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Executive Summary

This report presents results from the DOE-sponsored workshop entitled “Advancing X-Cutting
Ideas for Computational Climate Science Workshop,” known as AXICCS, held on September 12–13,
2016 in Rockville, MD. The workshop brought together experts in climate science, computational
climate science, computer science, and mathematics to discuss interesting but unsolved science
questions regarding climate modeling and simulation, promote collaboration among the diverse sci-
entists in attendance, and brainstorm about possible tools and capabilities that could be developed
to help address identified computational climate challenges.

Several research opportunities emerged from discussions at the workshop that participants be-
lieved could significantly advance climate science. These include (1) process-resolving models to
provide insight into important processes and features of interest and inform the development of
more advanced physical parameterizations, (2) a community effort to develop and provide inte-
grated model credibility, (3) incorporating, organizing, and managing increasingly connected model
components that improve model fidelity and potentially complexity, and (4) treating Earth system
models as one interconnected organism without numerical- or data-based boundaries that limit
interactions.

Participants also identified several cross-cutting advances in mathematics, computer science,
and computational science that would be needed to enable one or more of these big ideas. It
is critical to address the need for organized, verified, and optimized software, which enables the
models to grow and continue to provide solutions in which the community can have confidence.
Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to
handle output from increasingly complex and detailed models. This will be accomplished through
hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and
storage.

These big ideas and cross-cutting technologies for enabling breakthrough climate simulation
advancements also need the “glue” of outreach and learning across relevant scientific domains to be
successful. The workshop identified several strategies to allow productive, continuous engagement
with those who have a broad knowledge of the various parts of the problem. Specific ideas to
foster education and tools to make material progress were discussed. Examples include follow-on
cross-cutting meetings that enable unstructured discussions of the types this workshop fostered.
A concerted effort to recruit undergraduate and graduate students from all relevant domains and
provide them experience, training, and networking across their immediate expertise is needed. This
will broaden and expand their exposure to the future needs and solutions and provide a pipeline of
scientists with a diversity of knowledge and know-how. Providing real-world experience with subject
matter experts from multiple angles may also motivate the students to attack these problems and
even come up with the missing solutions.

AXICCS: Advancing X-cutting Ideas for Computational Climate Science iii



iv AXICCS: Advancing X-cutting Ideas for Computational Climate Science



1 Introduction

1.1 Purpose

Beyond the certainty of globally increasing atmospheric temperatures, there are many remaining
unknowns regarding the specifics of how our Earth’s climate will be affected over the next several
years and into the next century. Examples include lengthening droughts, stronger and more quickly
developing hurricanes, more frequent severe winter storms in the northeastern United States, and
rising sea levels due to collapsing ice sheets in Antarctica and Greenland. These more localized
changes have important scientific, economic, and societal impacts. As the scientific community
explores these critical aspects of climate change, with the aim of informing stakeholders over the
next 10+ years, there is a growing recognition of the expanding requirements for multiscale, global,
coupled Earth System Models (ESMs) as a tool for climate scientists. Such ESMs are expected to
provide much more detail and fidelity through the addition of new physics, chemistry, and biology
and the use of high spatial and temporal resolutions. They are also expected to provide improved
accuracy and automated diagnostics highlighting the model credibility and degree of uncertainties
in their predictions. As a result, there are significant challenges to overcome in terms of their
construction, algorithmic developments, and computational requirements. Also, as computation
capability transitions from petascale to exascale over the next 5+ years, high-performance computer
systems are expected to become larger and more complex. This poses additional challenges in terms
of the ability to execute and process information from ESMs robustly and efficiently on current
and future high-performance computer systems.

Advances in applied mathematics and computer science are crucial to overcoming many of the
algorithmic and computational challenges that climate scientists will be facing. A multidisciplinary
approach, involving climate scientists, applied mathematicians, and computer scientists, is required
to tackle the issues properly and make the necessary breakthroughs in climate science. While many
successes have been demonstrated through existing programmatic investments, we propose that
longer term and broader efforts are also necessary to realize the promise of new scientific discoveries.

1.2 Workshop overview

Recognizing the need for much closer collaborations across multiple domains to meet the challenges
outlined above, a grassroots effort to generate fresh thinking was initiated by a group of climate
scientists, applied mathematicians, and computer scientists. The goal was to discover and chart
the optimal directions for climate modeling and motivate the latest and as yet to be uncovered
developments in mathematics and computer science that will be needed to address new scientific
and computational requirements. The first step forward was a workshop, which was convened
September 12–13, 2016, in Rockville, MD, with the objective of discussing bold new computational
ideas to address longer term science needs for climate modeling. An open invitation was extended to
researchers involved with any combination of climate science, applied mathematics, and computer
science to submit “ideas” papers on any topic that addressed the future needs of climate science
and/or how mathematics and computer science advances could be leveraged to help. Lead authors
or their designees were invited to attend the workshop. All authors were encouraged to read and
consider the papers before the event to begin conversations and generate ideas and solutions. A
total of 59 ideas papers were accepted, and each of them is included in the Appendix of this report.

