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ABSTRACT OF THE DISSERTATION

Combinatorics Of Macdonald Polynomials And Extensions

by

Jason Bandlow

Doctor of Philosophy in Mathematics

University of California San Diego, 2007

Professor Adriano Garsia, Chair

The theory of symmetric functions is ubiquitous throughout mathematics. They

arise naturally in combinatorics, algebra, and geometry, and as a result have been

studied intensively for many years. This classical area was revitalized in 1988, with

Ian Macdonald’s description of what are now known as the Macdonald polynomi-

als. These are a two parameter basis for the space of symmetric functions, which

specialize to many of the well-known one parameter and classical bases.

Macdonald conjectured that when a certain normalization of these polynomials

were expanded in terms of the classical Schur functions, the coefficients would

always be polynomials in N[q, t]. He called these coefficients q, t-Kostka functions,

and the conjecture became known as the Macdonald positivity conjecture. It was

proved in 2001 by Mark Haiman.

While attempting to prove the positivity conjecture, Garsia and Haiman con-

jectured the existence of a larger class of symmetric functions, satisfying certain

properties and indexed by finite subsets of N× N (usually thought of as a collec-

tion of 1× 1 squares in the first quadrant of the plane). Computer generated data

strongly suggested the existence of these polynomials in general.

In 2003, Jim Haglund proposed a purely combinatorial description of the Mac-

donald polynomials. This description, the generating function for a particular pair

of statistics, was soon proved correct by Haiman, Haglund and Nick Loehr.

In this dissertation, we show that the statistics of Haglund allow us to construct

viii



the polynomials of Garsia and Haiman for a particular class of diagrams; namely,

skew shapes with no column of height greater than two. The proof of this fact

involves a new and careful analysis of these statistics.
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1 Introduction and Basic Defini-

tions

The theory of symmetric functions is ubiquitous throughout mathematics.

They arise naturally in combinatorics, algebra, and geometry, and as a result

have been studied intensively for many years. This classical area was revitalized in

1988, with Ian Macdonald’s description of what are now known as the Macdonald

polynomials. These are a two parameter basis for the space of symmetric functions,

which specialize to many of the well-known one parameter and classical bases.

These polynomials, indexed by partitions, were first described as the unique

symmetric functions satisfying certain triangularity and orthogonality conditions.

With this definition, a fairly lengthy proof was required just to show their exis-

tence. Unfortunately, the proof gave very little insight into an explicit form for

the polynomials. Nevertheless, Macdonald was able to compute many examples.

In particular, after applying a simple transformation he obtained what he referred

to as the “integral form” of these polynomials, denoted Jµ[X; q, t]. He conjectured

that when the Jµ[X; q, t] were expanded in terms of certain functions sλ[X(1− t)],

the coefficients would always be polynomials in N[q, t], despite the fact that, a pri-

ori, these coefficients could only be said to be rational functions in q and t. These

coefficients were called the q,t-Kostka functions, and the statement became known

as the Macdonald positivity conjecture. (The sλ[X(1− t)] are a “plethystic trans-

formation” of the classical Schur functions sλ(x1, x2, · · · ). A precise description

will be given in section 1.2.6.)

Throughout the 1990s, Adriano Garsia and Mark Haiman approached the pos-

itivity conjecture by relating the q,t-Kostka functions to certain representations

1
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of the symmetric group. In particular, they described certain subspaces of the

ring of polynomials in the two sets of variables, x1, x2, · · · and y1, y2, · · · . These

subspaces are indexed by partitions, and called Mµ. The symmetric group acts on

Mµ, and Garsia and Haiman conjectured that the bigraded Frobenius character

of this representation was related to Jµ[X; q, t] in a precise way, which would im-

mediately imply the positivity conjecture. They were later able to show that this

would follow if it could only be shown that dimQ(Mµ) = n! (where µ is a partition

of n). This became known as the n! conjecture.

While attempting to prove the n! conjecture, Garsia and Haiman generated an

entire framework of conjectures (implying, but not all implied by, the n! conjecture)

which became known as “science fiction”. Considerations of the representation

theory suggested these conjectures, all of which were supported by an enormous

amount of computer generated data.

In 2001, following a geometric approach suggested by Claudio Procesi, Haiman

proved what is now the n! theorem. This finally established Macdonald’s positivity

conjecture, but many questions remained open. For example, the positivity result

implies that there should be a purely combinatorial description of the q, t-Kostka

polynomials; however, such a description remains unknown. Many of the “science

fiction” conjectures also remain open.

An advance in the combinatorial direction was made in 2003 which Jim Haglund

proposed a purely combinatorial description of the modified Macdonald polyno-

mials. This was soon proved correct by Haiman, Haglund and Nick Loehr. This

description does not give a combinatorial description of the q, t-Kostka polynomi-

als, but it has provided an approach for studying this and other open combinatorial

questions concerning Macdonald polynomials.

In particular, as part of the “science fiction” conjectures, Garsia and Haiman

suggested that there should exist an extension of the modified Macdonald polyno-

mials to a family of polynomials indexed not only by partitions, but by any finite

collection of “cells” corresponding to points in the lattice of ordered pairs of natu-

ral numbers. They proposed a collection of axioms that such polynomials should

satisfy, and were able to use these axioms to compute several examples. However
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their existence in general, remained a conjecture.

In this dissertation, we will see that the statistics of Haglund allow us to con-

struct these polynomials for a particular class of diagrams; namely, skew shapes

with no column of height greater than two. The proof of this fact involves a care-

ful analysis of these statistics particularly in the case of rectangular or almost

rectangular shapes.

We begin by defining many of the basic objects of study, along with giving some

of their fundamental properties. For more information, see one of the standard

texts on the subject, including [Ful91] [Mac], [Sta97], and [Sta99].

1.1 Basic Combinatorial Objects

1.1.1 Partitions

Definition 1. A partition λ of a positive integer n is a sequence (λ1, λ2, . . . , λk)

of positive integers satisfying

1. λi ≥ λi+1 for 1 ≤ i < k and

2.
∑k

i=1 λi = n.

We write λ ` n to say λ is a partition of n. For λ = (λ1, . . . , λk) a partition of

n, we say the length of λ is k (written l(λ) = k) and the size of λ is n (written

|λ| = n). The numbers λi are referred to as the parts of λ. We write Par(n) for

the set of all partitions of n.

Definition 2. The Young diagram (also called a Ferrers diagram) of a partition

λ is a collection of boxes (or cells), left justified and with λi cells in the ith row

from the bottom. The cells are indexed by pairs (i, j), with i being the row index

(the bottom row is row 0), and j being the column index (the leftmost column is

column 0).
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Example 1. The Young diagram of the partition λ = (6, 5, 4, 4, 3, 1) is

.

We say the partition µ is contained in λ, and write µ ⊆ λ, when the Young

diagram of λ contains the Young diagram of µ, i.e., µi ≤ λi for all i. When µ ⊆ λ,

we also have a Young diagram for the shape λ \ µ, given by removing the cells in

the diagram of µ from the diagram of λ. Such a diagram is called skew.

Example 2. The Young diagram for the skew shape (6, 5, 4, 4, 3, 1) \ (3, 3, 1) is

.

We now define some statistics on the cells of a Young diagram. For a given cell

c ∈ λ, the arm (respectively leg, coarm, coleg) of c is the number of cells in the

diagram and strictly to the right (resp. above, to the left, below) c. It is denoted

by a(c) (resp. l(c), a′(c), l′(c)).

Example 3. In the following diagram, we have a(c) = 1, l(c) = 2, a′(c) = 3,

l′(c) = 1.

c

Another important statistic is defined here:

n(λ) =
∑

c∈λ

l(c)

=
∑

i

(i− 1)λi.
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Definition 3. The transpose of a partition λ, indicated by λ′, is given by reflecting

the Young diagram of λ about the main diagonal, i = j.

Example 4. The transpose of the partition (6, 5, 4, 4, 3, 1) is (6, 5, 5, 4, 2, 1):







′

= .

For fixed n, there is a total ordering on Par(n), called lexicographic ordering.

It is denoted by <L, and defined by setting λ <L µ if there exists a k such that

1. λi = µi for i < k and

2. λk < µk.

There is also a commonly used partial ordering on the set of partitions, called

dominance order, and denoted by <D, or just < This is given by defining λ <L µ

if for all positive integers k:

k∑

i=1

λi ≤

k∑

i=1

µi.

It is easy to see that lexicographic order refines dominance order. We also have

the following standard fact, the proof of which can be found in [Sta99].

Proposition 1. Transposition reverses dominance order. In symbols, λ ≤D µ if

and only if µ′ ≤D λ′.

1.1.2 Tableaux

Definition 4. A tableau of shape λ ` n is a function from the cells of the Young

diagram of λ to the positive integers. The shape of T is denoted by sh(T ). The

size of a tableau T , |T |, is the size of sh(T ). A tableau which is weakly increasing

across rows and strictly increasing up columns is called semi-standard. A tableau
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which is strictly increasing across rows and up columns is called standard. The

weight of a tableau is the vector

wt(T ) = (|T−1(1)|, |T−1(2)|, . . . ).

Analogous definitions apply for skew tableaux of shape λ \ µ.

Throughout this document, for any vector of integers α, we use the notation

xα =
∏

i≥1

xαi

i

For T a tableau, we use the shorthand notation xT for xwt(T ).

We often depict a tableau T by a diagram in which the (i, j) cell contains the

number T (i, j).

Example 5. Let

T = 3 5
1 1 4

.

This T is a semi-standard tableau with

1. |T | = 5,

2. sh(T ) = (3, 2),

3. wt(T ) = (2, 0, 1, 1, 1, 0, 0, . . . ) and

4. xT = x2
1x3x4x5.

1.1.3 Compositions

Definition 5. A composition of a number n is a vector of positive integers α =

(α1, α2, . . . , αk) with
∑k

i=1 αi = n. We write α |= n to say α is a composition of

n. We say the length of α is k (written l(α) = k) and the size of α is n (written

|α| = n). The numbers αi are called the parts of α. We write Comp(n) for the set

of compositions of n.

There is a well-known bijection between compositions of n and subsets of the

set {1, . . . , n− 1}. This bijection is given by the following two functions:
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• For α = (α1, . . . , αk) |= n, the subset associated to α is given by

S(α) = {α1, α1 + α2, . . . , α1 + · · ·+ αk−1}

• For S = {s1, . . . , sk} ⊆ {1, . . . , n− 1}, with s1 < s2 < · · · < sk, the composi-

tion of n associated to S is

con(S) = {s1, s2 − s1, s3 − s2, . . . , n− sk}

It is not hard to see that these functions are indeed inverses. This shows that

|Comp(n)| = 2n−1.

1.1.4 Words

Definition 6. A word of length n is a function from {1, . . . , n} to the positive

integers. The weight or content of a word w is the vector

wt(w) = ct(w) =
{
|w−1(1)|, |w−1(2)|, . . . ,

}
.

We will think of words as vectors

w = (w(1), w(2), . . . ) = (w1, w2, . . . )

and when we can do so without ambiguity, we write the word w = (w1, w2, . . . , wn)

as simply w1w2 . . . wn. A word with weight (1, 1, . . . , 1) is called a permutation.

Definition 7. The set of rearrangements of a word w is denoted R(w) and is

defined by

R(w) = {v : ct(v) = ct(w)}

Example 6. The rearrangements of the word (1, 1, 3, 3) are given by

R(1, 1, 3, 3) = {(1, 1, 3, 3), (1, 3, 1, 3), (1, 3, 3, 1), (3, 1, 1, 3), (3, 1, 3, 1), (3, 3, 1, 1)}

We associate a permutation to every word through a map called standardiza-

tion.
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Definition 8. A word w with content {m1, . . . , mk} has standardization (std(σ))

given by replacing the 1s from left to right with 1, . . . , m1, replacing the 2s with

m1 + 1, . . . , m1 + m2, etc.

Example 7. The standardization of (1, 5, 3, 3, 2, 4, 1, 2, 1) is given by

std(153324121) = 196748253.

Definition 9. Given a permutation σ = σ1σ2 . . . σn ∈ Sn, the descent set d(σ) is

given by

d(σ) = {i : σi > σi+1}

For example, we have d(53412) = {1, 3}. Note that in general we have d(σ) ⊆

{1, . . . , n− 1}. For σ a permutation of length n, we will write co(σ) for con(d(σ)).

The following proposition characterizes the set of permutations which are the

image under standardization of the set of words with a given content.

Proposition 2. For a fixed composition α |= n− 1 we have

{std(w) : ct(w) = α} = {σ ∈ Sn : d(σ−1) ⊆ S(α)}

Proof. Given a word w of content α, the standardization std(w) will have i + 1

to the left of i only if i and i + 1 came from different letters in w. This can only

happen if i ∈ S(α). The following example may make this more clear:

α = (3, 1, 2)

S(α) = {3, 4}

w = 313121

std(w) = 516243

So we have

{std(w) : ct(w) = α} = {σ ∈ Sn : i is left of i + 1 only if i ∈ S(α)}
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Also, a descent occurs at position i in σ−1 if and only if i + 1 is to the left of i in

σ. Again, we consider our simple example:

σ = 516243

σ−1 = 246513

d(σ−1) = {3, 4}

Thus

{σ ∈ Sn : d(σ−1) ⊆ S(α)} = {σ ∈ Sn : i is left of i + 1 only if i ∈ S(α)}

which completes the proof.

