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ABSTRACT OF THE THESIS 

 

Pangenome Analysis of H. pylori: A Systematic Approach to Study Genetic Variability, 

Phylogenetic Grouping, and Regulatory Networks 

 

 

by 

 

Qiangsheng Yin 

 

Master of Science in Bioengineering 

 

University of California San Diego, 2024 

 

Professor Bernhard Palsson, Chair 
 

We proposed a systematic method to understand H. pylori's genetic diversity, 

phylogenetic clustering, and regulatory relations. This study provides a pangenome analysis of 

over 1,300 complete H. pylori strains, which is over ten times higher than previous studies, 

significantly expanding the scope of genetic exploration. We identified 1,015 core genes, 986 

accessory genes, and 38,357 rare genes. Non-negative matrix factorization (NMF) was used for 

phylogenetic clustering, allowing us to decompose the accessory gene matrix for a better 
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mathematical representation. We applied a Random Forest Classifier to characterize the genetic 

basis of these phylogroups, highlighting the genes that contribute most significantly to phylon 

differentiation. Finally, by integrating pangenome data with RNA-seq analysis, we created a 

multi-strain dataset with enhanced statistical power and comparability to better understand gene 

functionality and discover new regulatory networks and to address the challenge of limited 

availability of single-strain transcriptomic data in many bacterial species. This approach creates a 

comprehensive framework for H. pylori studies using public genomic and transcriptomic data, 

offering a scalable model for similar studies in other bacterial species.
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Chapter 1 Introduction 

H. pylori: An overview 

Add Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that 

colonizes the human stomach. H. pylori is a widespread bacterial pathogen that affects 

approximately 50% of the world's population, with a higher prevalence in developing 

countries1,2. This bacterium is a significant cause of chronic gastritis and is strongly associated 

with the development of peptic ulcer disease and gastric cancer3,4. Recent studies have expanded 

the clinical significance of H. pylori, linking it to extragastric conditions such as iron deficiency 

anemia and idiopathic thrombocytopenic purpura, highlighting its diverse impact on human 

health 5. The transmission of H. pylori predominantly occurs during childhood, especially in low 

socioeconomic conditions where poor hygiene is prevalent6. Despite some declines in infection 

rates in industrialized countries, H. pylori remains a significant global health concern7. 

H. pylori has numerous mechanisms that enable it to survive in the acidic gastric 

environment. One of its key survival strategies is the production of urease, an enzyme that 

catalyzes the conversion of urea to ammonia and carbon dioxide. This reaction neutralizes gastric 

acid, creating a more favorable environment for bacterial colonization8. Biofilm formation is 

another critical adaptation that protects the bacteria from the acidic gastric environment, immune 

system attacks, and antibiotic treatments9. The ability to form biofilms and increasing antibiotic 

resistance poses a challenge to the effective eradication of H. pylori10. 

The bacterium can also alter its gene expression in response to acidic conditions and 

manipulate host immune responses to persist long-term, further aiding its survival and 

pathogenicity11,12. These adaptations enable H. pylori to colonize the stomach for decades, 

potentially leading to severe gastric diseases13. 



2 

H. pylori genome 

H. pylori is a bacterium with a highly variable but relatively small genome, ranging from 

1.5 to 1.7 million base pairs14. Despite its small size, it contains unique regions associated with 

pathogenicity, such as the cagA pathogenicity island, which is a Type VII secretion system. This 

genetic variability significantly contributes to the bacterium's adaptability and pathogenic 

potential. 

Despite recent advances in genomic sequencing and analysis, a significant portion of H. 

pylori genes remains functionally uncharacterized. More than one-third of the genes in our study 

are poorly annotated, indicating the need for further research to uncover detailed gene functions, 

virulence factors, and metabolic pathways to develop effective treatments and managing 

gastroduodenal disorders associated with H. pylori infection. 

Pangenome studies analyze the complete set of genes within a species, encompassing 

both core genes present in all individuals and accessory genes found in some15. This approach 

has revolutionized microbial research, providing insights into the genetic diversity, evolution, 

and functional potential of bacterial species16,17. Pangenome analysis has been widely used to 

redefine pathogenic species and examine genomic diversity in organisms such as Escherichia 

coli18, highlighting its broad applicability across plants and animals19. 

