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Abstract

Hepatocytes interact with new compounds: metabolism is a freqaeséguence.
Hepatocyte micromechanisms have evolved to adjust in real tinrgeract with any
never-before-seen compound. To demonstrate understanding of those smshaakt
generation, pharmacologically useful hepatocyte models must &irtlee the same: their
micromechanisms recognize a compound as not previously seen and resmohdrbas
prior experience. How might that be accomplished when uncert@ntgrge and
detailed data are chronically limited? My first goal wasanswer that question:
engineer a new class of hepatocyte models that draw on theipast experiences and
compound physicochemical properties (molecular weight, pKa, letgb, to respond
uniquely to a new compound: the events that emerge during modeitieregrovide a
useful prediction of that compound’s metabolic clearance. 1 used thesyrghetic
(combining elements to form a whole) method of modeling and simulatibime method
involves building extant—actually existing and observable—working biotigme
micromechanisms. The micromechanisms within my successfsilico hepatocytes
are comprised of autonomous, interactive objects and agents that nsEp key
components: extracellular media, cells, transporters, metaleolaymes, cytosolic
binding factors, and compounds. In silico clearance emerges from their intesact

Within livers, hepatocytes are spatially organized into functionas$ aailled lobules.
Those hepatocytes exhibit location dependent, possibly cooperative, propectieing
gene expression and metabolic clearance. These properties fiequiapt to changes
in compound type and exposure. Drug-induced hepatocyte damage canlatsibe

dependent. Such spatially heterogeneous phenomena are referradpateszonation.



Next generation, pharmacologically useful, liver models must bebapa exhibiting
similar phenomena under analogous conditions. My second goal wasrtd extaew
class of models to the level of hepatic lobules. | organized autonoments awhich
map to small units of lobular function, into structures called ZorRdélgponsive Lobular
Analogues (ZoRLA). The micromechanisms within each that enaddbibving a
degree of validation were given two tasks: protect hypothetidaelreal “tissues” by
eliminating simulated toxins and minimize resource consumption. zdhation patterns
that emerged are striking similarities to reported pattedsRLA are designed to become

components of future, virtual organisms.
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1 Introduction

My research objective has been to develop and use new modeling andtisimul
methods to facilitate pursuit of deeper, more useful, mechamsiight into processes
involved in the hepatic clearance of xenobiotics in cultures and idiviie | also
sought more explanatory mechanistic models of observed, heteragepatterns of
enzyme induction and localized toxicity caused by sustained expdsursome

xenobiotics.

1.1 Scientific Modeling

The word “model” comes from the Latin word modellus (measureydatd).
Generally speaking, a model is a simplified version of sometl@al(e.g. a system or
process). Some anthropologists believe that the ability to make conaepulelk is the
most significant quality, which gave Homo sapiens a competiilge over concurrent
hominid species (1). An example of early modeling work is Sthge caveman

paintings.

Science can be thought of as the quest for better models. $ciprddels are born
as hypotheses, some of which are falsified and eliminated byimgo¢ation. The ones
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that survive gradually evolve into theories. The process of scemtfideling is an
iterative process involving four steps: 1) observations and measuserdg hypotheses
(hypothetical explanations of observations and measurements), 3¢tioregi and 4)

experiments.

Different methods of reasoning have been identified as playing mlscientific
modeling (2):Induction is arrival at a conjecture (universal conclusion) based on a
pattern observed in many particular cases; it is generalizatasoning from detailed
facts to general principles; it is a generalization drawn fpatterns in observed data.
Deduction is automatic and/or mechanical transformation of a set oingtats; it is a
purely mechanical (syntactic) transformation of the premises tconclusion; it is
transformation of assumptions into conclusions within a formal sygtdmre if the
assumptions are true, the conclusions and every intermediate sheptrartsformation
are also guaranteed to be trughduction is arrival at a conjecture based on a pattern
observed in one or a few particular cases; it is constructiogpuitihetical speculations
(consistent with current knowledge) about the process by which an autcom
(phenomenon) came to be, where the hypotheses are all equallyatdasas long as
they lead to the outcome; it is arrival at a conjecture (hypahé¢hat would, if true,

explain the relevant evidence.

1.2 Synthetic Modeling

A research objective is to develop better working hypotheses abouonettteanisms
that play roles in the emergence of biological phenomena whertaimty is large and

data are chronically limited. The synthetic method of modeling samailation is a
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relatively new experimental approach that can facilitate bigetic mechanism discovery.
Relying on object oriented programming and exercising abdu@asoning, the method
involves buildingextant,working, software mechanisms that, upon execution, can exhibit
biomimetic emergent phenomena. Building extant mechanisms is fun@dimdifterent

from the well-known approach of “modeling the data.”

Using software engineering methods, we can create code that, exeented,
produces mechanisms, which give rise to phenomena that are syrilsinglar to
specified phenomena. Yet there may be no logical mapping front execution in the
simulation to the biology. However, biologically inspired requiremeatsbe imposed to
shrink and constrain the space of software mechanism and impléoremations that
successfully exhibit those targeted phenomena. A continuation girteass can lead to
extant software mechanisms (and phenomena) that are increaasinaibgous to their
biological counterparts. In so doing, we are not building a model basadsigrly on
known biological facts and assumptions, because the facts are oftfficigrst to do so.
Furthermore, keeping track of all the assumptions and assekesingompatibility can
become an unwieldy, time intensive task. Rather, we are explonmgspace of
reasonably realistic, biomimetic mechanisms that can causeemmergence of
prespecified phenomena. The focus is on inventing, building, exploriatierging, and
revising plausible biomimetic mechanisms. To emphasize aspectsstruction and
method, specifically combining often varied and diverse elemeatsssto form a

coherent whole, | propose that the resulting models are syrdineficgues



1.2.1 Design Guidelines

Determining Model Usage

The first consideration in any modeling effort is to determine thieymodels are
being created, and identify situations in which they will be used (8% explained in (2),
synthetic modeling starts with specifying a listafgeted attributesThe modeling effort
then strives to discover mechanisms that achieve those attributeguitement is that
the models and their components be sufficiently flexible sodbeng future project
extensions, or when other investigators use the models, they couldilyereadified to
account for an expanding list of attributes. Clear statements aleuand targeted
attributes facilitate selecting specifications. Clear ifigations guide model design and
development and help one avoid potentially unproductive tangents. Eabutatt

achieved provides a degree of validation.

Next, to achieve the targeted attributes, an iterative cornistmuand refinement
protocol is followed (2). The iterative refinement protocol cythesugh the following

eight steps.
1) Choose an initial, small subset of attributes to target.

2) Select a granularity level that will enable comparing mregsof simulated and

targeted attributes.

3) For each attribute targeted, specify a desired level of phenbgieriarity (e.g.,

within = 25%). Approach in stages: begin with relaxed similarity measures.

4) Posit coarse-grained, discrete mechanisms that may genanalegous

phenomena while requiring as few components as is reasonable.



5) Create logic to be used by each component. Instantiate comgozed

mechanisms. Update specifications.

6) Conduct many, simulation experiments. Measure a variety aofopiena to

establishin silico’ to wet-lab similarity and lack thereof.

7) Tune (parameterize) to achieve analogue similarity Spect step 3. When the
effort fails, return to step 4. When successful, return to stemd3dacrease the

flexibility of the similarity measure.

8) Add one or more new attributes until the current analogue iedls Return to
step 2. Strive to achieve the expanded attribute list with #es lbmponent

reengineering as possible.

Building Extant Mechanisms

“What | cannot create, | do not understand.” —Richard Feynman

Hepatic mechanisms are commonly described in the literaturg wusagrams
combined with textual descriptions. These kinds of explanations arby goreeptual.
Complex mechanisms are difficult to conceptualize. As a repalisible flaws in
conceptual mechanisms may not be evident. Generally, conceptual rsathaanie
difficult to falsify. Concrete mechanisms, on the other hand, are samiéy challenged
experimentally. | concluded that, in striving toward my obyed] it is essential to
adopt as a strong guideline the dictum of the great physicidtaiidcceynman. When

feasible, we must prefer extant (actually existing; concrete) oveeptual mechanisms.

! performed on computer or via computer simulation



Parsimony

"Everything must be made as simple as possible, but not simpler” — Albert Einstein

Parsimony is an additional strong guideline. My goal was totearisnechanisms
that would be sufficiently complicated to achieve multiple, tachpteenotypic attributes,
but no more so. In order to maintain parsimony, analogues should lrictatsusing
components that are just fine-grained enough to produce targeted @men@nd
accomplish the analogue’s specified uses. My plan was to desapgaes so that |

could add additional detail easily when it was needed.

1.3 Synthetic Approach to Pharmacological Modeling

Pharmacology is the science of interactions between the bodyexgknous
chemicals (xenobiotics) that alter regular biochemical functio@sug disposition and
metabolism is an important aspect of pharmacology. Understandingtéheffdrugs
(pharmacokinetics) and their effects (pharmacodynamics) isenbalg: 1) many
mechanistic details remain to be discovered, 2) many of thelsdeth posited
mechanisms are poorly understood, 3) the considerable inter- anenéiwidual
variability is poorly understood and difficult to anticipate, and 4) phaoiogical
phenomena are a consequence of interventions by administered compoundsdy al

existing and operating mechanisms.

Accordingly, to build useful synthetic models that can mimic plaotogical
phenomena, the analogues will need to have the following characterist Analogue
components representing compounds should exist independent of mechanisms. The

compound analogues need to carry information about the molecularusgribey
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represent. 2) In silico mechanisms should exist and function in thecabsd a
compound analogue intervention. 3) The model must be capable of exh#bidren
behaviors upon compound-analogue interaction. 4) Componentsn ddilico
mechanisms must be able to recognize compound analogues fromphysaochemical
properties. 5) In silico mechanisms must be able to respond to chamigse and type

of compound analogue.

The In Silico Liver (ISL) (4), is the first example ofsgnthetic, pharmacological
model capable of exhibiting most of the above characteristics.(&, \Bas built to test
and challenge concepts about liver function and the role of hepaticenvironments in
normal and disease states. An ISL maps tinasitu rat liver undergoing single pass
perfusion. It represents a liver as an organized assembly ofduadily distinct primary
units, either acini or lobules. It is sufficiently flexible tepresent different aspects of

hepatic biology at several levels of resolution (4).

To leverage the ISL, | focused on the properties of hepatodiiesiépatic cells that
most often respond to administered compounds), bothivo and in cultures. The
envisioned hepatocyte models were intended to evolve and become comypitititee
ISL, so that they appropriately function if placed within the, I&ithout having to be

reengineered.

1.4 Focus on Metabolic Clearance By Hepatocytes

The mechanisms involved in development and maintenance of the spatially
heterogeneous, homeostatic functions of liver are not fully undersi®od The liver is

the primary organ responsible for drug and xenobiotic metabolisnversgdraditional



liver models, including well-stirred compartments, the single tulreyexction-dispersion,

and interconnected tube models, have been developed for use in PK studies (8)
However, because such models are data-centric, knowledge about kapatiere and
function are abstracted away. Therefore, the model components do powetiao

biological mechanisms.

Hepatocytes are primarily responsible for clearing xenobiotibge HBehaviors of
hepatocytes in lobules are location dependent. Hepatocytes exptessgdreeous,
zone-specific enzymes and transporters, which results in portocgradcaénts of gene
expression. This heterogeneity, along with calcium-mediatetercellular

communication, suggests that hepatocytes may cooperate in some activities.

Hepatocytes individually choose strategies to clear compounds, i.emttaipolize
or ignore any new compound presented to them, apparently following an inherent agenda
the principles of which we do not fully understand. These assortdgas might be
based on their cumulative experience in responding to local environmeife¢eaizhck
provided by the larger whole of which they are part. If so, tHeatole behavior of the

liver might be aremergenproperty of these distributed actions.

1.4.1 The In Silico Liver and Its Intended Uses

The In Silico Liver (ISL) (4, 9, 10) is a discrete, componentized, iplogscally
based, computational, liver analogue that is intended for refinkpdoreng, and testing
hypotheses about interacting mechanisms that influence th@drgnsetabolism, and
hepatic disposition of compounds of interest. An idea was that througiortii@ned

use of discrete and synthetic methods to more realistically ncagskhl mechanisms in



the context of a realistic morphology, computational scientists bellable to better

anticipate the PK consequence of changes in drug structure or pathology (4).

ISL execution is similar to conducting a wet-lab experimen&L uses therefore fall
into two categories: 1) testing a hypothesis: execution of @lis tonfigured and
parameterized in this particular way, will produce phenomena thaheasurably similar
to the wet-lab observations of interest; and 2) exploring the conseguehsome ISL
perturbation. The expectation is that, if ISL-to-liver mappingsraasonable, then the
mechanistic and phenomenal consequences of the ISL interventiorreagibnably
anticipate the outcome of such an intervention on a rat liver. nGinese two categories,

we can state specific ISL uses (2):

e Discover plausible mechanistic explanations 1) for drug disposition ptesray 2) of
hepatic responses to xenobiotic exposure; 3) of hepatic zonation phenomena,
including clearance; 4) for differences and extents in drug digposit normal and
different types (and extents) of diseased and injured livgrsf Sisease progression;
and 6) of causes of xenobiotic hepatotoxicity.

e Falsify or validate mechanistic hypotheses about clearance addposition
phenomena.

e Facilitate discovering plausible upward and downward linkages tiihtemable
instantiating (represent by a concrete instance) details of genotypetybe linkage.

e Study plausible drug-drug interactions and predict their consequences.

e Explore and challenge 1) plausible mechanisms of cell-ceirantions and

communication, and 2) plausible consequences of individual differences itfichepa



properties on phenomena of interest.

e Anticipate (predict) 1) aspects of the hepatic disposition of rawnpounds, and 2)
plausible consequences of changes in gene expression.

e Provide validated subcomponents for experiments conducted in othetudbpmg
other phenomena.

e Encourage and exercise abductive inference, which is essentacmvery and to

the scientific method.

1.5 Specifications and Capabilities

To achieve the above and also to bridge “the gap” (4) betweencomosht, system
oriented, mathematical models and wet-lab models, the followingajesypecifications

are identified for the envisioned analogues:

e The analogues can be nested hierarchically. A component cadthéeatomic or
composite. Atomic components, which have no internal structure, ddfme t
model’s level of resolution—its granularity.

¢ An analogue must be comprised of quasi-autonomous, primary functiona(eugits
hepatic lobules). A functional unit can be comprised of other, quasi@ubus
functional units (e.g., a lobule consisting of cells).

e Enable straightforward inclusion of subcellular details, such abwpsgts and
networks, when needed, without interfering with other micromecharosmegjuiring
system reengineering.

e Similar to that of the liver, a model’'s components should interaogusinly local

information.
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e The mappings fromn silico models to the biology during experiments must be
concretizable at three levels: 1) the mechanism components anthtéections, 2)
how the consequences of multiple local micromechanisms mergehat kegels into
measurable systemic behaviors, and 3) measurable similantedietmultiplein
silico attributes and corresponding wet-lab attributes.

e The inverse mapping from observable biological phenomena to generators
(mechanisms) is one-to-many. The framework and methods must enaltiple,
equally plausible, hepatic mechanisms, to operate in parallel gtloljective of
falsifying one or more as refinement progresses.

e The model’s components must be linkable with other models and other model types.

¢ In silico mechanisms must be transparent. The micromechanisanfalsffied model
need to be examined during simulations to see what, when, where, hgnthev
failure occurred. So doing leads to new knowledge and new hypotheses.

In addition to the above specifications the following were spedificargeted for the

models developed during my research.

Intelligent Analogues

In order to achieve the fifth requirement in Section 1.3, the analatpoesd be able
to autonomously adapt to changes in the environment of which theypane. a They
should be able to respond to new, previously unseen situations. For exam@kould
be able to take a new compound, for which the model has not been validtxtetiide it
to a validated model, and observe the consequences on interactiony, &xacthe with
in vitro hepatocyte cultures. So doing presents several significant mugiekering

challenges. The components in the validated model should contain methdha
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can recall how they interacted as they did with each of theady-encountered
compounds. They need mechanisms that enable them to recognizepamdi testhe
physicochemical properties of the new compound. Therefore, they swad
primitive intelligence that enables them to use what they lemaree¢d and reparameterize
themselves to respond to the new compound. Consequently, a goal of thiwagao

explore and provide options for that primitive intelligence.

Reusability in Different Contexts

The models are intended to be reused and iteratively improved. hdnwbrds,
they should be flexible enough to function in different experimental xtmte It follows
that given analogues (e.g., cells) that have achieved a degrakdation in one context
(such asn vitro), it should be possible to move them to a new context (such as an ISL)
and observe their behavior in that new context. When falsifiecshauld be

straightforward for the models to relocate in mechanism space.

Taking validatedin vitro hepatocyte analogues (developed in the first part of this
work), and relocating them into a spatial arrangement thatasienlobule cross section,
faces an important context issue: hepatocytegtro all function alike, whereas in the
liver they exhibit location dependent function, and the mechanisms rdsgofusi that
zonation behavior are still poorly understood. Consequently, the second hi$ of
work focused on discovering one or more plausible mechanisms for dyhapatic

zonation of drug clearance properties.

1.6 Thesis Outline

In Chapter 2, | present a stochastic agent-based method to inetatds, and
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validate simulation models of cultured primary liver cells (hepges). The models
are referred to am silico hepatocytegISH). The mechanisms involve interactions
among objects and agents representing six key components: éxtaaacekedia, cells,
transporters, metabolic enzymes, cytosolic binding factors, and druégiditional
components can be easily added as needed. Each object acts autonantusdigracts
with other objects according to a set of simple axioms, refgaiur knowledge of
intracellular mechanisms. An silico clearance property emerges from interactions of
these objects and agents. The interactions take into accountpdysgochemical

properties (via molecular descriptors, such as molecular weight, pKa, logP, etc

In Chapter 3, | use the synthetic method to build an agent-based ofoliedr
zonation. Liver cells express heterogeneous, location-dependent eamgntiinsporter
activities to detoxify compounds, apparently following an intringenala, the principles
of which are not fully understood. This phenomenon is known as liver zonatiorddr
to gain insight into this phenomenon, we developed and validatsilico agents that
collectively are able to mimic hepatic location-dependent behdvging the synthetic
method, we constructed extant, hepatomimetic analoigussico: Zonally Responsive
Lobular Analogues (ZoRLA). Portions of sinusoids containing one oe roells are
modeled as autonomous agents arranged on a 2D grid. The arrangeim&d a
lobule cross section through hepatic tissue. An agent’s task itecphypothetical
external “tissues” by eliminating simulated toxins. In additieach agent strives to
minimize its energy (internal resources) consumption while giotgethe external tissue
from being damaged. Each agent uses local information to chaaseupdate a

clearance strategy — the probability of eliminating an encouh&neulated toxin. All
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agents use the same simple optimization (learning) logic. Thermmathat emerge have
striking similarities with the observed zonation patterns withénliver. In addition, the
results support the idea that creation and regulation of liver zomatjoires at least two

independent subsystems acting on two different types of signals.
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2 In Silico Hepatocyte

We have used a stochastic agent directed, synthetic method toiatstaest, and
partially validate simulation models of cultured primary hepatsc(the primary cell of
the liver). In this chapter we focus on hepatocytes growritro using a “sandwich”
culture method that enables their properties and behaviors to foeetycmatch those
observedin vivo in intact laboratory rats. The models are referred tonasilico
hepatocytes (ISH). The mechanisms involve interactions among othjatteap to the
key components: extracellular media, cells, intercellular tjghttions, intercellular
lumen, transporters, metabolic enzymes, cytosolic binding factors, amys.dfhe
interactions take into account the physicochemical properties sfrthgated drugs. The
ISHs are designed for stand-alone experimentation; they sarfiuaction as components
in hierarchical multi-models of larger systems such asea Within a whole simulated

organism. This chapter is organized as follows:

In Section 2.1 (adapted from (11) with minor revisions) we prebsentirst version
of the model, ISH1. We validated ISH1 usimgvitro measures of cellular uptake and

biliary clearance of four compounds (salicylate, taurocholate, enkephahd
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methotrexate).

In Section 2.2 (adapted from (12) with minor revisions) we preseslightly
improved ISH, called ISH2; and propose a method for estimating iésnpéer values.
The method enabled ISH2 to interact with simulated drugs to reagamalth results
from in vitro hepatocyte excretion studies. Further, we use the estimation method t
reasonably anticipate the biliary transport and excretion propeftiasnew compound
based on the acceptable parameter values for previously encowtenedunds. We use
Fuzzy c-Means (FCM) classification algorithm to determine tlegree of similarity
between previously tuned compounds and the new compound. Specifically,0f set
simulation parameters for enkephalin was predicted using the tunedeparazalues of

salicylate, taurocholate, and methotrexate.

In Section 2.3 (adapted from (12, 13) with minor revisions) we generé#tia
method as a parameter estimation algorithm for agent-based naaklapply it to
predictin vitro human clearance of 73 drugs. The algorithm estimates modeh@imr
values for new situations utilizing the characteristics of prelyaimulated conditions.

We applied the algorithm to estimate parameter values of ISH2.

In Section 2.4 we added additional components and micromechanismsntodake
and called it ISH3. We then estimated the parameters indiwdualt each
micromechanism by directly mapping the mechanisms to drugsiqochemical
properties. The estimated parameter values were use to preditb hepatic clearance

of compounds.
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2.1 In Silico Hepatocyte: Agent-Based Modeling of

the Biliary Excretion of Drugs In Vitro *

2.1.1 Introduction

Modeling and simulation of biological systems is done both in continunds a
discrete domains. Differential equations have been the tool ofechotbe continuous
domain. The behaviors and features of a biological system teatreferred to
collectively as its phenotype are too diverse and complex to belsssby even very
large sets of differential equations, and the apparent inforn@thastic nature of
biological phenomena cannot be easily conveyed. In the discrete dasebilar
automata (CA) approaches have been used (12, 18) as tools for modeling complex
collections of biological processes. Tladtice gas models,also known as particle
systems, comprise a well-known CA class. Usually driven by raneleents, these
models consist of a discrete grid on which particles move aboutngrddt with each
other. When implemented in an object-oriented framework, the objeth& whe

lattice can become independent software agents.

A class of biological models is presented in (6), which isetbasn the idea of
“middle-out” constructive (synthetic) modeling strategy ratherntithe traditional
top-down and bottom-up modeling and simulation approaches. Members ofagss
are referred to alsiomimetic in silico devices They are designed to generate behaviors
that are useful analogues of a set of referent behaviors. nBh@gaes are constructed

from software components that are designed to map logically togimal components at

! Adapted from (11) with minor revisions
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multiple levels of resolution, which facilitates modeling more caxpbiological

phenomena.

Following the guidelines presented in (6), (4), and (19), and using andigsated
approach we propose a biomimetic device calledilico hepatocytdISH) to simulate
attributes of hepatocytes (the parenchymal liver cells) gromnvarious in vitro

environments.

A goal of this work is to develop an ISH (ISH1) that is suffitie flexible to be
used as a component in larger simulation models of more complinati# andin vivo
experimental systems such as the perfused rat liver dextuss(6) or the liver of a
simulated patient. The design and structure of the current $Séiescribed in the
Methods section. Its performance is demonstrated by usingsitriulate then vitro
hepatic biliary excretion that can be observed and quantified usispéoelized culture
conditions described in (20): rat hepatocytes that have grown for Srdaysandwich”
culture are used to predict tha vivo biliary intrinsic clearance of drugs. The
cumulative uptake of drugs by hepatocytes is measured under ferekifconditions: 1)
standard, Ca-containing media and 2) media that is free of caloiuthereafter, Ca-free)
for up to 10 minutes. The biliary excretion and clearar@kg)( of each drug are
estimated from the difference between the cumulative uptakdbe presence and

absence of Ga
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Figure 2.1 Hepatocytes excrete bile into canalicular spacégo (21).

2.1.2 Biological Background

The liver can metabolize and excrete into bile many of the companmtisoxins
that find their way into blood. This is an important step in theirhyser elimination
from the body. Bile passes into the small intestine and frome,tlge fraction of its
content is reabsorbed and some of that may be ultimatelynaliedi by the kidney. The
parenchymal cells of the liver, hepatocytes, excreteittibeintercellular spaces between
themselves. These spaces merge to form bile canalikigliré 2.1). In humans, the
canaliculi merge and deliver their content to the gall bladdein the in vitro
sandwich-culture system, however, the bile can be sequesterec@s $panall lumens)
that are created by adjacent hepatocytes that have formedjuigtitons between
themselves, as illustrated in Figure 2.2A. The tight junctionsifimets a seal between
the luminal contents and the media external to the cells. Thetobgima
sandwich-culture system can be broadly subdivided into three spatesellular
(cytosol), canalicular lumen, and the incubation medium. In théeraysC&" is
responsible for maintaining the barrier function of the tight jomsti they form a seal

between the canalicular lumen and the incubation buffer. Thesbaeain be disrupted
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by depletion of C& from the incubation medium. When such media is used, the
solution (biliary secretions from hepatocytes) that had accurdulatehe canalicular
lumen mixes with the incubation medium. Therefore, the cumulatitakepvhen the
standard media is used represents the amount of substrate aatéllntxr (cytosol) and

in the canalicular lumen. However, when media that is Ca4resed, the cumulative
uptake represents the amount of substrate in cytosolic compadntg (20). Thus, the
amount of substrate excreted in the canalicular lufhenin vitro counterpart to biliary
excretion) can be estimated from the difference between thelative uptake in presence
and absence of €a The biliary excretion estimated by this method is consistéht

in vivo biliary excretion (20).

2.1.3 Methods

We use agent-directed programming. We adopt the Functional Uniedeepation
Method (FURM) (4, 22) and framework, which makes use of threer@iffenodels: an
articulated, functional unit model (ArtModel); an accepted mathealatnodel—the
reference model (RefModel); and am (vitro) experimental data (DatModel) for
validating the ArtModel. Within each simulation cycle thesedhmodels are executed
by anexperiment agen(ExperAgent). The ExperAgent is responsible for: managing
the resources required for each experiment, controlling the maoaldlsy data from the
models, progressing from one experimental setup to the nextjgeach model against

some performance measure, and acquiring telemetric data framditieo experiments.
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Figure 2.2 The sketch illustrates hepatocytes in a sandwichreuit vitro and the
organization of the components within the ISH1. A: Two hepatic ¢ellite) are
attached by tight junctions. A canalicular lumen space (sha&lsdpwn between them.
The external medium includes €a B: The system is the same as in A, but th€ @a
the media has been depleted breaking the tight junctions.da/dlcircles aresoLUTES

A blank circle (no letter) is an undesignated solute in the mediges Empty cylinders
are transporter objects. A cylinder with light gray circledasmaps to solute being
transported in the direction indicated by the arrow. br: binder objectsolute that has
been transported into the lumen space;sotUTE that has been transported into a cell
d: solute that has diffused into a cell; T: solute that has loaesported out of a cell into
the media; D: solute that has diffused out of a cell.

We represent hepatocytes using fixed agents placed in a 2D Qack vwnobile
objects mapping to solute can interact with them stochastidatiyre 2.3). To avoid
confusion hereafter and clearly distinguish vitro components and features from
correspondingn silico components and features, such as a “hepatocyte,” a “solute,” or
“excreted,” we useMALL CAPS when referring to thén silico system. We model the
canalicular lumen (center, Figure 2.2A) as an object acting @mntainer inside the
simulated HEPATOCYTE into which SOLUTES can be EXCRETED by TRANSPORTERS
Simply eliminating this space simulates®Celisruption of tight junctions and mixing of

what would have been luminal contents with the extrdeellmedia. A sketch identifying
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several key features is shown in Figure 2.2.

+— Farticle Spaces (Extracellular
tedium)
—
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Mon-specific binder Transporters
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hWembrane :

Einderf Enzyme
> Hepatocyte

Cytosol  ———
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Transporters

Apical R j

Membrane L 1] L 3 -

Figure 2.3. 3D illustration of the modslbLuTESsare initially placed in a Particle Space.
They move stochastically and interact withPATOCYTES Each hepatocyte may consist
of BASOLATERAL and APICAL MEMBRANES, CYTOSOLIC Space, TRANSPORTERS
non-specificBINDERS, andENZYMES.

* The Incubation Mediums represented by a two dimensional square grid in
which HEPATOCYTES and SOLUTES can be placed to interact with each otheroLU8ES

move about using a Moore neighborhood.

* Drug Compound¢soLUTES are represented as independent, mobile objects that
move around stochastically, governed by the flow of the incubation mediDaring an
experiment the event histories sfLUTES(and other objects) can be tracked individually

or as groups, such aoOLUTE that has beemRANSPORTEDOUt of aCELL, or that has
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diffused into aCELL.