1.2 Symmetric Functions

1.2.1 Formal Power Series

We begin this section by saying a bit about the rings in which we work. We let

X be the infinite set of variables {x1, x2, · · · } The “base” ring for most calculations

will be the ring QJXK of formal power series in infinitely many variables. We use

common shorthand to refer to elements of this ring; for example

1

1− xi

=
∑

j≥0

xj
i = (1− xi)

−1

exp(xi) =
∑

j≥0

xj
i

j!

Many of the following definitions use the ring QJXKJtK. In this ring, we denote

by f
∣∣∣
t
the coefficient of t in f , which in general is an element of QJXK.

A symmetric function in the variables X is an element of QJXK which is in-

variant under permutation of subscripts. We Q as our coefficient field; however,

any field of characteristic 0 would do just as well. The symmetric functions form

a subring Λ ⊂ QJXK. We now define several important elements of Λ.

1. For i > 0 we define

ei =
∏

j>0

(1 + txj)
∣∣∣
ti
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For λ a partition of length k, we set

eλ :=

k∏

i=1

eλi
.

These functions are known as the elementary symmetric functions.

2. For i > 0 we define

hi =
∏

j>0

1

1− txj

∣∣∣
ti

For λ a partition of length k, we set

hλ :=

k∏

i=1

hλi
.

These functions are known as the complete homogeneous symmetric func-

tions or, less precisely but more conventially, as the homogeneous symmetric

functions.

3. For i > 0 we define

pi =
∑

j>0

xj
i

For λ a partition of length k, we set

pλ :=

k∏

i=1

pλi
.

These functions are known as the power symmetric functions.

4. For λ any partition, we think of λ as an infinite length vector by appending

0s, so (λ1, · · · , λk) becomes (λ1, · · · , λk, 0, 0, · · · ). We then define

mλ =
∑

α∈R(λ)

xα

These functions are known as the monomial symmetric functions.
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5. For any partition λ we define

sλ =
∑

T

xT

where the sum is over all semi-standard tableaux of shape λ. We extend this

definition to all skew shapes λ \µ. These are known as the Schur symmetric

functions.

The importance of these examples can be seen in the following proposition.

Proposition 3. The collections {eλ}λ`n, {hλ}λ`n, {pλ}λ`n, {mλ}λ`n, {sλ}λ`n are

all bases over Q for the vector space of homogeneous symmetric functions of degree

n.

Proof. See [Mac] or [Sta99].

Note that this proposition gives that the collection {ei}i≥0 is algebraically in-

dependent (and similarly for the hi and pi).

1.2.2 The Hall Inner Product

The algebra Λ has a useful inner product, known as the Hall inner product,

defined by making the Schur functions orthonormal. Precisely, we set

〈sλ, sµ〉 =





1 if λ = µ

0 otherwise

and extend linearly.

We now state some general facts about inner product spaces of formal power

series. Two bases {fλ}λ and {gλ}λ of such a space are called dual if they have the

property that for all power series P (x)

P (x) =
∑

λ

〈P (y), fλ(y)〉.gλ(x)

Of course, by linearity we then have

P (x) = 〈P (y),
∑

λ

fλ(y)gλ(x)〉.



12

The quantity
∑

λ fλ(y)gλ(x) is called the reproducing kernel of the inner product

space.

Proposition 4. Two bases {fλ}λ and {gλ}λ are dual if and only
∑

λ fλ(y)gλ(x) is

the reproducing kernel.

Proof. From the comments above, we must only verify that the reproducing kernel

is independent of the choice of dual bases. This calculation is straightforward.

Remark 1. Of course, we are only using polynomiality here to apply the labels x and

y, and we are only using multiplication in a purely formal sense. For an arbitrary

inner product space V , we can think of the reproducing kernel as an element of

V ⊗ V , but the above notation will be more convenient for our purposes.

Using the Hall inner product, we have the following relations among the bases

of Λ.

Proposition 5. 1. The basis {sλ} is self-dual.

2. The reproducing kernel is

K(x, y) =
∏

i,j

1

1− xiyj

This is known as the Cauchy kernel.

3. The bases {mλ} and {hλ} are dual.

4. The basis
{

pλ√
zλ

}
is self-dual. We define zλ by setting mi to be the number

of times i occurs as a part of λ, and

zλ =

|λ|∏

i=1

imi(mi)!

5. The adjoint operation to multiplication by sλ is skewing by sλ. That is

〈sλsµ, sν〉 = 〈sµ, sν\λ〉

for all λ, µ, ν with |λ|+ |µ| = |ν|.

6. The adjoint of multiplication by p1 is differentiation by p1.

Proof. See [Mac].
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1.2.3 The Involution ω

We define the function ω on Λ by setting

ω(ei) = hi

and extending algebraically. This function has the following properties.

Proposition 6. 1. ω(hi) = ei (so ω is an involution).

2. ω(sλ) = sλ′

3. ω(pk) = (−1)k−1pk.

Proof. See [Mac].

1.2.4 Symmetric Function Relations

Some details about transitions between the various bases are given here. For a

more complete account, see, e.g., [Mac], or [Sta99].

We define the following generating functions for the elementary, homogeneous

and power bases:

H(t) =
∑

j≥0

hjt
j

E(t) =
∑

j≥0

ejt
j

P (t) =
∑

j≥1

pj

j

Proposition 7. We have the following relationships among these generating func-

tions:

H(t) =
∏

i

1

1− txi

E(t) =
∏

i

(1 + txi)

H(t)E(−t) = 1

H(t) = exp (P (t))
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Proof. These follow immediately from the definitions and the identity

1

1− x
= exp

(
∑

i≥1

xi

i

)

Definition 10. The number of semi-standard tableaux of shape λ and weight µ

is called the Kostka number indexed by λ and µ. It is written Kλ,µ. By definition,

this is the coefficient of mµ in sλ.

We sometimes write relationships between bases in matrix notation. For exam-

ple, we order the partitions lexicographically, and let K be the |Par(n)|×|Par(n)|

matrix with K(λ, µ) = Kλ,µ. We set, for b a basis of the symmetric functions, 〈b〉

to be the row vector with entries bλ in lexicographic order. This allows us to write

〈s〉t = K〈m〉t

We also have

〈h〉t = Kt〈s〉t or, more simply,

〈h〉 = 〈s〉K

The following rule, for multiplying Schur functions by elementary functions is

known as the Pieri rule.

Proposition 8. We have

eisλ =
∑

µ

sµ

where the sum is over all partitions µ of size |λ|+ i which contain λ and with µ \λ

having no two cells in the same row. Similarly,

hisλ =
∑

µ

sµ

where here the sum is over all partitions µ of size |λ|+ i which contain λ and with

µ \ λ having no two cells in the same column.

Proof. See [Mac].
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1.2.5 Quasisymmetric functions

There is an important algebra which contains the symmetric functions and is

contained in the polynomial ring. This is the algebra of quasisymmetric functions,

first introduced by Gessel.

Definition 11. Let α = (α1, α2, · · · ) be a vector of nonnegative integers, with

only a finite number of nonzero entries. We say another such vector α′ is a weak

rearrangement of α if the non-zero entries are identical to those of α and in the

same relative order. We denote by W (α) the set of weak rearrangements of α.

Example 8.

W (2, 3, 0, 0, · · · ) = {(2, 0, 3, 0, · · · ),(0, 2, 3, 0, · · · ), (2, 0, 0, 3, 0, · · · ),

(0, 2, 0, 3, 0, · · · ), (0, 0, 2, 3, 0, · · ·), · · · }

Definition 12. A function f is quasisymmetric if for any composition α,

f |xα = fxα′ for all α′ ∈W (α).

It is not hard to verify that sums and products of quasisymmetric functions are

quasisymmetric and to see that all symmetric functions are also quasisymmetric.

The quasisymmetric functions have two important bases.

Definition 13. Given a composition α of length n, the monomial quasisymmetric

function indexed by α is given by thinking of α as an infinite length vector by

appending 0s, and then setting

Mα =
∑

β∈W (α)

xβ

It is clear that these form a basis for the quasisymmetric functions.

Definition 14. The fundamental quasisymmetric function indexed by α, a com-

position of n, is given by

Qα =
∑

S

Mcon(S)

where the sum is over all S ⊆ {1, . . . , n− 1} which contain S(α).

These are triangular with respect to the monomial basis, and thus also form

basis.
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1.2.6 Plethysm

The operation of plethysm is one which generalizes symmetric functions, so

that we may apply them to any formal power series, not just a set of variables.

The precise definition follows.

Definition 15. For E = E(t1, t2, . . . ) a formal power series, and f = Q(p1, p2, . . . )

a polynomial in the power symmetric functions, we set

f [E] = Q(p1, p2, . . . )
∣∣∣
pk→E(tk1 ,tk2 ,... )

Example 9. For X = x1 + x2 + x3 + . . . and f ∈ Λ, we have

f [X] = f(x1, x2, x3, . . . )

For this reason we abuse notation and use the same symbol (e.g., X) for an

alphabet ({x1, x2, . . . }) and for the formal sum of all variables in that alphabet

(x1 + x2 + . . . ).

We now establish the most important properties of plethysm.

Proposition 9. For any two formal power series A, B and any partition λ, we

have

pλ[AB] = pλ[A]pλ[B]

Proof. If A and B are power series in different sets of variables, we can consider

them to be formal power series in the combined set of variables {t1, t2, t3, . . . }. Thus

we can write A =
∑

α aαtα and B =
∑

β bβtβ. The proof is now a straightforward



17

calculation:

pλ[AB] =
∏

i

pλi
[AB]

=
∏

i

pλi

[
∑

γ

∑

α+β=γ

aαbβtγ

]

=
∏

i

(
∑

γ

∑

α+β=γ

aαbβtλiγ

)

=
∏

i

(
∑

α

aαtλiα

)(
∑

β

bβt
λiβ

)

=
∏

i

pλi
[A]pλi

[B]

= pλ[A]pλ[B]

It is worth noting that this property does not extend to symmetric functions

in general. It is easy to verify, for example, that h2[XY ] 6= h2[X]h2[Y ].

A very common use of plethystic substitution is to place inside the brackets

an alphabet X multiplied by some invertible formal power series in the variables

q and t. The following proposition shows that this operation is invertible.

Proposition 10. Let X = x1 +x2 + . . . as usual, and let E be an invertible formal

power series in some set of variables {t1, t2, . . .} disjoint from X. Let f ∈ Λ,

and set g = f [XE], considered as a symmetric function in the variables X with

coefficients in the ring QJt1, t2, . . .K. Then g[XE−1] = f [X].

Proof. We write f =
∑

λ fλpλ. We have

f [XE] =
∑

λ

fλpλ[XE]

=
∑

λ

fλpλ[E]pλ[X]

so we can write g =
∑

λ gλpλ where

gλ = fλpλ[E]
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Thus we have

g[XE−1] =
∑

λ

fλpλ[E]pλ[XE−1]

=
∑

λ

fλpλ[1]pλ[X]

= f [X]

since pλ[1] = 1 for any λ.

It is important to note that if we specialize the variables involved in a plethystic

expression, we must generally specify whether this specialization is to be done

before or after the plethystic operation. For example,

p2

[
t
∣∣∣
t→−x

]
= p2[(−1)x] = (−1)x2

while

p2[t]
∣∣∣
t→−x

= t2
∣∣∣
t→−x

= x2

There are important exceptions to this: if the specialization we are considering

(say to the variable x) commutes with the homomorphism x 7→ xk for all k, then it

does not matter whether we do so before or after evaluating the plethystic bracket.

In particular, the specializations x 7→ 0, x 7→ 1, and x 7→ x−1 can be done inside

or outside the plethystic brackets with equivalent results.

However, the operation of specializing a variable to its negative, as we saw

above, does not commute with taking powers. Performing this specialization after

a plethystic evaluation is common enough that we have a special notation for it.

We write f [−x] for f [x]
∣∣∣
x→−x

.

Proposition 11. We have f [−−X] = (ωf)[X].

Proof. Since ω is a algebra homomorphism, it is enough to check this for the pk.

pk[−
−X] = pk[−X]

∣∣∣
X→−X

= −pk(−x1,−x2, . . . )

= (−1)k−1pk[X]

= (ωpk)[X]
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Example 10. For any formal power series E, any variable u, and any partition λ,

we have

sλ[−tX] = ωsλ[
−tX]

= (−t)|λ|ωsλ[X]

= (−t)|λ|sλ′ [X]

We give one more formula which will be useful for us.

