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The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clini-
cal, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric
disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons,
neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discus-
sions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in
computational models of DBS, understanding of the neurophysiology of Parkinson’s disease (PD) and Tourette
syndrome (TS) and evolving sensor and device technologies.
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Introduction

The Second Annual Deep Brain Stimulation (DBS)
Think Tank convened at the University of Florida
Center for Movement Disorders and Neurorestoration
in Gainesville, FL, on March 6–7, 2014. The enclosed
proceedings provide a record of the conference, which
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highlighted the most current and groundbreaking
clinical, electrophysiological, and computational work
on DBS for the treatment of neurological and neu-
ropsychiatric disease. The DBS Think Tank represents
an effort to bring together perspectives from the various
disciplines that influence DBS research, including
engineering and industry, and to facilitate a much-
needed intellectual exchange on the key issues facing
the field. These disciplines include, but are not limited
to, clinical neurologists, neurosurgeons, neuropsychol-
ogists, psychiatrists, scientists, engineers and ethicists.
Presentations and discussions covered a broad range of
topics, including advocacy for DBS, improving clinical
outcomes, innovations in computational models of
DBS, increased understanding of neurophysiology of
Parkinson’s disease (PD) and TS, and evolving sensor
and device technologies.

The field is advancing at an impressive rate, but many
important issues remain unresolved. How does one best
navigate the complex regulatory, economic, and ethical
landscapes of DBS research? How can clinical outcome
measures and study designs be improved to ensure the
validity and clinical relevance of results? How can we
improve upon DBS as it is currently practiced through
the application of emerging methods in the convergent
sciences of computational modeling, electrophysiology,
neuroimaging and other disciplines? How do we best
harness recent sensor and device developments and de-
velop those on the horizon to improve clinical outcomes
and expedite the use of DBS for emerging indications?
The meeting sought to raise awareness of these criti-
cal issues among DBS researchers and practitioners and
to initiate contemplation, discussion and ultimately ac-
tion toward potential solutions and improvements for
the field. To this end, the meeting was conducted in
a think tank style; speakers presented their analysis of
a critical issue so as to foster dialogue in a subsequent
discussion session. The summary of the proceedings in-
cludes key points from the follow-up discussions as well
as a review of the presentations.

Critical Needs for DBS Advocacy

The success of device-based research has overshadowed
a critical and emerging problem in the biomedical
research environment. Neurotechnologies such as DBS
have been shown in humans to be promising for scien-
tific exploration of neural pathways and as potentially
powerful treatments. Large device companies have,
over the past several decades, funded and developed
major research programs. However, both the structure
of clinical trial funding and the current regulation of
investigator-initiated device research, particularly in
the United States, have threatened academia-initiated

investigative efforts for neurological disorders. The
current atmosphere has dissuaded clinical investigators
from pursuing formal and prospective research with
novel devices or novel indications. In a recent paper,
Kelly et al. [1] review and discuss their experience in
conducting a federally-funded, investigator-initiated,
device-based clinical trial that utilized DBS for central
pain syndrome. The authors describe the barriers that
clinical investigators face in conducting device-based
clinical trials, particularly in early stage studies or in
rare disease populations. Five specific areas for potential
reform and integration were discussed:

i. An alternative pathway for device approval. Investi-
gator initiated research and research into the treat-
ment for rare disorders will likely need a separate
regulatory pathway. While the Humanitarian Device
Exemption (HDE) mechanism provides an impor-
tant pathway for the use of medical devices in rare
disorders that have been well studied, the regulatory
burden for the research remains too high. This is
particularly true for conducting academia-initiated
research. Simple mechanisms that facilitate reason-
able oversight and regulation and that will provide
an assurance of patient safety are critically needed.

ii. Eliminating right of reference requirements; partic-
ularly for early-phase academia-initiated research.
Right of reference refers to the authority to use an
investigation for the purpose of obtaining FDA ap-
proval; this normally entails a Letter of Authoriza-
tion (LOA) from the device manufacturer to provide
investigators with critical information from existing
FDA applications.

iii. Combining federal grant awards with regulatory ap-
proval. The NIH peer-review process already has a
section for reviewing safety for human subjects. This
section could be combined with an FDA review so
in the event that if a grant is funded, the investigator
would concomitantly receive U.S. federal regulatory
approval. This would allow the investigators to focus
resources on conducting the research rather than ob-
taining regulatory approval.

iv. Consolidation of oversight for human subjects re-
search, so that local IRBs would follow federal regu-
latory recommendations.

v. Private insurance coverage for the patient care com-
ponent of clinical trials, including coverage for man-
aging complications that may arise during the clini-
cal trial.