* HerpaTOCYTESre represented as shown in Figure 2.2. Each is constructed from
objects that map to hepatocyte components and the environment: thetocsin bind

drug, enzymes, transporters, and a space for biliary excretion.

» A Binderis an object withiHEPATOCYTESthat can bind a freeoLuTE and hold

onto it for a specified number of binding cycles.

* An ENzYME is a specialized form of binder. It can “metabolize” a bound
SOLUTE by replacing it, following the binding period, with a metaboliteecbjand
destroying the replacesbLUTE (for more details about thesesilico Binders and Enzymes

see (23, 24, 25).

» TRANSPORTERbBelong to a subclass of binders. They can bind withsioeeTe
that is either inside or outside, and transport them to the oppositefsitie CELL
MEMBRANE, independent of the localsOLUTE concentration. When needed,
TRANSPORTERSCan be subdivided further into specialized forms. The following are

three of the importarmMRANSPORTERparameters:

» Transport-idout_probability specifies the probability that BRANSPORTERWill
bind a givensoLUTE, once thatsoLUTE is detected by theRANSPORTER andTRANSPORT

it in or out of thecELL.

* Binding_cyclesspecifies the number of simulation cycles@uTe will remain

attached to aIRANSPORTER

* Excretion_spacestores excretedsoLUTES until they are removed to an
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EXTRACELLULAR space. In this work, under standard culture conditions (witf),Ca
they are not removed by outer spaces. They stay within this spackting the fact
they are “sealed” within a luminal space (designaead Figure 2.2A). The average
number ofSOLUTESIN this space is determined by the paramEi@retion_Meanwhich

is the mean of an exponential probability distribution. SLUTE in this space may
diffuse back into theceELL (e-to-d in Figure 2.2A), depending on its physicochemical

properties.

% l—¢

—> Free Solute Object ; Free Solute Object
In the 2D space [ :
! Inside Hepatocyte

Empty
spot

I
Extracellular | Intracellular

Figure 2.4. Trace of soLute (mapping to a drug particle) in the model.

In Silico Solute Kinetics

Figure 2.4 shows the trace ofsaLUTE in the simulation. SLUTES are initially
placed uniformly and randomly in the 2D space externahHPATOCYTES At each
simulation cycle, &0LUTE may stay in place or move randomly in one of eight directions
(N, NE, E, SE, S, SW, W or NW with a probability of 1/9). s&LUTE may, depending

on its properties, partition into an encountesedATOCYTE There is also a chance that
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it may be transported (actively imported) into tieL by TRANSPORTERS

MEMBRANE Diffusion

Partitioning of solute into and out of hepatocyte cytosol is simulasetbllows:
when a freesOLUTE in the 2D space encounterseLL, it may enter the&eLL based on
the values of two parameters:
Solute_Membrane_Cross-In_Probabilitgnd Average Cell_Capacity The former,
which is governed bygoOLUTE properties, is the probability that tls®LUTE enters the
CELL passively. The latter is the mean of an exponential distitbtiiat determines the
number of objects @eLL can accommodate by passivaNSPORT  The probability that
a SOLUTE partitions into theCELL decreases as the number of intracellildaruTes
increases. Each unbound intracellular solute may also partition dhe afell with a

probability of Solute_Membrane_Cross-Out_Probability

Active TRANSPORT

In silico, if asoLUTE fails to enter thecELL by passive transport, it will be given a
chance to bind with TRANSPORTERS that recognize it with probability of
transport-in_probability. If recognized, it gets transported into theLL. We assume
that there are no spatially explicit arrangementsTRANSPORTERS within a CELL

membrane.

In vivo, biliary excretion is performed by canalicular membrane praners. In
silico, as Figure 2.4 illustrates, once an intracellslaruTe binds to aTRANSPORTER
there is chance that tis®LUTE will get EXCRETED based on an exponential probability

distribution with mearkExcrete_Mean If excreted, the object is put in a waiting list to

25



be removed by external spaces (such BERCANALICULAR Space WhemEPATOCYTES

are organized within a simulated hepatic lobule). If not removedisthr@dps to solute
“sealed” betweenHEPATOCYTES If not excreted, thesoLUTE is placed in the
transported-out list. Objects in that list are treated #se§y had been transported out by
the basolateral membrameANSPORTER and are transferred to the 2D extracellular space

(the simulated incubation medium) in the next simulation cycle.

In Silico Uptake and Efflux Studies

The cell culture media is represented by the 2D sysme)TE within HEPATOCYTES
maps to substrate in the cytosolic compartmenbLUSE in theexcretion spacenaps to
the excreted substrate in the canalicular lumen (bile). Wherstandard media was

simulated, thén silico cumulative uptake was calculated using Eq. (2.1).
Uptake, siico = total of (partitioned-in + transported-in + exed SOLUTE (2.2)

When the Ca-free media is being simulated, the average numberetieel objects
(Excrete_Meanwas set to zero to simulate the effect of ‘Gdepletion on the barrier
function of tight junctions. Consequently, timesilico cumulative uptake for simulated
Ca-free media could also be calculated by (2dl). The values of simulated efflux for

both standard and Ca-free media were calculated using Eq. (2.2).

Effluxin, silico = total of (partitioned-out + transported-o8QLUTE (2.2)

Data Analysis
The in vitro Biliary Excretion Indexis calculated using Eq. (2.3) (20). The same

eqguation was used for the correspondmsilico calculation.
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Biliary Excretion Index = (Uptak&ngar— Uptake s red/Uptakiandard (2.3)

Biliary clearance by the sandwich-cultured hepatocy@sscurure IS calculated

according to Eq. (2.4) (20).

Cluture)y=  (Uptak@iandara— Uptakea-sred/(TiMEncupation- CoONcentratiofegium (2.4)

where Tim@cubaiion iS the incubation time and Concentratigfiumis the initial substrate
concentration in the incubation medium. The same equation was useduiateathe

BILIARY CLEARANCE; thein silico soLUTE density is defined as:

In Silico density = (total solute)/(total locations in the 2D space) 5) (2.

Parameter Estimation

We used an optimization technique to estimate the parametdris afiddel. After
each simulation experiment a similarity measure (SM) #@hgar(26) assigns a similarity
score to the output of the simulation. This score provides a meafshoav similar the
current output is to the referent experimental data. The gdal nsaximize the SM.
The optimization algorithm used the Nelder and Mead Simplex (27) methidte
algorithm has been used widely (28, 29, 30, 31) for almost 40 yearsvéopoyhmeter
estimation problems. It is still the method of choice for maagtroners because it is
straightforward to code and easy to use. The technique belongdassaof methods
that do not require derivatives and are often claimed to be robugrdblems with
discontinuities or where function values are noisy. This propertysna&egood choice
for helping to optimize our ISHs. There are several differergimes and extensions.
We are using the one described in (32) with minor changes. See Appefa more

details on the algorithm.
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The following parameters were used in the sedfghretion Mean
Average_Cell_Capacifysolute_Transport-In_Probability
Solute_Transport-Out_Probabilitysolute_Transport_Cycles
Solute_Membrane_Cross-In_Probabili§olute_Membrane Cross-Out_Probabijlity
Solute_Binding_ProbabilitgndSolute_Binding_CyclesFor each of the four drugs a
different set of parameter values was selecteche@arameters, listed in Table 2.1, such as
Space_Sizédepatocyte Densitylax/Min_Binders_per_Celktc., were fixed for all four
drugs. Total_Solute Particles/as calculated according to timevitro concentration of the
corresponding drug; see section 2.2.4 (below) for detaitdeT2.2 shows the optimized
parameter values for enkephalin and salicylate. In dodgmulate the depletion of €a

theExcretion Meanwas set to zero to essentially eliminate the excretiorespa

2.1.4 Parameter Calculation Details

In vitro data of four drugs were obtained from (20). The incubation condgi@ns
reported to be the same for all four drugs, however the concentratibe dfugs varies
from 1 uM to 15 puM. In order to be consistent with thevitro experiments, thén

silico relative ratio obRUGSto HEPATOCYTESShould be similar.
We define the following:

Ch: in vitro concentration of hepatocytes

Cs: in vitro concentration of solute

P: number ofsoLuTESin the 2D space (dfotal-Solute-Particles

H: number oHEPATOCYTESIN the 2D space
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S number of 2D spaces
dn: density ofHEPATOCYTESIN the 2D spacedf = H/9

Obviously, the total number efePATOCYTESand sOLUTES should be less than the total

number of grid spaces:

P+H<S (2.6)
Also in vitro
Cs=AV, Ch=AdV = Ai/A, = GJICy

whereCs andC;, are the apparent concentrations of solute and hepatocytes respective

A; andA; are the amounts of solute and hepatocyte Vaisdhe system volume.
P/H = a+Ci/C; (2.7)
wherea. is anin vitro to in silico unit conversion constant.

The problem is to choose such thafP andH each satisfies the above constraint for all

four drugs.

Let knax = max(G/Cy)
P/H < akmnax (2.8)

On the other hand,

P+H<SePH<(SH) -1 o PH<(1/d)-1

Consequently, the above constraint (Eq. (2.8)) will be satisfied if we clhosiseh that

(U d) — 1< okmax
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which implies

a > [(Ydy) — 1)/maxCs/Ch)

In our case th&€, was 6.67x19 (cells/ml) for all 4 drugs, and the m& was 15 pM.
Choosingd, = 0.2 yieldsa > 1.7810". Selectinger = 1.7810"(cellgpmol), P can be
calculated by Eq. (2.7):

P = 1.78x10"d,SG(uM)/Cp(cellgml).

2.1.5 Results

In Silico Biliary Excretion

The referent for this model is an vitro system used for studying primary rat
hepatocytes (20). Liu et al. (20) show that hepatocytes culturedalagen-sandwich
configuration for up to five days establish intact canalicular okdsy and reestablish
polarized excretion of organic anions and bile acidshe Jystem is a useful vitro
model for investigating the hepatobiliary disposition of compounds. The audpuo
that after the cells have been maintained in sandwich cultufiedatays, the cumulative
uptake of fH] taurocholate (a common component of bile) by the hepatocytes was
significantly higher in standard Ca-containing media, compared \wah df Ca-free
media. The difference is a consequence of accumulation of taustechmlcanalicular
spaces. °H] Taurocholate efflux from cells pre-loaded with drug for fidays was

greater in Ca-free compared with standard Ca-containing media.

Drug Uptake
Figure 2.5 shows the uptake of four drugs in well-established wsamdultured

hepatocytes using both standard and Ca-free media. Also showtheaire silico
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UPTAKE values using ISH1 optimized for each of the four drugs. The valees

calculated using equations (2.1), (2.3) and (2.4).

Table 2.1 Calculated and fixed parameter values

Parameter Enkephalin  Salicylate
In vitro Cell density (cells/ml) 6.67x10° 6.67x10°
Drug concentration (M) 1.5x10° 1.0x10°
a  (unit conversion constant) 1.7&10" 1.7810"
In silico Space Size 53x 54 53x 54
Hepatocyte Dencity 0.2 0.2
Min_Binders_per_Cell 5 5
Max_Binders_per_Cell 10 10
Min_Transporters_per_Cell 5 5
Max_Transporters_per_Cel 10 10

Table 2.2 Optimized parameter values found for
enkephalin and salicylate in standard buffer

Parameter Enkephalin Salicylate
Total_Solute_Particles 2290 153
artHepExcretionMean 0.008 0.0046
artCellAverageCapacity 0.16 0.01
artSoluteTransportinProb 0.0046 1 x10-6
artSoluteTransportOutProb 0.040 1 x10-6
artSoluteTransportCycles 1 2
artSoluteMembraneCrossinProt 0.0078 0.058
artSoluteMembraneCrossOutPrc 0.144 0.207
artMetabolizationProb 0 0
artSoluteBindingProb 0.002 0.067
artSoluteBindingCycles 3 3

The duration of then silico experiments was 20 cycles. Each unit of simulation
time was 2 cycles. Figure 2.6 shows the correlatiom dfilico andin vitro Biliary
Excretion Index and Biliary Clearance of compounds. We suggdghthia vitro and
in silico values in Figure 2.5 are experimentally indistinguishable bedhese silico

values are within the range of variability that is seen for repeated veafbaiments.
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Figure 2.5 Simulated anph vitro outputs are shown for four compounds studied in
standard and Ca-free media. The legend within the Salicylatérgmoé also applies to
the other three plots.
2.1.6 Conclusion

Using an agent based, constructive approach, we have presented aaty part
validated a set of simulation models for uptake and biliary seareti compounds by
hepatocytes growin vitro. We have demonstrated how this model can be used to

simulate thein vitro biliary excretion of drugs by hepatocytes grown in a sandwich

culture.

The models are instantiations of the mechanism hypothesizedubgtLal. (20).
Consequently, ouin silico experimental results provide direct evidence that, at the low
level of resolution used, the mechanism is an accurate repgee of the actuah vitro

events.

Although the parameters do not map directly to measurable biolagiaaterparts,
they can be estimated for a new drug using machine-leatoitg) such as Fuzzy Logic,

Neural Networks etc. One of the important, future tasks is to deratm$ow this
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model can be used to predict the biliary clearance of drugs.

The goal of scientific, biomedical simulation, in contrast to engingeimulation, is
to discover plausible mechanisms for how a system might gerspratéic behavior. In
cases where many of the elements of a process are unknown aruneecan build
families of simulations that circumscribe iarsilico behavior space that partially overlaps
the behaviors of the referent system. When building such simufatiolies, many of the
parameter values can be taken from or enlightened by data fromgibal
referents. However, many parameters remain artificiabstract. In the latter case they
provide flexibility and allow more control over the search of thedeh behavior
space. When the behaviors of these models and the referent biotygitesth begin to
converge, analysis of the artificial parameters is expaothdlp researchers generate new
hypotheses for those parts of the system that are not expéicdiiable for study in the

biological experiments.

O ' T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90
In Silico

Figure 2.6 Correlation ofn silico and in vitro biliary clearance. Circles show the
calculated values from simulatioim &ilico) results vsin vitro (R*= 0.997).
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2.2 Prediction of In Vitro Hepatic Biliary Excretion Using

Stochastic Agent-Based Modeling and Fuzzy Clusterip

2.2.1 Introduction

Accurate estimation of a drug's hepatic disposition (including lepattabolism,
protein binding, intracellular sequestration, and biliary excret®m) ¢rucial step in the
development of clinically practical drugs. Early in the reiwg development process
there is often a considerable over supply of candidates. Sumabléeco methods can
help narrow the list of candidate compounds to a manageable number egjoreing
expensive wet-lab evaluation and screening of those sel&3ed84). Compounds that
are likely to have undesirable metabolic and excretory pregemnged to be culled from
the list. The current most widely usiedsilico methods rely on correlational techniques
rather than estimates based on knowledge of the mechanisms involvedocu&/eon
modeling the biliary excretion of compounds at the mechanistic. lesliary excretion
is a relatively complex process involving translocation actosssinusoidal membrane,
movement through the cytoplasm, and transport across the canalmatabrane.
Different transporters can be involved, as can metabolism. éfittlc spatial
organization may be important. Competitive interactions can occueéet these

components and other compounds undergoing the same processes.

Numerousin vitro systems (e.g., isolated perfused livers, isolated hepatocyte,
short-term cultured hepatocyte couplets and long term sandwich culiepadocytes)

have been used to investigate biliary excretion. Inrth&tro sandwich-culture system,

! Adapted from (10)with minor revisions
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bile can be sequestered in spaces (small lumens) creatadjdnent hepatocytes that
have formed tight junctions between themselves, as illustratégure 2.2A. The tight
junctions function as a seal between the luminal contents and extezda. For the
low resolution model described herein, the system has been broadly subditidéree
spaces: intracellular (cytosol), canalicular lumen, and the inoabatedium. In then
vitro system, C# is responsible for maintaining the barrier function of the tighttjons:
they form a seal between the canalicular lumen and the incodatifer. The barrier
can be disrupted by depletion of ®&a When that is done, the solution (biliary
secretions from hepatocytes) that had accumulated in theatdaalumen spaces mixes
with the incubation medium. The cumulative uptake when the stanuedd is used
represents the amount of substrate both intracellular (cytosol)natiteicanalicular
lumen. However, when Ca-free media is used, the cumulative umpkesents the
amount of substrate in cytosolic compartment only (20). Thus, thardarmb substrate
excreted in the canalicular lumen (iig.vitro counterpart to biliary excretion) can be
estimated from the difference between the cumulative uptake présence and absence
of C&*. We constructed a low-resolution (few components; limited detaitjel to test
hypotheses about the mechanistic details of biliary transpovitro and to predict
transport and excretion properties of newly encountered compounds. Téwy bil
excretion estimated by this method for several compounds is comsigtd in vivo

biliary excretion data (20).

2.2.2 The Model

We use agent-directed programming to construct the model. Withim tsiéco
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hepatocytes (ISH) we represent cells using fixed agentsdpla@e2D grid where mobile
objects mapping to solute can interact with them stochdgticalhe ISH used here
(ISH2) is the very similar to that presented and describedaursly in Section 2.1. The
descriptions that follow are consequently brief, yet sufficiemt dlarity. Consult

Section 2.1 for additional detail.

To avoid confusion hereafter and clearly distinguistitro components and features
from theirin silico counterparts, such as a “hepatocyte,” a “solute,” or “excirateduse
SMALL CAPS when referring to thén silico system. We model the canalicular lumen
(center, Figure 2.2A) as an object acting as a container ittedgmulateHEPATOCYTE
into whichsoLUTEScan beEXCRETED by TRANSPORTERS ~ Simply eliminating this space
simulates C& disruption of tight junctions and mixing of what would have been luminal
contents with the extracellular media, as illustrated in réig2.2. The Incubation
Mediumis represented by a 2D square grid in whielRATOCYTESand SOLUTES can be
placed to interact with each other. Drug Compoursis UTES are represented as
independent, mobile objects that move stochastically (using a Moaykboehood),
governed by the flow of the incubation medium. During an experiment, \ttiet e
histories ofsoLuTES(and other objects), such asLUTE that has beemRANSPORTEDOUL
of a CELL, or that has diffused into @LL, can be tracked individually or as groups.
SoLuTES are initially placed uniformly and randomly in the space extetaal
HEPATOCYTES At each simulation cycle, sOLUTE may stay in place or move randomly
in one of eight directions (N, NE, E, SE, S, SW, W or NW with a probability of 1/9 each).
A SOLUTE may, depending on its properti®@aRTITION into an encounteredePATOCYTE

There is also a chance that it may be transported (activglgried) into theceLL by
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TRANSPORTERS  The pseudorandom numbers were generated from a uniform

distribution using a Mersenne Twister random number generator.

HEPATOCYTESare constructed from objects that map to corresponding hepatocyte
components and the environment: factors that can dmud,; ENZYMES, TRANSPORTERS
and a space f@ILIARY excretion. ABINDER is an object that can bind or sequester free
soLUTE and hold onto it for a specified number of binding cycles. EARYME is a
specialized form ofBINDER. It can METABOLIZE a boundsoOLUTE by replacing it,
following the binding period, with ateTaBoLITE and then destroying the replaced
soLUTE (for more details see Section 2.1, and (6, 25JRANSPORTERSElONg to a
subclass oBINDERS. They can bind a freeoLUTE that is either inside or outsidecalLl,
and transport it to the opposite side of t®L MEMBRANE, independent of the local
SOLUTE  density. Three important TRANSPORTER  parameters are
Transport-idout_probability (it specifies the probability of binding a givesoLUTE),
Binding_cycles (specifies how many cycles &OLUTE remains attached), and
EXCRETION_SPACE (the location of excretesbbLUTESunNtil removal to afEXTRACELLULAR
space). In cultures with &a SOLUTES in the EXCRETION SPACE are not removed
simulating that they are “sealed” within a luminal spaee if Figure 2.2A).
Excretion_Meandetermines the average numbersofLUTE in this space. ASOLUTE
within the space may move back into te.L (e-to-d in Figure 2.2A), depending on its

physicochemical properties.

In Silico Dynamics
Two parametersSolute_ Membrane_Cross-In_Probabilagd Average Cell_Cap-

acity, determine when a freeOLUTE in the ‘INCUBATION MEDIUM” space that has
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encountered a cell may enter it. The former, which is goveynedluTE properties, is
the probability that thesoLUTE enters theceELL passively. The latter, the mean of an
exponential distribution, determines the number of objectsLa can accommodate by
passive transport. The probability of partitioning intoeaL decreases with increasing
INTRACELLULAR SOLUTE. Each unbountTRACELLULAR SOLUTE may also partition out

with a probability ofSolute_Membrane_Cross-Out_Probability.

If a soLuTEfalls to enter thecELL by passive transport, it will be given a chance to
bind, with probability oftransport-in_probability with a transporter by which it is
recognized. If recognized, it is transported into thelL. We assume that

TRANSPORTERSare placed randomly withinGELL MEMBRANE.

Once anNTRACELLULAR SOLUTE is bound, there is chance that it will get excreted
based on an exponential probability distribution with meacrete_Mean If excreted,
it will be removed by external spaces. If not removed, theriggis to solute “sealed”
between hepatocytes. If not excreted, $®.UTE is treated as if it had been
TRANSPORTEDOUt by the basolateralEMBRANE TRANSPORTER and is transferred back to
the 2D extracellular space (the simulated incubation medium) in the nexttsamighzcle.
SOLUTE within HEPATOCYTES maps to substrate in the cytosol. oL8TE in the
EXCRETION SPACEmMaps to material excreted into the canalicular lumen (bilEpr both

standard and Ca-free media, thesilico cumulativeuPTAKE was calculated bkqg. (2.1).

When the Ca-free media is being simulated, the average numbarrefeel objects

(Excrete_Meahwas set to zero to simulate the effect of‘@epletion.
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Parameter Tuning

The ISH2 parameter space consists of several differeninpten types, some of
which directly map to measurable biological counterparts. Homwewvest of the
parameters are simulation-specific with no direct biologioghicance. The ISH2
behavior space of the model partially overlaps with the behavioiseakterent system
when parameters have been appropriately tuned (adjusted). By so deimgake the
ISH2 behavior space converge on the behavior space of thentesgstem. In general,
the parameter hyperspace of this model consists of both biologioakyingful (e.g.
cell/lcompound density) and simulation-specific parameters (e.gqudinigi or
membrane-crossing probabilities) that enable simulation ofteardeehaviors. Whereas
the simulation-specific parameters have no particular constrainés biologically
meaningful parameters are constrained to stay within reasondbks o that, at a
minimum, outcomes are consistent with cell life). Optimizingvihele parameter vector
makes it easier to find solutions within the constrained regior. failure of
optimization might be caused by false (biologically unrea)stiechanisms implemented
in the model. On the other hand, a successful optimization provdes sieasure of
validation for the implemented mechanisms. Doing so, however, is notl afgtas
paper: we have already validated this model against data focdoopounds (Section

2.1).

This parameter tuning can be done by optimization methods. Sincmdbe is
stochastic and therefore has discontinuity and noise in its behavice, spramary
gradient-based Newton and quasi-Newton optimization techniques, whichraneonly

used for differential equations parameter tuning, cannot be applied. rhidierg-based
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methods such as GAs (genetic algorithms) or Nelder and Meaplegirmethod (27)

would be more successful.

After each simulation experiment a similarity measure (8igorithm (22) assigns
a similarity score to the output of the simulation. This scooxiges a measure of
similarity of the current output to the referent experimentdb.daThe goal is to
maximize the SM score. The optimization algorithm used is tekeldd and Mead
Simplex (27) method that has been widely used (28, 29, 30, 31) to soirezapbn
problems with discontinuities or where function values are noisy. ongrhe several
different versions and extensions of this method, we used the onéeddsar(32) with

minor changes (see Appendix A for details).

Parameter Estimation

In this section we present an algorithm which uses FCM to a&tgtithe simulation
parameters of enkephalin knowing the tuned parameters of salidgatecholate, and
methotrexate. Three compounds are minimal. It is, howevéienf to demonstrate
the approach. In an industry setting, data on many more compound= \aNailable.
The four compounds were classified to two and three clusters Gsirmy c-Means
algorithm based on a selection of physicochemical propertiesatieatexpected to
contribute to biliary clearance of the compounds. Initially the ovalg
physicochemical properties were considered: molecular weiggE, Ihydrogen bond
donor count, hydrogen bond acceptor count, rotatable bond count, tautomer count, pKa,
TPSA, volume, GPCR ligand, ion channel modulator, kinase inhibitor, and nuclea
receptor ligand. The results are shown in Table 2.3. See Appeniix d&tails on

Fuzzy c-Means algorithm.
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Table 2.3 Fuzzy classification results of salicylate, tswstate, enkephalin and
methotrexate based on their physicochemical properties (Table @.3)umber of
clusters.

C Group Sal. Taur. Meth. Enkeph.

2 1 0.9862 0.0736 0.2308 0.1529
2 0.0138 0.9264 0.7692 0.8471

3 1 0.9981 0.0997 0.0492 0.0096
2 0.0011 0.5492 0.8639 0.0291
3 0.0007 0.3511 0.0869 0.9614

Table 2.4 Physicochemical properties of salicylate,
taurocholate, methotrexate and enkephalin.

Propertyl Sal. Taur. Meth. Enkeph.

MW 140.1 515.7 454.4 645.8
logP 224 001 -1.28 201
HBD count 2 5 5 7
HBA count 3 7 12 8

RB count 1 7 9 7
Tautomer 4 2 24 32
count

pKa 297 1.8 4.7 10
TPSA 575 144.1 210.6 199.9
Volume 119.1 483.1 387.4 569.7

GPCRligand -0.44 -0.26 0.22 -0.19
IC modulator -0.08 -0.15 0.02 -1.05

Kinase -0.65 -0.47 0.11 -0.84
inhibitor
NR ligand -0.58 -0.08 -0.36 -0.58

The results show that when divided into two groups, taurocholate, enkephalin, and
methotrexate have more membership in the same group while dalibgdiongs to
another. However, when divided to 3 groups, taurocholate and methotrexate have

membership in the same group while enkephalin and salicylate bedouigfférent

1 MW: molecular weight; HBD: hydrogen bond donor; AtBhydrogen bond acceptor, RB: rotatable bond,
TPSA: topological polar surface area, GPCR: G-pneteupled receptor, NR: nuclear receptor, IC: ion
channelProperty values were obtained from the followingrses.
http://www.molinspiration.com/cgi-bin/propertiestmt//www.syrres.com/esc/est_kowdemo.htm; and
http://ibmlc2.chem.uga.edu/sparc/index.cfm.
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groups.

Knowing the similarity of the compounds in the physicochemical donves
approximated their model parameter values assuming that diynilar the
physicochemical domain maps to similarity in the model pammdamain. A set of
simulation parameters is acceptable for a compound if it produnetated results that
aregood enougtior the questions or research task at hand, i.e. facilitatsioleechaking
during early drug selection and development. The Similarity Measgorithm is used
to measure the quality of the output. Given the preceding assumbkbopatameter
vector of compound is estimated as the weighted average ofirthsilico parameter
vectors of the other compounds. The proportional relevance of the parametor of

compound Y, depends on the degree of similarit¢ ahdY.

In general, for a data set, S, containing n compounds $={c., ¢}, the PEAF
algorithm (page 51) was used to estimate the simulation paentéta new compound,

Ch+1-

The accuracy of this estimation depends, of course, on how many comgouitals

to compound X exist in the data set.

2.2.3 Results

The referent for this model is an vitro system used for studying primary rat
hepatocytes (20). Liu et al. (20) show that hepatocytes culturedalagen-sandwich
configuration for up to five days establish intact canalicular okdsvand reestablish
polarized excretion of organic anions and bile acids. The syistemusefulin vitro
model for investigating the hepatobiliary disposition of compounds. The au#pand
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that after the cells have been maintained sandwich culture foddiyg the cumulative
uptake of fH] taurocholate (a common component of bile) by the hepatocytes was
significantly higher in standard Ca-containing media, compared tvdah of Ca-free
media. The difference is a consequence of accumulation of tawateehointracellular
and canalicular spaces established during the prior culture peritht]. Tdurocholate
efflux from cells pre-loaded with drug for five days was gremt€a-free compared with
standard Ca-containing media. There is, of course, variability bittinvand between

experiments.

Figure 2.7 shows the correlations betweaervitro hepatocyteand in silico ISH2
uptake values at different times. Tire vitro values were obtained 20, 24) using
well-established, sandwich-cultured hepatocytes usath standard and Ca-free media.
Thein silico UPTAKE values were calculated using the equation (Bdl). The ISH2

parameter values for each drug were iteratively optimized as reportedtiar2.1.
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Figure 2.7 Correlation betweem vitro andin silico uptake values at four different times
for standard (black circles) and Ca-free media (gray circles). rmthi¢ times were 0.5,
2, 5 and 10 minutes.

