
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Optimizations of manufacturability and manufacturing in nanometer-era VLSI

Permalink
https://escholarship.org/uc/item/5zb2j9n7

Author
Xu, Xu

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5zb2j9n7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Optimizations of Manufacturability and Manufacturing in Nanometer-Era VLSI

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Xu Xu

Committee in charge:

Professor Andrew B. Kahng, Chair
Professor Chung-Kuan Cheng
Professor Bill Lin
Professor Tajana Simunic-Rosing
Professor Bang-Sup Song

2006

Copyright c©
Xu Xu, 2006

All rights reserved.

The dissertation of Xu Xu is approved, and it is accept-

able in quality and form for publication on microfilm:

Chair

University of California, San Diego

2006

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . x

Acknowledgments . xii

Vita, Publications, and Fields of Study xiv

Abstract . xvii

Chapter I Introduction . 1
A. The VLSI Manufacturing Process 1
B. Sub-Wavelength Lithography Challenges 2
C. Overview of Manufacturing Problems and Our Solutions 5

1. Fracturing . 5
2. Multi-Project Wafers . 6
3. Alternating-Aperture Phase Shift Masking 7
4. Via Doubling . 8

Chapter II Yield-Driven Fracturing . 9
A. Introduction . 10

1. Definitions and Problem Statement 10
2. Previous Work . 13
3. Contributions . 15

B. Integer Linear Programming Formulation 16
1. Convexity Constraints . 18
2. Constraints for Slant Edges and Critical Features 19
3. Maximum Shot Size Constraints 20
4. Counting Shots . 21
5. Counting and Finding Length of Slivers 21

C. Ray-Segment Selection Based Heuristics 22
1. Polygon Partitioning With Coincident Rays 22
2. Ray-Segment Selection Formulation of the Fracturing Problem . 24
3. Gain-Based Ray Segment Selection Heuristics 26

D. Auxiliary Ray Segments for Sliver Minimization 28
E. Experimental Results . 29
F. Summary . 31

iv

Chapter III Enhanced Design Flow and Optimizations for Multi-Project
Wafers . 33
A. Introduction and Motivation . 34
B. Preliminaries . 37
C. Reticle Floorplanning . 38
D. Multiple-Dicing-Plan Dicing . 42

1. Integer Linear Program for Restricted MDPs 43
2. Two-Level Optimization Algorithm for MDPs 44

E. Wafer Shot-Map Definition . 46
F. Robust Floorplanning With Die Cloning 50
G. On-Demand Wafer Dicing . 53
H. Experimental Results . 55
I. Summary . 61

Chapter IV Bright-Field AAPSM Conflict Detection and Correction 68
A. Introduction . 69
B. Previous Work . 71
C. Phase Conflict Detection Scheme . 73

1. Conflict Cycle Graph . 75
2. Optimal Minimum-Weight Conflict Cycle Removal Algorithm for

Embedded Planar Graphs . 79
3. Gadget Decomposition With Divide Nodes 86

D. Layout Modification . 90
E. Experimental Results . 95

1. Phase Conflict Detection Results 95
2. Phase Conflict Correction Results 96

F. Summary . 97

Chapter V Optimal Post-Routing Redundant Via Insertion for Manufac-
turing and Timing Yield Improvement 100
A. Introduction . 101
B. Background . 104
C. Problem Formulation . 104
D. Optimal Redundant Via Insertion 106

1. Construction of Initial Graph . 107
2. Construction of Gadgets for Mutual Exclusiveness 108
3. Construction of Gadgets for Implied Simultaneous Occupation . 109
4. Construction of Gadgets for Existence of Perfect Match 110

E. Timing-Driven Redundant Via Insertion 116
F. Experiments . 117
G. Summary . 119

v

Chapter VI Conclusions and Future Work 121

Bibliography . 125

vi

LIST OF FIGURES

I.1 Overview of VLSI manufacturing process. 2

I.2 Overview of a photolithographic cycle. 3

I.3 Predicted manufacturing feature size versus lithography wavelength. 4

II.1 Relationship between MEEF and k1 for different mask types, where
k1 is proportional to feature size. 12

II.2 An example of fractured polygons. 13

II.3 Mask data process flow. 14

II.4 Internal and external slant edges. 16

II.5 A polygon P with concave boundary points. The dashed vertical
and horizontal rays are originated from concave points. The internal
triangle associated with the slant edge is shaded. 17

II.6 The grid graph G. 19

II.7 Treating a slant edge. Since the point vij is concave, either the edge
eh

ij or the edge ev
i,j−1 should be used in any fracturing. Since vij and

vi+k,j+l are endpoints of a slant boundary edge, either the edge eh
ij

or the edge ev
i+k,j+l−1 should be used in any fracturing. 20

II.8 (a) A polygon with five concave points and three rays between them.
(b) The corresponding bipartite graph B, in which the vertices
{h1, h2} form the maximum independent set. (c) The corresponding
partitioning into sub-polygons without coincident rays. 23

II.9 The directed grid graph G′. 25

II.10 The cases of internal vertices v: (a) no ray segments point to v; (b)
a ray segment e ∈ F points to v and Next(e) ∈ F ; and (c) a ray
segment e ∈ F points to v and C(Next(e)) ∈ F 26

II.11 Gain-based ray segment selection algorithm. 27

II.12 Bucket structure for candidate pool S. 28

vii

II.13 Fracturing of a polygon: (a) without auxiliary ray and (b) with
auxiliary ray. 29

III.1 Four quadrant dicing: the wafer is first divided into four quadrants,
then each quadrant is diced independently using side-to-side cuts. . 38

III.2 Two-level hierarchical quadrisection floorplan. 41

III.3 Hierarchical quadrisection floorplanning algorithm. 42

III.4 Placing two wafers on one “super-wafer”. 43

III.5 Two-level optimization heuristic. 46

III.6 A periodic shot-map with dark circular wafer. A partially printed
reticle contains dark completely printed projects. 49

III.7 Region 1 and Region 2 for the projection L. 49

III.8 Hierarchical wafer shot-map definition algorithm. 50

III.9 Greedy ODSSWDP algorithm. 52

III.10 History-based ODSSWDP algorithm. 54

III.11 Tradeoff curves between the probability of satisfying an order and
the number of wafers for CMP testcase “Ind5” with production vol-
umes generated from the (a) uniform and (b) normal distributions. 59

IV.1 Example of incorrect phase assignment. 70

IV.2 Phase conflict detection flow. 73

IV.3 (a) Conflict cycle graph, (b) Phase conflict graph. 76

IV.4 Phase assignment algorithm. 77

IV.5 Deleting all common edges (in this case, only one) results in a
merged face. 80

IV.6 Gadget graph construction from dual graph. The directions on the
edges in (a) are used to signify the edge assignment. 82

IV.7 Decomposition of a complete gadget with divide nodes. 88

viii

IV.8 Details of layout modification algorithm. 90

IV.9 Layout modification with vertical space insertion. 93

IV.10 Comparing the area increases produced by the layout modification
scheme in [35] with the proposed scheme. 94

IV.11 Hierarchical layout and its partition tree. 94

V.1 Two adjacent routes are separated by the minimum distance be-
tween a via and a metal wire, which is smaller than the minimum
spacing rule between two vias, such that two vias cannot be inserted
at two adjacent locations. 105

V.2 Candidate sites (a) for one via v and (b) for the routing r to connect
the redundant site s1 for via v. 105

V.3 An example of two exclusive routes (a) and the corresponding con-
flict gadget (b). In this example, the stacked via sites s1 and s2

cannot be simultaneously occupied. 109

V.4 A short loop (v, s2, s1, s3) which doubles a dead via v. 111

V.5 (a) A gadget for a short loop, and (b) a gadget for a short loop in
conflict with another route r0. 111

V.6 An example of via and site gadgets construction. 115

ix

LIST OF TABLES

II.1 Properties of testcases. 31

II.2 Fracturing results with slivering size ǫ = 100nm and maximum shot
size M = 2.55µm. CPU time is given in seconds. 31

III.1 CMP testcase parameters. 56

III.2 Reticle floorplan results for six industry testcases. CMP is the origi-
nal industry floorplan used in CMP, “IASA+SA” is the floorplanner
used in [23] and HQ is our proposed hierarchical quadrisection floor-
plan algorithm. 62

III.3 Wafer dicing results for six testcases. IASA is the algorithm pro-
posed in [23]; E-IASA is our extended IASA heuristic; ILP is the
proposed integer linear programming approach; TLO refers to our
two level optimization algorithm. 63

III.4 Cost efficiency of wafer shot-map definition step for six industry
testcases. l is the number of levels and k is the grid size used in
each level. 64

III.5 Average and standard deviation of the number of wafers assuming
fixed whole wafer dicing. 65

III.6 On-demand wafer dicing results for six industry testcases with cus-
tomer orders generated from a uniform distribution. 66

III.7 On-demand wafer dicing results for six industry testcases with cus-
tomer orders generated from a normal distribution. 67

IV.1 Phase conflict detection results. Experiments were run on a 4X400
Mhz Ultra-Sparc II with 4.0 GB of RAM. 97

IV.2 Layout modification results for standard-cell blocks. 98

V.1 Characteristics of test cases. 117

x

V.2 Via doubling results. “H2K” is the heuristic based on the MIS
formulation proposed in [52], “SLP” is the greedy method with short
loop insertion proposed in [50], and “Match” is our proposed perfect
matching method. “UDV” is the number of undoubled vias, “VDC”
is the via doubling coverage expressed as a percentage, and “WL”
is the percentage increase in wirelength. 118

V.3 Timing yields of timing-driven (TD) and random (RD) redundant
via insertion for different percentage levels of redundant via coverage.119

xi

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my supervisor,

Professor Andrew B. Kahng, for his continuous support in the Ph.D. program. His

wide knowledge and logical way of thinking have been of great value for me. He is

responsible for involving me in the DFM and manufacturing area in the first place.

He showed me different ways to approach a research problem and the need to be

persistent to accomplish any goal.

I wish to express my warm and sincere thanks to Professor Ion Mandoiu

and Professor Alex Zelikovsky for their helpful discussion and suggestion on various

projects. Their ideas and concepts have had a remarkable influence on my entire

career in the field of VLSI manufacturing research. A special thank goes to Dr.

Bao Liu for his insightful comments on timing related projects. His guidance was

very important in avoiding pitfalls. I owe my gratitude to Dr. Charles Chiang

and Dr. Subarna Sinha, who gave me the opportunity to work with them on the

AltPSM project at Synopsys, Inc.

I would also like to thank my thesis committee members, Professor Chung-

Kuan Cheng, Professor Tajana Simunic-Rosing, Professor Bang-Sup Song and Pro-

fessor Bill Lin, for taking time out of their busy schedules to review and evaluate

my research work. I am quite grateful for their valuable feedback.

During my Ph.D. study, I have collaborated with many colleagues for

whom I have great regard, and I wish to extend my warmest thanks to Puneet

Gupta, Swamy Muddu, Chul-Hong Park, Sherief Reda, Kambiz Samadi, Puneet

Sharma and Qinke Wang. I wish them the best in the future.

I owe my loving thanks to my wife Yaqing Chen and my coming daugh-

ter Jade. Without their encouragement and understanding it would have been

impossible for me to finish this work.

I am indebted to my parents for their care and love through my life, their

invariant support wherever I go and whatever I do. This thesis is dedicated to

them.

xii

The material presented in this thesis is based on the following publica-

tions.

• Chapter II is based on the following publication: A. B. Kahng, X. Xu and

A. Zelikovsky, “Fast Yield-Driven Fracture for Variable Shaped-Beam Mask

Writing”, Photomask and Next-Generation Lithography Mask Technology XI,

April 2006, accepted and to appear.

• Chapter III is based on the following publication: A. B. Kahng, I. I. Mandoiu,

X. Xu and A. Zelikovsky, “Enhanced Design Flow and Optimizations for

Multi-Project Wafers”, IEEE Transactions on CAD (2006), accepted and to

appear.

• Chapter IV is based on the following publication: C. Chiang, A. B. Kahng,

S. Sinha, X. Xu and A. Zelikovsky, “Fast and Efficient Bright-Field AAPSM

Conflict Detection and Correction”, IEEE Transactions on CAD (2006), ac-

cepted and to appear.

• Chapter V is based on the following draft: A. B. Kahng, B. Liu and X. Xu,

“Perfect Matching Based Optimal Post-Routing Redundant Via Insertion for

Manufacturing and Timing Yield Improvement”.

The dissertation author was the primary researcher and author. My coau-

thors (Prof. Andrew B. Kahng, Prof. Ion Mandoiu, Prof. Alex Zelikovsky, Dr.

Bao Liu, Dr. Charles Chiang and Dr. Subarna Sinha) have all kindly approved

the inclusion of the aforementioned publications in my thesis.

xiii

VITA

1975 Born, Maanshan, China

1998 B.S. University of Science & Technology of China

1999 M.S., Carnegie Mellon University

2006 Ph.D., University of California, San Diego

All papers have authors listed in alphabetical order.

PUBLICATIONS

A. B. Kahng and X. Xu, “Accurate Pseudo-Constructive Wirelength and Con-
gestion Estimation”, ACM International Workshop on System-Level Interconnect
Prediction, April 2003, pp. 61-68.

A. B. Kahng and X. Xu, “Local Unidirectional Bias for Smooth Cutsize-Delay
Tradeoff in Performance-Driven Bipartitioning”, Proc. ACM/IEEE Intl. Symp.
on Physical Design, April 2003, pp. 81-86.

A. B. Kahng, I. I. Mandoiu, S. Reda, X. Xu and A. Zelikovsky, “Design Flow
Enhancements for DNA Arrays”, Proc. IEEE Intl. Conf. on Computer Design,
October 2003, pp. 116-123.

A. B. Kahng, I. I. Mandoiu, S. Reda, X. Xu and A. Zelikovsky, “Evaluation of
Placement Techniques for DNA Probe Array Layout”, Proc. IEEE/ACM Intl.
Conference on Computer-Aided Design, November 2003, pp. 262-269.

A. B. Kahng and X. Xu, “Local Unidirectional Bias for Cutsize-Delay Tradeoff in
Performance-Driven Bipartition”, IEEE Transactions on CAD 23(4) (2004), pp.
464-471.

A. B. Kahng, I. I. Mandoiu, Q. Wang, X. Xu and A. Zelikovsky, “Multi-Project
Reticle Floorplanning and Wafer Dicing”, Proc. ACM/IEEE Intl. Symp. on
Physical Design, April 2004, pp. 70-77.

A. B. Kahng, X. Xu and A. Zelikovsky, “Yield- and Cost-Driven Fracturing for
Variable Shaped-Beam Mask Writing”, Proc. 24th BACUS Symposium on Pho-
tomask Technology and Management, September 2004, pp. 360-371.

C. Chiang, A. B. Kahng, S. Sinha, X. Xu and A. Zelikovsky, “Bright-Field AAPSM
Conflict Detection and Correction”, Proc. Design Automation and Testing in Eu-
rope, March 2005, pp. 908-913.

xiv

P. Gupta, A. B. Kahng, C.-H. Park, K. Samadi and X. Xu, “Topography-Aware
Optical Proximity Correction for Better DOF margin and CD control”, Photomask
and Next-Generation Lithography Mask Technology X, April 2005, pp. 844-854.

A. B. Kahng, I. I. Mandoiu, X. Xu and A. Zelikovsky, “Yield-Driven Multi-Project
Reticle Design and Wafer Dicing”, Proc. 25th BACUS Symposium on Photomask
Technology and Management, October 2005, SPIE (5992) pp. 1247-1257. (1st
Place of Best Poster Award and Best Paper Award)

C. Chiang, A. B. Kahng, S. Sinha and X. Xu, “Fast and Efficient Phase Con-
flict Detection and Correction in Standard-Cell Layouts”, Proc. ACM/IEEE Intl.
Conf. on Computer-Aided Design, November 2005, pp. 149-156.

A. B. Kahng, I. I. Mandoiu, X. Xu and A. Zelikovsky, “Multi-Project Reticle
Design and Wafer Dicing under Uncertain Demand”, Proc. European Mask and
Lithography Conference, January 2006, pp. 45-54.

A. B. Kahng, B. Liu, K. Samadi and X. Xu, “Statistical Crosstalk Aggressor Align-
ment Aware Interconnect Delay Calculation”, ACM Intl. Workshop on System-
Level Interconnect Prediction, March 2006, pp. 91-97.

A. B. Kahng, B. Liu and X. Xu, “Constructing Current-Based Gate Models Based
on Existing Timing Library”, Proc. ACM/IEEE Intl. Symp. on Quality Electronic
Design, March 2006, pp. 37-42.

A. B. Kahng, I. I. Mandoiu, S. Reda, X. Xu and A. Zelikovsky, “Computer-Aided
Optimization of DNA Array Design and Manufacturing”, IEEE Transactions on
CAD 25 (2) (2006), pp. 305-320.

A. B. Kahng, X. Xu and A. Zelikovsky, “Fast Yield-Driven Fracture for Variable
Shaped-Beam Mask Writing”, Photomask and Next-Generation Lithography Mask
Technology XI, April 2006, accepted and to appear.

A. B. Kahng, B. Liu and X. Xu, “Statistical Gate Delay Calculation with Crosstalk
Alignment Consideration”, Proc. Great Lake Symposium on VLSI, April 2006, pp.
223-228.

A. B. Kahng, I. I. Mandoiu, S. Reda, X. Xu and A. Zelikovsky, “Computer-
Aided Optimization of DNA Array Design and Manufacturing”, in Design Au-
tomation Methods and Tools for Microfluidics-Based Biochips (K. Chakrabarty,
ed.), Springer, 2006, accepted and to appear.

P. Gupta, A. B. Kahng, C.-H. Park, K. Samadi and X. Xu, “Wafer Topography-
Aware Optical Proximity Correction”, IEEE Transactions on CAD (2006), ac-
cepted and to appear.

xv

C. Chiang, A. B. Kahng, S. Sinha, X. Xu and A. Zelikovsky, “Fast and Efficient
Bright-Field AAPSM Conflict Detection and Correction”, IEEE Transactions on
CAD (2006), accepted and to appear.

A. B. Kahng, I. I. Mandoiu, X. Xu and A. Zelikovsky, “Enhanced Design Flow
and Optimizations for Multi-Project Wafers”, IEEE Transactions on CAD (2006),
accepted and to appear.

A. B. Kahng and X. Xu, “A General Framework for Multi-Flow, Multi-Layer,
Multi-Project Reticles Design”, Proc. 27th BACUS Symposium on Photomask
Technology and Management, September 2006, accepted and to appear.

A. B. Kahng, C.-H. Park and X. Xu, “Fast Dual-Graph-Based Hot-Spot Detec-
tion”, Proc. 27th BACUS Symposium on Photomask Technology and Management,
September 2006, accepted and to appear.

A. Balasinski, A. B. Kahng, W. Sachs-Baker and X. Xu, “A Procedure and Pro-
gram to Calculate Shuttle Mask Advantage”, Proc. 27th BACUS Symposium on
Photomask Technology and Management, September 2006, accepted and to appear.

FIELDS OF STUDY

Major Field: Computer Science
Studies in Computer-Aided Design.
Professor Andrew B. Kahng
University of California, San Diego

xvi

ABSTRACT OF THE DISSERTATION

Optimizations of Manufacturability and Manufacturing in Nanometer-Era VLSI

by

Xu Xu

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Professor Andrew B. Kahng, Chair

As optical lithography advances into the 65nm technology node and be-

yond, minimum feature size outpaces the lithography wavelength. As a result,

mask/wafer manufacturing yield improvement and cost reduction have been widely

accepted as key factors for aggressive technology scaling. This thesis is concerned

with the following four manufacturability/manufacturing problems.

Fracturing Mask manufacturing for the 90nm and 65nm nodes increas-

ingly deploys variable shaped-beam mask writing machines. The pervasive use of

OPC leads to dramatic increase in the number of thin trapezoids, which signif-

icantly decrease the mask manufacturing yield. This thesis suggests an optimal

integer linear programming based fracturing approach and fast heuristics which

substantially reduce sliver count in comparison to leading commercial fracturing

tools.

MPW Multi-project wafers (MPW) provide an attractive mask manu-

facturing cost reduction solution for low-volume production designs by sharing

the cost of mask tooling among up to tens of designs. This thesis proposes a

comprehensive MPW flow aimed at minimizing manufacturing cost through (1)

multi-project reticle floorplanning, and (2) wafer shot-map and dicing plan defini-

tion.

PSM In the context of wafer manufacturing, Alternating-Aperture Phase

Shift Masking (AAPSM) will be used to image critical features on the polysili-

xvii

con layer at advanced technology nodes. This technology imposes additional con-

straints on IC layouts, beyond traditional design rules. Phase conflicts must be

detected and removed to enable the use of AAPSM. This thesis makes two key

contributions: (1) a new, computationally efficient approach to detect a minimal

set of phase conflicts, which when corrected will produce a phase-assignable lay-

out; and (2) a novel layout modification scheme for correcting phase conflicts in

standard-cell blocks.

Redundant Vias Finally, a large part of wafer manufacturing yield loss

is due to via voids, which can be relieved by redundant via insertion or via doubling.

This thesis proposes perfect matching based post-route via doubling which achieves

optimum yield improvement. Redundant interconnects or “short loops” are also

applied to maximize the number of doubled vias. Experimental results show that

near 100% via doubling coverage can be achieved with simultaneously optimal

redundant via and short loop insertion in the post-route stage.

xviii

Chapter I

Introduction

I.A The VLSI Manufacturing Process

A graphic overview of the VLSI manufacturing process is shown in Figure

I.1. The IC manufacturing process starts with cutting a silicon cylinder into silicon

wafers. Design patterns are then imaged from the mask to the wafer. After

wafer testing, the wafer is sawn with side-to-side slicing lines to get raw dies,

which are then packaged and undergo final testing. The dominant manufacturing

optimization is to improve yield and thus reduce cost.

The most important and challenging step of the manufacturing process

is the wafer patterning or photolithography step. The main operations of a pho-

tolithographic cycle are shown in Figure I.2. Two crucial steps which determine

the manufacturing yield and cost are mask-making and stepper exposure.

• Mask-making is an important process to transfer the design from layout to

mask. Photomask creation begins with an ultra-pure glass plate with a sur-

face deposition of chromium. A laser or e-beam writing process is used to

selectively remove chromium and create the photomask. With the shrink-

ing of VLSI feature size into the deep-subwavelength regime, the minimum

feature size has outpaced the wavelength. Compensating techniques such as

optical proximity correction (OPC) and phase-shifting masks (PSM) have

been adopted to overcome the gap. As a result, mask patterns have become

1

2

Unpackaged Die

Silicon Cylinder

Packaged DieFinal Test

Wafer TestSilicon Wafer Patterned

Silicon Wafer

Dicing

Figure I.1: Overview of VLSI manufacturing process.

much more complicated, significantly reducing the mask manufacturing yield

and throughput, and increasing the mask manufacturing cost.

• Stepper exposure is a manufacturing step that transfers the design patterns

from mask to wafer photoresist. A stepper exposes a photoresist-coated

wafer to single-wavelength, deep-UV light passing through a reticle which

contains the image of a single device layer. The term “stepper” comes from

the “step-and-repeat” action of moving the wafer on its x and y axes to align

the reticle with each individual device position as the corresponding mask

pattern is transferred.

I.B Sub-Wavelength Lithography Challenges

With the shrinking of VLSI feature size in the subwavelength regime,

process variation has become a critical factor for performance, power, and cost

3

oxidation
Mask

Making
coating

ashing

etch photoresist

exposure

Wafer

Making

Figure I.2: Overview of a photolithographic cycle.

(i.e., yield). As a result, manufacturability and manufacturing have been widely

accepted as key factors for aggressive technology scaling. Optical lithography has

been a key technology enabler of the aggressive IC technology scaling implicit in

Moore’s Law. Although electron-beam and X-ray lithography, as well as mask-

less direct write techniques have been proposed as promising techniques for the

nanometer regime, optical lithography is still the most widely used method in vol-

ume VLSI production. However, as shown in Figure I.3, minimum silicon feature

sizes have outpaced the introduction of advanced lithography hardware solutions.

A popular metaphor is that this is like trying to paint a 1/4-inch wide line using a

1-inch diameter paintbrush. As a result, the critical dimension (CD) variations are

extremely difficult to reduce; this in turn significantly reduces the manufacturing

yield and increases cost. In order to follow the international technology roadmap

for semiconductors (ITRS) requirements for smaller dimensions, adjustment of the

4

Above WavelengthAbove Wavelength

1980 1985 1990 1995 2000 2005 2010

0.1

1.0

10

Silicon Feature Size

3.0 m
2.0 m

1.0 m

0.6 m

45nm
65nm

90nm
0.18 m

0.25 m

Lithography Wavelength

436nm

248nm 193nm
157nm

SubWavelengthSubWavelength

Figure I.3: Predicted manufacturing feature size versus lithography wavelength.

whole lithographic infrastructure, i.e. exposure tool, mask, photoresist, and pro-

cess, is required. Traditionally, reducing the exposure wavelength has been the

trend for the exposure tools. Resolution enhancement techniques (RETs), such as

off-axis illumination (OAI), phase-shifting masks (PSMs), and optical proximity

correction (OPC), have allowed extended usage of existing tools as cost effective

solutions in manufacturing. Due to the ever-reduced development cycles for each

wavelength generation, more drastic RETs are required to extend the working life-

time of exposure systems and ensure sufficient technology maturity. Hence, RETs,

which are imperative for current photo lithography, bring new challenges to current

VLSI industry.

5

I.C Overview of Manufacturing Problems and

Our Solutions

As the semiconductor industry slowly recovers from the economic down-

turn, it faces an accelerated technology roadmap and shortened product life cycles.

The semiconductor manufacturer’s challenge is to balance the time to introduce

new technologies with reasonable investment costs and minimized risk. Lithogra-

phy exposure tools are often the most expensive in the wafer fab and therefore

dominate miniaturization progress. Patterning of many layers in integrated cir-

cuit manufacturing requires a large number of exposure tools, resulting in high

total cost for lithography equipment. On the other hand, the increasingly large

gap between silicon feature size and lithography wavelength implies a significant

yield loss, which becomes the main obstacle of IC manufacturing. Therefore, the

key manufacturing optimization goals are yield improvement and cost reduction.

This thesis addresses the following four problems related to manufacturing yield

improvement and cost reduction.

I.C.1 Fracturing

Mask manufacturing for the approaching 90nm and 65nm nodes increas-

ingly deploys variable shaped beam (VSB) mask writing machines. This has led

to high interest in the fracturing methods which are at the heart of layout data

preparation for VSB mask writing. The pervasive use of OPC leads to a dramatic

increase in the number of thin trapezoids, or slivers, which significantly decrease

the mask manufacturing yield. In Chapter II, we address the problem of opti-

mizing VSB mask writing by taking into account the large number of constraints

imposed by mask writing equipment as well as the manufacturability of optically

corrected mask layouts. We suggest a new solution approach based on integer lin-

ear programming (ILP). The main advantage of the new method is that the ILP

finds optimal solutions while being flexible enough to take into account all specified

requirements. We also propose fast heuristics based on ray segment selection to

6

achieve a good tradeoff between solution quality and runtime. Experimental com-

parisons with leading industry tools show significant improvement in quality, as

well as acceptable scalability, of the proposed methods. In particular, our fractur-

ing solutions on three industry testcases dramatically reduce sliver count (which

reflects the risk of mask critical-dimension errors) by 83.7% and 60.5% compared to

two commercial fracturing tools while also reducing shot count (which reflects write

time and mask cost) by 5.5% and 0.6%. Our results reveal significant headroom

that can be exploited by future design-to-mask tools to reduce the manufacturing

variability and cost of IC designs.

I.C.2 Multi-Project Wafers

The aggressive scaling of VLSI feature size and the pervasive use of ad-

vanced reticle enhancement technologies lead to dramatic increases in mask costs,

pushing prototype and low volume production designs to the limit of economic

feasibility. Multiple project wafers (MPW) provide an attractive solution for such

designs by sharing the cost of mask tooling among up to tens of designs. However,

MPW reticle floorplanning and wafer dicing introduce complexities not encoun-

tered in typical, single-project wafers. In Chapter III, we propose a comprehensive

MPW flow aimed at minimizing the number of wafers needed to fulfill given die

production volumes. Our flow includes three main steps: (1) multi-project reticle

floorplanning, (2) wafer shot-map definition, and (3) wafer dicing plan definition.

