
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Should I stay or should I go? Impacts of people on predators living in a human-dominated 
landscape

Permalink
https://escholarship.org/uc/item/5zb3d0fx

Author
Nickel, Barry Anthony

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5zb3d0fx
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 
SANTA CRUZ 

 
SHOULD I STAY OR SHOULD I GO? IMPACTS OF PEOPLE ON 
PREDATORS LIVING IN A HUMAN-DOMINATED LANDSCAPE 

 
A dissertation submitted in partial satisfaction 

of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

in 
 

ENVIRONMENTAL STUDIES 
 

by 
 

Barry A. Nickel 
 

September 2019 
 

 
The Dissertation of Barry A. Nickel is 
approved: 

 
 

________________________________ 
Professor Christopher C. Wilmers, chair 
 

 
________________________________ 
Professor Daniel P. Costa 

 
 

      ________________________________ 
Professor Jeffrey T. Bury 

 
 
 
 
_________________________________________ 
Quentin Williams 
Acting Vice Provost and Dean of Graduate Studies  



 
 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by 

Barry A. Nickel 

2019 

 



iii 
 

TABLE OF CONTENTS 

 
LIST OF TABLES …………………………………………………………...……. iv 
 
 
LIST OF FIGURES …………………………………………………………….…. vi 
 
 
ABSTRACT …………………………………………………………………..…… ix 
 
 
DEDICATION …………………………………………………………………..... xii 
 
 
ACKNOWLEDGMENTS …………………………………………………….…. xiii 
 
 
CHAPTER 1 
Introduction ………………………………………………………………………..… 1 
 
 
CHAPTER 2 
Energetics and fear of humans constrain the spatial ecology of pumas ………..….... 7 
 
 
CHAPTER 3 
Assessing optimal strategies of movement in response to human-derived risk ……. 33 
 
 
CHAPTER 4 
Human presence and human footprint have non-equivalent effects on wildlife 
spatiotemporal habitat use ……………………………………………………….…. 57 
 
 
CHAPTER 5 
Concluding Remarks ………………………………………………………………. 98 
 
 
REFERENCES ……………………………………………….……………..…... 101 

  



iv 
 

LIST OF TABLES 
 
 
Table 2.1. Fixed effects terms from the best-supported model predicting (A) 
metabolic rate (log10 (kJ·min-1)) and (B) landscape cost of transport (LCOT; log10 
(J·kg -1·m-1·min-1) at the 5-minute timescale …………………………………...….. 25 
 
Table S2.1. P-values from linear regression models testing for the effects of human-
induced risk (housing density) or physical terrain features (slope, ruggedness, and 
TPI) on puma longer-term space use.  Analyses were run separately for males and 
females …………………………………………………………………...………… 31 
 
Table 3.1. Fixed effects terms from the best-supported model for predicting the 
change in landscape cost of transport (log10(∆LCOT)) ………………………...….. 56 
 
Table 4.1. Fixed effects terms from the best-supported model for predicting human 
presence on the landscape ……………………………………………………..…… 92 
 
Table S4.1. Full results of the human presence multispecies occupancy model, 
showing coefficient estimates ( 95% credible intervals) for all covariates 
hypothesized to affect species occupancy probability at a camera site.  Bolded and 
italicized estimates are those for which the 95% credible interval does not cross zero 
…………………………………………………………………………………….… 93 
 
Table S4.2. Full results of the human presence multispecies occupancy model, 
showing coefficient estimates ( 95% credible intervals) for all covariates 
hypothesized to affect species detection probability at a camera site.  Bolded and 
italicized estimates are those for which the 95% credible interval does not cross zero 
…………………………………………………………………………………….… 94 
 
Table S4.3. Full results of the human footprint multispecies occupancy model, 
showing coefficient estimates ( 95% credible intervals) for all covariates 
hypothesized to affect species occupancy probability at a camera site.  Bolded and 
italicized estimates are those for which the 95% credible interval does not cross zero 
…………………………………………………………………………………….… 95 
 
Table S4.4. Full results of the human footprint multispecies occupancy model, 
showing coefficient estimates ( 95% credible intervals) for all covariates 
hypothesized to affect species detection probability at a camera site.  Bolded and 
italicized estimates are those for which the 95% credible interval does not cross zero 
…………………………………………………………………………………….… 96 



v 
 

Table S4.5. Results of linear regression models comparing the effects of human 
detections per week (HPW) and building density (Building) on wildlife nocturnality.  
Human disturbance covariates were centered and scaled …………………….….… 97 
 

  



vi 
 

LIST OF FIGURES 

 
Figure 2.1. A conceptual framework illustrating the basic components and pathways 
linking the physical, risk, and energy landscapes to patterns of space use. The 
physical characteristics of the landscape (e.g. terrain) and spatial variation in risk 
from predators (e.g. humans) interact to modify the energy costs of movement which 
in turn raises or lowers an animal's energy landscape (e.g. metabolic rate or transport 
costs). The energy landscape provides the basis for how an animal traverses its 
habitats with route choice expected to favor the lowest cost pathways.  Thus, 
movement behavior at large and small spatiotemporal scales should reflect variations 
in the energy landscape with changes in space use related to external factors affecting 
the energy economy of travel. Arrows indicate the direct (solid lines) and indirect 
(dotted lines) relationships among components ……………………………………. 26 
 
Figure 2.2. Study area showing 5-minute movement paths of 13 pumas ………..... 27  
 
Figure 2.3. Predicted lines relating the (A) metabolic rate (log10 (kJ·min-1)) and (B) 
landscape cost of transport (LCOT; log10 (J·kg -1·m-1·min-1) between 5-minute 
movement paths and the average housing density (200 m scale) at the population 
(black dashed) and individual (transparent color) level. Predictions by individual 
movement class is also shown as directed travel (solid) and meandering (dotted) 
………………………………………………………………………………………. 28 
 
Figure 2.4. The effect of average daily landscape cost of transport (LCOT) on (a) 
mean daily travel distance (km) and (b) home range area (km2). The data are 
symbolized by individual (color) and sex, i.e. female (circle) and male (triangle).  
Solid lines represent results of the regression and grey areas enclose the 95% 
confidence interval of each regression …………………………………………...… 29 
 
Figure 2.5. Effect of mean daily housing density on (a) mean daily travel distance 
(km), (b) home range area (km2), and (c) mean daily landscape cost of transport 
(LCOT) for male pumas. The data are symbolized by individual (color).  Solid lines 
represent results of the regression and grey areas enclose the 95% confidence interval 
of each regression ……………………………………………………………..…… 30 
 
Figure S2.1. Proportion of meandering behavior relative to the intensity of housing 
density on the landscape. The data are categorized into five levels of housing density: 
wildlands (no housing), rural (greater than 0.0 and up to 10 houses per km2), exurban 
(greater than 10 and up to 150 houses per km2), suburban (greater than 150 and up to 
750 houses per km2), and urban (greater than 750 houses per km2) (Theobald 2005) 
………………………………………………………………………….……..….… 32 



vii 
 

 
Figure 3.1. Conceptual diagram illustrating the impact of the energy and risk 
landscapes on optimal path choice. The grid denotes the energy landscape with each 
cell representing the cost of transport (COT).  An animal moving to minimize energy 
costs should follow low-cost (dark grey) cells and avoid high-cost (red) cells where 
possible, e.g. the dotted pathway. However, the risk landscape induces sub-optimal 
movement, e.g. the solid trajectory, due to the animal’s need to circumnavigate high 
risk areas (purple) at the expense of energy economy.  The extent of the deviation 
from the low-cost (optimal) path is indicative of the additional energy costs that the 
animal must incur due to risk avoidance ………………………………………..….. 50 
 
Figure 3.2. Study area showing movement paths of 13 pumas ……………………. 51 
 
Figure 3.3. Maximum distance of observed paths from the least cost path calculated 
at different time scales. The bottom, middle, and upper lines of the box plots 
correspond to the 25th, 50th, and 75th percentiles, respectively. The whiskers extend 
to the extreme values within 1.5 times the interquartile range. Pairwise comparisons 
from Tukey’s HSD tests reported in superscripts, where different letters represent a 
statistically significant difference. Asterisk denotes the time scale (τ*) used for 
subsequent analyses ………………………………………………………………... 52 
 
Figure 3.4. Predicted lines relating the change in landscape cost of transport between 
observed and optimal paths to the (a) maximum deviation from the optimal path and 
(b) difference in the human development along the least cost path at the population 
(black) and individual (transparent color) level ……………………………….….... 53 
 
Figure 3.5. The difference between optimal and observed pathways based on the 
physical landscape and combined physical and risk energy landscapes in terms of (A) 
change in landscape cost of transport and (B) maximum deviation from the optimal 
path. The bottom, middle, and upper lines of the box plots correspond to the 25th, 
50th, and 75th percentiles, respectively. The whiskers extend to the extreme values 
within 1.5 times the interquartile range ……………………...…………………..… 54 
 
Figure 3.6. Example of the effects of the energy (right panel) and risk (left panel) 
landscapes on observed paths relative to the energetically optimal path.  The dotted 
trajectory is the optimal path based on the physical landscape only while the solid 
trajectory is the observed path.  Arrows correspond to regions of greater travel cost on 
the energy landscape (red regions in the right panel) that pumas must traverse when 
avoiding areas of higher relative risk (color regions in the left panel) ………..….... 55 
 
Figure 4.1. The study area in the Santa Cruz Mountains, California, including the 
network of cameras traps (black dots) used as part of this study ………………...… 87 
 



viii 
 

Figure 4.2. Coefficient estimates from the multispecies occupancy models showing 
the effect of human detections (red) and building density (yellow) on occupancy and 
detection probabilities for each wildlife species.  Symbols to the right of zero (vertical 
line) indicate a positive effect of the human disturbance metric on occupancy or 
detection probability, and symbols to the left of zero indicate a negative effect.  Thick 
horizontal lines are 90% Bayesian credible intervals, and thin horizontal lines are 
95% credible intervals. …………………………………………………..…….…... 88 
 
Figure 4.3. Human disturbance interacts with forest cover to affect wildlife species 
occupancy probability.  The effect of human detections (a,b) and building density 
(c,d) on occupancy probability are shown for (a) foxes, (b) opossums, (c) bobcats, 
and (d) coyotes at both low (yellow) and high (green) levels of forest cover.  Low and 
high forest cover are here defined as the 20% and 80% quantiles, respectively, of 
forest cover across all camera sites.  Lines and shaded areas are predictions and 95% 
credible intervals from the multi-species occupancy model. ……………………..... 89 
 
Figure 4.4. The effect of human disturbance on wildlife nocturnality.  Nocturnality 
estimates (i.e., average time of detections on camera expressed as hours from noon) at 
a given camera site are plotted against human detections per week and building 
density at that camera site for (a) pumas, (b) bobcats, (c) coyotes, and (d) foxes.  
Fitted lines and shaded areas represent the predicted effect,  95% confidence 
intervals, of human disturbance on nocturnality.  Absence of a fitted line indicates no 
significant effect of disturbance on nocturnality.  Only those wildlife species for 
which at least one human disturbance type significantly affected nocturnality are 
shown ……………………………………………………………………………..... 90     
 
Figure 4.5. Landscape level prediction of human activity in the region based on the 
modeling results (Table 4.1) using publicly available sources of spatial data (e.g., 
protected areas, parcels, elevation, trails).  Levels of human presence outside 
developed areas range from low (black) to high (red) in relation to urban (transparent) 
and protected (green stipple) areas across the region. ……………………………... 91 
   



ix 
 

ABSTRACT 

 

SHOULD I STAY OR SHOULD I GO? IMPACTS OF PEOPLE ON 
PREDATORS LIVING IN A HUMAN-DOMINATED LANDSCAPE 

 

Barry Nickel 

 

In many of the world’s natural areas, humans now play, work, or live 

alongside wildlife with measurable effects on their physiology, behavior, and 

ecology.  In particular, there is growing evidence of human-induced changes in the 

energetics, movement, and space use of many wildlife species, including large bodied 

predators, suggesting that fear of humans is a common phenomenon. For large 

carnivores, movement can be energetically expensive such that slight variations in the 

physical landscape can have profound impacts on the energy cost of movement. 

Large carnivores also face significant mortality risk from the human “super predator”, 

and resulting fear-based changes in space use may exert energetic costs by affecting 

how, where, and to what extent carnivores move when in proximity to humans. 

In this dissertation, I integrate these two factors to understand how competing 

demands around energy and risk shape the behavior and spatial ecology of free-

ranging pumas (Puma concolor).  In particular, I quantify the joint effect of the 

physical and risk landscapes on the fine-scale movement of pumas and evaluate 

whether short-term costs drive landscape-level patterns of space use.  I also examine 

whether pumas optimize energy economy when traveling on challenging terrain and 

the degree to which they cope with increased movement costs near humans.  Results 
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show that the combination of the physical and risk landscapes drives short-term 

movement costs for pumas, and that short-term costs, particularly those stemming 

from human-induced risk, scale up to influence long-term space use at the landscape 

scale.  Further, pumas use energetically efficient movement pathways where possible, 

however, in areas of increasing risk from humans they adopt energetically sub-

optimal paths characterized by high energy but low efficiency movement behavior. 

This pattern reflects a trade-off between risk avoidance and the energy costs of 

movement that results in a constriction of overall space use for individuals 

experiencing consistently high movement costs. These findings demonstrates that, 

along with physical terrain, predation risk plays a primary role in shaping an animal’s 

“energy landscape” and suggests that fear of humans may be a major factor affecting 

wildlife movements worldwide. 

In addition, I evaluate the concurrent effects of the human footprint 

(development) and presence (activity) on wildlife behavior as well as model where 

and when the immediate presence of people, and thus disturbance, is likely to be 

greatest outside developed areas.  Results demonstrate that, for many species, human 

presence and human footprint are not equivalent in their impacts on wildlife habitat 

use and behavior, with these two forms of anthropogenic disturbance in many cases 

having opposing effects on occupancy and/or activity.  In particular, several 

carnivores, including pumas, avoided developed areas but were more likely to occupy 

sites with high human presence (potentially due to increased access to trails) by 

increasing nocturnality.  By contrast, synanthropic species were more likely to 
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occupy sites with higher building density, consistent with use of anthropogenic 

resources, but were substantially less detectable in areas with high human presence.  

Further, I found that human presence beyond developed areas to be extensive and 

concentrated in protected areas suggesting human impacts on wildlife may be more 

widespread in the region than anticipated.  Given the prevalence of development and 

human activity in wildlands, complete avoidance of people is likely impossible for 

many species in the region and thus negative impacts on wildlife from human 

disturbance is likely high.   

The research presented in this dissertation provides an important extension of 

recent attempts to quantify the effects of the landscape on animal movement costs by 

highlighting that, without accounting for predation risk, “energetic landscapes” may 

overlook much of the energetic cost of navigating complex environments, especially 

those dominated by humans.  In addition, human activity is increasing in most natural 

ecosystems, and this work underscores the need to rigorously quantify human activity 

and clarify its effects on wildlife behavior in landscapes where presence of people is 

widespread.  
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CHAPTER 1 

Introduction 

 

A major challenge facing modern conservation is the expanding human 

footprint, with growing evidence that the behavior of wildlife in human-dominated 

landscapes are fundamentally changing in response to the presence of people 

(Hoffmann et al. 2010, Dirzo et al. 2014, Gaynor et al. 2018, Tucker et al. 2018).  

While landscape modification, habitat fragmentation, and overexploitation by humans 

continue to pose a significant threat to wildlife (Hoffmann et al. 2010, Butchart et al. 

2010, Dirzo et al. 2014), fear of the human “super predator” (Darimont et al. 2015) 

correspondingly impacts wildlife by generating landscapes of fear analogous to those 

documented in natural predator-prey systems (Frid and Dill 2002, Laundré et al. 

2010, Ciuti et al. 2012, Zanette et al. 2014).  That is, wildlife perceive and respond to 

humans as threats similar to natural predators and thus should avoid times and places 

of elevated risk where possible (Frid and Dill 2002, Dröge et al. 2017).  Yet, in 

human-dominated habitat total avoidance of humans is likely impossible thus wildlife 

in these areas must manage the negative effects of disturbance in order to co-exist 

with humans (Frid and Dill 2002, Carter et al. 2012, Gaynor et al. 2018, Tucker et al. 