The pangenome analysis of H. pylori offers valuable insights into its genetic diversity, 

pathogenicity, and evolutionary history. Studies have shown that the core genome of H. pylori 

consists of conserved gene families that make up a substantial portion of the bacterium's genetic 

content20,21. These core genes are essential for basic cellular functions and survival in the gastric 

environment. The accessory genome of H. pylori, which varies among strains, contributes to the 
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bacterium's adaptability. Thus, characterizing the core and accessory genome of H. pylori helps 

identify differences among strains and discover potential drug targets. 

 

Current State of H. pylori Pangenome Studies 

The study by Amjad Ali et al. selected 39 complete Helicobacter pylori genomes from 

the NCBI database to conduct pangenome analysis20. The researchers predicted open reading 

frames (ORFs) from the selected DNA sequences. Phylogenetic analysis was conducted using 

16S rRNA gene sequences to establish evolutionary relationships among the strains. 

Comparative analysis of proteomes was performed using BLAST, and the core genome and pan-

genome were identified using a 50/50 clustering approach. Amjad Ali et al. identified the core 

genome of H. pylori, consisting of 1,193 genes. This core genome accounts for 77% of the 

average genome and 45% of the global gene repertoire of H. pylori. While the study provided 

valuable insights into the core genome and potential therapeutic targets, it was limited by the 

relatively small number of genomes analyzed. Moreover, the study primarily focused on the core 

genome, leaving the accessory genome relatively unexplored. 

Another study led by van Vliet expanded the scope of pangenome analysis by analyzing 

346 high-quality H. pylori genomes21. Phylogenetic clustering was performed using core genome 

SNPs and whole-genome purine/pyrimidine (RY) words. Genome annotation and pan-genome 

analysis were conducted using Roary. The study revealed that lineage-specific genes can 

contribute to variations in virulence and disease outcomes. For example, the FecA2, ferric citrate 

receptor gene, was absent in hspAmerind genomes but present in all other lineages, suggesting 

potential differences in iron acquisition among populations. This study highlighted the genetic 

diversity of H. pylori in different geographic locations. However, the high level of allelic 
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variability in H. pylori genomes limits the completeness of the analysis. The pangenome analysis 

may overestimate differences between H. pylori genes due to the high levels of sequence 

variation, as genes with similar functionality may be classified as distinct. 

Cao conducted another comprehensive analysis of 99 Helicobacter genomes, including 

75 H. pylori and 24 non-pylori Helicobacter species (NPHS) genomes22. This study aimed to 

explore the genomic diversity and adaptability of H. pylori. The researchers used Glimmer 

version 3.02 to predict open reading frames (ORFs) and constructed a phylogenetic tree using 

16S rRNA genes, with Campylobacter species as outgroups. Orthologous group analysis was 

performed using OrthoMCL to identify core and accessory genomes. The study revealed that H. 

pylori has an open and diverse genome with 1,173 conserved protein families (core genomes). 

The lack of functional characterization for many genes also poses a problem in this study, 

suggesting further research is needed to understand H. pylori pathogenicity and adaptability 

better. 

In another study, Uchiyama analyzed the pangenome of 30 completely sequenced H. 

pylori strains belonging to various phylogeographic groups and identified 991 accessory 

orthologous groups (OGs) that were not fully conserved23. A novel method was developed to 

evaluate the mobility of genes, using the gene order in syntonically conserved regions to classify 

genes into five classes: core, stable, intermediate, mobile, and unique.  The study found that 

phylogenetic networks based on the gene content of core and stable classes were highly 

congruent with those created from fully conserved core genes. In contrast, the Intermediate and 

Mobile classes showed different topologies. The generality and usability of methods used in gene 

class assignment still need to improve to apply to other bacterial species.  
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Current Study and Its Contributions 

My study addresses some of the current limitations of pangenome analysis on H. pylori 

and other bacterial species. By using a gene clustering method, CD-HIT, to handle the large 

DNA-seq dataset, we constructed a pangenome from over 1,300 H. pylori complete strains. This 

is ten times more than previous studies, offering a more comprehensive identification of the 

species' core, accessory, and rare genomes, which can better help us understand the genetic 

variability of H. pylori. 

The innovative application of non-negative matrix factorization (NMF) to the accessory 

genome matrix was a pivotal aspect of our study. NMF provided a robust framework for 

identifying phylogenetic groups based on shared gene content, which is especially relevant given 

the high genetic variability among H. pylori strains. By decomposing the matrix into 

components, we could characterize the genetic basis of these groups and gain insights into how 

different strains are related at a genomic level. 

