Unfortunately, I do not observe whether the rig is on a one-well or multi-well contract, or the price charged. 
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SB data is a rig-week, and I do not observe individual wells. Thus, if the SB data indicate that a 

particular rig spends three consecutive weeks working for the same producer in the same county, 

I cannot discern, without additional information, whether that rig has drilled three very quick 

wells or one long well. 

My empirical analysis of relationship-specific learning requires a well-level dataset in 

which each observation reports the well’s drilling time, location, producer, and drilling rig. I 

construct this dataset by merging the SB rig location data into the TRRC’s well-level drilling 

records. Unfortunately, a large fraction of wells in the TRRC data cannot be matched to rig 

information in the SB data. Match failures occur for three reasons. First, some wells in shallow 

fields are drilled in less than one week and may therefore not be drilled on a Friday. Such wells, 

comprising 6% of the TRRC dataset, have no corresponding record in the SB data and are 

therefore impossible to match.10 

Second, 51% of the remaining TRRC wells do not match because the producer names in 

the TRRC data do not always agree with the producer names in the SB data. Often, two names 

are similar only in part, and it is difficult to discern whether the two names do in fact point to the 

same firm. I use information on firm addresses, officer names, and drilling frequency to carefully 

match some similar names; however, I leave many ambiguous cases unmatched to avoid the risk 

of matching firms that are, in fact, distinct.  

Finally, some non-unique matches occur when a producer employs multiple drilling rigs 

simultaneously in the same county. Because the SB data do not contain field or well information, 

I am unable to distinguish which rig is drilling which well in such cases. While I am able to use 

information on well depth and well type to match some of these wells to their rigs, there are 

other cases in which there is no way to confidently match the data. Rather than guess, I drop all 

wells that cannot be matched uniquely. This reduces the dataset by a further 39%. 

                                                 
10 In section 6.3, I verify that the selective removal of wells drilled in less than one week does not impact the 
analysis. 
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Following the match, I drop all fields, producers, and rigs for which there is only one 

observation, since tracking learning for such entities is not possible. This procedure leaves a 

matched dataset of 19,174 wells, amounting to approximately one-quarter of the original TRRC 

sample. These wells are spread over 1,606 fields, 779 producers, and 1,334 rigs. As indicated in 

table 1, there is a large variance in drilling activity across these entities. For example, in some 

fields I observe only two wells, while in others I observe hundreds. Table 1 also indicates 

variance in the number of producers working within any field: some fields are drilled by only 

one producer and others are drilled by more than ten.  

Figure 2 illustrates the relation between drilling time and depth in the sample. Very 

shallow wells that are a few thousand feet deep may be drilled in less than a week, whereas wells 

deeper than 15,000 feet can require several months of drilling. The sample average drilling time 

is 23.7 days, the average well depth is 9,040 feet, and 90% of the data lie between 3,200 feet and 

14,000 feet. Summary statistics for depth, drilling time, and well type are presented in table 2. 

 

5. Empirical Analysis: Learning by Field Producers 

I begin the empirical analysis by examining the effect of producers’ experience on their 

drilling productivity, omitting the influence of their relationships with rigs. This analysis follows 

existing learning-by-doing studies that investigate lead firm productivity but do not incorporate 

contractor relationships into their analysis. In section 6, I examine how the results presented here 

are affected by taking relationship-specific learning into account. 

 

5.1 Empirical framework 

The empirical framework is designed to capture how a producer’s drilling times in a 

given field are influenced by that producer’s field-specific experience, controlling for 

heterogeneities across fields and producers, and for technological change over time. The 

reference case specification is given by (1) below. 
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 log(DrillTimefpt) = f(Experiencefpt) + γf + δp + νt + φXfpt + εfpt  (1) 

The dependent variable for each well—identified by its field f, producer p, and date of 

completion t—is the logarithm of the well’s drilling time. The explanatory variable of primary 

interest is producer p’s experience in field f at time t, denoted by Experiencefpt. Setting aside for 

the moment the precise definition of Experiencefpt, the remaining variables included in (1) are 

vital in controlling for other factors that influence drilling time. These variables include: 

γf: Field fixed effects 

δp: Producer fixed effects 

νt: Year fixed effects 

Xfpt: Well depth; flags for oil vs. gas well; flag for dry hole; month-of-year fixed 

effects 

The field fixed effects γf control for the substantial heterogeneity in drilling conditions 

across fields. The producer fixed effects δp control for heterogeneity in drilling skill, and the year 

fixed effects νt control for industry-wide technological change.11 I include variables Xfpt for well 

type (oil vs. gas and productive vs. dry) and well depth to control for remaining within-field 

heterogeneity. Month-of-year fixed effects control for seasonal variations in drilling time that 

may arise from changes in weather. The disturbance εfpt represents the presence or lack of 

drilling problems on each well, and is presumed to be heteroskedastic and correlated across wells 

drilled within the same field. 

Given these fixed effects and controls, the effect of experience on drilling time is 

identified through variations in each producer’s drilling activity within a field. There exist 

numerous sources of such variation. Increases in oil and gas prices will increase the number of 

wells drilled, though not uniformly across fields and producers (some fields will be on the 

margin at a given price while others will not be). Drilling may also be spurred by lease 
                                                 
11 In alternative specifications, I use a polynomial function of time to control for technological change. Doing so 
does not substantially affect the estimated results. 
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acquisitions, discovery of new fields, or the identification of unexploited reserves in existing 

fields (through seismic imaging technology, for example). 

I define Experiencefpt as the number of wells drilled by producer p in field f during the 

two years prior to date t, including the well completed at t.12 I calculate this variable using the 

original TRRC dataset rather than the smaller dataset generated by the match of the TRRC data 

to the SB data. Were I to instead use this smaller dataset, I would vastly understate each 

producer’s experience, as the matched data include only one-quarter of the original TRRC 

observations. In addition, variations in the retention of data across fields and producers would 

add noise to the calculation, which could cause attenuation bias in the estimation of (1). 

I measure experience using the number of wells drilled within the past two years rather 

than the total cumulative number of wells drilled because the majority of the fields in the dataset 

were discovered prior to the start of the sample.13 I therefore have no means to calculate 

cumulative experience for wells in these fields. Even so, it is not clear that experience gained 

many years before time t is relevant to a producer’s expertise at t. Studies by Argote et al. (1990) 

and Benkard (2000) have demonstrated that experience effects decay with time as learning is 

“forgotten,” supporting the importance of recent experience in determining productivity. In this 

paper’s appendix, I discuss evidence of forgetting effects in the drilling industry.14  

Measuring experience using drilling activity over a fixed time period does come with a 

cost: it is likely to create simultaneity bias that will cause an estimate of (1) to exaggerate the 

learning effect. Sometimes, producers will hire a rig to drill a series of wells one right after 

another. In such cases, the number of wells drilled within any fixed time period will be inversely 

related to the number of days required to drill each well. For example, a producer that can drill a 

                                                 
12 The inclusion of the well completed at t implies that all wells in the dataset have at least one unit of experience 
and avoids taking a logarithm of zero in a log-log specification of learning. 
13 The choice of two years is a compromise between capturing the tenures of rig crews and rig foremen. I discuss the 
results’ robustness to measurements of experience using periods shorter or longer than two years in section 6.3. 
14 In the appendix, I also indicate that some of the forgetting effects that I observe may reflect losses of intellectual 
capital associated with changes in producers’ drilling rigs. That is, I find that a mechanism of forgetting in the 
drilling industry may be the learning specificities that are the primary focus of this paper. 
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well in 20 days will drill 36 wells over two years, whereas a producer that requires only 15 days 

to drill a well will drill 49 wells over two years. Thus, decreases in drilling time due to learning 

may actually cause an increase in the number of wells drilled. This simultaneity will cause a 

spurious negative correlation between drilling time and Experiencefpt in (1), exaggerating the 

estimated learning effect. 