2018).  Indeed, accumulating evidence suggests that human disturbance is 

significantly altering the ecology of wildlife worldwide and that the fear induced by 

humans is likely a common phenomenon among many species (Larson et al. 2016, 

Gaynor et al. 2018, Tucker et al. 2018). 
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For large mammalian carnivores, direct loss of habitat, persecution, and prey 

depletion precipitated by humans and human activity has resulted in major declines in 

population sizes and geographic ranges of many species (Estes et al. 2011, Crooks et 

al. 2011, Ripple et al. 2014).  Additionally, humans as a perceived source of risk 

trigger a strong fear response in many carnivores that can disrupt natural patterns of 

activity (Wang et al. 2017, Gaynor et al. 2018), interfere with predator-prey 

interactions (Haswell et al. 2017, Smith et al. 2017), and alter habitat and space use 

dynamics (Oriol-Cotterill et al. 2015a, Loveridge et al. 2017, Tucker et al. 2018, 

Suraci et al. 2019b). However, several species of large carnivores are seemingly 

adaptable to living in human dominated landscapes, (Elfström et al. 2014, Knopff et 

al. 2014, Ripple et al. 2014), yet little is known about the fitness consequences of 

persistent exposure to humans and products of human activity (e.g. disturbance) in 

such species (Oriol-Cotterill et al. 2015b). As a far-ranging carnivore that often 

occupies areas dominated by humans and fears people (Smith et al. 2017), the puma 

(Puma concolor) provides a distinct opportunity for quantifying how the fear of 

humans shape the behavior and ecology of a large terrestrial carnivore inhabiting a 

predominately human-dominated landscape. 

The pumas extensive space and prey requirements make the impact of human 

development particularly acute as individual lions can traverse a large gradient of 

anthropogenic threats resulting in significant shifts in behavior, time, or habitat 

(Kertson and Spencer 2011, Wilmers et al. 2013, Smith et al. 2015, 2017, Wang et al. 

2017). Moreover, the cost of locomotion for pumas can be substantial (Williams et al. 
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2014, Bryce et al. 2017) and fear-based changes in space use (Wilmers et al. 2013, 

Wang et al. 2017) may also exert energetic costs by affecting how, where, and to 

what extent pumas move when in proximity to humans. Despite growing evidence 

that pumas fear humans (Smith et al. 2015, 2017), our understanding of how pumas 

cope with living in human-dominated landscapes, the strategies employed by pumas 

to coexist with humans, and the ultimate role risk plays in their ecology remains 

limited. Given that much of the natural world has been modified by humans, 

investigations into fine-scale physiological and behavioral response of pumas to 

human disturbance should also be relevant to questions regarding the persistence of 

many large carnivores in natural areas used regularly by people.  

In this dissertation, I seek to advance the growing body of literature linking 

fear-based changes in carnivore ecology to spatial and temporal variation in human 

use of the landscape.  Specifically, I investigate how competing demands around 

energy and human-induced fear shape the spatial ecology of free-ranging pumas in 

the Santa Cruz Mountains.  Further, I assess the degree to which pumas optimize the 

energy economy of travel when traversing human-modified landscapes and quantify 

any corresponding trade-offs associated with short-term changes in movement due to 

fear. Finally, I examine the overlap between people and carnivores to disentangle the 

effect of the human footprint and human activity on wildlife behavior and 

subsequently quantify the broad-scale dynamics of human presence on the landscape 

beyond developed areas. 
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In Chapter 2, I quantify the joint effect of the physical landscape and 

predation risk on the fine-scale movement of pumas and evaluate whether short-term 

movement costs scale up to determine landscape-level patterns of space use.  I show 

that the combination of the physical and risk landscapes drives short-term movement 

costs for pumas, and that short-term costs, particularly those stemming from human-

induced risk, scale up to influence long-term space use at the landscape scale. This 

work demonstrates that, along with physical terrain, predation risk plays a primary 

role in shaping an animal’s “energy landscape” and suggests that fear of humans may 

be a major factor affecting wildlife movements worldwide. 

In Chapter 3, I examine whether pumas optimize energy economy when 

traveling on challenging terrain and the degree to which they cope with increased 

movement costs near humans due to sub-optimal travel.  Results indicate that pumas 

traveling in environments with highly variable movement costs use energetically 

efficient movement pathways, however, as their exposure to human development and 

thus perceived risk increases their use of energetically sub-optimal paths become 

more prevalent. Despite the extra costs associated with sub-optimal travel, pumas still 

seek to optimize energy by moving as efficiently through the landscape where 

possible.  These results suggest that pumas dynamically integrate both the energy and 

risk landscape when evaluating the cost of moving through different environments 

and highlight the synergistic nature of the energy and fear landscapes (Gallagher et al. 

2016) in driving animal movement. 
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Finally, Chapter 4 evaluates the concurrent impact of the human footprint 

(development) and presence (activity) on wildlife habitat use and activity patterns.  

Both human presence and human footprint may simultaneously influence wildlife 

behavior, however our ability to disentangle these two classes of anthropogenic 

disturbance in their effects on wildlife remains limited, as does our capacity to predict 

the spatial extent of human presence independently of human footprint and thus to 

determine where on the landscape this disturbance type is likely to operate.  Results 

demonstrate that human footprint and human presence have non-equivalent, and in 

some cases opposing, effects on the occupancy and activity patterns of wildlife. 

Further, the impacts of human presence extend well beyond the spatial footprint of 

developed regions and are particularly concentrated in protected areas with high 

recreational potential.  Moreover, the intensity of human presence can be predicted 

from landscape-level variables allowing for the estimation of human impacts on 

wildlife even in wilderness areas. These results refine our understanding of how both 

human activity and development drive changes in wildlife behavior and underscore 

the importance of integrating multiple sources of disturbance when evaluating the 

degree to which human-derived risk affects wildlife. 

In the final chapter (Chapter 5), I synthesize the findings from all three data 

chapters and discuss how this dissertation improves our understanding of the role 

human-induced risks plays in shaping the ecology of wildlife living in natural 

landscapes shared with humans. I conclude by highlighting the novel approaches 

developed for measuring human use and its impacts on wildlife behavior, in 
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particular, the focus on the energetic consequences of human disturbance, 

clarification of disturbance effects, and the quantification of the intensity and spatial 

distribution of human presence in wildland areas. Together, this work provides an 

important extension of recent attempts to quantify the effects of the landscape on 

animal movement and should provide new insights regarding human-caused 

disturbance of wildlife. 
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CHAPTER 2 

Energetics and fear of humans constrain the spatial ecology of pumas 

 

ABSTRACT 

Energetic demands and fear of predators are considered primary factors 

shaping animal behavior, and both are likely drivers of movement decisions that 

ultimately determine the spatial ecology of wildlife.  Yet energetic constraints on 

movement imposed by the physical landscape have only been considered separately 

from those imposed by risk avoidance, limiting our understanding of how short-term 

movement decisions scale up to affect long-term space use.  Here, I integrate the costs 

of both physical terrain and predation risk into a common currency, energy, and then 

compare their effects on the short-term movement and long-term spatial ecology of a 

large carnivore living in a human-dominated landscape.  Using high-resolution GPS 

and accelerometer data from collared pumas (Puma concolor), I calculated the short-

term (i.e., five-minute) energetic costs of navigating both rugged physical terrain and 

a landscape of risk from humans (major sources of both mortality and fear for this 

study population).  Both the physical and risk landscapes affected puma short-term 

movement costs, with risk having a relatively greater impact by inducing high energy 

but low efficiency movement behavior.  The cumulative effects of short-term 

movement costs lead to constraints on both daily travel distances and total home 

range area.  For male pumas, these constraints on long-term space use were 

predominantly driven by the energetic costs of human-induced risk.  This work 

demonstrates that, along with physical terrain, predation risk plays a primary role in 
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shaping an animal’s “energetic landscape” and suggests that fear of humans may be a 

major factor affecting wildlife movements worldwide.  

 

INTRODUCTION 

Despite broad recognition that both energetic demands and avoidance of risk 

from predators shape animal decision making across contexts, these factors have 

traditionally been examined separately when considering wildlife movement behavior 

and space use.  Animal movement is an energetically expensive activity (Taylor et al. 

1982, Garland 1983, Karasov 1992) that also plays a primary role in risk avoidance 

(Vanak et al. 2013, Suraci et al. 2019b). Yet the recently popularized “energy 

landscape”, which describes the effects of the physical environment on energetic 

costs of movement (Wilson et al. 2012, Shepard et al. 2013, Halsey 2016), has yet to 

be integrated with the “landscape of fear”, defined as spatial variation in perceived 

risk from predators (Laundré et al. 2001, Gaynor et al. 2019). Combining fear and 

energetic costs of movement in a common currency across broad spatial scales may 

dramatically improve our ability to predict space use in free-living wildlife.   

Integrating these two constraints on movement may be particularly crucial for 

understanding space use by large carnivores living in human-dominated landscapes.  

The cost of locomotion for these highly mobile species can be substantial, such that 

slight variations in the physical landscape can have profound impacts on movement 

costs and path choice (Gorman et al. 1998, Williams et al. 2014, Pagano et al. 2018).  

Large carnivores also face significant mortality risk from the human “super predator” 
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(Darimont et al. 2015), and resulting fear-based changes in space use (Wilmers et al. 

2013, Oriol-Cotterill et al. 2015a, Loveridge et al. 2017, Tucker et al. 2018) may also 

exert energetic costs by affecting the areas selected (e.g., for safety) and how 

carnivores move (e.g., travel speed, locomotion strategy) when in proximity to 

humans.   

At the smallest scales, movement reflects immediate behavioral responses to 

internal states or external cues (Nathan et al. 2008, Morales et al. 2010), which, when 

integrated over longer time periods, lead to large-scale patterns of space use, 

including home range formation (Van Moorter et al. 2009, 2015).  Thus, physical 

(e.g., topographic) and risk-based constraints on fine-scale movement may scale up to 

determine landscape-level patterns of large carnivore space use, including home 

range size (Fig. 1).  However, the relative importance of such physical vs. ecological 

constraints on both the small- and large-scale spatial ecology of large carnivores 

remains unknown. 

As a far-ranging carnivore that often occupies rugged terrain and is known to 

fear humans (Smith et al. 2017), the puma (Puma concolor) provides a distinct 

opportunity to quantify how the energetic costs of the physical landscape and risk 

avoidance shape large-scale patterns of space use.  Despite incurring large transport 

costs due to their natural history, large body size, and low aerobic capacity (McNab 

2000, Williams et al. 2014, 2015, Bryce et al. 2017), pumas persist in what would 

appear to be energetically challenging habitats (Williams et al. 2014, Wang et al. 

2017), including areas dominated by humans (Smith et al. 2015, 2017), whose 
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presence may exacerbate the costs of challenging physical terrain.  This study uses 

high temporal and spatial resolution GPS and tri-axial accelerometer data to 

understand how the physical and risk landscapes interact to shape the movement 

ecology of free-ranging pumas through their effects on energy. I hypothesize that 

changes in the energetic costs of travel attributable to landscape features and human-

derived risk affect puma movement capacity at the step level, with ultimate impacts 

on the overall extent of space use at the landscape scale.   

 

MATERIAL AND METHODS 

1. Study area 

This research was conducted in the Santa Cruz Mountains (37° 10.00’ N, 122° 

3.00’ W), which lie in the Central Coast region of California (Fig. 1).  In the study 

area, pumas primarily feed on black-tailed deer (Odocoileus hemionus columbianus) 

but occasionally on other species, including wild boars (Sus scrofa), raccoons 

(Procyon lotor) and domestic cats (Smith et al. 2016). The 1,700 km2 study area is 

bisected by a large freeway and further crisscrossed by numerous smaller roads 

providing access to rural houses and developments.  

 

2. Data collection 

Starting in 2015, wild pumas were captured using trailing hounds or cage 

traps, as described in Wilmers et al. (2013). Each animal was tranquilized using 

Telazol and sexed, weighed, aged, and fitted with a commercial off- the-shelf 
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GPS/VHF collar (Vectronics Aerospace GPS PLUS) combined with an archival tri-

axis accelerometer tag. Each collar was programmed to acquire a GPS fix every 5 

minutes and tri-axial acceleration at a frequency of 16-32 Hz for a duration of 2 

months. The GPS sampling interval was chosen to maximize relocations while 

ensuring that each animal could traverse their home range multiple times before the 

collar battery died. 

I recorded 247,110 GPS locations for 13 pumas (5 females, 8 males, see Fig.2 

for distribution) for a mean (± se) of 19,009 (± 753) locations per animal. The mean 

(± se) number of days that location data was recorded for each puma was 66 (± 3) 

days. The GPS fix success rate ranged from 98.2% to 99.9% with a mean (± se) of 

99.2% (± 0.2) across all collars. 

 

3. Derivation of energetic cost 

The instantaneous energetic cost (kJ) and mass specific cost of transport (J·kg 

-1·m-1) was computed using an equation for converting accelerometer-derived activity 

into energetic costs, developed in lab trials with pumas (Williams et al. 2014).  To 

account for the complexities of traversing a variable landscape over each 5-minute 

inter-location interval, I treated sampled observations as the straight-line path 

between successive geographic locations, st and st+1, as opposed to the instantaneous 

geographic location at time t, st.  As such, movement costs here are distinguished 

from instantaneous energetic costs by calculating the mean metabolic rate (kJ·min-1) 
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and mean mass specific cost of transport (J·kg -1·m-1·min-1), referred to above as the 

landscape cost of transport (LCOT), for each five-minute interval. 

 

4. Derivation of movement modes 

I fit a three-state Hidden Markov Model (HMM) using the combined GPS and 

accelerometer data to distinguish between three behavioral classes: stationary, 

meandering, and directed movement (Wilmers et al. 2017). The stationary state 

represents behaviors such as resting, feeding, and grooming while the meandering 

and directed states are often associated with searching and foraging behaviors or 

transit and territorial patrol, respectively. Using the R package momentuHMM 

(McClintock and Michelot 2018) the movement of each individual was classified into 

one of three underlying states by characterization of the distributions of travel 

distances, turning angles, and metabolic rate (kJ·min-1) between consecutive 

locations. Travel distance is calculated as the Euclidean distance between the 

locations (xt, yt) and (xt+1, yt+1), and turning angle is calculated as the change in 

bearing (bt = atan2((yt+1 – yt), (xt+1 – xt))) between the intervals [t – 1, t] and [t, t + 1]. 

For this HMM, Gamma distributions were used to describe travel distances and 

metabolic rates, a von Mises distribution described the turning angles, and the Viterbi 

algorithm was used to estimate the most likely sequence of movement states to have 

generated the observations (Langrock et al. 2012). 

I began with the assumptions that resting behavior was characterized by very 

short travel distances, sharp turning angles, and low energy expenditure; meandering 
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movement by moderate travel distances, sharp turning angles, and moderate energy 

expenditure; and directed movement by longer travel distances, small turning angles, 

and higher energy expenditure. Therefore, initial state-dependent probability 

distribution parameters for travel distance were set at 10 (±5) m when pumas were 

resting, 50 (±25) m when meandering, and 125 (±50) m when engaged in directed 

movement. Initial parameters for turn angles were set at π/2 radians when resting or 

meandering and 0 radians when directly moving. Angle concentration for each state 

was initially set at 1. For mean metabolic rate, initial parameters were set at 10 (±5) 

kJ·min-1, 25 (±5) kJ·min-1, and 35 (±5) kJ·min-1 for resting, meandering, and directed 

movement, respectively.  

Data from periods of relative inactivity (e.g., resting) can appear similar to 

those from periods of meandering behavior due to bias from GPS measurement error 

(Hurford 2009).  Thus, to better distinguish between these behaviors I also 

characterized clusters of GPS locations that were potential kill sites, day beds, or 

short term stops during travel.  I developed a custom program using the Python 

programming language (v. 2.7.9; Python Software Foundation, Wilmington, DE, 

USA) to define clusters as groups of ≥ 3 locations in which each location was within 

25 meters of the cluster centroid and 1 hour of another GPS location of the same 

individual puma.  Identified clusters representing resting behavior were then assigned 

as known states within the HMM framework. Since I did not intend to model the 

energetics of stationary behavior, subsequent analysis focused only on the predicted 

movement-based behaviors, meandering and directed travel.   
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Results of the three-state movement model identified resting as the most 

common behavioral state for all animals with only 20.7% (± 1.7) of the locations 

attributed to one of the movement-based behaviors, meandering and directed.  When 

engaged in movement-based behavior, both states were predicted at roughly equal 

proportions and occurred predominately at night with a mean (± se) of 73.6% (± 1.7) 

of locations occurring between local sunrise and sunset. 