Proposition 12. For any partition λ and the infinite alphabets X = x1 +x2 + . . .

and Y = y1 + y2 + . . . we have

sλ[X + Y ] =
∑

µ⊆λ

sµ[X]sλ\µ[Y ]

Proof. We think of the alphabet Y as being strictly greater than the alphabet X,

and the result follows from the combinatorial definition of the Schur functions.

1.3 Basic Sn Representation Theory

A representation of a group G is a homomorphism G→ GL(V ) for some finite

dimensional vector space V . To avoid explicitly naming this homomorphism, we

will abuse notation and refer to V as the representation and to the image of an

element g ∈ G as g
∣∣∣
V
.

A subrepresentation of a representation V is a subspace V ⊆ W which is

invariant under the action of G. A representation V is called irreducible if the only

subrepresentations of V are {0} and V .

It is well known that every finite-dimensional representation of a finite group

is isomorphic to the direct sum of a finite number of irreducible representations.

Furthermore, the number of these irreducible representations is the number of

conjugacy classes of the group.

We will be concerned here with representations of the symmetric group, Sn. The

irreducible representations of Sn are indexed by partitions; there is a well-known,

conventional construction of the irreducible representation V λ for any λ ` n.
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The character of a representation of a finite group G is a map G→ C defined

by g 7→ tr(g
∣∣∣
V
). The fact which forms the basis for the study of representation

theory is the following.

Proposition 13. Every representation of a finite group is determined (up to iso-

morphism) by its character.

The characters of Sn form a basis for the center of the group algebra of Sn.

There is an isomorphism between the center of the group algebra of Sn, and the

degree n symmetric functions. This map, F sends χ(V λ) 7→ sλ. The map F is

called the Frobenius map and the image of a character of some representation V

under the Frobenius map is known as the Frobenius character of V .

The representations we will be concerned with will be contained in the ring

Rn = Q[x1, x2, · · · , xn]. They will not, in general, be finite dimensional, but they

will decompose as the direct sum of finite dimensional subrepresentations. These

subrepresentations will consist of the homogeneous polynomials of fixed degree.

Precisely, we write Hk[Rn] for the set of homogeneous polynomials of degree k

in Rn. We call a representation V ⊆ Rn of Sn homogeneous if for each k, we have

Hk[V ] (defined by V ∩ Hk[Rn]) a subrepresentation of V . In this case, we define

the Hilbert series of V by

Hilb(V ) =
∑

k≥0

(dimQHk[V ])qk.

Similarly, we define the graded Frobenius character of V by

Fg(V ) =
∑

k≥0

F(χ(Hk[V ])).



2 Macdonald Polynomials

The Macdonald polynomials are a family of symmetric polynomials with coef-

ficients which are, a priori, in the field Q(q, t). The goals of this chapter are to

define these polynomials and some well-known modifications, and discuss some of

their properties and implications.

Theorem 1 (Macdonald). There exists a unique family of symmetric polynomials

indexed by partitions, {Pλ[X; q, t]} such that

1. Pλ = sλ +
∑

µ<λ ξµ,λ(q, t)sµ

2. 〈Pλ, Pµ〉q,t = 0 if λ 6= µ.

where

〈pλ, pµ〉q,t =





zλpλ

[
1−t
1−q

]
if λ = µ

0 otherwise

and ξµ,λ(q, t) ∈ Q(q, t).

Proof. See [Mac].

Note that the Macdonald polynomials are triangularly related to the Schur

basis, and thus also form a basis for the symmetric functions. We begin our

discussion of this basis by giving some comparisons with the classical theory of

symmetric functions. As the inner product is central to this definition, we begin

by establishing some some results concerning it. We first notice that if we set

zλ(q, t) = zλ

∏

i

1− qλi

1− tλi

21
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we can write the inner product as

〈pλ, pµ〉q,t =





zλ(q, t) if λ = µ

0 ortherwise

This is compared with the Hall inner product which can be given by

〈pλ, pµ〉 =





zλ if λ = µ

0 otherwise

We now explore the reproducing kernel with respect to the inner product 〈·, ·〉q,t.

Plethystic notation provides a convenient way to compare this with the Cauchy

kernel. We begin by defining the function

Ω[X] := exp

(
∑

k≥1

pk[X]

k

)

=
∏

i

exp

(
∑

k≥1

xk
i

k

)

=
∏

i

1

1− xi

=
∑

λ

pλ[X]

zλ

A plethystic substitution gives

Ω[XY ] = exp

(
∑

k≥1

pk[X]pk[Y ]

k

)

=
∏

i,j

1

1− xiyj

which, recall, is the Cauchy kernel; the reproducing kernel for the Hall inner prod-

uct. We also have

Ω[X(1− t)] = exp

(
∑

k≥1

1

k

(
∑

i

xk
i −

∑

i

(txi)
k

))

=
∏

i

1− txi

1− xi
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and similarly,

Ω

[
XY

1− t

1− q

]
= exp

(
∑

k≥1

pk[X]pk[Y ]

k

1− tk

1− qk

)

=
∏

s≥0

∏

i

∏

j

1− txiyjq
s

1− xiyjqs

We call this last quantity Macdonald’s kernel and denote it by Ωq,t[XY ].

It is now easy to see that the reproducing kernel for the inner product 〈·, ·〉q,t

is given by

∑

λ

pλ[X]

zλpλ[
1−q

1−t
]
pλ[Y ] =

∑

λ

pλ

[
XY 1−t

1−q

]

zλ

= Ωq,t [XY ]

Macdonald noticed that the Macdonald polynomials are invariant under invert-

ing q and t, as made precise in the following proposition.

Proposition 14.

Pλ[X; q, t] = Pλ

[
X; q−1, t−1

]

Proof. We first consider the scalar product we get by inverting q and t.

〈pλ, pµ〉q−1,t−1 = χ(λ = µ)zλ

∏

i

1− q−λi

1− t−λi

= χ(λ = µ)zλ

∏

i

tλi

qλi

∏

i

qλi − 1

tλi − 1

= χ(λ = µ)zλ

(
t

q

)n

pλ

[
1− q

1− t

]

=

(
t

q

)n

〈pλ, pµ〉q,t

Setting t→ t−1 and q → q−1 in property (1) of Macdonald’s polynomials, gives

Pλ

[
X; q−1, t−1

]
= sλ +

∑

µ<λ

sµξµ,λ(q
−1, t−1)

so the Pλ [X; q−1, t−1] also satisfy (1).
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Similarly, setting t→ t−1 and q → q−1 in property (2) gives, for λ 6= µ,

0 = 〈Pλ

[
X; q−1, t−1

]
, Pµ

[
X; q−1, t−1

]
〉q−1,t−1

=

(
t

q

)n

〈Pλ

[
X; q−1, t−1

]
, Pµ

[
X; q−1, t−1

]
〉q,t

so the Pλ [X; q−1, t−1] satisfy property (2) as well. The uniqueness of the Pλ gives

the desired result.

Macdonald also computes the following specializations of the Pλ[X; q, t], which

we do not prove here.

Proposition 15. We have the following specializations:

Pλ[X; t, t] = sλ[X]

Pλ[X; q, 1] = mλ[X]

Pλ[X; 1, t] = eλ′ [X]

P(1n)[X; q, t] = en[X]

Proof. See [Mac].

Much of the interest in Macdonald polynomials has not been in the functions

Pλ[X; q, t] themselves, but rather in certain modifications of them. In this section,

we give these modifications, and describe how some of the properties of the Pλ

apply to them.

In order to simplify the notation for these modifications, we use the following

common abbreviations.

hλ(q, t) =
∏

c∈λ

(1− qa(c)tl(c)+1)

h′λ(q, t) =
∏

c∈λ

(1− tl(c)qa(c)+1)

dλ(q, t) =
hλ(q, t)

h′λ(q, t)

(Recall the definitions of arm and leg given earlier.)

By definition, the Pλ[X; q, t] are orthogonal; however, they are not orthonormal.

Macdonald computed the inner product of Pλ with itself.
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Proposition 16 (Macdonald). With respect to the Macdonald inner product, we

have

〈Pλ[X; q, t], Pλ[X; q, t]〉q,t =
1

dλ(q, t)

Proof. See [Mac].

This fact allows us to define the dual basis to the Pλ[X; q, t]:

Qλ[X; q, t] =
Pλ[X; q, t]

dλ(q, t)

We now introduce an important q, t analog of the ω involution.

Definition 16. We define the homomorphism ωq,t on symmetric functions by

ωq,tf [X] = (ωf)

[
X

1− q

1− t

]

Note that ωq,t is not an involution, but that (ωq,t)
−1 = ωt,q. The action of ωq,t

on the Pλ[X; q, t] is very nice.

Proposition 17.

ωq,tPλ[X; q, t] = Qλ′ [X; t, q]

=
1

dλ′(q, t)
Pλ′ [X; t, q]

Proof. See [Mac].

We are now in a position to define what Macdonald refers to as the “integral

form” of these polynomials. These are modifications of the Pλ[X; q, t] which have

“nice” expansions in terms of modified Schur functions. Precisely, we begin with

the following definition:

Jµ[X; q, t] = hµPµ[X; q, t]

= h′µQµ[X; q.t]
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We then define the q, t-Kostka functions by means of the following expansion:

Jµ[X; q, t] :=
∑

λ`|µ|
Kλ,µ(q, t)sλ[X(1− t)]

In fact, we will find it more convenient to work with the functions whose ordi-

nary Schur function coefficients are given by the Kλ,µ(q, t). To that end we define

Hµ[X; q, t] = Jµ

[
X

1− t
; q, t

]

=
∑

λ`|µ|
Kλ,µ(q, t)sλ[X]

For representation theoretical reasons to be discussed later, we define one final

modification:

H̃µ[X; q, t] = tn(µ)Hµ[X; q, t−1]

=
∑

λ`|µ|
K̃λ,µ(q, t)sλ[X]

where the functions

K̃λ,µ(q, t) = tn(µ)Kλ,µ(q, t−1)

are the called the modified q, t-Kostka functions.

Macdonald introduced the Jλ[X; q, t] and the q, t-Kostka functions in 1988; he

conjectured at that time that the q, t-Kostka functions were polynomials in N[q, t].

After much work, this was finally proved in 2001 by Mark Haiman.

Theorem 2 (Haiman). The Kλ,µ(q, t) are polynomials in q and t with non-negative

integer coefficients.

Proof. See [Hai01].

In fact, Haiman proved a much stronger result, about which more will be said

in a later section.
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2.1 Modified Macdonald Polynomials

From a representation theoretical standpoint, the most important “flavor” of

the Macdonald polynomials is the H̃µ. Correspondingly, this section is devoted to

establishing the significant properties of this modification. The ultimate goal is to

establish conditions describing the H̃µ without reference to the Pµ.

Before proceeding with this, we first establish that the H̃ [X; q, t] satisfy a kind

of “transpose symmetry”. Precisely, we have H̃µ[X; q, t] = H̃µ′[X; t, q]. We show

this by finding two separate relations among the q, t-Kostka polynomials and com-

bining them.

Proposition 18. The q, t-Kostka polynomials satisfy

Kλ,µ(q, t) = qn(µ′

tn(µ)Kλ′,µ

(
q−1, t−1

)
.

Proof. We start with the definition of the Jµ[X; q, t] and use Proposition 14 to

obtain

Jµ

[
X; q−1, t−1

]
= hµ

(
q−1, t−1

)
Pµ

[
X; q−1, t−1

]

=
∏

c∈µ

(
1− q−a(c)t−l(c)−1

)
Pµ[X; q, t]

Since the sum of the a(c) is n(µ′) and the sum of the l(c) is n(µ), we can make the

exponents positive by pulling out a factor:

Jµ

[
X; q−1, t−1

]
= (−1)|µ|q−n(µ′)t−n(µ)−|µ|hµ(q, t)Pµ[X; q, t]

= (−1)|µ|q−n(µ′)t−n(µ)−|µ|Jµ[X; q, t]

=
∑

λ`|µ|
(−1)|µ|q−n(µ′)t−n(µ)−|µ|Kλ,µ(q, t)sλ[X(1− t)] (2.1)

Alternatively, the definition of the q, t-Kostka polynomials gives

Jµ

[
X; q−1, t−1

]
=
∑

λ`|µ|
Kλ,µ

(
q−1, t−1

)
sλ

[
X

(
1−

1

t

)]

Now it follows from Example 10 that

sλ

[
X

(
1−

1

t

)]
= (−t)−|λ|sλ′ [X (1− t)]
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which gives

Jµ

[
X; q−1, t−1

]
=
∑

λ`|µ|
(−t)−|µ|Kλ′,µ

(
q−1, t−1

)
sλ[X(1− t)].

Equating coefficients with 2.1 and simplifying gives the desired result:

Kλ,µ(q, t) = qn(µ′)tn(µ)Kλ′,µ

(
q−1, t−1

)
.

A similar result is obtained by applying ωq,t to the Jµ.

Proposition 19. The q, t-Kostka polynomials satisfy

Kλ,µ(q, t) = Kλ′,µ′(t, q).

