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ELECTRONIC STRUCTURE AND PHASE STABILITY OF ALLOYS 

D. de Fontaine 
Department of Materials Science 

and Mineral Engineering 
University of California 

and Lawrence Berkeley Laboratory 
Ber keley, CA 94720 

ABSTRACT 

The computation of phase diagrams from first principles requires the 
combination of very precise quantum mechanical, statistical mechanical, and 
ground state calculations. Various methods of accomplishing this task are 
reviewed, such as the Gautier and Ducastelle Generalized Perturbation Method 
and the cluster inversion method of Connolly and Williams. As an example of 
the former, a calculation of the Ti-Rh phase diagram is presented. 

1. INTRODUCTION 

The exciting possibility now exists of deriving certain classes of alloy 
phase diagrams from first principles. The task is a very challenging one, but 
well worth the effort: no serious work on alloy systems can be carried out 
without knowledge of the phase diagram. In practice, phase diagrams are 
determined empirically, but knowledge is often fragmentary, and even in cases 
where it is complete and reliable, theoretical understanding of the whys and 
wherefores of phase equilibria is lacking. 

In recent years, quantum mechanical calculations of electronic states in 
solids and statistical thermodynamical methods have progressed in parallel 
mode. The tasks of merging the quantum and statistical mechanics in a 
coherent whole is only just being undertaken, but already shows great 
promise. In this paper, we shall show along which lines the global theory is 
being developed, and an example of a recent binary phase diagram calculation 
will be given. The several aspects of the theory will be taken up in the 
following sections: structural aspect. (Sect. 2), statistical aspect (Sect. 3), 
energy aspect (Sect. 4), application to phase diagram calculations (Sect. 5) • 

2. STRUCTURAL ASPECT 

Most pure metals crystallize in the cubic structures fcc or bcc, or in the 
hexagonal close packed structure. Metallic alloys exhibit, in addition, a 
bewildering variety of crystal structures. Intermetallic compounds can be 
grouped in two broad classes (I) ordered superstructures of the parent 
structures (lattices) fcc, bcc, hcp, and (II) "interloper" structures which are 
not manifestly related to the parent lattices. 
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Thanks to the pioneering work of Kanamori [1] Cahn [2] and collaborators, 
understanding of ordered superstructures (class I) has progressed 
considerably over the past few years. Basically, the problem consists in 
determining those ordered arrangements of A and B atoms on lattice sites 
which minimize the ordering energy Eord expressed as a sum of effective pair 
interactions (EPI) or multisite interactions. In principle, the problem can be 
solved exactly. In practice, major difficulties are encountered, such as the 
appearance of "nonconstructible" or infinitely degenerate structures [3]. 
Nevertheless, all fcc and bcc superstructures stable for the set {V uV z} of 
nearest neighbor (nn) and next nearest neighbor (nnn) interactions has been 
determined exactly [1,"2]. Also, a large number of stable fcc superstructures 
has been derived for the set of {V U VZ ,V3 ,V4 } of EPI up to fourth neighbors 
[4]. A similar study has recently been completed for bcc superstructures [5], 
and for a restricted set of hcp superstructures [6]. Superstructures stable 
for multiatom interactions have also been considered [7]. 

For a given parent lattice, superstructures can be classified further into 
special point families related to the wave vector of the most unstable 
concentration wave [8-10]. To which family a given alloy belongs, in a certain 
range of concentrations, depends on the ratio of the values of the EPI's in 
that range. 

By constrast, little can be done about predicting "interloper" structures 
(class II): there is no fixed lattice framework to refer to, in fact, there exists 
a non-denumerable infinity of possible crystal structures for even binary 
alloys. Certain empirical schemes have been proposed for a posterioni 
rationalizing the stability of the most familiar structures [11]. In a rigorous 
treatment, however, the only alternative is to perform as many ab initio total 
energy calculations as deemed feasible, and to compare energies. That can be 
a formidable undertaking. 

3. STATISTICAL ASPECT 

In the previous section, perfectly ordered states only were considered. 
In alloys, particularly at high temperatures, elemental crystals and compounds 
often tolerate some departure from stoichiometric composition, and/or order 
can be incomplete. In fact, for the purpose of calculating phase diagrams, it 
is imperative to describe accurately such states of partial order. 