 

5. Natural and anthropogenic landscape covariates 

I included land cover, topographic and risk-related covariates to assess the 

role habitat complexity and potential risk plays in modulating energy cost and 

acquisition.  I divided land cover into agriculture, grassland, shrub, forest, and 

wetland using USGS GAP Land Cover data (US Geological Survey, Gap Analysis 

Program (GAP). May 2011. National Land Cover, Version 2).  Intact forest and forest 

edge are considered to be important puma habitat (Holmes and Laundré 2006, 

Kertson and Spencer 2011, Knopff et al. 2014) so I calculated forest core and edge 

based on the proportion of forest within a moving window derived from the average 

distance traveled between subsequent locations.  For each location I also calculated 

topographic measures that could impact the cost of travel including local slope, 

ruggedness, and topographic position from a digital elevation model (DEM; US 

Geological Survey 2011).  Ruggedness was calculated based on the vector ruggedness 

measure (VRM) developed by Sappington et al., (2007). Topographic position (TPI) 

represents position on the landscape relative to local ridges or valleys and was 
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calculated as the absolute difference between elevation at a location and the mean 

elevation within a given distance away (Wilson and Gallant 2000).  Since VRM and 

TPI are both scale-dependent measures of landscape morphology, I incorporated each 

metric derived from multiple scales varying from 100-1000 meters into the statistical 

models and used model selection criteria to choose the best fitting bandwidth to the 

nearest 100m.  

 In order to test whether pumas either avoid areas or experience increased 

energetic demands in close proximity to risky human-modified habitat, I included 

covariates derived from housing structures and roads.  To develop a spatial map of 

landscape risk, I included the distance to the nearest commuter road of each estimated 

spatial location and housing density as outlined in Wilmers et al., (2013).   Similar to 

VRM and TPI, I incorporated housing densities derived from multiple values of 

bandwidths varying from 100-2000 meters into the statistical models and used model 

selection criteria to choose the best fitting bandwidth to the nearest 100m. All 

covariates were rasterized with a 30 meter x 30 meter pixel size and mean 

(continuous) and percent (categorical) values calculated for each linear segment 

between consecutive GPS locations along an individual’s movement path.   

 All land cover covariates and distance to road were excluded from all top 

models based on AICc model selection (see below), and I therefore restrict my 

discussion of landscape impacts on puma movement costs to terrain characteristics 

and housing density.  
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6. Spatial drivers of metabolic effort at the local scale 

To evaluate the local influence of the physical and risk landscapes on the 

relative energetic cost of movement, I regressed log10 mean metabolic rate (kJ·min-1) 

and the log10 LCOT (J·kg -1·m-1·min-1) per five-minute interval against the land cover, 

terrain, and risk covariates using a linear mixed effects regression model (LMM), 

hereinafter referred to as the MR-LMM or LCOT-LMM model, respectively.  To 

explicitly account for any bias from spatio-temporal autocorrelation due to a high 

sampling rate, I adopted a spatio-temporal filtering framework that captures latent 

spatio-temporal structure in a dataset as a set of eigenvectors extracted from a 

connectivity matrix expressing spatial and temporal relationships among observation 

units (Dray et al. 2006, Griffith and Peres-Neto 2006).  In this implementation, I 

generated eigenvectors based on a binary spatial weighting matrix with neighbor 

relationships constructed by connecting all points within a fixed space and time 

distance threshold.  Thresholds were based on the intercept of correlograms for 

residuals from non-spatial mixed effects models. To account for inter-individual 

variation in energetic expenditure due to behavior-specific differences, I used a linear 

mixed effects model with the combination of individual and movement mode (i.e., 

“meandering” or “directed”) as a random effect. The resulting model for the vector ݕ 

of either metabolic rate or LCOT at each movement segment is given (in matrix form) 

by,  

 

ݕ ൌ ߚܺ ൅ ߮ܧ ൅ ߛܼ ൅  (1)   ߝ
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where ߚ  is the vector of fixed coefficients for the matrix of covariates ܺ,߮ the vector 

of fixed coefficients for the matrix of spatio-temporal eigenvectors ߛ ,ܧ the random 

coefficients for the matrix of covariates ܼ, and ߝ the vector of random errors. I fit 

models with multiple combinations of the predictor variables and chose the best 

models as those that minimize the AICc. The scales of housing density, TPI, and 

VRM that best fit the data were selected by finding the combination of covariates and 

scale for each scale-dependent covariate which minimized the AICc.  All covariates 

were normalized (mean centered and scaled by one standard deviation) to improve 

model convergence and to facilitate comparison of model coefficients among 

covariates (Bolker et al. 2008). I also made sure that no candidate models had 

covariates exhibiting high levels of collinearity (r > 0.7). 

 

7. Effect of metabolic effort, risk and terrain on spatial ecology at the landscape scale 

To assess whether metabolic ecology drives long-term patterns of space use, I 

regressed individual mean daily travel distance (km) and home range area (km2) on 

the mean LCOT using standard ordinary least squares regression. To evaluate the 

influence of potential risk from humans and terrain on individual space use at a longer 

time scale, I also regressed individual mean daily travel distance (km) and home 

range area (km2) on the average housing density, slope, ruggedness, and TPI along 

movement paths.  Given the limited sample size, each model was grouped by sex and 

analyzed separately to account for any life history differences in space use. Mean 
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distance traveled per day was calculated by the sum of individual path distances in a 

day and LCOT, housing density, slope, ruggedness, and TPI as defined previously.  

Data for each individual was averaged across the collar deployment to obtain a single 

mean daily travel distance, mean LCOT, and mean housing density, mean slope, 

mean ruggedness, and mean TPI value for each individual.  Home ranges were 

obtained using a fixed local convex hull (k-LOCOH) home range estimator, where 

the 95% isopleth represented the home range boundary (Getz and Wilmers 2004, 

Getz et al. 2007, Downs et al. 2012).  

  All statistical analyses were performed using the language R (v. 3.4.2; R 

Development Core Team, 2010) with the lme4 (Bates et al. 2015) and lmerTest 

(Kuznetsova 2017) package for linear mixed effects models, the spdep (Bivand 2019) 

package for spatial autocorrelation modeling, AICc scores with the AICcmodavg 

(Mazerolle 2019) package, and the adehabitatHR (Calenge 2006) package for home 

range estimation. 

 

RESULTS AND DISCUSSION 

I deployed combined GPS/accelerometer collars on 13 adult pumas (5 females, 8 

males; Fig. 2) living the Santa Cruz Mountains of central California, a rugged, 1700-

km2 study area ranging from dense urban development to large tracts of relatively 

undisturbed native forest.  I used accelerometer-derived activity (collected at 16-32 

Hz) to calculate mean metabolic rate (kJ·min-1) and the landscape cost of transport 

(LCOT; J·kg -1·m-1·min-1) for each five-minute interval between GPS fixes.  LCOT is 
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a novel metric, distinguished from the commonly used “cost of transport” by the 

incorporation of time, which permits estimation of the efficiency with which an 

animal moves across the landscape.  The LCOT of moving between two points on the 

landscape will tend to increase as efficiency decreases, i.e., as an animal moves more 

slowly or with a less directed movement path.  The energetic costs of movement may 

also depend on the specific movement behavior adopted (Wilson et al. 2013), and I 

therefore classified all puma GPS locations corresponding to movement as either 

“meandering” or “directed” using a Hidden Markov Model fit to GPS and 

accelerometer data (GPS locations classified as stationary were excluded from the 

analysis; see Methods).  

Previous experimental work confirms that pumas in the study area fear humans 

(Smith et al. 2017) and that this fear impacts puma movement behavior (Suraci et al. 

in review).  Fear of humans may therefore exert an energetic cost that varies with 

human induced risk across the landscape, analogous to variation in costs of traversing 

rugged physical terrain (Wall et al. 2006, Pagano et al. 2018).  I compared the 

energetic costs of moving through both the physical and risk landscapes (Fig. 1) by 

modeling puma metabolic rate and LCOT at short time scales (i.e., using values for 

each 5-minute GPS location) using linear mixed effects models while accounting for 

movement behavior (meandering or directed movement) and individual puma ID with 

random effects (see Methods).  Predictor variables included a suite of terrain 

characteristics that may influence the cost of travel, and housing density, which 
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effectively captures spatial variation in human-induced risk for pumas (Wilmers et al. 

2013, Smith et al. 2015).   

At the 5-minute scale, puma movement costs were influenced by both physical 

terrain and risk from humans (Table 1).  Overall, routes on less rugged, gently sloped 

terrain were found to be energetically cheaper per unit distance traveled and thus 

more efficient pathways on the landscape for free-ranging pumas.  Metabolic rate and 

LCOT increased with increasing ruggedness (βMR = 0.15, p<0.01; βLCOT = 0.003, 

p<0.001) and slope (βMR = 0.12, p<0.001; βLCOT = 0.003, p<0.001), while increasing 

topographic position (indicative of areas closer to local valleys or ridgelines, see 

Methods) led to increased metabolic rate (βMR = 0.005, p<0.001) but decreased LCOT 

(βLCOT = -0.007, p<0.001).  This latter result indicates that travel speeds and thus 

efficiency of movement are highest along easy-to-traverse valleys and ridges, 

suggesting that previously observed selection by pumas for such topographic features 

(Dickson et al. 2005, Dickson and Beier 2006) is motivated by reduced locomotion 

costs.   

Housing density also had a positive effect on both short-term metabolic rate (βMR 

= 0.01, p<0.001; Fig. 3a) and LCOT (βLCOT = 0.008, p<0.001; Fig. 3b), indicating that 

pumas experience increased energetic demands and decreased movement efficiency 

as their exposure to human development increases.  Examination of random effects 

revealed that these impacts of human-induced risk are mediated by puma behavior 

(Fig. 1).  Across individuals, housing density had a strong positive effect on 

metabolic rate regardless of whether pumas were meandering or moving directly (βid | 
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movement class: σ2 = 0.0003, ρ = 0.46; Fig. 3a), evidence that pumas are consistently 

engaging in more energetically demanding movements (i.e., moving more quickly, 

stopping less) in areas of higher perceived risk from humans.  However, the positive 

effect of housing density on LCOT was only apparent when pumas were meandering 

(βid | movement class: σ2 = 0.0003, ρ = -0.07; Fig. 3b), suggesting that, despite exerting 

more energy on sustained movements, the net distances traveled across the landscape 

are lower in human-dominated areas because pumas are forced to take more 

circuitous movement paths (Fig. S1).  Previous work confirms that, when moving 

through human-dominated landscapes, pumas alter travel speeds (Dickson et al. 2005, 

Buderman et al. 2018) and transition between behavioral states (Wang et al. 2017), 

and here I show that such behavioral changes increase short-term energetic costs 

while decreasing movement efficiency.  Overall, the energetic costs of movement 

rose much more rapidly with increasing risk from humans than with increasing 

difficulty of the terrain (standardized effect sizes for housing density were two to ten 

times greater than those for slope and ruggedness; Table 1), suggesting a greater 

impact of risk relative to physical landscape on puma movement at short time scales 

mediated by high energy but low efficiency movement behavior.  

Despite considerable attention paid to the relationship between energetic 

physiology and space use across species (Reiss 1988, Jetz et al. 2004, Tamburello et 

al. 2015) the degree to which energetic constraints drive differences in space use 

patterns within a species (i.e., at the individual level) remains unclear (Rosten et al. 

2016).  I found that, for pumas, the short-term energetic costs of moving through the 
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physical and/or risk landscapes scale up to impose metabolic constraints on long-term 

space use.  For individual pumas of both sexes, the average distance traveled per day 

(Fig 4a; Linear regression: β = -5.7, Adjusted R2 = 0.727, F(1,11) = 32.53, p <0.001) 

and home range area (Fig 4b; β = -18.9, R2 = 0.756, F(1,11) = 38.2, p <0.001) 

decreased sharply with increasing mean daily LCOT (i.e, averaged across each 

puma’s collar deployment), suggesting that pumas are forced to compensate for 

consistently high movement costs at the step level by reducing overall vagility and 

home range size (Fig. 1).   

For male pumas, energetic constraints on daily and long-term (i.e., home range 

scale) space use appear to be driven predominantly by human-induced risk, consistent 

with the overall greater impact of risk on movement at short time scales.  The average 

housing density experienced by an individual along its movement path was an 

important predictor of mean LCOT for males (Fig 5a; β = 0.02, R2 = 0.575, F(1,6) = 

10.47, p = 0.02) and correspondingly had a strong, negative effect on both daily 

distance traveled (Fig 5b; β = -0.03, R2 = 0.677, F(1,6) = 15.69, p = 0.007) and home 

range area (Fig 5c; β = -0.68, R2 = 0.71, F(1,6) = 17.7, p = 0.005).  Thus, the 

energetic costs associated with increasing risk from humans results in restricted space 

use by male pumas at both the daily and home range scales.  Despite measurable costs 

of slope and ruggedness on short-term movement (Table 1), I did not detect 

comparable effects of physical terrain on any longer-term measures of spatial ecology 

for male pumas (Table S1, Fig. S1), suggesting that any effects of physical terrain on 

space use at the landscape scale are overwhelmed by the costs of risk.  
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Female pumas did not exhibit a comparable relationship between housing 

density and longer-term space use patterns (mean daily LCOT: β = 0.002, p = 0.73; 

mean daily travel distance: β = 0.0006, p = 0.97; home range area: β = -0.03, p = 

0.86; Table S1), which could reflect the somewhat lower sample size for females in 

this study (5 females vs. 8 males), but may in fact be driven by real differences 

between males and females in the cumulative impacts of risk on space use.  To 

maximize mating opportunities, male pumas must maintain large territories through 

near constant patrolling, and thus often have home ranges that are several times the 

size of (and overlap with multiple) female home ranges (Dickson and Beier 2002). 

This requirement to maintain large mating territories likely places a substantially 

higher premium on energetically efficient movement for male pumas than for 

females, who’s home ranges only need to be large enough to provide sufficient 

hunting opportunities (Pierce et al. 2000, Hornocker and Negri 2010). The impact of 

human-induced risk on movement efficiency at short timescales (Fig. 3) may 

therefore result in greater cumulative costs for males at the landscape level, 

constraining space use where overlap with humans is high (Fig. 5). 

By integrating the costs of both challenging physical terrain and risk from 

predators into a common currency (i.e., energy), these results reveal a novel 

framework linking step-level movement behavior to landscape-scale patterns of space 

use (Fig. 1).  I show that the combination of the physical and risk landscapes drives 

short-term movement costs for pumas, and that such short-term costs, particularly 

those stemming from human-induced risk, scale up to influence long-term movement 
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patterns, constricting overall space use for individuals experiencing consistently high 

costs at the step level (Fig. 1).  This work provides an important extension of recent 

attempts to quantify the effects of the landscape on animal movement costs and 

pathways (Wall et al. 2006, Wilson et al. 2012, Shepard et al. 2013) by highlighting 

that, without accounting for predation risk, such “energetic landscapes” may overlook 

much of the energetic cost of navigating a complex environment. 

Indeed, these results demonstrate that risk from humans plays a primary role in 

driving puma energetic costs, which, at least for males, must be compensated for by 

reduced vagility and space use at the landscape scale.  A recent global analysis shows 

that a wide range of mammal species exhibit lower vagility with increasing human 

footprint on the landscape, which the authors attribute to movement barriers or 

changes in resource availability (Tucker et al. 2018). I suggest that the energetic costs 

of avoiding risk from humans may itself lead to reduced long-term space use for 

many wildlife species living in human-dominated landscapes, potentially contributing 

to the global trend of diminished movements near people.  My findings demonstrate 

that behavioral changes induced by the fear of humans can put considerable strain on 

an animal’s energy budget, in this case exacerbating the already high energetic 

demands of a large carnivore (Gittleman and Harvey 1982, McNab 2000, Carbone et 

al. 2007, 2011, Williams et al. 2014).  Managing risk from people may therefore 

come at the cost of reductions in a range of other crucial behaviors, including long-

range movements and territorial defense.  
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Table 2.1. Fixed effects terms from the best-supported model predicting (A) 
metabolic rate (log10 (kJ·min-1)) and (B) landscape cost of transport (LCOT; log10 
(J·kg -1·m-1·min-1) at the 5-minute timescale.  
 