Proof. The q, t version of ω applied to Jµ[X; q, t] gives

ωq,tJµ[X; q, t] = hµ(q, t)ωq,tPµ[X; q, t]

= hµ(q, t)Qµ′[X; t, q]

Using the fact that h′µ′(t, q) = hµ(q, t), we get

ωq,tJµ[X; q, t] = hµ′(t, q)Pµ′[X; t, q]

= Jµ′ [X; t, q]

=
∑

λ`|µ|
Kλ,µ′(t, q)sλ[X(1− q)]

On the other hand, we have

ωq,tJµ[X; q, t] =
∑

λ`|µ|
Kλ,µ(q, t)ωq,tsλ [X(1− t)]

=
∑

λ`|µ|
Kλ,µ(q, t)sλ′ [X(1− q)].

Once again, we equate the coefficients in the two different expansions to obtain

the result.

We can put these two results together to obtain the important “transpose

symmetry” property of the H̃µ.
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Proposition 20. The modified Macdonald polynomials H̃µ[X; q, t] satisfy

H̃µ[X; q, t] = H̃µ′ [X; t, q].

Proof. We begin by expanding both sides. The left hand side becomes

H̃µ[X; q, t] =
∑

λ

K̃λ,µ(q, t)sλ[X]

=
∑

λ

tn(µ)Kλ,µ(q, t
−1)sλ[X].

Similarly, the right hand side is

H̃µ′ [X; t, q] =
∑

λ

K̃λ,µ′(t, q)sλ[X]

=
∑

λ

qn(µ′)Kλ,µ′(t, q−1)sλ[X].

Equating coefficients of sλ, we see that it is enough to show

tn(µ)Kλ,µ(q, t−1) = qn(µ′)Kλ,µ′(t, q−1). (2.2)

By Proposition 19 we have

tn(µ)Kλ,µ(q, t−1) = tn(µ)Kλ′,µ′(t−1, q)

and by Proposition 18 this is equal to

tn(µ)Kλ,µ′(t, q−1)(t−1)n(µ)qn(µ′) = qn(µ′)Kλ,µ′(t, q−1)

which establishes 2.2 and completes the proof.

This symmetry provides the means to characterize the H̃µ[X; q, t] independently

of the Pλ[X; q, t].

Proposition 21. The functions H̃µ[X; q, t] are the unique functions in Q(q, t)Λ

satisfying the following conditions:

1.
〈
H̃µ[X; q, t], sλ

[
X

t−1

]〉
= 0 if λ > µ,
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2.
〈
H̃µ[X; q, t], sλ

[
X

1−q

]〉
= 0 if λ < µ, and

3.
〈
H̃µ[X; q, t], s(n)

〉
= 1 (where n = |µ|).

Proof. We first show the H̃µ[X; q, t] do, in fact, satisfy these conditions. The

relationship between the H̃µ[X; q, t] and Pµ[X; q, t] can be succinctly stated as

H̃µ[X; q, t] = tn(µ)hµ

(
q, t−1

)
Pµ

[
X

1− t−1
; q, t−1

]
.

Some plethystic manipulation simplifies the right hand side.

H̃µ[X; q, t] = tn(µ)hµ

(
q, t−1

)
Pµ

[
t

X

t− 1
; q, t−1

]

= tn(µ)hµ

(
q, t−1

)
Pµ

[
t; q, t−1

]
Pµ

[
X

t− 1
; q, t−1

]
.

In matrix form, we have

〈P [X; q, t]〉 = 〈s〉ξ

where ξ is uppper triangular, and

〈H̃ [X; q, t]〉 = Diag

(
tn(µ)hµ

(
q,

1

t

)
Pµ[t; q, t

−1]

)〈
P

[
X

t− 1
; q, t−1

]〉

Thus we can write

〈H̃ [X; q, t]〉 =

〈
s

[
X

t− 1

]〉
U

for some upper triangular matrix U. This is condition (1). It is transpose symme-

try which gives (2). From (1) we have

H̃µ[X; q, t] =
∑

λ≤µ

uλ,µ(q, t)sλ

[
X

t− 1

]

and thus also

H̃µ′ [X; t, q] =
∑

λ≤µ

uλ,µ(q, t)sλ

[
X

t− 1

]
.
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Swapping q and t gives

H̃µ′ [X; q, t] =
∑

λ≤µ

uλ,µ(t, q)sλ

[
X

q − 1

]

which can be rewritten using Proposition 11 as

H̃µ′ [X; q, t] =
∑

λ≤µ

ũλ,µ(t, q)sλ′

[
X

1− q

]
.

Replacing µ′ with µ gives

H̃µ[X; q, t] =
∑

λ≤µ′

ũλ,µ′(t, q)sλ′

[
X

1− q

]
.

Now, the set of partitions {λ′ | λ ≤ µ′} is exactly the set of partitions {ρ | ρ ≥ µ}.

This establishes (2).

We do not prove (3) here; see [Hai99] for a proof.

For uniqueness, let Gµ[X; q, t] be a set of polynomials satisfying the given con-

ditions. Condition (1) implies, for each µ, Gµ[X; q, t] is a linear combination of

sλ [X/(t− 1)] where λ ≤ µ. Thus Gµ is a linear combination of H̃µ[X; q, t] where

λ ≤ µ. Similarly, condition (2) implies that Gµ[X; q, t] is a linear combination of

H̃µ[X; q, t] where λ ≥ µ. The only possibility, therefore, is that Gµ[X; q, t] is a

constant times H̃µ[X; q, t] and by condition (3) that constant is 1.



3 The modules of Garsia-Haiman

Throughout the 1990s, Garsia and Haiman carried out a program to prove

the Macdonald positivity conjecture by realizing the polynomials H̃[X; q.t] as the

bigraded character of an Sn module. While a full survey of their results with this

approach would be impossible in this space, we give the important definitions and

survey some of the results here.

Definition 17. For µ ` n, we label the cells (i, j) in the diagram of µ by

{(p1, q1), · · · , (pn, qn)} by starting in the cell (0, 0) and working left to right, bottom

to top. We then set

∆µ = det ||x
pj

i y
qj

i ||
n
i,j=1

Example 11. For µ = , we have (p1, q1) = (0, 0), (p2, q2) = (0, 1), (p3, q3) =

(0, 2), (p4, q4) = (1, 0) and

∆µ = det




x0
1y

0
1 x0

1y
1
1 x0

1y
2
1 x1

1y
0
1

x0
2y

0
2 x0

2y
1
2 x0

2y
2
2 x1

2y
0
2

x0
3y

0
3 x0

3y
1
3 x0

3y
2
3 x1

3y
0
3

x0
4y

0
4 x0

4y
1
4 x0

4y
2
4 x1

4y
0
4




We define the “diagonal action” of Sn on Q[X, Y ] by setting σ(xi) = xσ(i), σ(yi) =

yσ(i) and extending algebraically. With this action, it is clear that ∆µ is an alter-

nant; that is, that σ∆µ = sgn(σ)∆µ for all σ ∈ Sn. This allows us to define the

following Sn module.

Definition 18. Let Mµ be the linear span of all partial derivatives of ∆µ. In

symbols,

Mµ = Q
{
∂p

x∂
q
y∆µ

}n

|p|,|q|=0
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In [GH93] Garsia and Haiman describe this module and conjectured that it had

bigraded character given by H̃µ[X; q, t]. The validity of this would immediately

imply the positivity conjecture of Macdonald. In particular, they conjectured

that the dimension of Mµ was n!; this became known as the “n! conjecture”. In

[Hai99], Haiman proved the surprising result that these conjectures are equivalent.

In [Hai01], Haiman resolved both of these conjectures positively.

Haiman’s proof of what is now the n! theorem came about by relating the

modules Mµ to the geometry of the Hilbert scheme Hn of points in the complex

plane C2. A purely algebraic proof of the fact is still not known.

While studying the modules Mµ, Garsia and Haiman gave a large collection

of conjectures, suggested by certain representation theoretical heuristics, and sup-

ported by overwhelming experimental evidence. These heuristics became known as

“science fiction”, and the associated conjectures are, for the most part, still open.

In particular, in [GH95] they conjectured the existence of a family of poly-

nomials, indexed by certain lattice diagrams L in the plane, satisfying certain

conditions. To state these conditions we give some further definitions. We say

that two lattice square diagrams L1, L2 are equivalent if they differ by a series of

row and column swaps, and we write L1 ≡ L2 in this case. As with Young dia-

grams, we will define the conjugate of a lattice diagram by reflecting the diagram

about the main diagonal i = j. We write L′ for the conjugate of L. Finally, if L

can be decomposed into two diagrams L1, L2 so that no rook placed on a cell in

L1 attacks any cell in L2, we say that L is decomposable and write L = L1 × L2.

Given a cell in a diagram, the arm (respectively leg, coarm, coleg) are defined

by the number of cells in the diagram and strictly to the East (resp. North, West,

South) of the given cell. This agrees with the previously established notation for

Young diagrams.

These definitions given, they conjectured the existence of polynomials GL[X; q, t]

indexed by diagrams L equivalent to skew Young diagrams, and satisfying the fol-

lowing conditions:

1. For µ a Young diagram, the polynomial Gµ[X; q, t] is the modified Macdonald

polynomial H̃µ[X; q, t].
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2. Polynomials indexed by equivalent diagrams are equal.

3. If a diagram L = L1 × L2 then GL[X; q, t] = GL1 [X; q, t]GL2[X; q, t].

4. GL[X; q, t] = GL′[X; t, q].

5. The polynomials GL satisfy the following equation:

∂p1GL[X; q, t] =
∑

c∈L

qa′(c)tl(c)GL\c[X; q, t] (3.1)

The existence of polynomials satisfying 1 through 4 is clear. Including condition

5 allows us to derive another condition which the polynomials must satisfy.

Proposition 22. Suppose the polynomials GL[X; q, t] described above exist. Then

they must also satisfy

∂p1GL[X; q, t] =
∑

c∈L

qa(c)tl
′(c)GL\c[X; q, t] (3.2)

Proof. By condition 5 we have

∂p1GL′[X; t, q] =
∑

c∈L′

ta
′(c)ql(c)GL′\c[X; t, q]

Applying condition 4 to the left hand side gives

∂p1GL[X; q, t] =
∑

c∈L′

ta
′(c)ql(c)GL′\c[X; t, q]

We note that transposition sends coleg to arm and leg to coarm. Thus we can

apply condition 4 to the right hand side to get

∂p1GL[X; q, t] =
∑

c∈L

qa(c)tl
′(c)GL\c[X; q, t]

as desired.

The inclusion of conditions 3.1 and 3.2 raise the question of whether such

polynomials exist. Nevertheless, it is possible to use these conditions to explicitly

determine the polynomials GL[X; q, t] in many special cases. However, it has never

been proven that this can be done in general. In the following sections, we show

how a combinatorial description of the Macdonald polynomials give an explicit

determination of the GL[X; q, t] where L is equivalent to a skew diagram with no

column of height greater than or equal to 2.



4 The combinatorial description of

Haiman, Haglund and Loehr

A major advance was made in the theory of Macdonald polynomials in [Hag04]

when Jim Haglund proposed a purely combinatorial description of the polynomials

H̃ [X; q, t]. (This was quickly proved correct, in [HHL05].) It is this combinatorial

approach that is at the heart of the proof of the existence of the GL[X; q, t] for the

diagrams we consider. To give this description, we need to introduce some further

notation.

4.1 Diagrams and Statistics

Throughout this section, the diagrams under consideration will always be skew

Young diagrams.

Definition 19. A filling of a diagram L of size n with a word σ of length n (written

(σ, L)) is a function from the cells of the diagram to Z+ given by labeling the cells

from top to bottom and left to right within rows by 1 to n in order, then applying

σ.

Example 12. Let L be the shape (4, 3, 3) \ (1). We have the following filling, where

(1, 5, 3, 3, 2, 4, 1, 2, 1) is written 153324121 for brevity:

153324121,


 =

1 5 3
3 2 4

1 2 1
.

The value of a filling of a particular cell is denoted by σ(c), e.g., σ(1, 0) = 3 in

the filled diagram above.

35
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Definition 20. This ordering (top to bottom and left to right within rows) is

called the reading order, and we write c <R c′ if c precedes c′ in this order.

Definition 21. The descent set of a filled diagram is defined as follows:

Des(σ, L) = {(i, j) ∈ L : (i− 1, j) ∈ L and σ(i, j) > σ(i− 1, j)}

Example 13. In our running example, we have

Des




1 5 3
3 2 4

1 2 1


 =

{
5

,

2

,

4

}

Definition 22. Two distinct cells (i, j) <R (i′, j′) in a filled diagram form an

attacking pair if

• i = i′ OR

• i = i′ + 1 and j′ ≤ j

Definition 23. The Inversion set of a filled diagram is given by

Inv(σ, L) = {(c, c′) : (c, c′) ∈ an attacking pair in L, c <R c′, σ(c) > σ(c′)}.