It is obviously impractical to specify the occupation O'p (+1 if atom A is at 
site p, -1 if B is at p) of every single site in the alloy. Hence, suitable 
averages must be carried out. Thus, a density function p(O') must be defined, 
which gives the probability of finding a specified configuration (O'.~ in a very 
large ensemble of systems (8 binary alloy, AB in our example). At equilibrium, 
the density function is given by the well known statistical mechanical formula 

(1) 

with partition function 

(2) 
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where E(O') is the energy of a particular configuration (0'), and kBT has its 
usual meaning. In Eq. (2), Tr(N) is merely a short hand notation for the sum 
over all configurations of the system consisting of N atomic sites. Equations 
(1) and (2) are exact, but the large summation in Eq. (2) cannot be carried 
out for most systems of practical interest. 

Several approximate techniques exist for finding explicit analytical 
expressions for the partitions function or, rather, for the free energy. High 
and low temperature expansions can be used, and Monte Carlo techniques [12] 
are often carried out, especially now that vast digital· computing power is 
available. An analytical method which has been increasingly used recently is 
the Cluster Variation 'Technique (CVM) first proposed by Kikuchi [13] in 1951 
and first employed for phase diagram calculations by Van Baal in 1973 [14]. 
The CVM provides a hierarchy of "cluster" approximations to the ordering 
energy and to the configurational entropy. The lowest approximation, that 
pertaining to clusters reduced to single points, is the Gorsky-Bragg-Williams 
approximation, still being utilized today in empirical treatments. 

In a recent formulation of the CVM [15], the state of order of, say, a 
binary crystalline solid solution is described by a complete set of orthonormal 
functions (CONS) which are products of cr over the clusters sites. Thus, the 
function pertaining to cluster ex is 

(3) 

nex being the number of points in the cluster. Any function of configuration 
can be expressed as an expansion in such o~thogona1 functions. In particular, 
the density function can be written 

(4) 

where p~ is the normalizatiori 2-N and the tex are ensemble averages of cluster 
functions: 

(5) 

These t form a set of linearly independent configuration variables which can 
be interpreted as correlation functions: point, pair, triplet, quadruplet... By 
Eq. (4), the description of the state of order now reduces to specifying the 
t's up to some largest cluster «m. Formula (4) can be applied to partial 
densities, or cluster concentrations [16] 

pp(O'p) = pp(l + I tex(crp)texl 
exep 

(6) 

where the sum is extended to all subclusters ex of the p cluster considered, 
with pp=2~"P. Cluster concentrations, which .appear explicitly i~ the CVM 
configurational entropy are thus expressed hnearly as a functlOn of the 
correlations t, the number of such independent variables being equal. to t~e 
total number of subclusters contained in the maximum cluster(s) retained 10 

the orthonormal set expansion. 
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4. ENERGY ASPECT 

The internal energy E can be written as a functional of the density p as 
follows 

E[p] = Tr(N) p(a)E(a). (7) 

When the density function has the equilibrium distribution given by Eq. (1), 
then E[p] is the correct expectation value of the energy. Inserting expression 
(4) for the density pinto (7) then yields 

(8) 

with configuration-independent term 

(9) 

and effective cluster interaction parameters 

(10) 

The meaning of Eq. (10) is best understood by considering pair interactions l 
say the pair consisting of a site at p and one at q. By breaking up the Tr(N} 

in (10) into two parts, one over the points ~ and. q, one over all other points, 
one obtains [7] 

(ll) 

where, for pairs, V n is customarily written in place of £pq if the (pq) 
represents the nth neighbor pair. In Eq. (11), "pair energies" are given by 

(12) 

where E(I,J;a') designates the energy of a configuration consisting of atom I 
(A or B) at p andJ at q, and a' elsewhere, the sum being carried out over all 
of these a' configurations. Thus, V I.T represents the energy of pair (IJ) 
embedded in a completely disordered average medium. It is very important to 
note that the energy E(a) of the alloy in a given configuration is not 
evaluated as a sum of pair (or even multiplet) interactions; it is merely the 
ordering energy Eard which is expressed by means of effective pair 
interactions through Eq. (11). 