I address this problem by instrumenting for Experiencefpt using an alternative measure of 

recent experience: the total number of days during which producer p actively drilled in field f 

during the two years prior to t. This variable is not subject to the simultaneity problem: when 

wells are drilled back-to-back, the total number of drilling days will remain roughly constant as 

the drilling time per well decreases and the number of wells drilled increases. Moreover, this 

instrument is clearly correlated, both intuitively and empirically, with Experiencefpt, the number 

of wells drilled.15 

To capture within-firm learning spillovers across fields, an alternative specification of (1) 

includes a variable that counts the number of wells recently drilled by producer p in fields other 

than field f. I also estimate cross-firm spillovers using a variable that counts the number of wells 

recently drilled in field f by producers other than producer p. This variable is similar to those 

used by Irwin and Klenow (1994) and Thornton and Thompson (2001) in their studies of cross-

firm learning spillovers. Summary statistics for all experience variables are presented in table 3.  

 

5.2 Estimation results 

To begin, I estimate (1) without allowing for within-firm or cross-firm learning 

spillovers. Most studies of learning-by-doing model learning curves with a log-log functional 

form, which in this setting implies that f(Experiencefpt) = β·log(Experiencefpt). Before taking this 

approach, I estimate (1) flexibly by fitting a cubic spline to f(Experiencefpt). The results are 
                                                 
15 As an alternative to the instrumental variable strategy, I could use days of drilling directly as the measure of 
experience in (1). However, learning by producers is technical and driven by the geologic information gained with 
each penetration rather than the accumulation of days of experience. Thus, measuring experience using drilling days 
will lead to measurement error and attenuation bias. Indeed, using this measure of experience directly in (1) leads to 
estimated learning effects that are approximately half as large as those reported in the reference case. 
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plotted in figure 3. Drilling times are estimated to decrease by about 15% over the first 50 wells 

drilled by a field producer, and then stay relatively constant over the remaining wells. This 

productivity improvement is modest relative to gains found in other studies of learning-by-doing, 

reflecting the fact that drilling technology for onshore vertical wells is quite mature. Learning in 

this setting does not come from applying new technology or designing new products but from 

learning which existing drilling techniques are best applied to each geologic problem. 

Also plotted on figure 3 is the result of estimating the log-log functional form. The point 

estimate of β is -0.036 with a clustered standard error of 0.005.16 This specification closely 

matches the spline for wells with fewer than 100 units of experience, as highlighted in figure 4. It 

does over-predict productivity gains at very high levels of experience, though it remains within 

the 95% confidence interval of the spline estimate. Wells with greater than 100 units of 

experience carry little weight in the estimation as they constitute less than 3% of the data. 

Dropping these wells does not significantly affect the log-log estimate: β is estimated to increase 

in magnitude only to -0.037. 

Table 4 displays the full set of estimated coefficients for the log-log specification plotted 

in figure 3, which I now refer to as the reference case. The estimated coefficients on the control 

variables generally agree with intuition. In particular, deeper wells require more drilling time 

than shallow wells. Dry holes require more drilling time than do productive wells, perhaps 

reflecting time spent trying to coax the well to flow. The year fixed effects indicate the presence 

of some technological change over the sample period, as drilling times decrease by 

approximately 15% from 1991 to 2005. 

The second column of table 5 reports the results of estimating (1) without instrumenting 

for experience. These results agree with the anticipated direction of bias: the uninstrumented 

                                                 
16 All standard errors presented in this section and in section 6 use a robust variance estimator that is clustered at the 
field level (Arellano 1987, Wooldridge 2003). This estimator allows for both heteroskedasticity and within-field 
correlation in the disturbance εfpt. Clustering on producer or on rig yields nearly identical results. 
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learning rate is larger than that of the reference case. A Hausman test strongly rejects the 

exogeneity of experience in this specification, with a p-value less than 0.001. 

Could the reference case estimate be driven by producers’ selection of fields in which to 

drill? If a producer is particularly good at drilling wells in certain types of fields—for reasons 

other than learning—and drills in such fields more frequently than in others, then a spurious 

negative correlation between experience and drilling time will be manifest in the data. I control 

for this possibility by adding fixed effects for field-producer interactions to specification (1). 

Doing so actually increases the magnitude of the estimated learning rate, as shown in column III 

of table 5. This result indicates that the observed experience effects are driven by learning rather 

than the matching of producers to fields for which they have specific drilling expertise. 

In regression IV, I examine the importance of learning spillovers. Producers’ experience 

in other fields appears to improve their productivity, though the magnitude of this effect is 

approximately one-third that associated with producers’ field-specific learning. On the other 

hand, the estimate of cross-firm learning spillovers is small and statistically insignificant. This 

result contrasts with those of Irwin and Klenow (1994) and Thornton and Thompson (2001), 

which identify modest spillovers in the semiconductor and shipbuilding industries, respectively. 

Drilling industry participants have indicated that the lack of spillovers may be due to the 

competitive nature of common pool resource extraction. When multiple producers operate in the 

same field, an increase in production by one firm may deplete the resource in a way that 

adversely affects the production of the other firms. Thus, producers may be unwilling to aid each 

other by sharing their drilling procedures. 
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6. Empirical Analysis: Rigs and Relationship-Specific Learning 

The analysis presented thus far has been that of a traditional learning-by-doing study in 

that it has omitted the contributions of contractors—drilling rigs—to the learning process. The 

learning estimates presented in tables 4 and 5 attribute all learning effects to producers without 

acknowledging the possibility that a share of this learning could be driven by rig or relationship-

specific experience. This section takes advantage of producer-rig contracting data to examine rig 

and relationship-specific learning, and to assess the degree to which the previous section’s results 

misattributed learning effects solely to producers. 