For each of these steps we propose improved algorithms as follows. Our reticle

floorplanner uses hierarchical quadrisection combined with simulated annealing to

generate “diceable” floorplans observing given maximum reticle sizes. The new

wafer shot-map definition step fully utilizes the round wafer real estate by extract-

ing the maximum number of functional dies from both fully and partially printed

reticle images. Finally, our dicing planner allows multiple side-to-side dicing plans

for different wafers, allows different reticle projection rows or columns within a

wafer, and improves dicing yield by partitioning each wafer into a small number

of parts before individual die extraction. Experiments on industry testcases show

7

that our methods outperform significantly not only previous methods in the liter-

ature, but also reticle floorplans manually designed by experienced engineers. We

also initiate the study of MPW use for production under demand uncertainty and

propose efficient algorithms for two main optimizations that arise in this context:

reticle design under demand uncertainty and on-demand wafer dicing. Prelimi-

nary experiments on simulated data show that our methods help reduce the cost

overheads incurred by demand uncertainty, yielding solutions with a cost close to

what is achievable when a priori knowledge of production volumes is available.

I.C.3 Alternating-Aperture Phase Shift Masking

Alternating-Aperture Phase Shift Masking (AAPSM) is used to image

critical features on the polysilicon layer at smaller technology nodes. This tech-

nology imposes additional constraints on the layouts beyond traditional design

rules. Of particular note is the requirement that all critical features be flanked

by opposite-phase shifters, while the shifters obey minimum width and spacing

requirements. Phase conflicts must be detected and removed to enable the use of

AAPSM. Our work in Chapter IV has two key contributions: (1) a new computa-

tionally efficient approach to detect a minimal set of phase conflicts, which when

corrected will produce a phase-assignable layout; and (2) a novel layout modifi-

cation scheme for correcting these phase conflicts in standard-cell blocks. Unlike

previous formulations of this problem, the proposed solution for the conflict de-

tection problem does not frame it as a graph bipartization problem. Instead, a

simpler and more computationally efficient reduction is proposed. This simplifi-

cation greatly improves the runtime, while maintaining the same improvements in

the quality of results. An average runtime speedup of 5.9x is achieved using the

new flow. A new layout modification scheme suited for correcting phase conflicts

in large standard-cell blocks is also proposed. Our experiments show that the per-

centage area increase for making standard-cell blocks phase-assignable ranges from

1.7-9.1%.

8

I.C.4 Via Doubling

In DFM/nanometer VLSI designs, high defect density is expected in the

latest technologies, especially for subsurface defects, or via voids. The causes of

the failed vias may be airborne particles, electro-migration, or thermal stress in-

duced voiding. Via doubling, or redundant via insertion, is an effective DFM

technique for yield improvement, electro-migration alleviation, and performance

enhancement by inserting a second “back-up” via. In Chapter V, we propose a

maximum matching based post-route via doubling technique which achieves opti-

mum yield improvement. We introduce redundant interconnect or “short loops”

in addition to traditional minimum spacing redundant via insertion, and achieve

maximum number of doubled vias. We further propose a timing-driven redundant

via insertion method based on a performance sensitivity computation, along with

a weighted maximum matching for timing yield improvement. Experimental re-

sults show that our perfect matching based redundant via insertion reduces the

number of un-doubled (i.e., critical) vias by 99.4% and 98.0% compared with two

best previous post-routing via doubling heuristics, and increases the via doubling

coverage from 94.5% and 98.2% to 99.97%. One interesting observation is that

near 100% via doubling coverage can be achieved with simultaneously optimal re-

dundant via and short loop insertion in the post-route stage. Our timing-driven

redundant via insertion achieves up to 3.3% timing yield improvement compared

with timing-oblivious redundant via insertion with the same number of doubled

vias on the critical paths.

Chapter II

Yield-Driven Fracturing

Mask manufacturing for the approaching 90nm and 65nm nodes increas-

ingly deploys variable shaped beam (VSB) mask writing machines. This has led to

high interest in the fracturing methods which are at the heart of layout data prepa-

ration for VSB mask writing. Some commercial tools are available for handling

the sliver minimization problem in fracture, such as CATS from Synopsys and

Fracturem from Mentor Graphics. However, the number of slivers in the existing

fracturing solutions can be significantly reduced. In this chapter, we set out the

main requirements for fracturing and suggest a new solution approach based on

integer linear programming (ILP). The main advantage of the new method is that

the ILP finds optimal solutions while being flexible enough to take into account all

specified requirements. However, the main disadvantage is long runtime. To save

the runtime, we also propose a new ray-segment selection heuristic which can find

a near-optimal fracturing solution in practical time. Experimental comparisons

with leading industry tools show significant improvement in quality, as well as

acceptable scalability, of the proposed methods. In particular, our fracturing solu-

tions reduce shot count (which reflects write time and mask cost) and dramatically

reduce sliver count (which reflects the risk of mask critical-dimension errors). Our

results reveal significant headroom that can be exploited by future design-to-mask

tools to reduce the manufacturing variability and cost of IC designs. The proposed

fast heuristics can also solve the reverse-tone fracturing problem in practical time

9

10

for large industry testcases.

II.A Introduction

The onset of the 90nm and 65nm technology nodes is accompanied by

a sharp increase in mask manufacturing cost, which becomes prohibitive for low-

volume designs. The mask cost increase is directly associated with increased write

time and data volume, which is caused by highly complex reticle enhancement

techniques (RETs) that are used to optimize mask apertures for the manufacture

of deeply subwavelength features. To decrease the turnaround time of mask man-

ufacturing and to improve mask quality for highly complex layouts, the trend is

away from increasingly expensive raster mask writing1 and toward variable shaped

beam (VSB) e-beam mask writing. Today’s VSB mask writing machines offer

a plethora of rapidly advancing technologies, with beam currents reaching 50kV,

support for slanted apertures, and a host of data formats for pattern generation

from “fractured” layout information. This chapter addresses the problem of opti-

mizing VSB mask writing to take into account the constraints imposed by mask

writing equipment as well as manufacturability of optically corrected layouts.

II.A.1 Definitions and Problem Statement

In the following, we refer to dimensions of various parameters on the

mask. Corresponding dimensions on the wafer can be obtained by scaling down

these values by the stepper reduction ratio = the ratio of image size on the reticle

to that on the wafer (in each of the x and y dimensions), which is usually between

4 and 5. Exposure data for VSB writing is described as a set of single-exposure

units, commonly referred to as shots. There are several limitations on the shape

and size of a single shot:

1The mask writing grid size - roughly 1/50 of the minimum feature size - continues to decrease
with technology scaling. Thus, raster writing methods take increasingly large amounts of time
to write the mask, since the size of the die and mask remain roughly constant across technology
nodes. With their fixed spot size, the raster tools do not achieve the shape resolution of the
variable-shaped beam tools.

11

(a) each shot should be either a rectangle or, more generally, an axis-parallel

trapezoid;

(b) the side size of each shot cannot exceed a certain maximum threshold value

M ; and

(c) the minimum width of each shot should be above a certain minimum thresh-

old value ǫ.

The first two constraints are “hard” since the VSB writing technology

cannot reproduce arbitrary shapes, and since exposure quality can be guaranteed

only up to a certain extent. Currently, the value of M is between 2µm and 3µm

(e.g., 2.55µm for a recent Toshiba VSB writing tool). This corresponds to an

image size of 0.5µm to 0.75µm on the wafer with a 4× reduction stepper. The

third constraint is “soft” – narrow trapezoids having width below the critical value

ǫ (which is typically around 100nm on the mask scale), henceforth referred to as

slivers, can still be reproduced. However, as shown in Figure II.1, small feature

size proportional to k1
2 will lead to an increase in the mask error enhancement

factor (MEEF), which is formally defined as the ratio of changes in the pattern

printed on the wafer to the corresponding changes in the pattern written on the

reticle [8] [9] [10] . An increase of MEEF will cause larger CD variation and more

manufacturing defects, likely reducing mask and / or wafer manufacturing yield.

In general, either the number of slivers or the total length of slivers should be

minimized.3

Besides the above constraints on shot shape and dimension, there are also

constraints on how a general layout geometry (polygon) can be represented as a

set of shots:

(d) shots cannot overlap, i.e., each feature is partitioned into disjoint shots;

2Wmin = k1λ
NA

, where Wmin is the minimum feature size, λ is the exposure wavelength and
NA is numerical aperture.

3Nakao et al. [1] have suggested that slivers be counted only if they share a boundary with
the fractured polygon.

12

0.5

1

1.5

2

2.5

3

0.3
 0.4
 0.5
 0.6
 0.7

k
1

M
E
E
F

H/T 5%

H/T 20%

Cr

0.5

1

1.5

2

2.5

3

0.3
 0.4
 0.5
 0.6
 0.7

k
1

M
E
E
F

H/T 5%

H/T 20%

Cr

Figure II.1: Relationship between MEEF and k1 for different mask types, where

k1 is proportional to feature size.

(e) shots should not slice critical features, e.g., minimum-width poly gates, for

which special fabrication accuracy is required; and

(f) slant edges should not be partitioned.

These constraints (d-f) are, in general, hard: (1) any overlap between

shots would be comparatively overexposed with respect to nonoverlapped shots; (2)

critical features are already narrow and their width, even without partitioning, is

difficult to control; and (3) slant edges cannot be controlled with the same accuracy

as axis-parallel edges. Figure II.2 shows one example of the shots obtained from

the fracturing of post-RET layout data.

The design-through-mask data flow is shown in Figure II.3 [15]. In this

process, the number of shots is roughly proportional to the mask writing time,

which in turn affects the mask cost. Therefore, the main optimization objective

for fracturing, i.e., partitioning of polygons into shots, is to minimize the number

of shots. Some slivers can be avoided, but a significantly reduced number or total

length of slivers may be achievable only at the cost of an increased number of shots.

Therefore, we suggest an integrated objective function that seeks to minimize a

13

Figure II.2: An example of fractured polygons.

linear combination of the number of shots and the number (or the total length) of

slivers, with empirically chosen scaling coefficients.

Fracturing Problem. Given a simple polygon P with axis-parallel and 45-degree

slant edges, along with specified critical dimensions, partition P into axis-parallel

trapezoidal shots subject to constraints (a),(b),(d),(e),(f) minimizing either

#(shots) + WC#(slivers) (II.1)

or

#(shots) + WLL(slivers) (II.2)

where #(shots) and #(slivers) are respectively the numbers of shots and sliv-

ers, L(slivers) is the total sliver length, and WC and WL are respectively scaling

coefficients for the number of slivers and the total sliver length.

II.A.2 Previous Work

Fracturing of a polygon into basic shapes (rectangles and trapezoids) is

a well-studied problem. The standard formulation is to minimize the number of

14

TAPE OUT

Layer extraction
Scaling/Shrinking

RET (OPC, PSM)

 FRACTURING

Job composition

 MASK DATA PREP

Tonality, Mirroring
Sizing, PEC
Fracturing/Conversion
Job finishing

MASK MAKING

Circuit Design

Metrology

Inspection/repair

Writing

Figure II.3: Mask data process flow.

shots subject to constraints (a) and (d) only, disregarding all other constraints

specified above. Ohtzuki [5] has given an exact O(n5/2) algorithm for polygon

fracturing into rectangles where n is the number of vertices of a polygon. The

algorithm is based on finding a maximum independent set in a bipartite graph

where vertices correspond to certain lines slicing the given polygon. Imai and

Asano [4] have further sped up this algorithm to O(n3/2 log n) and also generalized

it to the optimal partition into trapezoids [3]. Unfortunately, these theoretically

nice algorithms are not flexible enough to take into account additional important

constraints.

Nakao et al. [1] have developed a fairly complicated ad hoc heuristic

based on the generalization of the same bipartite graph which takes into account

all other constraints except the constraint (b). In fact, they have introduced a dif-

ferent objective – minimize the weighted length of slivers and slices cutting through

critical features – while minimizing shot number over all obtained solutions that

are (sub)optimal with respect to the new objective. Their heuristic is fast but es-

15

sentially disregards slant edges during fracturing (rather, slant edges are integrated

after rectilinear fracturing). Moreover, the method does not guarantee optimum

fracturing and does not appear to allow any way of incorporating the maximum

shot size constraint (b). A standard way of fracturing polygons into bounded-size

shots is to first partition the polygon into a small number of trapezoids, and then

partition these large trapezoids into maximum-size shots. Such an approach is

obviously suboptimal; our investigations show that it gives a significant increase

in shot count, and we do not pursue it further.

A different technological aspect of the Fracturing Problem has been ad-

dressed in a recent series of papers by Shulze et al. [2] and Cobb et al. [6, 7]. In

the standard data preparation flow for VSB mask writing, a post-RET layout in

GDSII format is transferred into the MEBES mask writing format, which is then

further transferred into VSB formats supported by various VSB mask writing ma-

chines. The drawback of this flow is that GDSII and VSB formats are hierarchical,

while MEBES does not support hierarchy. The cited works suggest ways to avoid

layout flattening (e.g., to exclude MEBES format from the flow), which result in

drastic reduction of data volumes as well as processing times. The improvements

that we develop in the present work are complementary to such methods.

II.A.3 Contributions

In this chapter, we apply an integer linear programming (ILP) approach

to the Fracturing Problem. Our contributions include:

• a more adequate formulation of the Fracturing Problem for VSB mask writing

machines including maximum shot size constraint (b),

• new ILP formulation for the Fracturing Problem capturing all constraints

(a-f),

• fast heuristics based on ray segment selection, and

• validation of the proposed heuristic with available industry tools.

16

internal slant edge

associated

triangle

external slant edge

associated

triangle

Figure II.4: Internal and external slant edges.

In Section II.B we describe the ILP formulations for the fracturing prob-

lem. Section II.C is devoted to the fast ray-segment selection based heuristic.

Section II.D expands the solution space with the introduction of auxiliary ray

segments. Section II.E compares our results to those of leading commercial frac-

turing tools, and shows that the proposed approach offers significant improvement

in quality (shot count and sliver count), as well as acceptable scalability. Finally,

Section II.F gives conclusions and future research directions.

II.B Integer Linear Programming Formulation

In this section, we describe an integer linear programming formulation to

optimally solve the Fracturing Problem. We generally consider a simple polygon

P with axis-parallel and 45-degree-slant edges. With each slant edge we associate

a triangle which internally intersects P , as shown in Figure II.4. If this triangle is

completely inside P , the slant edge is called internal ; otherwise, it is called external.

In order to simplify exposition of the Fracturing Problem without compromising

rigor we will further exclude from consideration external slant edges.4 Note that

partitioning of the internal slants can always be avoided.

In order to partition P into trapezoids, which are convex quadrangles, it

is necessary to start at least one partitioning line, further referred to as a ray, from

each concave point on the boundary of P , i.e., a point with internal angle greater

4In fact, our ILP-based solution can take external slant edges into account and our implemen-
tation does not exclude them, but the exposition will be unnecessarily overcomplicated.

17

concave

points

slant

edge rays

Figure II.5: A polygon P with concave boundary points. The dashed vertical and

horizontal rays are originated from concave points. The internal triangle associated

with the slant edge is shaded.

than π (see Figure II.5). The rays should be axis-parallel since only axis-parallel

trapezoids can be made in a single shot. Besides rays from concave points, there

are also rays from the (two) endpoints of slant edges, which form the associated

internal triangles. At least one of the two rays from a slant edge should be used

since the slant edge can serve only as a side edge of a trapezoid.

Our ILP formulation is based on the following grid graph G (see Figure

II.6). For each concave point, there are two rays directed inside the polygon P and

drawn to the opposite side of P . For each end point of a slant edge, a single ray is

drawn to the opposite side of P . The vertices of the graph G are all intersection

points of the rays between themselves and with the boundary of the polygon P .

The edges of G are all segments of the rays connecting neighboring vertices on the

same ray or boundary segment. We enumerate all vertical rays with x-coordinates

Xi, i = 1, . . . , hr and all horizontal rays with y-coordinates Yj, j = 1, . . . , vr.

Then, the vertex of G that lies on the i-th vertical ray and j-th horizontal ray is

denoted vi,j. Each horizontal edge of G between vertices vi,j and vi+1,j is denoted

eh
i,j, and each vertical edge between vi,j and vi,j+1 is denoted ev

i,j. The number

of variables and constraints in our ILP will be O(n2), where n = vr + hr is the

number of concave points plus the number of slant edges on the boundary of the

given polygon P .

18

We consider a fracturing of polygon P as a subgraph of the grid graph G.

Each fracturing should choose certain edges of G as edges of its trapezoids. Let

us introduce a Boolean variable xd(i, j), d = v, h, i = 1, . . . , hr and j = 1, . . . , vr,

which is set to 1 if the edge ed
i,j belongs to the chosen fracturing, and 0 otherwise.

Note that variables corresponding to the boundary edges are always set to 1 since

they belong to any fracturing.

In the rest of this section we show that the ILP objectives (II.1) and (II.2)

can be computed based on Formulas (II.9), (II.11) and (II.13), and that the ILP

constraints are expressed in (II.3), (II.4), (II.5), (II.6), (II.8), (II.10) and (II.12).

We will first describe several types of constraints to ensure:

• convexity of rectilinear fracturing elements;

• convexity of trapezoids with slants;

• keeping intact slant edges and CDs;

• maximum shot size; and

• counting of shots and slivers.

II.B.1 Convexity Constraints

The following constraints force any point vi,j (regardless of whether its

position is on the boundary or inside P) to be convex with respect to fracturing

edges. In other words, among the four edges incident to an internal point, there

could be zero fracturing edges, two fracturing edges along the same ray, or three

fracturing edges forming a “T”-shape.

xh(i− 1, j) + xv(i, j − 1) ≤ 2xh(i, j) + 2xv(i, j)

xh(i, j) + xv(i, j − 1) ≤ 2xh(i− 1, j) + 2xv(i, j)

xh(i, j) + xv(i, j) ≤ 2xh(i− 1, j) + 2xv(i, j − 1)

xh(i− 1, j) + xv(i, j) ≤ 2xh(i, j) + 2xv(i, j − 1) (II.3)

19

5

1 2 4 5 6

v4,4

eh4,2
2
3
4

1

3

Figure II.6: The grid graph G.

Indeed, let us consider the first constraint. If neither the bottom nor the left edge

incident to the point is chosen, then the constraint trivially holds. If only one of

the bottom and left edges is chosen, the constraint ensures that at least one more

edge should be chosen, since no vertex can have degree 1 in the fracturing. If

both bottom and left edge are chosen, then at least one more edge should also be

chosen, i.e., the node vi,j cannot be concave since it should have degree at least 3.

The next three constraints similarly ensure the same property for the bottom and

right edges, top and right edges, and top and left edges.

II.B.2 Constraints for Slant Edges and Critical Features

The endpoints of slant edges are treated in a different manner, as follows.

Let a slant boundary edge connect points vi,j and vi+k,j+l (see Figure II.7). If

vi,j is concave, then the following constraint ensures that at least one of the two

non-boundary incident edges belongs to the fracturing solution.

xv(i, j − 1) + xh(i, j) ≥ 1 (II.4)

A similar constraint is added if the other endpoint is also concave. To ensure that

the slant edge is a part of an axis-parallel trapezoid, the following constraint is

introduced:

xv(i, j − 1) + xh(i + k, j + l − 1) ≥ 1 (II.5)

20

vij

eij
h

vi+k,j+l

Figure II.7: Treating a slant edge. Since the point vij is concave, either the edge

eh
ij or the edge ev

i,j−1 should be used in any fracturing. Since vij and vi+k,j+l are

endpoints of a slant boundary edge, either the edge eh
ij or the edge ev

i+k,j+l−1 should

be used in any fracturing.

Since the constraints (e-f) on fracturing are hard, we forbid slicing of

slant edges and critical features by simply setting to 0 the variables corresponding

to slicing edges.

II.B.3 Maximum Shot Size Constraints

No previous fracturing methods directly minimize shot count in the pres-

ence of maximum shot size constraints. The ILP approach can smoothly incorpo-

rate such constraints, as follows. Let M be the upper bound on horizontal/vertical

shot dimension. If the length of any edge in the graph G exceeds M , we add new

rays partitioning such edges accordingly and modify the graph G. When combin-

ing a chain of edges into the boundary of a single shot we ensure that it never

exceeds M . Let Xi, i = 1, . . . , vr, be the x-coordinates of the vertical rays. For

each pair (i, i′), i, i′ ∈ {1, . . . , vr}, satisfying

Xi′+1 −Xi−1 ≥M

and

Xi′ −Xi−1 < M

21

we introduce the following constraint for each j, j = 1, . . . , hr.

xh(i, j) + xh(i + 1, j) + . . . + xh(i′, j) ≥ 1 (II.6)

Similar constraints are also introduced for the vertical dimension.

II.B.4 Counting Shots

The objective of the Fracturing Problem is to minimize the number of

shots and the number of slivers, so it is necessary to accurately count these numbers

in the ILP. The subgraph H of G corresponding to a fracturing is obviously planar.

Each shot corresponds to a face of the graph H, and we can apply the Eulerian

formula relating the numbers of vertices, edges and faces of a planar graph:

#(shots) = |E(H)| − |V (H)|+ 1 (II.7)

The number of edges |E(H)| is easily computed, since it is equal to the sum of

all variables corresponding to edges of G. To find the number of vertices of H we

must exclude from all vertices of G the vertices which become isolated in H. This

is done by introducing a variable y(i, j) for each vertex of G which is set to 0 if vij

is isolated, and to 1 otherwise. Since the objective is to minimize the number of

shots, (II.7) implies that it is sufficient to introduce an upper bound on y(i, j):

y(i, j) ≤ xh(i− 1, j) + xv(i, j − 1) + xv(i, j) + xv(i, j) (II.8)

Finally, the number of shots is counted as:

#(shots) = 1 +
∑

d,i,j

xd(i, j)−
∑

i,j

y(i, j) (II.9)

II.B.5 Counting and Finding Length of Slivers

For each possible sliver, i.e., a pair of vertical (or horizontal) rays Xi and

Xi′ such that |Xi − Xi′ | < ǫ, we introduce a sliver variable sl(i, i′) which is set

to 1 if there is a sliver in the fracturing, and to 0 otherwise. The corresponding

constraints are as follows:

sl(i, i′) ≥ xv(i, j) + xh(i′, j)− 1, j = 1, . . . , hr (II.10)

22

The resulting number of slivers is computed as

#(slivers) =
∑

|Xi−Xi′ |<ǫ

sl(i, i′) +
∑

|Yj−Yj′ |<ǫ

sl(j, j′) (II.11)

If, instead of counting the number of slivers, we wish to take into account

the total length of slivers, we can use variables sl(i, i′, j) such that

sl(i, i′, j) ≥ xv(i, j) + xh(i′, j)− 1 (II.12)

The total length of slivers would then be computed as

L(slivers) =
∑

|Xi−Xi′ |<ǫ

∑

j

sl(i, i′, j)(Xj −Xj−1) +

∑

|Yj−Yj′ |<ǫ

∑

i

sl(i, j, j′)(Yi − Yi−1) (II.13)

II.C Ray-Segment Selection Based Heuristics

Although the integer linear programming (ILP) method can find the op-

timal fracturing, it becomes prohibitively slow for polygons with a large number

of vertices, and heuristic partitioning of large polygons may severely degrade the

solution quality. In this section, we propose a new ray-segment selection heuristic

which can find a near-optimal fracturing solution in practical time while being

flexible enough to take into account all specified requirements.

II.C.1 Polygon Partitioning With Coincident Rays

Since one ray should be sent from each concave point, the total number

of rays is equal to the number of concave points N . Whenever a ray is sent it can

stop as soon as it reaches the opposite side of P or another orthogonal ray which

has been sent earlier. Two rays may coincide if they reach each other’s origin,

which is defined as a coincident ray. See Figure II.8 for an example. If I denotes

the number of pairs of coincident rays, then the total number of different rays

23

that should be sent in order to partition P into trapezoids is N − I. Note that

each time we send a ray, we increase the number of faces of the resulting planar

graph by 1, and hence the total number of trapezoids in the polygon partitioning

is #(trapezoids) = N − I + 1.

(b)

h1 h2

v1

(c)

h1

h2

v1

(a)

h1

h2

Figure II.8: (a) A polygon with five concave points and three rays between them.

(b) The corresponding bipartite graph B, in which the vertices {h1, h2} form the

maximum independent set. (c) The corresponding partitioning into sub-polygons

without coincident rays.

Thus, in order to minimize the number of trapezoids, one should maximize

the set of coincident rays. Note that all such rays cannot intersect as well as cannot

come from the same concave point. The last constraint can be expressed in a graph

B with vertex set R = RV ∪ RH ∪ S, where RV (respectively, RH) is the set of

coincident vertical (respectively, horizontal) rays and S is the set of rays sent from

concave points which are simultaneously the endpoints of slant edges. Two vertices

u and v of the graph B are adjacent if the corresponding rays are in conflict. This

may happen in the following two cases (see Figure II.8):

(a) u ∈ RV and v ∈ RH and the corresponding rays intersect; and

(b) u ∈ RV ∪RH and v ∈ S and the corresponding rays are orthogonal and sent

from the same concave point.

The maximum set of coincident rays that we seek corresponds to a maximum

independent set in the graph B. In general, finding a maximum independent set

24

is NP -hard, but in our case the graph B is bipartite since all edges are between

vertices corresponding to orthogonal rays. According to König’s theorem, finding

the maximum independent set in a bipartite graph can be reduced to maximum

matching and, therefore, can be done efficiently. Then the polygon will be divided

by the selected set of coincident rays into some small polygons without coincident

rays.

II.C.2 Ray-Segment Selection Formulation of the Fractur-

ing Problem

The ray-segment selection heuristic is based on the following directed grid

graph G′(V,E) (see Figure II.9). For each concave point and the endpoint of slant

edges, there are rays directed inside the polygon P and drawn to the opposite side

of P . V consists of all intersection points of the rays and the concave vertices of

the polygon P . E includes all segments of the directed rays from one vertex to

a neighboring vertex on the same ray or boundary segment. We enumerate all

vertical rays with x-coordinates Xi, i = 1, . . . , hr and all horizontal rays with y-

coordinates Yj, j = 1, . . . , vr. Then, the vertex of G′ that lies on the i-th vertical

ray and j-th horizontal ray is denoted vi,j. From each vertex vi,j ∈ V , there are

exactly one horizontal directed edge denoted as eh
i,j and one vertical directed edge

denoted as ev
i,j. In G′, every ray becomes a linked list of ray segments. For a ray

segment e, the next ray segment in the list is denoted as Next(e), which is null if

e is the end of the list. The number of ray segments will be O(n2), where n is the

number of concave points. The fracturing of a polygon P is denoted as F , which

is a subset of E − P .

Fracturing can be viewed as a process of “eliminating” all concave points

since any rectilinear polygon without concave vertices is a rectangle.

Definition II.1 Two ray segments form a conflict pair if they are from the same

vertex.

For a ray segment e, the ray segment form a conflict pair with e is denoted as C(e).

25

4

3

2

1

4321

v3,3eh
2,3

ev
3,3

Figure II.9: The directed grid graph G′.

Theorem II.1 F is a fracturing solution of the rectilinear polygon P with N

concave points and the number of rectangles in the fracturing solution is N + 1, if

the following conditions are satisfied: (1) at least one of the ray segments from each

concave point of P is in F ; (2) if e ∈ F and Next(e) 6= null, either Next(e) ∈ F

or C(Next(e)) ∈ F ; and (3) at most one ray from each conflict pair is in F .

Proof: We only need to prove that every vertex in G′ becomes convex

with the edges of P
⋃

F . The convexity of any rectilinear concave vertex v of P is

guaranteed with the first constraint since the internal angles of v are 90o and 180o

with one ray segment from v. As shown in Figure II.10, for any internal vertex v:

1. If there is no ray segment point to v (case (a)), it is a convex point;

2. If there is a ray segment e ∈ F point to v and Next(e) ∈ F (case (b)), it is

a convex point since both internal angles are 180o;

3. If there is a ray segment e ∈ F point to v and C(Next(e)) ∈ F (case (c)), it

is a convex point since the internal angles are 90o, 90o and 180o.

Therefore, every vertex in G is convex and hence all fractured polygons are rect-

angles.