Careful reformulation of regulatory policy and
funding mechanisms will be critical for expanding
investigator-initiated device research. This type of
research has the potential to benefit science, industry
and especially, the patient.
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Still, the field has a responsibility to foster realis-
tic preparedness for possible contingencies arising from
clinical applications as well as research involving DBS.
The scope and conduct of DBS research and the sur-
gical intervention itself necessitates the proper imple-
mentation of ethical obligations including (i) profes-
sional intellectual honesty regarding the extant knowns
and unknowns (of neural structure and function, var-
ious pathologies, DBS technology and its effects); (ii)
researcher and clinician veracity in communicating
knowns and unknowns to research subjects and patients;
and most importantly (iii) the provision of continued
care to redress any and all adverse effects or manifes-
tations that could be attributed to the DBS intervention
[2].

Addressing neuroethical issues arising from DBS re-
search and the translation of DBS research into clinical
practice will be imperative, especially as the pace and
extent of DBS use increases. Discussion and develop-
ment of neuroethical guidelines will be of great value,
yet articulating these ethical precepts in practice can
be arduous and problematic. For example, extant con-
straints and alignment of economic resources required
for the longitudinal study and care of DBS patients (in
both translational research and clinical care) do little to
uphold or advance neuroethical constructs. Economic
considerations are axiomatic to both ethical discourse
and to actualizing ethics-in-practice, as fiscal support
will be required for ongoing research, and for the conti-
nuity of care that is necessary to uphold the principle of
nonabandonment when employing nascent, novel tech-
nologies in clinical research [2]. The challenge will be to
evoke change in the administrative and economic infras-
tructures of medical research and clinical care. These
changes will be necessary to uphold the neuroethical in-
tegrity of DBS in practice [3, 4].

Advancing the DBS Procedure

Improving the interpretation of clinical
outcomes: Placebo, lessebo and microlesion
effects

Accurate appraisal of the benefits of DBS will require
careful consideration of factors beyond the procedure
itself, including placebo, lessebo (the expectation of a neg-
ative outcome associated with the possibility of assign-
ment to the placebo group) and microlesion effects. Fail-
ure to consider these factors in interpreting data could
lead to false conclusions and ultimately lead to unnec-
essary procedures, increased costs or even harm. To
date, no clinical studies of surgical interventions for the
treatment of PD have accounted for the lessebo effect.
Another well-known phenomenon consistently found in

studies of DBS is the microlesion effect, a benefit as-
sociated with the surgical placement of DBS leads, oc-
curring independently of stimulation activation. Inter-
estingly, the microlesion effect seems to correlate with
the outcomes of DBS and in some cases has been shown
to be equivalent to the benefits of stimulation in the
short term [5]. Data suggest that the microlesion effects
can persist beyond six months in select cases [6]. These
placebo, lessebo and microlesion effects may warrant re-
evaluation of recent trials such as the EARLYSTIM trial
[7] and should be considered in the design of future
studies.

Previous double blind surgical studies offer an esti-
mate of the magnitude of the placebo effect, which can
be as high as 39% [8]. In PD surgery trials, limited ev-
idence suggests that the placebo effect could be asso-
ciated with ventral striatal dopamine release [9]. In a
meta-analysis of active controlled trials of dopamine ag-
onists, the lessebo effect was estimated as 1.6 units on
the motor section of the Unified PD Rating Scale (mUP-
DRS). The lessebo effect was larger in short-term tri-
als and larger in early PD [10]. In the EARLYSTIM
trial, consistent with a large lessebo effect, patients in
the best medical therapy arm showed no benefit in UP-
DRS at 6 months, which is counter to the findings of al-
most every placebo controlled trial to date conducted on
early PD patients treated for the symptom of motor fluc-
tuations [11]. Future consideration of adjustment for
both placebo and lessebo effects in the EARLYSTIM
trial should be considered [11]. Additional studies are
needed to better understand the impact of DBS applied
in earlier stages of PD and trials are needed to account
for the placebo effect. It would be optimal if these trials
were well-constructed randomized controlled studies.
Addressing the lessebo effect will require more complex
designs that may involve active deception of study par-
ticipants regarding the treatment condition. Input from
bioethicists will thus be critical in developing ethically
sound study designs and informed consent protocols.