The measured uptake of enkephalin in well-established, sandwidhecult
hepatocytes, using both standard and Ca-free media, is presentgdrin ZBA. Also
shown is the model-predicted time courseirofvitro enkephalinuPTAKE under those
same two conditions. In Figure 2.8B the matches to both types a@feupte shown
when model parameter values are iteratively tuned Section 2.1. thiNdtéhein vitro
uptake of enkephalin is about four times that of taurocholate, which has the largkst upt

of the three compounds). The predicted uptake of enkephalin in theeeChrffer
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reaches its steady state too early. This might be dueetsaturation of the uptake
transporters used in the model. Theilico concentration of enkephalin is much higher

than for the other three, and that may be a reason for saturation.

Table 2.5 Tuned vs. Estimated parameter values for Enkephalin.

Parameter Tuned Estimated
ExcretionMean 1.20 0.51
BindersPerCellMin 5 5
BindersPerCellMax 10 10
CellAverageCapacity 0.19 1.15
TransportersPerCellMin 5 5
TransportersPerCellMax 10 10
SoluteTransportinProb 0.016 0.023
SoluteTransportOutProb 0.0808 0.14
SoluteTransportCycles 1 2

SoluteMembraneCrossinProb 0.012 0.035
SoluteMembraneCrossOutPr¢ 0.095 0.37

MetabolizationProb 0 0
SoluteBindingProb 0.032 0.052
SoluteBindingCycles 4 3

2.2.4 Conclusion and Discussion

In Section 2.1 we present an earlier version of the ISH2 thapas properly tuning
its parameters, capable of mimicking its biological refexentn this section, we use
ISH2 topredictthe behavior of the referent system when introduced to a new compound
not previously encountered. In order to predict that behavior, we needsts e
estimatean appropriate set of parameter values. In this work we usagldaithm (the
PEAF algorithm) to estimate those values. It utilizes Fugzyleans to cluster
previously encountered compounds based on their physicochemical proffadie®

2.8). Our FCM approach offers three important advantages:

1. Because FCM is an unsupervised learning method (it does not neettaméea
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with training data to work) the problem of over-fitting to the tragndata is minimized.

That is particularly important in our case due to the small size of our data set.

2. It provides soft clusters. They are more biologically realisan the hard crisp

clusters.

3. Unlike other classification methods (such as ANNs) the FCM oebds to

specify a few parameters. In fact, in the algorithm preseittdths onlym and G,

where we chos& = | (the Identity matrix).

Space of
Physicochemical
and Biological

Properties

Parameter
Space of
Agent-Based

Parameter
Prediction

In Vivo/Vitro
Behavior
Space

In Silico
Behavior
Space

overlap

Figure 2.8 The ISH2 parameter space consists of both biologicagningful and

simulation-specific parameters. The ISH2 behavior spacealpariverlaps that of the
referent system. By properly adjusting parameters, we makésth2 behavior space
converge on the behavior space of the referent system. Pargneelietion is a direct
mapping from physicochemical properties to the ISH2 parametee.sp&arameter
tuning draws its information from the biological behavior space.

We now discuss acceptability of the results in Figure 2.9: Wekperiments, there
can be orders of magnitude differences between active and papsake of different
compounds along with comparable differences in biliary excretionpicdly, the

uptake and biliary excretion values of the same compound, betweennexuisti using
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essentially the same experimental system, is within torfaaf two. The results of
simulations can be more precise, but without drawing on additional iafam their
predictive accuracy can not be better. The simulations destrdvedare intended to be
analogous to repeat vitro experiments: an observer should not be able to distinguish
between data coming from a repaavitro experiment and data from an experiment on a
tuned ISH2. With those model use expectations set, the resultgyure .9 are
minimally acceptable. They agwod enougho facilitate decision making during early
drug selection and development. The simulated enkephalin results sed dra the
uptake data of only three other compounds. Our expectation is thatthéetove
procedure is used with descendants of model in Figure 2.2 to predioptidee and
excretion properties of future new compounds, the usefulness of pdedéstgdts will

improve with each expansion of the set of successfully represented compounds.

The traditional approach to predicting the vitro andin vivo properties of new
compounds is to search for patterns within large data sets of measured bigipeaty
data and then to seek patterns within the set of compound property wlileose
compounds for which correlations exist. Knowledge about the mechanisms tha
generated the biological data is only used indirectly. A contabubf this section is
offering a method for combining both the knowledge of mechanisms and teenpat
found in the space of the physicochemical and biological propertiehe models and
approach described here are designed to leverage that knowledgprésenting and
improving our understanding of the generative relationships within thetthiological
system. The generative relationships between components withiSH2estand as a

hypothesis of how the correspondimgvitro phenomena may be generated. As such,
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the hybrid approach presented here is expected to significampiyove our ability to
anticipate the biological properties of compounds of interest. Theoagh is new:
more work is needed to uncover and understand limitations and neateliadvantages

relative to other methods typically used (optimization, data fitting etc.).
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Figure 2.9 Comparisons of enkephalin uptakeyitro and simulated, for two different
growth conditions; the simulations use either the estimated (A)nad (B) parameter
values (Table 2.5). Within each graph the simulated results (ldgclbols) are
contrasted to then vitro data (unfilled, gray symbols). Circles are cumulative uptake
and biliary excretion values in standard media (with"Cia vitro (gray) andin silico
(black). Squares are cumulative uptake values in Ca-free nmeditto (gray) andin
silico (black). The simulated results were generated using tragivedy tuned ISH2
parameter set reported in Section 2.1.
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2.3 Parameter Estimation via Analysis of Fuzzy Clusters
(PEAF): An Algorithm to Estimate Parameters of Agen-Based

Models'

2.3.1 Introduction

Agent-based modeling is being used in a variety of fields: exanpbtude social
sciences (35, 36, 37, 38, 39), supply chain optimization and logistics; moaxling
consumer behavior; distributed computing; workforce management; iafi@gement;
portfolio management; complex systems, artificial life, gengtogramming and genetic
evolution 40, 41, 42, 43, 44, 45); bacterial chemotaxis signaling path{#ays46);
population ecology (47, 48, 49); social and economic systems (43, 50, 51k|katat c

behavior (24, 25, 52, 53, 54).

Agent-based models commonly require many parameters. Togéidnerlétermine
the global dynamics of the system. Small changes made tpavameter can lead to an
important change of the dynamics of the entire system. Consequelghyjfying
informative and plausibly realistic regions of parameter spacexXploration can be
time-intensive (55). Several automated techniques have been usadinmtche Nelder
and Mead Simplex Method (27) and Genetic Algorithms (55). Once paanesttors
have been identified that are suitable for several situations, an@ecame interested in
predicting system behavior for a new situation. In this papepnopose a method to

estimate such parameters based on previously seen cases inoopeditt system

! Adapted from (1213) with minor revisions
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behavior for a new situation. The proposed method uses the Fuzzy-c-MEHns (
classification algorithm. As a proof of concept we apply the metbagh agent-based

model of hepatocytes, and make predictions.

2.3.2 Methods

Parameters of Agent-Based Models

Parameters in biologically focused, agent-based simulation soxbel be of
different natures. Some map directly to real-world, measurableerpanis and some are
simulation-specific with no direct real-life counterpart. Soofethe former can be
extracted from domain-specific knowledge (either experimentdhewretical). Others

are design-specific.

A model’s behavior space is expected to overlap somewhat witthetiaevior space
of the referent system. Achieving that requires that modehedess be appropriately
tuned (adjusted) to represent desired real-life situations. Eatfifeesituation has
measurable properties (phenotypic attributes), which define its umio@mecteristics
(phenotype). Each simulated situation is similarly charactktigeits unique simulation

parameters.

In real-life situations, a causal relationship exists betwe@aergéve mechanisms
and measured properties. A similar mapping exists for hepasosiytailations. We
follow an axiom that in many cases a mapping exists betweespte of selected,
measured properties and the space of simulation parameter Vatpues. 2.10 illustrates
this axiom: three different real-life situations are showuo, of which are closer together
in the space of measurable properties. The arrangement of gidhplsgnomena relative
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to the arrangement of simulation parameters may differ frotroftraal life, even though
their relative distances to each other are more or lessasiriévertheless, as a first
approximation, we assume that the relationship between a new phenoarehots
acceptable simulation parameters can be approximated fropogison relative to

acceptable, previously simulated situations.

3 a0
= &,
9

Space of Measurable Properties Space of Simulation Parameters

Figure 2.10 Systensituations with related, measurable properties and generating
mechanisms are expected to have similarly relatedjlico properties and generating
mechanisms.

The PEAF Algorithm

In this section we present an algorithm that uses Fuzzy chgtés estimate
simulation parameters for a new situation given the tuned paesmeft several,
previously validated situations. A Fuzzy classifier provides asaoreaof the degree to
which a pattern fits within a class. There are severdintques for Fuzzy pattern
recognition. In this work, we use a Fuzzy pattern recognitionnigue introduced in

(56): the Fuzzy c-Means iterative algorithm.

The inputs of the Fuzzy c-Means algorithm are: 1) the set oftan tants to be

clustered, 2) number of clusters ¢, and 3) a parameter m known Bszthe exponent.
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As recommended by (57) we always set m = 2. The output of Fulleans algorithm,
U, is a c-by-n matrix, containing the values of the membershiptibns of the fuzzy

clusters.

In general, for a data set, S, containing n situations S,=<jc.., G}, the following
PEAF algorithm is proposed to estimate the simulation parasnetes new situation,

cn+1:
Step 1. Letq=n, and Snew={cG... C,, G+1}-

Step 2. If g = 1 go to step 4. Else, classify Snew into qteckisusing Fuzzy

c-Means algorithm.

Step 3. If g+1is not in the same group with at least another member theradeae

to g-1. Repeat steps 2 and 3.
Else, let G-value be the number of groupmates.af Go to step 4.

Step 4. Call the g groups:G5; ... Gy where g+1 € G;. Let uk be the membership

degree of g1 to Gk. Estimate the simulation parameters,f &s:

'gx = quk ) IgGk (2.9)

q
k=1

wherePgy is the weighted average parameter vector of all the members of group k:
(2.10)

The accuracy or usefulness of the resulting estimates depdndsyrse, on how many

situations similar to g, exist in the data set, i.e. the higher the G-value, the libter
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accuracy.

Estimating the Parameters of an Agent-Based Model

In this section we show how the PEAF algorithm can be used imagstthe
simulation parameters of an agent-based model in order to madietiores. In this
model, a situation is characterized by hepatocytes behavioe jprésence of a particular
compound. ISH2 is an agent-based model of hepatocytes (Section 2.2)ellEhare
simulated on a 2D grid; it maps to the culture dish. When hepatoasgesxposed to
different simulated drug compounds, they metabolize and eliminate teeim,vivo.
Consequently, simulation parameter values that are sensitive tsic@ttyemical
properties (PCPs) need to be different for each drug. The goal estimate the
PCP-sensitive parameter values to enable simulating the metadond transport
properties of a new drug given the parameter values similesdyl and validated for

several previously studied drugs.

To demonstrate, reconsider the four compounds shown in Table 2.4. The following
PCPs were considered: molecular weight, logP, hydrogen bond donor cygdnoiydn
bond acceptor count, rotatable bond count, tautomer count, pKa, TPSA, volunie, GPC
ligand, ion channel modulator, kinase inhibitor, and nuclear receptor ligand. The
classification results for the PCPs of the four compounds clusterédo and three
classes using the Fuzzy c-Means algorithm based on their &@€Rkown in Table 2.3.
The classification results show that when divided into two groupspdaolate,
enkephalin, and methotrexate have more membership in the same groupahtylate
belongs primarily to another. However, when divided to three groupscteolate and

methotrexate have membership in the same group, whereas enkephatialieyldte
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belong primarily to different groups.

o
:
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Figure 2.11 Prediction error decreases as G-value increases

Consider this task: based on the information in Table 2.3, we wantiroats the
PCP-sensitive parameter values of enkephalin given the correspgadargeters of the
other three compounds. There was no point in clustering the fourtdréms clusters,
so we started with three. When ¢ = 3, the Fuzzy c-Means thigoprovides no useful
information about similarity of enkephalin to others: no other compoundnvibe same
group with enkephalin (it however tells us about the dissimilafignkephalin to others).
Thus, we took an additional step and clustered the compounds to two ¢ithersc = 2,
enkephalin has two other groupmates. In that case, the best guebat ithe
PCP-sensitive parameter values for enkephalin are closer to dhote groupmates,
taurocholate and methotrexate, than to salicylate. An intuitive teagstimate a

parameter vector value for enkephalin is:

IsEnkeph = 08471(09264P1—a”r + 0'76923Meth.)

+0.15290.9862P, )
(0.9264+ 0.7692 '

wherePy is the simulation parameter vector of compound X. In this exathelé-value
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is 2 because two compounds ended up within the cluster with enkephalin.

2.3.3 Results

The PEAF algorithm was used to iteratively predict ¢learanceof the 50 drugs
(listed in

Table 2.6) in a leave-one-out process. Figure 2.11 shows that relatlietion error
decreases as tli&valueincreases: the predictions are more accurate for compounds with
more members in their clusters. Figure 2.12 shows the distributibe prediction error.

Compounds witlG-valuegreater than 1 are located close to zero.

Frequency

0
-100 0 100 200 300
Error = Observed — Predicted

Figure 2.12 The Distribution of prediction error

2.3.4 Conclusion and Discussion

In this section we proposed a simple algorithm, called PEAFjdhmsed on Fuzzy
clustering to estimate the PCP-sensitive parameter valuageot-based models. When
the model’'s parameter values are properly tuned, it is capéioémicking its referent.
The PEAF algorithm utilizes the Fuzzy c-Means (FCM) albaritto cluster previously

encounteredituationsbased on their measurable properties. The algorithm works based
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on the assumption that similarity in the space of measurable rpespenaps to the
similarity in the parameter space of the simulation modelARPBffers important
advantages: 1) because Fuzzy c-Means algorithm is unsupervisegrotiiem of
over-fitting to the training data is minimized. That is pafady important in cases
with small data sets. 2) The PEAF algorithm has no parasn@gtt is relatively easy
to implement. 4) The algorithm calculates a similarity sc@ihe G-valug which
correlates with the accuracy of its estimates: the hidigesdore, the higher the expected
precision. As a result, the algorithm can advise in advance on thwaeg of its

predictions.

As a proof of concept, we utilized the PEAF algorithm to esérntfae PCP-sensitive
parameter values of the ISH2 poedict the behavior of the referent system when it is
introduced to a new compound not previously encountered. Note that parameter
prediction is a direct mapping from the space of PCPs to the Hairineter space,
whereas parameter tuning draws its information from the bi@bgehavior space. The
estimated parameter values were fed to the ISH2 to enaldlaniake predictions. The
predictions were compared to the observed measurements. For the dfevifty
compounds with G-values > 1 the predictions correlate nicely witbliberved values as
shown in Figure 2.13 (p < 0.052R 0.68). We expect that as the number of drugs in the
database increases, the probability that a compound similarnewhene of interest will

exist in the database will increase; as a result better predictions eanidipated.

Table 2.6 The Clearance values of 50 drugs (58) and their pebdaiiges. Compounds
with G-value>1 are shown in Bold.
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Drug Name

Bromocriptine
Caffeine
Carbamazepine
Cimetidine
Cyclosporin A
Diazepam
Ethinylestradiol
Famotidine
Isradipine
Lorazepam
Midazolam
Nifedipine
Nitrendipine
Omeprazole
Prazosin
Propofol
Ritonavir
Temazepam
Triazolam
Zileuton
Acebutolol
Atenolol
Bepridil
Betaxolol
Bisoprolol
Carvedilol
Chlorpheniramine
Clozapine
Codeine
Desipramine
Dextromethorphan
Diltiazem
Diphenhydramine
Doxepin
Fluoxetine
Granisetron
Imipramine
Metoprolol
Morphine
Nadolol

Clearance
(uL/min/10° cells)
Observed Predicte(
37 7.039
3.3 103.8
2.0 99.02
1.2 0.124
35 + 18.36
0.3 13.46
7 +2.0 9.814
<1 17.38
18 6.214
1.0 17.37
14 +8.0 1.051
5.6 15 13.52
74 +35 5.226
1.7 47.68
23 +1.7 15.49
107 +26 9.189
21 30 1.890
2.0 0.043
1.0 14.18
21 2.521
1.8 + 16.13
<1 0.815
2.0 18.97
25 +1.0 17.19
16 +1.4 14.98
35 +11 9.964
2.8+ 1.3 5. 333
6.0 1.846
23 1.878
3.0 7.335
7.6 1 7.371
90 +05 0.066
6.0 10. 25
13 6. 090
1.0 13.16
9.0 +87 2.146
8.0 + 2. 10. 33
70 29 12.40
24 0.354
<1 21.78

G-value

P RPRPNRPRPNNRPRPRPPRPRRPNRPRPPRPRRPRPPRPRPRPRPRPRPRPPRPEPRPRPNRPRPERRR
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Drug Name Clearance G-value
(uL/min/10° cells)

Observed Predictec

41 Naloxone 216 12.35 7
42 Ondansetron 14 +05 1.202 1
43 Pindolol 2.8+1.0 0.662 2
44 Pirenzepine <1 1.167 7
45 Propranolol 10 +0.5 7.073 1
46 Ranitidine 1.0 +0.0 0.700 7l
47 Scopolamine 7.0 0.083 1
48 Triprolidine 43 £33 6.997 1
49 Verapamil 18 + 12 26.97 3
50 Cetirizine <1 28.75 1

2| p=0022 R?=0.68 y

=
o
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o
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Observed Clearance (uL/min/M cells)

0 2

10 10

Predicted Clearance

Figure 2.13 Predicted versus observed Clearance values
for compounds having G-value > 1. Dotted line is the
Identity line. 2-fold error boundaries are also shown (solid
lines).



2.4 Prediction of In Vitro Drug Clearance Using In Silico
Hepatocytes (ISH3) and Quantitative Structure to

Micromechanism Relationships

2.4.1 Introduction

In this section we present an improved ISH model, called ISH3. listemd several
autonomous micromechanisms (Figure 2.14). In previous sections, \\&iis
parameterized in part by tuning the parameter values to obtaidegieed behavior.
However in this section we do not adjust the parameters. Insteadstimate the
parameters individually for each micromechanism by directpming the mechanisms

to physicochemical properties.

2.4.2 Methods

Model Components

We used an agent-based method to construct the model (simitae tmodels
described in sections 2.1, 2.2, and 2.3). Again we represent hepatocytedixesl
composite agents placed in a 2D grid where mobile objects repngsaniute can

interact with them stochastically.

As in previous sections, to avoid confusion and clearly distinguishvitro
components and features from theairsilico counterparts, such as a “hepatocyte,” a

“solute,” or “excreted,” we use small caps when referring tortisdico system.

As shown in Figure 2.3, the incubation medium is modeled by a two donehs
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square grid space in whietePATOCYTESandsOLUTES can be placed in separate grids to

interact with each other.

* DRruaGs (soLUTES are independent, mobile objects that move stochastically,
governed by the flow of the incubation medium. During an experimene\bat
histories ofsoLuTES(and other objects) can be tracked, sucls@sJTE that has been

TRANSPORTEDOUt of acELL, or that has moved intoGELL.

* HerPATOCYTES@re autonomous agents. Each is constructed from objects that map
hepatocyte components and the environment: factors that can nonspgdiicaltdrug,
enzymes and uptake/efflux transporteffie subcomponents interact with RUG

according to four micromechanisms shown in Figure 2.14. Details follow.

* A BINDER is an object within adePATOCYTE that can bind to a free nearby
soLUTE and hold onto it for a specified number of simulation cycles (FigutdA).

Three parameters control the behavior of a binder:
Binding probability the probability that theINDER binds to a nearbyruG
Binding period specifies how many simulation cycles, #wDER holds thebrRuG

Release probabilitythe probability that thesINDER releases th®RuG after the

binding period is over.

* An ENzYMEIs a specialized form of binder. It c’RBETABOLIZE a boundsOLUTE
by replacing it, following the binding period, with NMETABOLITE and destroying the
replacedsoLuTE Currently we ignore theiETABOLITE and simply destroy thedguTE

(Figure 2.14B). In addition to thBINDER'S parameters, aENZYME has an additional
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parameter:

Metabolism probabilitythe probability that the boursbLuTE is metabolized after the

binding period has ended.

» TRANSPORTERbBelong to a subclass of binders. They can bind withsioeeTe
that is either inside or outside, and transport them to the oppositefsitie CELL
MEMBRANE, independent of the localoLuTE density (Figure 2.14C). When needed,

TRANSPORTERScan be subdivided further into specialized forms.

In Silico Events

Once a fre®RUG encounters BEPATOCYTE, three randomized events can happen:

1. Passive movement into theceLL (Figure 2.14D): Two parameters,
Membrane_Cross-In_Probabilignd Cell_Capacity determine when a freeoLUTE that
has encountered aeLL may enter it. The former, which is governed by solute
properties, is the probability that the®LUTE enters theceLL passively. The latter
determines the number of objects @LL can accommodate. Each unbound
INTRACELLULAR SOLUTE may also partition out with a probability of

Membrane_Cross-Out_Probability.

2. Active transport into theELL: the DRUG can bind to an uptakeRANSPORTERWith
probability of Uptake Transport_probability If recognized, it is transported into the

CELL. We assume thaRANSPORTERSare placed randomly withinGELL MEMBRANE.

3. Nonspecific binding to theEMBRANE: the DRUG can bind to a nonspecif®NDER

located on the outer side of tkieMBRANE.
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Once abpRUG is within thecyTtosoL one or more of the following events (in a

randomized order) occurs:

1. Passive movement out of theeLL through basalMEMBRANE according to

Basal_Membrane_Cross-out_Probability.

2. Passive movement out of tleLL through the apicallEMBRANE according to the

Apical_Membrane_Cross-out_Probability

3. Binding to a nonspecifigINDER. Once bound, it remains attached togheEeR for the
binding period of theBINDER-SOLUTE pair, after which theorRuG might be released

according to the release probability.

4. Active transport out of theeLL by binding to an apical or basal effluRANSPORTER

according to theRANSPORTERSOLUTE transport probability.

5. Binding to arenzymMmE according to th&NzyME-SOLUTE binding probability. After the
binding period has ended it might be metabolized according to thiiegpddetabolism
probability d the ENzZYME-SOLUTE pair. If not METABOLIZED, the S)LUTE is released back

to thecyTosoLaccording to its release probability.
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Figure 2.14 Schematic of four types of ISH3 micromechanisms. @W#ER binds with

a nearbysoLUTE, remains attached for a certain perid@infing_Period, and then
releases theoLUTE with a predetermined probability. If not released the proegs=ats.
(B) ENzyMES bind and releassoLUTES similar toBINDERS, however there is a specified
probability that one willMETABOLIZE the SOLUTE at the end of the binding period. (C)
TRANSPORTERSbiInd with freesoLUTES remain attached for certain period, and then
release them to the other side of tevBRANE. (D) A SOLUTE can CroSSVEMBRANES
passively with a certain probability.

Parameter Estimation

For a given set of compoundssi{i = 1,...n}, our goal is to estimate the parameter
values of the micromechanisms (Figure 2.14). The execution of tlEnetarized
micromechanisms causes emergeHARANCE properties that are mapped logically to the
observed clearance properties. We specified reasonable mappingseerbe
physicochemical properties (PCP) Xfs and the properties of micromechanisms. The
relationships, defined as independarioms are based on published literature or expert

knowledge. For example: Axiom #1: The more lipophXics, the more likely it is to be
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bound to CYP2C9 (59, 60, 61) (in other words: LogP is positively cordebaith
CYP2C9 binding). Table 2.7 shows general relationships between séyeeal of
physicochemical properties and P450 enzyme binding. Table 2.8 shatisnsHips

between physicochemical properties and membrane permeability.

After all axioms are specified, a@&coring function was defined for each

micromechanism as a weighted average of PCPs:
ScoréM) = w;-PCR +w,-PCR + ... +w,-PCR,

where M is the desired micromechanismjs a scalar which determines the degree
to which PCRinfluences M.w; is positive (negative) if PGRs positively (negatively)

correlated with M.

The score functions were defined and calculated for all micromesrhaniTable
2.11). Normalized score values were used to obtain the desiredepararalues. Details

follow.

P450 Binding and Metabolism

We consider the six major forms of P450 isozymes that are ynawdlved in the
metabolism of xenobiotics in man (59): CYP3A4, CYP2D6, CYP2C9, CYP1A2,
CYP2C19, and CYP2E1 with 34%, 19%, 16%, 8%, 8% and 4% involvement in drug

oxidation, respectively (61).
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Table 2.7. Influential PCPs on P450 enzyme binding. An upward arrow indicates positive,
and a downward arrow indicates negative correlation.

property Iz 92 QE’ <2 0o Wp 2 22
oS OB 0B 0B 0B o5 R [&
>E >E >E >E >E£E >E£E <£ w09
O8 O=o (O] O O (OS] o o o &

Molecular ) (M (M V)
Sie Weight (60) (61) (61 (59
(60)
(62)
Rotatalle (M (M) (M )
Flexiilty ~ oond Coun (60) (60) (60) (60)
logF (T (T (M (M M M
59 (59) (B9 (B9 (61 (59
(60) (60)
Lipophilicity (61)
logD M
(60)
Hydrogen (M (M () (™)
2t Bt (59 (67 (60 (69
Coun (60) (61)
Acidity (61)
Hydrogen (M ) M
Bond
Heesior (60) (61) (60) (62)
Coun
pKa (™ (M (M
(59 (61 (59
Max fraction (M
lonization  ionized af (60)
pH=7.4
lonization (™) 3) @)
Potential
reri i feo) (67) (60)
Polar surface D)
area (PSA (60)
Polarity
Dipole (¥)
momen (61)

! Highest occupied molecular orbit.
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Table 2.8. Relationship between physicochemical properties and membraealmbiyn
(membrane diffusion and transport). An upward arrow indicates positive, and a
downward arrow indicates negative correlation.

Membrane caco-2 ABCB1 ABCB1
diffusion  permeability substrate’ non-substratée
Molecular (1) (58 >400(62) <400(62)
Weight
Number of N >8 (62) <4(62)
and O atoms
logD-.4 (T) (63
logP (1) (59
Acidic pKa <4(62)
Basic pKa <8(62)
lonization (4) (59

polarvander  (1)(58) (4)(63

Waals’ surface
area (=TPSA)
! “rule of fours”(62).

Table 2.9. Calculation of individual micromechanism scores as linear function¥sf PC

CYP3A4 binding score
CYP2D6 binding score
CYP2C9 binding score
CYP 1A2 binding score
CYP 2C19 binding score
CYP 2E1 binding score
P450 binding score

p450 rate of metabolism
score

caco-2 permeability scor
P-gP substrate score
P-gP nonsubstrate score

MEMBRANE diffusion
score
! Acidic pKa was used.