 

6.1 Empirical framework 

I augment specification (1) with variables that track rig and relationship-specific 

experience, and with rig fixed effects that control for rig heterogeneity. The new reference case 

specification is given by (2) below. 

        log(DrillTimefprt) = f(Experiencefprt) + γf + δp + νt + ηr + φXfpt + εfprt  (2) 

In (2), each well’s field, producer, rig, and date are indexed by the subscripts f, p, r, and t, 

respectively. Rig fixed effects are denoted by ηr, while γf,  δp, and νt denote field, producer, and 

year fixed effects as in (1). Experiencefprt is now a vector of experience variables, and I expand 

f(Experiencefprt) per (3) below.  

          f(Experiencefprt) = β1·log(Experiencefpt) + β2·log(Experience-fpt)   (3) 

     + β3·log(Experiencef-pt)  + β4·log(Experience-prt) + β5·log(Experienceprt) 

The first three terms of the expansion denote the three dimensions of experience 

examined in section 5: the experience of producer p in field f, the experience of producer p in 

other fields, and the experience of other producers in field f. As was the case in section 5, 
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experience by producer p in field f is instrumented using the total number of drilling days 

accumulated by producer p in field f within the past two years. 

The fourth term in (3) represents the experience of rig r with producers other than p, and 

the fifth term captures relationship-specific learning by measuring the experience of rig r with 

producer p. I calculate these two variables using the SB dataset before it is matched to the TRRC 

data as this avoids understating each rig’s experience. Because the SB data track rig-weeks rather 

than wells, I define a rig’s experience with producer p at time t to be the number of weeks it was 

actively drilling for p within the two years prior to t. Summary statistics for Experience-prt and 

Experienceprt are indicated in the upper section of table 6.17 

Relationship-specific learning is important to the extent that β5 is more negative than β4. 

There are two reasons to be concerned that the estimates of these coefficients may be 

confounded. First, a rig’s experience with a particular producer is likely to be positively 

correlated with its experience in a particular field. Thus, my estimates of β4 and β5 may be 

confounded if rigs learn from field-specific experience. I control for this possibility by 

decomposing each rig’s experience into the following field-specific and non-field-specific 

components:18 

(1) Experience-f-prt: experience with producers other than p in fields other than f 

(2) Experiencef-prt: experience with producers other than p in field f 

(3) Experience-fprt: experience with producer p in fields other than f 

(4) Experiencefprt: experience with producer p in field f 

                                                 
17 The well being drilled by rig r at time t is included in Experience-prt and Experienceprt, as well as the four field-
specific and non-field-specific experience variables. This avoids taking logarithms of zero. 
18 This decomposition of experience is complicated by the fact that the SB data do not contain field identifiers. Thus, 
even though I can identify each rig’s field location for each matched observation, I cannot do so for every week in 
which each rig is active. I solve this problem in two steps. First, within the matched data, I find the fraction of wells 
drilled by each rig within the past two years that were in the same field as the rig’s current field. Then, I multiply 
this fraction by the number of weeks the rig has been active during the past two years, taken from the SB data. This 
calculation yields an estimate of the number of weeks of experience that each rig has accumulated in its current field 
within the past two years. Other methods of calculating each rig’s field-specific experience yield estimates of 
learning similar to those presented in this paper. For example, I have calculated experience based on the assumption 
that whenever I observe a rig in a particular field, it stays in that field until I observe it elsewhere. 
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Summary statistics for these dimensions of experience are indicated in the lower section 

of table 6. I use these variables to test whether a rig’s experience specific to both its current field 

and current producer has a greater effect on drilling time than does its experience specific only to 

its current field. 

The estimate of relationship-specific learning may also be confounded if some rigs have 

intrinsic producer-specific capabilities that are not generated from learning. If such rigs work 

more frequently with producers with which they are most compatible, there will be a spurious 

negative correlation between rig-producer joint experience and drilling times. Though industry 

participants have indicated that rigs are generally non-specific pieces of equipment (with the 

exception of their depth ratings), I verify that rig-producer specificities do not drive the estimate 

of (2) by adding fixed effects for rig-producer pairs to the specification. These fixed effects 

control for the possibility that some rigs may be more effective when working for some 

producers than for others, independently of learning effects.19 Identification of relationship-

specific learning therefore only comes from variations in joint experience within each rig-

producer pair. 

 

6.2 Estimation results 

Column I of table 7 reports the results of estimating relationship-specific learning per 

equation (2). The estimated coefficient on log(Experienceprt)—joint experience between a rig and 

a producer—is -0.021, statistically significant at the 1% level. This result implies that a rig that 

works with the same producer over one year can expect to decrease its drilling times by 8%. 

However, the estimated coefficient on log(Experience-prt) is only -0.010, implying that a rig that 

frequently changes producers during a year can expect to decrease its drilling times by only 4%. 
                                                 
19 Even when rig-producer fixed effects are included in the specification, I am, strictly speaking, only estimating a 
relationship-specific learning rate for those rig-producer pairs that I actually observe in the data. If producers are 
more likely to work with rigs with which they anticipate having steep learning curves, then hypothetical learning 
rates for the rig-producer pairs that I don’t observe could be lower than the learning rate I estimate here. Short of 
being able to run a randomized experiment, there exist no plausible means to estimate an “average” learning rate 
over all possible rig-producer pairs. However, it is not clear that such a learning rate is actually a parameter of 
greater economic interest than the learning rate for relationships that actually occur in the industry.  
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Thus, on average, rigs with stable contracting relationships improve their productivity twice as 

quickly as rigs that frequently change contracting partners. Moreover, the difference between the 

coefficients on log(Experienceprt) and log(Experience-prt) driving this result is statistically 

significant: an F-test rejects pooling with a p-value of 0.036. 

In addition, the point estimate corresponding to learning by field producers is only -0.022 

in this specification. This point estimate is substantially lower in magnitude than was reported in 

column IV of table 5, when the impact of producers’ relationships with rigs was not considered 

in the regression. Thus, investigating learning using experience variables specific only to 

producers overestimates the contribution of their stand-alone experience to observed productivity 

improvements.  

Column II of table 7 examines whether relationship-specific learning is driven by 

individual rigs or by rigs’ parent entities: drilling companies. I estimate that the effect of a 

producer’s joint experience with a drilling company, conditioned on that producer’s experience 

with a particular rig, is nearly zero and statistically insignificant. This result indicates that 

relationship-specific learning is driven by the local interactions between a producer’s personnel 

and a rig’s crew rather than the producer’s interactions with drilling company management.  

This specification also indicates that a rig’s performance is likely to be adversely affected 

if the other rigs owned by its drilling company increase their activity. The estimated effect of 

experience by the same drilling company but a different rig is positive and statistically 

significant at the 10% level. This result is puzzling at first, but can be explained by changes in 

the quality of rig crews. Industry participants have indicated that increases in activity by a 

drilling company are often accompanied by the hiring of “green” crew members that are 

particularly poorly skilled. Thus, when a drilling company activates many rigs and its overall 

firm experience rapidly increases, the performance of its rigs may suffer. 