In summary, effects beyond those of treatment need
to be accounted for in the design and interpretation of
surgical trials for PD. Study designs that limit the effects
of both patient and physician expectation are critical.
These effects may be limited by: presenting equipoise,
blinding evaluators and using longer-term endpoints,
and/or sham programming. Studies are needed to iden-
tify patient subsets likely to reveal expectation effects
[12].

Improving DBS outcome measures

Previous research in DBS has relied on a wide variety of
outcomes, including motor function (as assessed by the
mUPDRS-III), waking time in ON state without dyski-
nesia, levodopa equivalent dose reduction, medication-
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induced complications, activities of daily living, health-
related quality of life (QOL) and incidence of adverse
events [13]. Patient-centered outcomes are important
to consider for future studies [14]. Psychiatric and
neuropsychological outcomes are particularly critical to
measure, especially given reports of worsening in these
domains after DBS intervention [15]. A sharper focus
on functional ability would be desirable, rather than re-
lying on clinical severity scores, as the two types of out-
comes can prove divergent [16, 17], and the former is
more relevant to patient well-being. Individualized and
patient-centered outcomes should be a new focus for
DBS research, and these outcomes should rely more on
patient assessment or a mix of objective and subjective
measures [18].

Advancing DBS through optimization
of electrode placement: Where and when
to target

Understanding the functional segmentation of cortico-
basal ganglia circuits is requisite for targeting in DBS
surgery. Studies using anterograde tracers and proba-
bilistic tractography have shown functional segmenta-
tion of the subthalamic nucleus (STN) [19]. Pathways
are not confined to the hyperdirect motor pathway from
M1 to STN; there are likely parallel pathways from pre-
frontal and associative areas connected to STN [20].
Fibers of passage from other pathways traverse func-
tional zones of interest and stimulation of these fibers
may lead to undesirable or unpredictable effects. Hence,
in addition to anatomical targeting based on imaging,
intraoperative microelectrode recordings can be used to
behaviorally map motor and nonmotor regions within
the STN.

In PD, the use of local field potentials (LFPs) as an
adjunct to microelectrode recordings in surgical target-
ing has shown great promise. Central to this strategy is
the abnormal synchrony of neural activity in alpha-beta
bands (8–35 Hz) during rest in STN and globus pallidus
(GPi) in PD [21–28]. Recently, Bronte-Stewart (in
preparation) demonstrated exaggerated beta-range peaks
in STN in a cohort of 55 PD patients at rest (101 STN
DBS leads). In cases with bilateral STN DBS leads,
higher beta peaks were observed in the hemisphere
contralateral to the side of the body that manifests
most pathological symptoms. Beta synchrony also has
implications for DBS treatment, as it was shown to
attenuate with therapeutic doses of medication and with
efficacious DBS treatment [29]. Mounting evidence
suggests that DBS may exert its effects by suppression
of beta synchrony (8–35 Hz) within cortical-basal gan-
glia circuits [30]. Other physiologic markers can also
contribute to localization and treatment guidance;
for example, phase-amplitude coupling (PAC) as an

expression of cross-frequency interactions between beta
and high frequency oscillations correlate with optimal
response to therapy [31].

For purposes of targeting, the presence of beta peaks
in LFPs during rest could be used as a feature to cor-
relate motor behavior in STN in PD patients. There
is, however, a pitfall when targeting the beta band, as
both involuntary tremor and dyskinesia can mask beta
rhythms intra-operatively, and result in the false im-
pression that beta is absent or alternatively attenuated.
Moreover, microlesioning effects of the macroelectrode
implantation may suppress beta synchrony. Therefore,
in its current form LFPs should not be used as a replace-
ment for microelectrode recordings, but can be used as
additional verification of macroelectrode placement.