26

Next, we want to prove that the number of rectangles is N + 1. From

the Eulerian formula relating the numbers of vertices, edges and faces of a planar

graph:

#(rectangles) = |E(H)| − |V (H)|+ 1 (II.14)

For the polygon P , the edge number is equal to the vertex number. Also, for each

internal point v, there is exactly one ray segment from v according to the third

constraint if one ray segment from v is in F . Therefore, the edge number is equal to

the vertex number for each internal point. For every concave vertex v of P , there

is a ray segment from v. There are N such edges and #(rectangles) = N +1. ⊓⊔

e Next(e)
e

C(Next(e))

(a) (b) (c)

Figure II.10: The cases of internal vertices v: (a) no ray segments point to v; (b)

a ray segment e ∈ F points to v and Next(e) ∈ F ; and (c) a ray segment e ∈ F

points to v and C(Next(e)) ∈ F .

II.C.3 Gain-Based Ray Segment Selection Heuristics

Based on Theorem II.1, we propose the “Gain-Based Ray Segment Selec-

tion” or GRSS heuristics for the fracturing problem.

Definition II.2 A rectangle is a sliver if its minimum width < ǫ, where ǫ is a

given threshold value.

The main objective of our method is to reduce the sliver number of the fracturing

solution to increase the mask manufacturing yield.

Definition II.3 For any edge e ∈ G′, its weight W (e) is equal to the number of

parallel edges in F ∪ P which are within distance of ǫ and their projects in the

27

Input: Rectilinear polygon P and its grid graph G(V,E)
Output: F ⊂ E with minimized sliver number
1. F ← ∅; S ← {e|e from a concave point of P}
2. Calculate the gains of edges in S
3. While (S 6= ∅)
4. Select the edge e with the largest gain, F ← F ∪ {e}
5. S ← S − {e, C(e)}
6. If (Next(e) 6= null)
7. S ← S ∪ {Next(e)}
8. Update gains of the edges in S

Figure II.11: Gain-based ray segment selection algorithm.

orthogonal direction overlap with the projection of e. In other words, the weight of

e is equal to the increased sliver number with the selection of e.

Definition II.4 For any edge e ∈ G′, its gain g(e) = W (C(e))−W (e). In other

words, the gain of e is equal to the number of “saved” slivers with the selection of

e.5

Our proposed gain-based ray segment selection algorithm is shown in

Figure II.11. The algorithm starts with a candidate pool S which includes all ray

segments from a concave point of P . We calculate the gains of all edges in S. Then

in each iteration, one ray segment e is selected and its conflict pair ({e, C(e)}) is

deleted from S (Line 3-4). If e is not the end ray segment in the ray list, the next

ray segment of the list Next(e) will be added to S. The gains of the edges in S are

updated in Line 6. The iterative selection process continues until S is empty. The

intuition behind this gain based algorithm is to greedily select the ray segment

which leads to the largest save on the sliver number.

To speed up the gain update and ray segment selection process, we adopt

a “linked bucket” structure to store the candidate pool S as shown in Figure II.12.

There are five linked lists or buckets, each store the edges in S with a gain between

5Unlike the algorithm presented in [1] which uses weights to choose rays, we adopt gains to
advise ray segment selection.

28

-2 and 2. The edge deletion, addition and gain update operations take constant

runtime with this data structure.

e0 e1 … enBucket 1: Gain= 2

e0 e1 … enBucket 2: Gain= 1

e0 e1 … enBucket 3: Gain= 0

e0 e1 … enBucket 4: Gain= -1

e0 e1 … enBucket 5: Gain= -2

Figure II.12: Bucket structure for candidate pool S.

II.D Auxiliary Ray Segments for Sliver Minimiza-

tion

Definition II.5 An auxiliary ray is a ray whose starting point is not a concave

vertex of P .

From the Eulerian formula, the number of rectangles will be increased

with auxiliary rays. However, the sliver number may be reduced with the additional

rays at the expense of rectangle number increase. For the example shown in Figure

II.13, the sliver number is one in the fracturing solution without auxiliary ray (case

(a)); while the sliver number is zero with one auxiliary ray (case (b)). To the best of

our knowledge, no previous methods have been proposed to construct the auxiliary

rays to minimize the sliver number. Since adding too many rays may significantly

increase the complexity and runtime, it is crucial to limit the number of auxiliary

rays being added.

We propose the rule-based auxiliary rays addition method for efficient

tradeoff between runtime and sliver number.

29

Overlap rectangle

0 sliverAuxiliary rays

(a) (b)

Positive -gain rays

Figure II.13: Fracturing of a polygon: (a) without auxiliary ray and (b) with

auxiliary ray.

Definition II.6 If a ray segment e is from a concave point of P and g(e) > 0, the

ray containing e is a positive-gain ray.6

Definition II.7 For two parallel rays of different directions, let one ray from ver-

tex v0 located at (x0, y0) and the other ray from vertex v1 located at (x1, y1), their

overlap rectangle is a rectangle whose four corners are (x0, y0), (x0, y1), (x1, y1)

and (x1, y0). Its width is the distance between the two rays and its length is the

other dimension of the rectangle.

Auxiliary Ray Addition Rule: Two auxiliary rays are added if two

parallel positive-gain rays of opposite directions satisfy the following constraints:

(1) the overlap rectangle located inside P ; (2) the length of the overlap rectangle

is > 2ǫ and the width of the overlap rectangle is < ǫ; and (3) no existing rays

intersect with the two rays and partition the overlap rectangle into two rectangles

whose lengths are > ǫ. Two auxiliary rays from the center of the overlap rectangle

are added to G′ as shown in Figure II.13 (b) and the two ray segments from the

center of the overlap rectangle are added to S in Line 1 of the algorithm shown in

Figure II.11.

6There are two positive-gain rays in Figure II.13 (a).

30

II.E Experimental Results

We use three industry testcases to evaluate the performance of our frac-

turing approach. Design A and Design B are from Photronics, Inc. [12]. Design C

is a post-RET cell layout from a leading foundry 130nm standard-cell library; RET

was inserted by Mentor Calibre. The basic properties of the three designs are listed

in Table II.1. For each testcase, the minimum number of fractured trapezoids is

calculated using the method given in Section II.C.1. We have implemented our

algorithm in ANSI C, and use the CPLEX 8.100 Mixed Integer Optimizer [11] to

solve all Integer Linear Programming instances. In all runs, we set the runtime

limit for CPLEX to 10 CPU seconds.

We compare our fracturing code against state-of-art commercial fractur-

ing tools. Two specific examples of leading commercial tools are Mentor Calibre

v9.3 2.10 Fracturem [13] and Synopsys CATS v2501 [14]. In our experiments, we

set the maximum shot size as 2.55µm and the slivering size as 100nm, following

parameters for a recent Toshiba VSB writing tool. The stepper reduction ratio is

four. All tests are run on an Intel Xeon 2.4GHz CPU.7

The fracturing results in Table II.2 show that our ILP method can reduce

the number of slivers by 82%, 79% and 29% compared to Tool A, Tool B, and Tool

C respectively, while also reducing the number of shots by 5.5%, 0.6% and -2.5%.8

The runtime of our method is much larger than that of the commercial tools

due to the large runtime of the Integer Linear Programming solver. However,

we note that the runtimes given in Tables II.2 are for flattened layouts. When

using hierarchical layout representation, the number of different polygons will be

drastically reduced. Hence, the CPU cost of ILP solver can also be amortized

in exact correspondence to any amortization of RET insertion costs: as soon as

7The results in Table II.2 are anonymized to satisfy no-benchmarking restrictions in the vendor
tool licenses. Per the license terms, we do not ascribe any specific results to any specific vendors
or tools. However, we believe that our results demonstrate the magnitude of the solution quality
gap in current tools.

8We have also made a comparison when the slivering size is set to 50nm. In that experiment,
our method ILP reduces the number of slivers by 96%, 97% and 81% compared with Tool A,
Tool B, and Tool C respectively, while reducing the number of shots by 6.3%, 4.7% and 1.4%.

31

optical correction of a feature is fixed, fracturing can also be decided. Our gain

based ray segment selection heuristic (GRSS) reduces the number of slivers by

83.7%, 81.1% and 60.5% compared to commercial tools with negligible runtime

overhead.

Table II.1: Properties of testcases.
Testcase # Polygons Min # trapezoids slants # vertices
Design A 602 9613 21 24807
Design B 676 16273 17 38305
Design C 104 476 0 1580

Table II.2: Fracturing results with slivering size ǫ = 100nm and maximum shot

size M = 2.55µm. CPU time is given in seconds.

Design A Design B Design C
Method shots slivers CPU shots slivers CPU shots slivers CPU
Tool A 10754 6111 0 17335 11572 0 589 318 0
Tool B 10455 4451 0 17130 10797 0 566 147 0
Tool C 9755 786 2 17195 6502 3 592 66 0

ILP 9750 417 134 17684 2750 222 518 83 8
GRSS 9786 183 1 17656 2691 4 527 61 0

II.F Summary

We suggest a new optimal ILP approach for the fracturing problem in

VSB mask writing. Our new approach improves both shot count and, very sub-

stantially, sliver count, in comparison to leading commercial fracturing tools. Al-

though the processing of layouts is much slower than in commercial products, we

believe that the ILP-based heuristic framework is scalable to full-chip layout pro-

cessing, particularly when fracturing is done hierarchically (cf., e.g., [2]) and/or in

a distributed fashion. We suggest a fast gain-based ray segment selection method

32

with auxiliary rays for the fracturing problem. Our new approach substantially

reduces sliver count with negligible runtime overhead.

From an IC design automation perspective, our work offers the possibility

of directly considering yield loss mechanisms such as MEEF into existing layout

and RET insertion flows. This would lead, for example, to fracturing-aware “smart

OPC”. More generally, our results reveal significant headroom in existing tool

solution quality; we believe that this can be exploited by future design-to-mask

tools to reduce manufacturing variability and cost of IC designs.

The material presented in this chapter is based on the following publica-

tion.

• A. B. Kahng, X. Xu and A. Zelikovsky, “Fast Yield-Driven Fracture for Vari-

able Shaped-Beam Mask Writing”, Photomask and Next-Generation Lithog-

raphy Mask Technology XI, April 2006, accepted and to appear.

The dissertation author was the primary researcher and author. My coau-

thors (Prof. Andrew B. Kahng and Prof. Alex Zelikovsky) have all kindly approved

the inclusion of the aforementioned publication in my thesis.

Chapter III

Enhanced Design Flow and

Optimizations for Multi-Project

Wafers

The aggressive scaling of VLSI feature size and the pervasive use of ad-

vanced reticle enhancement technologies lead to dramatic increases in mask costs,

pushing prototype and low volume production designs to the limit of economic fea-

sibility. Multiple project wafers (MPW), or “shuttle” runs, provide an attractive

solution for such designs by providing a mechanism to share the cost of mask tool-

ing among up to tens of designs. However, MPW reticle floorplanning and wafer

dicing introduce complexities not encountered in typical, single-project wafers.

Recent works on wafer dicing adopt one or more of the following assumptions to

reduce the problem complexity: (i) the assumption of equal production volume

requirement for all designs, (ii) the assumption that the same dicing plan is used

for all wafers or for all rows/columns of reticle images on a wafer, (iii) the assump-

tion of unrealistic wafer models such as a rectangular array of projections, and

(iv) the assumption of a fixed wafer shot-map. Although using one or more of the

above assumptions makes the problem solvable, the performance of the solutions

is degraded.

In this chapter we propose a comprehensive MPW flow aimed at mini-

33

34

mizing the number of wafers needed to fulfill given die production volumes. Our

flow includes two main steps: (1) multi-project reticle floorplanning, and (2) wafer

shot-map and dicing plan definition. For each of these steps we propose improved

algorithms as follows. Our reticle floorplanner uses hierarchical quadrisection com-

bined with simulated annealing to generate “diceable” floorplans within given max-

imum reticle sizes. Our dicing planner allows multiple side-to-side dicing plans for

different wafers as well as different reticle projection rows/columns within a wafer,

and further improves dicing yield by partitioning each wafer into a small number

of parts before individual die extraction. We also employ the dicing plan definition

heuristic as a procedure for the wafer shot-map definition in order to fully utilize

round wafer real estate by extracting the maximum number of functional dies from

both fully and partially printed reticle images. Experiments on industry testcases

show that our methods outperform significantly not only previous methods in the

literature, but also reticle floorplans manually designed by experienced engineers.

III.A Introduction and Motivation

With the shrinking of VLSI feature size and the pervasive use of advanced

reticle enhancement technologies such as Optical Proximity Correction (OPC) and

Phase Shifting Masks (PSM), mask costs are predicted to reach $10 million by

the end of the decade. These high mask costs push prototyping and low volume

production designs to the limit of economic feasibility since the costs cannot be

amortized over the volume. Multiple Project Wafers (MPW), or “shuttle” runs,

provide an efficient method to reduce the cost [26]. Thus, MPW has now become

a commercial service offered by both independent providers such as MOSIS and

CMP and semiconductor foundries such as TSMC and IBM. An overview of related

multi-layer mask technologies, which rely on sharing the reticle space between

multiple layers of the same design, typically via blading, is given in [19].

Most previous papers on MPW reticle floorplanning rely on an “ideal-

dicing” model which assumes either zero dicing loss [20] or arbitrary margins in

the floorplan formulation. Chen and Lynn [21] considered the problem of finding

35

the minimum area slicing floorplan, with 90 degree chip rotation allowed. Xu

et al. [29] studied the MPW mask floorplanning under die-alignment constraints

imposed by the use of die-to-die mask inspection. All these approaches assume that

all dies can be obtained, which is impractical for current side-to-side wafer dicing

technology. A grid-packing formulation for MPW mask floorplanning is proposed

in [17] and [18], with the assumption that arbitrary amounts of blank area can be

left on a die. However, in practice, arbitrary margins cannot be tolerated due to

package requirements.1

Side-to-side dicing based floorplanners consider the constraints imposed

by the current side-to-side dicing technology. Due to the complexity of the general

dicing problem, it is crucial to simplify the dicing problem and use a fast yet

accurate wafer cost evaluator in the floorplanners. According to the different dicing

simplification methods, the current reticle floorplanners can be divided into two

categories.

• Single wafer dicing plan (SWDP) based floorplanners assume that all wafers

share the same dicing plan. Kahng et al. [23] were the first to consider the

side-to-side wafer dicing problem with SWDP assumption. They propose

three optimal integer linear programming (ILP) solutions and a fast heuris-

tics for wafer cost evaluation. The fast wafer cost evaluator is used in a

sequence pair based simulated annealing floorplanner. Recently, Kahng et

al. [25] proposed a grid floorplanner. The wafer cost of grid floorplans can

be directly calculated with a closed-form formula. Therefore, it is actually

practical to apply the branch and bound algorithm to exhaustively search

the whole solution space for small testcases. However, the closed-form wafer

cost calculation also depends on the impractical assumption that a wafer is

a rectangular array of projections. Also the runtime of the proposed branch

and bound algorithm may explode for large testcases.

• Single row and column dicing plan (SRCDP) based floorplanners assume that

all rows and columns of reticle images within a wafer are diced using the

1No margins are allowed for our industry testcases from CMP.

36

same set of cuts. Xu et al. [30, 31] formulate the dicing problem as a

minimum coloring problem. Wu et al. [27] extend the min-coloring based

dicing approach by proposing three ILP formulations for optimal minimum

coloring. In [28], they propose to perform chip replication and give integrated

ILPs for simultaneous floorplanning and dicing which are impractical even

for small testcases due to large runtime.

In this thesis we propose a comprehensive MPW flow aimed at minimiz-

ing the number of wafers needed to fulfill given die production volumes. Our flow

includes two main steps: (1) multi-project reticle floorplanning, in which the reticle

floorplan is designed for the given list of dies with fixed shot-map and simplified

dicing cost evaluation; and (2) wafer shot-map and dicing plan definition, in which

the exact dicing plan and wafer center location is determined for the floorplan gen-

erated in Step 1. In Step 2, the dicing plan generation algorithm is included in the

wafer shot-map definition algorithm for accurate wafer cost calculation. Our con-

tributions are as follows. For the first flow step, we propose an algorithm based on

fixed hierarchical quadrisection structure which is suitable for fast wafer cost eval-

uation with simulated annealing to generate “diceable” floorplans observing given

maximum reticle sizes. Our algorithm leads to an average reduction of 10-20% in

the required number of wafers compared to reticle floorplans manually designed

by experienced industry engineers. For the second step, we give an integer pro-

gram which can be used to find in practical time the optimal dicing plan under

the SRCDP assumption. We also give a two-level optimization algorithm that

simultaneously allows multiple dicing plans for different wafers and for different

reticle projection rows/columns within a wafer. We also show the advantages of

partitioning each wafer into a small number of parts before individual die extrac-

tion. For a fixed reticle floorplan, the two-level optimization algorithm gives an

average reduction in the required number of wafers of 42% without wafer partition,

and of 47% and 63%, when partitioning into 2 and 4 parts, respectively. Finally,

we propose to include wafer shot-map definition, which has not been previously

considered in the context of MPW, in order to fully utilize the real estate on round

37

wafers by extracting the maximum number of functional dies from both fully and

partially printed reticle images. This optimization is shown to yield an average

reduction of 13.6% in the required number of wafers for a reticle floorplan.

The rest of the chapter is organized as follows. In Section III.B we de-

scribe the basics of MPW with side-to-side wafer dicing. Section III.C presents

a novel hierarchical quadrisection method for reticle floorplanning. Section III.D

describes the advantages of multiple dicing plan (MDP) and gives a novel two-level

optimization algorithm. Section III.E combines the wafer shot-map definition with

dicing plan definition for further wafer cost reduction. Section III.F presents an

algorithm for robust reticle floorplanning with die cloning. Section III.G addresses

the on-demand wafer dicing issues. Finally, in Section III.H we give experimental

results comparing proposed methods on industrial testcases.

III.B Preliminaries
A wafer consists of a number of reticle projections arranged in a number

of reticle image projection rows and projection columns. Each projection is a copy

of the same reticle image. In the prevalent “side-to-side” wafer dicing technology,

the diamond blades cannot stop at arbitrary points during cutting; consequently,

all projections in the same projection row (or column) will share the same hori-

zontal (or vertical) cutlines. In this chapter, we extend side-to-side dicing to allow

preliminary partitioning of each wafer into a small number of parts (e.g., halves

or quarters) as shown in Figure III.1 so that the side-to-side dicing plans for the

parts can be independent from each other.

Following [23], two dies D and D′ on a reticle are said to be in vertical

(resp. horizontal) dicing conflict if no set of vertical (resp. horizontal) cuts can

legally dice both D and D′. Let D denote the set of dies on a given reticle. The

vertical reticle conflict graph Rv = (D, Ev) is the graph with vertices corresponding

to the dies and edges connecting pairs of dies in vertical dicing conflict. The

horizontal reticle conflict graph Rh = (D, Eh) is defined similarly. As usual, a set

of vertices in a graph is called independent if they are pairwise nonadjacent. A

38

Figure III.1: Four quadrant dicing: the wafer is first divided into four quadrants,

then each quadrant is diced independently using side-to-side cuts.

maximum horizontal (or vertical) independent set is a subset of D which can be

sliced out by a set of horizontal (or vertical) cutlines; the set of cutlines used for a

wafer are called a wafer dicing plan. The dicing yield of a die D is defined as the

number of legally diced copies of D divided by its volume requirement. The wafer

dicing yield is defined as the minimum dicing yield over all dies D ∈ D, which

needs to be at least 1.

III.C Reticle Floorplanning

In this section, we focus on the following MPW reticle floorplanning prob-

lem. Given a maximum reticle size, and the size and required volume for each die,

find a reticle floorplan (allowing die rotations) and a wafer dicing plan minimizing

the number of used wafers.

Compared with other floorplanning problems, the main difficulty of the

MPW reticle floorplanning problem lies in the wafer cost calculation. To simplify

and speed up the estimation of wafer cost and dicing plan yield, we use hierarchical

quadrisection-based floorplanning. The reticle floorplan is based on a hierarchical

39

quadrisection mesh which is constructed in the following recursive way.

• At Level 1, the reticle area is divided into 4 regions with one horizontal line

and one vertical line: R(1, 1), R(1, 2), R(1, 3) and R(1, 4), where R(i, j) is the

jth Region for Level i.

• At Level i + 1, each region at Level i, R(i, j), is divided into 4 regions with

one horizontal line and one vertical line: R(i + 1, 4j−1 + 1), R(i + 1, 4j−1 +

2), R(i + 1, 4j−1 + 3) and R(i + 1, 4j−1 + 4).

Finally, there are 4l regions at Level l. Figure III.2(a) shows a mesh of Level 2.

The constructed mesh is “soft” since the dimensions of regions are determined

by the dies within the regions. The number of level l is chosen such that 4l is

greater than the number of dies.2 Then we place the dies in the regions of Level l

mesh such that each region R(l, j) (j = 1...4l) contains at most one die. Different

die placements lead to different reticle floorplans. Figure III.2 (b) and (c) show

two different reticle floorplans for a set of 10 dies based on the same mesh in

Figure III.2(a). A simulated-annealing based algorithm is used to find the best die

placement.

We denote the width of the region R(i, j) as W (R(i, j)) and the height

as H(R(i, j)). The hierarchical quadrisection allows computing height and width

in a bottom-up manner.

• At Level l, if there is a die in the region R(l, j), W (R(l, j)) is equal to the

width of the die and H(R(l, j)) is equal to the height of die; otherwise,

W (R(l, j)) = H(R(l, j)) = 0.

• At Level i,W (R(i, j)) = Max(W (R(i + 1, 4j−1 + 1)), W (R(i + 1, 4j−1 + 4))) +

Max(W (R(i + 1, 4j−1 + 2)), W (R(i + 1, 4j−1 + 3))).

2It is sufficient to choose l = 3 in practice since the case of putting more than 64 dies in one
reticle is very rare. However, we may choose l = ⌈log4Number of dies⌉ if the number of dies is
larger than 64.

40

H(R(i, j)) = Max(H(R(i + 1, 4j−1 + 1)), H(R(i + 1, 4j−1 + 2))) + Max(H(R(i +

1, 4j−1 + 3)), H(R(i + 1, 4j−1 + 4))).

There are two main advantages of the proposed floorplan structure. First,

the structure is suitable for conflict elimination since there are no conflicts between

dies located in diagonal regions. Second, the wafer cost can be easily evaluated

with the following lemma.

Lemma III.1 All dies can be divided into at most 2l conflict-independent sets of

dies for the floorplan in a Level l mesh such that any two dies in the same set are

not in conflict.

Proof: The lemma is true for l = 1 since the dies in R(1, 1) and R(1, 3) are not

in conflict and the dies in R(1, 2) and R(1, 4) are not in conflict.

Suppose the lemma is true for l = i, for l = i + 1: the reticle is first

divided into four regions R(1, 1), R(1, 2), R(1, 3) and R(1, 4) and each region is

further divided into a Level i mesh. Since the lemma is true for l = i, there are at

most 2i conflict-independent sets for each of the four regions. We denote the kth

conflict-independent set of the region R(1, j) (j = 1..4) as S(1, j, k). Since any die

in R(1, 1) is not in conflict with any die in R(1, 3), we can have the 2i combined

conflict-independent sets S(1, 1, k)
⋃

S(1, 3, k) (k = 1..2i). Similarly, we can have

another 2i combined conflict-independent sets S(1, 2, k)
⋃

S(1, 4, k) (k = 1..2i).

Therefore, there are at most 2i+1 conflict-independent sets. ⊓⊔
It is obvious that all copies of the dies in the same conflict-independent set

can be simultaneously sliced out since they are not in conflict. If we assume that

only the dies of one conflict-independent set are obtained for each wafer, the wafer

requirement for a conflict-independent set S is MAXD∈S(⌈N(D)
Q(D)
⌉), where N(D) is

the volume requirement of the die D and Q(D) is the number of copies of die D

per wafer.3 The total wafer requirement is the sum of the wafer requirements of

all the conflict-independent sets.

3In order to speedup the wafer cost evaluation in the floorplanning step, we fix the wafer
center at the point (0, 0) and set Q(D) to the number of dies D on the wafer.

41

R(1,1) R(1,2)

R(1,3)R(1,4)

R(2,1) R(2,2)

R(2,3)R(2,4)

R(2,5) R(2,6)

R(2,7)R(2,8)

R(2,9) R(2,10)

R(2,11)R(2,12)

R(2,13) R(2,14)

R(2,15)R(2,16)

(a) (b) (c)

Figure III.2: Two-level hierarchical quadrisection floorplan.

We give a generic simulated annealing placement algorithm for finding

reticle floorplan in Figure III.3. The algorithm starts with the floorplan with

each die randomly placed in the 4l regions as its initial placement. First, the

algorithm tries to minimize the floorplan area in order to find a feasible solution.

After a feasible solution is found, the objective switches to minimize the total wafer

requirement whose calculation is specified in Lemma 1 and the paragraph following

the proof of Lemma 1. Note that for speeding up the algorithm, quadrisection

floorplan evaluation does not include the dicing plan and the shot-map definition.

At each step we find a neighbor solution based on the following moves:

• Region exchange move, which exchanges the dies in two regions if at least

one of the regions contains a die;

• Orientation move, which rotates one die by 90 degrees if the width and height

of the die are different.

Each generated solution is evaluated and kept with a probability dependent on the

current temperature (see Figure III.3). Finally, we inset additional copies of dies

if the reticle dimension is not increased (Lines 12-15).45

4Whether a die D can be inserted is decided by finding a free room for D on the reticle: we
place the left-bottom corner of D and its 90o rotation at the corners of each die in the reticle and
check whether D overlaps with other dies in the reticle.

5In practice, there is not too much empty space left in the reticle even when the number of
dies is substantially smaller than the grid-number of the mesh. There are two reasons: (1) if
there is no die in a region of Level l, the region area is zero; (2) if a floorplan has too much
empty area, its dimension will exceed the maximum reticle dimension and this floorplan will be
discarded.

42

Input: Dimensions of n dies, β: 0 ≤ β < 1
Output: Reticle floorplan and wafer dicing plan
1. Construct the hierarchical quadrisection floorplan mesh
2. Assign the n dies to regions at random
3. If (floorplan width and height < maximum reticle dimensions)

then FoundFeasible ← True, else FoundFeasible ← False
4. While (not converged and # of moves < Move Limit)
5. Pick a move at random
6. If (width and height < maximum reticle dimensions) then
7. FoundFeasible ← True;

δ ←New Wafer requirement - Old Wafer Requirement
8. Else if (FoundFeasible = False)

then δ ← New Area - Old Area, else δ ←∞
9. If (δ < 0) then accept the move, else accept with probability e−

δ
T

10. T ← βT
11. While (∃ a die that can be inserted)
12. Sort all dies that can be inserted in descending order of N(D)/A(D)
13. For each die Di do
14. If (Di can be inserted) then insert it

Figure III.3: Hierarchical quadrisection floorplanning algorithm.

III.D Multiple-Dicing-Plan Dicing
The following problem has been introduced in [23].

Side-to-Side Wafer Dicing Problem (SSWDP). Given a reticle floorplan

with dies D = {D1, . . . , Dn}, required production volume for each die N(Di),

i = 1, . . . , n, and the positions of the reticle projections of the wafer, find the

minimum number of wafers Nw and the corresponding dicing plan for each wafer

such that the wafer dicing yield is at least 1.

In [23] and [25], the authors adopt the SWDP assumption, which limits

the solution space. The IASA method proposed for SDP in [23] can be extended to

solve the MDP by placing Nw wafers into one “super-wafer” whose row (column)

number is Nw times the initial row (column) number as shown in Figure III.4.

However, the runtime will increase rapidly when Nw is large since we need to check

all rows and columns of the “super-wafer” in each iteration. The large runtime

makes it unsuitable to be used in our proposed flow since the wafer shot-map

43

Figure III.4: Placing two wafers on one “super-wafer”.

definition step requires accurate wafer cost calculation for each candidate wafer

center location.

III.D.1 Integer Linear Program for Restricted MDPs

In [30], the authors assume that each wafer uses exactly one horizontal

dicing plan and one vertical dicing plan for all projection rows/columns within a

wafer. This assumption allows them to use a coloring based heuristic which gives

good results for testcases with a large volume requirement. In this section we give

an integer linear programming formulation which allows finding optimal MDPs

restricted in this way.