When I add fixed effects for rig-producer pairs to the specification, the estimated effect 

of rig-producer joint experience is not significantly affected, as shown in column III. This result 

suggests that rigs either do not have producer-specific capabilities (apart from those created 



 22  

through learning), or that they do not tend to work more frequently with producers with which 

they are most compatible. Were this tendency true, the estimate of relationship-specific learning 

would be lower in magnitude in column III than in column I.20 

Column IV of table 7 decomposes each rig’s experience into field-specific and non-field-

specific components. These results lend additional support to the importance of relationship-

specific learning: a rig’s experience specific to both its current field and producer has a much 

stronger effect on drilling time than does experience specific only to its field. The point estimates 

imply that a rig that works for the same producer in the same field for a year can expect a 14% 

increase in drilling productivity. However, were the rig to then switch producers, its productivity 

would on average be only 3% larger than that of a rig with no experience at all. The difference in 

the estimated coefficients on log(Experiencef-prt) and log(Experiencefprt) that drives this result is 

statistically significant at the 1% level. In addition, regression V indicates that the significant 

effect of log(Experiencefprt) is robust to fixed effects for rig-producer-field interactions. 

Column IV also highlights that rigs’ acquisition of field-specific knowledge is important: 

a rig’s experience that is specific to its current producer but not its current field is estimated to 

have little effect on productivity.21 This result is likely to be driven by variations in producers’ 

drilling procedures or personnel across fields.  

 

6.3 Robustness of results 

Exclusion of shallow wells from the data: As part of the merge process, some wells that were 

drilled in less than one week were dropped from the sample because they could not be matched 

to records in the Smith Bits data. Although these wells constitute only 6% of the overall 

                                                 
20 With rig-producer fixed effects, the estimated effect of log(Experience-prt) becomes nearly zero and statistically 
insignificant. This change in the estimate occurs because the variation in log(Experience-prt) is largely accounted for 
by the fixed effects: each change in a rig’s producer generates a new fixed effect. Thus, this result should not be 
interpreted as evidence that Experience-prt does not significantly affect productivity. 
21 A test for pooling of the three coefficients on log(Experience-f-prt), log(Experiencef-prt), and log(Experience-fprt) 
fails to reject pooling with a p-value of 0.51. However, an F-test does reject that these three coefficients are jointly 
equal to zero with a p-value of 0.07. 
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population, it is possible that this selection on the dependent variable may bias the results. I 

address this concern by estimating (2) with data only for wells that are at least 8000 feet deep 

(12,654 observations). Such wells are essentially impossible to drill in less than one week, even 

under ideal conditions. Estimation with this sub-sample therefore neutralizes the potential 

selection problem. 

Estimation results, presented in column I of table 8, are very similar to those obtained 

from the full sample (table 7, column I). Performance improves twice as quickly for rigs that 

have stable contracting relationships as for those that do not. The difference between the 

coefficients on log(Experience-prt) and log(Experienceprt) is statistically significant with a p-value 

of 0.068. Column II indicates that, when experience is decomposed into field-specific and non-

field-specific components, a rig’s experience specific to both its current field and producer 

remains significantly more important than experience significant only to its field. 

Flexible functional form: The reference case restricts the effect of Experiencefpt to act through a 

log-log function, which may distort the estimated effects of rigs’ producer-specific and field-

specific experience. In columns III and IV of table 8, I allow Experiencefpt to enter the regression 

as a spline, to verify that the finding of relationship-specific learning is not driven by functional 

form. The estimated joint experience effects are not substantially affected by this change. This 

result is consistent with the tight fit of the log-log model to the spline model, shown in figures 3 

and 4. 

Contract type: Could variation in the type of contract used by producers and rigs be influencing 

the reported results? The analysis to this point has not taken firms’ choice of dayrate or footage 

contract into account. These contract types occur with roughly equal frequency in the data: 

47.8% of contracts are dayrate while the remainder are footage. While both the producer and the 

rig will typically have indirect performance incentives under either contract type, the choice 

between dayrate and footage affects which firm has the direct incentive. Contract choice could 

therefore influence both the level of drilling productivity and the rate of productivity 



 24  

improvement. In particular, the decreases in drilling times I observe for producer-rig pairs could 

be driven by changes in contract type as producers and rigs accumulate experience together. 

While it is tempting to control for contract type directly by including contract dummies in 

equation (2), this approach is plagued by the endogeneity of contract choice. Corts (2004) 

investigated the determinants of contract type in the offshore drilling industry, and his findings 

are consistent with what I find in my sample of onshore data. For example, dayrate contracts are 

relatively more common for deep wells and horizontal wells that require sophisticated well 

designs and typically involve substantial geological risks that are out of the rig’s control.  

Corts (2004) also finds that dayrate contracts tend to become more common for a 

producer-rig pair as they accumulate experience together, a fact that Corts (2007) attributes to 

implicit performance incentives. While this empirical regularity is also apparent in the onshore 

data used in this study, the majority of producer-rig pairs do not change contractual form during 

the sample period. 40.9% of pairs always use footage contracts, 38.7% always use dayrate 

contacts, while only 20.5% switch.  

The limited contract switching in the data affords an opportunity to verify that the 

learning results presented thus far are not confounded by changes in contract type. I remove from 

the sample those producer-rig pairs that switch contracts, and test for relationship-specific 

learning in the sub-sample of pairs with stable contract types. I include fixed effects for rig-

producer interactions in this test to ensure that I do not identify learning effects from cross-pair 

comparisons, for which contract type may vary. The results of this regression are reported in 

column V of table 8. I still find a strong and statistically significant effect of joint experience on 

drilling times. The coefficient on Experienceprt is -0.025—very similar to that found when the 

same regression was run on the full sample (table 7, column III). The joint experience effects I 

find in the data do not appear to be driven by changes in contract type.22 

                                                 
22 I have run a related regression in which I separate the effect of joint experience into that for producer-rig pairs that 
use dayrate contracts, and that for pairs that use footage contracts. I find that learning rates are larger for dayrate 
contracts than for turnkey contracts. However, the endogeneity of contract choice suggests that this is not a causal 
result. In particular, it may be that learning rates are faster for the types of wells that are amenable to dayrate 
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Calculation of experience: Finally, I verify that the results are robust to changes in the length of 

time over which I calculate the experience variables. That is, I ask whether relationship-specific 

learning is evident when I measure experience using drilling activity over time periods other than 

two years. The results of these robustness tests are reported in table 9. When I use drilling 

activity over one year (columns I and II) or three years (columns III and IV), the relationship-

specific learning results are very similar to those obtained using the reference case of two years 

(columns I and IV of table 7). Measuring experience using three years of activity does require 

that data from 1991 be excluded from the sample, as the rig location data from Smith Bits do not 

exist prior to 1989. Thus, the sample size in columns III and IV is smaller than that in columns I 

and II. 