In PD, a more tailored approach to selection of DBS
targets should be sought and the decision to employ uni-
lateral versus bilateral stimulation should be made based
on the individualized PD patient profile. Several well-
designed studies have addressed the question of out-
comes with the traditional targets (STN and GPi) [32].
Historically, Benabid’s work performed in the 1990s
with bilateral STN DBS in PD patients had consistently
better clinical outcomes when compared to his cohort of
15 patients treated with pallidal (GPi) stimulation and
the use of bilateral STN DBS for the treatment of PD
gained favor [33]. However, closer analysis of the origi-
nal GPi patients later revealed that outcomes were more
variable. This was due to wide variability in the loca-
tion of GPi with respect to the midcommisural point
(i.e., variability in lead placement), and the question of
the optimal target was re-opened [34], leading to con-
siderable re-evaluation of this issue through large well-
designed trials [35, 36, 32].

In considering whether a unilateral or bilateral ap-
proach should be employed, it should be kept in mind
that PD is generally an asymmetric syndrome, and 21
of 44 (48%) patients in the NIH COMPARE trial re-
mained unilateral [37]. There was a surprising amount
of satisfaction reported with the unilateral approach. In
follow-up studies to the COMPARE trial, those that had
unilateral GPi implants had greater QOL improvement
compared to unilateral STN. Additionally, other studies
cite differences such as Rocchi et al. [38] who suggested
less decrement in ambulation with unilateral GPi when
compared to unilateral STN. Thus, unilateral proce-
dures remain an important treatment option, and when
a patient may be at high need for a bilateral implanta-
tion, this scenario may favor GPi.

There has been considerable controversy in perform-
ing bilateral procedures, especially whether lead place-
ment should be staged or performed simultaneously.
There are currently insufficient data on this point;
however, there are several factors to consider. The
increased time of any surgical procedure is usually
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associated with more adverse events. Many neurosur-
geons commented that with simultaneous procedures
there is an increased incidence of poor placement on
the second side. This poor placement may reflect brain
shift. In summary, tailored approaches based on patient
characteristics and a thorough interdisciplinary evalua-
tion should be utilized.

Trials of STN DBS in early stage PD patients merit
serious consideration. One hypothesis, based on ani-
mal models of PD, is that bilateral STN DBS could
have a neuroprotective effect [39, 40]. A pilot study
of high frequency bilateral STN DBS in 30 early-stage
PD patients demonstrated safety, tolerability and feasi-
bility [41]. The FDA recently approved (G050016) a
pivotal, phase III, double-blind, placebo controlled and
multicenter study involving 350 patients with early stage
PD and this study attempts to control for placebo and
lessebo effects and may enlighten the field on any poten-
tial disease modifying effects of STN DBS. There is con-
siderable debate on the subject of studying DBS in early
stage PD but most experts concur that a controlled clin-
ical trial should be conducted to evaluate whether DBS
plus medication is superior to standard medical therapy,
or if DBS in any way will modify disease progression,
and potentially suppress the development of dyskinesia
and medication induced fluctuations.

Tailoring DBS for nondopaminergic
symptoms in Parkinson’s disease

Addressing the nonmotor symptoms (NMS) of PD
is a current critically unmet need. NMS are under-
recognized, can often precede motor symptoms by
years, and are a source of significant morbidity in PD.
There are limited studies on the effect of DBS on NMS
[42], but it has become increasingly clear that some
NMS may benefit from DBS such as pain, sleep quality,
orthostatic hypotension, urinary urgency and frequency,
constipation, swallowing, drooling and smell identifica-
tion [43–46]. There are, however, several challenges to
the study of DBS effects on NMS. First, some NMS are
closely related to motor symptoms; for example, pain
due to dystonia. Second, medications may change af-
ter the DBS procedure, creating inconsistencies. Third,
there are fewer scales for evaluating NMS [47].

Most of the data regarding the effect of DBS on NMS
comes from STN DBS. The data are limited to small
case series and there have been differences in the scales
and questionnaires used. The development of adequate
and standardized scales will be critical for the evalua-
tion of the nonmotor effects of DBS. To date the best
screening questionnaire for NMS has been the NM-
SQuest tool; a 30-item questionnaire developed by a
multidisciplinary group, including patient group repre-
sentatives [48]. This tool was initially validated in 123

PD patients compared to 96 controls. NMS were highly
prevalent across all disease stages, and the number of
symptoms correlated with the onset and duration of the
disease.