BSzas= MW + 21ogP + IP + pKa.igid)/3

BS;pe= (MW + logP + TPSA + DM)/3

BS;co= (RBC + 3logP + 3HBD + HBC - pKa')/3

BS;a2= (RBC + logP + HBD + HBA + pKg@gic— IP — DM)/3
BS;c1o= (MW + RBC + logP + HBA- HBD)/3

BS;e;= (MW + 2logP + HBD + HBA)/3

BSess0= (RBC + logD 7.5)/3

MSpss0= MFI + IP

PSacoo= logD 7.5 + TPSA

SS.gp= (MW — 400)/400 + (ONG- 8)/8 + (4— pKaciaid/4
NSp.4p= (400— MW)/400 + (4— ONC)/4 + (8- pKansd/8
MDS =- MFI + TPSA + logP- MW

Abbreviations: MW:Molecular Weight, RBC:Rotatablemi Count, HBD:Hydrogen Bond Donor
Count, HBC:Hydrogen Bond Acceptor Count, MFI: Ma&adtion ionized at pH=7.4, IP: lonization
Potential, TPSA: Topological Polar Surface Area, :dpole Moment, ONC: O+N atom count.
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Calculation of Overall CYP binding score (B&yp)

BScyp was calculated as an average of the six CYP binding scolighteg by their

percent involvement in drug oxidation:

BScyp= 0.34BS;3a4+ 0.19BS;ps+ 0.16BSyc9+ 0.08BSia2+ 0.08BSyc19+ 0.04BSe1+ 0.112BSpss0

Overall P-gP (apical efflux) transport score was calculated as:
TSp.gr (SS—gP_ NSP-QF’)/2

Calculation of Overall Basal Uptake Transport score (UT&usa)
Assuming P&ico-o~ UTSiasa+ TSe-ge (for simplicity reasons hepatic apical uptake was

neglected), we have:
UTSpasai= PSRaco-2— TSD-gP

Calculation of Simulation Parameters from Scores

Parameter values for th® compound were calculated from above scores as follows:

pCypBind= 0.9 {B&yp; — min (B&yp) }/{max(BScyp) — min (B&yp)} +0.05
pCypMetabolize= 0.9 { MS.us0i — Min (MS,a59 Y{mMax(MS;as9 — min (MSusg} +0.05
pUptakeTransport= 0.9 { UTSasai — Min (UTSasa) H{mMax(UT Spasa) — Min (UT Sasq)} +0.05
pEffluxTransport= 0.9 { TS.gpi — min (TSe.gp Y{Max(TSp.g9) — min (TS.g9} +0.05

(both apical and bassEMBRANES used the sanTBRANSPORTproperties)

pCypReleases 1 — sqrtpCypBing)
(The above equation was used to make the probability of remainimgl lgvaater than

the probability of binding).

pBasalCrossin= 0.5 { TS.gpi—min (TSe-gp) Y{max(TSp.q9 — min (TSge} + 0.01
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pBasalCrossOut 0.01pBasalCrossin
pApicalCrossin= 0.1pBasalCrossin
pApicalCrossOuyt= 0.01pBasalCrossin

Other parameters were kept constant fobRlGSs

nCypEnzymesPerCe# 3
nCypBindingCycles 2
nUptakeTransporterPerCelE 1
nUptakeTransportCycles 2
nEffluxTransporterPerCelE 1
nEffluxTransportCycles 2

nCellCapacity= 10

Crude In Silico Clearance Measurements

In vitro intrinsic clearance can be calculated using area waerentration curve
and dose: Cl; = dose/AUC. We used a similar method to calcuiatsilico intrinsic
clearance. The time course of fractionsafLUTES in EXTRACELLULAR space during the
simulation was recorded. Note that the area under this fractiva (AUFG; siico) maps
to the area under concentration curve divided by the dose (AUC/dosegqUenty the

in silico CLwas calculated asCLi, sjico = DOSHFAUC = 1/AUFG; siico.

Calculation of CL;y Predictions
Predicted ISH3 CL values were calculated in a leave-one-outananrfollows: the

i™ crudein silico CL (CLeuei) (Table 2.11) was taken out of the set of the 39 values, and

! Volume of distribution (V) is not defineid silico.
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its predicted CLvalue was calculated asc@lg).( Clcrugei). Scale is chosen such that

optimally transforms the remaining 38 CL values within the 95% confidence ilsterva

For comparison, CL values were predicted using multiple regrefgiB) as well. MR
predictions were also calculated in a leave-one-out manner. Each time qmiodnvas
taken out of the data set, the regression parameter valuescalergated for the

remaining 72 compounds. Independent variables were the PCPs (Table 2.7).

2.4.3 Results

Table 2.10 shows reported humam,yvitro, hepatic intrinsic clearance values of 73
compounds (58, 64, 65). For 39, of those compounds more than two reported vatues we
available (n>2), for which we were able to construct 95% confidenee/als. The Table
also shows the class of the drugs according to the Biopharmac@ldssification
System (BCS) (66). 17 compounds belong to Class 1 (high permeabilitysdiigoility),

6 compounds belong to Class 2 (high permeability, low solubility), 6 compdshoisg
to Class 3 (low permeability, high solubility), and only 1 compound belom@3ass 4
(low permeability, low solubility). BCS classifications wen®t available for other

compounds.

Table 2.11 shows the crude averagssilico clearance measurements for 10 Monte
Carlo simulation runs. The simulation parameters for each drug estimated as
described in Methods (Section 2.4.2). No parameter tuning was carrieBredicted
clearance values are shown in Table 2.12. 77% of the predictednclearalues were
within 95% confidence interval of then vitro clearance values. For comparison,

predicted values obtained by multiple regression are also shown; 3B#sefvalues fall
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within the 95% confidence interval. The Table also shows the B&S off drugs. If we
limit attention to the individual BCS classes we can see lilegprtedictions for 12 out of
13 (92%) class 1 compounds, 1 out of 2 (50%) class 2 compounds, and 6 out 6 (100%)

class 3 compounds are acceptable.

2.4.4 Discussion

In this section we presented a 2-step method to estimate paraaiegons for ISH3
micromechanisms in order to predict vitro hepatic clearance of drugs. First, we
specified linear mappings between physicochemical propertiess{R@E properties of
ISH3 micromechanisms. The mappings were based on published quantitative
structure-activity relationships found in the literature. Theyngformed a compound
from its space of physicochemical properties tonesimensional score space, whemés
the number of micromechanism parameters. Next, the score vaduesised to estimate
the parameters of micromechanisms. In doing so we assumguhthateter values have
positive correlation with score values, such that higher scorak medarger parameter

values and vice versa.

The linear mappings and the parameter estimation method pe$emesn impose
biological constrains and requirements on the space of softwarbam&ms (and
parameterizations) that can cause the emergence of acceptsitie clearance values.
Doing so shrinks the mechanism space. A continuation of this prockdsadli to in
silico micromechanisms and parameterizations that increasinglycntimeir in vitro

counterparts.
For comparison, we used multiple regression (MR) analysis to cpredivitro

70



clearance from PCPs. The accuracy of MR predictions wgasisantly less than that of
ISH3 predictions. Sophisticated data mining (inductive) techniques sig¥iMor ANN
might provide more accurate predictions. However such methods do not prosigi i
into the underlying mechanisms that play roles in emergenite gghenomenonn( vitro

hepatic clearance of drugs).

Table 2.10 Humain vitro hepatic intrinsic clearance of 73 compounds. We were able to
construct 95% confidence intervals for only 39. Data is compiled (&@n64, 65). BCS
classes are reported in (66).

Compound name BCS' Human CLint number of 95% confidence
class (uL/min/1e6 cells) samples (n) interval
Average SD
1 Bromocriptine n/a 37.00 1
2 Caffeine 1 1.60 1.61 3 -2.40 5.60
3 Carbamazepine 2 2.00 1
4  Cimetidine 3 1.20 0.40 9 0.89 151
5 Cyclosporin A 2 3.50 1.50 8 2.25 4.75
6 Diazepam 1 0.80 0.56 3 -0.568 2.18
7  Ethinyl estradiol 1 7.00 2.00 5 4.52 9.48
8 Famotidine 3 0.50 0.50 6 -0.02 1.02
9 Isradipine n/a 18.00 1
10 Lorazepam n/a 0.52 0.41 3 -0.50 1.55
11 Midazolam 1 11.64 16.32 7 -3.45 26.73
12 Nifedipine 1 5.95 7.66 7 -1.13 13.03
13 Nitrendipine n/a 7.98 12.52 9 -1.65 17.60
14 Omeprazole n/a 1.70 2
15 Prazosin n/a 2.30 1.70 7 0.73 3.87
16 Propofol n/a 107.00 26.00 5 7472 139.28
17 Ritonavir 2 2.10 3.00 7 -0.67 4.87
18 Temazepam n/a 2.00 2
19 Triazolam n/a 1.00 2
20 Zileuton n/a 2.10 1.80 16 1.14 3.06
21 Acebutolol n/a 1.80 1.50 4 -0.59 4.19
22 Atenolol 3 0.50 0.50 5 -0.12 112
23 Bepridil n/a 2.00 1
24 Betaxolol n/a 2.50 1.00 6 1.45 3.55
25 Bisoprolol n/a 1.60 1.40 8 0.43 2.77
26 Carvedilol 2 35.00 11.00 5 21.34 48.66
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Compound name

BCS
class

Chlorpheniramine 1

Clozapine
Codeine
Desipramine

Dextromethorphan

Diltiazem
Diphenhydramine
Doxepin
Fluoxetine
Granisetron
Imipramine
Metoprolol
Morphine
Nadolol
Naloxone
Ondansetron
Pindolol
Pirenzepine
Propranolol
Ranitidine
Scopolamine
Triprolidine
Verapamil
Cetirizine
Tenoxicam
Warfarin
Tolbutamide
Antipyrine
Furosemide
Theophylline
Ibuprofen
Terbutaline
Oxazepam
Sulpiride
Sildenafil
Methylprednisolone
Chlorpromazine
Prednisolone
Chlorprothixene

n/a
n/a

n/a

n/a

n/a
n/a
n/a
n/a

n/a
n/a

n/a

n/a

3&4

n/a

n/a

n/a

n/a
n/a

n/a

Human CLint
(uL/min/1e6 cells)
Average SD

2.80 1.30
6.00

23.00

7.00 5.66
7.60 8.10
8.87 100.80
6.00

13.00

1.00

9.00 8.70
8.05 5.34
7.00 2.90
24.00

0.50 0.50
86.90 111.95
1.40 0.50
2.80 1.00
0.50 0.50
9.94 102.82
1.00 0.05
7.00

4.30 3.30
17.98 141.36
0.50 0.10
2.60

1.10

1.60

0.29 0.26
0.00

0.31 0.30
4.20

0.00

1.20 1.13
0.00

5.20

9.70

11.00

9.70

14.00

number of
samples (n)

AR BRWOWNOAOABNRRPR

(0] ©
o BP0

PR RPPRPPRPRPNPRPNREPNREREERO

95% confidence
interval

0.73 4.87
-43.82 57.82
5.81 9.39
-12.24 29.99
-4.84 22.84
-0.45 16.55
3.40 10.60
-0.74 1.74
-91.23 265.03
0.78 2.02
1.21 4.39
-0.30 1.30
-11.36 31.23
0.94 1.06
-0.95 9.55
-11.98 47.93
0.38 0.62
-2.07 2.64
-2.36 2.98
-8.96 11.36
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Compound name BCS' Human CLint number of  95% confidence
class (uL/min/1e6 cells) samples (n) interval
Average SD

66 Tolcapone n/a 1.20 1
67 Bosentan n/a 0.20 1
68 Mibefradil n/a 0.90 1
69 Nicardipine n/a 7.30 1
70 Mofarotene n/a 2.00 1
71 Felodipine n/a 7.50 1
72 Remikiren n/a 19.50 1
73 Nilvadipine n/a 13.30 1

! Biopharmaceutics Classification System: Class IghHPermeability, High Solubility; Class 2 - HiglePeability,
Low Solubility; Class 3 - Low Permeability, High [8bility; Class 4 - Low Permeability, Low Solubijit
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Table 2.11 The crude (untreated) avenagglico CL results from ISH3.

© 00 ~NO OB WN B
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Compound

Caffeine
Cimetidine
Cyclosporin A
Diazepam
Ethinylestradiol
Famotidine
Lorazepam
Midazolam
Nifedipine
Nitrendipine
Prazosin
Propofol
Ritonavir
Zileuton
Acebutolol
Atenolol
Betaxolol
Bisoprolol
Carvedilol
Chlorpheniramine
Desipramine
Dextromethorphai
Diltiazem
Granisetron
Imipramine
Metoprolol
Nadolol
Naloxone
Ondansetron
Pindolol
Pirenzepine
Propranolol
Ranitidine
Triprolidine
Verapamil
Cetirizine
Antipyrine
Theophylline
Oxazepam

in silico CL

0.17
0.22
0.28
0.26
0.25
0.18
0.29
0.27
0.27
0.29
0.17
0.27
0.31
0.20
0.19
0.16
0.20
0.19
0.23
0.24
0.19
0.25
0.19
0.17
0.23
0.15
0.14
0.15
0.19
0.17
0.08
0.19
0.21
0.26
0.29
0.14
0.23
0.10
0.28
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Table 2.12 ISH3 prediction results compared with multiple regression poagict 7% of
ISH3 predicted values lie within the corresponding 95% confidencevaht@ut 33% of
multiple regression predicted values lie within the corresponding 95% confidencalinterv
The mean error magnitudes are 8.7 and 14, respectively.

Compound BCS predicted within 95% predicted CL  within 95%
class CL by confidence? by multiple confidence?
ISH3 regression
1 Caffeine 1 0.84 Y -12.79 n
2 Cimetidine 3 1.12 Y 12.54 n
3 Cyclosporin A 1.41 n 33.22 n
4  Diazepam 1 1.30 Y 9.70 n
5 Ethinylestradiol 1.26 n 31.62 n
6 Famotidine 3 0.91 Y 8.34 n
7 Lorazepam 1.45 Y 15.47 n
8 Midazolam 1 1.37 Y 11.51 Y
9 Nifedipine 1 1.33 Y 4.86 Y
10 Nitrendipine 1.43 Y 6.39 Y
11 Prazosin 0.86 Y 21.43 n
12 Propofol 1.35 n -1.82 n
13 Ritonavir 2 1.57 Y 12.49 n
14  Zileuton 0.98 n 19.86 n
15 Acebutolol 0.93 Y -0.32 Y
16 Atenolol 3 0.81 Y -1.17 n
17 Betaxolol 0.98 n 3.89 n
18 Bisoprolol 0.96 Y 0.69 Y
19 Carvedilol 2 1.14 n 12.91 n
20 Chlorpheniramine 1 1.18 Y -3.33 n
21 Desipramine 1 0.96 Y 15.41 Y
22 Dextromethorphat 1.26 n 10.12 n
23 Diltiazem 1 0.96 Y 12.58 Y
24  Granisetron 0.84 Y 8.59 Y
25 Imipramine 1 1.14 Y 11.11 Y
26  Metoprolol 1 0.76 n 56.39 n
27 Nadolol 3 0.71 Y 2.75 n
28 Naloxone 0.73 Y -0.51 Y
29 Ondansetron 0.97 Y 13.53 n
30 Pindolol 0.85 n 13.51 n
31 Pirenzepine 0.38 Y 5.19 n
32 Propranolol 1 0.95 Y 11.36 Y
33 Ranitidine 3 1.05 Y 0.33 n
34  Triprolidine 1.29 Y 9.96 n
35 Verapamil 1 1.47 Y -7.95 Y
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Compound

36 Cetirizine

37 Antipyrine
38 Theophylline
39 Oxazepam

BCS predicted within 95%

class CL by
ISH3
3 0.71
1 1.16
1 0.52
1.39

Percent within 95% confidenct 77%

intervals

confidence?

< < < =<

predicted CL
by multiple
regression
4.07

-1.49

5.95

14.40

33%

within 95%

confidence?

5 5 < 5
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3 Liver Zonation

Hepatic zonation is apparent periportal to perivenous attribute egtadivithin
lobules. No concrete, causal, mechanistic theory is available taiexpdw different
hepatic zonation patterns of P450 isozyme levels and hepatotoxic#gerfollowing
dosing with different compounds. Zonation may have roots in an evolubonari
important hepatic role: defend the organism against the potentgdipaging
consequences of orally absorbed toxins. During its evolution, a hepateeyted to
detect and clear xenobiotics. Based on the fact that evolution apjeedavor the
development of species that utilize and retain energy moreeetligi (67), we can
theorize that during evolution, in the context of their multiple rdlepatocytes, possibly
other liver cells as well, have striven to achieve a close-tmapstrategy for clearing
such compounds. The theory may have a real time counterpart: upon exdégpdsure
to a toxin, hepatocytes can revise their clearance strategie=sal time to avoid or
minimize risk of extrahepatic tissue damage, and that adjusto@ntbe location
dependent and influenced by the adjustments made by other hepatodytethis

Chapter we present computational models designed to have featuilas wimelevant
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hepatic features at specific levels of abstraction. The modelsde a simple
two-player game, a multi-player game, three multi-agent moutelgvhich agents,
mapping to sinusoidal segments, learned from experience to optin@zeclearance

strategies.

In Section 3.1 (adapted from (68) and (69) with minor revisions), we aise g
theory and reinforcement learning, to create and analyzerajeed agent-based and
compartmental models of hepatic toxin elimination processes torexplausible causes
of hepatic functional zonation. We considered a general situiatiomich a group of
protective agents (analogous to liver cells) cooperate afargahize their efforts to
minimize optimally the negative effects of toxin intrusions. Following @lyotifferent
approach, we constructed a physiologically based model of-adned liver to study the
physiological consequences of zonation. The results of the two medpfort the
hypothesis that liver zonation might be a consequence of an optraigigy for toxin

clearance.

In Section 3.2, we used the synthetic method of modeling and simulatlscover,
explore, and experimentally challenge concrete mechanisms that shwwand why
biomimetic zonation patterns emerge and change within agent-basedyuasalo
expecting that those mechanisms may have counterparts in kétbile objects map to
compounds. One analogue is comprised of 460 identical, quasi-autonomousnalncti
units called sinusoidal segments (SSs). SSs detect and respamdiptmuad-generated
response signals and the local level of an endogenous gradienh S&adapts to new
information with the objective of improving efficiency. Upon compound exys

analogues developed a variety of patterns that were strikéngilar to those reported in
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the literature. A degree of quantitative validation was acHiegminst data on hepatic
zonation of CYP1A2 mRNA expression caused by three different dais@CDD

(2,3,7,8-tetracholorodibenzo-p-dioxone).
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3.1 Multi-Agent Based Modeling of Liver Detoxification:
Understanding the Role of Liver Zonation in Toxin

Elimination !

3.1.1 Introduction

The liver performs a wide range of functions including detacaiion of blood-borne
compounds, and so doing protects the body. A human cannot live more than 24 hours
without liver. Hepatocytes, the parenchymal cells of the,ls@vperate with each other
to detoxify xenobiotics by metabolizing them to less toxic compoun@ser the course
of their evolution they have learned to do so in an effective and dpivag
Hepatocytes express heterogeneous, location-dependent enzyme armlt&aaspvities
to facilitate detoxification, apparently following an intrinsic ada, the principles of
which are not fully understood. This phenomenon is known as liver zonationl¢70).
gain insight into those processes, we constructed and analyzedraligederoblem of
cooperative agents protecting a commonwealth from harmful intrudeesadents are

assumed to have incomplete information about each other and cannot form coalitions.

3.1.2 Biology Background

The liver is a complex biochemical factory which synthesizesdiines, and
metabolizes thousands of substances daily and provides the body wéitiadss
substances such as proteins and fats. The liver is also respémsdiminating toxins

and xenobiotics (including drugs) that find their way into blood. r&kes of elimination,

! This Section is adapted from (68) and (69) withanirevisions
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known ashepaticclearance is different for each compound. Histologically, the liver is
divided into lobules. Lobules consist of hepatocytes arranged in a raxyginigrical or
spherical shape. The central vein (CV), through which blood exitd,the center. At
the periphery are portal vein (PV) triads. A lobule is oftestdbed as being organized
into three zones: periportal (upstream or zone 1), which encitdgsatrtal tracts where
blood enters, middle (zone 2), and perivenous (downstream or zone 3), svpbrly
oxygenated and located around central vein (Figure 3.1). Oxygenated éhters
upstream, passes through the mid-zone, and exits downstream. Beicthisespatial
topology, different liver cells may not have the same exposure aming resources and
compounds. For example, nutrients (e.g. oxygen) are more avadabjpstream than

to the downstream cells.

Hepatocytes, although genetically identical, exhibit heterogeneougmenand
transporter activities depending on their location within the lobut®r example, under
normal conditions, hepatocytes located downstream express more srigyxenobiotic

metabolism than do upstream hepatocytes. An obvious question is: why?
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@ Zone I@

Figure 3.1. Cross section of a liver lobule. PV: portal triads,d@¥utral vein, arrows:
direction of blood flow. Oxygenated blood enters the lobule from portal \emusexits
from central vein. Usually a liver lobule is described as beaingded into three
functional zones.

To represent hepatic metabolic zonation in physiologically bagstmacokinetic
models, researchers (71, 72) usually divide the liver into compartments, easentipg
a different intrahepatic zone. Christoffels et al. (73) presantmechanistic model”
which proposes that zonation is induced by portocentral signal gradldsiisy a

different approach, we present an agent-based model of zonation.

3.1.3 Methods

All existing models of liver zonation are top-down models. They ta

hypothesize elementary mechanisms that motivate the collective beraives cells.

To understand the costs and benefits that may be associatelivaritzonation, we
began by using the game theoretic model as shown in Figure &&nts in a sequence

are protecting their commonwealth (all extrahepatic tigsagainst intruders. Agents
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are limited in their ability to eliminate intruders. The go&leach is to minimize
potential damage caused by the intruders while minimizing resczmnsumption.
What is the optimal elimination strategy for agght Obviously, an optimal strategy for

agent depends on the strategies of other agents who have the same goal.

p1 P2 Pr

(-R,0..0) (0-R 0,..0) © 0,..-R)
Figure 3.2. The game-theoretic model of the system. Agents either ggrelnminate
intruders. If Agent (A;) eliminates an intruder, it pays the cost of resource consumption
(R). If all agents ignore an intruder, all must pay ddstwhich is a consequence of
damage caused by the intruder to the commonweafihs the elimination strategy of
agenti: it is the probability that Aeliminates an incoming intruder. ;& ability to
eliminate is limited by maxEi (& maxEi< 1).

Each agent has two options: eliminate or ignore an intruder. The immediafi@r cos
elimination is resource consumption, denoted By Ignoring an intruder does not
constitute an immediate cost; however, when all agents ignore aden{jor it escapes
for whatever reason), then all must pay the cost associate@myitdamage caused to the
commonwealth (denoted bB). It is assumed that a signal informs agents of the
damage cost at the end of each round of play. Agsarnot eliminate more thanaxg
fraction of incoming intruders even if it expends maximum elitomaeffort (0 < maxEi
< 1). The elimination strategy of agentp;, is the probability that it eliminates an
incoming intruder. Agents who see intruders earlier, are calledeapstagents; the

others are called downstream agents.

To analyze the game’s equilibrium, we first specified thatd are only two agents.

Their cost functions are calculated as follows:
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e =1 - maxkp;
€ = (1 — maxk-py)-er

wheree; ande;, are the fraction of intruders that escape from Agents 1 andxpected

average costs of damage to each agent will be:
ADC = e&:D = (1 — maxk-py)-e:D
Expected average costs of resource consumption are:
ARG = maxg-p;-R
ARG = maxk-p-e-R
Total expected costs are:
<Cost> = ARC; + ADC = maxg-p;-R + (1 — maxkp,)(1 — maxk-p:)-D
<Cost> = ARC; + ADC = maxk-pz:(1 — maxk-p1)-R + (1 — maxkpz)(1 — maxkp,)-D
<Cost> =maxk-p:(R-D) +{1 —maxk-p:(1 —maxk-p.)} -D (3.1)

<Cost> = maxk-pz:(1 —maxg-p;)(R—-D) +(1 —maxg-p;)-D (3.2)

Figure 3.3 shows the above cost functions for different valuBs Af any given location
in the strategy space, agents have a preferred direction of mauvienmeduce their costs.
For the two-player game, the direction can be described as a fietdobased on the

gradients of the above two cost functions:

__0<Cost > V__6<Cost2>

opy op,
The vector field is shown in Figure 3.4 fofR = 0.6, 1.1, 1.7 and 2.3. Figure 3.5 shows
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the vector field for n = 3 and/R=0.6, 1.1, 1.7, 2.3, 3.7 and 10.0. Itis easy to find the
equilibrium of each game by inspecting its vector field. Therég show that the
equilibrium changes d3/R increases. When damage is very snialR(< 1), all agents
ignore because it is not cost effective to eliminate intrudénghen damage is moderate,
only downstream agents expend elimination effort. When damagegss, laiddle
agents cooperate with the downstream agents. When damage isitargh,all agents

expend elimination effort.

The analysis can be extended to a general caseplafers as follows:
e=(1l-maxEp)e:s i=1,2,...,n g=1

ADC = gD

ARG = e_;-maxEk-pi-R

<Cost>=ARGC + ADC

<Cost> = ei_;maxE-p-R + D (3.3)

whereg is the fraction intruders that escape from ageADC is the average damage
cost to each agenARG is the average cost of resource consumption to agemtd
<Cost> is the total expected cost (due to both actions) to agerithe vector field can
be calculated the same as for the two-player game, buinfeiasible to visualize and
find equilibria. In general, analyzing equilibria of games involvthgee or more

players is hard (74, 75).

The above analysis requires that all agents have a priori &dge/labout other

agents and the environment. All the actions available to other aageh@l costs with
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all combinations of actions are required to be known by all agefitsnsequently, it
does not offer a plausible mechanism through which autonomous agentsachnan

optimal strategy.

We considered a more realistic situation in which agents do not haweora
information about their environment (including other agents). We used-agetlti
simulation and enabled agents to learn from experience followsimg@e reinforcement
learning rule. By keeping track of accumulated reward (and fygnagents could be
reinforced to learn an optimal clearance strategy. Their wask to maximize the

long-term average reward per action.

The Q-learning algorithm (76), a well known reinforcement learaiggrithm, has
been shown to converge to an optimal decision policy. Q-learningahaslid
foundation in the theory of Markov decision processes (77). It is easyptement and
has been used widely in both single-agent and multi-agent conte&t&/{® and (78) for

examples and (79) for a review of other multi-agent learning techniques).

Figure 3.3 Two-player game cost functions versus players’egtest Player’'s cost
functions (equations (3.1) and (3.2)) are plotted against their cteasarategiespq and

p.) for three different values db. Arrows on the surfaces show players’ preferred

moving direction in order to reduce their cost function. A greemmadesignates the
game’s equilibrium. Players’ cost functions and the game equitibare influenced by
toxin D value as shown. (A) Wheb is small (0.5), the game equilibrium is pt € O,
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p. = 0). Player 1's cost surface is steeper than that oéplay As a result, player 2’s
contribution is less costly. (B) Whel is larger, in this cas® = 1.2, the game’s
equilibrium moves tog, = 0, p. = 1): player 1 does nothing while player 2 expends
maximum clearance effort. (C) Another equilibrium shift occutsenvD is large
enough. In this cas® must be at least 64 percent higher than the cost: both players
expend maximum effort to clear toxing €1, p, = 1). For the results shovigr1.
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Figure 3.4. At any given non-equilibrium point in the strategy esphne agents have a
preferred direction of movement in order to decrease their egeadsts. The net
direction towards which one moves in the strategy space depends topthefshe cost
functions at that point.  Arrows show the net direction of movement when n =[2/Rnd
ratio changes from 0.6 to 2.3. Each game’s equilibrium is showndrgearrow. (A)
D/Ris small. In this case, both agents ignore the intruders. )(B/KCis moderately
large; the equilibrium is such that Agent 1 ignores (p1 = 0) buhidgelimination effort
is maximum (p2 =1). (D) When D/R is large enough, the equilibobhamnges to (pl =
1, p2 = 1): the elimination effort of both agents is maximal.
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Figure 3.5. Cone arrows show the net direction of movement whenandl¥R ratio
changes from 0.6 to 10.0. (BYRis small. In this case, all agents ignore the intruders.
(B, C, D)D/R is moderately large; the equilibrium is such that Agent 1 ign(p& = 0)

but Agent 2 and 3 eliminate. (E, F) WhBfR is large enough, Agent 1 starts making
elimination effort.

Q-learning is a primitive form of learning (76) in which ugil¥alues Q values) are

learned for state-action pairs, absent a model of the environmemrovitles a simple
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means for agents to learn how to act optimally in an unknown environm&ntach
step, aQ-learning agent uses its new experience to improve its longr@ward estimate

by combining new information with prior experience.

Each Q-learning strategy is determined by the value funct@nwhich estimates
long-term discounted rewards for each action. General sche@eafning algorithm

used by each agent is as follows:
(1) Observe the current state (in this study, there isardy.

(2) Choose and execute an action based orQthralues from a set of available
actions,Act (available actions awkct; = eliminate andict, = ignore). The agent selects

its action according to a probability given by the Boltzmann distribution:

eQ(Acg)/T
p(ACti) = ZeQ(Actk)/T (3.4)

Acj eActions

whereT, called “temperature,” adjusts the randomness of decisions.

(3) Observe the new state (for this study, this step is not segelsecause there is

only one state) and receive an immediate reward.

(4) AdjustQ value based on the action takenusing equation (3.5):

Q@) « (- 2)Q(a) + a(reward+ V)
(3.5)
V= mt;sle(b)

wherec is the learning rate ( < 1) andg is the discounting factor © f< 1). Here
we specifiedx = 0.1and g = 0.5.V is known as the value of the game and is equal to the

maximumQ@ value.
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The Agent-Based Model

In mammalian livers, an absorbed toxin can be cleared by anysefj@ence of
hepatocytes. In order to gain insight into that process, we model&dethas consisting
of many, parallel sets of toxin eliminating agents arrangegdguence from PV to CV in
Figure 3.1. Each agent usedQaearning algorithm to decide its clearance strategy.
An agents’ task was to minimize the extrahepatic damage torgfamism of which they
are part. We specified that agents become aware ofheptic tissue damage via
alarm signals that are quickly released into blood by the desnizgsue. Doing so was
based on the fact that hepatocytes, like immune cells, exmiédiket receptors (80).