Model Parameter β SE t p 
(A) Metabolic rate 
Topographic Position (TPI) 0.005 0.0007 6.52 < 0.001 
Topographic Ruggedness 0.001 0.0004 2.17 0.03 
Slope 0.002 0.0005 4.09 < 0.001 
Day (1)/Night (0) -0.008 0.001 -7.77 < 0.001 
Housing Density 0.01 0.004 3.95 0.002 
TPI x Slope 0.002 0.0004 5.17 < 0.001 

(B) LCOT 

Topographic Position (TPI) -0.007 0.0004 -14.49 < 0.001 
Topographic Ruggedness 0.003 0.0004 9.4 < 0.001 
Slope 0.003 0.0003 12.01 < 0.001 
Day (1)/Night (0) 0.006 0.0006 9.74 < 0.001 
Housing Density 0.008 0.002 4.75 0.001 
TPI x Slope -0.001 0.0003 -3.19 0.001 
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Figure 2.1. A conceptual framework illustrating the basic components and pathways 
linking the physical, risk, and energy landscapes to patterns of space use. The 
physical characteristics of the landscape (e.g. terrain) and spatial variation in risk 
from predators (e.g. humans) interact to modify the energy costs of movement which 
in turn raises or lowers an animal's energy landscape (e.g. metabolic rate or transport 
costs). The energy landscape provides the basis for how an animal traverses its 
habitats with route choice expected to favor the lowest cost pathways.  Thus, 
movement behavior at large and small spatiotemporal scales should reflect variations 
in the energy landscape with changes in space use related to external factors affecting 
the energy economy of travel. Arrows indicate the direct (solid lines) and indirect 
(dotted lines) relationships among components.    
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Figure 2.2. Study area showing 5-minute movement paths of 13 pumas.  
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Figure 2.3. Predicted lines relating the (A) metabolic rate (log10 (kJ·min-1)) and (B) 
landscape cost of transport (LCOT; log10 (J·kg -1·m-1·min-1) between 5-minute 
movement paths and the average housing density (200 m scale) at the population 
(black dashed) and individual (transparent color) level. Predictions by individual 
movement class is also shown as directed travel (solid) and meandering (dotted). 
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Figure 2.4. The effect of average daily landscape cost of transport (LCOT) on (a) 
mean daily travel distance (km) and (b) home range area (km2). The data are 
symbolized by individual (color) and sex, i.e. female (circle) and male (triangle).  
Solid lines represent results of the regression and grey areas enclose the 95% 
confidence interval of each regression. 
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Figure 2.5. Effect of mean daily housing density on (a) mean daily travel distance 
(km), (b) home range area (km2), and (c) mean daily landscape cost of transport 
(LCOT) for male pumas. The data are symbolized by individual (color).  Solid lines 
represent results of the regression and grey areas enclose the 95% confidence interval 
of each regression. 
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Table S2.1. P-values from linear regression models testing for the effects of human-
induced risk (housing density) or physical terrain features (slope, ruggedness, and 
TPI) on puma longer-term space use.  Analyses were run separately for males and 
females. 

 

  Male Female 
Daily distance traveled 
Housing Density 0.007 0.971 

Topographic Position (TPI) 0.934 0.254 

Slope 0.871 0.310 

Topographic Ruggedness 0.627 0.742 

 
Home range area 
Housing Density 0.005 0.865 

Topographic Position (TPI) 0.474 0.479 

Slope 0.495 0.211 

Topographic Ruggedness 0.396 0.335 
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Figure S2.1. Proportion of meandering behavior relative to the intensity of housing 
density on the landscape. The data are categorized into five levels of housing density: 
wildlands (no housing), rural (greater than 0.0 and up to 10 houses per km2), exurban 
(greater than 10 and up to 150 houses per km2), suburban (greater than 150 and up to 
750 houses per km2), and urban (greater than 750 houses per km2) (Theobald 2005). 
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CHAPTER 3 

Assessing optimal strategies of movement in response to human-derived risk 

 

ABSTRACT 

Despite broad recognition that both energetic demands and avoidance of risk 

from predators shape animal decision making across contexts, these factors have 

traditionally been examined separately when considering wildlife movement behavior 

and space use. For large carnivores, movement can be energetically expensive such 

that slight variations in the physical landscape can have profound impacts on the 

energy cost of movement. Large carnivores also fear humans and resulting fear-based 

changes in space use may exert energetic costs by affecting path choice when in 

proximity to humans.  Consequently, any evaluation of decision-making around 

movement in carnivores should include the interaction between the landscapes of 

energy and risk under a common currency (i.e. energy).  Here, I examine whether the 

puma (Puma concolor) optimizes energy economy when traveling on challenging 

terrain and the degree to which individuals cope with increased movement costs near 

humans due to sub-optimal travel. Results indicate that pumas traveling in 

environments with highly variable movement costs use energetically efficient 

movement pathways, however, as exposure to human development and thus 

perceived risk increases their use of energetically sub-optimal paths become more 

prevalent. Despite the considerable costs associated with sub-optimal travel, pumas 

still seek to optimize energy by moving as efficiently through the landscape where 

possible.  These results suggest that pumas dynamically integrate both the energy and 
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risk landscape when evaluating the cost of moving through different environments 

and highlight the synergistic nature of the energy and fear landscapes in driving 

animal movement.  In addition, these findings demonstrate the potential for using 

energy landscapes in cost-based corridor modeling, however, constraints such as risk 

should be considered when developing cost surfaces under this framework. 

 

INTRODUCTION 

Movement is fundamental to most behaviors with the energetic costs of 

locomotion key in influencing whether, where, and to what extent an animal moves 

through its environment (Shepard et al. 2013, Wilson et al. 2015b, Halsey 2016, 

Halsey and White 2016). Maintaining energetic balance is vital to survival and thus 

the decision to move is inextricably linked to trade-offs between energy expenditure 

and other related currencies (Mangel and Clark 1986, Shepard et al. 2013, Halsey 

2016). Movement described under such a framework can be caste in terms of cost of 

transport (COT), expressed as the energy per unit distance for an animal to move 

itself (Schmidt-Nielsen 1972), which placed into the proper spatial context defines the 

‘energy landscape’ (Wilson et al. 2012, Shepard et al. 2013, Halsey 2016), that is, 

spatial variation in the energy costs of movement.  While the energy landscape 

provides a compelling framework for determining how and why an animal moves it 

overlooks other ecological constraints on movement, such as risk avoidance 

(Gallagher et al. 2016, Halsey 2016).  The ‘landscape of fear’, defined as spatial 

variation in perceived predation risk, similarly structures how animals use their 
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environments (Laundré et al. 2010, Gaynor et al. 2019) but fails to consider 

movement costs as a significant driver of animal space use (Gallagher et al. 2016).  

Consequently, any evaluation of decision-making around movement in wild animals 

should include the interaction between the landscapes of energy and risk under a 

common currency thereby enhancing our understanding of the selective path of 

movement.  However, rarely have studies on free-ranging animals measured 

movement in these terms (Gallagher et al. 2016), in part due to the difficulties of 

measuring both risk and an animal’s travel costs over heterogeneous landscapes, 

couched under one currency (energy). 

For large carnivores, locomotion can be energetically expensive and represent 

a considerable part of the daily energy budget (Taylor et al. 1982, Garland 1983, 

Karasov 1992).  In particular, the characteristics of the physical landscape, such as 

terrain, can have profound impacts on the energy cost of movement and thus path 

choice in carnivores (Gorman et al. 1998, Williams et al. 2014, Wilson et al. 2015a, 

Pagano et al. 2018).  Large carnivores also face significant mortality risk from the 

human “super predator” (Darimont et al. 2015) that can exert additional costs by 

affecting where and how carnivores move when in  proximity to humans (Oriol-

Cotterill et al. 2015a, Loveridge et al. 2017, Tucker et al. 2018, Suraci et al. 2019b).  

As such, the joint costs of physical and risk-based constraints on movement should 

determine the relative efficiency of the geographical paths taken and their cumulative 

costs over time.  However, the degree to which energy and human-derived fear 

interact to affect optimality in carnivore movement has not been investigated to date. 
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Filling such a gap would provide for a more mechanistic understanding of how large 

carnivores navigate different landscapes, particularly those that are disturbed, and 

why they choose to move the way they do.  

Due to their persistence in energetically challenging habitats (Williams et al. 

2014, Wang et al. 2017), including areas of greater perceived risk from humans 

(Smith et al. 2015, 2017), the puma (Puma concolor) provides a unique opportunity 

for evaluating how competing demands around energy and risk shape movement 

behavior in a large carnivore. Pumas are assumed to incur high transport costs largely 

due to their natural history, large body size, and low aerobic capacity (McNab 2000, 

Carbone et al. 2007, 2011, Williams et al. 2014, 2015, Bryce et al. 2017), thus it is 

expected that they should be judicious with respect to energy expenditure and select 

routes that afford minimal travel costs. However, pumas fear humans (Smith et al. 

2015, 2017) such that human disturbance is expected to change the energy economy 

of travel by inducing non-optimal movement in areas used by humans (Fahrig 2007).  

For instance, previous work on puma behavior has shown the selective use of low 

cost topographic features when moving, e.g. ridges, valleys and gentle slopes 

(Dickson et al. 2005, Dickson and Beier 2006, Wilmers et al. 2013, Chapter 2), 

however, in human dominated areas they shift to marginal habitat, e.g. steep slopes 

(Wilmers et al. 2013), alter travel speeds (Dickson et al. 2005, Suraci et al. 2019a), 

and transition behaviors (Wang et al. 2017) all of which can elevate energy costs.  

Pumas thus represent a good model to test short-term optimality in movement and 
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quantify the energetic trade-offs made by pumas when traversing complex and/or 

disturbed landscapes. 

Building on previous work examining movement energetics in puma (Chapter 

2), this study seeks to understand the degree to which puma movement reflects 

optimal travel and the potential for human-derived risk to promote sub-optimal 

movement. Assuming that pumas move with a goal of minimizing energy, I 

hypothesize that pumas should favor “low energy” pathways and thus observed paths 

will align with the energetically optimal route where possible.  In contrast, I expect 

that as human presence on the landscape increases, thus increasing perceived risk to 

puma, pumas will be less judicious with respect to energy and take higher cost but 

lower risk pathways in response.  In turn, pumas will deviate farther from the optimal 

route and experience elevated movement costs relative to routes expected in the 

absence of human risk.  While the focus here is on puma movement, I also discuss the 

broader application of this work to conservation planning, including corridor 

connectivity and the design of habitat linkages (Sawyer et al. 2011, Zeller et al. 

2012). 

 

MATERIAL AND METHODS 

1. Study area 

This research was conducted in the Santa Cruz Mountains (37° 10.00’ N, 122° 

3.00’ W), which lie in the Central Coast region of California (Fig. 1).  The 1,700 km2 

study area encompasses a diverse landscape ranging from dense, urban development 
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to large tracts of intact and relatively undisturbed native vegetation (see Wang et al. 

2015). The area contains part of the California Coast Ranges, a northwest-trending 

series of mountain ranges with terrain varying from gently rolling hills to 

steep, rugged ridges separated by narrow canyons; altitudes range from sea level to 

1,500 m. It is bisected by a large freeway and further crisscrossed by numerous 

smaller roads providing access to rural houses and developments. 

 

2. Data collection and movement path generation 

Starting in 2015, wild pumas were captured and fitted with a commercial off- 

the-shelf GPS/VHF collar (Vectronics Aerospace GPS PLUS) combined with an 

archival tri-axis accelerometer tag. Each collar was programmed to acquire a GPS fix 

every 5 minutes and tri-axial acceleration at a frequency of 16-32 Hz for a duration of 

2 months. To isolate only those locations that relate to movement, I used the results 

from a three-state Hidden Markov Model (HMM) fit to the combined GPS and 

accelerometer data for individual pumas (see Chapter 2). A movement path was 

defined as any continuous temporal series of fixes that was at least 1 hour in duration 

and started and terminated at identified clusters representing stationary behavior, i.e. a 

kill or rest site.  Each continuous trajectory represents a single realization of a path to 

be used for comparison against the hypothetically optimal path. 

 

3. Physical and risk landscape covariates 
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I included spatial covariates based on results of the linear mixed effects model 

outlined in Chapter 2 to derive surfaces of the metabolic costs of movement (LCOT), 

i.e. energy landscapes.  Physical landscape variables included were downhill slope, 

ruggedness, and topographic position calculated from a digital elevation model 

(DEM; US Geological Survey 2011).  Ruggedness was calculated based on the vector 

ruggedness measure developed by Sappington et al., (2007). Topographic position 

represents position on the landscape relative to local ridges or valleys and was 

calculated as the absolute difference between elevation at a location and the mean 

elevation within a given distance away (Wilson and Gallant 2000). Spatial variation 

in risk was represented by the density of human development on the landscape as 

outlined in Wilmers et al., (2013).   All covariates were rasterized with a 30 meter x 

30 meter pixel size. 

 

4. Derivation of energy landscapes and optimal paths 

The energy landscape represents the energetic cost of traversing different 

landscape attributes and is derived by predicting, on a cell-by-cell basis, the LCOT 

(expressed in J·kg-1·m-1·min-1) using the individual-level parameter estimates from the 

best-fit linear mixed effects regression model in Chapter 2.  To evaluate the relative 

impact of risk on optimal path choice, I generated two energy landscapes per 

individual that (1) assumed travel costs based solely on the physical landscape, i.e. no 

risk effect, and (2) included the joint effect of the physical and risk landscape 

hereinafter referred to as the “physical” and “physical + risk” energy landscapes, 
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respectively.  Each derived energy landscape was used as the basis to compare 

observed movement paths to the hypothetically optimal path, in a least cost sense. 

Least cost path analysis (LCPA) was used to derive estimates of the 

theoretically optimal path each individual puma should use when traversing each 

energy landscape.  LCPA evaluates potential animal movement routes across the 

landscape based on the cumulative cost of movement (Adriaensen et al. 2003, 

Chetkiewicz et al. 2006, Sawyer et al. 2011), in this case defined by minimizing the 

sum of the LCOT values between two locations on the energy landscape.  Source and 

destination locations are required to establish optimum paths via LCPA, however, 

movement decisions by animals occur along a time-scale continuum and therefore 

decisions to move with respect to the energy landscape may vary between temporal 

scales.  Thus, least-cost paths were generated based upon source and destination 

points from temporally subsampled movement segments using a moving window of 

varying temporal widths (τ = 0.5 - 4 hrs by increments of 0.5 hr).  For each location 

Xi along an observed path, a temporal subset of locations representing the scale τ was 

isolated between the location Xi and all possible next locations up to location Xi + τ and 

the least-cost path generated using Xi and Xi + τ as the source and destination points.  

I generated least cost paths for both the “physical” and “physical + risk” 

energy landscapes and for each path measured the maximum distance an observed 

path deviated away from the optimum (∆ܶܵܫܦ) and the average difference in LCOT 

between the observed and optimal path (∆ܱܶܥܮ). The relative impact of risk on path 

choice was represented by the average difference in housing development between 
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the observed and optimal path (∆ܴܭܵܫ).  To account for any costs attributed to the 

physical landscape due to sub-optimal movement, I also calculated the average 

difference in topographic position (∆ܶܲܫ), ruggedness (∆ܸܴܯ), and downhill slope 

 .between the observed and optimal path (ܧܱܲܮܵ∆)

 

5. Data Analysis 

To identify the scale at which idealized least cost paths aligned closest with 

observed movement, I used a mixed-effects ANOVA to test for differences in the 

maximum deviation of the observed path from that of the least cost path (∆ܶܵܫܦ) 

between each temporal scale (τ) used to subsample movement paths.  I used least cost 

paths derived from the “physical + risk” energy landscape, i.e. assuming the joint 

effects of the physical and risk landscapes on cost of travel, as this best reflects the 

environment pumas in the wild were circumnavigating.  I applied a Box-Cox 

transformation on the ∆ܶܵܫܦ	variable to improve model fit.  Individual puma was 

included as a random factor to account for inter-individual variation. Tukey’s 

honestly significant difference (HSD) was used to test for differences among time 

scales. The time scale where ∆ܶܵܫܦ was lowest and differed significantly from the 

next higher order scale best replicated paths taken by pumas and thus represented the 

characteristic scale (τ*) used for subsequent analyses.  