As in [30], two dies D and D′ on a reticle are said to be in dicing conflict if

they are either in horizontal dicing conflict or vertical dicing conflict. The conflict

graph Rc = (D, Ec) is the graph with vertices corresponding to the dies and edges

connecting pairs of dies in dicing conflict. A maximum conflict independent set is

a subset of D which can be sliced out by a set of horizontal and vertical cutlines.

We use MCIS to denote the set of all maximal independent sets in the conflict

44

graph.6 For each independent set C ∈MCIS, let fC denote the number of wafers

which use the dicing plan defined by C, MDP can be formulated as the following

integer linear program:

Minimize Nw (ILP1)

subject to
∑

D∈C
Q(C,D)fC ≥ N(D), ∀D ∈ D

∑

C fC = Nw

fC ∈ ZZ+, ∀C ∈MCIS

where Q(C,D) is a constant which represents the number of copies of die D ob-

tained from a wafer diced according to C. The ILP can be optimally solved in a

short time since there are only |MCIS| variables and |D|+1 constraints. As shown

in Section III.H, the runtimes of ILP are within 0.03 second in all the experiments

on industry testcases with up to 30 dies.

III.D.2 Two-Level Optimization Algorithm for MDPs

Although the ILP method can solve the MDP problem quickly, its perfor-

mance will be degraded for the small volume requirement cases. Extended IASA

for MDP can produce a good solution but suffers from large runtime with large Nw.

In order to rapidly find a near optimal solution for MDP, we propose the Two-level

Optimization (TLO) heuristic shown in Figure III.5. We first solve ILP1 to obtain

an upper bound on Nw. Then we gradually reduce the number until the yield is

smaller than 1. In Lines 04-08, we assume that all rows (columns) of each wafer

use the same horizontal (vertical) dicing plan. The dicing plan for each wafer is

obtained by solving the following ILP:

6MCIS can be found as follows. We denote the MCIS for i dies as MCIS(i).

1. Sort all dies according to max x.

2. MCIS(1)← {D1}.
3. For (i = 2; i ≤ n; i + +)

4. Find the last die Dj which satisfies max x(Dj) < min x(Di)

5. Add Di to every set in MCIS(j) and MCIS(i)←MCIS(j) ∪MCIS(i− 1).

45

Minimize Y (ILP2)

subject to

N(D)− ∑

D∈C
Q(C,D)fC ≤ yD, ∀D ∈ D

∑

C fC = Nw

∑

D yD = Y

fC ∈ ZZ+, ∀C ∈MCIS

yD ∈ ZZ+, ∀D ∈ D
where Y is the total number of unsatisfied volume requirement and yD is the

number of unsatisfied volume requirement for the die D. Since one maximal conflict

independent set may belong to several maximal horizontal (vertical) independent

sets, we use yD as the weight of D and choose the maximal horizontal (vertical)

independent set with the maximum total weight for each wafer. Then we perform

the “row-and-column level” dicing plan replacement in Lines 10-13 to improve the

yield.7 A candidate pool is employed to speed up the process. Since the wafer

yield depends on the dies with the minimum dicing yield, the dicing plans which

can slice out at least one of these dies are put into the candidate pool. Only the

dicing plans in the candidate pool will be tried in each iteration. The candidate

pool will be updated with the change of min-yield dies. This process is greedy

which requires the yield to increase with each dicing plan replacement. If a die

D does not belong to any chosen horizontal or vertical dicing plan, we need to

simultaneously change a horizontal and a vertical dicing plan to obtain one copy

of D and increase the yield. Therefore, a cross selection process in Lines 14-17 is

used to choose the dicing plans for one row and one column simultaneously. Since

the “cross selection” process is extremely time-consuming, we do it only for the

center row and column of each wafer.

7In the process of yield and wafer cost evaluation, we may take the dicing operation setup cost
and lithography cost into consideration. Here, yield improving is equal to total manufacturing
cost reduction.

46

Input: MHIS, MV IS, MCIS
Output: Nw and dicing plan for Nw wafers
01. Solve ILP1 to obtain the Nw upper bound
02. while (yield≥ 1)
03. Nw −−
04. Solve ILP2 and choose one set C for each wafer
05. Set the weight of each die D as yD

06. For (each wafer)
07. Choose max horizontal (vertical) independent set
08. While (improve==true)
09. While (improve==true)
10. For (each row and column)
11. try other horizontal (vertical) dicing plans
12. If (wafer-dicing yield increases)
13. Replace the current dicing plan
14. For (the center row and column of each wafer)
15. Simultaneously try other pairs of dicing plans
16. If (wafer-dicing yield increases)
17. Replace the current dicing plan

Figure III.5: Two-level optimization heuristic.

III.E Wafer Shot-Map Definition

In the previous section we have fixed reticle images in order to reduce

problem complexity. However, if we allow the reticle images position to freely

move on the wafer, then the wafer cost can be reduced even more. The wafer

shotmap definition step, which determines the position of reticle images printed

on a wafer, was previously investigated for general wafers to maximize the wafer

yield [22]. However, it was ignored in the previous papers in the MPW context.

In both [25] and [23], the wafer is modeled as a rectangular array of projects,

which is not true for actual round wafers. This simplification may lead to wrong

dicing yield estimation since (i) the projection rows (columns) do not have equal

contributions to the wafer dicing yield – the rows/columns near the center contain

more reticle images, and (ii) fully printed dies within partial reticle projection are

ignored. For a round wafer with the radius r and the center (x0, y0), a die image

D is on wafer if and only if (x−x0)
2 +(y− y0)

2 ≤ r2 for all (x, y) ∈ D (see Figure

47

III.6). Given a rectangular reticle image, a shotmap is a regular tiling of the plane

with identical copies of the reticle. The corresponding problem of wafer position

with respect to shot-map is formulated as follows.

Wafer Shot-Map Definition Problem (WSMDP). Given a projection plane

and the wafer radius r, find the position of the wafer minimizing the number of

wafers required to meet the given production volumes.

The periodic property of the projection plane implies the following lemma.

Lemma III.2 The optimal solution of WSMDP can be achieved when the location

of the wafer center is restricted to be within one reticle projection L.

Proof: Let the reticle width and height be RW and RH and the optimal solution of

WSMDP can be achieved when the wafer center located in (i×RW +x, j×RH +y),

where i, j are integers and 0 ≤ x < RW , 0 ≤ y < RH . For any copy of a die located

in the wafer centered in (i×RW + x, j×RH + y), there is a corresponding copy of

the same die located in the wafer centered in (x, y) and vice versa. Therefore, the

optimal solution can also be achieved when the wafer center is located in (x, y). ⊓⊔
Therefore, the wafer center is constrained in one projection. The wafer center

location is further constrained by the following lemma.

Lemma III.3 The optimal solution of WSMDP can be achieved when at least two

die corners are located on the circular boundary of the wafer and the dies having

these corners are located within the wafer.

Proof: Suppose the optimal solution of WSMDP can be achieved when the wafer

center is located in (x, y). Let S be the set of the four corner coordinates of all

dies on the wafer. Consequently, one die is on the wafer if and only if its four

corners are in the wafer, so the solution remains optimal if all the points in S are

in the wafer. Suppose no points ∈ S are on the wafer boundary, then for any point

(xi, yi) ∈ S, (xi− x)2 + (yi− y)2 < r2. Let ti = xi− x +
√

r2 − (yi − y)2. It is easy

to prove that ti > 0 and (xi − x − ti,1)
2 + (yi − y)2 = r2 (intuitively, this means

that the wafer center is shifted to the right by ti to make the point (xi, yi) on the

boundary). Let t be the smallest value of all the ti values and move the wafer center

48

to (x + t, y). Then at least one point in S will be located on the wafer boundary.

Also if any point (xi, yi) ∈ S is out of the wafer, then (xi− x− t)2 + (yi− y)2 > r2

and (xi− x− t)2 + (yi− y)2 > (xi− x)2 + (yi− y)2 ⇒ r2− (yi− y)2 < (xi− x− t)2

and t > 2(xi − x) ⇒ ti < xi − x +
√

xi − x− t)2 = t. However, this is impossible

since t is the smallest value. Therefore, all points in S are still in the wafer when

the wafer center is located at (x + t, y).

Next, if there is only one die corner (x1, y1) on the boundary, we can per-

form coordinate transformation such that (x, y) in the original coordinates becomes

((x+ t−x1) cos φ+(y−y1) sin φ, (y−y1) cos φ− (x+ t−x1) sin φ) in the new coor-

dinates, where φ = arctan (y−y1

x+t−x1

). The points (x1, y1) and (x+ t, y) become (0, 0)

and (r, 0) in the new coordinates. Let the (x′
i, y

′
i) be the new coordinates of the

points (xi, yi) ∈ S, (x′
i−r)2+y′2

i < r2⇒ x′2
i +y′2

i < 2rxi. Let θi = arcsin(

√
x′2

i
+y′2

i

2r
)−

arcsin(
x′

i√
x′2

i
+y′2

i

). θi < 0 and (x′
i − r cos θi)

2 + (y′
i − r sin θi)

2 = r2 (intuitively, this

step equals the rotation of the wafer center around the point (0, 0) by θi to make

the point (x′
i, y

′
i) on the boundary). Let θ be the largest value of all the θi values

and rotate the wafer center around the point (0, 0) by θ to (r cos θ, r sin θ). Then

at least two points in S will be located on the wafer boundary: (0, 0) and the

point (x′
i, y

′
i) whose θi is θ. If any point (x′

i, y
′
i) ∈ S is out of the wafer, that is,

(x′
i−r cos θ)2+(y′

i−r sin θ)2 > r2⇒
√

x′2

i
+y′2

i

2r
> sin (θ + arcsin(

x′

i√
x′2

i
+y′2

i

))⇒ θi > θ.

However, it is impossible since θ is the largest value. Therefore, all points in S are

still in the wafer when the wafer center is located at (r cos θ, r sin θ). ⊓⊔
If two points (x1, y1) and (x2, y2) on the wafer boundary are known, the

wafer center is located at either (x1+x2−(y1−y2)t
2

, y1+y2+(x1−x2)t
2

) or

(x1+x2+(y1−y2)t
2

, y1+y2−(x1−x2)t
2

), where t =
√

4r2

(y1−y2)2+(x1−x2)2
− 1.

As in Figure III.7, when the wafer center is constrained in one projection

L, all dies within Region 1 can be on the wafer. All dies within Region 2, which

is the intersection of four cycles with radius of r whose centers located at the four

corners of L, will be within the wafer no matter where within L the wafer center

is. From Lemma 3, it is sufficient to consider the points in L which are determined

by at least two corners of dies in Region 1 − Region 2, when the corners are on the

wafer boundary. An optimal solution can be achieved by checking all these points.

49

Figure III.6: A periodic shot-map with dark circular wafer. A partially printed

reticle contains dark completely printed projects.

rr

L
r

r

Region 1

Region 2

Figure III.7: Region 1 and Region 2 for the projection L.

However, obtaining the optimal solution is impractical due to the large

number of points to be checked and the relatively long runtime of wafer cost

calculation procedure TLO. Therefore, we propose a hierarchical wafer shot-map

definition algorithm as summarized in Figure III.8, which only calls TLO dicing

procedures at a few hierarchically selected locations. We first divide the projection

L into several grids, then run TLO when wafer centering at each grid center. The

“best” grid will be chosen for the next iteration. The following trick is employed

in the algorithm to speed up the process. For each candidate wafer center location

p, there is a feasible set of dies, F (p), on the wafer when the wafer center is at p.

Obviously, the wafer cost will not be reduced if F (p) is a subset of one feasible set

whose wafer cost is already calculated. We store all feasible sets whose wafer costs

are calculated for comparison. In Line 6, if F (p) is included in any stored set, p

50

Input: wafer radius r, reticle dimensions, one projection L
Output: wafer center location minimizing manufacturing cost
1. L0 ← L
2. For (level =0; level < l; level++)
3. Divide L0 into k × k uniformly-spaced grid
4. For (all the grids)
5. choose the grid center p as the wafer center
6. If (F (p) not included in any stored feasible set)
7. calculate Nw with TLO, store F (p)
8. Find the grid g with the minimum Nw

9. Min Nw ← Nw; L0 ← g;

Figure III.8: Hierarchical wafer shot-map definition algorithm.

will be skipped to avoid redundant wafer cost calculation.

III.F Robust Floorplanning With Die Cloning

Reticle floorplanning is perhaps the most important optimization step

of any MPW flow. Compared with traditional chip floorplanning, the difficulty

of MPW reticle floorplanning lies in the complex relationship between the reticle

floorplan and overall manufacturing cost, via conflicting factors such as reticle

area and dicing compatibility [28]. Manufacturing cost estimation becomes even

more difficult when production volumes are uncertain. Two reticle floorplans that

require the same number of wafers for satisfying a certain set of production volumes

may require significantly different numbers of wafers even for slight changes in the

production volumes. Ideally, we would like a reticle floorplan that leads to low

production costs under most possible production requirements. This robustness

objective for reticle design under production demand uncertainty can be formulated

as follows.

Robust Reticle Design Problem (RRDP).

Given: Maximum reticle size, diesD = {D1, . . . , Dn}, and probability distribution

of customer orders for each die.

Find: A reticle floorplan for D that maximizes the expected number of wafers

51

required to satisfy customer orders over the time horizon for which production is

being planned.

Our RRDP algorithm uses the simulated annealing (SA) framework in-

troduced in Section III.C. A key issue in the algorithm is how to evaluate the

objective value, i.e., the average number of required wafers, after each move. In

our algorithm we employ a Monte-Carlo simulation: 100 random production re-

quirement vectors are generated according to the given probability distributions,

and then the average number of required wafers is estimated over this fixed set of

vectors.

Most previous works on MPW reticle design assume that the reticle con-

tains a single copy of each die. This is appropriate for prototype manufacturing,

when only a small number of wafers is produced, since it minimizes reticle area

(and hence total cost). For low- and medium-production volume the number of

manufactured wafers is larger, and die cloning (i.e., using multiple copies of a die

in the reticle) may be justified even when it leads to some increase in reticle area,

since cloning can improve dicing yield and thus decrease the number of required

wafers.

A simple die cloning method was proposed in [28], based on the insertion

of additional die copies within the white space available in a floorplan that was

constructed starting with a single copy of each die. However, this post-processing

approach has limited potential for improvement since typically there is not much

empty space left on the reticle. Here, we propose a comprehensive approach to die

cloning, which involves making cloning decisions before, during, and after running

the simulated annealing algorithm in Figure III.3.

First, we set the initial number of copies cD for die D with average volume

requirement VD to

cD = max{1, βf(VD)}.

Here, f(VD) is a monotonically increasing function of VD. We use f(VD) =
√

VD

52

Input: reticle floorplan with dies D = {D1, . . . , Dn}, wafer shot-map,
customer orders Qi, 1 ≤ i ≤ m

Output: number of wafers Ni to be diced after receiving each order Qi

01. For each k = 1, . . . , n, in stock(k)← 0
02. For i = 1, . . . ,m do
03. For each k = 1, . . . , n
04. If in stock(k) ≥ Qi(k) then
05. in stock(k)← in stock(k)−Qi(k)
06. Qi(k)← 0
07. Else
08. Qi(k)← Qi(k)− in stock(k)
09. in stock(k)← 0
10. If Qi 6= 0
11. Run the SSWDP algorithm with production volumes given by Qi

12. Let Ni be the number of wafers required by the algorithm, and
13. yield(k) be the resulting number of copies of die Dk

14. For each k = 1, . . . , n
15. in stock(k)← in stock(k) + yield(k)−Qi(k)
16. Else Ni ← 0
17. Return Ni, i = 1, . . . ,m

Figure III.9: Greedy ODSSWDP algorithm.

in our experiments. Parameter β is a scaling factor chosen such that

∑

D∈D
cDaD ≤ αA

where, aD denotes the area of die D, A denotes the maximum reticle area and α ≤ 1

is a maximum reticle utilization factor, which is set to 0.6 in our experiments. To

facilitate dicing, all copies of a die are arranged in a k × l “clone array” which is

always assigned to a single floorplan mesh region.

We also modify the simulated annealing algorithm in Figure III.3 by

adding four new moves: addition/deletion of a row/column of copies from a clone

array. Finally, after the completion of the algorithm, we try to insert additional

rows or columns into the clone arrays without increasing reticle size.

53

III.G On-Demand Wafer Dicing

The SSWDP formulation in Section III.D is appropriate in the context

of current shuttle services, which focus on serving the prototyping needs of inde-

pendent design companies. In this context, there is no uncertainty on the number

of prototype copies required for each project since these are specified by the cus-

tomers before reticle design, and all dicing can be done in a single batch. However,

for low- and medium-volume production the exact customer demand may not be

known a priori. When a single company owns all designs on the MPW, it is ad-

vantageous to manufacture a large wafer lot in anticipation of future customer

demand, and then dice the wafers only in response to incoming customer orders.

This motivates the study of the following on-demand version of the dicing plan

optimization problem.

On-Demand Side-to-Side Wafer Dicing Problem (ODSSWDP).

Given:

• A multi-project reticle floorplan with dies D = {D1, . . . , Dn},

• A wafer shot-map, i.e., the position of reticle images on the wafer, and

• A sequence of customer orders Qi, 1 ≤ i ≤ m, where each Qi is an n-

dimensional vector of non-negative integers

Find: number of wafers Ni to be diced after receiving each order Qi and corre-

sponding dicing plans

Such that:

• each customer order is satisfied before receiving the next order, i.e., for every

k ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, the number of copies of die Dk that result

from dicing the first
∑j

i=1 Ni wafers is at least
∑j

i=1 Qi(k) (we assume that

excess die copies obtained in a dicing step are stored at no cost and can be

used to satisfy customer orders in subsequent steps);

54

Input: reticle floorplan with dies D = {D1, . . . , Dn}, wafer shot-map,
customer orders Qi, 1 ≤ i ≤ m

Output: number of wafers Ni to be diced after receiving each order Qi

01. For each k = 1, . . . , n, in stock(k)← 0, past demand(k)← 0
02. For i = 1, . . . ,m do
03. For each k = 1, . . . , n
04. past demand(k)← past demand(k) + Qi(k)
05. If in stock(k) ≥ Qi(k) then
06. in stock(k)← in stock(k)−Qi(k)
07. Qi(k)← 0
08. Else
09. Qi(k)← Qi(k)− in stock(k)
10. in stock(k)← 0
11. If Qi 6= 0
12. α← max{Qi(k)/past demand(k)| past demand(k) 6= 0}
13. For each k = 1, . . . , n
14. Q′(k)← max{0, ⌈α · past demand(k)⌉ − in stock(k)}
15. Run the SSWDP algorithm with production volumes given by Q′

16. Let Ni be the number of wafers required by the algorithm, and
17. yield(k) be the resulting number of copies of die Dk

18. For each k = 1, . . . , n
19. in stock(k)← in stock(k) + yield(k)−Qi(k)
20. Else Ni ← 0
21. Return Ni, i = 1, . . . ,m

Figure III.10: History-based ODSSWDP algorithm.

• dicing decisions are made on-demand, i.e., for every i, the number of wafers

Ni and the associated dicing plans are chosen without any knowledge of Qj

for j > i; and

• the total wafer and dicing cost is minimized.

We remark that, although we refer to the demand vectors Qi as “customer

orders”, they may represent customer orders aggregated over certain periods of

time (e.g., daily, weekly, etc.). In Section III.H we will use this flexibility to gauge

the benefits of batching customer orders for dicing purposes.

A simple greedy ODSSWDP algorithm is given in Figure III.9. The

55

algorithm keeps track of the existing die stock, which changes after each dicing

step. For every incoming customer order, the algorithm tries first to use existing

dies to satisfy as much as possible of the order. If the order is fulfilled using existing

stock, no additional wafers are diced. Otherwise, the SSWDP algorithm in Section

III.D is invoked with the remaining order balance as required production volume

to determine the wafer cost. Finally, the die copies thus obtained are used to

complete the order, and any leftover copies are stored for future use.

The algorithm in Figure III.9 is attractive for its simplicity, but has a

number of weaknesses. The SSWDP instances solved in Line 11 of the algorithm

in Figure III.9 will typically require only a few wafers. This means that a large frac-

tion of the resulting die copies will end up being stocked for future use. These die

are chosen by the SSWDP algorithm without considering the already existing stock

or the demand trends that can be inferred from past customer orders. An improved

ODSSWDP algorithm correcting these weaknesses, which we call “history-based”,

is given in Figure III.10. In addition to tracking the existing stock, the improved

algorithm also tracks the past order history. When a customer order cannot be

fulfilled using the existing stock, instead of calling the SSWDP algorithm with

production volumes given by the remaining balance, we call it with a vector of

production volumes given by the past demand scaled down as much as possible

while still ensuring that we can satisfy the remaining order balance, and further

adjust this by subtracting existing stock quantities (Lines 12-14).

III.H Experimental Results

We use six industry testcases from CMP [32] to evaluate the performance

and scalability of the proposed algorithms, each having between 12 and 31 dies with

varying sizes and production volume requirements. For the wafer shot-map and

wafer dicing problem, we use the reticle floorplan of the actual industry MPW runs

which were manually designed by an experienced engineer. The basic parameters

of the six testcases are listed in Table III.1.

56

Table III.1: CMP testcase parameters.

Cases # dies Total volume Max Vol. Min Vol. Die area(cm2) |MCIS|
Ind 1 12 330 40 25 1.13 19
Ind 2 14 275 25 6 1.36 19
Ind 3 24 775 67 25 1.82 56
Ind 4 31 755 30 8 1.62 242
Ind 5 14 250 25 12 0.86 18
Ind 6 24 625 35 25 2.26 127

Reticle Floorplanning. We have implemented our hierarchical quadri-

section floorplan algorithm in C++. The maximum reticle dimension is set as

2cm. After the placement, we use a fixed wafer shot-map and TLO dicing method

to generate the dicing plans for all the wafers. The reticle floorplan results are

summarized in Table III.2. Here “CMP” denotes the original industry floorplan

used by CMP, “IASA+SA” is the SDP driven floorplanner used in [23] and HQ

is our proposed hierarchical quadrisection floorplan algorithm. The results show

that our proposed hierarchical quadrisection floorplan can save the wafer cost by

9.1%, 23.5% and 16.1% for one part, two parts and four parts compared with the

original industry floorplan. On the other hand, “IASA+SA” increases the wafer

cost by 18.2%, 14.7% and 17.8%, which indicates that “IASA+SA” is not a good

choice for MDP on round wafers.

Wafer Dicing. We implement the wafer dicing algorithms in the C++

language. We set the wafer diameter as six inches and use a fixed wafer shot-map

for all testcases. The number of wafers used (Nw) and runtime of four methods

are shown in Table III.3, where IASA is the method used in [23], E-IASA is our

extended IASA heuristic, ILP is the integer linear programming restricted MDP

method and TLO is the proposed two-level MDP optimization method. Each

method was run without any wafer partition and with wafer partition into 2 or 4

parts prior to dicing. The results show that compared with the original IASA with

one part, the wafer cost can be reduced by 34.2% by using four parts. E-IASA

can reduce the wafer cost by 39.5% for one part at the expense of long runtime.

57

ILP can reduce the cost by 5.3% for one part and can reduce the cost by 57.9% for

four parts. Therefore, ILP is more efficient for multiple part dicing. TLO achieves

the best solution quality in a short time. TLO reduces the wafer cost by 63.2% for

four parts.

Wafer Shot-Map Definition. Our algorithm for the wafer shot-map

definition problem is implemented in C++. The wafer cost and runtime results

are summarized in Table III.4. l is the number of levels and k is the grid size used

in each level. Compared with the fixed shotmap, the wafer cost can be reduced

by 9.1% by using 10 × 10 grid at the expense of increased runtime. Runtime

will significantly increase when Nw is reduced since there will be more dicing plan

replacement iterations in the TLO procedure. Although using 100 × 100 grid

can further reduce the wafer cost (13.6%), the runtime becomes impractical (over

100X). However, a good tradeoff between solution quality and runtime can be

achieved by using our proposed hierarchical wafer shotmap definition algorithm

with l = 3 and k = 10. The wafer cost is reduced by 13.6% while the runtime is

within 2.5X compared with using 10× 10 grid.

Robust Reticle Design. We include in our comparison several floor-

plans:

• The industry floorplan designed by CMP engineers (CMP);

• The floorplan obtained by running the hierarchical quadrisection algorithm

in [24] with production volumes set to the median point of the expected

distribution, i.e., to the average between the minimum and the maximum

expected customer orders (HQ);

• The floorplan obtained by running the simulated annealing algorithm in Fig-

ure III.3 driven by the uniform, respectively normal distributions for cus-

tomer orders (SA-unif and SA-norm); and

• The floorplans obtained by running the simulated annealing algorithm with

cloning, using an initial number of clones which is proportional to the square

root of the average production volume (SA-clone). In these versions of the

58

algorithm we use a simpler SA objective instead of the Monte Carlo simula-

tion used in SA-unif and SA-norm, namely the number of wafers needed to

satisfy average production volumes.

Table III.5 gives the observed average and standard deviation of the num-

ber of wafers required to fulfill 100 random production requirement vectors gen-

erated for each die according to uniform, respectively normal probability distribu-

tions. The observed average is an unbiased statistical estimator for the expected

number of wafers. We assume that the dicing is done using the integer linear

programming SSWDP algorithm in Section III.D.1.

For comparison, we include in the table the observed average and stan-

dard deviation for the number of wafers obtained by independently running the

hierarchical quadrisection algorithm of Section III.C for each of the 100 random

production volume requirements (HQ∗). HQ∗ can be used to estimate the reticle

floorplanning suboptimality incurred due to demand uncertainty, since in its com-

putation we allow selecting an individual floorplan for every production volume

vector. (Note that HQ∗ is not a true lower-bound since HQ does not guarantee

optimality.) The results show that the two cloning based SA algorithms give the

best results, often better even than HQ∗, despite the unfair advantage of the latter.

The cloning algorithm which starts with a number of clones proportional to the

square root of average production volumes gives best results, improving over CMP

floorplans by an average of 33% for production volumes generated from uniform

distributions, and by an average of 28% for production volumes generated from

normal distributions. Most of the improvement is due to the use of cloning, as

can be seen from the fact that the SA algorithms without cloning give signifi-

cantly worse results (although still better than CMP when driven by the correct

distribution).

In Figure III.11 we explore another measure of floorplan robustness. Here,

we plot the tradeoff curve between the number of wafers and the probability of sat-

isfying customer orders generated from the underlying distributions. To efficiently

determine these tradeoffs, we use the following Monte-Carlo simulation:

59

50 60 70 80 90 100 110 120 130

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty
 o

f
S

a
ti
s
fy

in
g

 a
n

 O
rd

e
r

Number of Wafers

Probability of Satisfying an Order for Uniform Distribution

 CMP

 HQ

 SA-unif

-- --- Clone

40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty
 o

f
S

a
ti
s
fy

in
g

 a
n
 O

rd
e

r

Number of Wafers

Probability of Satisfying an Order for Normal Distribution

 CMP

 HQ

 SA-norm

-- --- Clone

Figure III.11: Tradeoff curves between the probability of satisfying an order and

the number of wafers for CMP testcase “Ind5” with production volumes generated

from the (a) uniform and (b) normal distributions.

• First, we generate a large number of random production volume vectors

according to the given distributions.

• Then, for each production volume vector q we compute the minimum number

of wafers N(q) required to satisfy it using the integer linear programming

SSWDP algorithm in Section III.D.1.

• Finally, for every number of wafers N , we estimate the probability of satis-

fying customer order by {q|N(q) ≤ N}/N .

The curves show that cloning based floorplans yield the highest success probability

over the entire range of number of wafers. Besides showing the intrinsic qualities of

a selected multi-project floorplan, estimates of success probability in Figure III.11

can be useful, e.g., in determining how many wafers to manufacture in order to

maximize expected profit.

On-demand Wafer Dicing. We have implemented in the C++ lan-

guage the greedy and history-based algorithms for on-demand side-to-side wafer

dicing as described in Section III.G. In the basic OSSWDP formulation we assume

that side-to-side cutting is done on whole wafers. When production volumes are

60

known, significant dicing yield improvement can be achieved by first partitioning

each wafer into four equal quadrants, then dicing each quadrant independently

using side-to-side cuts. To explore the advantages of quadrant-based methods in

an on-line dicing environment we implement quadrant-based versions of the two

algorithms.