Example 14. In the running example, we have

Inv




1 5 3
3 2 4

1 2 1


 =

{
5 3

,

5
3

,

3
2

,

3 2

,

4
1 , 2 1

}
.

Definition 24. The maj statistic of a filled diagram is given by

maj(σ, L) =
∑

c∈Des(σ,L)

(leg(c) + 1)

Definition 25. The inv statistic of a filled diagram is given by

inv(σ, L) = |Inv(σ, L)| −
∑

c∈Des(σ,L)

arm(c)

Example 15. In our ongoing example, we have

maj




1 5 3
3 2 4

1 2 1


 = (0 + 1) + (1 + 1) + (1 + 1) = 5

inv




1 5 3
3 2 4

1 2 1


 = 6− (1 + 1 + 0) = 4
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Proposition 23. The statistic inv(σ, L) ≥ 0 for all (σ, L).

Proof. Every cell in the arm of a descent attacks both of the cells involved in the

descent, and must form an inversion with at least one.

We have a different characterization of inv, in the case when the filling σ of L

is a permutation.

Proposition 24. The statistic inv(σ, L) is given by the number of triples x

z

y

which have a counter-clockwise orientation when orderd from smallest to largest,

plus the number of pairs x y, where x > y, and there is no cell directly beneath

x in L.

Proof. See [HHL05].

Such a triple is called an inversion triple.

Proposition 24 is particularly useful, since standardization does not affect the

statistics.

Proposition 25. We have

inv(σ, L) = inv(std(σ), L)

and

maj(σ, L) = maj(std(σ), L)

for all (σ, L).

Proof. It is easy to verify that neither the Inversion set nor the Descent set is

affected.

Example 16.
1 5 3
3 2 4

1 2 1
→

1 9 6
7 4 8

2 5 3

Note that the inversion statistic on the right can be computed by counting the

inversion triples
(

1
7

9
)
,
(

9
4

6
)

and the inversions (7 4), (5 3).
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In what follows it will be useful to have the following notational shorthand:

h(σ, L) = qinv(σ,L)tmaj(σ,L)

For example:

h




1 5 3
3 2 4

1 2 1


 = q4t5

4.2 Introduction of L-multinomial coefficients.

We begin by recalling the following definitions of q-analogs:

• [n]q = 1 + q + · · ·+ qn−1

• [n]q! = [n]q · · · [1]q

•
[
n

k

]
q

= [n]q!
[k]q! [n−k]q!

=
[
n−1
k−1

]
q
+ qk

[
n−1

k

]
q

• For α = (α1, · · · , αk) |= n,
[
n

α

]

q

=
[n]q!

[α1]q! · · · [αk]q!
=

[
n

α1

]

q

[
n− α1

α2

]

q

. . .

[
n− · · · − αk−1

αk

]

q

The following proposition is well known.

Proposition 26.
[
n

α

]

q

=
∑

w:ct(w)=α

qinv(w)

=
∑

w:ct(w)=α

qmaj(w)

We now introduce a family of q, t-analogs of multinomial coefficients indexed

by skew diagrams. The motivation will be to allow us to compute more efficiently

with the condition (3.1).

Definition 26. For α = (α1, . . . , αk) |= n we set
[
n

α

]

L

=
∑

w:ct(w)=α

h(w, L)
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It will also be convenient to set, for any word w,
[
n

w

]

L

=
∑

v∈R(w)

h(v, L)

The next proposition states that these are indeed analogs of multinomial coef-

ficients.

Proposition 27. We have
[
n

α

]

L

∣∣∣∣
q=t=1

=

[
n

α

]

Proof. This is because, for any word w of content α, |R(w)| =
[
n

α

]
.

These multinomial coefficients interpolate between the q and t single variable

multinomial coefficients.

Proposition 28. We have
[
n

α

]

(n)

=

[
n

α

]

q

and

[
n

α

]

(1n)

=

[
n

α

]

t

Proof. These are immediate consequences of the previous proposition and the def-

inition of Haglund’s statistic.

4.3 A Combinatorial Description of CL(x; q, t)

Definition 27. For L a diagram of size n

CL(x; q, t) =
∑

σ∈(Z+)n

h(σ, L)xσ

where xσ means
∏n

i=1 xσ(i).

The following results are due to Haglund, Haiman, and Loehr [HHL05]:

Theorem 3. For L any diagram, CL(x; q, t) is a symmetric polynomial.

This has an immediate corollary with respect to the L-multinomial coefficients.
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Corollary 1. For α a rearrangement of λ ` n,
[
n

α

]
L

is the coefficient of mλ in

CL[X; q, t]. In particular,
[
n

α

]
L

=
[
n

β

]
L

for any β which is a rearrangement of α.

Proof. This follows immediately from the definition and Theorem 3.

Another corollary is the fact that we can determine CL[X; q, t] by considering

only permutational fillings of L.

Corollary 2.

CL(x; q, t) =
∑

σ∈Sn

h(σ, L)Qco(σ−1)

where Qα is the fundamental quasisymmetric function defined in Section 1.2.5.

Proof. This is a consequence of Proposition 2 and the fact that standardization

does not affect the statistics.

The following property of the CL[X; q, t] will be also be useful to us:

Proposition 29. If L = L1 × L2 with no rows or columns in common, then

CL[X; q, t] = CL1[X; q, t]CL2[X; q, t].

Proof. The following multiplication formula for fundamental quasisymmetric func-

tions is proven, for example, in [Sta99]:

Qco(σ)Qco(τ) =
∑

ρ∈sh(σ,τ)

Qco(ρ)

where we assume σ ∈ Sn, τ ∈ Sn+1,...,n+m and the sum is over all shuffle products

of σ and τ . Thus for disjoint diagrams L1 and L2 we have

CL1 [X; q, t]CL2[X; q, t] =
∑

σ∈Sn,τ∈Sn+1,...,n+m

h(σ, L1)h(τ, L2)
∑

ρ∈sh(σ−1,τ−1)

Qco(ρ)

Now, by Theorem 2 we have

CL1L2 [X; q, t] =
∑

ν∈Sn+m

h(ν, L1L2)Qco(ν−1)

Thus we need to show a bijection from triples (σ, τ, ρ) to permutations ν such that

co(ρ) = co(ν−1) and h(σ, L1)h(τ, L2) = h(ν, L1L2). It is tedious but not difficult

to verify that choosing ν = ρ−1 provides such a bijection.
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The most important property of the CL[X; q, t] is the following, due to Haiman,

Haglund and Loehr.

Theorem 4 ([HHL05]). For µ a partition,

Cµ[X; q, t] = H̃µ[X; q, t]

The proof of this fact is by verifying, in a completely combinatorial manner,

the properties in Proposition 21. Thus, we now have a combinatorial description

(and proof of existence) of the Macdonald polynomials. However, this definition

is not entirely satisfactory, for at least two reasons. First, this has provided very

little insight into the combinatorial nature of the K̃λ,µ(q, t). Some progress has

recently been made in this direction by Sami Assaf. In her recent dissertation

at the University of California-Berkeley, she conjectures a reason why Theorem 4

implies K̃λ,µ(q, t) ∈ N[q, t], and proves this conjecture for the case where µ has

at most three columns. However, even should this approach succeed, it still does

little to explicitly describe the q, t-Kostka polynomials. A second defect of the

current theory is the somewhat surprising fact that no one has been able to prove

combinatorially that Cµ[X; q, t] = Cµ′ [X; t, q]. This symmetry result is among

the most important unsolved combinatorial problems in the theory. This said,

the CL[X; q, t] are to this point the most effective combinatorial tool we have for

exploring Macdonald polynomials. And so, with them in hand, we proceed to the

next chapter.



5 Extension of Macdonald Poly-

nomials

5.1 The conjectured polynomials of Garsia and

Haiman

We recall the defining conditions of the polynomials GL[X; q, t] here:

1. For µ a Young diagram, the polynomial Gµ[X; q, t] is the modified Macdonald

polynomial H̃µ[X; q, t].

2. Polynomials indexed by equivalent diagrams are equal.

3. If a diagram L = L1 × L2 then GL[X; q, t] = GL1 [X; q, t]GL2[X; q, t].

4. GL[X; q, t] = GL′[X; t, q].

5. The polynomials GL satisfy the following equation:

∂p1GL[X; q, t] =
∑

c∈L

qa′(c)tl(c)GL\c[X; q, t] (3.1)

A natural question raised by this definition is whether the polynomials CL[X; q, t]

satisfy the properties of the GL[X; q, t]. The immediate answer is no. It is easy

to construct shapes L1 and L2 which differ by only row and column swaps, for

which CL1[X; q, t] 6= CL2[X; q, t]. There also exist shapes L such that CL[X; q, t] 6=

CL′[X; t, q]. A more sophisticated strategy is possible, however. We consider two

diagrams equivalent if they differ only by a series of row and column swaps. For

42
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a given equivalence class of diagrams, L, we define a unique representative L∗.

Finally, we set GL[X; q, t] = CL∗ [X; q, t] for all L ∈ L. The main result is that this

approach successfully defines the polynomials GL[X; q, t] for the family of diagrams

known as general pistols. Involved in the proof are new properties of the “Haglund

statistics” on diagrams.

Here and after, the only diagrams under consideration will be those which can

be rearranged to general pistols. A general pistol is a skew-shape with no column

of height greater than 2. For example, the diagram below is a general pistol:

For any diagram L which can be rearranged to a general pistol, we will write L∗

for the general pistol to which it can be arranged. This definition brings us to the

following theorem.

Theorem 5. For any diagram L which can be rearranged to a general pistol, the

polynomial GL[X; q, t] is given by CL∗ [X; q, t].

The rest of this chapter is devoted to establishing this theorem.

5.2 Reducing to L-multinomial coefficients

We begin the process of establishing Theorem 5 by showing the theorem is

equivalent to certain conditions on L-multinomial coefficients.

Proposition 30. The conditions
[

n

1, α

]

L∗

=
∑

c∈L∗

qa′(c)tl(c)
[
n

α

]

(L\c)∗
(5.1)

respectively,

[
n

1, α

]

L∗

=
∑

c∈L∗

qa(c)tl
′(c)

[
n

α

]

(L\c)∗
(5.2)
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for all α |= n− 1 imply

∂p1CL∗ [X; q, t] =
∑

c∈L∗

qa′(c)tl(c)C(L\c)∗ [X; q, t] (5.3)

respectively,

∂p1CL∗ [X; q, t] =
∑

c∈L∗

qa(c)tl
′(c)C(L\c)∗ [X; q, t], (5.4)

and this implies Theorem 5.

Proof. We begin by establishing the second implication. For this, we must show

that the CL∗ [X; q, t] satisfy properties (1) through (4).

Condition 2 is satisfied by the definition of L∗. By Theorem 4, Condition 1 is

satisfied. By Proposition 29, Condition 3 is satisfied. We first consider Condition 4

when both L∗ and L′∗ are ribbons with no column of size greater than or equal to

two. This is when L∗ is a ribbon shape with no row or column of length greater

than 2. There are two classes of such diagrams, which we deal with in turn.

The first such class is when L is not symmetrical about the main diagonal. A

typical example of this is

L =

In this case it is easy to verify that for every filling w of L we have

qinv(w,L)tmaj(w,L) = qmaj(w,L′)tinv(w,L′)

which gives Condition 4.

The other class of ribbons with no rows or columns of length greater 2 are those

diagrams L which are symmetrical about the main diagonal. A typical example of

this is

L =
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For any filling w of L we let w′ be the word w in reverse order, with every letter

complemented (i.e., replace i by |L| − i). We then have

qinv(w,L)tmaj(w,L) = qmaj(w′,L)tinv(w′,L)

Since the vector wt(w) is, up to rearrangement, the same as the vector wt(w′),

Condition 4 will hold.

We now must show the first implication in the statement of the proposition.

We note here that there is an obvious bijection between the sets of words of content

α, and the set of standardizations of words of content α. This allows us to perform

the following calculation of the coefficient of Qcon(S) in CL[X; q, t] in terms of L

multinomial coefficients:

Proposition 31. For any S ⊆ {1, . . . , n− 1} we have

CL[X; q, t]

∣∣∣∣
Qcon(S)

=
∑

R⊆S

(−1)|S−R|
[

n

con(R)

]

L

Proof. This is a straightforward inclusion-exclusion computation:

CL[X; q, t]

∣∣∣∣
Qcon(S)

=
∑

d(σ−1)=S

h(σ, L)

=
∑

R⊆S

∑

d(σ−1)⊆R

(−1)|S−R|h(σ, L).

Applying Proposition 2 gives

CL[X; q, t]

∣∣∣∣
Qcon(S)

=
∑

R⊆S

∑

std(w):ct(w)=con(R)

(−1)|S−R|h(std(w), L)

and now we replace std(w) with w, giving

CL[X; q, t]

∣∣∣∣
Qcon(S)

=
∑

R⊆S

∑

w:ct(w)=con(R)

(−1)|S−R|h(w, L)

=
∑

R⊆S

(−1)|S−R|
[

n

con(R)

]

L

.