To isolate the effect of risk avoidance on travel costs and evaluate the degree 

to which human-induced fear promotes non-optimal movement, I used a linear mixed 

effects model based on optimal paths derived from the “physical” energy landscape 
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only.  I tested for the fixed effects of human development (∆ܴܭܵܫ), distance from 

optimum (∆ܶܵܫܦ), and terrain covariates (∆ܶܲܫ, ,ܯܴܸ∆  on the change in (ܧܱܲܮܵ∆

landscape cost of travel (∆ܱܶܥܮ). Additionally, to test whether path deviation due to 

risk avoidance alters the costs attributable to terrain and risk, I included 2-way 

interactions between ∆ܶܵܫܦ	and all other covariates.  I applied a Box-Cox 

transformation on the ∆ܶܵܫܦ	variable to account for non-linearity and ∆ܱܶܥܮ was 

log10-transformed to improve model fit.  I included the identity of each puma as a 

random intercept to account for inter-individual variation. All covariates were 

normalized (mean centered and scaled by one standard deviation) to improve model 

convergence and to facilitate comparison of model coefficients among covariates 

(Bolker et al. 2008). I also made sure that no candidate models had covariates 

exhibiting high levels of collinearity (r > 0.7). I fit models with multiple combinations 

of the predictor variables and chose the best models as those that minimize the AICc. 

  Assuming pumas move to maintain low energy pathways while traversing 

the risk landscape where possible, I also evaluated to what degree observed paths 

aligned with optimal paths derived from the “physical + risk” compared to that of the 

“physical” energy landscapes. I used mixed-effects ANOVA to test for differences in 

the distance from optimum (∆ܶܵܫܦ) and change in travel costs (∆ܱܶܥܮ) between 

paths derived from each energy landscape. I applied a Box-Cox transformation on the 

 variable to improve model fit.  Individual puma was included as a random	ܶܵܫܦ∆

factor to account for inter-individual variation. 
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All analyses were performed using the language R (v. 3.4.2; R Development 

Core Team, 2010) with the lme4 (Bates et al. 2015) and lmerTest (Kuznetsova 2017) 

package for mixed effects models and AICc and marginal R2 with the MuMIn 

(Bartoń 2018) package.  All GIS analyses were performed using the Python 

programming language (v. 2.7.9; Python Software Foundation, Wilmington, DE, 

USA) and ArcGIS for Desktop (v. 10.6.1; ESRI Inc., Redlands, CA, USA). 

 

RESULTS 

My criteria for identifying continuous movement paths resulted in 1,252 paths 

across 13 pumas (5 females, 8 males, see Fig. 2 for distribution) for a mean (± se) of 

96 (± 5) routes per animal.  Comparison of temporal scales for subsampling paths 

indicated that scales equal to and greater than 1 hour were significantly different in 

terms of observed and predicted track alignment (mixed-effects ANOVA: F7,5666 = 

452.2, p<0.001). In such cases, as the temporal subsampling increased the accordance 

of least cost pathways with observed movement became less common (Fig. 3).  

However, there were no significant differences detected below 1 hour and paths 

subsampled at this interval aligned more closely with predicted paths compared to all 

other scales. Consequently, for these data, observed trajectories were best replicated 

when subsampled using a 1 hour interval and thus served as the characteristic time 

scale (τ*) for subsequent analyses. 

Linear mixed effects models predicting the effect of risk on travel costs 

revealed that the change in LCOT relative to the optimal path (∆ܱܶܥܮ) showed a 
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significant relationship with both physical and risk related landscape attributes (Table 

1).  Observed paths incurred greater travel costs (∆ܱܶܥܮ) compared to that of the 

optimal path as the distance from the optimal path (β = 0.04, p<0.001), degree of risk 

from human development (β = 0.04, p<0.001), slope (β = 0.06, p<0.001), topographic 

position (β = 0.06, p<0.001), and ruggedness (β = 0.02, p<0.001). However, the 

farther a path deviated from the optimal path the lower the relative impact of risk (β = 

-0.02, p<0.001), slope (β = -0.008, p<0.05), topographic position (β = 0.01, p<0.05), 

and ruggedness (β = -0.009, p<0.05) on travel costs.  

 In addition, mixed effects ANOVA indicated that pumas strive to maintain 

lower energy pathways where possible, even when faced with additional costs 

attributable to risk avoidance.  Observed paths aligned more closely (mixed-effects 

ANOVA: F1,2395 = 953.4, p<0.001; 57.9 ± 30.9 vs 161.7 ± 115.9) and incurred lower 

travel costs relative to (mixed-effects ANOVA: F1,2395 = 7179.8, p<0.001; 0.56 ± 0.35 

vs 3.5 ± 1.2) optimal paths based on the “physical + risk” landscape compared to 

those predicted on the “physical” landscape alone (Fig. 5).  

 

DISCUSSION 

Here I demonstrate the joint impact of the physical and risk landscapes on 

movement costs and, consequently, path choice in free-ranging pumas.  Pumas have 

been shown to adjust behavior in response to human-derived disturbances, primarily 

through temporal and spatial shifts in activity (Burdett et al. 2010, Kertson and 

Spencer 2011, Wilmers et al. 2013, Knopff et al. 2014, Wang et al. 2015b, Tucker et 
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al. 2018, Suraci et al. 2019a), however the energy cost of such adjustments remains 

relatively unmeasured. This approach allowed me to estimate the cost of risk 

avoidance by comparing the energy costs of travel between observed paths and 

optimal paths derived from a landscape assuming no risk. Results show that pumas 

deviate substantially from pathways predicted to be energetically optimal as a means 

to avoid risk from humans but at the cost of greater energy loss.  Indeed, pumas 

avoiding risky areas increased the effective distance required to travel between two 

locations by 48% ± 1.4 and incurred up to a 25% ± 0.7 increase in travel costs in 

comparison to pathways expected on ‘physical’ landscapes (see Fig. 6 for an 

example). These additional costs suggest that fear-based changes in space use amplify 

movement costs due to sub-optimal travel on the energy landscape and give some 

measure of the importance of risk in affecting path choice. 

My results demonstrate that the elevated energy costs associated with risk 

avoidance can, in part, be attributed to increased travel on rugged terrains.  Pumas 

naturally incur large transport costs due to their life history (Williams et al. 2014, 

Bryce et al. 2017) and thus slight variations in the physical landscape can impact 

movement costs greatly (Chapter 2).  Previous studies have shown that pumas 

commonly favor less rugged, gently sloped valleys and ridgelines when traveling 

(Dickson et al. 2005, Dickson and Beier 2006), likely due to reduced locomotion 

costs on these topographic features (Chapter 2).  However in areas dominated by 

human presence and thus greater perceived risk (Smith et al. 2015, 2017) pumas alter 

their use of habitat, including use of steep, rugged terrain, in response (Kertson and 
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Spencer 2011, Wilmers et al. 2013). Since human activity and development tend to 

cluster on flatter terrain, pumas must travel on uneven terrain and steep inclines to 

avoid these areas on the landscape.  Locomotion on inclined terrain is known to be 

relatively costly for a wide variety of animals (Halsey and White 2017), including 

pumas (Chapter 2), thus a puma moving with little regard to terrain when avoiding 

humans is sacrificing energy economy for safety. Repeated use of energetically 

expensive terrain may be detrimental in the long term if pumas are unable to take 

advantage of alternative strategies for optimizing the energy economy of travel.   

My data reveal that pumas exhibit some degree of flexibility in their 

movement choices as a means to minimize the energy costs sustained while avoiding 

riskier areas. While movement near humans is shown to be energetically sub-optimal, 

pumas appear to seek paths that remain the lowest cost in terms of energy, risk, or 

both where possible.  The two-way interaction terms involving distance, slope, 

topographic position, ruggedness, and risk (Table 1) suggest that despite an overall 

increase in energetic costs the impact of these factors on energy attenuates as pumas 

move away from higher risk areas. In this case, fear-based changes in movement raise 

the energy costs of travel (Gallagher et al. 2016) but pumas attempt to minimize the 

impact by other means, e.g. adjusting speeds of movement, traverse angles, or 

aligning with alternative low cost paths (Shepard et al. 2013, Halsey 2016). Indeed, I 

found that puma movement aligned more closely with the paths predicted to be 

optimal on the “physical + risk” energy landscape, i.e. including fear and terrain, 

compared to those predicted on an energy landscape assuming no risk (Fig. 5).  These 
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results suggest that a puma’s realized energy landscape assimilates risk such that 

“peaks” on the landscape of fear translate to “peaks”, perceived or otherwise, on the 

energy landscape. Consequently, a puma optimizing energy should adjust route 

selection accordingly and realign pathways, where possible, to alternate low cost 

options on their risk-integrated energy landscape.  My results are consistent with this 

notion and indicate that pumas accept extra travel costs due to sub-optimal travel near 

humans but still seek to optimize energy by moving as efficiently through the 

landscape as possible.   

Movement patterns are inherently scale dependent (Nathan et al. 2008, Avgar 

et al. 2013) and consequently it is expected that an animal’s response to its underlying 

energy and risk landscape should exhibit a similar dependence on scale. The current 

analysis was conducted at the path level, defined as a continuous trajectory of 1 hour 

in duration, and thus reflects a puma’s behavioral response at this scale relative to a 

step (e.g. minutes) or home range (e.g. months) level response. However, recent work 

on puma movement energetics has shown that both short and long-term movement in 

pumas are comparably influenced by the landscapes of energy and risk.  For example, 

the energy costs of short-term movement (e.g. minutes) increase when pumas traverse 

both rugged terrain and areas of greater perceived risk on the landscape (Chapter 2).  

Further, movement patterns over the long-term (e.g. days, months) are driven by the 

cumulative experience of short-term movement costs whereby higher cumulative 

costs, including those due to risk, result in reduced vagility and smaller home range 

size (Chapter 2).  Thus, scale-dependent adjustments in a puma's response to energy, 
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fear, or both shape its movement behavior and subsequent use of space at all scales 

(short, long, and intermediate) which, in turn, promotes or limits its ability to 

optimally navigate complex and/or disturbed landscapes. 

While the focus of this study has been on puma movement, it is worth 

mentioning the broader implications of these results on conservation planning, 

especially examinations of corridor connectivity and the design of habitat linkages 

(Sawyer et al. 2011, Abrahms et al. 2016, Zeller et al. 2017). The most widely used 

technique to assess corridor connectivity is based on estimating landscape resistance 

to movement, or resistance surfaces, representing hypothetical ‘movement costs’ on 

the landscape (LaRue and Nielsen 2008, Sawyer et al. 2011, Zeller et al. 2012). 

Shepard (2013) recently proposed that the energy landscape could provide more 

realistic values for resistance surfaces, rather than resistance to habitat selection 

which is most commonly assumed (Zeller et al. 2012).  These results demonstrate the 

potential for using energy landscapes in cost-based corridor modeling given that 

hypothetical least cost pathways adhered well to observed movement pathways of 

pumas (Fig. 5). However, I point out that paths were best predicted on energy 

landscapes integrating risk compared to those based solely on the physical landscape 

suggesting that constraints beyond energy should also be considered when developing 

cost surfaces under this framework. Further, this approach may be limited to specific 

scales of movement given accordance between predicted and observed pathways 

decreased as the duration of travel modeled increased (Fig. 3). Nonetheless, 

integrating the energy and risk landscape into resistance surfaces shows promise and, 
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albeit a challenging standard, should improve cost-based corridor models by 

producing more realistic estimates of landscape resistance to animal corridor use. 

More research is warranted to determine the efficacy and value of this approach to 

connectivity conservation planning. 

The present study shows the extent to which the energy and risk landscapes 

interact to affect optimal path choice and provides insights into the mechanistic basis 

of decision-making and the movement process in wild pumas.  Movement costs 

certainly drive movement and space use in pumas (Chapter 2) and are important in 

terms of optimizing strategies where trade-offs between risk avoidance and energy 

expenses due to movement play together to produce observed pathways.  My findings 

indicate pumas traveling in environments with highly variable movement costs align 

with low cost pathways, however, as their exposure to human development and thus 

perceived risk increases their use of energetically sub-optimal paths become more 

prevalent. The energetic cost difference between the optimal and observed pathways 

is indicative of the extent to which risk affects movement patterns beyond that of the 

energy landscape. Despite these costs, pumas move to maintain low energy pathways 

where possible suggesting they dynamically integrate both the energy and risk 

landscape when evaluating the cost of moving through different environments. These 

results highlight the complementary aspects of the energy and fear landscape 

paradigms (Gallagher et al. 2016) and illustrate the utility of deriving least cost 

pathways within these landscapes for quantifying and understanding the various 

drivers of movement (Lempidakis et al. 2018). 
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Figure 3.1. Conceptual diagram illustrating the impact of the energy and risk 
landscapes on optimal path choice. The grid denotes the energy landscape with each 
cell representing the cost of transport (COT).  An animal moving to minimize energy 
costs should follow low-cost (dark grey) cells and avoid high-cost (red) cells where 
possible, e.g. the dotted pathway. However, the risk landscape induces sub-optimal 
movement, e.g. the solid trajectory, due to the animal’s need to circumnavigate high 
risk areas (purple) at the expense of energy economy.  The extent of the deviation 
from the low-cost (optimal) path is indicative of the additional energy costs that the 
animal must incur due to risk avoidance. 
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Figure 3.2. Study area showing movement paths of 13 pumas. 
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Figure 3.3. Maximum distance of observed paths from the least cost path calculated 
at different time scales. The bottom, middle, and upper lines of the box plots 
correspond to the 25th, 50th, and 75th percentiles, respectively. The whiskers extend 
to the extreme values within 1.5 times the interquartile range. Pairwise comparisons 
from Tukey’s HSD tests reported in superscripts, where different letters represent a 
statistically significant difference. Asterisk denotes the time scale (τ*) used for 
subsequent analyses. 
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Figure 3.4. Predicted lines relating the change in landscape cost of transport between 
observed and optimal paths to the (a) maximum deviation from the optimal path and 
(b) difference in the human development along the least cost path at the population 
(black) and individual (transparent color) level. 
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Figure 3.5. The difference between optimal and observed pathways based on the 
physical landscape and combined physical and risk energy landscapes in terms of (A) 
change in landscape cost of transport and (B) maximum deviation from the optimal 
path. The bottom, middle, and upper lines of the box plots correspond to the 25th, 
50th, and 75th percentiles, respectively. The whiskers extend to the extreme values 
within 1.5 times the interquartile range. 
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Figure 3.6. Example of the effects of the energy (right panel) and risk (left panel) 
landscapes on observed paths relative to the energetically optimal path.  The dotted 
trajectory is the optimal path based on the physical landscape only while the solid 
trajectory is the observed path.  Arrows correspond to regions of greater travel cost on 
the energy landscape (red regions in the right panel) that pumas must traverse when 
avoiding areas of higher relative risk (color regions in the left panel).  
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Table 3.1. Fixed effects terms from the best-supported model for predicting the 
change in landscape cost of transport (log10(∆LCOT)). 
 