To compare the quality of the two on-demand dicing algorithms, we gen-

erate for each die 100 individual customer orders with quantities coming from either

a uniform or a normal distribution, and then randomly permute their arrival or-

der. Tables III.6 and III.7 give (in the columns for batch size of 1) the number of

wafers required by the two algorithms for each of the 6 industry testcases when

run on individual customer orders. To gauge the benefits of batching customer

orders we also include in the two tables results obtained by running the algorithms

on “batched orders” that combine groups of 10 or 100 consecutive customer or-

ders. Finally, to estimate the overhead in the number of wafers due to demand

uncertainty during dicing, we run the two algorithms on a single batch combining

all orders (both algorithms reduce to running the integer programming SSWDP

algorithm on the production volume totals in this case, and therefore both give

the same result).

The results show that, compared to the simple greedy algorithm, the

history-based algorithm reduces wafer overhead by an average of 19.2% (respec-

tively 8.9%) for the uniform (normal) distributions. This consistent improvement

suggests that the proposed history tracking scheme is effective in “learning” the

demand distribution. As expected, regardless of the algorithm used, batching leads

to significant reduction in wafer overhead, i.e., the required number of wafers re-

quired by on-demand dicing gets closer to the number of wafers required when

knowing all orders in advance. Somehow surprisingly, the results show that the

more complex quadrant-based dicing does not help on-line dicing unless using large

batch sizes.

61

III.I Summary

In this chapter we propose improved algorithms for multi-project reticle

floorplanning, wafer shot-map definition, and wafer dicing. Experiments on indus-

try testcases show that our methods significantly outperform previous methods in

the literature as well as floorplans manually designed by experienced engineers.

Our methods can also be extended to handle additional constraints such as die-

alignment constraints imposed by the use of die-to-die mask inspection [29] by

merging two copies of a die into a single “super-die”. We also explore the use

of multiple project wafers for production under demand uncertainty. We propose

novel algorithms and methodologies for robust multi-project reticle floorplanning

and on-demand wafer dicing, and have shown that our algorithms come close in

solution quality to algorithms relying on a priori knowledge of production volumes.

The material presented in this chapter is based on the following publica-

tion.

• A. B. Kahng, I. I. Mandoiu, X. Xu and A. Zelikovsky, “Enhanced Design

Flow and Optimizations for Multi-Project Wafers”, IEEE Transactions on

CAD, (2006) accepted and to appear.

The dissertation author was the primary researcher and author. My coau-

thors (Prof. Andrew B. Kahng, Prof. Ion Mandoiu and Prof. Alex Zelikovsky)

have all kindly approved the inclusion of the aforementioned publication in my

thesis.

62

Table III.2: Reticle floorplan results for six industry testcases. CMP is the original

industry floorplan used in CMP, “IASA+SA” is the floorplanner used in [23] and

HQ is our proposed hierarchical quadrisection floorplan algorithm.

Cases # part
CMP IASA+SA HQ

Nw area Nw area CPU(s) Nw area CPU(s)
Ind 1 1 3 1.13 3 1.58 24.2 3 1.42 0.00
Ind 2 1 3 1.36 3 1.83 39.2 2 1.65 0.00
Ind 3 1 4 1.82 7 1.96 1031 4 2.26 0.01
Ind 4 1 4 1.62 5 2.72 2351 4 1.82 0.01
Ind 5 1 2 0.86 2 1.77 51.7 2 1.19 0.00
Ind 6 1 6 2.26 6 3.60 795 5 2.66 0.01
Total 22 26 20

Red.(%) -18.2 9.1

Ind 1 2 2 1.13 2.5 1.58 24.2 1.5 1.42 0.00
Ind 2 2 2 1.36 2 1.83 39.2 1.5 1.65 0.00
Ind 3 2 3 1.82 4 1.96 1031 3 2.26 0.01
Ind 4 2 3.5 1.62 3.5 2.72 2351 2.5 1.82 0.01
Ind 5 2 1.5 0.86 1.5 1.77 51.7 1.5 1.19 0.00
Ind 6 2 5 2.26 6 3.60 795 3 2.66 0.01
Total 17 19.5 13

Red.(%) -14.7 23.5

Ind 1 4 1.5 1.13 1.75 1.58 24.2 1.25 1.42 0.00
Ind 2 4 1.5 1.36 1.75 1.83 39.2 1.5 1.65 0.00
Ind 3 4 2.75 1.82 4 1.96 1031 2.75 2.26 0.01
Ind 4 4 2.75 1.62 3.25 2.72 2351 2.25 1.82 0.01
Ind 5 4 1 0.86 1.25 1.77 51.7 1 1.19 0.00
Ind 6 4 4.5 2.26 4.5 3.60 795 3 2.66 0.01
Total 14 16.5 11.75

Red.(%) -17.8 16.1

63

Table III.3: Wafer dicing results for six testcases. IASA is the algorithm proposed

in [23]; E-IASA is our extended IASA heuristic; ILP is the proposed integer linear

programming approach; TLO refers to our two level optimization algorithm.

Cases # part
IASA E-IASA ILP TLO

Nw CPU Nw CPU Nw CPU Nw CPU
Ind 1 1 4 0.9 3 21.4 6 0.0 3 0.14
Ind 2 1 3 0.9 3 20.9 5 0.01 3 0.18
Ind 3 1 9 4.8 5 617 5 0.03 4 4.59
Ind 4 1 7 26.1 4 1631 8 0.03 4 73.6
Ind 5 1 2 1.9 2 15.5 4 0.0 2 0.21
Ind 6 1 13 13.2 6 2634 8 0.00 6 3.57
Total 38 23 36 22

Red.(%) 39.5 5.3 42.1

Ind 1 2 3 2.6 2.5 37.0 3 0.0 2 0.05
Ind 2 2 3 2.3 2 18.8 2.5 0.0 2 0.06
Ind 3 2 7 16.8 4.5 1485 3.5 0.01 3 3.98
Ind 4 2 5 76.9 3.5 3041 4 0.02 3.5 0.76
Ind 5 2 2 5.7 1.5 17.7 2 0.0 1.5 0.21
Ind 6 2 9 37.4 5 4457 5 0.02 5 0.04
Total 29 18.5 20 17

Red.(%) 23.7 51.3 47.4 55.3

Ind 1 4 2 6.5 1.75 31.4 1.75 0.01 1.5 0.02
Ind 2 4 2 6.3 1.75 29.9 2.25 0.0 1.5 0.02
Ind 3 4 7 44.8 3.75 2246 3 0.01 2.75 0.17
Ind 4 4 4 225 3 6176 3.25 0.03 2.75 0.72
Ind 5 4 1 13.6 1 17.9 1 0.0 1 0.01
Ind 6 4 9 91.6 4.75 10606 4.75 0.02 4.5 0.82
Total 25 16 16 14

Red.(%) 34.2 57.9 57.9 63.2

64

Table III.4: Cost efficiency of wafer shot-map definition step for six industry test-

cases. l is the number of levels and k is the grid size used in each level.

Cases # part
Fixed l = 1,k = 10 l = 1,k = 100 l = 3,k = 10

Nw CPU Nw CPU Nw CPU Nw CPU
Ind 1 1 3 0.14 3 13.7 2 2496 2 31.7
Ind 2 1 3 0.18 2 32.9 2 2790 2 68.5
Ind 3 1 4 4.59 4 442.7 4 39763 4 1069
Ind 4 1 4 73.6 4 7455 4 635342 4 18674
Ind 5 1 2 0.21 2 20.9 2 1762 2 48.3
Ind 6 1 6 3.57 5 1024 5 96521 5 2581
Total 22 20 19 19

Red.(%) 9.1 13.6 13.6

Ind 1 2 2 0.05 2 4.87 2 372 2 9.73
Ind 2 2 2 0.06 2 5.73 2 461 1.5 46.8
Ind 3 2 3 3.98 3 376 3 28909 3 937
Ind 4 2 3.5 0.76 3 1937 3 93402 3 4852
Ind 5 2 1.5 0.21 1.5 17.6 1 3594 1 79.8
Ind 6 2 5 3.57 4 479 4 38721 4 971
Total 17 15.5 15 14.5

Red.(%) 8.8 11.8 14.7

Ind 1 4 1.5 0.02 1.5 1.76 1.25 634 1.25 16.8
Ind 2 4 1.5 0.02 1.25 3.51 1.25 337 1 39.1
Ind 3 4 2.75 0.17 2.75 19.4 2.5 45827 2.5 673
Ind 4 4 2.75 0.72 2.5 173 2.5 14523 2.5 483
Ind 5 4 1 0.01 1 0.97 0.75 1877 0.75 13.5
Ind 6 4 4.5 0.82 4 567 4 30469 4 1235
Total 14 13 12.25 12

Red.(%) 7.1 12.5 14.3

65

Table III.5: Average and standard deviation of the number of wafers assuming

fixed whole wafer dicing.

Case CMP HQ SA-unif SA-norm HQ∗ SA-clone

Uniform distribution
ind1 166.9/48 138.7/38 138.7/38.7 154.2/42.2 128.6/31.8 114.0/23.6
ind2 116.7/20 107.3/18 103.1/13.1 132.9/27.6 101.7/16.2 85.9/13.6
ind3 352.2/52 348.6/51 347.2/48.2 417.7/67.4 257.6/35.0 210.0/38.4
ind4 101.9/22 103.7/21 100.2/20.7 108.3/19.9 89.7/19.6 60.8/6.6
ind5 107.3/16 104.8/16 99.6/15.7 107.3/21.3 84.3/12.4 75.3/13.1
ind6 80.9/9.6 85.6/12 77.3/10.2 78.9/9.9 72.8/8.4 74.0/8.2
Imp 0 4.02% 6.46% -7.93% 20.65% 33.04%

Normal distribution
ind1 137.3/23 144.2/24 144.2/24.0 131.5/20.9 127.0/22.3 108.4/15.2
ind2 149.7/20 135.3/16 161.1/24.8 127.3/16.1 114.9/14.9 113.7/14.7
ind3 375.0/37 355.6/27 361.8/26.7 352.8/31.3 270.3/19.2 272.4/21.5
ind4 120.2/29 97.0/10 104.6/11.5 95.3/10.4 88.2/9.9 81.0/26.2
ind5 119.5/16 96.0/10 93.2/10.0 81.0/8.4 75.7/8.3 73.6/8.3
ind6 105.3/8 78.4/6 89.2/7.4 76.1/5.8 74.1/4.7 73.2/5.6
Imp 0 9.98% 5.25% 14.20% 25.50% 28.27%

66

Table III.6: On-demand wafer dicing results for six industry testcases with cus-

tomer orders generated from a uniform distribution.

#Parts Whole Wafer 4 Quadrants
Batch size 1 10 100 all 1 10 100 all

Test Greedy
ind1 64 62 54 54 64 59 48 47
ind2 356 289 268 253 356 272 250 239
ind3 228 186 153 144 211 178 146 135
ind4 72 68 57 51 69 62 50 45
ind5 185 160 156 148 185 152 148 141
ind6 86 84 76 76 86 83 70 67

Overhead 36.5% 16.9% 5.2% 0 44.1% 19.6% 5.6% 0

Test History-based
ind1 59 57 55 54 58 53 50 47
ind2 301 272 282 253 294 264 267 239
ind3 182 161 157 144 177 161 150 135
ind4 63 58 53 51 61 57 52 45
ind5 167 156 163 148 159 156 162 141
ind6 80 77 79 76 81 75 73 67

Overhead 17.3% 7.6% 8.6% 0 23.1% 13.6% 11.8% 0

67

Table III.7: On-demand wafer dicing results for six industry testcases with cus-

tomer orders generated from a normal distribution.

#Parts Whole Wafer 4 Quadrants
Batch size 1 10 100 all 1 10 100 all

Test Greedy
ind1 215 183 177 177 215 176 167 167
ind2 123 108 108 104 123 107 104 97
ind3 375 354 338 322 372 361 325 306
ind4 96 95 93 87 92 90 88 83
ind5 118 107 90 83 118 101 88 80
ind6 99 89 81 81 101 98 77 74

Overhead 20.1% 9.6% 3.9% 0 26.5% 15.6% 5.2% 0

Test History-based
ind1 193 177 185 177 187 174 175 167
ind2 110 105 108 104 106 102 102 97
ind3 354 344 339 322 346 343 326 306
ind4 94 95 87 87 90 91 87 83
ind5 107 103 85 83 99 96 86 80
ind6 92 86 82 81 93 86 81 74

Overhead 11.2% 6.5% 3.7% 0 14.1% 10.5% 6.2% 0

Chapter IV

Bright-Field AAPSM Conflict

Detection and Correction

Alternating-Aperture Phase Shift Masking (AAPSM), a form of strong

Resolution Enhancement Technology (RET), will be used to image critical features

on the polysilicon layer at smaller technology nodes. This technology imposes addi-

tional constraints on the layouts beyond traditional design rules. Of particular note

is the requirement that all critical features be flanked by opposite-phase shifters,

while the shifters obey minimum width and spacing requirements. A layout is

called phase-assignable if it satisfies this requirement. Phase conflicts have to be

removed to enable the use of AAPSM for layouts that are not phase-assignable.

Previous work has sought to detect a suitable set of phase conflicts to be removed,

as well as correct them.

This chapter has two key contributions: (1) a new computationally effi-

cient approach to detect a minimal set of phase conflicts, which when corrected

will produce a phase-assignable layout; (2) a novel layout modification scheme for

correcting these phase conflicts with small layout area increase. Unlike previous

formulations of this problem, the proposed solution for the conflict detection prob-

lem does not frame it as a graph bipartization problem. Instead, a simpler and

more computationally efficient reduction is proposed. This simplification greatly

improves the runtime, while maintaining the same improvements in the quality of

68

69

results obtained in [34]. An average runtime speedup of 5.9x is achieved using

the new flow. A new layout modification scheme suited for correcting phase con-

flicts in large standard-cell blocks is also proposed. Our experiments show that the

percentage area increase for making standard-cell blocks phase-assignable ranges

from 1.7% to 9.1%.

IV.A Introduction

As advanced wafer manufacturing technologies push the patterning pro-

cesses toward lower k1 sub-wavelength printing, reticle based resolution enhance-

ment techniques (RET) have played a critical and enabling role. Alternating-

Aperture Phase Shift Masking is a form of strong RET that uses phase modu-

lation at the mask level to enhance the resolution limit of current lithography

equipment. At advanced technology nodes, it will be widely used to image fea-

tures of the polysilicon layer. Among several variants of AAPSM, Bright-Field

AAPSM is the most viable technology for the polysilicon layer [33]. In a simple

model of Bright-Field AAPSM, each critical feature, which is a shape in the de-

sign whose width is below a certain threshold value, must be flanked by two phase

shifters of opposing phases that create destructive interference between them. The

shifters must obey additional constraints of size and spacing in order to ensure a

manufacturable mask.

A layout with shifters inserted around each critical feature is phase-

assignable if and only if there is a phase-assignment solution which meets the

following requirements:

1. Shifters on opposite sides of every critical feature are assigned opposite phases

(0o and 180o); and

2. Shifters that are separated by less than the minimum shifter spacing should

be merged and assigned the same phase. Two shifters separated by less than

the minimum shifter spacing will be referred to as overlapping shifters.

70

Two shifters are in phase conflict if they violate the above conditions in a phase

assignment solution in which each shifter is assigned a phase. Figure IV.1 illustrates

an example where the above conditions are violated due to a cyclic sequence of

shifters that cannot be properly mapped. The Phase Conflict Detection Problem

seeks to find a minimum set of phase conflicts, which when corrected will result

in a phase-assignable layout. The Phase Conflict Correction Problem corrects a

given set of phase conflicts by layout/mask modification with minimum increases

in area or mask complexity.

0

180

180

180

0

0

0

180

Conflict!

Figure IV.1: Example of incorrect phase assignment.

Our contributions are summarized as follows:

• We develop a new and computationally efficient algorithm for detecting phase

conflicts, which when corrected will render the given layout phase-assignable.

Unlike the bipartization formulation which is the basis of all previous work,

we formulate the conflict detection problem as a conflict cycle removal prob-

lem. This leads to a substantial reduction in the number of nodes/edges

in the constructed graphs and thereby produces average runtime speedups

71

of 5.9x, while maintaining the same quality of results as the best results

available today [34].

• We provide a novel layout modification algorithm for correcting a selected set

of phase conflicts, achieving small area increase and good scalability for large

standard-cell blocks.1 Compared to the approach in [34], which presents the

only available results on layout modification for correcting phase conflicts

for bright-field AAPSM, our new approach can reduce the maximum area

increase from >100.0% to 9.1% for large designs.

This chapter is organized as follows. Section IV.B briefly reviews the previous

work in phase conflict detection and correction. In Section IV.C, we provide a

detailed discussion of the new theory of the proposed phase conflict detection flow.

Section IV.D discusses our new conflict correction algorithm. Experimental results

are presented in Section IV.E. We end with a summary in Section IV.F.

IV.B Previous Work

The phase conflict detection problem is addressed in [34] [36] [37] [38] [40].

The basic underlying principle in these works is the translation of the phase con-

flict detection problem to a graph bipartization problem of a suitably constructed

graph. Thus, conflict detection involves identifying a set of edges such that the

modified graph obtained after deleting the edges is bipartite. The work in [38][40]

formulates the phase conflict detection problem as a minimum-weight graph bi-

partization problem to minimize the amount of layout modification necessary to

render the layout phase-assignable. It is assumed that the constructed graphs will

always be embedded planar graphs2 and an optimal solution is provided for that

case. The most recent work in this area is presented in [34]. This algorithm works

1T-shaped phase conflicts and other local phase conflicts can be easily detected with simple
design rule checking and corrected with phase splitting [41], feature widening [47] or cell re-
design. Like the approach in [34], we assume that T-shaped conflicts are already corrected by
other methods. We only consider conflict correction by spacing, i.e., increasing space between
features, due to the small impact of such perturbations on timing and mask complexity.

2An embedded planar graph is one that has no line crossings when embedded in a plane.

72

on general layouts and is a generalization of the scheme presented in [40]. The

layout is represented as a graph called the phase conflict graph. We propose a new

bipartization algorithm that does not require the input graph to be an embedded

planar graph. The algorithm creates a planar subgraph of the given graph, applies

a computationally efficient version of the optimal bipartization algorithm [38] on

the planar subgraph to get an optimal solution and then combines this solution

with a greedy solution for the edges deleted during planarization. The quality of re-

sults (in terms of number of conflicts selected for correction and runtime numbers)

was significantly better than previous work in this area. This phase conflict detec-

tion algorithm will be used as our reference for comparison because it out-performs

other existing work in the area.

Previous work in phase conflict correction falls into two major categories.

Mask-level correction based approaches [41] split shifter regions whenever two

shifters of opposite phases overlap to avoid layout modification. However, the

mask complexity is increased and it is not always possible to split the shifter

regions without negatively affecting process latitude. Layout modification based

approaches remove the conflicts by increasing spacing between features or widening

critical features [36] [37] [43] [42] [38] [34]. Most of these works focus on dark-field

AAPSM3. The first layout modification scheme for correcting bright-field phase

conflicts is presented in [34].4 The key idea in this work is to add a minimal

number of end-to-end spaces throughout the layout to separate all shifter pairs

corresponding to the phase conflicts by the desired spacing. While this technique

is suitable for standard cells and some macro blocks with a relatively small number

of conflicts, experimental results show that it is highly unsuitable for standard-cell

blocks in which a large number of phase conflicts must be corrected.

There are also cell-based solutions that propose to add blank space around

each cell to avoid introducing phase conflicts between neighboring cells, or that

introduce an additional requirement that all the boundary elements should have

3In dark-field AAPSM, phases are assigned to the critical features themselves. This form of
phase is not likely to be used on the polysilicon layer.

4Although the work in [40] proposes the conflict detection methods for bright-field phase
conflicts based on feature widening, it neglects the layout modification problem.

73

the same phase [44] [39]. No results were presented in the context of standard-cell

blocks. However, each of these methods is somewhat conservative, and could lead

to unnecessary increases in area since only a small fraction of the phase conflicts

involve features of different cells.

IV.C Phase Conflict Detection Scheme

Layout L

Build conflict cycle graph G. D 0; P 0.

Create embedded planar graph G’ from G

by deleting a minimal set of edges P..

D Edges deleted from G’ by Pl_CC_Remove.

Phase assignment. For each edge e P, add
e to D if its two shifters are in phase conflict..

D denotes the set of AAPSM

conflicts chosen for correction.

Figure IV.2: Phase conflict detection flow.

In this section, the proposed phase conflict detection scheme is presented.

As shown in Figure IV.2, the proposed conflict detection flow is presented below:

1. Conflict Cycle Graph Generation. A conflict cycle graph G is constructed

from a given layout L.

2. Planar Graph Embedding. The phase conflict graph G is not necessarily an

embedded planar graph, which is required by the optimal algorithm. Hence,

G is converted to an embedded planar graph G′ by greedily removing min-

imum weight conflict edges that cross other edges. These conflict edges are

added to a potential set of AAPSM conflicts P .

74

3. Optimal Conflict Removal for Planar Graph. An optimal minimum-weight

conflict cycle removal algorithm Bipartize, described in Section III.B, is ap-

plied to G′ for choosing the minimum set of AAPSM conflicts that when

corrected will produce a phase-assignable layout. The list of edges deleted

by the algorithm is added to D, which denotes a minimal set of AAPSM

conflicts which when removed will ensure that G′ is phase assignable.

4. Computation of Final Set of AAPSM Conflicts. It is necessary to check if

any of the edges deleted during planar embedding, i.e., the conflict edges in

P , lead to phase conflict. This is accomplished by 2-coloring G′ after deleting

the edges in D. If the two shifters of e ∈ P are in phase conflict, e is added to

the set D. At this point, D has a minimal set of edges or AAPSM conflicts

which when removed will make G phase assignable.

Unlike previous formulations of the problem, the proposed solution does

not reduce the problem to a bipartization problem. Instead, the phase conflict

detection problem is reduced to a new problem called the minimum-weight con-

flict cycle removal problem (the problem will be introduced formally in the next

section). This new reduction enables the construction of a much simpler graph

from the layout. This graph, called the conflict cycle graph, removes all superflu-

ous edges that were introduced in the phase conflict graph construction to make

them bipartite for phase-assignable layouts. This simplification enables a signifi-

cant reduction in the number of edges compared to the phase conflict graph [34]

(an average reduction of 31% in the number of edges is achieved using the simpler

graph).

A further advantage of this new formulation is that an optimal polynomial-

time algorithm exists for the minimum-weight conflict cycle removal problem when

the input graph is an embedded planar graph. The optimal algorithm is used as

a subroutine in the proposed phase conflict detection algorithm. The use of the

optimal algorithm ensures that the quality of results returned by our phase con-

flict detection algorithm is comparable to the best results returned by previous

work [34], since large subgraphs of the input graph are solved using an optimal

75

algorithm. In addition, the new theory enables the removal of certain edges that

are marked undeletable and cannot be selected by the phase conflict detection al-

gorithm. This also results in significant speedups of the phase conflict detection

algorithm. Experimental results on representative examples show average speedups

of 5.9x using the proposed approach, while maintaining the same quality of results

as the method in [34].

The novel and distinguishing features of the proposed phase conflict de-

tection scheme, with respect to previous methods, can be summarized as follows:

• Representation of the layout as a conflict cycle graph and development of its

relationship to phase-assignability of the layout.

• Reduction of the phase conflict detection problem to a minimum-weight con-

flict cycle problem (to be defined later) on the conflict cycle graph and an

optimal polynomial-time algorithm for the same, when the graph is an em-

bedded planar graph.

• Improvements to the intermediate reductions such that edges that cannot

be selected by the conflict detection algorithm do not need to be explicitly

represented.

The following sections give a detailed discussion of these points.

IV.C.1 Conflict Cycle Graph

The first step of the conflict detection algorithm is to build a conflict

cycle graph. Given a layout L, the conflict cycle graph G = (N,E ∪ F) consists of

shifter nodes N , conflict edges E and feature edges F .

1. For every shifter, create an edge shifter node n ∈ N .

2. For two overlapping shifters5 s1 and s2, create a conflict edge e ∈ E con-

necting n1 and n2. Here n1 and n2 are the edge shifter nodes for s1 and s2,

respectively.

5Two shifters that are separated by less than the minimum shifter spacing are called overlap-
ping shifters.

76

3. Create a feature edge f ∈ F between the two shifters that are on opposite

sides of a critical feature.

Overlap edge

Feature edge

Overlap node

Shift node
Shift node

(a) Conflict Cycle Graph (b) Phase Conflict Graph

Figure IV.3: (a) Conflict cycle graph, (b) Phase conflict graph.

Figure IV.3(a) shows an example of a conflict cycle graph for the layout shown

earlier in Figure IV.1. The conflict cycle graph has eight nodes and eight edges.

By comparison, the phase conflict graph (shown in Figure IV.3(b)) of the same

layout has 12 nodes and 12 edges. Experimental results in a later section show a

substantial reduction in the node/edge count, which results in significant runtime

improvements. However, unlike the phase conflict graph, the conflict cycle graph

does not equate phase-assignability of its corresponding layout to bipartition. So, a

conflict cycle graph may be bipartite even if its corresponding layout is not phase-

assignable. Thus, a new criterion is needed for detecting phase conflicts using the

conflict cycle graph.

It should be further clarified that in the conflict cycle graph, the feature

edges and conflict edges play different roles: nodes connected by feature edges

should be assigned different phases and nodes connected by conflict edges should

be assigned the same phase. Later in this section, we discuss how in certain

applications the feature edges are only used to appropriately classify the cycles

they belong to and can be dropped during some intermediate graph constructions,

thereby producing more speedups.

77

The general phase assignment algorithm is shown in Figure IV.4. A layout

is phase assignable if and only if the boolean variable “failed” remains false at the

end of the assignment process.

Input: Conflict cycle graph G
Output: Phase assignment of G
1. failed←False; all nodes are uncolored
2. While (failed==False AND ∃ uncolored nodes)
3. Pick a random uncolored node n0 as the

root and assign it color 0, S0 ← {n0}
4. Put all the nodes connected with at

least one node in S0 in a set S1.
5. For (all colored nodes n1 ∈ S1)
6. Check nodes n2 ∈ S0 connected to

n1 with edge e for the two rules:
(1) if e is a conflict edge, the color of

n1 should be the same as n2;
(2) if e is a feature edge, the color of

n1 should be different from n2.
If the rules are violated, failed←True

7. If (all nodes in S1 are colored)
return to Step 2

Else
8. For (any uncolored nodes n1 ∈ S1)
9. Arbitrarily choose one node n2 ∈ S0

connected to n1 with edge e:
(1) if e is a conflict edge, the color

of n1 is the same as n2;
(2) if e is a feature edge, the color

of n1 is different from n2.
10. S0 ← S1, return to Step 4
11. If (failed==True) G is not phase assignable

Figure IV.4: Phase assignment algorithm.

In the rest of this section, we present the theory for phase conflict detec-

tion using the conflict cycle graph.

Definition IV.1 A conflict cycle is a cycle which contains an odd number of

feature edges.

78

Theorem IV.1 A layout is phase assignable if and only if the corresponding con-

flict cycle graph has no conflict cycles.

Proof: (→) Assume L is phase-assignable. Let all the edge shifter nodes be

colored with the same phases as the shifters in L. It is true that the node colorings

of G satisfy the following two conditions: nodes connected by a feature edge have

different colors and nodes connected by a conflict edge have the same color. Let

us assume further that there exists a conflict cycle C and let {n1, n2, . . . , nk, n1}
be a closed walk along C. By the definition of a conflict cycle, there are an odd

number of feature edges in C. Hence, starting from n1, the node phases will flip an

odd number of times in C. Therefore, the node n1 will be assigned two different

phases, which is impossible. Hence our assumption that G, whose corresponding

layout L is phase-assignable, has a conflict cycle is wrong.

(←) Assume G does not contain any conflict cycles and L is not phase-

assignable. Then the phase assignment process specified in Figure IV.4 must vio-

late the rules for two nodes n1 and n2 connected with the edge e. There must be

two paths from the root to n1 and n2. Let n0 to be the last common node on the

two paths. Then there is a cycle C = {n0, ..., n1, n2, ..., n0}. There are two possible

cases.