We applied two methods for the genetic basis characterization. First, the top-down 

approach in gene identification was beneficial in highlighting specific gene functions related to 

particular phylogroups. This method is particularly effective for well-annotated genomes where 

functional categories are well-defined. However, given the limitations in annotation for many H. 

pylori genes, the complementary use of a Random Forest Classifier proved helpful. This machine 

learning approach allowed for an unbiased identification of genes with high feature importance, 

thus highlighting genes that contribute significantly to the differentiation of phylogroups. 

The integration of RNA-seq data using iModulon analysis added another layer of 

understanding to our study. By analyzing gene expression patterns across multiple strains, we 
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could identify regulatory networks that are conserved across strains. This is crucial for 

understanding how H. pylori regulates gene expression in response to different environmental 

changes. The use of iModulon analysis on combining core and accessory genomes significantly 

improves the explained variance, offering a clearer insight into the transcriptional network of H. 

pylori. 

Overall, this study addresses some gaps in previous research by analyzing a larger 

number of strains and employing advanced computational techniques such as NMF, Random 

Forest Classifier, and iModulon analysis to explore the gene diversity and functionality of H. 

pylori. These methods provide a systematic approach to analyze bacterium's pangenome.  
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Chapter 2 Methods 

Data Acquisition and Filtration 

The H. pylori sequences were downloaded from the Bacterial and Viral Bioinformatics 

Resource Center (BV-BRC)24 and the National Center for Biotechnology Information (NCBI) 

databases25,26. The H. pylori strains downloaded covered different clinical backgrounds and 

geographic regions, guaranteeing a representative and diverse dataset for our investigation. 

Several filtering criteria were applied to ensure the quality of the sequence data. First, 

sequences were filtered based on L50/N50 metrics, which assess the quality of genome 

sequencing by evaluating the counts of contigs that cover 50% of the genome. The N50 value of 

a reference genome was used as a benchmark, and strains with N50 values smaller than 0.85 

times that reference value were removed. 

Next, the CheckM completeness and contig count distributions were inspected to remove 

strains with outlier values, excluding genomes with significant gaps. Highly fragmented 

sequences were also excluded by setting a maximum ceiling for the number of contigs and 

removing strains with contig numbers larger than two times the median contig count in the 

dataset. 

Genomes with GC content outside the range of 35% to 40% were filtered out, as these 

could indicate sample contamination or sequencing errors. After downloading the genome data, 

additional quality control measures were conducted to remove sequences with abnormally short 

sequences, duplicated samples, or other quality issues to prevent inaccuracies in the analysis. In 

the last step of filtering, a manual inspection was performed to examine metadata for 

inconsistencies or anomalies that automated filters might have missed, including verifying strain 

metadata against established sources. 
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Mash Clustering and Filtration 

We implemented Mash clustering to effectively group the H. pylori strains in our study 

for the reference number of clusters and initial screening. Mash is an alignment-free method 

based on the MinHash algorithm, which condenses large genomic sequences into small, 

representative sketches for quick estimation of pairwise distances27. This approach is particularly 

advantageous for large-scale analyses, offering comparable accuracy to alignment-based 

methods but with significantly faster computation times. 

First, all complete sequences from the filtered dataset were used to generate a pairwise 

distance matrix using Mash. To filter the strains based on these Mash distances, a low threshold 

was set at 0.05, and a high threshold was set at the 97th percentile of Mash distances relative to 

the reference genome. The 97th percentile threshold was determined based on the Mash distance 

distribution to avoid the second peak and to ensure the consistency of our dataset. 

The Mash distance values were then converted into a Pearson correlation distance matrix, 

and the genomes were clustered using the hierarchical clustering function of the SciPy package 

in Python with Ward’s linkage method28. Initial clusters were evaluated, and small clusters 

containing fewer than five strains were filtered out. The Pearson correlation matrix was 

regenerated, and clustering was performed again. This iterative process continued until robust 

clusters emerged, indicated by a stable number of clusters and the absence of small clusters. The 

number of clusters obtained from this iterative Mash clustering process was then used as a 

reference for subsequent non-negative matrix factorization (NMF) analysis. 
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Pangenome Construction  

To construct the pangenome of more than one thousand H. pylori strains, we used the 

CD-HIT algorithm, a widely used program for clustering DNA sequences, to reduce redundancy 

and improve the efficiency of sequence analyses29. CD-HIT groups sequences according to a 

specified identity threshold, generating representative sequences for each cluster. This approach 

significantly reduced the number of genes in our pangenome, allowing us to consider only the 

representative genes and construct the pangenome matrix further. 

Several identity thresholds from 70% to 90% were evaluated to determine the best fit. 