Model Parameter β SE t p 

(A) Change in landscape cost of transport Marginal R2 = 0.53 

∆DIST 0.035 0.004 7.53 < 0.001 
∆RISK 0.037 0.006 5.73 < 0.001 
∆SLOPE 0.059 0.004 14.64 < 0.001 
∆TPI 0.055 0.004 12.92 < 0.001 
∆VRM 0.019 0.004 4.89 < 0.001 
∆DIST : ∆RISK -0.024 0.005 -4.68 < 0.001 
∆DIST  : ∆SLOPE -0.008 0.004 -2.12 0.03 
∆DIST : ∆TPI -0.011 0.004 -2.43 0.01 
∆DIST : ∆VRM -0.009 0.004 -2.21 0.02 
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Chapter 4 

Human presence and human footprint have non-equivalent effects on wildlife 
habitat use 

 

ABSTRACT 

Human activity can substantially impact wildlife, altering the distribution and 

behavior of species across terrestrial communities.  These impacts stem from both the 

human footprint on the landscape (e.g., development) as well as the immediate 

presence of people in wildlife habitat (e.g., recreation), which elicits fear responses in 

many wildlife species.  Anthropogenic effects on wildlife are not exclusively 

negative, however, with many “synanthropic” species using developed areas to 

exploit resource subsidies.  Thus, both human presence and human footprint may 

simultaneously influence wildlife behavior, potentially in opposition.  However, our 

ability to disentangle these two classes of anthropogenic disturbance in their effects 

on wildlife remains limited, as does our capacity to predict the spatial extent of 

human presence independently of human footprint and thus to determine where on the 

landscape this disturbance type is likely to operate.  I used camera trap data from a 

grid spanning the Santa Cruz Mountains, a mixed-use landscape in central California, 

to (i) compare the effects of human presence (detections of people on camera) and 

human footprint (building density) on behavior and habitat use of mammalian 

predators (large carnivore and mesopredators), and (ii) to develop a model predicting 

the spatial extent of human presence and its impacts outside of developed areas.  

Multi-species occupancy models and analysis of temporal activity showed that human 

presence and footprint had non-equivalent and often opposing effects on wildlife, 
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revealing predictable patterns of either spatial or temporal avoidance of humans based 

on disturbance type and species life history.  Spatial modeling indicated that intensity 

of human presence is high throughout the study region, including in relatively remote 

protected providing otherwise high-quality wildlife habitat.  This work highlights the 

need to integrate multiple sources of disturbance and information on the extent of 

human presence across the landscape when evaluating the degree to which human 

activity impacts wildlife.      

 

INTRODUCTION 

The expanding influence of humans has greatly impacted wildlife by 

disrupting the distribution and activity patterns of animals globally (Hoffmann et al. 

2010, Dirzo et al. 2014, Gaynor et al. 2018, Tucker et al. 2018).  The increasing 

human footprint on the landscape (i.e., urbanization, land use change) is a key threat 

to wildlife across virtually all taxonomic groups, not only through habitat loss and 

fragmentation (Hansen et al. 2005, Radeloff et al. 2005b, Fischer and Lindenmayer 

2007), but also because urbanized areas represent concentrations of anthropogenic 

“disturbance” (i.e., real or perceived threats that elicit antipredator responses; Frid 

and Dill 2002), which may be actively avoided by wildlife.  However, human impacts 

are not restricted to developed areas only, as the mere presence of humans has been 

shown to impact wildlife behavior and activity patterns even in wildland areas (Suraci 

et al. 2019a) The latter is particularly salient given the rapid expansion of outdoor 

recreation into previously undisturbed landscapes (Cordell et al. 2008, Balmford et al. 
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2009, Cordell 2012) and its potential negative effect on many wildlife species (Larson 

et al. 2016).  Wildlife responses to humans are therefore likely to be impacted by 

multiple forms of human influence.   

Wildlife species respond to human activities in complex ways, ranging from 

acute behavioral changes to chronic distributional effects, which may depend on the 

type, intensity, and frequency of disturbance (Larson et al. 2016, Tablado and Jenni 

2017, Gaynor et al. 2018, Tucker et al. 2018).  Humans are a major source of 

mortality for many wildlife species, particularly mammalian carnivores (Darimont et 

al. 2009, 2015), and recent experimental work confirms that many species therefore 

exhibit strong fear responses to human presence just as many prey respond fearfully 

to the presence of their predators (Clinchy et al. 2016, Smith et al. 2017, Suraci et al. 

2019a).  The fear induced by human presence has correspondingly been shown to 

affect behavior and activity patterns of wildlife at the landscape scale (Suraci et al. 

2019a), and likely mediates many of the impacts associated with recreational activity 

in wildland areas (Larson et al. 2016, Tablado and Jenni 2017).  When compared to 

the relatively transient presence (and associated fear) of humans during recreation, 

sustained and high-intensity disturbance associated with long-term land use changes 

(e.g., housing development) may be expected to exert even greater impacts on 

wildlife habitat use.  Yet many synanthropic species (e.g., mesopredators like skunks 

and opossums) appear to benefit from increased human footprint on the landscape, 

taking advantage of resource subsidies such as food waste (Ordeñana et al. 2010, 

Wang et al. 2015a) and/or decreased risk from other predators where human activity 
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is high (the “human shield” effect) (Muhly et al. 2011, Steyaert et al. 2016).  Indeed, 

multiple anthropogenic influences may simultaneously affect wildlife, potentially in 

opposition, if for instance some species avoid risky interactions with people but take 

advantage of resources concentrated near development (Beckmann and Berger 2003, 

Bateman and Fleming 2012, Suraci et al. 2019a).  

An animal’s response to a particular anthropogenic disturbance may 

additionally depend upon the relative constancy or regularity of the disturbance type 

in space and time and thus the animal’s ability to predict when and where potential 

threats from humans are likely to occur.  Predator-prey theory suggests that long-

term, consistent spatial variation in risk should lead to outright avoidance and thus 

changes in prey space use (the “risky places hypothesis”) (Creel et al. 2008, Dröge et 

al. 2017).  Alternatively, predation risk that is more spatially variable but exhibits 

regular temporal fluctuations (e.g., due to the predator’s daily activity cycle; Kohl et 

al. 2018) may lead to temporal partitioning, where prey avoid predators in time by 

increasing activity at times of day when the predator is less active (Suraci et al. 

2019b). Thus, it is possible that human development as a long-term, spatially constant 

source of risk may be more likely to induce spatial displacement and altered habitat 

use (i.e., avoidance of risky places) (Frid and Dill 2002, Tucker et al. 2018), while 

human presence in wildlife habitat, which is less constant and largely restricted to 

diurnal periods, may prompt shifts in temporal activity (Gaynor et al. 2018).   
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Despite ample reason to expect that human footprint and human presence will 

differ in their impacts on wildlife behavior and habitat use, ambiguity exists in how 

wildlife species respond to these two categories of anthropogenic disturbance. One 

reason for such ambiguity is that human footprint is often used as a proxy for multiple 

forms of anthropogenic disturbance, due in part to the ease of acquiring landscape 

level data on, e.g., land cover, human population density, and built infrastructure 

(e.g.Venter et al. 2016).  However, such variables may be poor predictors of human 

presence across the landscape, particularly in wildland areas where outdoor recreation 

is growing (Cordell et al. 2008, Cordell 2012, Balmford et al. 2015).  Using the 

human footprint as a proxy for human presence may therefore conflate the effects of 

different types of human disturbance on wildlife (Tablado and Jenni 2017).   

An additional challenge lies in measuring the spatial extent of human presence 

outside of developed areas, and thus the area over which human activity is likely to 

impact wildlife.  Studies of human presence in wildland areas typically rely on the 

localized deployment of sensors (e.g., camera traps) in the environment, a site-

specific approach that may not be representative of landscape-scale patterns human 

presence (Larson et al. 2016, Gutzwiller et al. 2017). In particular, efforts to scale up 

existing research to broader spatial extents are limited and have the potential to 

overlook human disturbance and its impacts in parts of the landscape not directly 

covered by camera trapping surveys (Monz et al. 2013).  As such, landscape-scale 

assessments quantifying where non-consumptive activity is expected to be greatest 

would be valuable for understanding the extent of human disturbance on wildlife 
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beyond developed areas (Gutzwiller et al. 2017). Specifically, there is a need to 

predict human presence in wildland areas from readily available landscape-level 

variables, allowing estimation of broad‐scale spatial patterns of human activity and 

associated impacts on wildlife beyond sites at which on-the-ground surveys have 

been conducted. 

Here I use an extensive network of camera-traps deployed across a gradient of 

human recreational use and development in the Santa Cruz Mountains of California to 

quantify the effects of both human footprint (building density) and actual human 

presence (occurrence of people on camera traps) on wildlife behavior and habitat use.   

I then model where and when the observed impacts of human presence are likely to 

be greatest on the landscape using a suite of spatial predictors of human activity.  I 

focus my analysis of wildlife on large and medium-sized mammalian predators, 

which experience the highest per capita risk of human-caused mortality (Darimont et 

al. 2015) and are correspondingly known to exhibit strong behavioral responses to the 

immediate presence of people (Clinchy et al. 2016, Smith et al. 2017, Suraci et al. 

2019a), but which also represent a range of responses to human development, from 

reclusive large carnivores to synanthropic mesopredators.  This work was conducted 

in areas of the Santa Cruz Mountains ranging from undeveloped tracks of forest to 

moderately developed rural and exurban areas, thus typifying the mosaic of wildlife 

habitat and human development characteristic of the wildland-urban interface (WUI) 

(Radeloff et al. 2005a, 2010, Leu et al. 2008, Wade and Theobald 2010, Bar-Massada 

et al. 2014).  I show that human footprint and human presence have non-equivalent, 
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and in some cases opposite, effects on habitat use and activity patterns, with observed 

differences between species likely driven by species-specific tradeoffs between the 

costs and benefits of sharing habitat with humans.  I further show that the intensity of 

human presence across the landscape (including in wildland areas) can be predicted 

from landscape-level variables, allowing estimation of human impacts on wildlife 

even outside of developed areas. This research underscores the importance of 

integrating multiple sources of disturbance and demonstrates that solely focusing on 

one or the other disturbance may lead to erroneous conclusions regarding the way 

human-derived risk affects wildlife. 

 

METHODS 

Study area 

The Santa Cruz Mountains (37° 10.00’ N, 122° 3.00’ W) encompasses a 

diverse landscape comprised of large tracts of relatively undisturbed native vegetation 

intermixed with low- and intermediate-density development that are surrounded by 

heavily developed areas along the fringe.  The region has a legacy of preserving large 

tracts of open space, with 24% of the surrounding San Francisco Bay Area held in 

some form of public land trust or conservation easement (Rissman and Merenlender 

2008). Many large private landholdings are managed for resource extraction and a 

significant portion of the public lands are available for a wide variety of recreational 

activities (e.g. biking, hiking, dog walking).  However, development comprises 76% 
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of all anthropogenic land-use in the region (Riordan and Rundel 2014) with one-third 

of the landscape falling within the wildland-urban interface (Martinuzzi et al. 2015).  

The study area is crisscrossed by several highways and numerous smaller roads 

providing access to rural houses and developments.  The region thus provides marked 

gradients of development and human recreational pressures that allow for 

concurrently evaluating wildlife response to multiple forms of human disturbance. 

 

Camera trap study design 

As part of a long-term wildlife monitoring program in the Santa Cruz 

Mountains, I used a camera trap grid covering the entire region, but focused on 

undeveloped and moderately developed areas that still provide substantial wildlife 

habitat. A grid of 100 cameras, with a spacing between cameras of 4 km, was created 

across a mosaic of public and private land. Each grid point was visited and searched 

for fine-scale landscape features to maximize detections of carnivores (O’Connell et 

al. 2011), placing each camera trap within 400 m (10% of the diameter of the grid 

cell) of the original grid point.  Twelve cameras were unable to be placed due to land 

access or safety issues, leading to a total of 88 cameras deployed. Camera traps were 

placed using standardized procedures (i.e., camera trap height and orientation) and 

programmed to take a series of 3 photos each time they detected motion with 1 min 

between trigger events.  
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Camera traps were deployed for five to seven weeks during three separate 

study periods: Spring 2015 (10 March to 13 April), Autumn 2015 (23 August to 10 

October), and Spring 2016 (4 March to 21 April).  During each study period, camera 

traps were deployed and collected on a rolling basis, and the date ranges noted above 

correspond to the weeks when at least 80% of the 88 camera traps were active.  I 

scored all camera trap images for the presence of mammalian predators species 

including the sole large carnivore in the Santa Cruz Mountains, the puma (Puma 

concolor) and a suite of mammalian mesopredators (coyote Canis latrans, bobcats 

Lynx rufus, gray fox Urocyon cinereoargenteus, northern raccoon Procyon lotor, 

striped skunks Mephitis mephitis, and Virginia opossum Didelphis virginiana).  I also 

scored all detections of humans on camera traps and included information on the 

presence of domestic dogs and bicycles.  All images of the same species on the same 

camera were considered independent occurrences if they were separated by at least 30 

min from all other occurrences of the same species.  This is likely to be conservative 

for many species, particularly humans, which were typically moving along trails 

when detected on camera and thus unlikely to remain in the vicinity of the camera 

trap. 

 

Anthropogenic and habitat covariates 

For each camera site, I measured several anthropogenic and habitat covariates 

that could potentially affect both human and wildlife activity including building 
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density (BUILDING), road density (ROAD), trail density (TRAIL), distance to urban 

area (URBAN), distance to public open space (i.e., state and local parks and other 

outdoor recreation areas; OPEN), distance to parking lot and camp sites (a proxy for 

human accessibility of wildland areas; ACCESS), proportion of forest cover 

(FOREST), elevation gradient (ELEV), proportion of visible landscape (i.e. vista 

opportunities; VIEW), and average ruggedness (RUGGED) in a 1 km radius around 

each camera trap. As outlined in Wilmers et al. (2013), building and road density 

were derived from spatial data representing the location of every structure and 

commuter road in the study area, respectively.  To classify areas of wildlife-urban 

interface across the region I combined a database of assessor parcels with buildings to 

categorize parcels into housing density levels as defined by Wade and Theobald 

(2010): wildland (no housing), rural (greater than 0.0 and up to 0.062 houses per 

hectare), exurban (greater than 0.062 and up to 1.45 houses ha-1), suburban (greater 

than 1.45 and up to 4.12 houses ha-1) and urban parcels (greater than 4.12 houses ha-

1). Exurban parcels intersecting a 1 km radius of a camera site represented areas of 

surrounding wildland-urban interface. To identify the impact of trails and parking 

lots, I used a compilation of recreational trail networks and access points maintained 

by municipal, county, and state agencies further augmented by crowd-sourced data 

extracted from OpenStreetMap (2017) where necessary. BUILDING, ROAD, and 

TRAIL were measured as the total number (buildings) or distance (road, trail) of each 

in a 1 km radius around each camera trap. ACCESS was defined as the Euclidean 

distance from the camera to the nearest parking lot associated with a recreational area.  
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Data on the locations of protected open space (public and private) were extracted 

from the California Protected Areas Database (GreenInfo Network 2017).  I defined 

OPEN as the Euclidean distance from the camera to the nearest public open space. 

URBAN was measured as the Euclidean distance from the camera to the nearest 

medium to high density urban areas based on the WUI (Martinuzzi et al. 2015).  

Forest cover was extracted from the USGS GAP Land Cover data (US Geological 

Survey, Gap Analysis Program (GAP). 2011. National Land Cover, Version 2) with 

FOREST defined as the percent area of forest in a 1 km radius around each camera 

trap. Ruggedness, elevation gradient, and vista opportunities were calculated from a 

digital elevation model (DEM; US Geological Survey 2011).  RUGGED was 

calculated based on the vector ruggedness measure developed by Sappington et al., 

(2007). Elevation gradient (ELEV) was calculated as the difference between the 

maximum and minimum elevation within 1 km of a camera. Scenic potential, i.e. 

vista opportunity (VIEW), was measured as the proportion of visible landscape within 

1 km of a camera based on viewshed analysis (Baerenklau et al. 2010). All GIS 

analyses were performed using the Python programming language (v. 2.7.9; Python 

Software Foundation, Wilmington, DE, USA) and ArcGIS for Desktop (v. 10.6.1; 

ESRI Inc., Redlands, CA, USA). 

 

Comparing the effects of human presence and human footprint on wildlife habitat use 
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For each camera trap, I derived estimates of human presence at both the daily 

and study period (i.e., Spring, 2015, Autumn 2015, and Spring 2016) levels from 

images of humans recorded on camera traps.  Daily estimates were simply the total 

number of independent human detections during each calendar day on a given camera 

trap (humans per day, or HPD).  Study period-level estimates were the number of 

humans detected per day on a given camera averaged across each study period 

(meanHPD).  I used building density (i.e., BUILDING, described above) as our 

estimate of human footprint at each camera site. 

To estimate the effects of the two forms of human disturbance on wildlife 

habitat use and behavior, I fit multi-species occupancy models (Burton et al. 2012, 

Broms et al. 2016) to camera trap data on detections of the seven mammalian 

predators (pumas, coyotes, bobcats, foxes, raccoons, skunks, and opossum).  