1. n1 and n2 have the same color and e is a feature edge: Since the colors are

only changed across feature edges, if n1 has the same color as n0, then there

must be an even number of feature edges from n0 to n1. By assumption,

n2 has the same color as n1, and hence as n0. Thus, there must be an even

number of feature edges from n0 to n2. Then, C must contain an odd number

of feature edges and hence C is a conflict cycle.

2. n1 and n2 have different colors and e is a conflict edge: If n1 and n0 have the

same color, then there must be an even number of feature edges on the path

from n1 to n0. By assumption, n2 has a different color from n1 and hence

a different color from n0. Thus, the path from n0 to n2 must have an odd

number of feature edges. Hence C must contain an odd number of feature

edges and is a conflict cycle.

79

This contradicts our initial assumption that G has no conflict cycles. Hence, our

assumption that L is not phase-assignable is wrong. ⊓⊔
In order to make the layout phase assignable, it is necessary to remove all

conflict cycles from the conflict cycle graph by deleting edges. The deleted edges

directly correspond to phase conflicts that have to be corrected. Each edge has a

given weight which reflects the negative effects of correcting the phase conflict.6 A

large number of phase conflicts selected for correction would imply large changes

to the layout and/or mask, which is highly undesirable. Hence, it is essential

to minimize the sum of weights of the edges to be deleted during conflict cycle

removal.

The minimum-weight conflict cycle removal problem is defined as follows:

Given a conflict cycle graph G = (V,E), remove a minimum-weight set of edges

E ′ such that the modified graph G′ = (V,E \E ′) does not have any conflict cycles.

It can be easily proved that this problem is NP-hard for general graphs by

doing a simple reduction to the minimum-weight bipartization problem. However,

an optimal polynomial-time algorithm exists when the graph is an embedded planar

graph. This optimal algorithm is referred to as Pl CC Remove in Figure IV.2 and

will be discussed in detail in the next section.

IV.C.2 Optimal Minimum-Weight Conflict Cycle Removal

Algorithm for Embedded Planar Graphs

The theory of the optimal polynomial-time algorithm for minimum-weight

conflict cycle removal for embedded planar graphs is presented in this section. Let

G denote an embedded planar graph for which we seek the optimal solution of the

minimum-weight conflict cycle removal problem.

Definition IV.2 A conflict face of G is a face corresponding to a conflict cycle

in G. A face of G that is not a conflict face is a legal face.

6The weighting scheme depends on the layout modification methods, which will be discussed
in Section IV.D.

80

Definition IV.3 The dual graph GD of the conflict graph G is constructed by

representing every face f of G with a node n. An edge e which belongs to faces

g1 and g2 in G is represented with an edge e′ = {n1, n2} in GD. A node n ∈ GD

corresponding to a conflict face f ∈ G is called a conflict node. A node that is not

a conflict node is a legal node.

Definition IV.4 Two faces are neighboring faces if they share at least one com-

mon edge. The merged face of two neighboring faces is formed by deleting all

common edges.

Lemma IV.1 The parity of the number of feature edges of the merged face is equal

to the parity of the sum of the numbers of feature edges of two faces.

Proof: Let the two faces have m1 and m2 feature edges and they share

m3 feature edges. Then the merged face has m1 + m2 − 2m3 feature edges, which

has the same parity as m1 + m2. ⊓⊔

Lemma IV.2 A planar embedded graph G has no conflict cycles if and only if all

faces are legal.

Proof: For a planar embedded graph, any cycle is the result of merging

n faces. If all faces are legal, we know that the number of feature edges in the

merged face is even from Lemma IV.1. Therefore, by definition, the graph has no

conflict cycles. If the original graph has no conflict cycles, then every face is legal

by definition. ⊓⊔

Figure IV.5: Deleting all common edges (in this case, only one) results in a merged

face.

81

Theorem IV.2 Removing an odd number of edges from every conflict face and an

even number of edges from every legal face will generate a graph with no conflict

cycles.

Proof: Let G′ be the graph obtained after the edge deletion. As shown in Fig-

ure IV.5, the deletion of one or more common edges results in the creation of a

merged face. Any face in G′ must be the result of merging a set S1 of conflict faces

and a set S2 of legal faces in G. Let S = S1
⋃

S2.

We first want to prove that the cardinality of S1, |S1|, is even. Let r(f)

denote the number of removed edges for each face f ∈ S. Since all removed edges

belong to two faces in S and are counted twice,
∑

f∈S r(f) is even.
∑

f∈S r(f) =
∑

f∈S1
r(f) +

∑

f∈S2
r(f). From the assumption, an even number of edges are

removed from every legal face, i.e., r(f) is even for f ∈ S2. Therefore,
∑

f∈S2
r(f)

is even and hence
∑

f∈S1
r(f) is even. Since r(f) is odd for every f ∈ S1, |S1| must

be even.

Then we want to prove that the sum of the feature-edge numbers of all

faces in S is even. Since every face in S1 has an odd number of feature edges and

there are an even number of faces in S1, the sum of the numbers of feature edges

of all faces in S1 is even. Also the sum of the numbers of feature edges of all faces

in S2 is even, since every face in S2 has an even number of feature edges according

to the definition of legal faces. Therefore, the sum of the feature-edge numbers of

all faces in S is even.

According to Lemma IV.1, the feature-edge number of the merged face

is even since the sum of the feature-edge numbers of all faces in S is even. Hence

any merged face in G′ is legal. Thus, G′ has no conflict cycles according to Lemma

IV.2. ⊓⊔
The problem of deleting a minimum-weight set of edges such that an odd

number of edges are deleted from every conflict face and an even number of edges

are deleted from every legal face of G translates to the following problem on its

dual graph GD:7

7Given a planar graph G, its geometric dual GD is constructed by placing a vertex in each
face of G (including the exterior face) and, if two faces have an edge in common, joining the

82

Find the minimum-weight set of edges S to be deleted in GD = (V,E) such that:

(a) an odd number of edges in S are incident on every conflict node u ∈ V ; (b) an

even number of edges in S are incident on every legal node v ∈ V .

This is similar in spirit to the T-join problem [45] on a graph G which

can be optimally solved. The T-join problem of a graph seeks a minimum-weight

edge set S such that a node u is incident to an odd number of edges of S if and

only if u belongs to the node subset T of the given graph. Our problem reduces to

the T-join problem if and only if the set of all conflict nodes is denoted as the set

T . Unlike the problem formulation in [34] in which T is the set of all nodes with

odd degrees, in our formulation, T may include nodes with odd or even degrees.

12

4

3

a

cb

ta
2 ga

1

gb
2

tb
4

gb
3 tc

3

gc
4

tc
1

(a) Dual Graph (b) Gadget Graph

Legal Node

Conflict Node

Ghost Node

True Node

Dummy Node

G
b

G
c

G
a

Figure IV.6: Gadget graph construction from dual graph. The directions on the

edges in (a) are used to signify the edge assignment.

Next, we describe how the T-join problem can be reduced to a perfect

matching problem on a suitably constructed gadget graph G. The gadget graph

construction consists of the following steps:

1. Dual Edge Assignment. Each edge e connecting v and v′ in dual graph

is assigned to v, v′ or both. The assignment is done such that the following

conditions are satisfied:8

(a) For each conflict node v, the number of true nodes in Gv is odd.

(b) For each legal node v, the number of true nodes in Gv is even.

corresponding vertices by a dual edge.
8To ensure that the conditions are satisfied, we use the edge assignment method in [38] to

assign the edges such that for any gadget of n nodes, the number of ghost nodes is at least ⌊n
2
⌋.

Then for any gadget Gv which violates the parity requirement, it is always possible to turn a
ghost node gv

e into a true node tve (i.e., assign the edge e to both v and v′) to meet the parity
requirement at the cost of increasing the node number of the gadget graph by one.

83

In Figure IV.6 (a), directed edges are used to represent the assignment.

2. Gadget Node Construction. If a dual edge e connecting v and v′ is

assigned to v and not assigned to v′, it will appear as a true node tve in Gv

and a ghost node gv′

e in Gv′ .9 As a result, each node v of degree k in the dual

graph GD becomes a gadget of k nodes in G, which is denoted as Gv. The

weight of gv′

e is w(e) and the weight of tve is 0. In other words, the weight

of any dual edge is always assigned to its corresponding ghost node. Both

nodes are connected to a dummy node with 0 weight edges. In any perfect

matching solution for the gadget graph, exactly one node in each pair of tve

and gv′

e will be matched within gadgets since the other node will be matched

with the dummy node.

3. Complete Gadget Construction. The nodes in Gv are connected to each

other by weighted edges to form a complete graph. The weight of any edge

in Gv is the total weight of its two nodes. Figure IV.6 (b) shows the gadget

graph constructed from the dual graph of Figure IV.6 (a).

In summary, G = (V ′, E ′), where V ′ includes the true nodes, ghost nodes

and dummy nodes, and E ′ is the set of edges between nodes in V ′.

Theorem IV.3 The T-join problem for a graph GD = (V,E,w, T), where T de-

notes the conflict nodes and V \ T denotes the legal nodes in V , can be reduced to

a minimum-weighted perfect matching on the gadget graph G = (V ′, E ′, w′).

Proof:(→) Mapping perfect matching solution of the gadget graph G to a valid

solution of the T-join problem on GD: For any node v in the dual graph GD, divide

the edges of node v into four sets:

• S1 = {e|gv
e matched within Gv}.

• S2 = {e|gv
e not matched within Gv} = {e|tv′

e matched within Gv′}.
9For example, edge 3 from node b to c means that edge 3 is assigned to node c and it appears

as tc
3

in Gc and gb
3

in Gb.

84

• S3 = {e|tve matched within Gv}.

• S4 = {e|tve not matched within Gv} = {e|gv′

e matched within Gv′}.

We need to prove that the set S = S1
⋃

S4 thus constructed is a valid solution

to the T-join problem. Let the cardinality of S1, S2, S3 and S4 be a, b, c and

d, respectively. In any perfect matching solution, the number of nodes matched

within Gv, (a + c), is even. If v is a conflict node, the number of true nodes in Gv,

c+ d, is odd by construction and (a+ c)+ (c+ d) = (a+ d)+2c is odd. Therefore,

the number of edges in S, a + d, is odd. Similarly, if v is a legal node, the number

of edges in S is even. Therefore, the solution S is a valid solution of the T-join

problem.

Since the weight of any edge e in the dual graph is always assigned to its

corresponding ghost node gv
e , the total weight of the edges in the T-join solution,

S = S1
⋃

S4, is equal to the total weight of all ghost nodes matched within gadgets.

On the other hand, the total weight of the matching solution, i.e., the

total weight of the matched edges, = the total weight of the matched edges within

gadgets (since the weights of edges incident to dummy nodes are all 0), = the

total weight of all nodes matched within gadgets (since the edge weight is the total

weight of its two nodes), and hence = the total weight of all ghost nodes matched

within gadgets (since the weights of all true nodes are 0). Therefore, the total

weight remains the same during the mapping.

(←) Mapping a solution S of the T-join problem to a solution of the

perfect matching problem of G can be done as follows: For any node v in the dual

graph GD, divide the true nodes and ghost nodes in Gv into four sets:

• S1 = {gv
e |e ∈ S}.

• S2 = {gv
e |e 6∈ S}.

• S3 = {tve|e 6∈ S}.

• S4 = {tve|e ∈ S}.

85

Let the cardinality of S1, S2, S3 and S4 be a, b, c and d, respectively. We need to

prove that there is a perfect matching solution in which the a ghost nodes in S1

and the c true nodes in S3 are matched within Gv and the remaining nodes are

matched outside Gv. If v is a conflict node, since S is a valid solution of the T-join

problem, the number of edges ∈ S, a+d, is odd. The number of true nodes (c+d)

is odd by construction. Thus, ((a + d) + (c + d)) = (a + c) + 2d is even. Hence,

(a+c) is even. Similarly, we can prove that (a+c) is even when v is a legal node in

GD. It is always possible to match an even number of nodes in a complete graph.

Since the edge weight in the dual graph is always assigned to its corre-

sponding ghost node, we only need to consider the nodes in S1 and S2 (true nodes

in S3 and S4 have corresponding ghost nodes in other gadgets). Among them,

only the nodes in S1 are matched within gadget and their weights are included in

the matching solution. In other words, the ghost node weight is included in the

matching solution if and only if its corresponding dual edge is in the T-join solution.

Therefore, the matching solution has the same weight as the T-join solution.

⊓⊔
The perfect matching problem can be optimally solved in polynomial

time. In our implementation, we integrate the code of Cook and Rohe [46].

It should be noted that using the proposed conflict cycle graph and the

T-join formulation implies that the classification of a face does not rely on its edge

number. Therefore, further simplifications can be done on the dual graph, when

it is converted to the gadget graph that is input to the perfect matching problem.

For instance, feature edges are only needed to classify the faces as conflict faces or

legal faces and can be dropped during the dual graph construction if they cannot

be picked by the phase conflict detection algorithm (in the next section we discuss

why this might be the case). This simplification results in a further reduction of the

number of nodes and edges in the gadget graph without affecting the correctness

of the above reductions. However, this simplification could not be done with the

previous bipartite formulation in [38] [40] [34], which in turn resulted in the

increased complexity of the constructed gadget graphs in those previous works.

86

IV.C.3 Gadget Decomposition With Divide Nodes

For a large gadget of n nodes, the number of edges is O(n2) since a gadget

is a complete graph. Therefore, we propose a method to decompose a large gadget

into a set of small complete gadgets with divide nodes to reduce the edge number.

The gadget graph construction with divide nodes consists of the following

steps:

1. Dual Edge Assignment and Gadget Node Construction. These two

steps are the same as Step 1 and 2 of the construction without divide nodes.

2. Gadget Construction with Divide Nodes. The nodes in each gadget

Gv are divided into 2i + 1(i ≥ 0) subsets Gv,j (j = 1...2i + 1), which are

linked with 2i divide nodes with 0 weight. All nodes in Gv,j and Gv,j+1 are

connected to divide nodes dv,j, (j = 1...2i). Each pair of neighboring divide

nodes {dv,j, dv,j+1} (j = 1...2i − 1), are connected. The weight of any edge

in Gv is the total weight of its two nodes. Figure V.6 shows one example of

dividing a big gadget into three small subsets with divide nodes.

The edge numbers can be greatly reduced with divide nodes for large

gadgets. For example, a complete gadget of n nodes has n(n−1)
2

edges. If the nodes

are divided into subsets with divide nodes such that each subset has at most three

nodes and at most one subset has less than three nodes, the edge number is at

most 10(n+2)
3

. Therefore, the edge number is reduced from O(n2) to O(n) while the

node number is still O(n). This leads to significant reduction in perfect matching

runtime for large gadgets.

The constructed gadget with divide nodes has the following important

property.

Lemma IV.3 For any subset S1 ⊆ {Gv,1
⋃

Gv,2, ...
⋃

Gv,2i} (i ≥ 1), there is

a perfect matching solution to match all the nodes in S1 and the divide nodes

dv,1, ..., dv,2i−1.

87

Proof: We prove this lemma inductively. For i = 1, there are three possible cases:

• Both Gv,1 and Gv,2 have even nodes ∈ S1. We can match those nodes within

Gv,1 and Gv,2 since we can always match an even number of nodes within a

complete graph. Then dv,1 can match dv,2.

• Both Gv,1 and Gv,2 have odd nodes ∈ S1. We can match one node in Gv,1∪S1

with dv,1 and one node in Gv,2 ∪ S1 with dv,2. Other nodes can be matched

within Gv,1 and Gv,2.

• Either Gv,1 or Gv,2 has odd nodes ∈ S1. dv,1 can match one node in S1,

which is in the subset with odd nodes ∈ S1. Then, the other nodes ∈ S1 are

matched within the subsets.

Therefore, the lemma is true for i = 1.

Suppose the lemma is true for i = k. For i = k + 1: if dv,2k is matched, then we

only need to match the nodes to be matched in Gv,2k+1 and Gv,2k+2 and dv,2k+1,

which is the same case as i = 1 if we view Gv,2k+1 as Gv,1, Gv,2k+2 as Gv,2 and

dv,2k+1 as dv,1 .

If dv,2k is not matched, there are four cases:

• Both Gv,2k+1 and Gv,2k+2 have even nodes ∈ S1. We can match those nodes

within Gv,2k and Gv,2k+1, and match dv,2k with dv,2k+1.

• Both Gv,2k+1 and Gv,2k+2 have odd nodes ∈ S1. We can match one node of

Gv,2k+1∪S1 with dv,2k and one node of Gv,2k+2∪S1 with dv,2k+1. Other nodes

∈ S1 can be matched within Gv,2k+1 and Gv,2k+2.

• Gv,2k+1 has odd nodes ∈ S1 and Gv,2k+2 has even nodes ∈ S1. We can match

one node of Gv,2k+1∪S1 with dv,2k and match dv,2k+1 with dv,2k+2. The other

nodes are matched within the subsets.

• Gv,2k+1 has even nodes ∈ S1 and Gv,2k+2 has odd nodes ∈ S1. We can match

one node of Gv,2k+2∪S1 with dv,2k+2 and match dv,2k with dv,2k+1. The other

nodes are matched within the subsets.

88

True Node

Ghost Node

Divide Node

Figure IV.7: Decomposition of a complete gadget with divide nodes.

Therefore, the lemma is true for i = k + 1. ⊓⊔

Theorem IV.4 The T-join problem for a graph GD = (V,E,w, T), where T de-

notes the conflict nodes and V \ T denotes the legal nodes in V , can be reduced

to a minimum-weighted perfect matching on the gadget graph with divide nodes

G = (V ′, E ′, w′).

Proof: (→) Mapping perfect matching solution of the gadget graph with divide

nodes G to a valid solution of the T-join problem on GD: For any node v ∈ GD,

let its gadget Gv be 2i + 1 subsets Gv,j j = 1...2i + 1 connected with divide nodes

in the gadget graph. The edges of node v can be grouped into four sets:

• S1 = {e|gv
e matched within Gv}.

• S2 = {e|gv
e not matched within Gv} = {e|tv′

e matched within Gv′}.

• S3 = {e|tve matched within Gv}.

• S4 = {e|tve not matched within Gv} = {e|gv′

e matched within Gv′}.

We need to prove that the set S = S1
⋃

S4 thus constructed is a valid solution

to the T-join problem. Let the cardinality of S1, S2, S3 and S4 be a, b, c and

d, respectively. In any perfect matching solution, the number of nodes matched

within Gv (including 2i divide nodes), (a+c+2i), is even. If v is a conflict node, the

number of true nodes in Gv, c+d, is odd by construction and (a+c+2i)+(c+d) =

(a+d)+2c+2i is odd. Therefore, the number of edges in S, a+d, is odd. Similarly,

if v is a legal node, the number of edges in S is even. Therefore, the solution S is

a valid solution of the T-join problem.

Since the weight of any edge e in the dual graph is always assigned to its

corresponding ghost node gv
e , the total weight of the edges in the T-join solution,

S = S1
⋃

S4, is equal to the total weight of all ghost nodes matched within gadgets.

89

On the other hand, the total weight of the matching solution, i.e., the

total weight of the matched edges, = the total weight of the matched edges within

gadgets (since the weights of edges incident to dummy nodes are all 0), = the

total weight of all nodes matched within gadgets (since the edge weight is the total

weight of its two nodes), and hence = the total weight of all ghost nodes matched

within gadgets (since the weights of all true nodes are 0). Therefore, the total

weight remains the same during the mapping.

(←) Mapping a solution S of the T-join problem to a solution of the

perfect matching problem of G can be done as follows: For any node v ∈ GD

whose gadget is Gv, which includes 2i + 1 subsets Gv,j j = 1...2i + 1 linked with

divide nodes, the true nodes and ghost nodes can be grouped into four sets:

• S1 = {gv
e |e ∈ S}.

• S2 = {gv
e |e 6∈ S}.

• S3 = {tve|e 6∈ S}.

• S4 = {tve|e ∈ S}.

Let the cardinality of S1, S2, S3 and S4 be a, b, c and d, respectively. We need

to prove that there is a perfect matching solution in which all divide nodes, the

a ghost nodes in S1 and the c true nodes in S3 are matched within Gv and the

remaining nodes are matched outside Gv.

If v is a conflict node, since S is a valid solution of the T-join problem,

the number of edges ∈ S, a+d, is odd. The number of true nodes (c+d) is odd by

construction. Thus, ((a + d) + (c + d)) = (a + c) + 2d is even. Hence, the number

of true nodes and ghost nodes to be matched within Gv, (a + c), is even. Since

all the 2i divide nodes should be matched within Gv, the total number of nodes

to be matched, (a + c) + 2i, is even. According to Lemma IV.3, all nodes to be

matched in Gv,1, ..., Gv,2i and the divide nodes dv,1, ..., dv,2i−1 can be matched in a

matching solution. The remaining even number of nodes are located in a complete

graph Gv,2i
⋃{dv,2i}. It is always possible to match an even number of nodes in a

90

Insert gap within the cell to remove conflicts

Adjust cell distance to

avoid new conflicts

Divide layout into constitute rows

Divide each row into cells

Adjust row distance to avoid conflicts

Original Layout
Modified Layout

Figure IV.8: Details of layout modification algorithm.

complete graph. Similarly, we can prove that there is a perfect solution when v is

a legal node in GD.

Since the edge weight in the dual graph is always assigned to its corre-

sponding ghost node, we only need to consider the nodes in S1 and S2 (true nodes

in S3 and S4 have corresponding ghost nodes in other gadgets). Among them,

only the nodes in S1 are matched within gadget and their weights are included in

the matching solution. In other words, the ghost node weight is included in the

matching solution if and only if its corresponding dual edge is in the T-join solution.

Therefore, the matching solution has the same weight as the T-join solution.

⊓⊔

IV.D Layout Modification

The primary task of AAPSM-related layout modification is to correct

the phase conflicts that the conflict detection algorithm selected in the previous

step. Phase conflicts can be corrected either by adding space between shifters

corresponding to a conflict (equivalent to correcting a conflict edge) or by widen-

91

ing critical features (equivalent to correcting a feature edge). However, widen-

ing critical features may introduce significant timing problems. Hence, in the

present work, we only focus on phase conflicts that can be solved by increasing

the spacing between features such that the corresponding shifters are separated by

the required shifter spacing. However, merely increasing the spacing between the

shifters corresponding to the phase conflict may cause DRC violations as well as

introduce new phase conflicts as the relative locations of the neighboring features

may change. The work presented in [34] solved this problem by adding end-to-end

spaces throughout the layout. The spaces are inserted such that only the length of

the poly interconnect is increased. This technique could only be applied to stan-

dard cells and macro blocks with a low density of phase conflicts. Experiments

indicate that this method when applied directly to standard-cell blocks can cause

large increases in area.

Our layout modification algorithm exploits the fact that standard-cell

blocks can be naturally partitioned into rows and that phase conflicts in each row

can be solved independently without introducing any DRC errors. The overall

flow of the algorithm is presented in Figure IV.8. The algorithm consists of the

following steps:

1. First the standard-cell block is partitioned into rows and its constituent cells.

The rows are identified by locations of the power grid lines.

2. Next the phase conflicts that are strictly between features of a cell are cor-

rected by adding a minimal number of end-to-end spaces in the cell as il-

lustrated in Figure IV.9. In this scheme, horizontal and vertical spaces of

variable width are added along a cut line throughout the cell to correct the

chosen AAPSM conflicts. As shown in Figure IV.9 (a), the space insertion is

equal to moving all features on the right side of the cut line to the right by

a distance B. For any feature across the cut line: if it is not connected with

the features on the right side of the cut line (Figure IV.9 (a)), it will not be

moved; otherwise, if it is not connected with the features on the left side of

the cut line (Figure IV.9 (b)), it will be moved to the right by a distance B;

92

if it is connected with the features on both sides (Figure IV.9 (c) (d)), the

spaces are added such that only the gate widths are increased but the gate

lengths remain the same. Therefore, the straight cut line will be replaced by

the dashed line as shown in Figure IV.9 (d). This prevents any major timing

problems after layout modification.10

3. The modified cells in a row are now assembled such that no phase conflicts

exist between any two features of adjacent neighboring cells. The height of

each row is equal to the height of the tallest cell and the width is equal to the

sum of the widths of the standard cell plus the widths of the inserted spaces

between the standard cells. The spaces that are occupied by filler cells are

made available at this step to avoid any unnecessary area increase.

4. The final step consists of assembling the modified rows. Here, again horizon-

tal space is added only as needed. Space is added only if there is an existing

conflict between features of cells on adjacent rows or if relative locations of

the features in adjacent rows is changed from the original configuration (this

can only happen if vertical space is added at different locations on adjacent

rows).

Hence, in this algorithm, end-to-end spaces are only added within a cell.

The spaces between the cells and between the rows are smartly managed such that

no phase conflicts remain or are introduced after the changes to the individual

cells. This results in much smaller area increases for correcting phase conflicts

when compared to the method in [34]. According to our layout modification

algorithm, the weighting scheme of the conflict cycle graph is as follows. The

weights of feature edges are assigned to be infinite, since we do not permit feature

widening. The vertical conflicts (i.e., conflicts that can be solved by adding vertical

10In practice, the timing impact due to layout modification is negligible since (1) the cell is
small; (2) a minimum-weighted set-covering problem (similar to the one proposed in [34]) is used
to determine cut lines to avoid most cases like Figure IV.9 (c) and (d); and (3) if the cases like
Figure IV.9 (c) and (d) cannot be avoided to correct one conflict, its corresponding edge in the
conflict cycle graph will be assigned a large weight to prevent the edge from being selected for
correction.

93

(a) (b)

(c) (d)

B

Figure IV.9: Layout modification with vertical space insertion.

end-to-end spaces) are assigned a much lower weight than horizontal conflicts (i.e.,

conflicts that can be solved by adding horizontal end-to-end spaces), since it is

less disruptive to increase the width of the standard cells than their height. In our

implementation, the weights of conflict edges of vertical conflicts are assigned as

the width of the spacing to be added to solve the conflict, i.e., B in Figure IV.9, to

reflect the area increase due to layout modification; the weights of conflict edges

of vertical conflicts are assigned as 10× spacing width. The weights of conflicts

which may result in increased gate width are assigned as 50× spacing width.

Figure IV.10 compares our layout modification algorithm with the one

presented in [34] on a hypothetical example. The layout is a square and is com-

posed of 5 rows of standard cells. Let l denote the length of each side of the layout.

The shaded rectangles denote the spaces added in the layout and the bold dark

lines are used to represent the locations of the phase conflicts being corrected. Let

w denote the width of horizontal and vertical spaces added (assumed to be the

same for simplicity). The area increase with the scheme in [34] is 11lw, whereas

the area increase with our scheme is only 6lw.

The presented algorithm can be applied as an additional processing step

during post-placement optimizations. The inserted spaces are integer multiples

of the M1 routing pitch and hence the modifications introduced by the proposed

flow does not introduce any additional complications for the router. This is also a

difference from the method in [34] that does not match the inserted spaces to the

94

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

(a) Total Area Increase = l*11*w. (b) Total Area Increase = (l/5)*10*w + 4*l*w = 6*l*w.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure IV.10: Comparing the area increases produced by the layout modification

scheme in [35] with the proposed scheme.

1 2

3

5
4

6

H

V VV

H H H HH

1 2 3 54 6

Figure IV.11: Hierarchical layout and its partition tree.

routing pitch. This solution needs to be applied even if the placement is done with

AAPSM-compliant standard cells, i.e. cells that have no phase conflicts. This is

because phase conflicts can exist between features of neighboring cells. The only

difference is that Step 2 of the proposed layout modification algorithm may be

omitted.

Our proposed algorithm can also be easily extended to solve phase con-

flicts in slicing hierarchical layouts, i.e., the layouts whose floorplan can be repre-

sented by slicing trees. As shown in Figure IV.11, a slicing hierarchical layout can

be represented using the partition tree, where each leaf node represents a layout

region. The H (or V) node represents a region which is partitioned into several

child regions using horizontal (or vertical) cut lines; there is a dashed line between

95

any two neighboring child nodes which represents the cut line. The layout mod-

ification can be solved using a bottom-up algorithm. First, the phase conflicts

are corrected within each leaf node by inserting end-to-end spaces. Then for each

upper level, new phase conflicts are avoided by inserting gaps along the cut lines.