To summarize, limited evidence prevents tailoring
DBS specifically to target NMS. Barriers include the in-
adequacy of standardization of scales in previous stud-
ies. Data from these questionnaires should be collected
from a large number of DBS patients and association
studies should be performed examining changes result-
ing from differences in stimulation parameters and tar-
geting. With this type of data, it may be possible to tailor
DBS therapy for both motor and NMS.

Advancing DBS clinical programming through
computational modeling

Current clinical practices for optimizing DBS therapy
involve post-operative visits to adjust stimulation param-
eter settings. These decisions are based on observed be-
havior and input from patients to achieve desirable ther-
apeutic effects and to minimize adverse effects. Given
the vast number of stimulation parameter combinations
(stimulation electrode, frequency, pulse width and am-
plitude) and the lack of scientific understanding of the
neurophysiological responses to the electrical fields gen-
erated, clinical outcomes of DBS therapy have become
highly reliant on the intuitive skill of the clinicians per-
forming parameter selection. Standardization of clinical
practices for DBS programming can also be highly chal-
lenging, as programming approaches vary widely on a
case-by-case basis.

Computational models aimed at understanding neu-
ral activation patterns stimulated by DBS electrical
fields and the relations to clinical outcome have the
potential to innovate DBS parameter selection. Butson
et al. [49] developed a methodology to predict the vol-
ume of tissue activated by DBS parameters on a patient-
specific basis. The volume of tissue activation is based
on incorporating 3-D anatomical models of subcorti-
cal structures (reconstructed from a pre-operative MRI
scan) and can be predicted from the modeled response
of tissue conductivity properties (derived from diffusion
tensor imaging (DTI)) to the applied electric field. DBS
settings programmed by a clinician and selected based
on these computational models recently yielded simi-
lar clinical outcome measures in 10 patients with PD
(mUPDRS) [50]. Moreover, the amount of power con-
sumed with model-based settings was on average re-
duced by half, and this has the potential to increase the
battery lifetime.

Computational models can possibly be used to in-
vestigate how LFPs are generated and how they dif-
fer in regions of the brain and across different disease
states. To this end, Lempka and colleagues developed a
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computational model coupling two components: a vol-
ume conduction model of the recording electrode and
tissue interface and an electrical source model based on
multicompartment cable models of neurons surround-
ing the DBS electrode [51]. They investigated the am-
plitude and temporal characteristics of LFPs that de-
pended on recording configurations, such as recording
sites, distance to and orientation with respect to a struc-
ture, and those that depend on neural activity, such as
synchronization and oscillatory properties that would
potentially be disease- or patient-specific [51]. Despite
challenges to computational approaches, such as inter-
pretability for clinicians, computational models have a
great potential to shed light on the complexities of neural
activity, neural architecture and network interactions.

Advancing the DBS procedure through
electrophysiology

Traditional DBS systems are programmed to stimulate
continuously in a feed-forward manner, with no mod-
ulation of stimulation in response to the underlying
neurophysiological states of the disease, or to how neu-
ral activity is modulated by the electrical currents. DBS
therapy may be improved by incorporation of feedback
into the stimulation settings. For instance, an electro-
physiological biomarker of the disease state could guide
the timing of stimulation when symptoms are worsened,
and could optimize the stimulation parameters and
bring the brain closer to a healthy state. For PD, a
potential biomarker is the exaggerated alpha-beta band
(8–35 Hz) synchrony in STN LFPs. This synchrony ap-
pears to be modulated by therapeutic DBS in a manner
that correlates with symptoms [52, 53]. However, one of
the barriers to the use of this biomarker is its susceptibil-
ity to stimulation artifact and its attenuation during vol-
untary movements or tremor. An alternative approach
involves utilizing cortical activity (electrocorticography,
ECoG) as a feedback signal, which has the advantage of
being less prone to stimulation artifacts given the large
amplitude of the signals and greater distance from the
stimulation site. Using ECoG strips placed over motor
cortex of PD patients, two potential biomarkers to guide
closed-loop DBS have been identified: beta band power
[54] and coupling between beta band phase and am-
plitude of broadband gamma (50–200 Hz) [30]. PAC
between beta and broadband gamma, thought to reflect
the synchronization of population spiking, is a signature
of healthy motor cortex [55] that is exaggerated in PD
and which disappears during therapeutic DBS [30].
An electroencephalographic (EEG) study also demon-
strated exaggerated phase-amplitude coupling patterns
in PD off medication, which diminished when on
medication [56]. Other studies explore techniques
to remove stimulation artifact from EEG recordings,

potentially allowing noninvasive measurement of the
brain response to DBS in individual patients [57, 58].
Tethering stimulation to the timing of pathologic spike
activity has been shown to modulate the electrical
activity pattern rather than the rate, with better effects
on symptom control [59]. These results suggest that
PAC may be a good candidate for feedback signal in
closed-loop DBS therapy.