Metrics such as the number of gene clusters identified were examined, and an 80% identity 

threshold was chosen, the same as in previous studies. This threshold ensures that only highly 

similar sequences are clustered together, reducing dataset complexity while preserving 

meaningful biological variation. 

The representative genes were then classified into core, accessory, and rare genomes. 

Core genes are typically present in nearly all strains and are considered essential for H. pylori 

survival. Rare genes are limited to one or a few strains, highlighting unique genetic elements that 

could be important for specific niche adaptations or recent acquisitions. The remaining genes are 

accessory genes found in particular groups but not all strains. These accessory genes are the 

focus of our study to classify different phylogroups, as the accessory genome does not contain 

either highly conserved or highly variant genes. 

Classification boundaries for core, accessory, and rare genomes were determined by 

examining the gene frequency distribution—the number of genomes in which each gene is 

found. This distribution typically shows two peaks: one for rare genes and one for highly 
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conserved core genes. Thus, the cumulative gene frequency distribution forms an inverse 

sigmoidal curve30. Three phases in the curve represent three gene categories: the initial log phase 

for rare genes, the middle stationary phase for accessory genes, and the second log phase for core 

genes. 

The cumulative gene frequency distribution was fitted to the sum of two power functions 

to capture these two peaks. The cutoff boundaries were defined by the relative distance to the 

inflection point in the simulated curve. Genes with frequencies less than 90% from the inflection 

point to the minimum frequency were classified as rare genes. Genes with higher frequencies 

than 90% from the inflection point to the maximum frequency were classified as core genes, and 

genes in between were accessory genes. Additionally, Heaps’ law was applied to test the 

openness of the pangenome, helping us understand whether the pangenome is finite or continues 

to expand as more genomes are added. 

The results from CD-HIT were transformed into a presence/absence binary gene matrix, 

with each column representing a gene cluster and each row representing a strain. The accessory 

gene matrix was prioritized for further analysis, as the core gene matrix contains only highly 

conserved genes, while the rare gene matrix is sparse and predominantly filled with zeroes. 

 

Gene annotation and enrichment analysis 

To ensure consistency during analysis, Prokka was used to annotate all genomes. Prokka 

is a rapid prokaryotic genome annotation tool that assigns functions to genes based on homology 

searches against several databases, including UniProt and Pfam31. All representative genes 

generated by CD-HIT were further annotated using eggNOG mapper, which assigns COG 
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(Clusters of Orthologous Groups) categories to each gene, enhancing the understanding of each 

gene's role within the genome32. This comprehensive annotation process provided additional 

information to aid in later cluster characterization and genetic basis analysis. 

Following COG annotation, an enrichment analysis was conducted to identify 

overrepresented and underrepresented genes within the core and accessory genomes. Fisher's 

exact test was applied to compare the gene frequency of each COG category in the core and 

accessory genomes against a background frequency derived from the entire pangenome. The p-

values obtained from Fisher's exact test were adjusted for multiple tests using the family-wise 

error rate (FWER). To quantify the extent of overrepresentation, the log2 odds ratio (LOR) was 

calculated for each COG category. This analysis helped identify functional differences between 

the core and accessory genomes, providing insights into the roles these genes may play in H. 

pylori's adaptability, pathogenicity, and survival. 

 

Non-negative matrix factorization (NMF) 

Non-negative matrix factorization (NMF) is a technique for decomposing a matrix into 

two lower-dimensional, non-negative matrices. This method is particularly effective for 

uncovering patterns and extracting meaningful components from complex datasets, such as 

genomic data. NMF is especially advantageous for binary matrices as it maintains the non-

negative nature of the data, making it ideal for analyzing gene presence-absence matrices in 

pangenome studies. 

We applied NMF to the accessory gene matrix P, which consists of binary values 

indicating the presence or absence of genes across different strains33. Using the scikit-learn 
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implementation of NMF, the decomposition was performed 50 times at ranks around the 

suggested number of Mash clusters. Each run decomposed the original matrix P into two non-

negative matrices, L and A, where P = LA33. The L matrix has the dimensions (number of genes) 

× (rank), and A has the dimensions (rank) × (number of strains). The rank represents the number 

of computed phylogroups. The L matrix includes gene weightings for each computed phylon, 

while the A matrix represents the strain-specific affinity to a phylogroup. In biological terms, 

gene weightings in the L matrix define how much genes contribute to the specific phylon 

classification, revealing the common gene sets in certain phylogroups. The values in the A 

matrix indicate how closely strains belong to the defined phylogroups. 