The algorithm shown in Figure IV.8 is the special case when the input layout can

be represented as a two-level tree.

IV.E Experimental Results

This section presents the experiments we conducted to test the benefits of

the proposed ideas. All our examples are 90 nm designs and assume typical values

of threshold width for critical features, shifter dimensions and shifter spacing.

This work focuses mainly on phase conflicts that can be solved by increasing the

spacing between features in the layout. Thus, phase conflicts caused by T-shapes

are not handled. These can be corrected by feature widening or mask splitting [41].

Phase conflicts caused by line-end conflicts between neighboring features are not

considered since they can be efficiently detected and corrected using additional

DRC checks during layout generation [48].

IV.E.1 Phase Conflict Detection Results

Table IV.1 compares the runtime and the quality of results (number of

edges deleted, or in other words, number of phase conflicts selected for correction)

of the proposed flow with other state-of-the-art approaches. The flow presented

in [34] is our main comparison point since their results are best in terms of the

number of phase conflicts chosen for comparison and runtime, when compared to

other state-of-the-art approaches [38] [40]. In the table, Columns 1 and 2 give

the design names and design statistics (number of polygons and number of shifter

overlaps). The results obtained after applying the flow in [34] are grouped under

the columns “Flow in [34]”. The results obtained using our new phase conflict

detection method are grouped under “Proposed Flow”. Notably, Columns 4 and 8

96

give the runtimes of the flow in [34] and our proposed flow, respectively11. As can

be seen, our runtimes are significantly better than those obtained using the flow in

[34] with an average improvement of 5.9x. This can be primarily attributed to the

significant reduction in the number of edges in the conflict cycle graph compared

to the phase conflict graph used in [34] and the removal of undeletable edges (in

our case, feature edges) during intermediate graph constructions. This is reflected

in the number of nodes and edges of the gadget graph constructed during perfect

matching. The gadget graphs constructed in our flow are significantly smaller than

the ones constructed in [34]. While the examples presented are not very large, we

believe the same trend of speedups should also be present in much larger examples.

The limitations of the current code prevented us from testing our idea on larger

examples.

The table also shows that the quality of our results (in terms of number of phase

conflicts chosen for correction) is also better than the results obtained using the

method in [34] (see the column labeled “# Conflicts” under the subgroup “Flow

in [34]” for the results obtained using the method in [34], and the column labeled

“# Conflicts” under subgroup “Proposed Flow” for the results obtained with our

method). This improvement is primarily due to the fact that the number of edges

deleted during planarization of the conflict cycle graph (second step in Figure IV.2)

is smaller than the number of edges deleted during the corresponding planarization

step of the phase conflict graph [34]. Hence, the optimal algorithm can be applied

to a larger subgraph of the original graph.

IV.E.2 Phase Conflict Correction Results

Table IV.2 reports the results of using the proposed layout modification

scheme for correcting the phase conflicts chosen by the detection step on the same

layouts. Column Area reports the area of the designs in square microns. Column

11It should be noted that only the time spent in solving the perfect matching problem is
reported in both cases as this is the most compute-intensive portion of the algorithm. The
gadget graph construction was also sped up by 2x using the new graph, but the perfect matching
has a greater contribution to the total runtime.

97

Table IV.1: Phase conflict detection results. Experiments were run on a 4X400

Mhz Ultra-Sparc II with 4.0 GB of RAM.

Flow in [34] Proposed Flow
Design # Plgns/#Ovlps #edges CPU(s) # Conflicts #edges CPU(s) # Conflicts

1 10274/24580 98347 2.53 938 66875 0.38 910
2 13630/32257 112599 1.90 963 79672 0.22 946
3 21868/53749 182809 3.33 1558 128836 0.55 1534
4 20425/50059 173319 3.18 1678 121546 0.48 1664
5 25784/63760 216691 3.87 1854 152655 0.60 1839
6 48787/157668 484999 12.17 6330 325769 2.78 5989
7 44121/142707 436297 12.30 5010 295001 2.47 4865
8 72101/237557 729980 20.05 10275 489922 4.23 9631
9 105882/376707 1133279 41.35 18148 757581 7.95 17463

10 159070/552767 1667581 66.40 27308 1115928 11.58 26349

Conflict specifies the number of phase conflicts selected by the detection algorithm

for each design (the numbers are slightly different from those in Table IV.1 due

to the use of different weighting schemes). Column Outside reflects the number

of phase conflicts that are selected for correction and occur between features of

neighboring cells. As can be seen, it is a very small fraction of the total number of

phase conflicts in any design. This strengthens our view that it is too conservative

to leave blank space around all the cells or force the boundary features of each

cell to have the same phase, because this could cause large area increases. The

fifth column reports the percentage area increase for these layouts as a result of

the added spaces. The area increase for these layouts ranges from 1.7-9.1%, with

an average increase of 6.1%. The area increase goes up slightly with the size of

the testcases. For comparison, the layout increase caused by the method in [34]

is also reported in the last column. As can be seen, the area increases caused by

the method in [34] are very large.

IV.F Summary

In this chapter, we have presented a new theory for Bright-Field phase

conflict detection. The proposed method greatly simplifies the graph constructed

98

Table IV.2: Layout modification results for standard-cell blocks.
Design Area Conflict Outside % Area Inc. % Area Inc. [34]

1 25173.96 937 61 1.7 18.1
2 16397.82 995 197 5.4 23.1
3 31416.21 1589 284 5.8 26.8
4 25715.23 1724 238 6.1 28.8
5 40409.68 1720 322 4.7 32.12
6 61705.52 6257 770 5.8 57.47
7 58414.06 5100 586 6.1 59.1
8 94178.09 10141 512 7.3 80.2
9 148231.77 18657 2672 9.1 >100.0

10 249210.41 28121 4224 9.0 >100.0

from the layout, which results in a substantial reduction in its edge count. Unlike

previous constructions, the proposed graph does not equate phase-assignability of

its corresponding layout to its bipartition. Rather, a new property of the graph

called conflict cycles is introduced, and an optimal algorithm for removing conflict

cycles in embedded planar graphs is presented. The algorithm is also generalized

such that a minimal solution may be obtained for nonplanar graphs. Supporting

experimental results confirm huge runtime improvements with the same quality of

results (in terms of number of phase conflicts chosen for correction) when compared

against the best previous work in this area.

We also present a novel layout modification algorithm for standard-cell

blocks. Experimental results confirm that the new method leads to much smaller

increases in area than previous approaches to the phase conflict resolution problem.

The small area increases make the new method suitable for use in a post-placement

optimization step within production industry flows. The current algorithm does

not assume that the standard cells used in the placement are phase-assignable.

However, the proposed method can be applied to a placement of AAPSM-compliant

cells and will produce much smaller area increases, when compared to other meth-

ods currently under consideration for building phase-assignable placements.

The material presented in this chapter is based on the following publica-

99

tion.

• C. Chiang, A. B. Kahng, S. Sinha, X. Xu and A. Zelikovsky, “Fast and

Efficient Bright-Field AAPSM Conflict Detection and Correction”, IEEE

Transactions on CAD, (2006) accepted and to appear.

The dissertation author was the primary researcher and author. My coau-

thors (Prof. Andrew B. Kahng, Dr. Charles Chiang, Dr. Subarna Sinha and Prof.

Alex Zelikovsky) have all kindly approved the inclusion of the aforementioned pub-

lication in my thesis.

Chapter V

Optimal Post-Routing Redundant

Via Insertion for Manufacturing

and Timing Yield Improvement

Via doubling, or redundant via insertion, is an effective DFM technique

for yield improvement, electromigration alleviation, and performance enhance-

ment. In this chapter, we propose maximum matching based post-route via dou-

bling that achieves optimum yield improvement. We also exploit the insertion

of redundant interconnect or “short loops” in addition to traditional minimum-

spacing redundant via insertion, so as to achieve a maximum number of doubled

vias. We further propose timing-driven redundant via insertion based on perfor-

mance sensitivity computation and a weighted maximum matching algorithm for

timing yield improvement. Our experimental results show that our perfect match-

ing based redundant via insertion reduces the number of undoubled (i.e., critical)

vias by 99.4% and 98% compared with the two best previous post-routing via dou-

bling heuristics, and increases the via doubling coverage from 94.5% and 98.2% to

99.97%. One interesting observation is that nearly 100% via doubling coverage can

be achieved with simultaneously optimal redundant via and short loop insertion

in the post-route stage. Our timing-driven redundant via insertion achieves up

to 3.3% timing yield improvement compared with timing-oblivious redundant via

100

101

insertion with the same number of doubled vias on the critical paths.

V.A Introduction

VLSI manufacturing techniques have in the past achieved low defect den-

sities which enable integration of increasingly larger numbers of devices on a sin-

gle chip, along with continuous performance increases. However, in the latest

nanometer-scale VLSI processes, traditional low defect densities are not so easily

achieved. Design techniques are needed for VLSI yield enhancement.

VLSI defect density and yield estimation is usually based on critical area

computation, which captures surface defects, i.e., opens and shorts in on-chip

interconnect or device layers. However, subsurface defects, or via voids, cannot be

ignored.

Causes of failed vias include airborne particles, electromigration, or ther-

mal stress induced voiding. For example, an airborne particle may block the via

from functioning and lead to via opens. In the electroplating process, due to the

presence of overhanging sidewalls in the narrow features, profiles are prone to pre-

mature pinch-off at the opening of the feature and result in via voids. If a via is

partially blocked, its resistance greatly increases and becomes a resistive via. As

a result, its performance is inhibited and the timing yield is decreased since the

via resistance is relatively high, e.g., the resistance of one nominal copper via is

already approximately equal to that of 15 routing tracks.

The effects of via voids or via opens can be minimized by inserting a sec-

ond “backup” via. In other words, via doubling is “insurance”, which is beneficial

to both random defects (particle defects) and parametric defects (timing related

defects) [57]: (1) the backup via will perform if the original one is completely

blocked and (2) the parametric yield loss due to resistive vias can be reduced by

providing an alternative current path with the second via. Therefore, it is desir-

able to add redundant vias to a ground-rule-correct VLSI design for the purpose

of increasing manufacturing yield. In fact, via doubling (along with via enclo-

sure augmentation) has been strongly recommended as a yield enhancement rule

102

in recent 90nm and below processes. Major EDA vendors have also included via

doubling functionality in their latest routing tools.

Unfortunately, via doubling may conflict with other layout optimization

objectives, e.g., minimum spacing between neighboring layout features and avail-

ability of OPC features (i.e., scattering bars). Via doubling should not increase

die size or perturb circuit performance, nor should it affect design convergence.

As a result, via doubling is performed wherever possible, with minimum layout

perturbation, e.g., in terms of coupling capacitance variation and the resultant

performance variation, as well as minimum additional routing.

In the detailed routing literature, Yao et al. proposed improved detailed

routing with redundant via insertion [59]. Xu et al. proposed a Lagrangian re-

laxation solution for simultaneous redundant via insertion and maze routing [58].

Redundant via insertion has also been proposed for post-route layout optimiza-

tion. Lee et al. [52] find redundant via insertions which may lead to design rule

violations, then formulate post-route redundant via insertion as a maximum in-

dependent set problem, and propose a greedy heuristic to solve the NP-hard MIS

problem along with a fast heuristic for improving the ratio of on-track vias to min-

imize wirelength overhead. Redundant interconnects may also be used to connect

to redundant vias. Bickford et al. [50] introduced local interconnect redundancy

with short loops that include redundant vias; this technique reduces short fault

critical area and wrong-way routing, improves yield and timing performance, and

fixes antenna rule violations. In the method of Bickford et al., short loops are

inserted after minimum-spacing redundant via insertion to minimize layout per-

turbation and wirelength increase. However, a number of potential directions for

improvement remain:

• no previous post-route via doubling technique optimally finds a maximum

number of doubled vias;

• inserting short loops only after, rather than concurrently with, minimum

spacing via insertion leads to suboptimal solution quality; and

103

• no previous via doubling technique targets timing yield improvement (a sim-

ple timing analysis for via doubling is presented in [54], but timing yield

analysis is not presented in an previous works).

In this chapter, we study post-route redundant via insertion for maximum

via doubling coverage and yield improvement. Our contributions are as follows.

1. We propose a perfect matching based optimal redundant via insertion al-

gorithm. To the best of our knowledge, our proposed method is the first

algorithm that can optimally solve the post-route via doubling problem in

practical runtime. Existing techniques are either greedy heuristics or non-

scalable techniques for NP-hard problem formulations. By contrast, our

approach finds all conflict routes which may violate design rules, constructs

gadgets that enable perfect matching to produce a DRC-clean via doubling

solution, and thus achieves improved efficiency and increased redundant via

insertion.

2. We extend both the traditional minimum spacing redundant via insertion [52]

and the local redundant loop insertion [50] methods. We insert redundant

vias and interconnects wherever possible (while taking wirelength overhead

into account), and achieve near 100% redundant via coverage in a post-route

stage.

3. We consider performance impact of redundant via insertion. We observe that

redundant via insertion reduces via resistance and produces potential hold

time violation, and perform Monte Carlo SPICE simulation to assess timing

yield impacts as a guide for redundant via insertion.

The remainder of this chapter is organized as follows. We present nec-

essary background and our formulation of the via doubling problem in Sections

V.B and V.C, and propose a minimum weighted perfect matching algorithm in

Section V.D. Our timing-driven via doubling method is presented in Section V.E.

We present experimental results in Section V.F and conclude in Section V.G.

104

V.B Background

A simple VLSI yield estimation method is based on particle size distribu-

tion and critical area computation. The occurrence probability for a particle can

be characterized as a piecewise linear function on a log scale in term of the par-

ticle size. For each particle size, critical areas are computed which are the unions

of the locations where a particle strike would lead to an open or short defect.

Such a model captures surface defect occurrence probability. For a complete yield

estimation, one also needs a via defect model [56].

Via formation starts with an etching process at the via locations, fol-

lowed by metal vapor deposition which yields the vias and the upper layer metal

routes. Therefore, via defects can be due to (1) the etching process leaving an

irregular via site, or (2) atmospheric pressure in metal vapor deposition leaving

a via void. Via voids disconnect a via in extreme cases, and vary via resistance

otherwise. A high-resistance via is susceptible to electromigration (i.e., the mass

shifting of metal atoms in an interconnect due, in particular, to unidirectional cur-

rents) in power/ground networks, and thus implies degraded circuit lifetime. In a

regular signal interconnect, where current flow is bidirectional, a high-resistance

via leads to increased interconnect delay and degraded circuit performance. A

high-resistance via distribution is presented in [51].

V.C Problem Formulation

We consider redundant via insertion in a routed layout, where the min-

imum distance between two adjacent routes is given by the minimum distance

design rule between a metal route and a via, which is smaller than the minimum

distance design rule between two vias (Fig. V.1) [58].

We make the following definitions.

• A k ×m × n 3-D routing grid is given by m × n grids on each of k routing

layers.

105

Figure V.1: Two adjacent routes are separated by the minimum distance between

a via and a metal wire, which is smaller than the minimum spacing rule between

two vias, such that two vias cannot be inserted at two adjacent locations.

v

(a)

s2

s3

s1

v

(b)

s1

r
s4

s5

Figure V.2: Candidate sites (a) for one via v and (b) for the routing r to connect

the redundant site s1 for via v.

• A via site s is a vertical edge in the 3-D routing grid.

• A via is critical if an open defect of the via disconnects the interconnect.

• A via is doubled if an open defect of the via does not disconnect the inter-

connect.

• A candidate doubling site s doubles an existing via v when inserted with its

associated additional route r. Figure V.2 (a) shows the candidate doubling

sites for a via v. Figure V.2 (b) shows the route r to connect the redundant

site s1 for via v.

We formulate redundant via insertion in a routing grid as follows.

Problem 1 Given

106

1. a k ×m× n routing grid H,

2. existing routes R,

3. existing vias V ,

4. via-to-via minimum spacing Sv−v,

5. via-to-wire minimum spacing Sv−w,

6. maximum length of routing segment on a layer (antenna rules) Lant, and

7. possible timing criticality CT for each net

find redundant vias and associated routes which achieve

1. a minimum number of critical vias, and/or

2. maximum timing yield or probability to satisfy critical path delay constraints.

V.D Optimal Redundant Via Insertion

Intuitively, redundant via insertion can be formulated as a bipartite match-

ing problem, e.g., of finding a maximum number of matches in a graph G =

(V ∪S,E), where V are nodes for the existing vias, S are nodes for the possible re-

dundant via insertion sites, E are edges connecting an existing via v and a possible

redundant via insertion site s, if redundant via insertion at s doubles the existing

via v with the additional route r. However, this simple matching formulation does

not take into account (1) mutually exclusive redundant vias and routes, and (2)

implied simultaneous via occupation, e.g., in a short loop. The inserted redundant

vias given by this simple matching algorithm may violate DRC rules.

In this section, we construct a via graph G and apply weighted perfect

matching for redundant via insertion, which finds the weighted maximum number

of redundant vias while taking into account mutually exclusive redundant vias

and routes and simultaneous via occupation implications. In other words, the via

107

graph G allows us to reduce an instance of via doubling to an instance of perfect

matching which can be optimally solved.

Problem 2 (Weighted Maximum Matching) Given a graph G = (V,E,W)

of nodes V , edges E, and edge weights W , find a subset of edges E ′ ⊆ E such that

no two edges in E ′ share a common endpoint and the sum of weights for the edges

in E ′ is maximized.

The via graph G is constructed in four steps as shown in Algorithm 1: (1)

including all vias, possible via insertion sites and additional routes for via doubling,

(2) constructing conflict gadgets which guarantee DRC correctness, (3) construct-

ing gadgets for simultaneous via occupation implications, and (4) augmenting the

graph G for guarantee of the existence of a perfect matching solution. We present

each step in details in the following subsections.

Algorithm 1: Perfect Matching Based Redundant Via Insertion

Input: routing grid H, existing routes R, existing vias V ,

Output: Redundant vias VR

1. Construct initial graph

2. Construct gadgets for mutually exclusive redundant vias and routes

3. Construct gadgets for implied simultaneous redundant via occupation

4. Construct gadgets for existence of perfect match

5. Apply weighted maximum perfect matching algorithm

V.D.1 Construction of Initial Graph

In this step, we construct and initial graph Gi with via nodes V , redun-

dant via insertion site nodes S, and edge (s, v) ∈ E if there exists a route r between

existing via v ∈ V and possible redundant via insertion site s ∈ S such that inser-

tion of a redundant via at s doubles via v. As shown in Figure V.2 (a), only the

neighboring sites are considered for doubling in order to minimize the wirelength

overhead.

108

Algorithm 2: Construct Initial Graph

Input: routing grid H, existing routes R, existing vias V

Output: Initial Graph Gi = (V ∪ S, E)

1. For each via

2. Construct a via node v ∈ V

3. For each redundant via insertion site

4. Construct a site node s

5. For each route r which bi-connects a via site s and a via v

6. Construct an edge e(v, s) ∈ E.

The weight of an edge e(v, s) is a function w(e) = f(v, r) of v and r, and

is given by the optimization objectives, e.g., increased wirelength, timing criticality

or via failure rates.

V.D.2 Construction of Gadgets for Mutual Exclusiveness

In this step, we perform design rule check (DRC) and find the conflicting

redundant interconnects and vias for which we must ensure solution legality, i.e.,

that the selected routes in the perfect matching solution will not cause any design

rule violations. We scan the layout and check three minimum spacing rules: (1)

via to via, (2) via to wire, and (3) wire to wire on each routing layer for each local

area.1

Definition V.1 Two routes r1 (connecting v1 and s1) and r2 (connecting v2 and

s2) are conflict routes if (1) v1 6= v2, s1 6= s2
2 and (2) r1 and r2 cannot be simul-

taneously taken.

One example of two conflict routes is shown in Figure V.3(a). In this

example, two stacked via sites s1 and s2 cannot be simultaneously taken by r1 and

r2 without resulting in a short circuit failure. We replace the two via-site edges

1We use a method similar to that of [52] for checking possible design rule violations, i.e.,
construct an R-tree for range query, create expanded boxes for via sites and additional routes,
and check box intersections for possible design rule violations.

2The edges sharing the same via or site node cannot be simultaneously taken in the perfect
matching solution and hence will not result in any design rule violation.

109

Conflict

gadget

v1

Via node

Site node

s2

v2

s1

Conflict node

w(r1)

1

w(r2)

2

3

(a) (b)

s1

v2s2

v1

r1

r2

0

0

0

0

Figure V.3: An example of two exclusive routes (a) and the corresponding conflict

gadget (b). In this example, the stacked via sites s1 and s2 cannot be simultane-

ously occupied.

e(v1, s1) and e(v2, s2) in the initial graph G by a gadget shown in Figure V.3(b).

The solution legality is guaranteed since the nodes v1 and v2 cannot both match

node 1. If node 1 matches v1, r1 is taken and nodes s1 and s2 have to match nodes

2 and 3 respectively; (2) if node 1 matches v2, r2 is taken; (3) otherwise, node 1

matches node 2 or 3, and neither r1 nor r2 will be taken.

Algorithm 3 summarizes our gadget construction method for mutually

exclusive redundant vias and routes.

Algorithm 3: Gadget Construction for Mutual Exclusivity

Input: routing grid H, existing routes R, existing vias V , Initial Graph Gi =

(V ∪ S, E)

Output: Graph Gc = (V ∪ S ∪ C, E) with conflict gadgets

1. For each route r1 between v1 and s1

2. For each route r2 (between v2 and s2) near r1

3. If r1 and r2 are conflict routes

4. Replace two via-site edges with a conflict gadget

V.D.3 Construction of Gadgets for Implied Simultaneous

Occupation

Traditional minimum spacing redundant via insertion cannot double all

the vias, especially, the “dead vias”.

110

Definition V.2 A dead via is a via that cannot be doubled by a single inserted

redundant via.

For example, the via v shown in Figure V.4 is a dead via since it is blocked by four

segments of other nets and hence cannot be doubled by a single inserted redundant

via. Bickford et al. [50] proposed to insert a “short loop” with three vias to double

the dead vias as shown in Figure V.4.

Definition V.3 A short loop is a route which connects the top and bottom seg-

ments of an existing via and provides an alternate path with three additional vias.

It is reported that via doubling coverage can be greatly improved (up to 97.5%)

with the introduction of short loops. Short loops are also desirable in 45nm designs

since they avoid wrong-way wiring that can challenge optical lithography [50].

However, one important constraint associated with short loops is that in order to

insert one redundant via at the site s1, two other sites s2 and s3 must also be

occupied. To reflect this constraint, we create a conflict gadget which includes

four conflict nodes and five edges as shown in Figure V.5(a). If v matches node 1

and s1 matches node 3 (i.e., v is doubled at the site s1), node 2 must match s2 to

avoid being unmatched and node s3 must match node 4 (i.e., both s1 and s2 are

occupied).

In addition, if the short loop r is in conflict with another route r0 and

they do not share the same via nodes or site nodes, we must combine the conflict

gadget for short loop paths and the conflict gadget for conflict routes to form a

new gadget as shown in Figure V.5(b). To minimize the timing issues and antenna

problems associated with short loops, we limit the searching space to 10 tracks

around v.

V.D.4 Construction of Gadgets for Existence of Perfect

Match

Finally, we include additional nodes and edges in Gc to ensure the exis-

tence of a perfect matching solution in G.

111

v

s1

s2

s3

Figure V.4: A short loop (v, s2, s1, s3) which doubles a dead via v.

v

Via node

Site node

s2

s3

s1

Conflict node

W W

W

W

1

2

3

4

W=(L+w(r))/4

v

s2

s3

s1

W W

W

W

1

2

3

4

Conflict

gadget

5
s0

v0

w(r0)

(a) (b)

Figure V.5: (a) A gadget for a short loop, and (b) a gadget for a short loop in

conflict with another route r0.

Definition V.4 A graph G(V,E) is matchable if for any selected set of nodes

S1 ⊆ V , we can match the nodes in S1 such that the number of unmatched nodes

is at most one.

Fact: A complete graph is matchable since we can pair up the nodes in S1 until

zero or one node is left.

Therefore, a straightforward way to guarantee the perfect matching feasi-

bility is to connect every pair of via nodes and every pair of site nodes to form two

complete graphs as shown in Figure V.6. However, a complete gadget of n nodes

has n(n−1)
2

edges, and perfect matching runtime significantly increases with edge

cardinality. Hence, we propose to insert divide nodes into G to reduce the number

112

of edges. As shown in Figure V.6, all via nodes in V are divided into 2i + 1(i ≥ 0)

gadgets GVj (j = 1...2i + 1), which are linked with 2i divide nodes. Any pair of

nodes in GVj are connected to form a small complete graph. All nodes in GVj and

GVj+1 are connected to divide nodes dvj, (j = 1...2i). Each pair of neighboring

divide nodes {dvj, dvj+1} (j = 1...2i − 1) is also connected. To ensure that the

matching by edges in Gc always has priority to the matching by the edges not in Gc

in a minimum-weight perfect matching, the weights of all the edges not in Gc are

set to be a sufficiently large number L. All the site nodes can be similarly divided

into small gadgets GSj (j = 1...2i′ + 1) as shown in Figure V.6. The total edge

cardinality of the constructed gadgets is greatly reduced compared with that of the

complete graph. For example, if we limit the number of nodes in each gadget to be

at most three, the edge cardinality is at most 10(n+2)
3

. Therefore, edge cardinality

is reduced from O(n2) to O(n) while node cardinality is still O(n), which implies

considerable reduction in perfect matching runtime. In the following, we will prove

that the constructed gadget graph is still matchable.

Lemma V.1 For any subset S1 ⊆ {GV1
⋃

GV2, ...
⋃

GV2i} (i ≥ 1), there is a per-

fect matching solution to match all the nodes in S1 and the divide nodes dv1, ..., dv2i−1.

Proof: We prove the lemma by induction.

For i = 1, there are three possible cases:

• Both GV1 and GV2 have an even number of nodes ∈ S1. We can match those

nodes within GV1 and GV2, respectively, and match dv1 with dv2.

• Both GV1 and GV2 have an odd number of nodes ∈ S1. We can match one

node in GV1 ∪ S1 with dv1 and one node in GV2 ∪ S1 with dv2. Then the

remaining nodes ∈ S1, which are even in number, can be matched within

GV1 and GV2.

• Either GV1 or GV2 has an odd number of nodes ∈ S1. Suppose GV1 has an

odd number of nodes ∈ S1; we can then match one node in GV1 ∪ S1 with

dv1 and the other nodes ∈ S1 are matched within the gadgets.

113

Therefore, the lemma is true for i = 1.

Suppose the lemma is true for i = k.

For i = k + 1: since the lemma is true for i = k, we can first match the nodes in

S1 ∩ {GV1
⋃

GV2, ...
⋃

GV2k} and the divide nodes dv1, ..., dv2k−1.

If dv2k is already matched, then we only need to match the nodes in S1

which are in GV2k+1 ∪ GV2k+2 ∪ {dv2k+1}, which is the same case of i = 1 if we

treat GV2k+1 and GV2k+2 as GV1 and GV2 and dv2k+1 as dv1.

Otherwise, there are four cases:

• Both GV2k+1 and GV2k+2 have even numbers of nodes ∈ S1. We can match

these nodes within GV2k and GV2k+1, and match dv2k with dv2k+1.

• Both GV2k+1 and GV2k+2 have an odd number of nodes ∈ S1. We can match

one node of GV2k+1∩S1 with dv2k, and one node of GV2k+2∩S1 with dv2k+1.

Other nodes ∈ S1 are matched within GV2k+1 and GV2k+2.

• GV2k+1 has an odd number of nodes ∈ S1 and GV2k+2 has an even number

of nodes ∈ S1. We can match one node of GV2k+1 ∪ S1 with dv2k and match

dv2k+1 with dv2k+2. Other nodes ∈ S1 are matched within the gadgets.

• GV2k+1 has an even number of nodes ∈ S1 and GV2k+2 has an odd number of

nodes ∈ S1. We can match one node of GV2k+2 ∩ S1 with dv2k+2 and match

dv2k with dv2k+1. Other nodes ∈ S1 are matched within the gadgets.

Therefore, the lemma is true for i = k + 1. ⊓⊔

Lemma V.2 For any subset S1 ⊆ {GV1
⋃

GV2, ...
⋃

GV2i+1} (i ≥ 1), there is a

perfect matching solution which leaves at most one node in (S1 ∩GV2i+1) ∪ {dv2i}
unmatched.