They enable cells to detect chemical alarm signals generated bygedntissues.

Physiologically-Based Model

In addition to the agent-based model, we used a traditional physgllgghased
modeling approach to study the effects of hepatic zonation ontjoriposure to the
whole body (Figure 3.6). For simplicity, the liver is represemigdhaving two zones:
periportal (zone 1) and perivenous (zone 2). Compounds in the liver are dskume
stochastically take one of the following four paths with probaghilit Path 1: neither of
the two zones encounters the compound. Path 2: only zone 1 encounters the compound.
Path 3: both zones encounter the compound. Path 4: only zone 2 encounters the

compound.

There is one set of differential equations for each path (TableA?.@ach time step,
one of the four sets is chosen according to the probability assbcigith the
corresponding path. In this model, zone 1 and zone 2 eliminate compounds independe

of each other. We specify that the mechanisms of xenobiotic etionnen the liver
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(including uptake transport, biliary efflux and metabolism) follovatusable
Michaelis-Menten kinetics. Intrinsic clearance of each zonspeified to be GL=
Vmax/Km, where \hax IS the maximum elimination (metabolic + transport) rate amd K
is the Michaelis-Menten constant.,} is assumed to be affected by the level of
metabolic enzymes and transporters expressed by cells.e&slagach zone has its own

Vmax The two zones are specified to have e¢mblalues.

U4z
| v
[Oor;ﬁ]&t BI)(zod & Liver Isql Gl )T(ract]&
X5 N 3 A_ !
QS\l,

P )

P2

Zone 2
X3 Ps
Zone 1
X, Py

J

Figure 3.6. A physiologically-based model to analyze the tsffechepatic zonation on
toxicity exposure to the whole body. Boxes are reservoir compagma&nbws show
xenobiotic flow directions. g's are xenobiotic flow rate constan{s. e xenobiotic
concentration in corresponding reservoir compartment shows.tpe probability that
xenobiotic passes through path i.

Further, we represent the cost to the organism, J, as being propowig@ah)® +
(CLy)? + (CAUBC)? where Cl, and Cl, are intrinsic periportal clearance and intrinsic
perivenous clearance, respectively; AUBC is the area under the blood camectieve
(exposure) and adjusts the relative cost contribution of a fixed dose based on xenobiot

toxicity.
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Table 3.1. Equations of the model for each of the four paths shown in Figure 3.6.

d
Vl—xl = —01% + g2X4 + Qi

dt
-
< d
© \/ d_xt4 = Oy X1—(Claz + Ua3) X4
o
d
Vs d_xts = Uy3%4 —OsXs5
d
\% (Txtl =0 X +Qg0X4 + G
dx V max; X
:; \2 Ts =0 X~ 03Xz _7Kml +lx22 + 041X,
©
dx,
o A/ (T: = 03Xz — (Uaq + Qa2 + Uaz) Xy
d
Vs Txf =043%X4 — OsXs5
d
Vi d_)il ==X + Ug2%4 + Qi
dx. V max; X
Vy —2 = Oy X~y Xp — —————2 4 (41X
. 274t 01X —02%; Ky + %, U41%4
< axg o X_Vmax2x3
8 374t =0U3X2—0sX3 —Km2+x3
dx,
Vs ar O3X3 — (Oaq + Agz + Oaz)Xy
d
Vs d_xf =043%4 —UsX5
d
A1 (Txtl =0 % + 040Xy + Qi
X max, X
S Vg —2 = gyX—OaXg ————2—2 4 Oy
= 374t 01 X1—03X3 Kmy + X Ua1%4
©
o dx,
Vy d7t4 =0O3X3 — (0gq + Uy + Ag3)Xs
d
Vs Txf =043X4 —OsXs5

Model Parameters

\Volumes of distribution: The apparent volume of distribution differs foompound
to compound and from organ to organ. We assume that the model compadmeents
well-stirred and substrates instantly distribute in the etiiseie volume. The volumes of

organs are reported for a 250-g rat in Table 3.2.

V1= Volume of Gl TraCt\(gi) = Vstomacht Vsmall intestine™ Vspleen
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V2= Volume of zone 1\(;1) = (3/4)VL6iver

V3= Volume of zone 2\(;2) = (1/4)VLiver

V= Volume of blood Yb)= Varterial blood + Vvenousblood

Vs = Volume of other organs ¥(muscle + skin + adipose + heart + kidney)

If the liver lobule is roughly approximated as a cylinder (radiasd height) with two
zones, then zone 2 (perivenous) could be thought of as a smaller cyitidexdius r/2.
The rest of the volume would represent zone 1 (periportal). The ohtthe two

volumes can be calculated as follows: Volume of zone L;=\2htr>-hrr? Volume of

zone 2 =\ = hrr?; V,1/V o 3nrd4nr?® = 3/4; and Vol VigaE nr4nr? = 1/4.

Table 3.2. Physiological parameters of tissues in a 250-g rat (81).

Tissue V(ml) Q
(ml/min)
G.l.Tract 13.1 9.8
Liver 10.3 11.8
Blood 16.9 43
Other 176.9 nla

Rate constants:
g:= blood flow of G.I. Tract (Q)
gs=hepatic blood flow (Q)
ga1=hepatic arterial flow (Q-Qy)
042=G.1. Tract blood flow (Q)

qgus=effective flow of substrates from blood to other organs thatagsume is

generally less than the sum total blood flow of the organs.
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gs=clearance rate of xenobiotics from blood by other organs tipainsrily done by

kidney (renal clearance).

The rate constants are listed in Table 3.3.

Table 3.3. Rate constant values.

Parameter Value

Ok 9.8 (=Qy)

Os 11.8 (=Q)
Oaz 2.0 (=Q—Qy)
Caz 9.8 (=Q)

Qs 1

ds 0.5

3.1.4 Results

Figure 3.7 shows the emergent strategies obtained for diffgednés of D/R.
WhenD/R is small, agents expend little effort to eliminate intruderss D/R increases,
downstream agents expend more elimination effort than upstreans.ag&ihenD/R is
large, upstream agents begin cooperating and contribute tortieagion process, until
all agents are expending maximum effort. Although the downsti@gents always
expend an equal or greater effort than do upstream agents, it doeseant that
downstream agents actually eliminate more intruders. Fongea whenD/R = 5.0,

upstream agents eliminate more intruders than do downstream agents.

Figure 3.8 shows the results from the physiologically based mouglreF3.8A
shows a typical 3D surface of the cost function, J, when ¢ = 0.1thaftoxicity value,
the minimum cost J,) occurs when CL= 0.35 and Ck = 0.45 (i.e. zone 2 expends
more clearance effort than zone 1). What happens if toxicitytesedl? Figure 3.8B

shows how 4, changes if toxicity varies from 0.05 to 5. It depicts as toxicitreases,
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both CLy and Cl; increase however Gls greater or equal to Glat all toxicity levels.

That observation is consistent with the game theoretic and multi-agentsmesldts.

Elimination Effort at Equilibriur

Agent Number

Figure 3.7. Equilibrium of the n-player game changes Rith Upstream is to the left
(small numbers) and downstream is to the right. The averagmaiion strategies of
10 agents are shown for different ratios @R (shown on each curve) after 10,000
simulation steps (maxE 0.05). WherD/R is small, upstream and downstream agents
expend little elimination effort. A®/R ratio increases, downstream agents expend
more elimination effort than upstream agents. WBDARIs large, upstream agents start
to cooperate and contribute to the elimination process.

A B

Cost function (J)
cL2

.

; T

02 cL

Figure 3.8. Effects of toxicity change in the physiologicallgdzthmodel. (A) 3D plot of
cost function, J, versus ¢land Clz, whenc = 0.1. (B) Dotted curve: trajectory ofid

asc changes from 0.05 to 0.5. For each point on the trajectory the valugedpmrding
c is reported. Solid line: the unity line.
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3.1.5 Validation

Liver cellsexhibit a similar behavior: they express heterogeneousjdoed¢pendent
enzyme and transporter activities to detoxify compounds. Downstcedsn commit
most to toxin elimination; in other words, xenobiotic metabolispréferentially located

downstream, in the perivenous region (70).

3.1.6 Discussion

We presented a simple, agent-based model of a generalized, hegatiuiotic
clearance process. The model consists of a group of agentsriilat, ® hepatocytes,
cooperate to protect a commonwealth against toxic intruders. agdr@s do not have a
priori information about either the environment or other agents (e.qauthber of other
agents, actions available to them, costs associated with themsaattc.). The agents
useQ-learning, a primitive form of learning, to minimize their long-term diisted costs.
Agents are assumed to know the cost of their own actions. Weaaime that
relatively fast communication mechanisms provide appropriate daiggeissto agents,
informing them about damage caused. Furthermore, agents areedssutake and use

an optimal policy.

Simulations showed that agents adjust their clearance effod basthe following
two factors: the potential damage caused by intruders, anddh&id proximity to the
entity being protected. Downstream agents (the ones with pessmity to the
commonwealth) generally expend more elimination effort than do apsti@gents,

depending on the threat.

The emergent, collective behaviors of these agents arasimithose of hepatic
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cells in terms of xenobiotic clearance. The model suggests atmatinderlying
mechanism responsible for liver zonation may be similar to tleletis simple
mechanism. Hepatocytes may possess subsystems (e.g. spetgaisprsignaling
pathways, etc.) that produce phenomena that have propertiesetlsandar to those of

the Q-learning algorithm.

Hepatocytes exhibit complex behavior. Recent studies show thatitoxioed
hepatocyte injury is not a simple passive process regulated byodgeof an inducer
compound; rather it is an active process in which active signalityg a crucial role (84).
Hepatocytes change protein expression levels in response to toxis $l0rand adjust
their sensitivity to signaling molecules (for example see) @3 (86)). Upstream
hepatocytes can communicate with downstream hepatocytes via bloddigmals (73)
and/or intercellular calcium waves (87, 88). On the other hand, downstelEcan
communicate back with upstream cells via bile acids (89). This ebtdnal
communication creates a complex intercellular feedback systaohwnight contribute

to regulation of adaptation (or a primitive form of learning) in the liver.
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3.2 Computational Experiments Reveal Plausible
Mechanisms for Changing Patterns of Hepatic Zonatio of

Xenobiotic Clearance and Hepatotoxicity

3.2.1 Introduction

Hepatic zonation is evident periportal (afferent) to perivenousréetfe attribute
gradients within lobules. Zonal differences occur in the clearafica variety of
endogenous compounds and xenobiotics (7, 70). Zonation is also evident for a number
of normal hepatic functions absent xenobiotic or toxin exposure. Tiseraso
differential sensitivity to the induction of cytochrome P450 isozyr®}. Toxin
caused hepatic injury can also exhibit zonal patterns. Such phenoreemas often
ascribed to having a multifactorial basis, in which oxygen gradiettier blood-borne
signals, and blood flow itself may play prominent roles (73, 91, 92, ®Rgcent
evidence supports the hypothesis that components of thelAdaienin pathway may
play an important role (94, 95, 96). Braeuning (97) reviews the raevefral pathways
including Ras-Raf-MAPK (mitogen-activated, protein kinase) anat-f¥catenin.
However, no concrete, causal, mechanistic theory has yet been dfferexiv different
types of hepatic zonation phenomena emerge following dosing wienediffcompounds.
For this study, we focused on zonation patterns of P450 isozymes dreptie damage
that can develop following treatment of rats with xenobiotics. ud&d the synthetic

method of modeling and simulation (2) to discover, explore, and experimenta

! Submitted for review, Journal of Theoretical Biology
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challenge concrete mechanisms that show how and why biomirwetation patterns
emerge and change within an agent-based analogue of achiepale in response to

compound dosing. Tha silico mechanism may have counterparts in rats.

Christoffels et al. (73) demonstrated the plausibility of a nudéedevel mechanism
for periportal-to-perivenous gradients of gene expression. Expaungorgthe zonation
ideas offered in (7), they hypothesized that interaction betweeror more, different
signal gradients is necessary to enable development of permepativenous gene
expression patterns that mimic those gradients and are stablediffetent conditions.
They provided support for the hypothesis using both an inductive, mathamrmatdel
and a transgenic mouse model into which hepatocyte-specific Dépomee units had
been integrated. They discuss the formidable issues of constrsgtingnodel systems

using transgenic mice.

Ohno et al. (120) constructed sophisticated, single-hepatocyte based tabdkls
that focus on ammonia metabolism with the long-range objectiveuafdating how
molecular and cellular level properties modify higher-level phenom#eaobiotic
metabolism and enzyme induction mechanisms were not a focus. Thieythads
heterogeneous gene expression evolved to optimize energy reffici€¢hey specify
histological structure and zone-specific gene expression of maggmes, and include
the biochemical kinetics of enzymes and transporters. lerapetital. (121) recently
reviewed the models of Ohno et al. along with a variety of additmraputational liver
models. Several specified features of zonation but not how thoseefeataly emerge.
All but one of the models reviewed was an inductive mathematwadel. The

computational modeling and simulation (M&S) approach used hereiar@g8y9a) and
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the resulting models are fundamentally different from those induchathematical
models and so are not directly comparable. Hunt et al. (2)iexplase differences and

how the two different M&S approaches complement each other.

The approach used herein (Figure 3.9A) was developed to enalsiieucbon of
biomimetic mechanisms that are real (not concepaua) strictly defined, and conditions
are less supportive of inductive modeling methods (Figure)3.9Bven though abstract,
the mechanisms and their spatial context are flexidesafficiently concrete to instantiate

mechanistic hypotheses and test their plausibility exgertally.

Following cycles of model construction, evaluation and selection, ammemednt,
we arrived at a discrete event, discrete time system tyas¢ to a cross-section through a
hepatic lobule having periportal-to-perivenous flow and a connecticextrahepatic
tissue. The hepatic lobule component is comprised of 460 identical;ayuasbmous
functional units called sinusoidal segments (SSs). Each SS mapssrtall portion of a
sinusoid (Figure 3.10). During a simulation cycle, each SS has an oppottuciear a
detected compound administered at the start of the simulation. A com{@irekits
the lobule enters an extrahepatic tissue space and causee r@ea response signal,
proportional to potency. SSs detect and respond to response signals. Thdityroba
a SS clearing a compound depends on the current clearance ddfored in Methods)
of that SS. The SS also observes the local level of an endogeadiengand reacts to
any response signals. Alternatively, the response signalrisenfeom the SS or the
compound itself could fill the role of response signal. Each SS sadapthe new

information with the objective of improving efficiency: it can reduce respdgsals by
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Figure 3.9 Features of the synthetic method of modeling and simulag@nShown are
relationships between observations made on rat liver lobules followaemgbiotic
treatments and thie silico, zonally responsiveoBULAR analogues (ZoRLA) in Figure
3.10 following simulated treatments with xenobiotics. Left: theresft systems are
experimental observations made on rat livers following variouatnents with
xenobiotics.  During experiments, lobular components interact with néstered
xenobiotics causing the compound to be cleared (metabolized or excrdtidée). The
compound may also generate tissue responses, both intra- and extrahepladic
consequences of localized mechanistic events cause systemits.effeSystemic
behaviors at all levels are reflected in the recorded data.ht:RMpstract, software
components are designed, coded, verified, assembled, and connected. Theqgfrodu
the process is a ZoRLA (as in Figure 3.10) within BRTRAHEPATIC space.
Concretizable mappings exist between ZoRLA components and how tigeyogether,
and lobular physiological and functional detail at the level ahassid, as illustrated in
Figure 3.10. Execution gives rise to a working analogue; measfirevents provide
results. Dynamics during execution (mappings 2) are intendegptesent abstractly
plausible corresponding dynamics (believed to occur) within theuratg an experiment.
Measures of dynamics—patterns of zonation, in this case—providéhdatamay or may
not mimic wet-lab counterparts. Achieving measurable siméarinakes mappings 3
guantitative. (b) Conditions supportive of both the synthetic method of mgdaid
simulation (M&S) along with the familiar inductive method of M&S8e sketched.
Obviously, toxicologists and pharmacologists would like explanatory leunel about
hepatic phenomena and zonation to be rich and detailed, and for unestéantie
limited. Such conditions (toward the far right side), which are nsom for
non-biological, engineered systems, favor developing inductive modhis dre
increasingly precise and predictive. However, as discusse@)iralfsent detailed
knowledge of the causes of hepatic zonation, we are on the left dideg Wequent
abduction is needed and synthetic M&S methods can be most useful.
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increasing clearance effort in subsequent rounds or reducingndeagffort when no
response signals are detected. To do so it uses the local graatiergsponse signal

information to update its clearance effort using a learning algorithm.

Upon compound exposure, the lobular component developed a variety of
periportal-to-perivenous (P-to-P) clearance effort gradierff&veral gradient patterns
were strikingly similar to those reported in the literatuwwe P450 isozymes following
xenobiotic dosing (for convenience, examples are provided in Appendixu@eRiyl10).
Zonal patterns of clearance effort and SS damage changed dependiompound dose
and potency. We called the system a zonally responsive lobulagaedZoRLA). A
ZoRLA was used to achieve a degree of quantitative validation aghites on hepatic
zonation of CYP1A2 mRNA expression caused by three different dais@<CDD

(2,3,7,8-tetracholorodibenzo-p-dioxone).
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Figure 3.10 Referent and analogue. (a) An illustration of as<estion through a
hepatic lobule showing sinusoidal flow paths from portal vein tractsega@entral vein
(CV) and a functional periportal-to-perivenous zonation pattern. A(EpRLA is an
arrangement of Sinusoidal Segments (SSs). A SS is a quasi-aotmagent. As
illustrated here, it maps to small portion of a lobule that indugdertions of the
sinusoidal blood flow and space of Disse, along with one or more endbttedls and
hepatocytes. (c) A SS can detect and act on co-located mobildsoajet signals.
Three object/signal types are used: those that comprise thlegi@chent, response
signals (generated by a compound’s extrahepatic response)cam®@unD.  The local
value of the gradient ig. Kk, is the COMPOUNDS potency. To reach the CV, a
COMPOUND must pass through a sequence of SS and escape being cleared. If
COMPOUND is undetected by the LEARANCE Management Module, it exits (bypass).
Upon detection, theomPOUND is cleared with probability; ; (simulation cyclet). If

not cleared, it exits. The value Qfused by SSduring simulation cycleis an estimate

of its long-term, discounted cost of continuing to use its currentaclea effortp;. The
current clearance strategy of;35p;; it is updated as specified in each simulation cycle
using that location’g value along withQ;:. Q +1) IS the value to be used during the
next simulation cycle. h, k., a, B, andV are defined in the text.
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3.2.2 Methods

To distinguish clearlyin silico components and processes from corresponding rat
counterparts, we US&MALL CAPS when referring to the former. Parameter names are

italicized.

The attributes targeted

The first consideration in any modeling effort is to determine thi®ymodels are
being created, and identify situations in which they will be used (3). FRoptbject, we
sought spatially organized, biomimetic mechanisms that could produce pv@om
similar to attributes listed in Table 3.4. Unlisted hepatic phenanaea, for the time
being, outside the scope of this project. However, a requirementhaathé models
and their components be sufficiently flexible so that during a fututension of this
project, or when other investigators use the models, they couldsbg emdified to
account for an expanding list of attributes. Clear statements aleuand targeted
attributes facilitate selecting specifications. Specificest, paired with attributes, are
provided in Table 3.4. Clear specifications guide model design andogdment and
help one avoid potentially unproductive tangents. Each attribute achpeveides a

degree of validation.

To achieve targeted attributes, we followed an iterative cornistnuand refinement
protocol similar to that detailed most recently in (2) and (98he ®@bjective was to
discoverceLL level mechanisms that would make ZoRLA patternslearance effort
(defined below) following comPOUND dosing, increasingly biomimetic, with the

long-term goal of achieving ZoRLAs that exhibit all of the déeeset of attributes listed
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in Table 3.4, and do so while adhering to a strong parsimony guidekwe.this project,
we focused on the first ten attributes. For each attributet¢argee provided a ZoRLA
specification that would be commensurate with the other speafisatin enabling
eventual achievement of all Table 3.4 attributes. The iteragfiaement protocol

cycles through the following eight steps.
1) Choose an initial, small subset of attributes to target, e.g., 1-3 in Table 3.4.

2) Select a granularity level that will enable comparing mregsof simulated and

targeted attributes. We selected the level illustrated in FigureaBd Gigure 3.11.

3) For each attribute targeted, specify a desired level of phenbgieriarity (e.g.,
within + 25% or exhibit the same P-to-P gradient trend). Approach in stag@swith

relaxed similarity measures.

4) Posit coarse-grained, discrete mechanisms that may genanalegous

phenomena while requiring as few components as is reasonable.

5) Create logic to be used by each component. Instantiate contpoaed

mechanisms. Update specifications.

6) Conduct many, simulation experiments. Measure a variety afophena to

establishin silico to wet-lab similarity and lack thereof.

7) Tune (parameterize) to achieve analogue similarity Spe@t step 3. When the
effort fails, return to step 4. When successful, return to step 3irmmease the

stringency of the similarity measure.

8) Add one or more new attributes until the current analogue iBddls Return to
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step 2. Strive to achieve the expanded attribute list with #e lbmponent

reengineering as possible.

The synthetic method of modeling and simulation

The method used herein is a relatively new experimental apptoatiscover and
challenge plausible, biomimetic mechanisms. It acts on the dictum gfahtephysicist
Richard Feynman “what | cannot create, | do not understand.” To gsighi into
plausible generative mechanisms that may be responsible for badlpgienomena of
interest, such as hepatic zonation patterns, when uncertaintyasataigletailed data are
limited, the method involves building extant—real, actually existingnd
observable—working mechanisms that exhibit some of those same pmen@nd thus
may be biomimetic. The approach is based on the scientifiagan(®9) illustrated in
Figure 3.9A. When two systems, hepatic lobules of laboratosyaiatl a model—a
ZoORLA—are composed of interacting components for which siméaritcan be
established at some level of abstraction (mappings 1 in Figure, Z8d}he two systems
exhibit several measurable, phenotypic attributes (mappings 3yhion some degree of
similarity exists, then there may also be similaritiesthe generative mechanisms
responsible for those attributes (mappings 2). We cannot yet buitdrdhal
mechanisms out of biochemicals. However, as described hereie@edly reviewed
(2, 100, 101, 102), we can build extant biomimetic mechanisms using objedtdrie
software tools. In so doing, as Figure 3.9 illustrates, waatr®llowing the traditional,
inductive approach of modeling the data. Nor are we describingematically the
behaviors of a hypothetical, conceptual mechanism. Rather, we exipbospace of

relatively simple, plausible, biomimetic, mechanisms cfamcreteinstances, which upon
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instantiation, verification, and simulation exhibit phenomena, which whessumed
produce data that are essentially indistinguishable from compavagtidab data.
Because thelECHANISMS are intended to be analogous to referent biological mechanisms,
we refer to thein silico system as aranalogue To emphasize their concrete,
constructive nature (a whole assembled from stand alone partsglivikemn synthetic
analogues. The approach provides an important, s@eatifi experimental means to
explore and tesh silico plausible, biomimetic mechanistic hypotheses, wh&mould be

too difficult, too expensive, infeasible, or unethicatitoso in animals an vitro.

ZoRLA design considerations

In related work, we builtin silico liver analogues to challenge mechanistic
hypotheses and gain improved insight into plausible micro-mectardstiails of
xenobiotic clearance (52, 9, 103), hepatic drug interactions (98),sddseaused
differences in spatiotemporal micro-mechanisms influencing leeplatig disposition
(104), and heterogeneities in intralobular enzyme induction (10).théAstart of this
project, we drew on these methods and their validated components toiatstant

experiment on lobular analogues targeting subsets of attributes 1-10 in Table 3.4.

All ZoRLA system components and processes are discrete. @umwances
discretely by simulation cycles and steps within cycles. hEamulation cycle, every
component updates its state based on changes since the last updetenibyppoEach
SS is a software agent. An agent is a quasi-autonomous softhj@a that can
schedule its own events. SSs can be connected together in diffeynt Within a
simulation cycle, SS components interact with mobd&PouNDspercolating through a

sequence of SS. The process maps to absorbed xenobiotics percdiadungh t
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sinusoids and interacting (or not) with spaces and cells as lubbén (9, 104). Most
events are stochastic. During a simulation cycle, when an egpaottunity for a given
component occurs, there is a parameter-specified probabilityedoh, prespecified

outcome.

A specific ZoRLA instantiates a mechanistic hypothesis (2, 1i®i3: component
arrangement and operating principles will, upon execution, produce phenomena similar to
targeted attributes. Execution followed by comparison of resulteferent data tests
the hypothesis. The process is directly analogous to construetmy then
experimenting on a wet-lab model to test hypotheses. We adheradparsimony
guideline and strove to keep ZoRLA components as simple as feadlille,ashieving

the attributes in Table 3.4.

Inductive models are typically grounded to metric spac€®RLAs use relational
grounding. Grounding is defined as the units, dimessi@and/or objects to which a
variable or model constituent refers. Each ZoRlb#fnponent is grounded to a subset of
the other components. The merits and limitationlattional grounding are discussed in
(2). Using relational grounding means that a sepanaeping (transformation of data)
model is needed to quantitatively relate measures RLAphenomena, such as clearance
effort, to corresponding wet-lab phenomena, such as aumeaf P450 isozyme levels

within a tissue sample or isolated cells.

SS intrinsic clearance
The primary phenomena in Table 3.4 are intralobular changes in compound clearance

and the intracellular levels of P450 isozymes (or their mRNgyarsible for compound
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clearance. We needed a SS counterpart to intrinsic clearaWeecan see from Figure
3.10b that some of the compound entering a SS can exit without ertiepatpcytes.

A COMPOUND that is detected by a SS maps to compound entering hepatodites.
COMPOUND that is undetected exits that SS; we sdyypgassedhat SS. We specified a
bypass probabilitygBypas¥for each SS that could be adjusted for ezmiPoUND; with

one exceptiorfor the ZORLA experiments described herein, we arbitrarilypBgpass=

0.8. AcomMPOUND maps to a small fraction of the xenobiotic dose used in one of the
experiments cited in Table 3.4. o®MPouNDthat does not bypass is detected; that maps
to compound entering cells. We specified that if detecteslcOMPOUND would be
cleared with probabilityp; that maps to the intrinsic clearance by hepatooyidsn a
corresponding sinusoidal segment for the time intevabhich a simulation cycle maps.
We definepi; to be the clearance effort of S8uring simulation cyclet. Within
hepatocytes, an increase in intrinsic clearancedlp correlates with an increase in P450
isozymes. For this report, we limit attention tosccases. That increase comes at a
cost to the cell. In SS, the cost otamPouNDclearance event i&. Given the many
functions carried out by hepatocytes, we assumed thaitdeytes have an evolution

imposed, genetic mandate to avoid unnecessary costs.

Signals and methods needed and used by SS

Gebhardt argued that two classes of signals are necesshmlssential for creating
zonation (7). An early task was to discover and demonstrate atdiedr mechanism
that would enable a SS to adjust its clearance effort basedarideels of two signals.
Further, within a ZoRLA, when needed, these signals could correspond to amounts of two

different mobile objectsRESPONSHR-) andB-SIGNALS. We specified thaRr-SIGNALS be
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connected tocoMPOUND, dose, and potency. We identified three options: 1) a
COMPOUND Or its METABOLITE iS the R-SIGNAL; 2) a COMPOUND Of itS METABOLITE
initiates a response within a SS and that response (or an ohjecatgel by that response)
functions as ar-SIGNAL that is also detectable subsequently by other SS; and 3) a
COMPOUND Or its METABOLITE that escapesEPATIC clearance initiates aBXTRAHEPATIC
response, and that response (or an object generated by that resgpansesIGNAL that

is SS detectable. We could achieve our objective if any ofhitee toptions worked.
Early exploratory simulations indicated that the third option wouldhleestmplest to
implement. Consequently, we focused on that option. Option three mayomeap
xenobiotic that causes extrahepatic tissue toxicity. Ountaite is on interactions
between a tissue and an active xenobiotic (or its active mdghblat cause observable
toxic or pharmacological responses. We conjectured that somesd interactions
would cause release of factors that are carried by blood tovérenhere they function
similar to alarm signals (105). Such factors could be detdwntduepatocyte Toll-like
(80) or other receptors. The algorithm in Figure 3.10c can be motbfigide the same
clearance effort change for the second option, as well. In e8rg&e description of
preZoRLA1 in Appendix C), mobile objects served RaSIGNALS. In the final, 2D
ZoRLA discussed below, to reduce the duration of each simulatior ey thus
simplify ZoRLA function, we specified that all SS recerssIGNALS at the end of each

simulation cycle.