To determine the optimal rank for NMF decomposition, various ranks were evaluated, 

and the best one was selected based on the performance of the L and A matrices in 

reconstructing the P matrix using the F1-score as a metric. The best run at each rank was chosen 

for normalization by evaluating metrics such as the Frobenius norm, sum of squared residuals, 

and root-mean-square error. The L matrix was normalized by dividing its values by the 99th 

percentile for each column, and the A matrix was scaled correspondingly by row using the same 

normalization factors to ensure that most values were between 0 and 1. 

After normalization, the L and A matrices were binarized using k-means clustering with k=3 

clusters. Genes were divided into three clusters for each column in the L matrix using the scikit-

learn k-means package34. The genes in the cluster with the highest average mean were assigned a 

value of 1, while those in the other two clusters were assigned a value of 0. This binarization 

method was applied to the A matrix by row. The zeroes and ones in the binarized L and A 

matrices can be simply interpreted as whether phylogroups contain a strain and whether genes 

are included in a phylogroup. 
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Characterization 

Following the NMF analysis, the phylon and their associated genes were characterized to 

understand the biological significance of the identified phylogroups. This process involved 

several approaches to understand how specific genes contribute to phylon classification. 

The characterization of the binarized A matrix was based on metadata, such as 

geographic location for H. pylori strains. By analyzing the strains within each phylon, 

commonalities and patterns were identified, providing insights into how geographic and other 

metadata correlate with the phylogenetic groupings. 

Next, the L matrix was examined to determine the genetic basis of the identified 

phylogroups and answer the question of what genes distinguish these phylogroups. Genes with 

the highest variances in the L matrix were identified and examined for enrichment in any COG 

categories. This analysis helped understand which genes were most variable across phylogroups 

and identify which sets of genes require further investigation in later analyses. 

The binarized L matrix was hierarchically clustered to reveal phylogenetic relationships 

and a top-down approach was employed to identify exclusive genes in each phylon or 

phylogroup from the same node. A BLAST search was conducted to identify common outer 

membrane proteins and their orthologs, providing a profile of these highly variable genes. By 

examining the presence-absence patterns of genes within each phylon, it was possible to 

determine which genes were unique to or shared among different groups, shedding light on the 

genetic basis of phylogroup-specific traits. 
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In cases where there is no well-annotated database or specific enriched COG categories 

to explore, a more systematic approach was developed to identify phylon-specific genes. A 

random forest classifier was applied to the original L matrix to find genes with the highest 

feature importance. Random forest is an ensemble learning method that constructs multiple 

decision trees during training and merges their predictions to improve model performance. This 

method was chosen over linear SVM and single decision trees due to its ability to handle non-

linear relationships and reduce overfitting. 

To use the random forest classifier, customized binary labels were created where the 

subset of interest was labeled as 1 and all other samples as 0, and the classifier was run 100 

times. In each iteration, the classifier was fitted on the filtered dataset, and feature importances 

were accumulated over all runs. The accumulated feature importances were averaged to obtain 

the final importance score for each gene, and the top features contributing most to distinguishing 

the subset from the rest were identified. The standard deviation of feature importance across runs 

was calculated to assess their stability, ensuring robust and reliable identification of important 

features. 

Multi-strain dataset construction and iModulon analysis 

To explore the regulatory networks and gene functionality of Helicobacter pylori, we 

constructed a multi-strain RNA-seq dataset using a pangenome approach. The first step in 

constructing the multi-strain RNA-seq dataset involved identifying core and accessory genes 

across the chosen strains. We conducted a bi-directional BLAST search to identify homologous 

genes that allowed us to create a unified gene set for expression profiling. The RNA-seq data 

from the selected strains were then integrated. By excluding rare genes, we minimized noise and 
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improved the statistical power, enabling the detection of subtle gene expression variations that 

might be overlooked in single-strain analyses. 

Once the dataset was compiled, we used iModulon analysis to uncover independently 

modulated gene sets, known as iModulons. This method, based on independent component 

analysis (ICA), allows for the identification of co-regulated genes that form distinct regulatory 

modules, providing insights into H. pylori's transcriptional networks35. By comparing the 

activities of these iModulons across different experimental conditions and strains, we gained a 

deeper understanding of the regulatory roles of specific genes and pathways, shedding light on 

the complex mechanisms governing H. pylori's adaptability and pathogenicity.  