Columns V and VI of table 9 report results when experience is measured using five years 

of drilling activity. These regressions only permit the use of data from 1994 onwards, reducing 

the sample to 15,731 observations. While the point estimate in column V for Experienceprt is 

larger than that for Experience-prt, consistent with relationship-specific learning, the difference 

between these coefficients is no longer statistically significant (the p-value is 0.364). This 

decrease in precision from the reference case reflects both the reduction in sample size and the 

fact that the 5 year experience period is longer than the tenure of the vast majority of rig crew 

members, as well as some rig foremen.23 However, when experience is decomposed into field-

specific and non-field-specific components (column VI), relationship-specific learning is 

measured more precisely: pooling of the coefficients on Experiencefprt and Experiencef-prt is 

rejected with a p-value of 0.098. 

 

                                                                                                                                                             
contracting—these wells tend to be more geologically challenging than those drilled under footage contracts and 
likely present greater scope for learning. 
23 When I run the reference case specification (two-year experience, column I of table 7) using only data from 1994 
onwards, the difference between the coefficients on Experienceprt and Experience-prt is marginally statistically 
significant with a p-value of 0.116 (versus 0.036 in the full sample). 
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7. Empirical Analysis: Relationship Persistence 

In this section, I investigate empirically whether the pattern by which producer-rig 

relationships are formed and broken is consistent with firms’ recognition of relationship-specific 

learning. Specifically, do producers prefer to hire rigs with which they have substantial prior 

experience? If so, is this preference driven by learning or by other rig-producer specificities? 

I execute this analysis using the original SB dataset, prior to its match with the TRRC 

data. My analysis of relationship persistence does not require the drilling time information in the 

TRRC data, and the use of the original SB data allows me to examine the complete history of 

weekly rig locations and relationships from 1991-2005. There are 323,146 rig-week observations 

in this dataset, and for each I observe the county in which the rig is located and the producer for 

which the rig is drilling.  

Table 10 summarizes the frequency with which rigs either maintain or change their 

relationships in this sample. Week-to-week, rigs maintain their relationship with their producer 

89% of the time. Rigs change producers in 7.5% of the observations, implying that a switch 

occurs every 13 weeks, on average. Rigs also occasionally exit the market on a temporary or 

permanent basis; such exits together constitute 3.1% of the data. 

I test for relationship persistence by focusing on instances in which a producer has two 

rigs drilling for it in the same county. I define all such groups of rigs as a “pair,” and use these 

pairs as the unit of observation in my analysis. There are 946 unique pairs in the data, and with 

two rigs per pair, there exist 1,892 total observations, spread over 844 unique rigs and 553 

unique county-producer combinations.24 

Within each pair, I determine which rig leaves the pair first to work for an alternate 

producer. I then capture this rig’s exit date, and calculate the producer-specific experience of 

both rigs at that date. I calculate this experience in exactly the same manner as was done for the 

                                                 
24 I exclude pairs in which both rigs change producers during the same week. I also exclude all pairs in which one or 
both rigs leave its producer in order to exit the market rather than to work for another firm. This restriction implies 
that the rig movements I study in my analysis are not driven by a rig’s need for maintenance or repairs, or by a rig’s 
failure to win a bid. 
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relationship-specific learning analysis of section 6. I then test whether the rig that exits first is 

more likely to be the rig with less relationship-specific experience. This pattern would be 

consistent with firms’ maximization of the benefits of relationship-specific learning. 

Figure 5 graphically illustrates the evidence of relationship persistence in this sample. 

Each point on this plot represents a sub-sample of twenty pairs with similar experience 

differentials,25 and the vertical axis indicates the fraction of pairs within each point for which the 

less experienced rig exited first. The horizontal axis indicates the absolute difference in 

producer-specific experience (in logs) between the two rigs in each pair, averaged for the twenty 

pairs in each point. Thus, points plotted on the right side of the plot represent observations in 

which the two rigs have very different levels of producer-specific experience. For these pairs, it 

is quite likely that the less-experienced rig will be the first to exit, consistent with firms’ 

recognition of relationship-specific learning’s benefits. Meanwhile, observations on the left side 

of the plot indicate pairs in which the rigs have similar producer-specific experience. In these 

pairs, the rig with less specific experience appears only slightly more likely to exit first. Thus, 

when the experience gap between the two rigs in each pair is small, the firms seem relatively 

indifferent as to which rig exits first. 

Figure 5 contrasts with figure 6, in which the horizontal axis measures the difference in 

total drilling experience between the two rigs in each pair rather than the difference in producer-

specific experience. Here, there appears to be little relationship between the rigs’ experience gap 

and the likelihood that the less-experienced rig exits first. While more experienced rigs are, on 

average, slightly more likely to be retained than less experienced rigs, this difference is not 

systematic. This result reflects the fact that the overall experience of a rig does not provide 

productivity benefits that are producer-specific. While a highly experienced rig may be more 

                                                 
25 To form the groups of 20 pairs, I first sort the pairs according to the difference in producer-specific experience 
between the rigs in each pair. I then form groups of 20 from this sorted list, so that each group contains pairs with 
similar experience differentials. 
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productive than other rigs, its productivity when working for other producers will also be higher, 

and it is therefore likely to command a higher price in the market. 

Regression analysis confirms these graphical results. I use a conditional logit model to 

estimate the effect of a rig’s producer-specific experience on its probability of being the first to 

exit its pair. Specifically, I estimate equation (4) below, in which Experiencei1 denotes the 

producer-specific experience of rig 1 in pair i. 
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The results of this regression are reported in column I of table 11: rigs with more 

producer-specific experience are significantly less likely to exit first. The estimated marginal 

effect of -0.055 implies that, in a pair consisting of a rig with 12 months of experience and a rig 

with 1 month of experience, the less experienced rig has a 63.7% probability of being the first to 

exit. This estimated probability is consistent with figure 5: the difference in the log of experience 

in this example is 2.48, and the figure suggests that at this difference, the less-experienced rig is 

likely to exit first with a probability of 60-65%. 

Column II of table 11 presents the results of estimating (4) when each rig’s total 

experience is used as the explanatory variable. In this case, there is no significant relationship 

between experience and movements of rigs between producers. This result is consistent with the 

scatter of points shown on figure 6. Moreover, column III indicates that the estimated marginal 

effect of producer-specific experience is not substantially affected when the reference case 

specification is augmented by including total experience as an additional regressor. In this 

specification, the coefficient on total experience is positive with a p-value of 0.083. 

While the behavior documented in figure 5 and column I of table 11 is consistent with 

firms’ recognition of relationship-specific learning, it could also be consistent with producers’ 

hiring of rigs that are best-suited to drill their wells. That is, if some rigs have producer-specific 

capabilities due to factors other than learning, then a tendency for producers to work with these 
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rigs could drive the relationship persistence evident in the data. Preferred rigs would be more 

likely to be both hired first and released last. 

Adding fixed effects for rig-producer pairs to (4) could rule out this possibility. 