For simplicity, we specified tha-SIGNALS, which are unrelated to xenobiotic, map
to something external to the liver and that they are carried tovéndoy blood. It could,

for example, map to QOevels. Again, for simplicity, we specified that its inpuerae
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constant. We gave each SS the ability to resporediIGNAL objects exactly as they
respond to £&OMPOUND. There was a bypass probability and a non-zero probability of
being cleared when detected. For a single sequence of SSetdwed level of
B-SIGNALS would provide information about relative location in the sequenceearly

SS (see description of preZoRLA1 in Appendix C), mobile objectsriegtthe ZORLA

on the periportal side and flowing in the P-to-P direction, functicass-SIGNALS. In

the final, 2D ZoRLA discussed below, to reduce the duration of each simulation mgicle a
thus simplify ZoRLA function, we specified that a fixed PR@-SIGNAL gradient exists

so that thes-sIGNAL for each SSis constant for the duration of the simulation experiment.

We used an equation (defined below) to specify the vglufar each SS

Enabling SS to adapt their clearanceeffort in response to dosing with different
COMPOUNDS

Christoffels et al. (73) and others have posited that zonatiarkedl to the adaptive
ability of the liver and hepatocytes specifically. The SS described ab®very simple
agents. Each SS has three actions: detefiGNALS, detectR-SIGNALS, and clear
COMPOUNDS We conjectured that if a cost were associated to each attt@nwhen
given a simple learning algorithm, a SS could use it to avoidastrg costs, and that
would result in location dependent clearance efforts. Consequemigndate of each
SS was to alter clearance effort to avoid rising costs. auB®CB-SIGNALS are
independent oEoMPouNDSand, once the gradient stabilizes, they are constant for each
SS, we elected to ignore them, unless we failed to achiegetedr attributes. We
specified that the cost of clearing ooemPoUND is k.. We specified that the cost of

detecting on&®-SIGNAL is k,.  We conjectured that if a xenobiotic disrupts normal tissue
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function or causes tissue damage, the consequences of such an aldntatise
hepatocytes to alter their behaviors, and so doing would come atta tusthepatocytes.
The relationship is more clear when it is the hepatocyte itself tharigptid or damaged.
Increasingp increases costs. Costs are lowest when a SS chpes8s However, if
the COMPOUND is a TOXIN, then withp = 0, all comPoOUNDS would exit theLOBULE
causing extrahepatic responses. SubseqaesiGNAL detection by all SS would
increase costs. If there is a direct relation betweeaN potency and the number of
R-SIGNALS detected (or their value), then it is clear that P-totRepes of clearance effort
would change asoMPouND dose and potency are changed. We explored those changes.
Based on recent observations about simulated hepatocyte leari@agtion 3.1 (68, 69),
we anticipated that, given a simple learning mechanism (anithlgoin this case), a SS

at the end of simulation cycte- 1 could find a newpt that would be expected to lower

costs during subsequent simulation cycles.

The SS mechanism in Figure 3.10c provides the above capabilities andple
enough so that there may be one or more yet to be identifiedobgiacounterparts.
The figure shows an SS with a quasi-autonomous subsystem, WheRARNCE
Management Module. It maps to all hepatocyte resources andstrhsyassociated
with xenobiotic clearance. TheLEARANCE Management Module has one mandate:
adjustp; up or down or keep it the same to lower future costs. A functioorin 6f a

Boltzmann distribution is provided that adjusts

pie = L/(1 + expli — Qj,t1)/h]) (3.6)

Qi is based on the well-know@-learning algorithm (76). The value @fused by SS
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during simulation cycle is an estimate of its long-term, discounted cost of continuing to
use its current clearance effqot, At the start of each simulation cycf®,is calculated
using theQ; value carried-forward from the previous~1) simulation cycle (Eg. (3.6)).

At the end of the current simulation cyc@,: is updated using Eq. (3.7) Q1 is then
carried forward for use in the next simulation cyclé.is a constant. The parameter
acts as a gain: it amplifies and/or dampens the differejmeeQ. A large value oh
eliminates zonation completely;{ is constant at 0.5.); a small value magnifies it.

Whenh is very smallp;; essentially takes one of two values (switch-like behavior).

Qitr1 = (1=0) Qi —a(ka + ke — V) (3.7)
whereV = min(@Qs, gi) (see Section C.2 in Appendix C for derivation detailg].is
known in the Q-learning literature as the discount factor; it determines ciimeent
importance of future costs. For the SS in Figure 3.1@,-as0, the difference between
PERIPORTALaNdPERIVENOUSP; ; values increases.k, = potency. a is a constant in [0, 1]
that controls the (EARANCE Management Module’s learning rate. For the reguéisented,
p =05k =1 a =0.1 andh = 0.01, 5, 10, or 70, depending on the experimehs.
specified aboveg; is the value of the P-to-B-SIGNAL gradient used by $S We used a

simple equation,

g =X*+Y)+7 (3.8)
whereX; andY; are coordinates of agent S8th respect to the center of the grid space,
and 7 is uniform random noise in the interval [®V2]; we usedm = 31, that is the

number of spaces per grid edge.
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At the end of each simulation cycle, there are two types of SS: those thaiahd 2)
did not see @omMPOUND. In the first case, the SS performed an action: it eigmared
or cleared theomPoOUND. Only SSs of the first type update th@ivalue. If a SS saw
onecoMPOUND during the simulation cycle, it updat€donce. If it sawn COMPOUNDS

during the simulation cycle, it updat€un times.

When a SS detectsc®@MPOUND, it is either cleared or not. WhercamPOUND has
been clearedk; = 1, elsek. = 0. When arr-SIGNAL is detectedk, (a measure of
potency) takes a value > 0, elge= 0. The latter still applies in the special case where
theCcOMPOUNDIS theR-SIGNAL.  The termK; + k) represents the peeMPOUND cost to

each SS for the actions taken during simulation dycle

SS arrangement andcOMPOUND movement

A LOBULE is a system of SSs arranged to mimic a cross-sectiongtinralhepatic
lobule. The 2D square grid shown in Figure 3.11a maps to a 2D viawroks section
through a hepatic lobule. Located at each grid space is a S MPOGNDS enter from
the externalPERIPORTAL area, which maps to portal vein tracts. If not cleared,
COMPOUNDSmMove in discrete steps, from the exit of one SS to the entraaceanfjacent
SS. Event logic from theoMPOUND S perspective is diagrammed in Figure 3.11b.
CoMPOUNDS move stochastically toward the central ZoRLA space, whiepsro a
lobule’s central vein. The process mimics blood flow through sinusoi@smusoid
interconnections enable some lateral periportal flow. There isateval flow Iin

perivenous sinusoids. We implemented and verified a movement algorithm to enable
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Figure 3.11 Events occurring within simulation cycle t. (mjstrated is a portion of a
ZoRLA; SS agents (gray squares) are arranged into thealledteD semi-circular grid
pattern. The external periportal area maps to portal veirstraétt the start of each
simulation cycle, the compound dose is placed outside. Each compoursl anger
randomly assigned SS on the outside edge. During each simugtien compounds
move towards the central vein (CV: the central, vacant regianags to both central
vein and extrahepatic tissues) using the biased random walkbéelsicr Methods. The
dotted arrow is an example of a compound’s path. When a compound (kaacldgs
the central vein it is removed, a response occurs, and r-signa@sremeated in proportion
to ka. (b) The flowchart shows event logic from a compound’s petrépe During
simulation cycle t, the Clearance Management Module detectdacated compound
with probability = 1—- pBypass. Upon detection, it is cleared ¢kead) with probability
pi.. At the end of each simulation cycle, each SSi updates;itgt®@ Q1)) and
clearance strategy (pi,t) based on the number of compounds cleardte angrber of
r-signals received. PRN: pseudo random number in [0,1].
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comMPOUNDSto follow a biomimetic one-grid-space-at-a-time path towardcterrAL
VEIN. Each simulation cycle, the algorithm below specifies a maeetthn 6 for each
COMPOUND. ThecoMpPoOuND then used to select, move to, and then enter an adjacent
SS. All neighboring grid locations were numbered counter clock wesgingt with 1 at

0° and ending with 9 at 380(see Figure C.4A). We used a Normally distributed
random variablex) for which the meany(  [1,9]) corresponds to the effective flow
direction, 6. For exampleu = 4 corresponds t&@ = 13% andu = 1.5 to 4 = 22.5.
More formally, x ~ NL&45] + 1, 6%, where 0 < 0 < 360 is the effective angle of
movement (illustrated in Figure C.4A) amdis the standard deviation &f o controls

eachcoMPOUND s lateral movement.

A coMPOUND remains in place with probabilifyp Or it moves stochastically to an
adjacent SS with probability 1 pstop  The adjacent spaceextSpaceis stochastically
chosen asnextSpace= | x — 0.5/(modulo 8) +1. Distributions are shown in Figure C.4
for = 135 and three values @f. The motion converges to Brownian motion for large
values ofo (because the& distribution becomes effectively uniform)We used three
values: o1, o» and o3, for PERIPORTAL middle andPERIVENOUS zones, respectively.
Because the sinusoid interconnections and therefore the lateral nmbvismgreater

periportal, we arbitrarily set; = 1.2,0» = 1.0 andoz = 0.7 (illustrated in Figure C.4).

As a simulation progresses, we can observe how-tioePp; patterns change and when
they stabilize. The hypothesis being tested isupah sustainedoMPOUND dosing, use of
the mechanism in Figure 3.10c can produce sfaialues that exhibit P-to-P patterns. We

cannot rule out that some patterns may have nonaaseiological counterpart. Our
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interest herein is in patterns that are biomimetic.

Initial configurations

Given any pre-existing pattern of clearance effgf) (and a specific Eq. (3.7)
parameterization, the same new pattern will eventually emgyge sustained exposure
to a newcomMPOUND. However, the number of simulation cycles required can vary
considerably depending on the pre-existing pattern. For simpliQjtwalues were
initialized at the start of all simulations such that Eq. (3.6) predlwuandom values of
clearance effort, as follows.Q; = g; + h:In(1/PrRN — 1), whereh is an adjustable
parameter (the same &sin Eqg. (3.6)),qi is calculated using Eq. (3.8) am&N is a
pseudo-random number between 0 and 1. Thereafter, each SS used Eq. (3.7) to

calculateQ; 1+1, which was then used in Eq. (3.6) to calcujata .

3.2.3 Results

Results from two ZoRLA predecessors
Two ZoRLA predecessors are presented in Appendix C. The eaflibe two,

preZoRLA1, used a multicomponent positive and negative feedback mecharnigm wi
each SS to form and respond to gradient®-odnd B-SIGNALS (targeted attribute 3).
The mechanism also produced and removed objects caletEiINs Clearance effort
(p) for each SS was proportional to current numberrROTEINS N that SS. The
mechanism was capable of forming a variety of P-®$GNAL and clearance effort
gradient patterns that were both dose and potency depdfateatamples, see Figure C.5).
Parameterizations of preZoRLA1 enabled achieving tadgat&ibutes 1-6. However,

inclusion of attribute 7 in the set of currently targed@dbutes falsified preZORLA1.
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A second early model, preZoRLA2, comprised a simple linear seqoérfeof the
SS illustrated in Figure 3.10. It maps to a single P-to-P sinudtogla path. It too
was capable of forming a variety of P-toBPSIGNAL and clearance effort gradient
patterns that were both dose and potency dependent (for example§jgee C.6), and
it achieved attribute 7. During preZoRLA2 experiments we tradckednumber of
comMPOUNDS actually cleared in addition to the current clearance effogaoh SS (the
values are graphed in Figure C.6). Often, the two patterng wet the same.
Consider compounds that are hepatotoxic. Limit attention to those compfarnds
which toxicity is proportional to hepatocyte exposure. We caronaddy infer that
hepatocyte exposure is directly correlated with total amount opcond cleared by that
hepatocyte. Given that, the numbeicaivPouNDsactually cleared by a preZoRLA2 is
directly correlated wittHEPATOTOXICITY. COMPOUNDSthat were not cleared still caused
extrahepatic responses. We also specified thateEB&oToxICITY would ensue when SS
lost the ability to detect (and cleadPMPOUND, an event that was set to occur when the
number of clearedomPOUNDSpassed an arbitrary threshold (e.g., 100)EPARDTOXICITY

can map to severe hepatotoxicity or even to localizessiscr

Zonation patterns during 2D ZoRLA experiments depend orcOMPOUND potency

To explore emergence of stable zonation patterns, we conducted tsvafset
experiments using somewhat different ZoRLAS, one uBirg, and the other usirtg=
70. Both used the same prespecified P-m-§radient for all five experiments. In
both cases, ZORLAs were dosed at the start of each simulatie@wgjit 50COMPOUNDS
having the same potency. Except for repeat experiments, poteax\chvanged for

different experiments. A simulation cycle continued until @MPOUNDS exited or
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were cleared. Several experiments were conducted folkgachn all experiments, dt
= 0, randonp values were assigned to each SS. Values at iefanlyepeat experiments

(samek,) were not identical, but they became identical by the end of the experiment.

In the first set of experiments (Figure 3.12} 5, andcOMPOUND potency spanned a
20-fold range K, = 1-20). Experiments terminatedtat 1,000. SSs were assigned to
ten equal width zones. Values pf Q;, and the cumulative number abmPOUNDS
cleared by each SS in a given zogenPOUND elimination count) were averagedtat
1,000. The value of) used by SSduring simulation cycld is an estimate of its
long-term, discounted cost of continuing to use its current cleardfurg @;. The
results graphed in Figure 3.12 show that increasing potency causes whpayg for
periportal zones to increase; it also caused the pesROUND elimination count (which
maps to measurable hepatotoxicity) to shift freBRIVENOUStO PERIPORTAL  Within

each zoneQa.yg increased with increasing potency.

In the second set of experiments (Figure 3.43} 70, andCOMPOUND potency
spanned a 10-fold rangé,(= 0-10). Experiments were terminatedtat 500 once
stable patterns were achieved. The different, individual SSacleareffort values are

shown in Figure 3.13b.
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Figure 3.12 Zonation consequences following dosing one ZoRLA with eaclveof fi
COMPOUNDS having different potenciek{). For simplicity,pBypassfor each SS and
eachcomPoOUND was held constant at 0.8. At the start(0), a randonp value was
assigned to each §S A dose of 50comPouNDs was administered for each of 1,000
simulation cycles. By then, the stable patterns shown had emergesimulation
cycle continued until alcomPOUNDS exited or were cleared. Values at edrljuring
repeat experiments were not identical, butt by1,000 they became identical. X-axis:
the distance frorrERIPORTALedge toCENTRAL VEIN exit was subdivided into ten regions.
For eachk, experiment, there are four bar graphs. The two on the left pnrmadsures

of zonation. paygis the mean of aly’s in one of the ten regionp;; was updated using

= 5. Using the default valud = 70, we were unable to clearly demonstrate the
CcoMPOUND elimination shift effect. The clearance effort shift effleecame more evident
for smallerh values. We selectedl= 5 to demonstrate that peakmMPOUND elimination
countcan shift from PERIVENOUSto PERIPORTAL aska increases. Clearance effophyg,
maps to average intrinsic clearance for a lobular tissue satakén from the same
relative location within a lobule. The cumulative totala@MPOUNDS eliminated by
each SSwas recorded. @vpPounD Elimination Count is the mean of those values for
each region. On the rigltis plotted, the value of the local gradient (which is the same
for each of the fivé, experiments), and the mean, regioQalalue Qavg att = 1,000.
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Figure 3.13 ZoRLA zonation patterns. The experiments are theasafoeFigure 3.12,
except thah = 70. Theposeeach simulation cycle was S@mMPoUNDSandpBypass=
0.8 for allcomPouNDs (a) Att = 0, each SS was assigned a rangoralue (0—1 color
scale). (b) The updated value mfis shown at the conclusion of the 80§imulation
cycle following dosing with one of fouwomPOUNDShaving different potencies. (c)
Values ofg (rust to yellow color scale) ar@@ (gray) are graphed at 500.
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Figure 3.14 Patterns of SS damage. The ZoRLA, experimentalcptoandp color
scale are the same as in Figure 3.13. We specified that damage carmiciap to either
severe hepatocyte damage or necrosis) occur after argLS®KRED 50 COMPOUNDS A
damaged SS is grayFollowing repeated dosing with one of threemPouNDshaving
potencies ok, = 1, 5, and 10, the updated valueppfor an undamaged SS is shown at
the conclusion of the 580and also after the 550r 600" simulation cycle. Theose
each simulation cycle was S ®MPOUNDS
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To explore plausible patterns i@EPATOTOXICITY, we specified that SS damage occur
(which can map to either severe hepatocyte damage or necrd&n) amy SS in the
ZOoRLA used for Figure 3.13 cleds® comPOUNDS We conducted experiments fiy =
0, 1, 2.5, and 10. Fde = 1, consistent damage is evident after400. It is evident
earlier fork, =5 and 10. Results are shown in Figure 3.14d00,t = 550 k, = 5 and
10), andt = 600 k, = 1). Patterns are similar to tkt®@MPOUND elimination counts in
Figure 3.12. The low poten@OMPOUND (ky = 1) cause®ERIVENOUSHEPATOTOXICITY,
whereas for the higher potencgmMPOUNDS (k, = 5 and 10), there was marERIPORTAL

HEPATOTOXICITY.

Quantitative validation for dose-dependent ZoRLA zonation patterns

The ZoRLA used for Figure 3.13 was reused to explore the conseguenc
changing the dose per simulation cycle on zonal patterns oaoteaeffort. The results
in Figure 3.15 are for five different repetitive dosing experimargig a medium
potencyCOMPOUND, ky = 5. The dose per simulation cycle ranged from 10 to 1,000
COMPOUNDS Shown is the pattern at the conclusion of the™56fcle. Note that
repetitive dosing with 5@ompPouNDshavingk, = 1 in Figure 3.13 gave a clearance effort
zonation pattern quite similar to repetitive dosing withcbipPounDs havingk, = 5 in
Figure 3.15. Note also that repetitive dosing withcsPouNDs havingk, = 10 in
Figure 3.13 gave a clearance effort zonation pattern quite simitapetitive dosing with

100compounDshavingk, = 5 in Figure 3.15.

The data in Figure 3.16a are redrawn from (106). The data showAZYIRRNA
expression in periportal and perivenous hepatocytes obtained frorhresgsdalys after a

single oral dose of 0.01, 0.3 or 10.0 L#]TCDD/kg (2,3,7,8-tetrachlorodibenzo-
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p-dioixon); LDsp = 0.034 mg/kg, a potent toxin and a potent inducer of P450 isozymes.

To what extent can the data in Figure 3.15 be mapped to observations in Figure 3.16a?

We selected a three-step mapping process. First, as ddnthevitvet-lab protocol,
we divided the.OBULE into two regions and then averaged the clearance efforts in Figure
3.15 fort = 500. Second, we specified that a simple linear correlatmuld exist
between clearance efforts and log CyplA2 mRNA expressiois)eamed that the levels
of induction for the high dose are close to the maximum that can bevedhithey
correspond t@ ~ 1.0). The one that gave the best y-axis match was transforit@ed da
3.8(pavg + 4.6. Those transformed values are graphed in Figure 3.16b. Steptse
placement of the transformed ZoRLA data relative to xhexis (which is {H]
counts—assumed to be TCDD—per viable hepatocyte isolated from peirigod
perivenous tissue samples three days after dosing). That mamyasg not
straightforward. SSs map to more than just hepatocytes. Tham a 1:1 mapping
from acompPouNDto an amount of TCDD. FurthercampPouNDin low and high dose
ZoRLA experiments can (and should) map to different amounts of TCBihally,
although we measured averagempPouND elimination count (CE&sg for PERIPORTAL
andPERIVENOUSSS after 500 simulation cycles, we did not include processesdiiéd
map to either 1) elimination and removal of metabolites or 2)trdmison of TCDD and
metabolites to tissues. Nevertheless, we sought a sing&famna that would provide a
reasonable quantitative mapping. The one used in Figure 3.16b is traGHaw,

according to the following log-linear equation: log(x) = 2:l0g9(GRG- 9.
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After t = 500 Cycles

Dose = 500

-

Dose = 1000

Figure 3.15 Dose-response patterns. The ZoRLA, experimentalcpkoend color
scale are the same as in Figure 3.13. The damage option igl toffne Five
experiments were conducted. Each simulation cycle began withdicated dose, 10
to 1,000comPOUNDS havingk, = 5. Shown is the pattern pf values at the conclusion
of the 508" simulation cycle. These data are used in Figure 3.16b.
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Figure 3.16 Wet-lab and ZoRLA data showing dose-dependent zonationDoga)
dependent (x-axis) localization oH]TCDD (2,3,7,8-tetrachlorodibenzo-p-dioixon) and
CYP1A2 mRNA expression (y-axis) in periportal and perivenous hegatobtained
from rats three days after a single oral dose of 0.01, 0.3 or 10ICPR®/kg; redrawn
from (106). X-axis: levels of’H]TCDD in the two cell subpopulations expressed as
attograms JH]TCDD/viable hepatocyte; y-axis: log CyplA2 mRNA expressievel.
(b) The mearpeERIPORTALand PERIVENOUSClearance effort valuepd,q right axis) from
Figure 3.15 are shown mapped to the wet-lab data using the trasgfoovided in the
text. The ZoRLAspace was divided into two equal regions (zones) and the ppean
(pavg right axis) along with meaooMPOUND elimination count within each region were
calculated. The measurements were transformed to map quesltjtat the wet-lab
data (both y- and x-axis placement) as described in Resuis.Thé experiments that
yielded the Figure 3.1®BOsSEresponse patterns were repeated ugiBgpass= 0.99
rather than 0.8. payg and mearcoMPOUND elimination count were calculated as in (b).
The measurements were transformed to map quantitatively to théabwelata as
described in Results.
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Note that in Figure 3.16a, for the two lower doses, there is mof@DT@er
perivenous than periportal hepatocyte. For ZoRLA experiments, thkdtéei difference
in the corresponding low dose transformed CECavg values. For theryes Hoses,
however, the periportal transformed CECavg values were largésanging pBypass
can alter that trend. For the experiments that corresponducebig.12-3.15, pBypass
was arbitrarily set to 0.8. We increased pBypass to 0.99, which wuoald to
compound that is extensively bound to blood proteins, and repeated the erfeiime
Figure 3.15. The transformation of pavg to log CyplA2 mRNA espmeslevels
(y-axis) was the same as for (b). We again sought a snagleform that would provide
a reasonable quantitative mapping of CECavg to TCDD per viable bgpato The one
used in Figure 3.16c¢ transforms CECavg as follows: log(x) = 1.3-ldggGd) + 0.51.
Note that the similarity between perivenous—periportal differerinesransformed

CECavg values for each dose and the corresponding wet-lab values has improved.

3.2.4 Discussion

Plausible mappings of SS mechanisms to hepatic counterparts

Braeuning recently presented arguments and supporting evidence for the
Ras-Raf-MAPK and Wnp-catenin signaling pathways playing roles in both hepatocyte
zonation as well as induction of P450 isozymes (97). There are adearstencies
between the ideas presented in that paper and the more ghstZai®L A1 mechanisms,

and they are identified in Appendix C.

Braeuning also presents evidence of an overall deactivatingpagssive effect of

Ras-Raf-MAPK (mitogen-activated, protein kinase) signaling mpression of CYP
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enzymes. Because detection of local gradiegtsupsystem) by the LEARANCE
Management Module in Figure 3.10c causes decrement of clearforteved conjecture
that a mapping exists between that ZORLA process and proctetemclude the
Ras-Raf-MAPK signaling pathway. In addition, there is ewedernfor direct
transcriptional activation of CYPs by Wfteatenin signaling. The case is made that
the B-catenin pathway can be regarded as a decisive factor in thiatreg of the
perivenous hepatocyte gene expression profile, including basal expres§idfiPs and
other xenobiotic-metabolizing enzymes. Because detection pdnss signals by the
CLEARANCE Management Module causes increment of clearance,efferconjecture that
a mapping also exists between that process and hepajmogesses that include the
Wnt-3-catenin signaling pathway. With further iterativeimeent of the GEARANCE
Management Module, those currently abstract mappings bm made increasingly

concrete.

When designing a synthetic analogue, there is a strong inchndt insert
counterparts to specific biological features, such as includingmga@nent that maps
directly to the Wnf3-catenin signaling pathway, simply because current evidence
indicates that the component plays some role in generating rijetetdh phenomena.
Doing so prematurely is a mistake when we are not yet confafetite component’s
putative role in causing the phenomena. So doing forces establishing ggsumali
other components at a specific level of granularity that magyay not be warranted for
the attributes targeted coupled with the current levels of knowledmorance, and

uncertainty. The components in Figure 3.10 are more abstract aisé-goained than
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the Wntf-catenin signaling pathway. They were made only as complicated and specific
as needed to achieve the patterns and attributes targeted. dardye anade more
fine-grained and specific iteratively, as the set ofilattes targeted expands. Once a
degree of validation has been achieved for coarse-grained componentbeliaeiors
during simulation can be used for cross-model validation duringeregnt to more

fine-grained (greater mechanistic detail) counterparts.

The current abstract micromechanisms map to a conflation ofingligrained
processes in lobules that contribute to the simulated events. If wetdwave specific
evidence on how some known signaling and/or metabolic pathway is contgibtlten
there is no scientific value in simply implementing some conckepikage simply for

the sake of including it. So, how can one achieve such linkage?

Consider the following. We have observations from identical expetsram two
different livers, one normal (wild type) and another from a mohbae htas had one or
more components within a signaling &/or metabolic pathway mealsuaétered, e.g., by
genetic deletion. Wet-lab data from the knockout’s liver (but ndtftban the normal
liver) falsifies the current micromechanism. That evidenceef®us to posit one or more
new, more fine-grained micromechanisms that incorporate one or featares
containing the knocked-out component. Such an approach was used by Tangnand H
(122) to falsify a coarse-grained micromechanism and replaositit one more

finegrained in which components mapped directly to individual macromolecules.

A related question is, how can one parse specific micromechanismshe overall,

systemic behaviors observed experimentally? An effectiveegirais to expand the
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variety of systemic attributes targeted. Addition of a new attribute fedsify a
micromechanism. To revalidate, it may be necessary to re@ao®arse-grained

micromechanism with one that is somewhat more finegrained.

Following that, a clearer mapping may exist between the mare-gfiained
micromechanism and the signaling and/or metabolic pathways ofeshtefurther
iterative refinement can increase the concreteness of tppimga Such a process was
used by Lam and Hunt (98) to move iteratively from coarser to rfineegrained

micromechanistic hypotheses.

Inverse maps from phenomena to generators

The exploration of an inverse map from phenomena (patterns of zonation) t
generators requires one to hypothesize and then build generabnnal cause the
phenomena. The question posed is this: given phenomena such as intraloriatian,
what plausible generators might cause their emergence ove? tinkwever, a
generator-phenomenon map is not one-to-one.  Many generator compositions
(mechanisms) can produce phenomena that when measured are indisaibigui
Nevertheless, the first step is to find and validate one, whiclhas we have done here.
So doing opens the door to discovering others. When we find a hypotlyetieahtor
in the form of an extant biomimetic mechanism, we do not yet hawebn&ogical
knowledge, but we do have a concrete instance of a strictly definedsilge and
observable mechanism within a system suitable for experimentasonalled for by
Christoffels et al. (73), whereas before we only had unchallengeckmisn In the
absence of other concrete, competing theories, that system anelchanism can stand

as the current best explanation of the phenomena’s cause urfigdalsi evidence. A
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systematic, scientific study of any inverse map (phenomenge+terator) can only be
done with concretizable hypotheses, either biological silico. It cannot be done with

hypotheses that remain conceptual (2).

As this new M&S method matures, we anticipate that the prefegpproach will be
to identify several somewhat different yet still plausible generatoeta@ehd refine them
in parallel against an expanding set of targeted attributes. cawexpect that modest,
selective expansions in the set of targeted attributes wiillirelte some generator

concepts but allow others to advance following refinement.

Objective achieved

In Methods, we specified thatSIGNALS areCOMPOUND dependent, and listed three
mechanistic options: 1) @OMPOUND or its METABOLITE functions as &-SIGNAL; 2) a
COMPOUND Or its METABOLITE initiates a response within a SS and that response (or an
object generated by that response) functions asS&NAL that is also detectable
subsequently by other SS; and 3}@POUND or its METABOLITE that escapes clearance
initiates anEXTRAHEPATIC response, and that response (or an object generated by that
response) is am-SIGNAL that is SS detectable. We implemented the third option,
because early exploratory simulations indicated that it would besitmglest to
implement. Exploratory simulations (Appendix CFigure C.5 and Figué@ showed
that zonation does occur when usiDgMPOUNDS as R-SIGNALS for single-pass dosing
experiments. However, further exploration (not shown) demonstthegdthe first
option could not achieve targeted attribute 7 because-#&NALS generated stay within
each SS and so cannot influence other SSs. Option two is more @ietptitan option

three. Given the evidence presented herein, it merits exploratitoseems likely that
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there are several mechanisms by which zonation of hepatic cellular sperld occur.