Before completing the proof of Proposition 30, we must introduce one more

tool from the machinery of symmetric functions.
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Definition 28. For α = (α1, . . . , αk) |= n, we set Zα to be the Schur function

indexed by the ribbon shape α1, α2, . . . , αk.

For example, Z(3,2,4) is the skew-Schur function indexed by

.

These functions have some useful properties which can be found, for example,

in [Mac]:

• For f a symmetric function, 〈f, Zα〉 is the coefficient of Qα in f .

• p1Zα = Z(1,α1,...,αk) + Z(1+α1,α2,...,αk).

We denote the terms in this last sum as Z(1,α), Z(1+α), respectively. We can

now complete the proof of Proposition 30. We show 5.1 and note that the proof

of 5.2 is completely analogous. We begin by considering the coefficient of Qα on

both sides of (3.1). The calculation begins by using the fact that, with respect to

the Hall scalar product, the adjoint of differentiation by p1 is multiplication by p1.

〈∂p1CL∗(x; q, t), Zα〉 =〈CL∗(x; q, t), p1Zα〉

=〈CL(x; q, t), Z(1,α)〉+ 〈CL∗(x; q, t), Z(1+α)〉.

We now apply Proposition 31 to obtain

〈∂p1CL∗(x; q, t), Zα〉 =
∑

R⊆S(1,α)

[
n

con(R)

]

L∗

(−1)|S(α)−R|+1

+
∑

S⊆S(1+α)

[
n

con(S)

]

L∗

(−1)|S(α)−S|

=
∑

R⊆S(α)

[
n

con(1, R)

]

L∗

(−1)|S(α)−R|

and similarly,

〈C(L\c)∗(x; q, t), Zα〉 =
∑

R⊆S(α)

[
n− 1

con−1(R)

]

(L\c)∗
(−1)|S(α)−R|
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Since the Qα are linearly independent, (3.1) will hold if and only if

∑

R⊆S(α)

[
n

con(1, R)

]

L

(−1)|S(α)−R| =
∑

c∈L∗

qa′(c)tl(c)
∑

R⊆S(α)

[
n− 1

con−1(R)

]

(L\c)∗
(−1)|S(α)−R|

for all α. This is the case if and only if
[

n

1, α

]

L∗

=
∑

c∈L∗

qa′(c)tl(c)
[
n

α

]

(L\c)∗

holds for all α |= n− 1, which completes the proof that (5.1) implies 5.3. At first

it would appear that this is all that is necessary to establish Theorem 5. However,

there is one subtlety which we have not considered. For the case when L′ is not in

L, we must establish the ∂p1 condition on L′. We have no way of doing this directly,

so we use Proposition 22. This shows that we have the desired recursion on these

L′ if we can show 5.4. The proof that 5.2 implies 5.4 is completely analogous to

what we have done above.

5.3 Ribbon Pistol Diagrams

In this section, we show the existence of the GL[X; q, t] in what will prove to be

an informative warm-up case. Namely, we will show the existence of GL[X; q, t] for

the class of diagrams that can be rearranged to ribbon pistols. These are shapes

which are both ribbons and pistols. For example,

is a ribbon pistol.

We first not that if L∗ is a ribbon pistol, and c a cell in L∗, then (L∗\c) is either

the disjoint union of two ribbon pistols, or rearranges to a ribbon pistol simply by

swapping out the missing cell. So the class of ribbon pistols is closed with respect

to removing cells (up to to row and column rearrangements).

Theorem 6. For L a ribbon pistol, the polynomials GL[X; q, t] are given by the

polynomials CL[X; q, t].
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Proof. Our basic strategy for showing (5.1) will be to give a bijection between

words w with content (1, α) and pairs (c, w′) where c is a cell of L∗ and w′ has

content α satisfying

h(w, L∗) = qa′(c)tl(c)h(w′, (L \ c)∗) (5.5)

This bijection is established by choosing c to be the cell containing 1, and

setting w′ = w \ 1. For example,

h

(
3 4 1 2 5

3 2 2 4 3

)
= q2t0h

(
3 4 2 5

3 2 2 4 3

)

and

h

(
3 4 2 2 5

1 3 2 4 3

)
= q0t1h

(
3 4 2 2 5

3 2 4 3

)

From the definition of the statistics, we get that the inversion statistic for ribbon

pistols is the sum of the inversions in each of the rows. Furthermore, the major

index is simply the number of descents. From this, it is easy to see that the

contribution of 1 to the statistic is qa′(c)tl(c) where c is the cell which contains 1.

We can establish 5.2 in a completely analogous way, by choosing c to be the cell

containing n. In this case, the contribution to the statistic is qa(c)tl
′(c).

This proof is a model for how we would, ideally, prove the general case. In

fact, to establish 5.1 attempt to find a bijection satisfying 5.5, and we will always

choose c to be the cell containing 1. Similarly, in establishing 5.2, we will always

choose c to be the cell containing n. The difficulty will arise from the fact that we

cannot always choose w′ = w \ 1.

5.4 Reducing to 2-row rectangles

In this section, we reduce the problem to that of two row rectangles. Essentially,

the reason this is possible, is that the bijection of the previous section “works” when

the cell c is not in a column of height 2.
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Lemma 1. Let L be a general pistol, w a word of length n = |L| with a unique 1.

Let c be the cell of L which contains 1, when L is filled with w, and suppose c is

not in a column of height 2. Let w′ be w with the 1 removed. Then

h(w, L) = qa′(c)h(w′, (L \ c)∗)

Similarly, suppose w contains a unique n and c, the cell containing this n, has no

other cells in the same column. Setting w′ to be w with the n removed gives

h(w, L) = qa(c)h(w′, (L \ c)∗)

Proof. The first statement follows immediately from the definition of the statistics:

Since c is in a column of height one, it cannot be part of a descent. Since L is

a skew Young diagram, c cannot be part of an inversion triple. Finally, since c

contains a unique 1, every element in the coarm of c forms an inversion with 1.

The proof of the second statement is analogous.

In order to establish 5.5 we must decide what to do when the 1 is in a column

of height 2. Unfortunately, this is not as straightforward. Consider the following

example:

h

(
3 4 3 4 2 5

2 1 4 4 3 2

)
−→

q1t1h

(
3 4 3 ? ? ?

? ? 4 3 2

)
.

It is not clear how to fill in the question marks to obtain the correct statistic. We

continue our convention of letting w be a word with a unique 1, and c be the cell

of L that contains w. We think of L as being made up of blocks and strips where

a block is a rectangle of height 2 and a strip is a horizontal row of blocks all of

which are unique in their column. Note that the shape (L \ c)∗ depends only on

which block or strip that c is in, and, if c is in a block, which row of that block

contains c.

Thus, we can prove 5.1 by establishing the following lemma.

Lemma 2. Let L be the two row rectangle (l, l). Let r, s be weakly increasing words

of length l; i.e., ri ≤ ri+1 and si ≤ si+1 for 1 ≤ i < l. If there is no 1 in s, and
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exactly one 1 in r then

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 = t[l]q

∑

σ∈R(s)
ρ′∈R(r′)

h


 σ

ρ′


 . (5.6)

If, on the other hand, we have no 1 in r, and exactly one 1 in s, then

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 = [l]q

∑

σ′∈R(s′)
ρ∈R(r)

h


 σ′

ρ


 . (5.7)

As an aid to readability, the notation in all that follows will be consistent with

this lemma:

• Roman letters (e.g., s, r, w) will denote a word whose entries are weakly

increasing.

• Greek letters (e.g., σ, ρ) will denote arbitrary words.

• “Primed” letters (e.g., w′) will denote the word w with a distinguished ele-

ment (usually 1) removed.

5.5 Distinguished cell in bottom row

This section is devoted to establishing 5.6. To do so, we first establish a kind

of “fermionic formula”, in order to more easily manipulate the statistics.

Proposition 32. Let L be the two row partition shape (l, l), and s, r be weakly

increasing words of length l. Then

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 =

[
l

r

]

q

∑

σ∈R(s)

h


 σ

r




To prove this, we first prove a certain “swap” lemma. For ρ a word of length l

and i < l, we let si(ρ) denote ρ with positions i and i + 1 swapped. It is easy to

see that inv(ρ) = ε+ inv(si(ρ)), where ε ∈ {−1, 0, 1}. The content of the following

lemma is that there is an action of the si on filled two-row shapes which completely

agrees with the action on the bottom row.
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Lemma 3. Given words σ, ρ of the same length, let ε ∈ {−1, 0, 1} be such that

inv(ρ) = ε + inv(si(ρ)).

Then there exists a unique π ∈ {σ, si(σ)} such that

h


 σ

ρ


 = qεh


 π

si(ρ)


 .

Proof. We first note that in the case where ε = 0 (i.e., when ρi = ρi+1) we must

choose π = σ. We then note that it is enough to consider the 2 × 2 square

consisting of columns i and i+1, because swapping elements within these columns

will not affect inversions or descents outside of these columns. Finally, because

standardization does not affect the statistics, we can assume that the contents of

the top and bottom row are disjoint. Then we consider every possible case, as

follows:

1 1
2 3

(1)↔ 1 1
3 2

(q), 1 2
3 4

(1)↔ 1 2
4 3

(q), 1 3
2 4

(q)↔ 3 1
4 2

(q2),

1 4
2 3

(qt)↔ 1 4
3 2

(q2t), 2 1
3 4

(q)↔ 2 1
4 3

(q2), 2 2
1 3

(t)↔ 2 2
3 1

(qt),

2 3
1 4

(t)↔ 2 3
4 1

(qt), 2 4
1 3

(t)↔ 4 2
3 1

(qt), 3 1
2 4

(t)↔ 1 3
4 2

(qt),

3 2
1 4

(qt)↔ 3 2
4 1

(q2t), 3 3
1 2

(t2)↔ 3 3
2 1

(qt2), 3 4
1 2

(t2)↔ 3 4
2 1

(qt2),

4 1
2 3

(t)↔ 4 1
3 2

(qt), 4 2
1 3

(qt)↔ 2 4
3 1

(q2t), 4 3
1 2

(qt2)↔ 4 3
2 1

(q2t2)

We can now prove Proposition 32.

Proof. We begin with the fact that

∑

ρ∈R(r)

qinv(ρ) =

[
l

r

]

q

.

Thus the proposition can be shown by giving a family of bijections

σ ∈ R(s)↔ π ∈ R(s)

depending on ρ ∈ R(r) with the weight-preserving property

h


 σ

ρ


 = qinv(ρ)h


 π

r


 .
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This bijection is given by finding a sequence of si which transform ρ into r, applying

this sequence to
σ

ρ
, and taking the top row of the result. The weight-

preserving property is an immediate consequence of Lemma 3.

This proposition has an interesting corollary, which will not be used in this

dissertation, but which we state for its general interest.

Corollary 3. Let L = (lk) be a rectangular partition shape, and s1, s2, · · · , sk be

weakly increasing words of length l. Then

∑

σ1∈R(s1)
σ2∈R(s2)
···

σk∈R(sk)

h(σkσk−1 · · ·σ1, L) =

[
l

s1

]

q

( ∑

σ2∈R(s2)

h


 σ2

s1



∣∣∣∣
t→tk−1

)

( ∑

σ3∈R(s3)

h


 σ3

s2



∣∣∣∣
t→tk−2

)
· · ·

( ∑

σk∈R(sk)

h


 σk

sk−1



)

Proof. Following the proof of the proposition, we give a bijection between tuples

of words (σ2 ∈ R(s2), . . . , σk ∈ R(sk)) and tuples of words (π2 ∈ R(s2), . . . , πk ∈

R(sk)), depending on σ1, with the weight preserving property

h((σk . . . σ1), L) =

qinv(σ1)

(
h


 π2

s1



∣∣∣∣
t→tk−1

)
· · ·

(
h


 πk

sk−1



)

Note that the inversion statistic in h((σk . . . σ1), L) can be given by inv(σ1) plus

the number of inversion triples involving σ1 and σ2 , plus the number of inversion

triples involving σ2 and σ3, etc.. This fact allows us to construct the bijection with

the following procedure.

For each i ≥ 2, we apply Proposition 32 to the two-row shape
σi

σi−1

.

This gives us πi so that the number of inversions in
πi

si−1

is the same as
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the number of inversion triples involving σi and σi−1, without changing the number

of descents.

There is another version of this result, which we will have occasion to use,

involving “almost rectangular” two-row shapes of the form (l − 1, l):

Corollary 4. Let s, r be weakly increasing words, with l(s) = l, l(r) = l−1. Then

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 =

[
l − 1

r

]

q

∑

σ∈R(s)

h


 σ

r


 .