Overall, this comprehensive multi-strain RNA-seq dataset and subsequent iModulon 

analysis offer a novel perspective on the transcriptional landscape of H. pylori, providing a 

foundation for future research into its genetic and functional complexity. This methodology 

paves the way for similar approaches in other bacterial species, particularly those with limited 

available RNA-seq data. 
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Chapter 3 Results & discussion 

Data Filtration and Strain Distribution 

A total of 3,920 Helicobacter pylori sequences were downloaded from the BV-BRC and 

NCBI databases, of which 1,440 were complete sequences. The numbers of strains remaining 

after each filtration step are shown in Figure 1. The filtration step that removed the most strains 

was the CheckM completeness filter, as the completeness value was not provided for many 

sequences available on BV-BRC. 

The remaining complete sequences are composed of strains from highly diverse 

geographic locations, including 64 countries from all major continents. The top three countries, 

the USA, Colombia, and China, account for approximately 25% of all samples, while sequences 

from the top 10 countries represent more than 50% of the total. This broad distribution ensures 

that the dataset reflects the global diversity of H. pylori strains, providing a robust basis for the 

pangenome analysis. 

Figure 1. Numbers of strains after each filtration step and geographic distribution of strains 
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Pangenome and Gene Enrichment 

Of the 1,655 strains that passed all filtration criteria, 1,341 complete sequences were 

selected for further CD-HIT clustering. The CD-HIT algorithm was run with an 80% identity 

threshold (see Supplementary Figure S1), and genes were classified into core, accessory, and rare 

genomes based on their frequency across the strains (Figure 2). Genes that appeared in fewer 

than 98 strains (7.3%) were categorized as rare genes, while those present in more than 1,304 

strains (97.2%) were classified as core genes. The remaining genes were designated as accessory 

genes.  

Figure 2. Gene frequency distribution and simulation curve fitted to the cumulative gene 

frequency with cutoff values for rare and core genes. 
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The results identified 1,015 core genes, 986 accessory genes, and 38,357 rare genes. 

Remarkably, despite using more than ten times the number of sequences compared to other 

studies, the number of core and accessory genes identified aligns closely with earlier findings. 

This includes a study that extrapolated the number of core genes to be approximately 1,111 using 

56 H. pylori strains36. By fitting the gene frequency distribution to Heaps' law, it was confirmed 

that H. pylori has an open pangenome with a lambda value of 0.436. This suggests that the gene 

pool is not finite and will likely expand as more strains are added to the analysis. 

For the core genome, it was not surprising to find that genes associated with essential 

functions such as translation, cell membrane biogenesis, and energy production comprised a 

significant portion of the core genome (Figure 3). In contrast, nearly half of the genes in the 

accessory genome were either unidentified by eggNOG or had unknown functions. Among those 

with known functions, the top categories included replication and repair, cell motility, and cell 

membrane biogenesis. 
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Figure 3. Log odds ratio comparison of COG categories between core and accessory genomes. 

The COG enrichment analysis, performed using Fisher’s exact test and log odds ratios 

(LOR) comparison, revealed that translation, carbohydrate metabolism, and energy production 

were the top three enriched categories in the core genomes. Meanwhile, intracellular trafficking 

and secretion, replication and repair, and defense mechanisms were the most enriched categories 

within the accessory genome. Notably, the LOR for the core and accessory genomes 

demonstrated an inverse linear relationship. 

Mash clustering and NMF analysis 

Mash clustering identified 59 robust clusters among the 1,341 H. pylori strains, with most 

of the larger clusters (those containing more than ten strains) originating from a single 

experiment or the same location (Figure 4 top). This clustering pattern confirms the distinct 
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geographic distribution of H. pylori strains. This outcome contrasts significantly with our earlier 

test on a sample of 428 strains, which resulted in only 15 clusters. We did not anticipate that 

quadrupling the sample size would also quadruple the number of Mash clusters. This discrepancy 

may be attributed to the Mash algorithm or the high variability present in H. pylori sequences.  

Figure 4. Mash clusterings (top), NMF performance at various rank (left), and NMF clustering 

(right). 
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Given these differences, it was necessary to reevaluate the optimal rank choice for non-

negative matrix factorization (NMF) analysis. To address this, NMF analysis was performed 

across multiple ranks to determine the best configuration. Ultimately, a rank of 17 was selected 

based on the highest F1 score, which provided the most accurate reconstruction of the accessory 

gene matrix (Figure 4 bottom left). 