Occupancy models estimate two parameters that could both be affected by human 

disturbance: (i) site occupancy, an estimate of whether or not a species occurs at a 

given site, and (ii) detection probability, which is driven (at least in part) by animal 

behavior, with decreased activity levels or increased cryptic behavior leading to lower 

detection probability. As all of the target wildlife species are at least partially 

nocturnal, particularly where humans are present (Wang et al. 2015a), I defined each 

night that a camera trap was active as a survey (Burton et al. 2012), and recorded 

whether a given species was detected (1) or not (0) over a 24-hour period spanning 

each night (from noon to noon).  Estimates of wildlife species detection were 

therefore offset (by 12 hours) from the daily estimates of human activity on camera 
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such that detection of a wildlife species during a given nocturnal period could be 

modeled as a function of the number of humans present during the immediately 

preceding diurnal period. 

I formulated the occupancy models as hierarchical zero-inflated binomial 

models, with separate binomial submodels describing occupancy and detection 

probability (MacKenzie et al. 2002, Royle and Dorazio 2008).  I fit two occupancy 

models varying only in the type of human disturbance used to model occupancy and 

detection probability, i.e., human footprint (building density) or human presence 

(HPD and meanHPD for detection probability and occupancy respectively). Each 

model also included environmental covariates that could affect occupancy and 

detection probability at camera sites (i.e., FOREST, RUGGED, and TPI).  While the 

relatively small number of study periods for which I had camera trap data (three) 

meant that estimating occupancy dynamics (i.e., site colonization and extinction) 

using multi-season models (MacKenzie et al. 2003) was not worthwhile, I did allow 

occupancy to vary between study periods to ensure that the closure assumption was 

not violated.  The occupancy state (1 or 0) of species i at site j during study period t 

(zijt) was therefore modeled as  

zijt ~ Bernoulli(߰ijt) 

where ߰ijt is the probability that species i occurs at site j during study period t. ߰ijt 

was modeled as a function of several site-level (j) and/or period-level (t) covariates as 
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൫߰௜௝௧൯ݐ݅݃݋݈ ൌ ଴,௜ߙ	 ൅ 	ܾ݁ܿ݊ܽݎݑݐݏଵ,௜݀݅ߙ	 ൅ ܵܧܴܱܨ	ଶ,௜ߙ	 ௝ܶ ൅ ௝ܫܲܶ	ଷ,௜ߙ	 	

൅ ௝ܦܧܩܩܷܴ	ସ,௜ߙ	 	൅ ܵܧܴܱܨ	ହ,௜ߙ	 ௝ܶ ∗  	ܾ݁ܿ݊ܽݎݑݐݏ݅݀

where disturbance is either BUILDINGj for the human footprint model or meanHPDjt 

for the human presence model, and i is a vector of parameter estimates for species i.   

Detection (yijkt) of species i at site j during daily survey k is conditional on 

occupancy of species i at site j during the study period t during which survey k 

occurred, and was modeled as 

yijkt ~ Bernoulli(zijt * pijk) 

௜௝௞൯݌൫ݐ݅݃݋݈ ൌ ଴,௜ߚ	 ൅ ܾ݁ܿ݊ܽݎݑݐݏଵ,௜݀݅ߚ	 ൅ ܵܧܴܱܨ	ଶ,௜ߚ ௝ܶ ൅ ௝ܫܲܶ	ଷ,௜ߚ	 	

൅ ௝ܦܧܩܩܷܴ	ସ,௜ߚ	 	൅ ܵܧܴܱܨ	ହ,௜ߚ	 ௝ܶ ∗  ܾ݁ܿ݊ܽݎݑݐݏ݅݀

where pijk is the probability of detecting species i on camera j during survey k.  

disturbance in this case is either BUILDINGj or HPDjk, the latter varying between 

daily surveys. i is a vector of parameter estimates for species i.  I included an 

interaction between forest cover and human disturbance in both the occupancy and 

detection submodels because the presence of protective cover may affect how 

responsive a species is to human disturbance and thus alter the effect of disturbance 

on site use and/or activity. 
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 Species-level parameter estimates for both the occupancy (i) and detection 

probability (i) submodels were drawn from distributions governed by community-

level hyperparameters (Burton et al. 2012, Broms et al. 2016) as follows 

i ~ Normal( ,) 

i ~ Normal( ,)  

where  and  are vectors of means and standard deviations.   

I analyzed the occupancy models in a Bayesian framework, using the JAGS 

(Plummer 2003) language called through the package R2jags (Su and Yajima 2015) 

in R (v. 3.4.2; R Development Core Team, 2010). For each model, I ran three Markov 

Chain Monte Carlo (MCMC) chains of 20,000 iterations each and make inference 

from 1,000 samples from the posterior distribution of each chain after a burn in of 

15,000 and a thinning rate of 5.  I chose vague priors for all random variables and 

random starting values for all chains.  Convergence of MCMC chains was confirmed 

by visual inspection of trace plots, and via the Gelman-Rubin statistic ( ෠ܴ) (Hobbs and 

Hooten 2015).  To test model fit, I calculated Freeman-Tukey (Conn et al. 2018) and 

chi-squared statistics (Royle and Dorazio 2008) for both observed data and expected 

values derived from the fitted model and compared these statistics using Bayesian p-

values (Hobbs and Hooten 2015).  In describing the effect of model covariates on 

occupancy and detection probability below, I report the posterior probability that the 
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coefficient estimate for a given covariate is more extreme (greater or less than) zero 

(hereafter, ‘posterior probability’).  

 

Comparing the effects of human presence and human footprint on wildlife 

nocturnality 

I estimated the degree to which wildlife activity was concentrated during 

nocturnal hours by calculating the time difference in hours between noon and each 

detection of a wildlife species on camera.  The absolute value of this “hours to noon” 

estimate was taken as a measure of nocturnality such that detections occurring farther 

from noon (i.e., closer to the middle of the night) were considered to exhibit greater 

nocturnality.  I then calculated the average nocturnality value for each species at each 

camera site, as well as the total number of independent detections of the species at 

each site. I used linear regression to compare the effects of human presence and 

human footprint on species nocturnality.  Camera site-level human presence was 

estimated as human detections per week (HPW), averaged across all three study 

periods (see above) at a site, and site-level human footprint was estimated from 

building density (BUILDING) as described above.  Both HPW and BUILDING were 

centered and scaled to permit direct comparison of coefficient estimates, and log 

transformed to deal with heterogeneity of variances (for most species, there were 

large numbers of observations at very low levels of HPW and BUILDING, with 

fewer observations at higher levels).  For each wildlife species, I fit a single, weighted 
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linear regression model including both HPW and BUILDING as covariates and total 

detections of the species as a weighting term.  Model fit was confirmed by inspecting 

residual vs. fitted value and quantile-quantile plots. 

 

Predicting the intensity of human presence across the landscape 

I evaluated landscape scale predictors of human activity to determine where 

and when human presence would be concentrated on the landscape beyond developed 

areas. I estimated camera site-level human presence based on daily counts of humans 

detected at each camera, as described above.  I expected temporal variation in human 

activity due to a “day-of-the-week effect” (WEEKEND), given that outdoor activity 

is typically greater on weekends when recreational opportunities are greatest (Nix et 

al. 2018).  I therefore summed human counts for each camera site based on day of the 

week, creating two estimates per site corresponding to expected low and high human 

activity, i.e., counts during the 5 days in the middle of the week (Monday - Friday; 

low activity) and those during the 2 days on the weekend (Saturday and Sunday; high 

activity). To account for uneven sampling effort between level of activity (weekday 

versus weekend), I included the total number of weekday or weekend days a camera 

was active as an offset in models described below, resulting in a response of humans 

per day (HPD).  HPD was modeled based on landscape attributes that I hypothesized 

were proxies of the intensity of human activity and best characterized the potential for 

nature-based recreation (Neuvonen et al. 2010, Sen et al. 2014, Weyland and Laterra 
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2014).  Recreational use in an area has been shown to increase with adjacency to 

development due to lower travel demand and accessibility (Spinney and Millward 

2013, Rossi et al. 2015) thus the following variables representing spatial demand 

were included in the model: ROAD, BUILD, URBAN, and WUI .  In addition, I 

included the TRAIL, VIEW, OPEN, and ACCESS variables since the availablity of 

recreation services are considered important determinants of visitation to and human 

activity in an area (Hill and Courtney 2006, Ode and Fry 2006). Natural features, 

such as tree vegetation and rough reliefs, can generate  high scenic value and 

recreational opportunities (hiking, biking, etc.) therefore I also included FOREST, 

RUGGED, ELEV and VIEW variables. To evaluate whether any landscape 

characteristics associated with human activity varied between weekends versus 

weekdays, I included a 2-way interaction between WEEKEND and all other 

covariates.  All covariates were normalized (mean centered and scaled by two 

standard deviations) to improve model convergence and to facilitate comparison of 

model coefficients among covariates (Gelman 2008). I also made sure that no 

candidate models had covariates exhibiting high levels of collinearity (r > 0.7).  

Based on Vuong closeness tests (Vuong 1989), I  formulated the  model as a zero-

inflated Poisson (ZIP) model as data were skewed towards counts of zero humans per 

camera day.  All analyses were performed using the language R (v. 3.4.2; R 

Development Core Team, 2010) with the zero-inflated Poisson model and Vuong 

closeness tests fit using the R package pscl (Zeileis et al. 2008) and AICc calculated 

using the MuMIn (Bartoń 2018) package.  
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RESULTS 

Effects of human presence and human footprint on wildlife habitat use 

 Both human presence and human footprint occupancy models exhibited 

successful convergence ( ෠ܴ < 1.1 for all model terms) and excellent fit (Bayesian p-

values: 0.445 ≤ p ≤ 0.499).  These models revealed that human presence and human 

footprint are not equivalent in their effects on wildlife habitat use (Fig. 2, Tables S1, 

S2, S3 and S4).  The intensity and sign of the effect of each human disturbance type 

varied substantially between species. Several species (pumas, bobcats, and foxes) 

exhibited a significant positive association between occupancy probability and 

average human activity at a camera site (posterior probability for all species ≥ 0.99; 

Table S1).  Interestingly, none of the species analyzed exhibited a negative 

association between occupancy and human activity.  By contrast, fox occupancy 

probability was strongly negatively associated with building density (posterior 

probability = 1; Fig. 2, Table S3), while several well-known synanthropic species 

(coyotes, skunks, and opossums) exhibited relatively strong positive associations 

between occupancy probability and building density (posterior probability: coyote = 

0.99, skunk = 0.96, opossum = 0.92).   

 Human presence and building density had similarly non-equivalent effects on 

wildlife detection probability.  The number of human detections in the immediately 

preceding diurnal period had a strong negative effect on skunk and opossum detection 
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probability (posterior probability = 0.99 and 0.97, respectively), with bobcats and 

foxes showing the opposite effect (posterior probability = 1 for both species; Fig. 2, 

Table S2).  Pumas (0.97), bobcats (0.99), and foxes (1.0) were all less likely to be 

detected with increasing building density, while common synanthropic species 

showed increasing detection probability with increasing building density (skunk and 

raccoon, posterior probability = 1.0 for both species; Fig. 2, Table S4).   

 For several species, the effects of human presence on habitat use were 

mediated by the availability of forest cover.  Both foxes and opossums were more 

likely to occupy sites with high human presence if high forest cover was also 

available (Fig. 3a,b; Table S1).  Coyotes similarly exhibited increased occupancy 

probability at high building density sites where high forest cover was available, while 

bobcats showed the opposite pattern, though with substantial variability (Fig. 3c,d; 

Table S3).  Full results of the human presence and human footprint occupancy 

models, including main effects of forest cover, topographic position, and ruggedness, 

are presented in Tables S1, S2, S3, and S4. 

 

Effects of human presence and human footprint on wildlife nocturnality 

 Several wildlife species exhibited significant temporal shits in their diel 

activity patterns across the gradients of human presence and/or building density.  

Pumas (weighted linear regression: F1,67 = 17.22, p < 0.001), bobcats (F1,67 = 3.81, p 

= 0.054), and coyotes (F1,67 = 8.47, p = 0.007) exhibited increased nocturnality as 
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human presence at a site increased.  Bobcats also exhibited increased nocturnality 

with increasing building density (F1,67 = 9.51, p = 0.003) while foxes were 

moderately less nocturnal at increasing levels of building density (F1,67 = 8.38, p = 

0.005; Fig. 4, Table S3).  

 

Predicting the intensity of human presence across the landscape 

The zero-inflated Poisson regression model predicting landscape scale 

variation in human activity was statistically significant (߯ଵଵ,ଵ଻଺ = 1163,  p < 0.001; 

Pseudo R2 = 0.63) and revealed that variables representing spatial demand, 

recreational services, and natural features were strong predictors of the intensity of 

human activity at a camera location, i.e. humans per day (HPD).  As expected, human 

activity varied depending on the time of the week with increased activity on 

weekends (βWEEKEND = 0.29, p < 0.001) relative to weekday use.  HPD also increased 

significantly in areas with greater opportunities for recreational activities, including 

proximity to public open space (βOPEN = -0.77, p < 0.001), higher trail density (βTRAIL = 

0.99, p < 0.001), greater proportion of vista opportunities (βVIEW = 0.10, p < 0.001), 

and adjacency to recreational access points (βACCESS = -0.89, p < 0.001).  Additionally, 

HPD was greater in proximity to highly developed urban areas (βURBAN = -0.16, p = 

0.04) as well as those dominated by exurban expansion into rural landscapes (βWUI = 

0.11, p < 0.001). However, an interaction with weekend (βURBAN:WEEKEND = 0.46,  p < 

0.001) suggests activity is more prevalent in areas farther away from developed areas 
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on the weekend, with use localized to areas near development during weekdays.  The 

surrounding natural characteristics of a site also influenced HPD with decreased 

activity in more rugged landscapes (βRUGGED = -0.14, p < 0.001), though human use of 

rugged areas increased on weekends (βRUGGED:WEEKEND = 0.2, p = 0.004).  I did not find 

significant correlations for the remainder of the variables. The Vuong test suggested 

that the zero-inflated model was a significant improvement over a standard Poisson 

regression model (p < 0.0001). 

 

DISCUSSION 

Although a growing body of research demonstrates that both the human 

footprint and human presence (including recreation) can have negative impacts on 

wildlife (Larson et al. 2016, Gaynor et al. 2018, Tucker et al. 2018), studies aimed at 

disentangling the concurrent effect of both forms of disturbance on wildlife behavior 

are surprisingly rare. These results demonstrate that human footprint and human 

presence have differential effects on the occupancy and activity patterns of wildlife in 

the region. I further show that human presence beyond developed areas is more 

extensive in the region than anticipated, particularly in protected areas with high 

recreation potential.  Moreover, I was able to predict the intensity of human presence 

from landscape-level variables allowing estimation of human impacts on wildlife 

even in wilderness areas. Together, these results refine our understanding of how both 

human activity and development drive changes in wildlife behavior and underscore 
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the importance of integrating multiple sources of disturbance when evaluating the 

degree to which human-derived risk affects wildlife. 

 

Contrasting effects of human presence and human footprint on wildlife habitat use 

and behavior 

These results demonstrate that human presence and human footprint are not 

equivalent in their impacts on wildlife habitat use and behavior, with these two forms 

of anthropogenic disturbance in many cases having opposing effects on occupancy 

and/or detection probability.  Building density and other forms of development 

represent long-term and spatially constant sources of disturbance, and several 

sensitive wildlife species have been shown to avoid these risky places (Riley 2006, 

Ordeñana et al. 2010), including pumas in the study area (Wilmers et al. 2013, Wang 

et al. 2015a). I correspondingly found negative effects of building density on the 

habitat use of several carnivores, including pumas and bobcats, which were less 

detectable in areas of high building density, indicative of reduced overall activity 

levels in areas of consistent human disturbance (Fig 2).  Grey foxes appeared to be 

particularly sensitive to human footprint, with building density having a strong 

negative effect on fox occupancy and detection probability for this species (Fig. 2).   