Since all configurations are summed over in Eqs. (9) and (10), £a and t oc ' 
hence V IJ or V n are strictly concentration-independent. There is another way 
of performing averages, however: for large N, the density p in Eq. (7) will be 
sharply peaked about the average concentration c (=CB' cA=l-c) so that the Tr 
may be replaced by a sum over those configurations which have specified 
concentration c·. Formally, equations similar to Eq. (8) to (12) follow in like 
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manner, but now £~ and £;, also the V~ are concentration dependent, as 
indicated by the superscript. 

It is possible to rewrite Eq. (8) in a more useful form by first noting that 
the energy of the completely disorderd state of concentration c· is given by 

(13) 

since, in the disordered state, all (small) cluster correlations are products of 
point (p) correlations ~p = c~-c;, provided that all lattice points are 
equivalent in the disordered phase. By eliminating £~ from Eq. (13) and Eq. 
(8) written in concentration-dependent form, one gets 

(14) 

with 

(15) 

where 6~ex is the difference between cluster correlations in the ordered and 
completely disordered states. This approach is the one taken by Sigli and 
Sanchez [18], following the prescription suggested by the generalized 
perturbation method (GPM) of Gautier and Ducastelle [19]. 

In practice, the state of order will be defined by just a few cluster 
functions of the complete orthonormal set. Correspondingly, t.he internal 
energy expansions (8) or (15) will be limited to a few small-cluster 
interactions. The problem of convergence of the energy expressions has not 
been resolved, although it has been argued that convergence should be more 
rapid with concentration-dependent interactions [£;, Eq. (15)] than with 
concentration independent ones [£ex, Eq. (8)]. 

A difficult problem remains: that of determining the values of the EPI's 
(or cluster interactions). Electronic band structure methods currently exist 
for performing accurate first-principles calculations of pure elemental crystals 
or stoichiometric compounds using, as input, only presumed crystal structures 
and the atomic numbers ZA' Za. It is also possible to derive self consistently 
a perfectly disordered crystalline solid solution of given average concentration 
by a method known as the coherent potential approximation (CPA) [201. The 
CPA has been implemented in tight binding (TB-CPA) [21] or Korringa-Kohn­
Rostoker (KKR-CPA) [221 schemes. 

Accordingly, two general methods exist for calculating cluster interactions: 
one takes as its starting point the fully ordered states, the other takes the 
fully disordered state as its starting point. The former, based on Eq. (8), 
yields concentration independent £ex parameters (in the absence of elastic 
energy corrections), the latter, based on Eq. (15), yields concentration 
dependent ~ parameters. 

According to the first of these scenarios, originally proposed by Connolly 
and Williams [23], one calculates, as accurately as possible, the total energies 
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of as many structures, or rather superstructures, as there are parameters €a 
to be determined. Consider the fcc case in the nn tetrahedron approximation 
of the CVM. The sum in Eq. (8) is then limited to the tetrahedron and its 
subclusters: the nn triangle, nn pair and point. The structure-independent 
term £0 must also be determined, hence 5 structures must be examined. 
Usually, one takes pure A, pure B (both fcc), A3B (L1 2 structure), AB (L10) 
and AB3 (L1 2 ). Recently [24], this method has been applied to the case of 
noble metal alloys (Cu, Ag, Au): total energies were calculated for the 5 
structures by ASW methods and elastic energy was incorporated by taking 
into account the change of lattice parameters with alloy composition. Thus, a 
concentration depenqence was indirectly introduced in the interaction 
energies. In this way, Terakura and co-workers [24] were able to explain, in 
at least a semi-quantitive way, the remarkable thermodynamic differences 
observed in the three binaries Cu-Ag, Cu-Au and Ag-Au. The Connolly and 
Williams method has also been applied to semiconductor compounds by Zunger 
et ale [23]. 

As mentioned, the second method takes the fully disordered state as its 
starting point. The cluster interactions are obtained by perturbing the CPA 
medium, either in k-space [19] or real space formulations [26]. The 
coefficients of the resulting expansions, which make use of the off-diagonal 
elements of the CPA Green's function, are related directly to the £; 
interactions which are then inherently concentration dependent. Gautier and 
Ducastelle [19] have called their method the generalized perturbation method 
(GPM), and it has been used successfully in the tight binding approximation 
framework for transition metal alloy systems [26]. Remarkable agreement has 
been found by Sigli and Sanchez [27] between calculated and experimental 
values of the heat of mixing of bcc transition metal alloy systems. The GPM 
has also been implemented on the KKR-CPA [28], resulting, for example, in 
cluster interactions for the Pd-V system. 