The approach used herein can be extended to discover and investigate those options.

Reports on regional hepatic CYP1Al1 and CYP1A2 induction describe a
“switch-like” hepatocyte response to TCDD: a sharp boundaryesetwareas of induced
and noninduced cells (107, 108, 109). Although this phenomena was not among the ten
attributes targeted, we discovered that decredsitgvery small values, e.g., 0.01 and
smaller, caused ZoRLA to exhibit a clear-cut, switch-like b&nain which the zonal

location of the switch is dose dependent. An example is provided in Figure C.7.

With the 2D ZoRLA design in Figures 3.10 and 3.11, the abstract meohani
Figure 3.10c, and the results in Figure3.12 — 3.16, we achieved targeted attributes
1-10, with two exceptions, attributes 8c & d. The effects of hypoptorsgand other
treatments on lobular mRNA distributions of various P450 isozymesb(aét 8d) is
fascinating, but beyond the scope of this simple ZoRLA. AttribateiBes an example
of a xenobiotic inducing zonation patterns that are the reverse of ithésgures 3.13

and 3.15. Iigj in EqQ. (3.6) is replaced bgtax—0i), the patterns in Figure8.13 and

3.15 are reversed.

Based on the preceding evidence, we suggest that hepatic cousttrlaet abstract
ZoRLA mechanism, along with the zonation patterns produced, exigsiwhan treated
with some xenobiotics. The implication of these ZoRLA experimeaststhat
hepatocytes do learn from experience and can cooperate to reeml®otics, including

some that produce significant response or toxicity.

The results also demonstrate a new scientific method to expeailtgeexplore and
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challenge mechanistic hypotheses about the causal nature afolégic and

pharmacologic phenomena.

Table 3.4 Targeted Attributes and Specifications. Hepatic lobudetharreferent. The
model system is called a zonally responsive lobular analogue &oRIA: a targeted
attribute;S: a ZoRLA specification. Attributes 1-10 are targeted for this report.

Attribute  A: a targeted attribute
Number S: a ZoRLA specification

A: Lobules are comprised of cells, which are typically autonomous
functional units.

1 S: Each ZoRLA is comprised of autonomous functional units called
sinusoidal segments (SS) that map to a portion of a sinusoid containing
one or more hepatocytes (Figure 3.10).

A: Hepatocyte function is location dependent. Cells respond based only
2 on local information.
S: A SS does the same.

A: Upon interaction with hepatic cells, blood-borne material (such)as O

which function as signals, form periportal-to-perivenous (P-to-P)

gradients. Those gradients provide information to hepatocytes about
3 their relative location.

S: A SS should be capable of forming and responding to various

trans-lobular signal gradients.

A: Upon administration via blood, compounds, alone or in combination,
having different potencies and different affinities for hepatic fonsti
percolate through lobules exhibiting P-to-P movement.

4 S: Mobile objects carrying identification information map to small
fractions of a xenobiotic dose. When a compound generates a response,
there is a ZORLA counterpart to potency. It must be easy to change
compound dose, potency, movement, and affinity characteristics.

A: Hepatocytes clear xenobiotics from blood (metabolism and biliary
elimination). A standard measure hepatic removal of a xenobiotic is
intrinsic clearance (CLint), the clearance rate absent blood flétw.
depends in part on the relative amounts of enzymes and transporters

S expressed by each hepatocyte. Location-dependent CLint can change
following exposure to a xenaobiotic.
S: The ZoRLA counterpart to CLint is clearance effort. Each 3S ca
change its clearance effort upon exposure to compounds.

A: Hepatocytes often exhibit location dependent expression of enzymes

and transporters.
6 S: SSs can exhibit location dependent clearance effort.
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Attribute  A: a targeted attribute
Number S: a ZoRLA specification

A: Zonation of xenobiotic metabolism occurs at both the cell and lobule
level, implicating cell-cell cooperation at some level. It changes

7 adaptively.
S: Individual SSs can improve efficiency by adapting their clearance
effort to changing compound exposures and to actions of other SS.

A: Xenobiotic dosing, using a variety of experimental conditions,
produces different P-to-P induction patterns for different members of the
CYP family. Examples (provided for convenience in Appendix C,
Figure C.10) include:
Induction patterns of CYP1Al, -1A2 and -1B1 by TCDD (106, 110, 111)
Induction of CYP2B1/2 by octamethylcyclotetrasiloxane (112)
The CYP1A1 mRNA induction pattern causedfegaphthoflavone is
opposite to that caused by 3-methylcholanthrene (113)
Effects of hypophysectomy, growth hormone, and tri-iodothyronine on
the lobular mRNA distribution of various CYP forms (90) (not yet

8 achieved)
Perivenous induction of CYP2A1, -2B1, -2C11, -2E1 and -3Al by
acetone, ethanol or phenobarbital (114)
Periportal induction of CYPEtOH2 by ethanol or phenobarbital (114)
(not yet achieved)
Dose-dependent zonation of enzyme induction: perivenous induction
with low-dose, and periportal induction with high-dose phenobarbital
treatment (114)
S: A ZoRLA should be capable of producing patterns of clearance effort
that mimic those observéul vivo over variety of experimental
conditions. A degree of validation is achieved by using a simple
transformation to achieve quantitative similarity.

A: Most histological zonation data is in the form of stained, 2D sections
through liver samples that also provide evidence of unique sinusoidal

9 flow paths.
S: ZoRLAs consists of 2D SS arrangements that enable mobile objects to
follow multiple, different P-to-P paths.

A: Compound dosing can cause dose dependent zonal patterns of cell
damage. Examples (provided for convenience in Figure C.10) include:
Cell necrosis patterns by anterograde infusion of CEI5)
Perivenous damage by G@nd bromobenzene (116)

10 Periportal damage by digitonin (116)
S: A ZoRLA can produce dose dependent damage patterns that mimic
those above.

A: When retrograde infusion is used, different clearance/damagenzatt
emerge (see (115) for a CBg@xample).

S: ZoRLA produce similar patterns when movement of mobile objects is
reversed.

11
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Attribute  A: a targeted attribute

Number

12

13

14

S: a ZoRLA specification

A: Histological micrographs show zonation patterns extending over
several adjacent lobules.

S: 2D multi-lobular ZoRLA arrangements that mimic such cross-sections
produce similar patterns of clearance effort.

A: Cell response depends in part on the physicochemical properties of
compounds.

S: A ZoRLA is able to use physicochemical property information of a
compound to which a mobile object maps in place of a potency value to
produce zonation patterns that cross-validate.

A: Several liver fractions exhibit zonation concurrently (e.g. protein
synthesis, fatty acid degradation, xenobiotic metabolism, etc.).

S: ZoRLA zonation mechanisms are scalable to produce concurrent
zonation of various functions.
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4 Summary and Conclusions

Computational approaches for discovering mechanisms that influeeagnént
responses are evolving rapidly. New software engineering techr®lquievide
researchers with computational means to exploit ideas and evalattheses more
productively. | proposed a novel mechanistic explanation of observed gssli@atterns
of liver detoxification and compound-induced toxicity based on simulatimsisag
multi-agent models. In the models presented herein, autonomous ageptsom
collections of liver cells. Individual behaviors at the agent lewede specified. Upon
parameterization, agent-level actions resulted in a collett@havior similar to that

observed for toxin elimination within hepatocyte cultures and liver lobules.

| followed a relatively new scientific modeling approach, ahtlee synthetic method
of modeling and simulation (2). Utilizing recent advances in compigenology,
synthetic modeling can accelerate biological knowledge discobgryfacilitating
fast-paced cycles of hypothesis generation, selection, andicttlen. Mechanistic
hypotheses are created by abductive reasoning (2). Successhdmséc hypotheses

can suggest new experiments to more deeply probe the phenomenteredti(wet-lab
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and in silico). Scientific modeling and simulation requires use of all thresamng

methods: abduction, induction, and deduction.

In particular, | presented two different models of hepatic xenobéiticinatiort.
The first,in silico hepatocyte (Chapter 2), focuses on cultured primary hepatotyies.
goal for this model is predicting vitro drug clearance. The traditional approach to
predicting thein vitro andin vivo properties of new compounds is to search for patterns
within large data sets of measured biological property datahemdseek patterns within
the set of compound property values of those compounds for which correktishs
Knowledge about the mechanisms that generated the biologicalidaialy used
indirectly. | combined the knowledge of mechanisms and the paftarnd in the space
of the physicochemical and biological properties. The models andagtpare designed
to leverage that knowledge by representing and improving our unutirgjaof the
generative relationships within the target biological systere. dgproach is new: more
work is needed to uncover and understand limitations and to delineate adsaetative

to other methods (optimization, data fitting, etc).

In Chapter 3, | presented mathematical, cost-based, multi-ageatasons of
hepatic xenobiotic clearance processes. The models consistroia @f agents that,
similar to hepatocytes, cooperate to protect the system of wheshare a part (the
organism) against toxins. Agents did not have a priori information abither the
environment or other agents. Each agent perfor@sghrning independentl®-learning

is a primitive form of learning that minimizes the agentad-term discounted costs.

1 All models developed in this work were constructesing MATLAB. The code is available online at
biosystems.ucsf.edu.
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Costs to an agent were specified to be proportional to the agaetgyeexpenditure
associated with toxin elimination, and the damage caused to th@isongdue to toxic
effects. The collective behavior of those agents was striksigijlar to that of hepatic

cells within lobules.

Adaptive cooperation among hepatic cells may have been an impgaxttotin the
evolution of within organ, location-dependent strategies used by callsat with short-
and long-term changes in each cell's environment as well asothtéte organism.
Simulations of the type used provide new insight into such proceshéd) im turn
improves our ability to anticipate the metabolic and biological édteompounds of

interest. Doing so is expected to expedite drug discovery and development.
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Appendix A. Nelder and Mead Simplex Method

The Nelder and Mead algorithm, introduced in (27), is a widely usethigption
algorithm. Despite its age it is still the method of choicenfiany practitioners in the
fields of statistics, engineering and the physical and medicehces because it is
straightforward to code and easy to use. Particularly, it has bheed widely by
researchers for simulation optimization 28, 29, 30, 31). It belongsctass of methods
which do not require derivatives and which are often claimed to be rfdyystoblems
with discontinuities or where function values are noisy. This propeakemit a good

candidate for optimizing the stochagticsilico simulations.

There are several different versions and extensions of this satiom algorithm.
We used the one described in (32) with minor modifications to optirhez@arameter

values.

Figure A.1 shows the simplex algorithm employed in this wWdiks; Gvorst @and
Ghext-worstare the best (i.e. has the highest similarity score), wodsheaxt worst vertex of
the simplex. There are four basic operations used in this algorgéifilection, contraction,
expansion and shrink (described below). The general heuristic isetlmeh method is to

move away from the worst point toward the best.

For optimization of ann-dimensional stochastic objective function, the simplex
algorithm uses a simplex with+1 vertices, and evaluates the objective function in every
vertex. Based solely on the ranks of the observed function values vertiees of the

simplex, different steps can be taken, such as reflection, expaosidaracting vertices
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or shrinking the simplex, in order to find better vertices.
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Figure A.1. Nelder and Mead simplex optimization algorithm

In the case of model optimization, the objective function could be asume of
goodness of the model, which in our case is determined by the giyrsleore assigned

to each vertex.

The operations used in the Nelder and Mead Simplex method are:

Reflection: The operatioreflect: &through: €. is defined as:
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O =U+a)0,,—ab0 a>0

cent

where bt is the centroid of all simplex vertices excépthe real numbew is called the

reflection ratio (Figure A.l1a).
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Figure A.2 The simplex four basic operations:
(a) reflectBren, contracBcon;, expanex, (b) Shrink

Contraction: The operatiazontract: & though: &.enis defined as:

Hcont :ﬂ9+(1_ﬂ)ecent O<ﬂ<1

where bt is the centroid of all simplex vertices excépthe real numbep is called the

contraction ratio (Figure A.l1a).
Expansion: The operatia@xpand:d though: G.en:is defined as:
econt :7H+ (1_7)0cent Y >1

where.niis the centroid of all simplex vertices excépthe real numbey is called the

expansion ratio (Figure A.1a).

Shrink: The operatioshrink toward:é.<tis defined as replacing vertéxwith
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56, + (1= )0y 1 =1,...0+1, 6, £6,..,0< 5 <1

est? est?

wheresd is a real number between 0 and 1, called the shrink ratio (Figure A.1b).

The Initial Simplex

The simplex method does not start with just one single point butn#ithpoints,
defining the initial simplex. One way to form an initial simplexhat if we think of one

of thesen+1 points as our starting poif, the othen points can be chosen as follows:
6 =0,+do xk
whereeg’s aren unit vectors andé is our guess of th& parameter length scale.

Other methods can be used to for an initial simplex as well, for example raetkstion

of then+1 points.

As a result the firsh+1 experiments are performed to form the initial simplex and

the optimization process begins thereatfter.

Appendix B. Fuzzy c-Means Algorithm

Since Fuzzy Set Theory (FST) began in the 60’s it has beenogedelas an
alternative to probability theory in modeling uncertainty. Pattecognition, or search
for structure in data, provided the early motivation for developing F8ause of the

fundamental involvement of human perception (117).

A Fuzzy classifier provides a measure of the degree to whpdttarn fits within a

class. There are several techniques for Fuzzy pattern re@oagniA Fuzzy classifier
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based on a genetic algorithm requires a long training time aidithe can increase
dramatically when the training data has a high dimension. A Falaggifier having an
ellipsoidal region has had good performance in many classifigatodlems, but it needs
a vast amount of time to calculate the covariance matrix ofelifgsoidal clusters.
K-Means-Based Fuzzy classifier (118) uses the K-meansithlgoto partition the
training data for each class into several clusters, and thea Bonzy rules are used to
construct a Fuzzy classifier. In this work, we use a Fuzzgrmpatecognition technique

introduced by Bezdek and described in (56): FCM iterative algorithm.

FCM clustering involves minimizing an objective function or ermitedon selected
from a family of objective function clustering algorithms. @émumon goal of these
algorithms is to find an “optimal” partitioning of feature spaosg a collection of data
samples. The algorithms that, in addition to minimizing an déaretion, estimate the
prototypes of resulting classes within a partition, are oftenrregfeto as C-Means
clustering algorithms, where the integestands for the number of classes. If the classes,
for which the prototypes are estimated, are allowed to be ,fuaeyFCM clustering
algorithm may be used. The FCM algorithm minimizes the least-squard¢efuthat is
given by a generalized within-groups sum of square errors:

Jm = i i rulrlrc’djr

k=1 i=1

where there aren observations (in our case the physicochemical properties of the
compounds of interest), ¢ classeg, is the membership of (herex is the vector of

physicochemical properties) in classn (the “Fuzzy exponent”) is a parameter used to
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control the fuzziness of the class allocation, and
di?c = (xk -V )T G(xk _vi)

is the distance measure, or inner product norm, betweamd the mean of class

denotedy;, induced by the positive definite weight matrix G, &nid determined by

v, = Z:nl yi’;:xk
Dt
The output of FCM, U, is a real c-by-n matrix, containing the walaé the
membership functions of the Fuzzy clusters. This matrix sedigfie following two
conditions. The first condition is that each feature vegtonas its total membership
value of one divided among all clusters, while the second one statetheéhsum of
membership degrees of feature vectors in a given cluster doesxcexd the total

number of feature vectors.

Appendix C. Supplement for Section 3.2

C.1 The Linear preZoRLA System

The linear 1D preZoRLA illustrated in Figure C.1C is composed sgatially fixed
SS embedded within an extrahepatic space. For the preZoRLAL araRh&Z, n =
20. The system maps abstractly to a portion of a hepatic lobulasasted in Figure
C.1A. SS mechanisms are described below. A SS has no knowledyeathar SS.
There are three types of mobile obje®sSIGNALS, XENOBIOTICS, and R-SIGNALS. A

source container (not shown) for each is located just prior o S%e special case
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where XENOBIOTICS also function as the&-SIGNALS is allowed. TotalSIGNALS are
specified byaDoseand bDose A-SIGNAL dosing can be delayed using tth@seDelay

parameter.

Figure C.1D provides an abstract view of the mechanisms widlcim 8S agent. In
a rat lobule, a compound entering a sinusoid segment can exit inteethesegment
without encountering hepatocytes. The same is true for a>&8io®I0TIC that enters a
SS can exit without being detected by (seen byJLEARANCE mechanism. The large
circle in each SS in Figure C.1D contains the#ARANCE mechanism. The probability
of bypassing a SS is specified by the paranmgpass A xenosloTIC will be detected
with a probability of 1 -pBypass Once detected, an event occurs. XBROBIOTIC
either is or is noCLEARED. The primary requirement of the abstract S&8ARANCE
mechanism is that it be consistent with known hepatocyte detdilsnaps to either
detoxification by metabolism (in that case the metaboliigrisred) or elimination into
bile. INTRINSIC CLEARANCE of SS is the probabilityp; that a detectedenosioTiC will
beCLEARED, and that value is under S®ntrol. Because each SS is quasi-autonomous,
each can act independently. Increasjmgcan map to induction of metabolizing

enzymes and/or induction of uptake or efflux (to bile) transporters.

Simple SS Mechanisms to Create Zonation

Typically, there is no zonation at the start of a simulation. créate measurable,
CLEARANCE-related zonation, something within each SS needed to map to metabolic
enzymes. To meet that need in preZoRLA1, we specifiedRbgEIN objects illustrated

in Figure C.2A. ROTEINS can map to any measurable gene product including
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xenobiotic metabolizing enzymes. The numbeéX) (or use of PROTEINS during a
simulation established if zonation had or had not occurred. Each SSedds a
gradient of detectable mobile objects to provide relative locatioornv#tion; SSs
working independently should be able to create whatever mobile obgadiemns are
needed. The SS mechanism in Figure C.2 uses two subsystersatt (or activate)

and remove (or deactivateROTEINS

SIGNALS, whenpresent in its source containefere metered into a preZoRLAL at
SS at a constant rate, typically one of each type each siowlaycle. Both object
types could pass through (bypass) a SS without being detectduypthges probabilities
were pbBypassandpaBypassfor B- andR-SIGNALS, respectively. @&NAL detection, as
illustrated in Figure C.2A, triggered two events in sequence andidhaL was then
either removed (with probabilitiggbRemoveandpaRemoveor released. In the latter

case it entered the next SS.

In Figure C.2A, two subsystems regulate H#roTEIN levels. It is too early to
speculate on the subcellular networks to which they map. Howeverdaevify
candidates in the Introduction. The current subsystems are inducaiielsrserving as
placeholders for future sets of concrete interacting componentgghaeiaviors that will
cross-validate with the current subsystems. A detegteiNAL causes an event in the
b-subsystem: variablb is increased by a constant valg b; is the average value of
variableb overNayg simulation cycles ending with the last. For the results pteden
Figure C.5Nayg = 100. Subscript indexes the value for the current simulation cycle.
Subscriptt+1 indexes the value for the next simulation cycle. Blewent is followed

immediately by another event in thesubsystemm is an integer, proportional tm; ¢,
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is the adjustable proportionality constant. The second event resuimioval (or

deactivation) ofm, PROTEIN objects.

A detecteR-SIGNAL causes an event in thesubsystem: variable is increased by a
constant valudy; a; is the average value over 100 simulation cycles ending withghe la
The a; event is followed immediately by another event in sfseibsystems; is linearly
related taa; andN;; ¢, andcs are tunable constants, which adjust the influen@gfand
Navg ON s. Largerc, values increaserROTEIN production;cz modulates negative feedback
on PROTEIN production by already existimreROTEINS dampening the impact of a change
in R-SIGNALS on PROTEIN levels. Independent of all preceding evemisand b; are
reduced by one at the end of each simulation cycle. That reduatiomap to normal

turnover and/or the involvement of those pathways in other cell processes.

Figure C.2B illustrates the mechanism x#NoBIOTIC removal by a SS. A
XENOBIOTIC that enters a SS can pass through (bypass) undetected vpitobability
pBypass The probability ofcLEARANCE following detection igy. If the XENOBIOTIC is
Nnot CLEARED, it will enter the next SS at the start of the nexiusation cycle.  ICLEARED,
it is removed from the simulation. We specified fhabe a function olN; (and that it be
positively correlated with\;). When theN PROTEINS are responsible foRENOBIOTIC
CLEARANCE, p; = 1 — (1 —pRemovg", andpRemoves the probability of aENOBIOTIC

being removed by oreROTEIN

Results of preZoRLA1 operation

Operation of the Figure C.2 mechanism created different pattdrrianctional

zonation across 20 SS connected in series as illustrated ie RIgUC. One measure of
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zonation is the value df, the number ofPROTEINS which can map to the level of
expression of a xenobiotic metabolizing enzyme. We explored leegmns of
preZoRLAL1 parameter space and the patterns produced. Six examplehown in
Figure C.5. The first three (Figure C.5A-F) are biomimaticthat the increasing
PERIPORTAL-tO-PERIVENOUS level of PROTEIN is similar to zonation patterns frequently
reported for xenobiotic metabolizing enzymes. Note thajy; values decline
approximately linearly from SSo0 S,  Detection and removal @FSIGNALS leads to
the equilibrium values of.g detection and removal OR-SIGNALS leads to the
equilibrium values obag By changing values af—cz, paRemoveandpbRemovéehe

mechanism creates a wide varietyeDTEIN|evel zonation patterns.

Exploring the behavior space of preZoRLAL

PreZoRLAL1 is able to exhibit different zonal patterneRbTEIN expression. The
patterns could be categorized into three types:PERIVENOUS expression (Figure
C.5A-F); 2) PERIPORTAL expression (Figure C.5Q); and 3)MID-ZONE expression

(Figure C.5 K-L).

To obtain the first behavior, we specifipdRemove: ppRemove Doing so caused
a steeper gradient @fsIGNAL than that olR-SIGNAL. Consequently, it created a larger
PROTEIN expression rate in tiERIVENOUSthan that irPERIPORTALregion (Figure C.5B,
D, F). The extent of expression can be controlled by parameterigure C.5A,C,E

shows the results for small, medium and large values, oéspectively.

The second behavior was achieved by specifpaBemove> ppRemove In this

case thex-SIGNAL gradient was steeper than thaBedIGNAL, and as a result, the rate of
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PROTEIN expression was largeeRIPORTAL (Figure C.5H, J). The extent of expression
can be controlled by parameter Figure C.5G, | shows the results égr= 10 andc, =

20, respectively.

The third behavior is not easily attained. One example is showigure C.2K.
In this examplgpaRemove: pbRemoveadditionally,pRemovevas greater than zero but
very small. Doing so made-SIGNAL > B-SIGNAL in the MID-ZONAL region; but
R-SIGNAL < B-SIGNAL in the other two regions. Unlike the above two situatiaggand
bae values were unstable and kept increasing as long as the samulas running

(Figure C.5L).

The above instability is abiotic. Switching from the somewhat rooneplicatedQ
learning mechanisms in Figure C.3 enabled preZoRLA2 to avoidrpaittstabilities

while also being adaptive.

Results of preZoRLA2 operation

Operation of the Figure C.3 learning mechanism can lead to diffpedtarns of
functional zonation when used by 20 SSs connected in series (Figure \Gihg the
RESPONSE SIGNALgeneration and detection mechanism illustrated in Figure C.1B. The
patterns produced are always stable. In Figure C.6, the admitist@v®OUND is a
TOXIN. The five example results in Figure C.6 used the same paréagon, but the
threeToxINs had different potencies(values). The duration of repetitive exposure to
the sameroxiN dose was long enough to produce stable patterns. Values of repeat
experiments are not identical, but the patterns are identicabr t®roxiN dosing, each

SS’sQ value was initialized to zero. There are two measures ofiaonatOne is the
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value ofpac (it maps to intrinsic clearance), which is the probability h&iS will clear a
TOXIN if it is detected, averaged over the gdst = 500 simulation cycles. The second

is ToxiIN Elimination Count; it is the number ofoxINS CLEARED by a SS. In
preZoRLA2, ToxIN Elimination Count maps to hepatocyte exposure. Consequently, if
the TOXIN IS HEPATOTOXIC, then we can expect measuresHBPATOTOXICITY to correlate

with ToxiN Elimination Count. Note that when potency changes, each @Saue

also changes, and that causegjiisand ToxIN Elimination Count to change.

Figure C.6 shows examples of zonal patterns of clearanogt gffoduced by
preZoRLA2 for five differentk; values. k; (the number oR-SIGNAL objects produced
per exitedroxINs) controls the potency of thexIN. The average clearance effofig,c
(blue bars), as well asockIN Elimination Count (red bars) by each SS are shown in
Figure C.6A, C, E, G, I. CorrespondiggandQ values are also shown for each pattern
(Figure C.6B, D, F, H, J). Whdn= 0, only perivenous SSs expended clearance effort
(Figure C.6A). Ask; increased, the response expanded toward the periportal region.

The peak ©xIN Elimination Count moves toward the periportal region as well.
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C.2The 2D ZoRLA

Algorithm

The general sketch of the algorithm for the 2D ZoRLA is described below:

Initialize the (m by m) 2D space as shown in Figure 3.1a
Initialize Q and g (as described below)

Simul ation cycle starts
For all SSs do {

nSeenToxinsi «0
nEliminatedToxinsi «~0
nExitedToxins «~0
}
Randomly place toxDose toxins in the portal vein sp ace.

While at least one toxin exists in space do {

¢ Move toxins (1 step) according the biased
random walk algorithm.

e SSs see a co-located toxin with probability
1-pBypass; in that case update a counter:

nSeenToxinsi <« nSeenToxinsi + 1

e SSs that see toxins randomly choose
action according to their strategy p.

e For SSs who choose to eliminate do:
nEliminatedToxinsi <« nEliminatedToxinsi + 1

}

nExitedToxins < Number of toxins t hat reached the central region

For all SSs do {
penalty | <« —( k¢ - nEliminatedToxins i)
— ( ka - nExitedToxins)
}

Si nul ation cycle ends

Iterate Qlearning algorithm:
For all SSs do {

Update Q nSeenToxin ; times:

Q « (@ o)Q - openalty ;- pV)
where V=min( Q, g).

Updatep ;:
pi=exp(-g ,/hexp(-g /h)+exp(-Q /h)}
}

Start a new simulation cycle.
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Legend:
SS: Sinusoidal Segment
nSeenToxins ;: number of TOXINS seen by SS ;.

nEliminatedToxins i number of TOXINS eliminated by SS i
nExitedToxins: number of exited TOXINS at each cycle.

ka: Penalty of detecting an R ESPONSEignal object

k.: Cost of eliminating a TOXIN

t oxDose: Total number of TOXIN objects to be dosed
pBypass: Probability that a TOXIN bypasses a co-located SS

Derivation of Equation (3.7)

Q-learning is a form of reinforcement learning in which amagéempts an action

at a particular state, and depending on its consequences, receiass oe penalty. By

trying all actions in all states over and over again, inledne best strategy for choosing

actions at a given state. In the original form of Q-learmilggrithm (76), an agent at

time t:
- observes its current state
- selects and performs an action at,
- observes the subsequent state
- receives a payoff, and

- adjusts its Q values for xt and at according to:

Qua(x, @) = (1-)Q + a(r + AV(y))

where V§;) = max{Q:(y, a)}.

(A. 1)

The probability of executing action a in statés commonly determined using Boltzman equation

(119

o(a) = expQ(x,a)/T)

> expQ(x.a)/T)

(A. 2)
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In ZoRLA each agent has one state. There are two actions bdwaita each,
namelya; = eliminateanda, = ignore  Consequently, there are t\@values for each

agent. Call then@(a;) andQ(ap). Equation (A. 1) becomes:

Qua(a) = (1- a)Qu(@) + afr + V) (A.3)

In this workr is always negative (penalty associated with detectirsENALS and
toxicity costs). ThuxQ values become negative after a few iterations. To nGake

values positive and hence easier to interpret we specified the following garinariges:

g=-Q(a)
Q=-Q(a)
h=T

Substituting in equations (A. 1) and (A. 2) yields:

Q1= (1-o)Q —afr —AV) (A. 4)
where V = min{Q,, g}, and
P = exp(-g/h)/{exp(-g/h) + exp(-Q/h)}

As described in Section 2.2, we specifgdas a fixed noisy function of the SSs

distance to the center of the grid.

Initializing Q and g
SSs determined their g values based on locals of some facter.sp&¢ified that
downstream agents encounter significantly different factor lekials do upstream agents.