By contrast, these same three carnivores (and to a lesser extent, coyotes) 

exhibited increased occupancy and/or detection probability with increasing human 

presence, despite growing experimental evidence that several large and medium-sized 
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carnivore species (including pumas and bobcats) exhibit strong fear responses to 

humans (Clinchy et al. 2016, Smith et al. 2017, Suraci et al. 2019a).  Spatial modeling 

results (Fig. 5) revealed that human presence is relatively high throughout many of 

the protected areas in the Santa Cruz Mountains, and thus likely overlaps with high-

quality habitat for many species potentially making the outright avoidance of human 

presence in wildland areas overly costly. Additionally, highly mobile species such as 

pumas, bobcats, and coyotes, may be positively associated with areas of high human 

presence because, like humans, these species are attracted to trails through wooded 

areas (Kays et al. 2017), which provide energetically efficient movement pathways 

across relatively large home ranges.  These results indicate that, instead of avoiding 

humans in space, these species take advantage of the high temporal predictability of 

human activity to avoid humans in time, becoming increasingly nocturnal as human 

presence increases (Fig. 4).  Increased wildlife nocturnality with increasing human 

disturbance has been demonstrated for a large number of species globally (Gaynor et 

al. 2018) and has been associated with both human footprint on the landscape ( e.g., 

residential development, urbanization, agriculture; Beckmann and Berger 2003, 

Graham et al. 2009, Díaz-Ruiz et al. 2016)  and high human presence (e.g., 

recreation) in wildland areas (e.g., Coleman et al. 2013, Wang et al. 2015, Reilly et al. 

2017).  Restricting activity to nocturnal hours may involve substantial costs for some 

wildlife species, e.g., by interfering with foraging behavior or increasing overlap with 

predators or competitors (Gaynor et al. 2018, Smith et al. 2018), but may nonetheless 
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promote coexistence by allowing humans and wildlife to use the same habitat (Carter 

et al. 2012, Suraci et al. 2019b). 

Human presence and human footprint also had opposing effects on habitat use 

by skunks and opossums, synanthropic species which commonly take advantage of 

human resource subsidies (e.g., food waste) in developed areas (Bateman and 

Fleming 2012).  Recent experimental work demonstrates that, despite their strong 

association with human development, these species are nonetheless fearful of 

immediate human presence, reducing activity and foraging behavior when perceived 

human presence was experimentally increased (Suraci et al. 2019a).  The present 

study confirms that these experimental results are relevant at the regional scale. 

Despite exhibiting increased occupancy (skunks and opossums) and detection 

probability (skunks) with increasing building density, both skunks and opossums 

were substantially less detectable in areas with high human presence, consistent with 

reduced activity levels in the presence of people.  Taken together, these findings 

suggest that, even for synanthropic species, human presence is potentially costly, and 

that the benefits of exploiting anthropogenic environments (e.g., resources subsidies) 

must be traded off against the risks of a potentially dangerous direct encounter with 

humans.  

For several carnivore species, occupancy of habitats with either high human 

presence (foxes and opossums) or high human footprint (coyotes) increased with 

increasing forest cover, indicating that the availability of protective cover reduces the 
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risk that some wildlife species perceive from humans.  Previous studies have 

similarly demonstrated increased use of human-dominated landscapes by carnivores 

when the availability of protective cover is high (Boydston et al. 2003, Ordiz et al. 

2011, Suraci et al. 2019b), suggesting that cover availability plays a key role in 

mediating coexistence between humans and carnivores by reducing the impacts of 

anthropogenic disturbance on carnivore behavior.  

 

Predicting the intensity of human presence across the landscape 

Human presence beyond heavily developed areas varied widely across the region 

with the most important drivers of use related to variation in recreation potential and 

demand.  In particular, human presence was higher in conserved lands with built 

capital providing access to recreational opportunities.  Proximity to public open 

space, vehicle access, and trail density were the strongest predictors of human 

presence at a site, consistent with previous findings suggesting that access to dense 

trail networks is correlated with significantly higher visitation rates (McKinney 2005, 

Reed and Merenlender 2008, 2011, Neuvonen et al. 2010, Kienast et al. 2012, Beeco 

et al. 2014, Taczanowska et al. 2014, Larson et al. 2018).  Similarly, ruggedness and 

the scenic potential of a site were positively associated with human use (Ode and Fry 

2006, Termansen et al. 2013, Kellner et al. 2017).  As such, human presence is likely 

more regular and widespread than expected in protected areas with greater recreation 

potential and where recreation infrastructure is well-developed. Given that protected 
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lands often overlap with high-quality habitat for many species, elevated human 

activity in these areas likely leads to substantial, yet unintended, impacts on wildlife 

from disturbance. 

While the supply of recreational opportunities influences the level of human 

activity outside developed areas, human presence is also affected by the surrounding 

demand for recreation (Hill and Courtney 2006, Rossi et al. 2015).  My modeling 

results are consistent with other studies showing that distance or travel time from 

population centers is a significant predictor of visitation rates to open spaces (Humpel 

et al. 2002, Hill and Courtney 2006, Ode and Fry 2006, Rossi et al. 2015, Larson et 

al. 2018). I found higher levels of human presence at sites adjacent to urban 

development as well as those dominated by exurban expansion (Hanink and White 

1999, Rossi et al. 2015, Patten and Burger 2018, Larson et al. 2018).  This pattern is 

particularly significant for urban-adjacent reserves as the potential for human-wildlife 

interactions and thus negative impacts is likely greatest given the already elevated 

presence of humans in protected areas of the region. However, I detected a significant 

interaction between distance to urban center and weekend (Table 1), indicating that 

human presence in protected areas shifted depending on the day of the week with 

greater concentrations of activity at sites further away from developed areas on 

weekends, potentially due to time-dependent constraints on recreation (Arnberger 

2006, Degenhardt et al. 2011, Fredman et al. 2011, Rossi et al. 2015, Larson et al. 

2018).  For instance, frequent but short-term recreational use in nearby open spaces 

has been shown to be more prevalent during workdays when discretionary time is 
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limited (Hanink and White 1999, Rossi et al. 2015) while, weekend recreation is 

characterized by longer stays at more distant locales, especially larger regional and 

national parks, where greater recreational opportunities, e.g. challenging trails or 

higher scenic value, are more available but difficult to access during weekdays 

(Hanink and White 1999, Rossi et al. 2015).  This shift in human activity depending 

on day of the week meant that even relatively remote areas of the Santa Cruz 

Mountains were exposed to substantial human presence during some time periods.   

My approach to modeling human presence and evaluating species response to 

human activity can be used to guide future research and inform guidelines for the 

management of non-consumptive recreation in wilderness areas. For example, 

landscape level measures of the human footprint, such as land cover, population 

density, and built infrastructure, are well developed and readily available (e.g.Venter 

et al. 2016), however spatially explicit data on human presence outside of developed 

areas are notably absent (but see Gutzwiller et al. 2017). This approach helps address 

this gap and demonstrates that the intensity of human presence on the landscape 

(including in wildland areas) can be predicted from landscape-level variables, 

allowing estimation of human impacts on wildlife even outside of developed areas.  

Further, I show that modeling human presence is possible using increasingly available 

sources of spatial data (e.g., parcels, elevation, trails) allowing for projecting or 

forecasting the intensity of human activity at the landscape scale (Fig. 5).  Predictive 

models of this nature could be used to improve landscape-wide management of non-

consumptive forms of human disturbance and suggest practical management actions 
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for reducing impacts on wildlife or evaluating the effectiveness of alternative 

management decisions. For example, when planning for future recreation uses of an 

area, land-use managers could estimate human activity, and thus disturbance 

potential, in newly acquired land or under varying use or development scenarios that 

alter recreational potential or demand. 

 

Management Implications 

Taken together, this research demonstrates that in many cases the human footprint 

on the landscape is unlikely to be an adequate predictor of total anthropogenic 

impacts on wildlife communities given that (i) human presence and development 

differ in their effects on wildlife behavior and habitat use (Fig. 1), and (ii) the 

potential impacts of human presence extend well beyond the spatial footprint of 

developed areas (Fig. 4).  This work underscores the need to better understand the 

complex, non-linear response of wildlife to human disturbance as well as the diverse 

factors likely to promote human activity in wildland areas.  Occupancy modelling 

results revealed that several wildlife species avoided human development overall, 

meaning that projected increases in development (Smith et al. 2019) will only 

increase the importance of protected areas in providing wildlife habitat.  However, as 

development intensifies so will human activity and the associated costs to wildlife in 

terms of changes in behavior and activity patterns, posing serious challenges for 

landscape management and conservation.  This is especially true in and around 
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protected areas where recreation activity is often greatest but not always compatible 

with conservation objectives (Larson et al. 2016). Conservation planning should thus 

take into account not only wildlife distributions but also the spatial extent of human 

activities, including recreational demand, and its compatibility with conservation 

goals and other land-management objectives.  
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Figure 4.1. The study area in the Santa Cruz Mountains, California, including the 
network of cameras traps (black dots) used as part of this study.  
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Figure 4.2. Coefficient estimates from the multispecies occupancy models showing 
the effect of human detections (red) and building density (yellow) on occupancy and 
detection probabilities for each wildlife species.  Symbols to the right of zero (vertical 
line) indicate a positive effect of the human disturbance metric on occupancy or 
detection probability, and symbols to the left of zero indicate a negative effect.  Thick 
horizontal lines are 90% Bayesian credible intervals, and thin horizontal lines are 
95% credible intervals. 
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Figure 4.3. Human disturbance interacts with forest cover to affect wildlife species 
occupancy probability.  The effect of human detections (a,b) and building density 
(c,d) on occupancy probability are shown for (a) foxes, (b) opossums, (c) bobcats, 
and (d) coyotes at both low (yellow) and high (green) levels of forest cover.  Low and 
high forest cover are here defined as the 20% and 80% quantiles, respectively, of 
forest cover across all camera sites.  Lines and shaded areas are predictions and 95% 
credible intervals from the multi-species occupancy model. 
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Figure 4.4. The effect of human disturbance on wildlife nocturnality.  Nocturnality 
estimates (i.e., average time of detections on camera expressed as hours from noon) at 
a given camera site are plotted against human detections per week and building 
density at that camera site for (a) pumas, (b) bobcats, (c) coyotes, and (d) foxes.  
Fitted lines and shaded areas represent the predicted effect,  95% confidence 
intervals, of human disturbance on nocturnality.  Absence of a fitted line indicates no 
significant effect of disturbance on nocturnality.  Only those wildlife species for 
which at least one human disturbance type significantly affected nocturnality are 
shown. 
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Figure 4.5. Landscape level prediction of human activity in the region based on the 
modeling results (Table 4.1) using publicly available sources of spatial data (e.g., 
protected areas, parcels, elevation, trails).  Levels of human presence outside 
developed areas range from low (pink) to high (dark red) in relation to protected 
(green stipple) and urban areas across the region.  
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Table 4.1. Fixed effects terms from the best-supported model for predicting human 
presence on the landscape. 
 
Model Parameter β SE t p 

 Marginal R2 = 0.63

TRAIL 0.99 0.004 7.53 < 0.001 
ACCESS -0.89 0.006 5.73 < 0.001 
OPEN -0.77 0.004 14.64 < 0.001 
WEEKEND 0.29 0.004 12.92 < 0.001 
RUGGED -0.14 0.004 4.89 < 0.001 
WUI 0.11 0.005 -4.68 < 0.001 
VIEW 0.10 0.004 -2.21 0.05 
URBAN -0.16 0.004 -2.12 0.03 
URBAN : WEEKEND 0.46 0.004 -2.43 0.004 
RUGGED : WEEKEND 0.20 0.004 -2.21 0.02 
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Table S4.5. Results of linear regression models comparing the effects of human 
detections per week (HPW) and building density (Building) on wildlife nocturnality.  
Human disturbance covariates were centered and scaled. 

  Estimate 
Standard 

error 
p-value 

Puma 

  
HPW 0.597 0.144 <0.001 

Building 0.291 0.179 0.109 

Bobcat 

  
HPW 0.280 0.144 0.054 

Building 0.425 0.138 0.003 

Coyote 

  
HPW 0.733 0.252 0.007 

Building 0.062 0.231 0.790 

Fox 

  
HPW -0.071 0.088 0.421 

Building -0.347 0.120 0.005 

Skunk 

  
HPW 0.003 0.072 0.971 

Building -0.099 0.057 0.086 

Opossum 

  
HPW 0.144 0.102 0.166 

Building -0.062 0.078 0.431 

Raccoon 

  
HPW 0.150 0.190 0.436 

Building -0.327 0.187 0.089 
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CHAPTER 5 

 

CONCLUDING REMARKS 

Understanding the impact of humans on wildlife is an important component to 

their effective conservation and management. As the human footprint continues to 

expand, natural landscapes are more likely to be shared between wildlife and people 

further precipitating the negative impacts of human activity on wildlife.  While it is 

well established that these impacts are complex and vary among species (Hoffmann et 

al. 2010, Dirzo et al. 2014, Gaynor et al. 2018, Tucker et al. 2018), humans have a 

particularly unique impact on large carnivores (Estes et al. 2011, Crooks et al. 2011, 

Ripple et al. 2014).  This is due in part to their high trophic position, low population 

densities and reproductive rates, large spatial and prey requirements, and propensity 

to conflict with humans (Woodroffe and Ginsberg 1998, Woodroffe 2000, Brashares 

et al. 2001, Cardillo et al. 2004, Nielsen et al. 2004, Creel et al. 2013, Rosenblatt et al. 

2014). However, there is limited empirical work about how carnivores co-exist with 

humans and the extent to which, if any, risk plays a role in their dynamics. 

This research focuses, in part, on the effects of human-induced risk on the 

energetic and behavioral ecology of pumas providing for a more mechanistic 

understanding of how large carnivores navigate complex, natural landscapes shared 

with humans.  Specifically, I demonstrate that the fear of humans exerts an energetic 

cost comparable to that of physical terrain and their combined costs drive where and 

to what extent pumas move across the landscape.  For example, pumas elect to use 
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energetically efficient movement pathways where possible, however, in areas of 

increasing risk from humans they adopt energetically sub-optimal paths.  This pattern 

reflects a trade-off between risk avoidance and the energy costs of movement that 

results in a constriction of overall space use for individuals experiencing consistently 

high movement costs.  As such behavioral changes induced by the fear of humans 

may put considerable strain on a puma’s energy budget and therefore come at the cost 

of reductions in key behaviors, including long-range movements and territorial 

defense.  

In addition, this research demonstrates that the human footprint and human 

presence have non-equivalent, and in some cases opposite, effects on the habitat use 

and activity patterns of wildlife.  In most cases, wildlife adjusted their behavior in 

areas of high overlap between wildlife and people becoming more active when human 

presence was lower and generally avoiding developed areas where possible.  Further, 

human presence beyond developed areas is extensive and concentrated in protected 

areas suggesting human impacts on wildlife may be more widespread in the region 

than anticipated.  Given that both human development and activity are prevalent, 

complete avoidance of people is likely impossible for many species and thus the 

likelihood of negative impacts from human disturbance correspondingly high in the 

region.  As such, conservation planning should take into account not only wildlife 

distributions in relation to human development but also the spatial extent of human 

activities, including recreation, when evaluating the degree to which human-derived 

risk affects wildlife. 
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Taken together, this dissertation provides an important extension of recent 

attempts to quantify the effects of the landscape on animal movement (Shepard et al. 

2013, Halsey 2016) and provides new insights regarding human-mediated disturbance 

of wildlife (Larson et al. 2016, Gaynor et al. 2018, Tucker et al. 2018). Novel 

approaches like those presented here also advance how we measure sources of human 

disturbance and improves our ability to assess their impact on wildlife physiology, 

behavior, and ecology.  In particular, integration of the energy landscapes and 

landscapes of fear  under the common currency of energy (Gallagher et al. 2016) 

provides important insights into the mechanistic understanding of wildlife behavior in 

landscapes shared with people. Further, combining data obtained from animal-borne 

and remote sensors offers the opportunity to test hypotheses about the role of 

energetics in the ecology of wildlife at a scale that has previously been impossible 

(Wilmers et al. 2015).  Doing so offers an avenue to bring a more mechanistic, 

process-based foundation to research on wildlife responses to human disturbance.  

Ultimately, I expect that the rigorous quantification of human activity and 

clarification of its effects on wildlife ecology outlined in this dissertation will prove 

to be a valuable framework for researchers and managers seeking to conserve wildlife 

in human-dominated landscapes. 
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