Characterization of Phylogroups 

We began by characterizing the 17 phylogroups using the A matrix with available 

metadata to gain insights into the phylon-specific traits and geographical distribution of these 

groups. Despite our efforts, we found no significant commonalities when categorizing the 

phylogroups based on Multi-Locus Sequence Typing (MLST) or virulence typing. This lack of 

commonality may stem from two main factors: the majority of sequences lack detailed metadata, 

and the high genetic diversity within H. pylori makes it difficult to draw clear connections. We 

turned to geographic information as a more reliable basis for characterizing and naming the 

phylogroups. The analysis revealed distinct patterns, with many strains from a single phylogroup 

originating from geographically close areas. This geographic clustering also reflects historical 

human migration patterns. 
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Figure 5. Geographic locations of strains in phylon identified. 

 

After exploring the phylogroups, the focus shifted to characterizing the L matrix, aiming 

to identify genes that distinguish the phylogroups. It was observed that genes associated with 

membrane biosynthesis exhibit high variances across the phylogroups, suggesting they may play 

a crucial role in differentiating strains. This finding is particularly intriguing because membrane 

biosynthesis genes are among the top three enriched categories in the core genome but not in the 

accessory genome. The presence of such genes in the core genome underscores their essential 

role in bacterial survival and adaptability. Thus, the variability of these genes across phylogroups 

suggests that they might influence membrane protein secretions or interactions. Despite this 

potential significance, the exact functions of these genes remain unknown and require further 

research. 
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Figure 6. Gene variances vs mean appearances with top gene category annotated 

Two distinct methods were employed to characterize the L matrix: a top-down approach 

and a random forest classifier. In the top-down approach, the binarized L matrix was 

hierarchically clustered to analyze phylogenetic relationships and identify exclusive genes 

belonging to each phylon. However, drawing conclusions about phylon-specific traits proved 

challenging because more than half of the exclusive genes remain unannotated. The analysis of 

highly variable genes hinted at the significance of genes related to the membrane. BLAST 

searches were employed to identify commonly expressed outer membrane proteins (OMPs) and 

their orthologs. By examining the presence of OMPs in the binarized L matrix, an OMP profiling 

table was created. In this profiling, v1 and v2 represent two orthologs, while intermediate colors 

indicate that both exist. This profiling approach can help identify similarities between closely 

related phylogroups. However, the top-down approach did not appear to be the most effective 

method for uncovering the genetic basis of phylogroups in the case of H. pylori. 
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Figure 7. Ordered L matrix with removed uncharacterized phylon. 

 

  



25 

Figure 8. Numbers of exclusive genes after each phylon split. 

To address the limitations of the top-down approach, a random forest classifier was 

employed to identify differential genes more automatically. This method allowed pinpointing 

genes with the highest feature importance when the classifier was trained to differentiate one 

subgroup from the rest. For example, when the random forest classifier was used to distinguish 

the USA_Tennessee and USA/UK phylogroups from the rest, one of the top genes identified was 

the fur gene. These two phylogroups possessed a unique ortholog of the fur gene compared to 

other phylogroups. 
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 Figure 9. OMP profiles of all phylogroups. 

The advantage of the random forest method lies in its ability to compare multiple 

phylogroups that are not under a single phylogenetic node to the rest. From the OMP profile, it 

was observed that four closely related phylogroups—USA_2, Sweden/Spain, EU_2, and 

Chile/Colombia—exhibit slightly different profiles in genes such as BabA, HopQ, and oipA. 

When the random forest classifier was run to compare USA_2, EU_2, and Chile/Colombia 

against the rest, these three genes emerged among the top 20 genes with high feature importance. 

The gene with the highest feature importance was vacA, a known virulence factor. Further 

analysis revealed that these three phylogroups possess the s2-subtype vacA, an avirulent version, 

while the Sweden/Spain phylogroup carries the virulent version. This observation aligns with the 

understanding that avirulent and virulent strains may have different OMPs, as OMP interaction 

with the host is a critical step in colonization and infection.  
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Figure 10. Average feature importance of genes identified by Random Forest Classifier when 

comparing USA_2, EU_2, and Chile/Colombia to the rest. 

Overall, the random forest method proves useful, especially for poorly annotated 

genomes, by narrowing down target genes that contribute most significantly to phylon 

classification. Unlike the top-down approach, which relies on binarization and hierarchical 
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clustering, the random forest method allows for a more flexible and automated exploration of 

genetic diversity.  

The use of machine learning was intended not for strain classification, but to identify 

components with the highest feature importance. To validate this approach, the reproducibility of 

feature identification using the random forest method was compared against other machine 

learning methods such as the linear SVM and simple decision tree. The random forest and the 

linear SVM methods demonstrated relative low deviation in feature importance across runs, but 

considering the linear SVM model’s assumption of linear relationship and sensitivity to outliers, 

we chose the Random Forest Classifier with more flexibility and interpretability.  