TS is a suitable test bed for identifying electrophysi-
ological markers and designing closed-loop stimulation
paradigms, as it is a paroxysmal disorder that may man-
ifest in involuntary motor tics. It is likely that a neural
signature pattern will emerge before the manifestation of
tics and that this pattern can be captured through elec-
trophysiology. It may therefore be well-suited to respon-
sive stimulation as well. Continuous approaches drain
battery when the symptoms are absent and may induce
adverse effects when stimulation parameters are not op-
timized. Okun et al. [60] recently demonstrated that
scheduled stimulation had similar therapeutic outcomes
as continuous stimulation. Maling et al. [61] showed
that clinically efficacious DBS increased the gamma
band (30–50 Hz) power in the centromedian complex
of the thalamus, along with decreasing the alpha band
(8–12 Hz) power. Thus a threshold on gamma and/or
alpha power could possibly be used as biomarkers to
trigger responsive stimulation.

It is quite likely that the advent of DBS systems capa-
ble of chronic recordings [62, 63] will lend enable iden-
tification of biomarkers for symptomatic and healthy
brain states necessary for closed-loop stimulation.

Advancing DBS through neuroimaging
and chemical sensing

Targeting methods have to date been limited by the res-
olution of traditional magnetic resonance imaging and
the paradigm of targeting individual subcortical struc-
tures rather than cortical–subcortical circuits. The use
of probabilistic tractography, or probabilistic connec-
tivity based segmentation of the traditional subcortical
DBS targets may overcome these limitations [64]. This
methodology combines diffusion tensor imaging with
probabilistic methods to segment subcortical structures
based on the highest probability of a connection with
predefined cortical areas. Essentially, a probability dis-
tribution function for the most likely fiber direction can
be defined for each voxel within a subcortical structure
and based on these functions the likelihood of connec-
tion with a predefined cortical target can be determined
[64]. Data from the individual voxels can be used to
segment the subcortical structure into distinct nuclei.
Using these techniques, Elias et al. [65] suggested that
targeting thalamic segments that have a high con-
nectivity with premotor cortex, rather than motor
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cortex corresponded with the location of the most ef-
ficacious DBS contact for the treatment of tremor. This
technique has been validated within subjects by show-
ing correspondence of the thalamic segmentation map
with the results from thalamic SEP recordings. More-
over, fiber tracking techniques can be combined with the
volume of activation techniques (previously discussed)
to delineate functional mechanisms.

Another methodology to map cortical–subcortical
circuits may employ functional magnetic resonance
imaging (fMRI)-compatible DBS systems. These
systems could potentially use a tracing DBS-induced
global neuronal network activation technique by mon-
itoring the blood oxygenation level-dependent (BOLD)
response on fMRI. These fMRI activation patterns rep-
resent DBS contact [66], amplitude [67], and frequency
dependent [68] DBS stimulation parameters. Min et al.
studied the BOLD activations induced by DBS in STN
[69, 70] and the centromedian-parafiscular complex
(CM-Pf) of the thalamus [66] in large animals. STN
DBS significantly increased BOLD activation in the
ipsilateral motor cortex, as well as the thalamus, pontine
areas and contralateral cerebellum. Comparing stimula-
tion of the CM and Pf, at low amplitudes Pf showed de-
creased BOLD in the limbic and prefrontal association
cortex, while CM exhibited decreased BOLD activity
in the motor and premotor cortex. The decreased
BOLD activity (negative BOLD) reflected GABAergic
projections from CM-Pf to the cortex. At higher am-
plitudes the activation patterns of CM and Pf began to
converge [66]. CM stimulation has been shown to elicit
therapeutic effect for TS patients. Demonstrating that
CM-Pf stimulation affects the aforementioned networks
reinforces the notion that TS is a condition with both
psychiatric and motor symptoms and strengthens the
idea of CM-Pf DBS as a potentially effective tool
for treating both types of symptoms. Overall, fMRI-
compatible DBS systems could provide useful platforms
for investigating the functional effects of DBS [71].