Unfortunately, within the 1,892 observations in the sample there are 1,554 unique rig-producer 

interactions, of which 1,304 occur only once. The limited sample variation remaining after 

including these fixed effects precludes inference, and it is therefore not possible to explicitly rule 

out that rig-producer specificities are responsible for the observed relationship persistence. 26 

Nonetheless, there does exist evidence supporting the hypothesis that the relationship 

persistence is driven by learning effects. First, the analysis of relationship-specific learning in 

section 6 was robust to the inclusion of rig-producer fixed effects in (2). This robustness suggests 

either that productivity-improving specificities between a rig and a producer (apart from those 

generated through learning) are immaterial, or that such specificities do not impact the frequency 

of rig-producer interactions. 

Second, I use information on rig depth ratings to examine directly how the matching of 

rig attributes to producers’ wells affects relationship persistence. Because I observe the depth 

ratings and drilled well depths for every rig, I can investigate how closely rigs are matched to 

well depths in practice. Specifically, I return to the dataset of two-rig pairs and calculate the 

absolute difference between each rig’s depth rating and the average depth of the wells it drills 

within each pair.27 I then examine whether this “depth difference” affects which rig in each pair 

changes producers first. 

I find that the distribution of the depth difference for the first rig to exit each pair is very 

similar to that of the rig that exits last: a Kolmogorov-Smirnov test for the equality of these 

                                                 
26 Estimating (4) with rig-producer fixed effects also creates a severe incidental parameters problem that will cause 
the estimate of β to be inconsistent (Neyman and Scott 1948, Lancaster 2000). Estimation of a linear probability 
model with rig-producer fixed effects results in an extremely imprecisely estimated marginal effect: the estimate is 
+0.062 with a standard error of 0.592. 
27 The average depth difference is 2,313 feet, with a standard deviation of 2,816 feet. 
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distributions fails to reject equality with a p-value of 0.785. This result indicates that both the 

first and last rig in each pair to exit is equally well-matched in depth rating to its wells.  

I confirm this conclusion by augmenting regression (4) with each rig’s depth difference. 

As shown in column IV of table 11, the estimated coefficient on depth difference is very close to 

zero and statistically insignificant. More importantly, the primary finding that rigs with relatively 

high producer-specific experience are less likely to change producers is unaffected. This result 

indicates that the relationship persistence in the data is not driven by producers choosing to work 

more frequently with rigs that are better sized for their wells. Instead, the accumulated evidence 

suggests that producers’ tendency to employ rigs with which they have significant prior 

experience is designed to maximize the benefits of relationship-specific learning.  

 

8. Conclusions 

The empirical results presented in this paper identify relationship-specific learning as an 

important driver of productivity gains in the oil and gas drilling industry. While the fact that such 

an effect exists is not in itself particularly surprising—drilling industry participants have told me 

that they believe relationship-specific learning occurs—its importance has not received attention 

in the learning-by-doing literature. The primary contribution of this paper is the establishment of 

both the significant magnitude of this learning and its broader economic relevance. I find that a 

rig that accumulates experience with one producer improves its productivity twice as quickly as a 

rig that frequently changes contracting partners. This large productivity benefit gives producers 

and rigs a strong incentive to maintain their relationships. Accordingly, the data demonstrate that 

producers are more likely to work with rigs with which they have substantial prior experience 

than those with which they have worked relatively little. 

These results seem likely to generalize to other industries in which outsourcing is 

common. For example, construction contractors or management consulting firms may develop 

relationship-specific intellectual capital through joint work experience with their clients. The 
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importance of relationship-specific learning presumably varies with industry and firm 

characteristics. For example, greater technical complexity in an industry’s production process 

could drive steeper learning curves than those documented in this paper. Firms may also be able 

to take actions that influence their rate of relationship-specific learning. A lead firm might embed 

some of its employees within the organizations of its contracting partners, or a contractor might 

set up offices near its clients.  

While such actions plausibly increase the rate of learning, the accumulated knowledge 

that results is also a form of relationship-specific capital. As such, it may amplify opportunities 

for ex post rent-seeking. It is therefore in the interest of firms to develop contracting 

arrangements that alleviate this problem when joint experience effects are significant. In the 

extreme, firms may need to integrate to fully capture the benefits of relationship-specific 

learning. This potential efficiency benefit of integration may merit consideration in merger 

analysis. 

Finally, I find that horizontal learning spillovers are unlikely to be important in oil and 

gas drilling. Given prior findings of spillover effects in semiconductor manufacturing and 

shipbuilding, this result suggests that the importance of spillovers varies with industry 

characteristics. For example, the lack of spillovers in oil and gas drilling may be related to the 

competitive nature of production from a common pool resource. Because economic theory 

indicates that learning spillovers are important for macroeconomic growth, obtaining a deeper 

understanding of spillovers’ determinants is an objective worthy of further research. 
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Appendix: Forgetting Effects 

In this appendix, I investigate whether experience effects in the drilling industry decay 

over time, consistent with institutional “forgetting” of knowledge. That is, I ask whether 

experience from the distant past has a smaller effect on current productivity than does recent 

experience. This inquiry relates to research by Argote et al. (1990) and Benkard (2000) that 

identified forgetting effects in shipbuilding and aircraft manufacturing, respectively. 

Throughout the text of this paper, I define Experiencefpt—the experience of producer p in 

field f at date t—as the number of wells drilled by producer p in field f during the two years prior 

to t. Here, I instead define Experiencefpt as a function of a decay parameter α, per expression 

(A1) below. 

         ∑
−=

−−=
t

t

t
fpt eatCompletedWell)Experience

730

365/)(}{1(
τ

τατα   (A1) 

For positive values of α, wells drilled on dates long before date t carry less weight in 

Experiencefpt(α) than do wells drilled near date t. I estimate α by inserting (A1) into learning 

specification (1), yielding the nonlinear expression (A2) below. 

 log(DrillTimefpt) = β·log(Experiencefpt(α)) + γf + δp + νt + φXfpt + εfpt (A2) 

I estimate (A2) using a method of moments estimator, in which I allow εfpt to be 

heteroskedastic and correlated within each field. As in the text, I instrument for experience using 

the number of days producer p actively drilled in field f during the two years prior to date t.28  

I obtain a point estimate of α equal to 1.823 with a clustered standard error of 0.862, 

suggesting the presence of forgetting. While this result suggests, at first glance, that α̂  is 

statistically significant at the 5% level, the proper statistical test for forgetting effects must take 

into account the negative correlation between α̂ and β̂ . The point estimate of β is -0.055, 

                                                 
28 My estimation also instruments for the derivative of experience with respect to α using the derivative of drilling 
time-based experience with respect to α, though this does not significantly affect the results. 
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substantially larger in magnitude than in the reference case results (table 4, column I). This 

increase in magnitude occurs because learning is now a function of depreciated experience rather 

than total experience. Because the estimates of α and β are linked in this way, I test for forgetting 

by testing whether these estimates are jointly different from those reported in the reference case, 

in which α = 0 and β = -0.036. I find that the null hypothesis of no forgetting can be rejected at 

only the 10% level (the p-value is 0.091) rather than at the 5% level. 