Proof: From Lemma 1, all nodes ∈ S1 which also belong to ({GV1
⋃

GV2, ...
⋃

GV2i)

and divide nodes dv1, ..., dv2i−1 can be matched. Then all the unmatched nodes in

S1 and dv2i are located in the complete graph GV2i+1∪{dv2i}, which is matchable.

⊓⊔

114

The final step is to add one or two pseudo nodes to G to make the total

number of nodes in G even. If the total number of nodes in G is even, we add

two connected pseudo nodes: one connects GV2i+1∪{dv2i}, and the other connects

GS2i′+1 ∪ {ds2i′} (as shown in Figure V.6); otherwise, we add one pseudo node

which connects GV2i+1 ∪ {dv2i} ∪GS2i′+1 ∪ {ds2i′}. The perfect matching solution

is guaranteed with the following lemma.

Lemma V.3 There is always a perfect matching solution for any subset

S1 ⊆ {GV1
⋃

GV2, ...
⋃

GV2i+1}
⋃{GS1

⋃

GS2, ...
⋃

GS2i′+1} (i ≥ 1 and i′ ≥ 1).

Proof: From Lemma 2, at most one via node ∈ S1∩(GV2i+1∪{dv2i}) is unmatched

and at most one site node ∈ S1∩ (GS2i′+1∪{dv2i′}) is unmatched. There are three

cases.

• One via node ∈ S1 ∩ (GV2i+1 ∪ {dv2i}) is unmatched and one site node

∈ S1 ∩ (GS2i′+1 ∪ {dv2i′}) is unmatched. The total number of nodes in G

must be even since the number of matched nodes is always even, and hence

there are two pseudo nodes. We can match the two pseudo nodes with the

unmatched nodes respectively.

• One node is unmatched. The total number of nodes in G must be odd, and

there is one pseudo node. We can match it with the unmatched node.

• All nodes are matched. The total number of nodes in G must be even, and

there are two connected pseudo nodes. We can simply match them.

In summary, there is always a perfect matching solution. ⊓⊔

Theorem V.1 The maximum redundant via insertion problem can be reduced to

the minimum weight perfect matching problem in G.

(→) To map a perfect matching solution in G to a valid via doubling solution, we

can delete all the edges except via-site edges and the edges with conflict nodes.

Then (1) for all the matched via-site edges, we insert a second via at the site s

115

Via Node Divide Node

Site Node Pseudo Node

GV1 GV2 GV3

GS1

GS2 GS3

V

S

Figure V.6: An example of via and site gadgets construction.

with additional routing r; (2) for the conflict gadgets for exclusive routings shown

in Figure V.3, we insert a second via at the site s1 (s2) with additional routing r1

(r2) if the node 1 is matched with v1 (or v2)); and (3) for the conflict gadgets for

short loops shown in Figure V.5, we insert redundant vias at s1, s2 and s3 with

the additional routing r if both v and s1 are matched with conflict nodes. The

via doubling solution is legal since no conflict routing can be used in the perfect

matching solution.

(←) To map a valid via doubling solution to a perfect matching solution

in G, suppose the via v is doubled at the site s with the additional routing r. Then,

(1) if r corresponds to a via-site edge, match v and s; (2) if r corresponds to r1

in the conflict gadget shown in Figure V.3, match v1 with node 1, node 2 with s1,

and node 3 with s2 (to have a valid via doubling solution, s2 cannot be matched

with other via-site edges); and (3) if r corresponds to a conflict gadget for a short

loop shown in Figure V.5, match v with node 1, s2 with node 2, s1 with node 3,

and s3 with node 4. Then, for the remaining unmatched via nodes and site nodes,

we can match all of them according to Lemma V.3. ⊓⊔
Once the via graph G is constructed, the perfect matching problem can

be optimally solved. In our implementation, we include the source code from Cook

and Rohe [46].

116

V.E Timing-Driven Redundant Via Insertion

In this section, we extend our proposed redundant via insertion tech-

nique to timing yield improvement, e.g., critical path delay minimization. We

compute sensitivity of via resistance to circuit performance, or, the critical path

delay variation due to via resistance variation, as a measure of timing criticality

of via insertion. The objective of minimum critical path delay is approximated

by maximum weighted redundant via insertion, where via insertion weights cor-

respond to timing criticalities. The weighted sum of redundant vias with these

weights provides a first-order approximation of critical path delays for the circuit.

I.e.,

Maximize
∑

i

Sixi

s. t. Si =
∂D

∂xi

xi = {0, 1}
∑

i∈Cj

xi ≤ 1

where D is the critical path delay of the circuit, xi = 1 indicates an inserted via,

xi = 0 indicates a non-inserted via site, Cj are mutually exclusive via insertion

sites, and
∑

i Sixi gives a first-order approximation of critial path delay reduction

due to redundant via insertion.

An inserted redundant via reduces interconnect resistance and intercon-

nect delay. It also reduces the resistive shielding effect and implies a possibly

increased effective load capacitance, hence a possibly increased gate load delay for

the driver of the interconnect. Overall, inserted redundant vias reduce path delay.

For the most accurate delay calculation, we extract RC parasitics for a

routed layout and run SPICE simulation to determine sensitivity of circuit per-

formance to via insertion. To avoid hold time violations, we exclude redundant

via insertion in the shortest signal propagation paths. To achieve minimum crit-

ical path delay, we run timing analysis and find the longest timing-critical paths.

117

Table V.1: Characteristics of test cases.
Design #Routs #Vias #Layers WL(m) #Dead Vias

1 162504 134587 8 1.56 9985
2 297863 381038 8 1.27 831
3 362023 460829 8 1.61 2323
4 640122 521400 8 1.37 6569

For the redundant via insertion sites, we compute the sensitivity of the critical

path delays to each possible redundant via insertion, and assign these sensitivies

as weights in the minimum perfect matching instance for redundant via insertion.

V.F Experiments

We conduct our experiments on four industry designs in a 90nm process

technology with eight routing layers. Table V.1 gives the test case characteristics.

We run Cadence SOC Encounter to conduct placement and routing and report

timing analysis results. We implemented our proposed algorithm as well as two

previous methods for comparison in C++. We first convert the LEF/DEF files

into Open Access 2.2.0 database. We then read the Open Access database and

perform via doubling. The resulting design is saved, and is converted back to the

LEF/DEF format. All experiments are run on an Intel Xeon 2.4GHz system.

Table V.2 compares runtime and solution quality in terms of the number

of undoubled vias (in the column “UDV”) and increased wirelength overhead (in

the column “WL), of the proposed matching flow and the two best previous post-

route via doubling algorithms “H2K” and “SLP”. “H2K” is the heuristic based on

the MIS formulation proposed in [52], and “SLP” is the greedy method with short

loop insertion proposed in [50]. Results of our proposed method are given under

under the heading “Match”. In order to reduce the additional routing overhead

(for example, on-track vias are preferred to the off-track vias since they introduce

smaller wirelength overhead), we choose the weight for a routing r as w(r) =

1 + αWL(r), where WL(r) is the increased wirelength of r, and α is a chosen

118

Table V.2: Via doubling results. “H2K” is the heuristic based on the MIS for-

mulation proposed in [52], “SLP” is the greedy method with short loop insertion

proposed in [50], and “Match” is our proposed perfect matching method. “UDV”

is the number of undoubled vias, “VDC” is the via doubling coverage expressed as

a percentage, and “WL” is the percentage increase in wirelength.
Designs 1 2 3 4 Average

H2K

UDV 13255 16326 6213 38300 18523
VDC (%) 91.5 95.3 98.6 92.6 94.5
WL(%) 1.3 18.9 20.5 14.6 13.8
CPU(s) 101 168 193 242 176

SLP

UDV 4942 4378 2188 8821 5082
VDC (%) 96.3 98.8 99.5 98.3 98.2
WL (%) 3.2 22.3 22.4 17.5 16.3
CPU(s) 145 179 234 277 209

Match

UDV 78 49 130 156 103
VDC (%) 99.942 99.987 99.972 99.970 99.970
WL (%) 3.2 22.4 22.4 18.4 16.6
CPU (s) 1512 2253 2816 5273 2613

constant such that αWL(r) is far smaller than 1. Therefore, if a via can be

doubled at two sites, the routing with smaller increased wirelength will be chosen.

We can see that our proposed optimal perfect matching algorithm outperforms the

previous heuristics. The number of undoubled vias is reduced on average by 99.4%

and 98% compared with the previous heuristics “H2K” and “SLP” respectively,

which increases the via doubling coverage from 94.5% and 98.2% to 99.97% on

average. The wirelength overhead of our method is slightly high since our new

method produces more doubled vias. Also, any method using short loops will have

higher wirelength overhead.

To assess the impact of our proposed timing-driven via doubling, we per-

form timing analysis and obtain the top 10 critical paths for the four routed designs.

For a given via doubling percentage, we compare timing-driven doubling (TD) and

random via doubling (RD) effects on the critical path delays. We adopt a 2.5%

via failure rate [55], and a via resistance distribution from [51]. For timing-driven

via insertion, we compute sensitivity of critical path delay to each possible via

119

Table V.3: Timing yields of timing-driven (TD) and random (RD) redundant via

insertion for different percentage levels of redundant via coverage.
Design Method % Redundant Vias

0% 20% 40% 60% 80% 100%

1 TD 81.2 92.6 94.6 96.3 97.8 99.7
RD 81.2 91.8 93.2 95.1 97.0 99.7

2 TD 77.9 87.6 93.2 96.9 98.2 99.6
RD 77.9 86.4 91.4 94.7 96.8 99.6

3 TD 82.8 93.2 95.6 98.1 99.4 99.8
RD 82.8 92.3 94.1 96.8 97.8 99.8

4 TD 77.0 90.1 94.3 97.9 98.8 99.6
RD 77.0 88.3 92.4 94.6 96.7 99.6

doubling, and insert redundant vias in decreasing order of critical-path delay sen-

sitivity. For random via insertion, vias are inserted with equal probability into the

critical paths. We then run 1000 Monte Carlo SPICE simulations for the top 10

critical timing paths for each design, and obtain timing yield (i.e., occurrence prob-

ability for a critical path delay to be larger than the constraint) for timing-driven

versus random via doubling. We observe that with the same number of doubled

vias on the timing critical paths, timing-driven via doubling improves timing yield

by up to 3.3% compared with random via doubling.

V.G Summary

Via doubling is an effective technique for yield improvement, electromi-

gration alleviation, and performance enhancement. This thesis proposes perfect

matching based post-routing redundant via insertion, along with insertion of redun-

dant interconnects for connections to redundant vias, and achieves a substantially

increased level of via doubling coverage. We propose timing-driven redundant

via insertion, based on performance sensitivity of redundant via insertion. Our

experimental results show that our proposed perfect matching based redundant

via insertion reduces the number of undoubled (or critical) vias by 99.4% and

120

98% compared with two best previous post-routing via doubling heuristics, and

increases the via doubling coverage from 94.5% and 98.2% to 99.97% on average.

Our timing-driven redundant via insertion achieves up to 3.3% timing yield im-

provement compared with timing-oblivious redundant via insertion, with the same

number of doubled vias on the critical paths.

The material presented in this chapter is based on the following submitted

draft.

• A. B. Kahng, B. Liu and X. Xu, “Perfect Matching Based Optimal Post-

Routing Redundant Via Insertion for Manufacturing and Timing Yield Im-

provement”.

The dissertation author was the primary researcher and author. My coau-

thors (Prof. Andrew B. Kahng and Dr. Bao Liu) have all kindly approved the

inclusion of the aforementioned work in my thesis.

Chapter VI

Conclusions and Future Work

Currently the topics of VLSI design for manufacturability (DFM) and IC

manufacturing attract a tremendous amount of interest. The key issue is to design

chips that can be physically manufactured and that will work as planned. The

purpose of this thesis is to explain the manufacturability and manufacturing prob-

lems associated with current 90nm and 65nm technology nodes as well as future

technology nodes, and to develop new solutions to satisfy the manufacturability

and manufacturing requirements of today’s ultra-deep submicron technologies.

In reality, the core problem underlying the vast majority of manufactura-

bility and manufacturing issues is the fact that the feature sizes on the silicon chip

are now smaller than the wavelength of the light used to create them. As a result,

we need to post-process the drawn layout data file with a variety of resolution

enhancement techniques (RET), such as optical proximity correction (OPC) and

phase shift mask (PSM). A number of associated mask and wafer manufacturability

and manufacturing issues are addressed in this thesis.

• Fracturing An optimal integer linear programming formulation and fast

heuristics based on the ray-segment selection formulation are suggested for

the fracturing problem in variable shaped-beam mask writing. Our new ap-

proach improves both shot count and, very substantially, sliver count, in

comparison to leading commercial fracturing tools. We have suggested a fast

gain-based ray segment selection method with auxiliary rays for the fractur-

121

122

ing problem in VSB mask writing. In particular, our fracturing solutions

on three industry testcases dramatically reduce sliver count (which reflects

the risk of mask critical-dimension errors) by 83.7% and 60.5% compared to

two commercial fracturing tools while also reducing shot count (which re-

flects write time and mask cost) by 5.5% and 0.6% with negligible runtime

overhead. Our results reveal significant headroom that can be exploited by

future design-to-mask tools to reduce the manufacturing variability and cost

of IC designs. Future work includes: (1) taking into account any unavoid-

able partitioning of slant edges and critical CDs, and, e.g., incorporating into

the ILP objective the minimization of slant edge and critical CD slicing; (2)

fast heuristics for reverse-tone fracturing; and (3) adjusting our approach to

target non-rectilinear (e.g., X-style [16]) layouts with multiple slant edges.

• MPW We have proposed improved algorithms for multi-project reticle floor-

planning, wafer shot-map definition, and wafer dicing. Experiments on in-

dustry testcases show that our methods significantly outperform previous

methods in the literature as well as floorplans manually designed by expe-

rienced engineers. Our methods can also be extended to handle additional

constraints such as die-alignment constraints imposed by the use of die-to-die

mask inspection [29] by merging two copies of a die in a single “super-die”.

We have also explored the use of multi-project wafers for production under

demand uncertainty. We have proposed novel algorithms and methodologies

for robust multi-project reticle floorplanning and on-demand wafer dicing,

and have shown that our algorithms come close in solution quality to algo-

rithms relying on a priori knowledge of production volumes. In ongoing work

we investigate the use of multiple die copies in the reticle, as well as multi-

layer reticles, for further reductions in the manufacturing cost of prescribed

die production volumes.

• PSM A new theory for Bright-Field phase conflict detection has been pre-

sented in this thesis. The proposed method greatly simplifies the conflict

graph constructed from the layout, with substantial reduction in edge count.

123

A new property of the graph called conflict cycles is introduced, and an op-

timal algorithm for removing conflict cycles in embedded planar graphs is

presented. The algorithm is also generalized so that a minimal solution can

be obtained for non-planar graphs. Supporting experimental results demon-

strate huge improvements in runtime while maintaining the same quality of

results (in terms of number of phase conflicts chosen for correction) as the

best available previous work in this area.

A novel layout modification algorithm for standard-cell blocks has also been

presented. Experimental results confirm that the new method produces much

smaller increases in area than previous work on this problem. The small

area increases make the algorithm suitable for use as a post-placement opti-

mization step in true industry production flows. Existing algorithms do not

assume that the standard cells used in the placement are phase-assignable.

However, the proposed method can also be applied to a placement done with

AAPSM-complaint cells and will produce much smaller area increases, when

compared to other methods being considered for building phase-assignable

placements. The proposed method must be extended to allow feature widen-

ing for certain phase conflicts that cannot be solved by increasing the spacing

between features. It will also be desirable to integrate the layout modifica-

tion method with a timing engine since the layout modifications produced

by the method can potentially modify timing and cause post-layout timing

violations.

• Redundant Vias Via doubling is an effective technique for yield improve-

ment, electromigration alleviation, and performance enhancement. This the-

sis proposes perfect matching based post-routing redundant via insertion,

including the use of redundant interconnects for connections to redundant

vias, so as to achieve a significantly increased number of doubled vias in a

post-detailed routing flow. We propose timing-driven redundant via inser-

tion, based on performance sensitivity of candidate redundant via insertions.

Our experimental results show that our proposed perfect matching based

124

redundant via insertion reduces the number of undoubled (or critical) vias

by 99.4% and 98% compared with the two best previous post-routing via

doubling heuristics, and increases the via doubling coverage from 94.5% and

98.2% to 99.97%. Our timing-driven redundant via insertion achieves up to

3.3% timing yield improvement compared with timing-oblivious redundant

via insertion with the same number of doubled vias on the critical paths.

Bibliography

[1] H. Nakao, M. Terai and K. Moriizumi, “A New Figure Fracturing Algorithm
for Variable-Shaped EB Exposure-data Generation,” Electronics and Commu-
nication in Japan, Part 3 (83), 2000, pp. 87-102.

[2] S. Shulze, E. Sahouria and E. Miloslavsky, “High Performance Fracturing for
Variable Shaped Beam Mask Writing Machines,” Proc. SPIE, Volume 5130,
2003, pp. 648-659.

[3] T. Asano, T. Asano and H. Imai, “Partitioning a Polygonal Region into Trape-
zoids,” J. ACM 33 (1986), pp. 290-312.

[4] H. Imai and T. Asano, “Efficient Algorithms for Geometric Graph Search
Problems,” SIAM J. Computing 15 (1986), pp. 478-494.

[5] T. Ohtsuki, “Minimum Dissection of Rectilinear Regions,” Proc. ISCS, 1982,
pp. 1210-1213.

[6] N. B. Cobb and E. Sahouria, “Hierarchical GDSII Based Fracturing and Job
Deck System,” Proc. SPIE, Volume 4562, 2002, pp. 734-762.

[7] N. B. Cobb and W. Zhang, “High Performance Hierarchical Fracturing,” Proc.
SPIE, Volume 4754, 2002, pp. 91-96.

[8] Y. Granik and N. B. Cobb, “MEEF as a Matrix”, Proc. SPIE, Volume 4562,
2002, pp. 980-991.

[9] W. Maurer, “Mask Error Enhancement Factor”, Proc. SPIE, Volume 3996,
2000, pp. 2-7.

[10] F. M. Schellenberg and C. A. Mack, “MEEF in Theory and Practice”, Proc.
of SPIE, Volume 3873, 1999, pp. 189-202.

[11] CPLEX Mixed Integer Optimizer, ILOG. http://www.cplex.com/.

[12] Photronics Inc. http://www.photronics.com/.

125

126

[13] Calibre Fracturem, Mentor Graphics.
http://www.mentor.com/calibre/datasheets/mdp/html/.

[14] CATS, Synopsys. http://www.synopsys.com/products/ntimrg/.

[15] Mask EDA workshop. http://www.sematech.org/meetings/archives
/litho/mask/20010711/A INTRO.pdf.

[16] X Initiative. http://www.xinitiative.org/.

[17] M. Andersson, C. Levcopoulos and J. Gudmundsson, “Chips on Wafers”,
Proc. WADS (Workshop on Algorithms and Data Structures), August 2003,
pp. 412-423.

[18] M. Andersson, C. Levcopoulos and J. Gudmundsson, “Chips on Wafers”,
Computational Geometry - Theory and Applications 30(2) (2005), pp. 95-111.

[19] A. Balasinski, “Multi-Layer and Multi-Product Masks: Cost Reduction
Methodology”, Proc. SPIE, Volume 5567, 2004, pp. 351-359.

[20] A. Caprara, A. Lodi and M. Monaci, “An Approximation Scheme for the Two-
Stage, Two-Dimensional Bin Packing Problem”, Lecture Notes in Computer
Science 2337, Springer-Verlag, 2002, pp. 320-334.

[21] S. Chen and E. C. Lynn, “Effective Placement of Chips on a Shuttle Mask”,
Proc. SPIE, Volume 5130, 2003, pp. 681-688.

[22] C. Chien and J. Deng, “Optimization of Wafer Exposure Patterns Using A
Two-dimensional Cutting Algorithm”, Intl. Trans. in Operational Research
8(5) (2001), pp. 535-545.

[23] A. B. Kahng, I. I. Mandoiu, Q. Wang, X. Xu and A. Zelikovsky, “Multi-Project
Reticle Floorplanning and Wafer Dicing”, Proc. Intl. Symp. on Physical De-
sign, April 2004, pp. 70-77.

[24] A. B. Kahng, I. I. Mandoiu, X. Xu and A. Zelikovsky, “Yield-Driven Multi-
Project Reticle Design and Wafer Dicing,” Proc. SPIE, Volume 5992, 2005,
pp. 1247-1257.

[25] A. B. Kahng and S. Reda, “Reticle Floorplanning With Guaranteed Yield for
Multi-Project Wafers”, Proc. International Conference On Computer Design,
October 2004, pp. 106-110.

[26] R. D. Morse, “Multi-Project Wafers: Not Just for Million Dollar Mask Sets”,
Proc. SPIE, Volume 5043, 2003, pp. 100-113.

127

[27] M.-C. Wu and R.-B. Lin, “A Comparative Study on Dicing of Multiple Project
Wafers”, Proc. ISVLSI, 2005, pp. 314-315.

[28] M.-C. Wu and R.-B. Lin, “Reticle Floorplanning and Wafer Dicing for Mul-
tiple Project Wafers”, Proc. Intl. Symposium on Quality Electronic Design,
2005, pp. 610-615.

[29] G. Xu, R. Tian, M. D. F. Wong and A. Reich, “Shuttle Mask Floorplanning”,
Proc. SPIE, Volume 5256, 2003, pp. 185-194.

[30] G. Xu, R. Tian, D. Z. Pan and M. D. F. Wong “A Multi-Objective Floor-
planner for Shuttle Mask Optimization”, Proc. SPIE, Volume 5567, 2004, pp.
340-350.

[31] G. Xu, R. Tian, D. Z. Pan and M. D. F. Wong “CMP Aware Shuttle Mask
Floorplanning”, Proc. Asia South Pacific Design Automation Conference,
2005, pp. 1111-1114.

[32] Circuits Multi-Projets, http://cmp.imag.fr/.

[33] L. W. Liebmann, T. H. Newman, R. A. Ferguson, R. M. Martino, A. F. Mol-
less, M. O. Neisser and J. T. Weed, “A Comprehensive Evaluation of Major
Phase Shift Mask Technologies for Isolated Gate Structures in Logic Designs,”
Proc. SPIE, Volume 2197, 1994, pp. 612-623.

[34] C. Chiang, A. B. Kahng, S. Sinha, X. Xu and A. Zelikovsky, “Bright-Field
AAPSM Conflict Detection and Correction,” Proc. Design Automation and
Test Europe, 2005, pp. 908-913.

[35] C. Chiang, A. B. Kahng, S. Sinha and X. Xu, “Fast and Efficient Phase
Conflict Detection and Correction in Standard-Cell Layouts,” Proc. IEEE
Intl. Conf. on Computer-Aided Design, 2005, pp. 149-156.

[36] A. Moniwa, T. Terasawa, N. Hasegawa and S. Okazaki, “Algorithms for Phase-
Shift Mask Design with Priority on Shifter Placement,” Japan J. of Applied
Physics (34), 1993, pp. 6584-6589.

[37] K. Ooi, S. Hara and K. Koyama, “Computer-Aided Design Software for De-
signing Phase-Shift Masks,” Japan J. of Applied Physics (32), 1993, pp. 5887-
5891.

[38] P. Berman, A. B. Kahng, S. Mantik, I. L. Markov and A. Zelikovsky, “Optimal
Phase Conflict Removal for Layout of Dark Field Alternating Phase Shifting
Masks,” IEEE Trans. on CAD 9 (1999), pp. 1265-1278.

128

[39] A. B. Kahng and Y. C. Pati, “Subwavelength Lithography and its Potential
Impact on Design and EDA,” Proc. ACM/IEEE Design Automation Confer-
ence, 1999, pp. 799-804.

[40] A. B. Kahng, S. Vaya and A. Zelikovsky, “New Graph Bipartizations for
Double-Exposure, Bright Field Alternating Phase-Shift Mask Layout,” Proc.
Asia South Pacific Design Automation Conference, 2001, pp. 133-138.

[41] C. Pierrat, F. A. Driessen and G. Vandenberghe, “Full Phase-Shifting Method-
ology for 65nm Node Lithography,” Proc. SPIE, Volume 5040, 2003, pp. 282-
293.

[42] K. Ooi, K. Koyama and M. Kiryu, “Method of Designing Phase-Shifting
Masks Utilizing a Compactor,” Japan J. of Applied Physics 32 (1993), pp.
6774-6778.

[43] A. Moniwa, T. Terasawa, K. Nakajo, J. Sakemi and S. Okazaki, “Heuris-
tic Method for Phase-Conflict Minimization in Automatic Phase- Shift Mask
Design,” Japan J. of Applied Physics 34 (1995), pp. 6584-6589.

[44] K. Cao, J. Hu and M. Cheng, “Layout Modification for Library Cell Alt-PSM
Composability,” Proc. SPIE, Volume 5379, 2004, pp. 253-259.

[45] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Shrijver, Combi-
natorial Optimization, New York, Wiley Inter-Science, 1998.

[46] W. Cook and A. Rohe, “Computing Minimum-Weight Perfect Matchings,”
INFORMS Journal on Computing 11(2) (1999), pp. 138-148.

[47] L. Liebmann, J. Lund, F. L. Heng and I. Graur, “Enabling Alternating Phase
Shifted Mask Designs for a Full Logic Gate Level: Design Rules and Design
Rule Checking,” Proc. ACM/IEEE Design Automation Conference, 2001, pp.
78-84.

[48] P. Ghosh, C. Kang, M. Sanie and J. Huckabay, “PMSLint: Bringing AltPSM
Benefits to the IC Design Stage,” Proc. SPIE, Volume 5042, 2003, pp. 314-325.

[49] R. J. Allen, J. D. Hibbeler and G. E. Tellez, “Use of a Layout-Optimization
Tool to Increase the Yield and Reliability of VLSI Designs,” United States
Patent 6,941,528 B2, 2005.

[50] J. Bickford, M. Buhler, J. Hibbeler, J. Koehl, D. Muller, S. Peyer and C.
Schulte, “Yield Improvement by Local Wiring Redundancy,” Proc. Interna-
tional Symposium on Quality Electronic Design, 2006, pp. 473-478.

129

[51] R. L. Guldi, J. B. Shaw, J. Ritchison, D. L. Corum, S. Oestreich, K. Sherman,
J. H. Lin and R. Firdalice, “Characterization of Copper Voids in Damascene
Processes,” IEEE Trans. On Semiconductor Manufacturing 17(4) (2004), pp.
597-602.

[52] K.-Y. Lee and T.-C. Wang, “Post-Routing Redundant Via Insertion for
Yield/Reliability Improvement,” Proc. Asia South Pacific Design Automation
Conference, 2006, pp. 303-308.

[53] H. K. S. Leung, “Advanced Routing in Changing Technology Landscape”,
Proc. Intl. Symposium on Physical Design, 2003, pp. 118-121.

[54] D. Z. Pan and M. D. F. Wong, “Manufacturability-Aware Physical Layout
Optimizations”, Proc. Intl. Conf. on IC Design and Technology, May 2005,
pp. 149-153.

[55] T. J. Pricer, M. J. Kushner and R. C. Alkire, “Monte Carlo Simulation of the
Electrodeposition of Copper II. Acid Sulfate Solution with Blocking Additive”,
Journal of The Electrochemical Society 149(8) (2002), pp. 406-412.

[56] L. Scheffer, “Recommended Rules Not Recommended,” Proc. Electronic De-
sign Processes Workshop, Monterey, April 2006.

[57] J. Wilson and W. Ng, “Via Doubling to Improve Yield”, Mentor Graphics
White Paper, August 2005.

[58] G. Xu, L.-D. Huang, D. Z. Pan and M. D. F. Wong, “Redundant-Via En-
hanced Maze Routing for Yield Improvement,” Proc. Asia South Pacific De-
sign Automation Conference, 2005, pp. 1148-1151.

[59] H. Yao, Y. Cai, X. Hong and Q. Zhou, “Improved Multilevel Routing with
Redundant Via Placement for Yield and Reliability,” Proc. Great Lakes Sym-
posium on VLSI, 2005, pp. 143-146.