Studies using animal models suggest that therapeu-
tic DBS coincides with changes in neurotransmitter re-
lease [72–74]. It might be possible to design a closed-
loop DBS system based on neurochemical sensing of
neurotransmitters. Implementation of neurochemically-
driven closed-loop DBS strategies requires character-
ization of the relationship between electrical stimula-
tion and neurochemical responses. To this end, Grahn
et al. [75] captured stimulation-evoked dopamine lev-
els using fast-scan cyclic voltammetry (FSCV) and
fit them into models of DBS stimulation with con-
strained optimization for minimization of stimulation
energy. The preliminary results in four anesthetized
rats suggest that the relationships between stimulation-
evoked dopamine responses and DBS parameters fit the
trained models and this provided a proof-of-principle

for closed-loop control based on DBS-evoked dopamine
changes.

Advancing DBS through new DBS technology

Current DBS systems have remained mostly unchanged
for decades, and there is interest in new technologies and
engineering approaches. The approaches discussed in-
cluded advanced DBS electrode designs, pulse genera-
tors and chronic recordings. The goal of DBS should be
to bring about smaller, more energy-efficient units with
reduced adverse effects and better clinical outcomes.

The intrinsic variability of electrode placement, in
combination with the geometry of electrical fields
generated by standard DBS leads, can result in
stimulation-induced side effects [76]. Recently devel-
oped high-resolution DBS leads, provide for precise
three-dimensional shaping of the electrical field when
paired with appropriate implanted pulse generators
(IPGs). The shaping DBS lead consists of up to 40 small
disc electrodes arranged in 10 rows of 4 discs each with
a size of 0.4 mm2, as compared to a standard DBS lead
with 4 ring electrodes of 6 mm2 each. The lead has the
capability for both high resolution intraoperative LFP
recording and chronic stimulation. The first data in man
recorded under intraoperative conditions demonstrated
that this innovative DBS technique reduced stimulation-
induced side effects and maintained therapeutic effi-
cacy [77]. Intraoperative LFP recordings after different
modes of stimulation showed suppression of STN oscil-
latory beta activity [78]. Future clinical trials will investi-
gate the long-term clinical outcome of this unique DBS
device that combines electrical stimulation and record-
ing abilities in the same high-resolution DBS lead.

Further efforts should be aimed at designing pulse
generators that can create stimulation patterns of non-
periodic bursts. For instance, bradykinesia might be bet-
ter treated with nonperiodic patterns of stimulation [79]
and coordinated reset stimulation, in which temporal
bursts of stimulation can be applied through multiple
electrode contacts for de-synchronizing coupled oscil-
lators [80]. Other efforts should focus on DBS systems
with multiple independent current sources that can pro-
vide control over the shape and size of the stimulation
volume. Although these new electrode and pulse gen-
erator designs bring more flexibility and more control
over the shape of the electric field, they may come at the
cost of increased parameter space, and this may further
complicate programming at the bedside.

Proof of concept studies of closed-loop systems are
now underway with the advancement in recording ca-
pabilities in DBS implants. Even in the first generation
models, these approaches are opening up unparalleled
avenues for human electrophysiological research and for
improving DBS outcomes. The recording capabilities of
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the devices in future generations are likely to increase in
number of recording channels, device memory and data
transfer speeds, and also with improvements in teleme-
try. Because of the increasing amount of human neuro-
physiological data generated with these devices, collabo-
rations between clinicians, signal processing teams, and
big data engineers will likely facilitate the analysis and
interpretation of the data.

Conclusions

The critical issues affecting the progress of DBS are
multifocal, ranging from regulatory and ethical issues
to study design to harnessing advances in computa-
tional modeling, electrophysiology and sensor and elec-
trode engineering. The specific advances discussed in
the Think Tank demonstrate the potential for transfor-
mative, not just incremental change in DBS therapy.
The future of DBS resides in converging these advances
into new therapies while carefully considering clinical
research concerns and methodology in the implementa-
tion of next generation technology.
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