The estimated rate of experience depreciation is somewhat large: the point estimate of α 

implies that a well drilled one year ago makes a contribution to experience that is only 16% of 

that made by a well drilled one day ago. This depreciation rate is not as great as that estimated by 

Argote et al. (1990) in shipbuilding (for which the corresponding figure is 3.2%), though greater 

than that estimated by Benkard (2000) in aircraft manufacturing (61%). While this result could 

reflect literal human forgetting of knowledge or turnover amongst producers’ personnel, it may 

also reflect losses of intellectual capital associated with changes in producers’ drilling rigs. That 

is, the forgetting effect estimated in this appendix could be driven by the relationship-specificity 

of learning in the drilling industry. I investigate this possibility by augmenting (A2) with rig 

fixed effects and variables measuring rig and relationship-specific experience. I find that 

controlling for relationship-specific capital obscures producers’ forgetting because changes in 

this capital are highly collinear with experience depreciation. While the new point estimate of α 

is still positive and quite large at 7.426, it is estimated extremely imprecisely: the standard error 

is 13.37. This collinearity suggests that losses of relationship-specific capital between lead firms 

and contractors may be a mechanism by which experience effects are forgotten. 
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Figure 1: Photo of drilling rig 
 

 
 
 
 
 
 
 
 
 

Min
25th 

percentile Median
75th 

percentile Mean Max

Number of wells per field 2 2 4 8 11.9 715
Number of wells per producer 2 3 7 20 24.6 698
Number of wells per rig 2 4 8 19 14.4 161

Number of producers per field 1 1 2 3 2.8 60
Number of fields per producer 1 2 3 6 5.8 111
Number of rigs per driller 1 1 3 6 7.7 195

Table 1: Distributions of wells, fields, producers, and rigs
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Figure 2: Drilling times vs. well depths 

 
Observations are grouped into depth “bins” of 1000 feet. 

Horizontal axis excludes highest and lowest 1% of depths. 
 
 

 

Number of 
observations Min Median Mean

Std. 
Dev. Max

Drilling time (days) 19714 2 18 23.7 20.8 180
Well depth (feet) 19174 631 9000 9040 2829 23000
Oil well (0/1 dummy) 19174 0 0 0.381 0.486 1
Gas well (0/1 dummy) 19174 0 1 0.600 0.490 1
Oil and gas well (0/1 dummy) 19174 0 0 0.020 0.138 1
Dry hole (0/1 dummy) 19174 0 0 0.082 0.274 1

Table 2: Sample summary statistics

 
 
 
 

 

Number of wells drilled during the 
past two years in:

Number of 
observations Min Median Mean

Std. 
Dev. Max

Same field, same producer 19714 1 6 17.6 40.6 552
Different field, same producer 19174 1 40 115.3 156.2 918
Same field, different producer 19174 1 9 66.7 169.8 797

Table 3: Summary statistics of field and producer experience variables

The well represented by each observation is included in all measures of experience. Thus, the minimum experience 
level is one rather than zero.  
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Figure 3: Estimates of learning by field producers: spline and log-log specifications 
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Figure 4: Estimates of learning by field producers: spline and log-log specifications;  
wells with fewer than 100 units of experience 
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Point 
estimate

log(field-producer experience) -0.036 (0.005) ***
log(well depth) 1.181 (0.077) ***

Gas well dummy 0.041 (0.025)
Oil and gas well dummy 0.034 (0.051)

Dry hole dummy 0.144 (0.027) ***
February dummy -0.016 (0.017)

March dummy -0.026 (0.015) *
April dummy -0.036 (0.016) **
May dummy -0.037 (0.016) **
June dummy -0.053 (0.016) ***
July dummy -0.030 (0.016) *

August dummy -0.029 (0.015) *
September dummy 0.005 (0.016)

October dummy -0.033 (0.016) **
November dummy -0.032 (0.016) **
December dummy -0.019 (0.016)

1992 dummy -0.041 (0.025)
1993 dummy -0.003 (0.025)
1994 dummy -0.034 (0.031)
1995 dummy -0.033 (0.035)
1996 dummy -0.023 (0.033)
1997 dummy -0.008 (0.036)
1998 dummy -0.016 (0.040)
1999 dummy -0.082 (0.039) **
2000 dummy -0.074 (0.038) *
2001 dummy -0.004 (0.041)
2002 dummy -0.059 (0.040)
2003 dummy -0.099 (0.043) **
2004 dummy -0.159 (0.045) ***
2005 dummy -0.167 (0.046) ***

Regression includes fixed effects for fields and producers
Standard errors are clustered on field. 
*,**,*** indicate significance at the 10%, 5%, and 1% level.

Standard
error

Table 4: Regression results for learning by field producers
Dependent variable is log(drilling time)
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I II III IV

Log of experience with:

Reference 
Case

(Table 4)

Experience 
not 

instrumented

Field-
producer 

fixed effects
Learning 
spillovers

  -0.036***
   -0.047***

   -0.047***   -0.036***

(0.005) (0.005) (0.007) (0.005)
- - - -0.013*

- - - (0.007)
- - -      -0.006     
- - - (0.006)

Number of observations 19174 19174 19174 19174

Parenthetical values indicate standard errors clustered on field. 
*,**,*** indicate significance at the 10%, 5%, and 1% level.

Y

Same field, same producer

Different field, same producer

Same field, different producer

Controls for depth and well type Y

Y Y

Field X producer dummies

Month and year dummies

Field and producer dummies

Y

Y

N

Y

Estimated coefficients on depth and well type variables vary little across the specifications.

Y Y

Table 5: Regression results for learning by field producers
Dependent variable is log(drilling time)

N Y N

Y Y Y
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Number of weeks of drilling within 
past two years by:

Number of 
observations Min Median Mean

Std. 
Dev. Max

Same rig, different producer 19174 1 34 37.1 28.9 105
Same rig, same producer 19174 1 12 24.4 28.6 105

Same rig, diff producer, diff field 19174 1 22 28.5 26.4 102
Same rig, same producer, diff field 19174 1 1 11.2 19.3 103
Same rig, diff producer, same field 19174 1 6 9.7 12 105
Same rig, same producer, same field 19174 1 8 15.2 19.1 105

Table 6: Summary statistics of rig experience variables

The well represented by each observation is included in all measures of experience. Thus, the minimum experience level 
is one rather than zero.  
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I II III IV V

Log of experience with:
Reference 

case

Drilling 
company 
learning

Rig-
producer 

F.E.
Rig-field 

specificities

Rig-
producer-
field F.E.