It has also been shown that the GPM is equivalent to the embedded 
cluster method (ECM), originally proposed by Gonis [29]. The basic idea of 
the ECM is contained in Eq. (12) adapted to the second method of averaging 
described in Sect. 3: 

(16) 

in which t.he notation N-a indicates that the normalization and the t.race 
operation refer to configurations which exclude those of the cluster a. The 
energy £;, according to Eq. (21), is thus that of a cluster a, in a given 
configuration, embedded in a completely disordered medium of concentration 
c -, since the t.race pertains only to those configurations a- which have that 
particular concentration. In Gonis's ECM, the disordered medium is that of the 
single-site CPA. The ECM has been implemented on both TB. [30] and KKR-CPA 
[31]. 

Very recently, Carlsson [32] has shown that the essentially concentration 
independent cluster interaction scheme of Connolly and Williams and the 
essentially concentration dependent pair interaction scheme of Gautier and 
Ducastelle can be related by expressing cluster concentrations by means of a 
superposition approximation. Nevertheless, the connection between the two 
methods has yet to be explored extensively. 
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5. CALCULATION OF PHASE DIAGRAMS 

Thus far, only the zero temperature aspects have been considered. Our 
purpose, however, is to determine phase equilibria at arbitrary temperature. 
It is therefore required to include entropy contributions, both configurational 
and vibrational. At the moment, the latter is best taken into account by 
empirical means. The configurational entropy can be calculated quite 
accurately by the cluster variation method (CVM) [13]. The basic idea is to 
express the entropy functional 

S[p] = - kB Tr(N) p1np (17) 

in an approximate manner by means of partial densities defined in Eq. (6) [15]. 
These "cluster concentrations" themselves are linear combinations of the 
correlation functions t. Hence, in this approximation, the free energy 
functional turns out to be analytic in the independent variables t. The 
equilibrium free energy is then obtained by minimizing with respect to the 
cluster correlations t. In this way, free energy curves can be calculated for 
various phases of interest as a function of concentration c, at any desired 
temperature. Common tangents can then be constructed and phase equilibria 
determined. 

It is seen, by Eqs. (8) and (13)-(15), that the energy E consists of a 
temperature independent part (Edts ) and a part (Eord ) which depends on 
temperature implicitly through the correlations t. Thus, the calculation of 
energy parameters £0 and £ex, performed at 0 K, can be decoupled' from the 
temperature dependent CVM calculations, thereby resulting in' considerable 
simplification. . 

As an illustration of the method of calculating EPI's by perturbing the 
disordered state, we recently performed TB-CPA computations for the Ti-Rh 
system [33]. We assumed fixed fcc and bcc lattices with atoms occupying the 
lattice sites with no displacements allowed. The following Slater-Koster 
parameters were used: dd7l'=%1 ddcrl, ddcr=-1.385, ddc5=O. 

For the fcc electronic density of states (DOS), these values give ad-band 
width of 11.08 in canonical units (c.u.), with lc.u.=4.5eV for a typical d-band 
width of 5eV. The only element-specific parameters to enter the calculations 
are thus the number of d-electrons for element A (NA ) and for the element B 
(NB ), and the diagonal disorder c5 d proportional to the magnitude of the 
d-band energy difference between A and B. No non-diagonal disorder is 
considered. Charge transfer is not taken into account. Since differences of 
energy between ordered and disordered states are required, only band 
structure energy terms will be considered, under the assumption that double 
counting and electrostatic terms will cancel approximately. The resulting 
one-electron TB canonical band model with sand p electron contributions 
neglected is not expected to yield correct structural predictions for all pure 
elements across the transition metal series, but will prove to be serviceable 
for determining approximately the binary phase equilibria considered. 