Figure 11. Standard deviation comparisons among three machine learning methods. 

There are four phylogroups that remain uncharacterized. These groups contain a small set 

of genes with only 20 unique genes in total, which are suspected to be mobile elements of H. 
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pylori. Further research is required to understand the exact functions of these genes and confirm 

their role in H. pylori. 

iModulon Analysis 

Extensive RNA-seq data is often required to understand gene functionality and regulatory 

networks, which can be challenging for many less-studied bacterial species. To address this 

limitation, gene categories identified from pangenome analysis can help construct a multi-strain 

RNA-seq dataset, enhancing statistical power and comparability in RNA-seq analyses such as 

iModulon analysis. 

For this study, RNA-seq data of core and accessory genes from three different H. pylori 

strains: 26695, G27, and P12 were combined. iModulon analysis was performed on RNA-seq 

data for every single strain, as well as on combined core genomes (C) and combined core plus 

accessory genomes (CA). The results showed that using only core genomes yielded an explained 

variance of 0.479, which is below the standard, whereas using the CA genome achieved a 

significantly higher explained variance of 0.919. Including all rare genes raises the total number 

of genes to around 3,000, making the expression matrix too sparse, thus affecting further 

analysis. 

Table 1. Statistic summary of iModulon results on 5 datasets. 

 

Strain # of samples available # of samples used Number of iModulons Explained Variance Number of genes Number of genes included

26695 122 85 34 0.846 1553 666(42,8%)

G27 30 26 20 0.997 1546 505(32.6%)

P12 40 26 18 0.97 1572 800(50.9%)

Core - 137 29 0.479 988 293(29.3%)

C+A - 137 47 0.919 1716 1043(60.8%)
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By increasing the sample size and excluding rare genes, the noise was effectively 

reduced, improving the clarity of the gene expression data. For example, the genes in the 

ribosome iModulon (rpl) identified in the CA dataset were 84.37% in the translation category, 

compared to just 50% in the G27 single-strain dataset. 

Figure 12. Identified ribosome iModulon (rpl) comparison between single-strain G27 and 

combined core plus accessory dataset. 

Moreover, comparing iModulon activities across different strains enables drawing 

connections in regulatory networks, even when experiments are conducted on separate strains. In 

the pH_ure iModulon activity analysis, it was observed that this iModulon is upregulated under 

acidic conditions and downregulated when nickel is present with the wild-type NikR, suggesting 

that NikR plays a crucial role in pH response. With additional samples from different conditions 

and strains combined, a better understanding of the comprehensive global regulatory role of 

genes, such as NikR in H. pylori, can be achieved. 
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Figure 13. NikR-related iModulon activity comparison and Venn diagram for genes identifies in 

the two iModulons. 

In the rpl iModulon activity comparison, the rpl activity was upregulated in tetracycline-

treated samples and downregulated in the NikR knockout group, suggesting that NikR may also 

regulate ribosome synthesis. In E. coli, NikR interferes with translation through toxin-antitoxin 

systems involving the mccB and mccC genes. This may also be the case in H. pylori, as it 

possesses orthologs of these genes. 

The construction of a multi-strain RNA-seq dataset using pangenome analysis enhances 

the reliability and interpretability of iModulon analysis. This approach provides a more robust 

understanding of the regulatory networks and gene functionality in H. pylori, paving the way for 

further research into its pathogenic mechanisms.  
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Figure 14. iModulon activity comparison between NikR and ribosome iModulon. 

Limitation 

A few limitations must be acknowledged as these offer opportunities for future research 

and refinement of methodologies to better understand this complex pathogen. A major limitation 

is the lack of functional annotations for many of the genes identified, especially within the 

accessory and rare genomes. This gap in knowledge hinders our ability to fully comprehend the 

roles of these genes in pathogenicity and adaptability. 

Additionally, this study relies heavily on computational algorithms such as CD-HIT, 

Non-negative matrix factorization (NMF), and random forest Classifiers. While these tools are 

powerful for data analysis, their inherent limitations can influence the outcomes. For example, 

the choice of parameters in NMF and the reliance on pre-defined thresholds in CD-HIT could 

affect the accuracy of gene clustering and phylogenetic grouping. These parameters might lead to 
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biases in identifying gene functions and strain relationships. Further refinement and validation of 

these methods could enhance their reliability and applicability, ensuring that the results 

accurately reflect the genetic architecture of the pangenome. 
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