Proof. From the definition of the statistics we have

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 =

∑

x∈s

∑

σ′∈R(s′)
ρ∈R(r)

h


 xσ

ρ




=
∑

x∈r

q|{y∈s:x>y}|
∑

σ′∈R(s′)
ρ∈R(r)

h


 σ

ρ




where we have set s′ to be the word s with x removed. Applying Proposition 32

to this, we have

∑

σ′∈R(s′)
ρ∈R(r)

h


 σ

ρ


 =

∑

x∈r

q|{y∈s:x>y}|
[
l − 1

r

]

q

∑

σ∈R(s′)

h


 σ

r




=

[
l − 1

r

]

q

∑

x∈r

∑

σ∈R(s′)

h


 xσ

r




=

[
l − 1

r

]

q

∑

σ∈R(s)

h


 σ

r


 .

We now have the tools to prove 5.6.

Proof. Let s, r be weakly increasing words of length l, with no 1 in s and a unique
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1 in r. Let r′ denote r with this 1 removed. Then

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 =

[
l

r

]

q

∑

σ∈R(s)

h


 σ

r




= [l]q

[
l − 1

r′

]

q

∑

σ∈R(s)

h


 σ

r




Since any inversion triple x

1
y must have x > y, we can remove the 1 to get

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 = [l]q

[
l − 1

r′

]

q

∑

σ∈R(s)

t h


 σ

r′




and Corollary 4 gives

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 = t[l]q

∑

σ∈R(s)
ρ′∈R(r′)

h


 σ

ρ′




which is 5.6.

5.6 Distinguished cell in top row

This section is devoted to proving 5.7. In the previous section, the proof of 5.6

hinged on reducing to fillings where the bottom row was weakly increasing. We

develop another reduction in this section; that of reducing to diagrams with no

descents.

We begin this reduction by first showing that we can assume all descents of a

two row shape are located on the left. In what follows, Dk will be the condition

that the diagram in question contains exactly k descents, located in the first k

columns.

Proposition 33. Let s, r be two weakly increasing words of length l. Then

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 =

l∑

k=0

[
l

k

]

q

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


χ(Dk).
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If s′ is a word of length l − 1, we also have

∑

σ′∈R(s′)
ρ∈R(r)

h


 σ′

ρ


 =

l−1∑

k=0

[
l − 1

k

]

q

∑

σ′∈R(s′)
ρ∈R(r)

h


 σ′

ρ


χ(Dk)

This is proved by means of another “swap” Lemma. In essence, it says that we

can move descents to the right at the cost of introducing an inversion.

Lemma 4. Let F = a b
c d

satisfy D1; that is, a > c and b ≤ d. Then there exists

a unique

F ′ ∈

{
a b
d c

, b a
c d

, b a
d c

}

such that

• The second column of F ′ is a descent, and the first column is not, and

• inv(F ′) = inv (F ) + 1.

Proof. By standardization, we can assume that the two rows have distinct contents.
We now check every case:

2 2
1 3

(t)↔ 2 2
3 1

(qt), 2 3
1 4

(t)↔ 2 3
4 1

(qt), 3 2
1 4

(qt)↔ 3 2
4 1

(q2t),

4 2
1 3

(qt)↔ 2 4
3 1

(q2t), 3 1
2 2

(qt)↔ 1 3
2 2

(q2t), 3 1
2 4

(t)↔ 1 3
4 2

(qt),

4 1
2 3

(t)↔ 1 4
2 3

(qt), 4 1
3 2

(qt)↔ 1 4
3 2

(q2t)

We now prove Proposition 33.

Proof. The lemma allows us to define an action of si on fillings of two-row shapes

as follows: If columns i and i + 1 are either both descents or both non-descents,

we set si((σ, L)) = (σ, L). If only column i (respectively i + 1) contains a descent,

then we move the descent to column i + 1 (respectively i) according to Lemma 4.

Now we map an arbitrary filling (σ, L) to a ”descent word” d ∈ R(1k 2l−k)

by labeling each column with a 1 (resp. 2) if it is a descent (resp. non-descent).

There exists a series of si which will transform d to the word 1k2l−k, with the

length of this series equal to the number of inversions of d. Applying the same

series of si to (σ, L) will result in a diagram (σ′, L) with all descents on the left
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and h(σ, L) = qinv(d)h(σ′, L). This operation is invertible; applying the reverse

sequence of si will give the original diagram.

Since
∑

d∈R(1k2l−k) qinv(d) =
[

l

k

]
q
, we have

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 =

l∑

k=0

[
l

k

]

q

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


χ(Dk)

The second statement in the Proposition follows immediately; we simply leave the

last element of ρ unchanged throughout the whole process.

We now give an identity which will allow us to reduce to the case where there

are no descents whatsoever. Recall that the general situation we are concerned

with is that of a filling of the shape (l, l) where the unique 1 is in the top row.

Proposition 34. If (σ1, σ2) is a diagram consisting of only descent columns,

(τ1, τ2) a diagram consisting of no descent columns with 1 ∈ τ1, and (ν1, ν2) a

diagram with no descents and ν1 ∈ R(τ1 \ 1), ν2 ∈ R(τ2), then we have

h


 σ1 τ1

σ2 τ2


 = qch


 σ1 ν1

σ2 ν2




if and only if

h


 τ1

τ2


 = qch


 ν1

ν2




Proof. It is clear that the power of t is correct; we must only check the power of

q. The inversions of the LHS (respectively RHS) of the above can be divided into

3 categories:

1. Inversions within
σ1

σ2

.

2. Inversions within
τ1

τ2


resp.

ν1

ν2


.
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3. Inversions between
σ1

σ2

and
τ1

τ2


resp.

ν1

ν2


.

It is clear that we only need to check for equality in (3). The number of such

inversions depends only on the content of τ (resp. ν). The only difference in the

contents is that τ1 contains a 1. Thus there is an extra inversion with every element

of σ1 on the LHS, but since the arm of every descent is exactly one shorter on the

RHS, this balances out exactly.

We review the situation at this point, in order to make it clear that we have

indeed reduced to the case where there are no descents. Suppose s, r are weakly

increasing words of length l, with no 1 in r and exactly one 1 in s. We wish to

show

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 = [l]q

∑

σ′∈R(s′)
ρ∈R(r)

h


 σ′

ρ


 . (5.7)

Suppose we can prove this in the case there are no descents. In symbols, assume

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


χ(D0) = [l]q

∑

σ′∈R(s′)
ρ∈R(r)

h


 σ′

ρ


χ(D0) (5.8)

Proposition 35. The condition in 5.8 implies 5.7.

Proof. Noting that there can be at most l − 1 descents, we apply Proposition 33

to the left hand side of 5.7 to get

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


 =

l−1∑

k=0

∑

σ∈R(s)
ρ∈R(r)

[
l

k

]

q

h


 σ

ρ


χ(Dk)

by the assumption and the previous proposition this is

=
l−1∑

k=0

∑

σ′∈R(s′)
ρ∈R(r)

[
l

k

]

q

[l − k]qh


 σ′

ρ


χ(Dk)

=
l−1∑

k=0

∑

σ′∈R(s′)
ρ∈R(r)

[l]q

[
l − 1

k

]

q

h


 σ′

ρ


χ(Dk)
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and another application of Proposition 33 gives

= [l]q
∑

σ′∈R(s′)
ρ∈R(r)

h


 σ′

ρ




So it remains to prove 5.8. We can simplify this condition even further.

Proposition 36. The condition 5.8 is equivalent to

∑

σ∈R(s)

h


 σ

r


χ(D0) (5.9)

=
∑

x∈r

∑

σ′∈R(s′)

[mx]qh


 σ′

r′x


χ(D0)

Proof. We begin by taking the coefficient of t0 on both sides of the equation in

Proposition 32, which gives

∑

σ∈R(s)
ρ∈R(r)

h


 σ

ρ


χ(D0) =

[
l

r

]

q

∑

σ∈R(s)

h


 σ

r


χ(D0). (5.10)

This is a simplification of the left hand side of (5.8). We can simplify the right

hand side as well. We begin by expanding from the definition of the statistics to

get

[l]q
∑

σ′∈R(s′)
ρ∈R(r)

h


 σ′

ρ


χ(D0)

= [l]q
∑

x∈r

∑

σ′∈R(s′)
ρ′∈R(r′)

h


 σ′

ρ′x


χ(D0)

= [l]q
∑

x∈r

∑

σ′∈R(s′)
ρ′∈R(r′)

h


 σ′

ρ′


 q|{y∈r:y>x}|χ(D0)



59

Applying Proposition 32 to this, we have

[l]q
∑

σ′∈R(s′)
ρ∈R(r)

h


 σ′

ρ


χ(D0)

= [l]q
∑

x∈r

∑

σ′∈R(s′)

[
l − 1

r′

]

q

h


 σ′

r′


 q|{y∈r:y>x}|χ(D0)

=
∑

x∈r

∑

σ′∈R(s′)

[l]q

[
l − 1

r′

]

q

h


 σ′

r′x


χ(D0)

Denoting the multiplicity of x in r by mx, this reduces to

∑

x∈r

∑

σ′∈R(s′)

[l]q

[
l − 1

mx − 1, ct(r′)

]

q

h


 σ′

r′x


χ(D0)

=
∑

x∈r

∑

σ′∈R(s′)

[
l

r

]

q

[mx]qh


 σ′

r′x


χ(D0)

Thus 5.8 is equivalent to

∑

σ∈R(s)

h


 σ

r


χ(D0) (5.11)

=
∑

x∈r

∑

σ′∈R(s′)

[mx]qh


 σ′

r′x


χ(D0)

We will establish 5.11 bijectively, as follows.

Proposition 37. Given σ ∈ R(s) with
σ

r
having no descents, there

exists an x ∈ r, p ∈ {0, . . . , mx−1} and σ′ ∈ R(s′) such that
σ′

r′
has no

descents and

h


 σ

r


 = qph


 σ′

r′x


 .



60

Furthermore the map β : σ → (x, p, σ′) is a bijection.

Here and in the following, s′ will mean s with 1 removed, and r′ will mean r

with x removed.

Before giving this bijection, we must establish some further notation. We begin

with a function that decomposes a given a word into the shuffle product of a “small

subword” and a “large subword”.

Specifically, for σ a word and x ∈ N, we define the following four functions.

• τx(σ) is the word consisting of the letters of σ which are weakly less than x,

in the same order as in σ.

• τx(σ) is the word consisting of the letters of σ which are strictly greater than

x, in the same order as in σ.

• ωx(σ) ∈ R(1|τx(σ)|, 2|τ
x(σ)|) and gives the positions of the elements of τx(σ)

and τx(σ) in σ.

• φx(σ) is the triple (τx(σ), τx(σ), ωx(σ)).

Example 17. φ3(5234134) = (2313, 544, 2112112)

It is clear that we can restruct the original word from such a triple. Thus we

denote by φ−1(τx, τ
x, ωx) the word constructed by replacing the 1’s in ωx with the

elements of τx, and the 2s by the elements of τx.

Example 18. φ−1(2313, 544, 2112112) = (5234134)

We note that the number of inversions of a word can be read from the image

under φx:

Proposition 38. We have

inv(σ) = inv(τx(σ)) + inv(τx(σ)) + inv(ωx(σ))

Proof. This is immediate from the definition of φx.

In what follows, if σ is clear from the context, we will write τx for τx(σ), τx for

τx(σ) and ωx for ωx(σ).

The left circular shift (←↩) of a word of length n is constructed by moving the

element in position i to position i− 1, and the element in position 1 to position n.
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Example 19. ←↩ (2112112) = 1121122

We now define a map which shifts the “small subword” relative to the “large

subword”, but leaves each subword unchanged. Precisely, we define Φx from words

to words by

Φx : σ
φx
7−→ (τx, τ

x, ωx)
ω′=←↩(ωx)
7−→ (τx, τ

x, ω′)
φ−1

7−→ Φx(σ)

Example 20. Φ3(5234134) = (2351344)

The following property of ←↩ (ωx) will be useful:

Proposition 39. If ωx
1 = 1, then the positions of the 1’s in ←↩ (ωx) are weakly

greater than the positions of the 1’s in ωx, and the positions of the 2’s in ←↩ (ωx)

are exactly one less than the positions of the 2’s in ωx. The analogous statement

holds when ωx
1 = 2.

Proof. This follows from the definition of ←↩.

The significance of the somewhat mysterious map Φx is hinted at by its relation

to the inversion statistic. This is explained in the following proposition.

Proposition 40. If σ1 > x, then

inv(Φx(σ)) = inv(σ)− |τx|.

On the other hand, if σ1 ≤ x, then

inv(Φx(σ)) = inv(σ) + |τx|.

Proof. Based on Proposition 38, we must only consider the relationship between

the inversions of ωx and←↩ (ωx). If ωx begins with a 1, we are adding |τx| inversions

when we move that 1 to the end, and all other inversions remain unchanged.

Similarly, if ωx begins with a 2, we are losing |τx| inversions when we move that 2

to the end, and all other inversions will remain unchanged.

We now give the bijection β from σ to (x, p, σ′) subject to the conditions in

Proposition 37. We begin by setting i to be the position of 1 in σ. We consider

three cases, and provide an example of each case after describing the procedure.