The statistical thermodynamical model employed was the CVM in the 
tetrahedron approximation: nn regular tetrahedron for fcc (ex), irregular 
tetrahedron for bcc (/1), comprising nn and nnn lattice vectors. The energy 
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Edis [see Eq. (14)] was calculated by the single-site CPA, the Green's 
functions being calculated by the recursion method [34,35]. The GPM was then 
used to evaluate pair interactions V 1 ex(nn) in the fcc case and V l/l(nn) and 
V zP(nnn) in the bcc case as a function of concentration. Full accounts of the 
computational methods have been given elsewhere [36]. 

Minimization of the CVM free energy was performed for the disordered 
phases and also for various expected ordered superstructures of the parent 
lattices. Ordered superstructures of fcc are designated as ex', ex", ..• , I-

superstructures of bcc are designated as P', P" •••• For the scheme of pair 
interactions used here, the ground states of order (superstructures) are fully " 
known [1,2]: the LI2 (Cu3Au prototype) and LIo (CuAu I prototype) 
structures are expected for fcc, and the B2 (CsCl), B32 (NaTI), and D0 3 (Fe3AI) 
structures are expected for bcc. 

The number of d electrons valid for Ti is NA=3 and for Rh, Na=8. The 
diagonal disorder was somewhat arbitrarily set at 6d=0.8. These were the only 
parameters required in the calculation of the fcc and bcc disordered state 
energies and pair interaction parameters as a function of concentration. Free 
energies for disordered phases and fcc and bcc based superstructures were 
then determined by the CVM. 

When free energies of both fcc and bcc disordered and ordered phases 
were combined, the diagram of Fig. 1 was obtained. It is apparent that phase 
equilibria are dominated on the A (Ti) side by the bcc lattice, on the B (Rh) 
side, by the fcc lattice. The fcc + bcc (ex+/I) two-phase region located at 
about 60% B must necessarily persist to infinite temperatures. In the center 
of the phase diagram, 'the B2 phase (bcc superstructure) overwhelms the L10 
(fcc superstructure) for geometrical reasons: for dominant nn pair 
interaction, ordering is optimized in the bcc lattice (B2 ordered structure) 
whereas it is frustrated in the fcc lattice, the characteristic feature of that 
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lattice being the equilateral nn triangle for which only AAB or ABB partial 
order can be achieved. The ordered B2 «(J') phase is found in two regions of 
the diagram: somewhat off-center (50 to 60% B) and way off stoichiometry. 
That latter feature may well be an artifact of the type of approximation used 
here for calculating nn and nnn bcc pair interactions. Second-order 
transitions (dashed lines), allowed by the Landau rules, are predicted at the 
top of the central B2 region and between the disordered (J and the strongly 
off-stoichiometric (J'. The a' superstructure (LIz) located about the A3B is 
separated from the parerit disordered fcc (a) by first-order transitions, as 
expected. The locus of equality between the B2 and metastable L10 phases 
has also been plotted as a dot-dash curve in Fig. 1. It was found that, with 
diagonal disorder 6 d=O.6, the Lio phase becomes stable at low temperature and 
can coexist with B2. The temperature scale was fixed by adopting the 
canonical d-band width of 5eV. 

Available experimental data on the Ti-Rh and Ti-Ir systems have been 
examined recently by Murray [37] and, the resulting "assessed" phase diagram 
for Ti-Rh is shown in Fig. 2. Empirically determined phase diagrams for Ti-Ir, 
Zr-Rh and Zr-Ir are quite similar in their essential features, within the limits 
of experimental uncertainty. At first glance, theoretically (Fig. 1) and 
experimentally determined (Fig. 2) phase diagrams seem to differ markedly. It 
must be recognized however, that the scope of the present computation is a 
limited one: Only the two basic lattices, fcc and bcc were considered along 
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with their allowed superstructures, i.e. a total of 11 possible phases was 
entered in the calculation. 'Out of thes~, the minimi~tion procedure. corre~t~y 
predicts at approximately correct locatIon: the (JTl phase, the (JTIRh «(J In 

Fig. 1,' correct B2 structure), and the TiRhs (a' in Fig. 1, correct LIz 
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structure). The region marked "aTiRh" on the experimentally-determined 
phase diagram (Fig. 2) is separated from PTiRh by a dot-dash curve which 
pertains to a "diffusionless transformation". Thus, aTiRh is a metastable 
phase, of uncertain crystal structure, but described generally as "distorted 
LIo". As mentioned above, in the calculation, Lio is marginally unstable, but 
becomes stable for 6 d=0.6. Our own predicted line of marginal stability for 
Lio is the (a"/p') dashed curve of Fig. 1, not too far off the experimental one, 
considering the uncertainties in both calculated and experimental 
determinations. y 