Consequently, SSgj values correlate with their distance from the exit area.caése

162



the exit area is at the center of the grid space we specified doagstol

gi = X%+ Y?) + 5, whereX andY; are coordinates of th& SS with respect to the
center of the grid space, ands uniform random noise in the interval [@/2] (mis the
length and width of the space)Q values were initialized such that agents started with
uniform, randomly distributed clearance effofgs= g + h - In (1/PRN—1), wherePRN is

a uniformly distributed random number between 0 and 1.

Biased Random Walk

Particles(ToxINS) stochastically move towards the center of the grid (Figudg. C
For any given grid space, a flow directiofl, is specified. Moor neighbors are
numbered counter clock wise, starting with number 1 at zero degnekesnding with
number 9 at 360 (Figure C.4A). In order to determine the stochastic movement of
particles we specified a Normally distributed random variaf)levhose mean, & 4 <9,
corresponds to the effective flow directiah, (for exampleu = 4 corresponds t@ =
135 andu = 1.5 to ¢ = 22.5). Details follow: A particle located at a grid space
remains in place with probabilifys,p, or stochastically moves to an adjacent space with
probability 1 —psiop  The adjacent spaceextSpaceis stochastically chosen according
to the flow characteristics asextSpace | x — 0.5/(modulo 8) + 1, wherg is a Normally
distributed random numbex:~ N.8/45] + 1,67, where 0< 8 < 360 is the effective
angle of movement (as shown in Figure C.4A) and the standard deviation &f o
controls the lateral movement of particles. Distributions laogve for three values af
in Figure C.4B; the motion converges to Brownian motion for large salite(since the

distribution becomes uniform)
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In this work we used three different standard deviatiefnss, andos, for periportal,
middle and perivenous zones, respectively. Because the sinusoid dedsiherefore
the lateral movement is greater periportal, we arbitragtyos = 1.2,0» = 1.0 andos =

0.7 (Figure C.4A).

Updating Q n times
UpdatingQ by Eg. (A. 5) (below) is equivalent to updatiQgn times using Eq. (A.

4). Doing so reduces the computational complexity of the algorithm.
Qun=a"Q—(1-a") (r-4V) (A.5)
wherea = (1- ).

Proof:

Qua1= (1 —)Qe + afr — pV)

Qun=(1-0)" Q+of 2", (1 -a)}(r - AV)

S=ofT" ' (1 -0} = a{(1 — @)™+ (L )™+ .. + (1 o) + 1} is a geometric
series:

S=1-(1-)"

Thus:

Qun= (1 -a)" Q+ {1 — (1 —0)"Hr - AV).

C.3 Switch-Like behavior of ZORLA

Some CYP enzymes (such as CYP1A1l and CYP1A2) exhibit switelekpression
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behaviors when induced by TCDD (107, 108, 109), i.e. hepatocytes appe#neas e
uninduced or fully induced. preZoRLA2 and ZorLA SSs can exhibit thee ssehavior
when parameteh is small. Proof: expressign= exp—@/h){exp(-g/h) + exp(-Qh))}
can be written as

p=1{1+ exp(—Q — g)/h)}. Whenh — 0, if (Q—g) > 0, then exp{-Q — g)/h} — «,
andp — 0; on the other hand ifX- g) < 0, then exp{-Q — g)/h} -0, andp —> 1. In
the rare case d =g, p = 0.5 regardless di. Figure C.7 shows examples of such

performance withh = 0.01, and dose = 50, 100, 500 and 1,00QNS.

C.4 Single Dose Response

Can SSs in ZoRLA respond and adjust their clearance strateligeging a single
dose? We conducted experiments to answer that question. The resutsoan in
Figure C.8 and Figure C.9. SSs were pretreated withveeOUND (dose = 50roxINS)
having zero potency for 200 cycles. This pretreatment was megess obtain the
initial uninduced SS response similar to that of an uninduced liver. nGne initial
condition, two types of dosing experiments were conducted: 1) thifeeedif doses of
the sametoxIN (Figure C.8) and 2) identical doses of five differaaixiNs having

different potencies (Figure C.9).

SSs used the same algorithm as in Fig 6, except that extialrepsstONSESignals

were not generated. Instead, the SSs treatenis asRESPONSEsignals.

C.5 Patterns of Hepatotoxicity: Consequences of Changink, and pBypass

Figure C.10 shows various patterns of enzyme expression and hepétpioxihe
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liver. Figure C.11 shows the effect of changikgand pBypasson patterns of SS

damage.

==
Not ¥ Cleared ZoRLA ICIeared

A n unit ZoRLA

Perlportal Perivenous

Bypass Bypass Bypass Bypass
J ’ '
1 i P2 £ P3 £ Pn

Figure C.1 Key features of then silico experimental systems. A) lllustrated is a
hepatic lobule cross-section divided into two zones, periportal (Zone l)esivénous
(Zone 2). B) lllustrated is theroxIN hepatic clearance scenario described in the text.
Left: we start with a ZoRLA that has a low probability ofaziag aToxIN. A TOXIN
enters and exits into thexTRAHEPATIC space without being cleared. Center: The
EXTRAHEPATIC TOXIN causes damage, which releasesEaPONSE SIGNALObject. The
RESPONSE SIGNAIMoves to and through the ZoRLA. In responsSRE®PONSE SIGNALS
mechanisms within each SS respond so that the probabilityoxin clearance is
increased. That adjustment is illustrated in the right pandidoghange in SS shading.
Right: with TOXIN clearance probability increased, the neskiN is more likely to be
cleared: the risk cEXTRAHEPATIC TISSUEdamage is reduced. C) lllustrated is a ZORLA
composed oh quasi-autonomous SS. It maps to a periportal-to-perivenous portzon of
lobule, such as the rectangular shaded regioA.in Each SS has the same internal
mechanisms. (D) lllustrated are low-resolution views of mechanisms withinhe@8
agent. ATOXIN that enters a SS will bypass that SS (pass through undetgdieel $S
mechanisms) with a probabiligBypass The large circle in each S&presents its
mechanisms. One mechanism is described in Figure C.2, and theénoiigure C.3.

pi, is the clearance strategy for;S& is the probability that SSwill clear a detected
TOXIN.
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Figure C.2 A simple SS mechanism to create functional zonation across $%ulti-
ZORLA. The events shown occur within each individual SS during eachlation
cycle. See text for details. Mobile objects move from |e#R(PORTAL to right
(PERIVENOUS. At the start of each simulation cycle, all mobile obje&sIENAL,
B-SIGNAL, andXENOBIOTIC if present) move to the right (in Figure C.1) by one SS and
new objects (one of each type) enterA) Each simulation cycle, the mechanism will
determine if each mobile object present will or will not exitdavisit the next,
downstream SS. That process creates mobile object gradiemgstlaé ZORLA's length.
Subscriptt indexes the value for the current simulation cycle. Subderlpindexes the
value for the next simulation cycle. When thesubsystem detects B&SIGNAL, it
increasesx and that causes the removalnafPROTEINSand possible elimination of the
B-SIGNAL. When thea subsystem detects aiSIGNAL, it increasesa; and causes the
production ofs PROTEINS coupled with the illustrated negative feedback on #he
subsystem and possible elimination of Ha8IGNAL. (B) A mechanism foKENOBIOTIC
removal by each SS is illustrated. 1XANOBIOTIC that enters either bypasses that SS
(and moves to the next SS) or is detected. 2) The probabilitieafance following
detection ig.. 3) If cleared, it is removed from the simulationp; is a function of the
number ofPROTEINSN, analogous to xenobiotic clearance being a function of hepatocyte
P450 levels.
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Figure C.3 A mechanism that enables each preZoRLA2 and ZoRLA SS to ledrn a
adjust itsTOXIN clearance strategy. preZoRLA2’s stricture is as desdrin Figure C.1.
The process within each SS is based on that in Figure C.2 andsdhewscenario in
Figure C.1B. The events shown occur within each individual SS desiciy simulation
cycle (without knowledge of what other SS are doing). See ftextletails. The
CLEARANCE-TOXIN management module tmodule hereafter) is a quasi-autonomous SS
subsystem (indicated by tlROTEIN Objects) that manage®xIN clearance. There is
no cost during the current simulation for lettingTaxin bypass to the next SS.
RESPONSE SIGNALSdO not pass undetected, butTtaxiN can bypass a SS with a
probability specified bypBypass A TOXIN, once detected, is cleared (eliminated) with
probability p;, which is current, updated clearance strategy of that §Ss updated
using the indicated equation. The valueQfdescribed in the text) is carried-forward
from the preceding cycle.h is an adjustable parameterg has a unique value for each
SS, and, as described in the text; it provides information abotivee&S location. The
equation used to calculate the updgtedalue has the form of a Boltzmann distribution.
When arRESPONSE SIGNAIwas detected, the cost for each evelt.is When a clearance
event occurred, the cost of each is evygnt Q; is updated at the end of the simulation
cycle for use during the next cycle using the indic&edquation; it has the form of the
well-known Q-learning algorithm.
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Figure C.4 Biased random walk algorithm. Toxin objects move stochastioallthe
grid space based on the biased random walk method described in sectiofA) Blow
direction is from theERIPORTALarea (PV) towards theeENTRAL VEIN (CV). In order to
simulate different upstream and downstream sinusoidal networks fpespéne space is
divided into three zones. Movement in Zone 1 has larger stochastocas, = 1.2)
than does movement in Zone & (= 0.7). ATOXIN’s grid space (center, gray) and its
eight neighbors are shown. ThexIN moves to one of the eight neighboring spaces
according to a semi-normal distribution with meéarand standard distributios. For
the particular grid-space showh = 13%3. (B) Shown are three examples of the
semi-normal distribution with mean = 4 (which correspond8 to 13%) and standard
deviations of 5, 2 and 1.
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Figure C.5 Six examples of zonal patterns PROTEIN expression by preZoRLAL.

The simple mechanism of PreZoRLA1l is capable of generating vagrpsession
patternsPERIVENOUSexpressionA, C, E), PERIPORTALexpression@, 1), and mid-zonal
expression (K) are shown for 20 SSs after an infusion ¢ang&OUND per simulation
cycle) lasting 2,000 simulation cycles. The infusion startezt aftdelay of 100 cycles
Average gradients of a-signada(e, blue) and b-signalbg, red) are shown for each
expression patternB( D, F, H, J, L). The mechanism is shown in Figure C.2A.
Parameters,, ki, ¢, &, G, doseDelay, paRemove, pbRemove, paBypass, pRemove, and
Nayg are described in Figure C.2 and the main text.
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Figure C.6 Examples of zonal patterns of clearance effort by preZoRtok2five
TOXINS having different potencies are shown. The zonation patterns atectigy 20
SSs in series, each running the learning enabilexin clearance mechanism in Figure
C.3. The average clearance effopge (blue bars), as well a®xIN Elimination Count
(red bars) by each SS are shown C, E, G, 1). pawc IS the probability that a SS will
clear aToxIN if it is detected, averaged over the phlsi; = 500 simulation cycles.
ToxIN Elimination Count is the number 0bxINs cleared by SS Corresponding and
Q: values are also shown for each patt@&y}, F, H, J). (A andB) k, (toxin potency is
the same as response potency) Z00aifdD) k, = 2; € andF) ky = 4; (G andH) k, = 10;
(I and J) k, = 20. The apparent oscillations ToxIN elimination count are a
consequence of multiple random events; they begin to vanish as valuesdvreral
simulations are averaged.
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ka =1, h=0.01, simulation cycle = 200

Figure C.7 Patterns of switch-like behavior. With having a small value ZoRLA
exhibits switch-like clearance behavior. The ZoRLA mechamismd experimental
protocol are the same as in text Figure 3.12. The color stale/rfsbelow) too is the
same. Four experiments were conducted. Each simulation cycle bétia the
indicated dose (50 to 1,000xINs for k, = 1). Shown is thg; pattern at the conclusion
of the 200th cycle. h=0.01.
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Start After a Single Dose; Potency =5

Predose _g

Dose
= 1500

=600

Figure C.8 Patterns of single-dose response. The ZoRLA mechanisms and
experimental protocol are the same as in text Figure 3.13. pEXtat extrahepatic
RESPONSESignals were not generated. InsteBakINS were used aRESPONSESignals.

The color scale (shown below) too is the same as in text Figure 3.13. Thremerfse
were conducted. SSs were pretreated witbo&POUND (DOSE = 50) having zero
potency for 200 cycles to obtain tis&art Predosecondition shown. Each simulation
cycle began with the indicated dose (600, 1,000 and I/6R@is for ky = 5). Shown

are thep; patterns after one simulation cycle.
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Start After a Single Dose = 300, Different Potencies, k;

Predose ;

Figure C.9 Additional patterns of single-dose response. The ZoRLA mechanisms,
experimental protocol and the color scale are the same ad Fdare 3.13, except that
extrahepatiRESPONSESignals were not generated. Instead, the SSs treat&bUNDS

as RESPONSEsignals. Five experiments were conducted. SSs were prdtngglea
COMPOUND (DOSE= 50) having zero potency for 200 cycles to acquireStaet Predose
condition shown. Each simulation cycle began with the indicated pofkney5, 10,

20, 50 and 100) andose = 300. Shown are thg patterns following one simulation
cycle after theStartPredosecondition.
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A

Figure C.10 Various patterns of enzyme expression and hepatotoxicity in the liv&). (
Induction of CYP1Al & CYP1A2 expression by TCDD in rats. TCDDswa
administered for 30 weeks. Daily dose amounts are shown on each(iti@ye B)
Induction of CYP2B1/2 expression by D4 in rats. D4 was administered foioa ¢ 5
consecutive days 6 hours/day. Dose amountsaqreoitrol, ) 30 ppm, €) 300ppm,
(d) 700 ppm (111). Q) Induction of CYP1A1 4, b) & CYP1B1 (, d) expression by
TCDD in rats. TCDD was administered for a period of 30 wealseekly at the
following daily dose valuesa( c) control, p, d) 35 ng/kg (112). @) Hepatotoxicity
(lipid peroxidation and cell necrosis) patterns by Bromotrichlorbared (CBrGj)
perfusion. Damaged cells are shown in black. Dose amounts andntiwgiations
are as followsd) 15 min CBrC4, (b) 30 min CBrC4, (c) 60 min CBrC4, (d) 30 min
CBrCl; & N,N'-diphenyl p-phenylene diaminelg)(30 min CBrC4, (f) 15 min CBrC}
(20% Q), () 60 min CBrC} (20% Q) trypan blue uptakehj 60 min CBrC4 (20% Q)
co-staining with guchsin (115). E( a-c) Perivenous hepatotoxicity (cell necrosis)
patterns by carbon tetrachloride (Gl A single dose (1.0 mmol/100 g body weight) of
CCl4 was administered following a 24-hour fast. Damaged cedlstaown in white.
(E, d-e) Perivenous hepatotoxicity patterns by bromobenzene. A single 8de (
mmol/kg body weight) of bromobenzene was administered following a 24fhsur
Damaged cells are shown in white.E, (f) Periportal hepatotoxicity patterns by
antegrade digitonin perfusion (5.0 mg/ml) for 90 seconds. Damagsdacelshown in
white (116)
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pBypass

Figure C.11 Effect of changingk, and pBypasson patterns of SS damage. The
ZoRLA, experimental protocol, ang color scale are the same as in Figure C.9.
Damage (which can map to either severe hepatocyte damagerosis) occurs after any
SS clearedb0 coMPOUNDS A damaged SS is graySimulations were terminated when
one-third (152 out of 460) of SSs died. SSs were pretreated wlMROUND (DOSE=
50, h = 70, pBypass= 0.8) having zero potency for 200 cycles to acquire Staat
Predose condition shown in Figure C.9. Theose each simulation cycle was 50
COMPOUNDS For the patterns shown= 10. Using the default value = 70 used for
article Figures 3.15-3.18, we were unable to clearly demonstrateeesalirange of
toxicity patterns for the selected rangespBypassand k, values. We observed that
diversity increased for smalldr values. We selecteld = 10 because it provided and
interesting variety of patterns.
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Appendix D. Response to Reviewers

Chapter 3 was originally adapted from a manuscript submittetietaldurnal of
Theoretical Biology for publication. The manuscript was lateisesl to address the
journal reviewers’ concerns. A summary of major revisions matteetmanuscript along

with the response to important reviewers’ questions are listed below.

Reviewer 1

Reviewer 1: One of the strengths of the presented method is ifweceeupon
experimentally identified behaviors; however it is unclear as to hewch prior
experimental data needs to be obtained, and this raises the question péc¢hie added
value of the resultant model? If different compound properties resditferent zonation
patterns, then the data for those properties needs to be generated pnadtding: if

this is the case, then what is gained by the model?

Reply: We posit that a specific mechanism may be resporisibégzyme induction
within each hepatocyte. Differences in compound properties resudtative differences
in the degree to which the compound interacts with mechanism compoants
hypothesis is that differences in exposure of a given hepatogyecansequence of its
relative location within the lobule, in combination with other fact@sssufficient to
cause dose, time, and zone dependent patterns in the levels of inetgbeizyme.
Pattern similarities betweem silico and wet-lab observations provide a degree of
validation for the implemented mechanism; more importantly, howevéngih silico

model generates patterns different from those generated byetdabsmodel, then the
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micromechanisms upon which thesilico model are based are likely incorrect. That is a

primary benefit gained only by modeling.

Another value of the model is in having a concrete, validated merhadhat can be
challenged. A further value is being able to predict spwtiaditerogeneous induction
(and possibly toxicity) patterns in whole livers given simple datainedin vitro. If the
relative level of interaction of a new compound can be measuredrirpke 1 vitro test,
then that information may be sufficient to parameterize a fuloRLA and anticipate

what dose, time, and zone dependent patterns that compound may generate.

To make these points clear, we added the following as the peat@tiparagraph

under Discussion.

The 2D ZoRLA provides value in three ways. 1) When a specific ZoRLA
mechanism generates patterns different from those observedtilalbwdata, then the
micromechanisms used in the model are likely incorrect andeid aemodification. 2)
Having achieved a degree of validation, the model's concrete michamiems can be
challenged experimentally. 3) We have demonstrated the felgsibili predicting
spatially heterogeneous induction (and toxicity) patterns in whole dsbigdr a new
compound, given a validated ZoRLA and data that can be obtaivido. If the relative
level of interaction of a new compound can be measured in a simpigo test, then
that information may be sufficient to parameterize the ZoRhd anticipate what dose,

time, and zone dependent patterns that compound may generate and if toxicity.is likely

Reviewer 1: On a related point, in the Discussion, the authors comment on not

increasing model granularity prematurely, and then follow with a discussiotieof
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process of addressing the inverse mapping problem (phenomenon to generaigmesg. |
with the comments, however, am interested in 1) how the authors wouldtstigges
mapping from proposed generators to identified signaling/metabolic pathwayso 2) D
these pathways need to be described in terms of correspondingly mapped farg}ions
How can those functions be parsed experimentally from the overall belohviw cells

(as they act in a traditional lab context)? This process of mappingcsseary if the

multiple plausible generators are to be evaluated.

1) The current abstract micromechanisms map to (a conflatioalldipe-grained
processes in the referent that contribute to the simulated efvertdo not have specific
evidence on how some known signaling &/or metabolic pathway is comgbuhen
there is no scientific value in simply implementing some comnegdinkage within a

ZoRLA simply for the sake of including it.

Consider the following. We have observations from identical expetsmam two
different livers, one normal (wild type) and another from a madhae has had one or
more components within a signaling &/or metabolic pathway mealsuaétered, e.g., by
genetic deletion. Wet-lab data from the knockout’s liver (but notftbat the normal
liver) falsifies the current micromechanism. That evidencee®us to posit one or more
new, more fine-grained micromechanisms that incorporate one or featares

containing the knocked-out component.

Such an approach was used by Tang and Hunt (122) to falsify a -goairsed
micromechanism and replace it with one more fine-grained inhndomponents mapped

directly to individual macromolecules.
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2) The question is answered above.

3) This question is partially answered above. An experiment, su¢cheaabove
knockout experiment, can be proposed because its results are expdeisdyt one or
more competing, equally plausible mechanisms. An effectivenatiee strategy is to
expand the varietgf systemic attributes targeted. Addition of a new attributefaksify
a micromechanism. To revalidate, it may be necessary to eeplacoarse-grained
micromechanism with one that is somewhat more fine-grainecviAaty that, a clearer
mapping may exist between the more fine-grained micromechamdntha signaling
and/or metabolic pathways of interest. Further iterative refineman increase the
concreteness of the mapping. Such a process was used by Lanuan®8j to move

iteratively from coarser to more fine-grained micromechanistic hypeshes
Part of the preceding text has been added to the Discussion Section 3.2.4.

Reviewer 2
Reviewer 2 (R2), point 1: No comparison or contrast with alternatogeting and

simulation approaches is provided.

Because synthetic analogues (e.g., ZoRLAs) and the familiar nduct
mathematical liver and hepatic zonation models are intended foarherdally different
uses, they are not easily compared. We should have pointed that out. &€ssatthis
point, we did the following. 1) We added a citation to an additional camaleptodel
(123). 2) We deleted the last half of the origin%ﬂp&ragraph of the Introduction and
added a new paragraph. In it we draw attention to detailed moddiraf & al., (120)

and point the reader to the recent, extensive review by letapedt al., (121) of liver
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models. That review focuses on zonation of xenobiotic-metabolizingreasyWe also
state, “The computational modeling and simulation (M&S) approach hexeth (Figure
3.9) and the resulting models are fundamentally different from those tiveluc
mathematical models and so are not directly comparable. Huht (@) &xplain those

differences and how the two different M&S approaches complement each other.”

R2, point 2: It is important to define and motivate the models. To do so, all variables,
constants and parameters should be defined contiguous with the statement of.a mode
For example, it is not sufficient to state c2 and c3 are tunable constardene in the
text in Supplementary Material without further description until theyused in Figure.

C.2.
Reply: We added the following to section C.1 to more cleasgrilge the roles af;,

Cy, & Ca.

“c, andcs are tunable constants, which adjust the influencaa@f and Nayg On s.
Larger ¢, values increasePROTEIN production; cz modulates negative feedback on
PROTEIN production by already existirgROTEINS dampening the impact of a change in

R-SIGNALS ONPROTEIN|evels.”

R2, point 3: In section 3.2.2, all symbols should be defined after Eq. 3.6 and Eq. 3.7
precisely as used in these equations. Elsewhere, perhaps in a tableshthdg be

defined and their units and range of values specified.

Reply: We added the following tables.
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Table D.1. Parameters of preZoRLAL.

Symbol Description Range Used

N Amount ofPROTEINSexpressed [0,0) *0-500
pbBypass Probability that @-SIGNAL bypassean SS without being detected [0,1] 0.1
paBypass Probability that anrR-SIGNAL bypassesan SS without being [0,1] 0.1

detected

pbRemove Probability that &-SIGNAL is removed following detection [0,1] 0.03-0.1

paRemove Probability that aR-SIGNAL is removed following detection [0,1] 0.01-0.15

by The value ob-subsystem at simulation cydehas an effect on [0, ©)  *0 — 6000
down regulation 0PROTEINS

& The value ob-subsystem at simulation cydtehas an effect on up[0, ©)  *0 — 6000
regulation ofPROTEINS

m Amount ofPROTEINSdegraded during cycle [0,0) *0-—6000

S Amount ofPROTEINSexpressed during cycte [0,0)  *0-—5000

Ko Increment ob following detection of &-SIGNAL [0,0) 1-2

Ka Increment of following detection of am-SIGNAL [0,0) 1-2

G Proportionality constant which relateso m [0,0) 1-30

C Constant that regulates positive influencaohs(Figure C.2) [0,0) 1-10

Cs Constant that regulates negative influencll ohs (Figure C.2) [0,0) 05-1

* Simulation result

Table D.2. Parameters of ZORLA and preZoRLA2.

Symbol  Description Range Used

Pit Clearance strategy of S@uring simulation cyclé:  [0,1] *0-1
the probability that SSlears a detectetbmPOUND
during simulation cyclé

Q. Estimate of S$ long-term, discounted cost af-oo,m) *0 — 3500 ZoRLA
' simulation cyclet *0 — 1.2 preZoRLA2
gi The value of the P-to4SIGNAL gradient used by $S [0, «) 0 —200 ZoRLA
0 — 1 preZoRLA2
pBypass Probability that aroxINs bypassesn SS without [0,1] 0.6 — 0.99 ZoRLA
being detected 0.9 preZoRLA2
h A constant which adjusts the randomness @, «) 0.01- 70 ZoRLA
decisions 0.1 preZoRLA2
a Learning rate: determines the weight of newly,1] 0.1

observed costs in calculation of Q value
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Symbol  Description Range Used

s Discount factor: determines the current importan{@,1] 0.5 ZoRLA
of future costs 0 preZoRLA2
Ka Cost of detecting ore-SIGNAL [0, ) 0 - 150 ZoRLA

0 — 20 preZoRLAZ2
ke Cost of clearing oneoOMPOUND [0, ) 1

Aditional parameters for ZoRLA, only

(X, Y) Coordinates of SSvith respect to the center of ther? (4,4) — (28,28)
grid space
n Uniform random noise [0, grid radius]0, 15.5]

* Simulation result

R2, point 4: Parameter h has the role of an excitation temperature iseteh
algorithm, and h = 0.01, 5, 10 and 70 is used in various simulation experimentaultt
be valuable to provide some explanation and motivation for each choice (aoddbrre f

0.01).

Reply: The parametdr acts as a gain: it amplifies and/or dampens the differgnce:
— Q. A large value oh eliminates zonation completely; a small value magnifies thén

revision we now state that in the paragraph following Eq. (3.6)

For a given condition and SS arrangement, valudswére explored to find those
that, in combination with other parameter values, resulted in bebasiiorlar to those
targeted. The default value whs= 70 for Figures 3.13-3.16 in the revised manuscript.
However, using that value, we were unable to clearly demomsthet compound
elimination shift effect shown in the current Figure 3.12 for tHecssd range in ka
values. We observed that the shift effect became more evidemh&dlesh values. We
selectedh = 5 to demonstrate that pealoMPOUND elimination count can shift from

PERIVENOUStO PERIPORTALAS ka increases. We added this explanation to the Figure 3.12
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legend.

Similarly, for the results in Figure C.11, to clearly demratsta range of toxicity
patterns for the selected rangepBiypassandka we observed increasing diversity with
decreasingh values. We selectedd = 10 because it provided an interesting variety of

patterns. We added this explanation to the Figure C.11 legend.

R2, point 5: In Figure 3.13, parametgrappears to vary as a function of ka. Why,

has the discretization changed? If so, what is it for each value of ka?

Reply: g does not vary as a function ké. To mimic biological variability, and as
specified in the Supplement (Appendix C), a small amount or random inaseled to
the sum of the squared coordinate values of '1®9 each simulation. Consequently, the

appearance of the graphgthanges slightly for each simulation.

R2, point 6: Figure C.6 shows oscillations in TOXIN Elimination Count. T$at
after a loca maximum, there is a reduction in the SSi that follow.fstance in panel
S6l, maxima at 2, 4, 6, 8, etc. are followed by a rapid persistent, decrksashis
primarily a result of the discretization (the number of SS in the Iyto8ee oscillations

observed in wet-lab experiments? Please elaborate.

Reply: These apparent oscillations are simply a consequence tplenshndom
events. As the experiments are repeated and results averagagpd#nent oscillations

begin to vanish. We added a statement to that effect in the legend to Figure C.6.

R2, point 7: Results fit to experimental data in the literature (FEg8rl6) with
equations chosen without providing any explanation for the choice of the foimasef t
equations (other than they fit best) is not appropriate.
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Reply: Because of the nature of synthetic modeling, producing sethait fit the
experimental data is not among intended model uses. The goal wadimduvorking
mechanisms that can exhibit biomimetic phenomenon. Simply fithegdata, when
abundant, can be easily done by means of inductive mathematical mottgingver,

doing so does not concretize plausible underlying mechanisms.

To compare ZoRLA and wet-lab experimental results, a mappintpochetvas
required. Simple linear mapping was explored first, and that workedht y-axis
mappings. However, that failed for x-axis mappings. Consequently,negrlimapping

was explored, and it proved satisfactory. In Figure 3.16, two quantities were mapped:
1. PRie Was mapped to “log CyplA2 mRNA expression”, and

2. COMPOUND elimination count (CEC) was mapped to “[TCDD] per viable

hepatocyte”.

The former (y-axis) used a linear mapping for both parts b and clattee used
log-linear mappings. Figure 3.16b and c used different x-axis mappingstté match
was achieved in part c. Note that the reason for the improvememiowndisat different

mapping methods were used. It was because the ZoRLA parameterizatigaccha
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