The three cases are as follows
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1. The number i satisfies i ≤ l − i + 1 and there is no j ≥ i with σj+1 > rj.

2. The number i satisfies i > l − i + 1 and there is no j ≥ i with σj+1 > rj .

3. There exists a j ≥ i with σj+1 > rj .

In each case, we must show the following three properties:

1. The condition D0 is preserved: i.e., the diagram
σ′

r′
has no de-

scents.

2. The q statistic is properly affected: i.e.,

h


 σ

r


 = qph


 σ′

r′x




Case 1: If l− i + 1 ≥ i and there is no j ≥ i with σj+1 > rj, we proceed by the

following algorithm.

Step 1: Let k = l − i + 1, and x = rk.

Step 2: Let p be the number of x’s to the right of rk. That is, we should have rk+p = x

and rk+p+1 6= x.

Step 3: Split σ into two words µ, ν at position k. Precisely, µ = (σ1, . . . , σk), and

ν = (σk+1, . . . , σl).

Step 4: Set σ′ = (µ \ 1)Φx(ν).

Example 21.

2 3 1 3 2 6
2 3 4 5 6 7

→ 2 3 3 6 2
2 3 4 6 7 5

with p = 0.

We have i = 3, k = l− i+1 = 4. Hence x = r4 = 5, and p = 0 since r5 6= 5. We

set µ = (231), and ν = (326). Since Φ5(326) = 362, we have the situation depicted

above.

Lemma 5. In Case 1, the property D0 is preserved.
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Proof. In symbols, we show that for all 1 ≤ j ≤ n − 1, we have σ′j ≤ r′j . We

consider three possibilities for j.

j < i: In this case, σ′j = µj = σj ≤ rj = r′j, as desired.

i ≤ j < k: In this case, σ′j = µj = σj+1 since the 1 has been removed. We have σj+1 ≤ rj

by the condition of Case 1, and rj = r′j. Combining these gives the desired

inequality.

j ≥ k: We note that r′j = rj+1 ≥ x. If x ≥ σ′j , we are done. If σ′j > x, then σ′j = σj+2

by Proposition 39 (σj+2 is moved one space to the left by the removal of 1,

and one more space to the left by Φx). Now, σj+2 ≤ rj+1 by the condition of

Case 1, and since rj+1 = r′(j) we are done.

Lemma 6. In Case 1, we have

h


 σ

r


 = qph


 σ′

r′x




Proof. For a two-row diagram d = (σ, ρ) with no descents, we have inv(d) =

inv(ρ) + inv(σ) + diag(σ, ρ). Here diag(σ, ρ) means the number of pairs (σi, ρj)

with i > j and σi > ρj . In what follows we will also use the notation diag(σ, ρk)

for the number of indices i such that i > k and σi > ρk. Furthermore, for general

words w, v, we write inv(w, v) for the number of pairs (i, j) with wi > vj .

We have the following facts:

inv(µ) = inv(µ′) + (i− 1)

− diag(σ, rk) + inv(ν, x) = 0

inv(ν, x) = |τx(ν)|

inv(Φx(ν)) = inv(ν) + |τx(ν)|

inv (µ′, Φx(ν)) = inv(µ, ν)

inv(r′, x) = (l − (k + p))

diag(σ, r)− diag(σ, rk) = diag(σ′, r′).



64

Of these, the only one which is not immediate is the last; this follows from the fact

that there are no descents in either (σ, r) or in σ′, r′). Thus we may compute

inv(σr, (l, l)) = inv(µ) + inv(ν) + inv(µ, ν) + diag(σ, r)

= inv(µ) + inv(ν) + inv(µ, ν) + diag(σ, r)− diag(σ, rk) + inv(ν, x)

= inv(µ′) + (i− 1) + inv(ν) + inv(µ, ν) + diag(σ′, r′) + |τx(ν)|.

We also have

inv(σ′r′, (l, l)) = inv(µ′) + inv (Φx(ν)) + inv (µ′, Φx(ν)) + diag(σ′, r′) + inv(r′, x)

= inv(µ′) + inv(ν) + |τx(ν)|+ inv(µ, ν) + diag(σ′, r′) + (l − (k + p)).

Thus

inv(σr, (l, l))− inv(σ′r′, (l, l)) = (i− 1)− (l − (k + p))

= (i− 1)− l + (l − i + 1) + p

= p

as required.

We now describe the algoritm in Case 2. If l − i + 1 < i and there is no j > i

with σj > rj−1, we proceed as follows:

Step 1: Let k = n− i + 1, and x = rk.

Step 2: Let p the number of x’s to the right of rk. That is, choose p so that rk+p = x

and rk+p+1 6= x.

Step 3: Split σ into two word µ, ν at position k−1. Precisely, set µ = (σ1, . . . , σk−1),

ν = (σk, . . . , σl).

Step 4: Let σ′ = µΦx(ν \ 1).

Example 22.

2 3 4 1 5 2
2 3 4 5 6 7

→ 2 3 5 4 2
2 3 5 6 7 4

with p = 0.

We have i = 4, k = l − i + 1 = 3, x = r3 = 4, and p = 0. So µ = (23), and

ν = (4152). Φ4(452) = (542), so we have the situation depicted above.
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Lemma 7. In Case 2, the property D0 is preserved.

Proof. In symbols, we show that for all 1 ≤ j ≤ n − 1, we have σ′j ≤ r′j . We

consider two possibilities for j.

j < k: In this case σj = σ′j and rj = r′j, so we have σ′j = σj ≤ rj = r′j.

j ≥ k: Note that r′j = rj+1 ≥ x. If x ≥ σ′j , we are done. Suppose instead that

σ′j > x. Then σ′j is part of τx(ν). Now, ωx(ν) begins with a 1, since ν1 =

σk < rk = x. Therefore, by Proposition 39 we have either σ′j = σj+1 (if j < i)

or σ′j = σj+2 (if j ≥ i). In either case we have σ′j ≤ rj+1 = j′j , as desired.

Lemma 8. In Case 2, we have

h


 σ

r


 = qph


 σ′

r′x




Proof. Similar to Case 1, we have

inv(σr, (l, l)) = inv(µ) + inv(ν) + inv(µ, ν) + diag(σ, r)

= inv(µ) + inv(ν) + inv(µ, ν) + diag(σ, r)− diag(σ, rk) + inv(ν, x)

= inv(µ) + (i− 1) + inv(ν ′) + inv(µ, ν ′) + diag(σ′, r′) + |τx(ν)|.

We also have

inv(σ′r′x, (l, l − 1)) = inv(µ) + inv (Φx(ν
′)) + inv (µ, Φx(ν

′)) + diag(σ′, r′)

+ inv(r′, x)

= inv(µ) + inv(ν ′) + |τx(ν ′)|+ inv(µ, ν ′)

+ diag(σ′, r′) + (l − (k + p)).

Thus

inv(σr, (l, l))− inv(σ′r′, (l, l)) = (i− 1)− (l − (k + p))

= (i− 1)− l + (l − i + 1) + p

= p

as required.
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We now describe the algorithm in Case 3. If there does exist some j > i such

that σj > rj−1, we let j′ be minimal such that j′ > i and σj′ > rj′−1. We then

proceed as follows:

Step 1: Let k = j′ − i and set x = rk.

Step 2: As before, let p be the number of x’s to the right of rk. So again we have

rk+p = x and rk+p+1 6= x.

Step 3: In this case, we must divide σ into three subwords. Precisely, we let µ =

(σ1, . . . , σk), ν = (σk+1, . . . , σj′−1), and ξ = (σj′, . . . , σl). Note that ν may be

empty, and we don’t know if 1 is in µ or ν.

Step 4: We set σ′ = (µ \ 1)Φx(ν \ 1)Φx(ξ).

Example 23.

2 3 1 3 6 2
2 3 4 5 6 7

→ 2 3 3 2 6
2 4 5 6 7 3

with p = 0.

We have i = 3, and σ5 > r4, so j′ = 5. Thus k = 5 − 3 = 2, and x = r2 = 3.

Since r3 6= 3, p = 0. We divide σ into µ = (23), ν = (13) and ξ = (62). We have

Φ3(3) = (3), Φ3(62) = (26), so σ′ = (23326).

Lemma 9. In Case 3, the property D0 is preserved.

Proof. We wish to show that σ′j ≤ rj for all j. We first consider what happens to

the letters in µ. Suppose that j < k and also j < i. In this case, σ′j = σj and

r′j = rj, and since σj ≤ rj, there is nothing else to show. If instead, j < k but

j ≥ i, we have j < k < j′. In particular, σj+1 ≤ rj, by the condition of Case 3.

Since σ′j = σj+1 (because σj+1 ∈ µ) and rj ≤ r′j , we have σ′j ≤ r′j in this case.

Now we consider the letters in ν. If k ≥ j < j′ − 1, we note that r′j = rj+1 ≥ x

and consider three subcases:

σ′j ≤ x: Since x ≤ r′j, we are done.
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σ′j > x: If j < i − 1, we have σ′j = σj+1 since ωx(ν) begins with a 1. Since σj+1 ≤

rj+1 = r′j , we are done. On the other hand, if j ≥ i− 1, we have σ′j = σj+2,

since we must also account for the removal of 1. By the condition of Case 3,

σj+2 ≤ rj+1 = r′j.

The final case to consider is that of the letters in ξ. This is done by examining

the case j ≥ j′ − 1. We note that r′j = rj+1 ≥ rj′ ≥ x, and consider two subcases:

σj ≤ x: Here we must have σ′j ≤ x < r′j.

σ′j > x: Since ωx(ξ) begins with a 2, by Proposition 39, we have σ′j = σm for some

m ≤ j. Thus σ′j = σm ≤ rm ≤ rj+1 = r′j.

Lemma 10. In Case 3, we have

h


 σ

r


 = qph


 σ′

r′x




Proof. We have the following calculation:

inv(σr, (l, l)) = inv(µ) + inv(ν) + inv(µ, ν) + inv(ξ) + inv(µ, ξ)

+ inv(ν, ξ) + diag(σ, r)

= inv(µ) + inv(ν) + inv(µ, ν) + inv(ξ) + inv(µ, ξ)

+ inv(ν, ξ) + diag(σ, r)− diag(σ, rk) + inv(ν, x) + inv(ξ, x)

= (i− 1) + inv(µ′) + inv(ν ′) + inv(µ′, ν ′) + inv(ξ)

+ inv(µ′, ξ) + inv(ν ′, ξ) + diag(σ′, r′) + |τx(ν)|+ |τx(ξ)|

We also have

inv(σ′r′x, (l, l − 1)) = inv(µ′) + inv (Φx(ν
′)) + inv (Φx(ξ)) + inv (µ′, Φx(ν

′))

+ inv (µ′, Φx(ξ)) + inv (Φx(ν
′), Φx(ξ)) + diag(σ′, r′) + inv(r′, x)

= inv(µ′) + inv(ν ′) + |τx(ν ′)|+ inv(ξ)− |τx(ξ)|+ inv(µ′, ν ′)

+ inv(µ′, ξ) + inv(ν ′, ξ) + diag(σ′, r′) + (l − (k + p))
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Taking the difference gives

inv(σr, (l, l))− inv(σ′r′x) = (i− 1) + |τx(ξ)|+ |τx(ξ)| − l + k + p

= i− 1 + |ξ| − l + j′ − i + p

= |ξ| − (l − (j′ − 1)) + p

= p

as required.

We are now able to prove Proposition 37.

Proof. The weight preserving property of β is established by Lemmas 5, 6, 7, 8,

9, and 10. Thus we must only verify that β is invertible. Given (σ′, r′x, p) we first

find k by requiring that k + p is the position of the last x in r. We then observe

whether or not the last element of σ′ is greater than x. If so, we must be in case

3. If not, we are in either case 1 or 2. We can determine which of these two cases

we are in by setting i = l− k + 1 and determining whether or not i > k. Once we

know k and the case we are in, it is straightforward to invert the map.

This establishes 5.8, which by Proposition 35 implies 5.7. We now have all the

tools necessary to show Theorem 5.

Proof. In Section 5.5 we proved 5.6, and in Section 5.6 we established 5.7. This

completes the proof of Lemma 2, which in turn establishes 5.1. Replacing 1 by n

in this result establishes 5.2, and this completes the proof.



6 Further Research

As we have seen, there are many open combinatorial problems in this area. One

of the most obvious continuations of the results here would to be to attempt the

establish the existence of the GL[X; q, t] on a larger class of shapes; particularly

skew shapes and shapes consisting of a Young diagram with a single cell removed. It

has been verified that the statistics of Haglund do not give the correct polynomials,

so another approach is necessary. The hope is that a combinatorial description of

the GL[X; q, t] will satisfy some of the deficiencies of the CL[X; q, t].

Another continuation of this work would be to further explore the implications

of the relationships of the L-multinomial coefficients. For example, if a “column

version” of Corollary 3 could be found, this could be used to establish the “trans-

pose symmetry” of the Cµ[X; q, t] in the case where the diagram of µ is a rectangle.
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