Experimentally observed, but imperfectly. characterized "interloper" phases I 
Ti2Rh (Laves phase), Ti3Rhs, and TiRhs could not be predicted by the present 01 

model since these phases have crystal structures not contained in the set of 
possible superstructures of fcc or bcc, and were therefore not included in the 
calcl,llation. Likewise, aTi (hcp) was not "coded in", but is certainly not a 
prominent feature of the phase diagram. Actually, agreement with the. Ti-Ir 
experimental diagram is better, since the missing A2B, A3BS and ABs are not 
observed in that system. There exists, however, a stoichiometric A15-type 
phase Ti3Ir. 

The only phase incorrectly predicted by the model is the far off­
stoichiometric P' (B2). However, note that the transition from P to P' is 
calculated to be second order so that, at such low concentrations, P' may have 
been missed altogether in experimental investigations. Furthermore, there 
exists considerable discrepancy in the experimental findings: the (PTi)/(PTiRh) 
two-phase boundaries differed so much from one experimental investigation to 
another that Murray [37] was compelled. to superimpose the two conflicting 
versions in the assessed diagram. The two experimental determinations differ 
from one another by at least as much as one of these does from the 
theoretical prediction. 

2200 

2000 L 

1100 

1800 

(J (3' 0. 
,; 1400 .. a' 
::I 
iii .. 1200 • Go (3 e 
~ 

1000 
(3' a" 

100 

800 
0 10 20 30 40 50 eo 70 80 90 100 

.n Atomic Percent Rhodium Rh 

18L 87!t-ZZ93 

Fig. 3 

10 



The most flagrant shortcoming of the calculated diagram is, of course, . the 
absence of liquid-phase equilibria. Such a deficiency cannot be remedied at 
present due to the absence of reliable and tractable models of liquid alloys. 
Consequently, and simply for the sake of illustration, we constructed an 
empirical liquid free energy function, based on a sub-regular solution model 
the parameters of which were fitted to provide the correct pure Ti and pure 
Rh melting temperatures and the PTiRh congruent melting temperature. 
Experimentally determined [38] values of Ti and Rh entropies of melting were 
included. The fitted liquid free energy was then combined with calculated 
(parameter-free) crystalline phase free energies· to produce the phase diagram 
of Fig. 3. The agreement between theory and experiment is now much more 
striking. We repeat, only the liquidus-solidus curves resulted from parital 
fitting; all other phase equilibria lives were calculated from the TB-CVM model 
with no adjustable parameters. 

6. Conclusion 

Electronic band structure calculations are becoming increasingly accurate 
and reliable. It is thus timely to make use of the modern first principles 
techniques to calculate alloy properties by combining quantum mechanical with 
statistical mechanical calculations. Various schemes for performing such 
combined computations have been described briefly here. One example was 
given, that of the calculation of the Ti-Rh phase diagram by means of a fairly 
crude TB-CPA method. 

The results of that and other calculations suggest that prediction of 
thermodynamic properties by ab initio procedures will soon become a reality. 
Many problems remain. to be solved, however, such as that of elastic energy 
contributions, vibrational entropy, extension of the methods to more complex 
intermetallic phases and to the liquid state, generalization to multicomponent 
systems, etc... If the calculations can be made truly element-specific and if 
some of the difficulties already encountered can be overcome, we should soon 
have computational techniques capable of producing thermodynamic values for 
alloy systems of interest. If that comes to pass, Materials Science will have 
acquired real predictive value. 
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FIGURE CAPTIONS 

1. Calculated phase diagram for Ti-Rh-like binary systems. The miscibility 
gap between fcc and bcc disordered phases persists to infinite 
temperatures (in the absence of melting). 

2. Assessed Ti-Rh phase diagram according to Ref. 40. 

3. Phase diagram calculated as in Fig. 1 but with fitted free energy curve 
for the liquid phase included. Phases are: L=liquid, ex-fcc (disordered), 
ex'=L1 2 , {J=bcc (disordered), {J'=B2, ex"=Ll o (metastable). 
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