   -0.022***    -0.021***
  -0.019**

  -0.013**      -0.008
(0.006) (0.006) (0.008) (0.006) (0.017)

-0.010 -0.011 0.010 -0.013 0.001
(0.008) (0.008) (0.012) (0.008) (0.016)

-0.006 -0.006 0.003 -0.005 0.014
(0.006) (0.006) (0.009) (0.006) (0.015)

  -0.010**   -0.012*** 0.005 - -
(0.004) (0.004) (0.006) - -

   -0.021***    -0.022***    -0.024*** - -
(0.004) (0.005) (0.005) - -

-   0.019* - - -
- (0.010) - - -
- 0.001 - - -
- (0.005) - - -
- - -  -0.007* 9.5E-05
- - - (0.004) (0.007)
- - - -0.007 0.001
- - - (0.006) (0.009)
- - - -0.002 -0.004
- - - (0.004) (0.007)

- - -    -0.036***    -0.040***

- - - (0.005) (0.011)

Number of observations 19174 19174 19174 19174 19174

Parenthetical values indicate standard errors clustered on field. 
*,**,*** indicate significance at the 10%, 5%, and 1% level.
All regressions include controls for depth and well type, as well as field, producer, and rig fixed effects.

N Y

N

N

N

Rig X producer X field dummies

Rig X producer dummies N N

NN

Same drilling company, same producer

Table 7: Regression results for relationship-specific learning
Dependent variable is log(drilling time)

Same field, same producer
(Experience fpt )

Same rig, different producer
(Experience -prt )

Same rig, same field, same producer
(Experience fprt )

Different field, same producer
(Experience -fpt )

Same field, different producer
(Experience f-pt )

Y

Same rig, same producer
(Experience prt )

Same rig, diff field, diff producer
(Experience -f-prt )

Same rig, same field, diff producer
(Experience f-prt )

Same rig, diff field, same producer
(Experience -fprt )

Same drilling company, different rig
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I II III IV V

Log of experience with:
Wells 8000 ft 

and deeper
Wells 8000 ft 

and deeper

Field-
producer 

spline

Field-
producer 

spline
Stable 

contract type

  -0.017*** -0.012    -0.022**

(0.007) (0.008) (0.010)

-0.012 -0.013 -0.010 -0.014 0.019
(0.009) (0.009) (0.008) (0.008) (0.014)

-0.007 -0.007 -0.006 -0.005 -3.4E-04
(0.008) (0.008) (0.006) (0.006) (0.010)

 -0.010** -  -0.010** - 0.003
(0.004) - (0.004) - (0.007)

  -0.020*** -   -0.021*** -    -0.025***

(0.005) - (0.004) - (0.007)
-  -0.011** -  -0.007* -
- (0.004) - (0.004) -
- 0.001 - -0.007 -
- (0.007) - (0.006) -
- -0.005 - -0.002 -
- (0.004) - (0.004) -

-   -0.029*** -   -0.037*** -
(0.006) (0.005)

Number of observations 12654 12654 19174 19174 15276

Parenthetical values indicate standard errors clustered on field. 
*,**,*** indicate significance at the 10%, 5%, and 1% level

YN N N N

Same rig, same field, diff producer
(Experience f-prt )

Same rig, diff field, same producer
(Experience -fprt )

Rig X producer dummies

Same rig, same field, same producer
(Experience fprt )

All regressions include controls for depth and well type, as well as field, producer, and rig fixed effects

spline

Table 8: Robustness tests for relationship-specific learning results
Dependent variable is log(drilling time)

Same field, same producer
(Experience fpt )

Same rig, different producer
(Experience -prt )

spline

Different field, same producer
(Experience -fpt )

Same field, different producer
(Experience f-pt )

Same rig, same producer
(Experience prt )

Same rig, diff field, diff producer
(Experience -f-prt )
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I II III IV V VI

Log of experience with:
One-year 

experience
One-year 

experience
Three-year 
experience

Three-year 
experience

Five-year 
experience

Five-year 
experience

   -0.030***    -0.025***    -0.017*** -0.010    -0.017*** -0.010
(0.006) (0.007) (0.004) (0.006) (0.006) (0.007)

-0.010 -0.003 -0.009 -0.012 0.002 -0.005
(0.008) (0.006) (0.008) (0.008) (0.009) (0.010)

-0.003 -0.011 -0.005 -0.005 -0.001 0.003
(0.006) (0.008) (0.007) (0.007) (0.009) (0.009)

  -0.011*** -   -0.010*** -   -0.015*** -
(0.004) - (0.005) - (0.006) -

   -0.020*** -   -0.020*** -    -0.021*** -
(0.004) - (0.004) - (0.004) -

-    -0.012*** -    -0.008** - -0.007
- (0.004) - (0.003) - (0.004)
- -0.002 - -0.005 - -0.012
- (0.005) - (0.007) - (0.008)
- -0.008 - -0.002 - -0.003
- (0.004) - (0.004) - (0.004)

-    -0.029*** -    -0.028*** -    -0.029***

(0.006) (0.005) (0.005)

Number of observations 19174 19174 17987 17987 15731 15731

Parenthetical values indicate standard errors clustered on field. 
*,**,*** indicate significance at the 10%, 5%, and 1% level

Same rig, diff field, same producer
(Experience -fprt )

Same rig, same field, same producer
(Experience fprt )

All regressions include controls for depth and well type, as well as field, producer, and rig fixed effects

Table 9: Robustness tests for relationship-specific learning results: changes to calculation of experience
Dependent variable is log(drilling time)

Same field, same producer
(Experience fpt )

Same rig, different producer
(Experience -prt )

Different field, same producer
(Experience -fpt )

Same field, different producer
(Experience f-pt )

Same rig, same producer
(Experience prt )

Same rig, diff field, diff producer
(Experience -f-prt )

Same rig, same field, diff producer
(Experience f-prt )
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Number of 
observations 
(rig-weeks) Percent of total

Continue working for same producer 288,801 89.4%
Change producers 24,395 7.5%
Exit from market for at least two months 7,087 2.2%
Exit from market permanently 2,863 0.9%
Total 323,146 100.0%

Table 10: Summary of rig movements
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Figure 5: Likelihood that the least experienced rig is the first to change producers  
vs. the within-group difference in rigs’ producer-specific experience 

 
 

Figure 6: Likelihood that the least experienced rig is the first to change producers  
vs. the within-group difference in rigs’ overall experience 

 

Difference in log(rig-producer experience) 

Difference in log(total rig experience) 
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I II III IV

Reference case 
estimate

Total rig 
experience

Producer-
specific and 

total experience
Control for 
depth rating

   -0.055*** -    -0.062***    -0.055***

(0.013) - (0.014) (0.013)

- -0.003   0.030* -
- (0.016) (0.017) -

- - - 0.001
- - - (0.005)

Number of rig pairs 946 946 946 946

Marginal effects calculated at sample mean.
Parenthetical values indicate standard errors clustered on producer.
*,**,*** indicate significance at the 10%, 5%, and 1% level.

Table 11: Conditional logit estimates for the probability a rig is the first to exit its pair
Values shown are marginal effects: dPr(ExitFirst) / dX

Average absolute difference between rig 
depth rating and well depths ('000 feet)

Log of rig's total experience

Log of rig's producer-specific experience

 