The workshop was structured to provide ample opportunities for computational climate scien-
tists to present the state of the science and critical bottlenecks to research progress and for applied
mathematicians and computer scientists to offer potential solutions. Several rounds of follow-up
discussions, in which both groups discussed issues and solutions, provided a venue for the further
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maturation of ideas. To generate vigorous thought and discussion, several plenary talks and a
poster session were held to exchange ideas from the papers. This report summarizes the chal-
lenges, strategies to address them, and possible avenues for execution that were identified by the
participants at the workshop.

1.3 Goals and structure of the report

The purpose of this report is to summarize the findings at the workshop and identify potential
opportunities to advance climate research through collaborations among climate scientists, applied
mathematicians, and computer scientists. In Section 2, several grand challenges in climate science
are presented, together with examples and descriptions of future directions. In Section 3, a num-
ber of areas in applied mathematics and computer science that were identified at the workshop
as relevant to computational climate modeling are presented. Issues related to the structure of
collaborations and outreach were also discussed at the workshop and are summarized in Section 4.
The report ends with some concluding remarks in Section 5.

2 Big Ideas

2.1 Process-resolving models

2.1.1 Grand challenge

Key processes, particularly convection and cloud processes [Papers 19, 23], cryosphere feedbacks
[Papers 3, 7, 22, 29, 47], biogeochemistry [Paper 58], and human-environment interactions [Paper
13]—along with their emergent features such as organized convection and surface heterogeneity—
are poorly represented in modern global ESMs [28]. This is largely because the native scales of those
processes are too small to be explicitly simulated, so they are mostly parameterized in these models.
With intrinsic assumptions about the subgrid processes and their interactions with the explicitly
resolved larger-scale environment, subgrid parameterizations have large structural and parametric
uncertainties that are not well constrained by observations. In addition, many parameterizations
used in current ESMs do not demonstrate proper convergence with increasing temporal or spatial
resolution [Papers 44, 53]. In order to improve the representation of fine-scale processes and their
upscaled effects in global modeling systems, efforts have emerged to develop specialized models that
are built with a minimal set of assumptions. These process-resolving models provide insight into
the emergent properties that occur in association with the processes and features of interest and
can inform the development of advanced physical parameterizations for global climate modeling
systems.

2.1.2 Opportunities and potential solutions

Several capabilities have been proposed to advance the development of cutting-edge process-resolving
models:

• Advances in the development of lightweight and massively scalable numerical methods that
can handle multiple scales of behavior are needed to ensure rapid throughput at extremely
high model resolutions. This research aims to construct global process-resolving models with
the capability to better utilize computational resources to maximize years of simulation per
wall-clock day.

2 AXICCS: Advancing X-cutting Ideas for Computational Climate Science



• Improvements in the capability to place computation “where it is needed.” For instance,
boundary layer clouds are currently poorly represented in Global Climate Models (GCMs) due
to models’ relatively coarse vertical resolution, leading to significant uncertainty in computa-
tions of energy balance. In the horizontal direction, the most obvious improvements in model
performance occur due to better representation of topography; using the variable-resolution
capabilities, where available. Grid resolution can be enhanced over rough topography but
kept relatively coarse elsewhere. In this sense, optimal configurations of the model can be
found that produce the best representation of the climate at minimal computational cost.

• If the former point identifies moving regions of needed attention, research could be focused
on the ability to adapt computational meshes during run-time to reduce model error and
improve the representation of fine-scale features [Papers 39, 42, 49].

• Load-balancing strategies capable of distributing a heterogeneous workload among processors
could potentially do so over heterogeneous architectures as well [Paper 31].

• Development of methods for rapid calibration of free parameters with climate observations.
Traditional approaches that rely on long-term climate simulations to tune the top-of-the-
atmosphere radiative balance will no longer be feasible, so alternative techniques are needed
[Paper 25].

• Development of techniques for handling of output data associated with these simulations.
Storing all prognostic variables on disk is likely infeasible given the high temporal and spatial
resolutions required by these models.

• A co-design effort to define domain-specific languages relevant for translating models of phys-
ical processes to heterogeneous architectures [Paper 16].

Many of these capabilities can only be attained by bringing together Earth system researchers
and scientists, applied mathematicians, and computer scientists. A guiding objective of this work
would be to optimize the scientific value produced for each unit of computational effort, including
a focus on computational methods that are capable of reaching peak performance.

2.1.3 Example: Global cloud feedbacks

Among the processes described above, global cloud feedbacks are perhaps the largest contributor
to climate model errors, and one of the largest uncertainties in future projections of global climate.
A precise and accurate representation of underlying feedback processes requires extremely high
model resolution that is unattainable with present general-purpose modeling frameworks such as
the U.S. Department of Energy (DOE)’s Accelerated Climate Model for Energy (ACME) or the
National Science Foundation’s Community Earth System Model (CESM). It is difficult to adapt
present frameworks to modeling controlling mechanisms due to the traditional separation between
physics and dynamics that is assumed in coarse-resolution atmosphere models. Consequently, efforts
have focused on developing extremely high-resolution Large Eddy Simulation (LES) and cloud-
resolving models (CRMs) at local and regional scales [22, 33]. Further, the recent development
of Superparameterizations and Ultraparameterizations [21, 29] has highlighted a potential avenue
by which cloud-resolving models embedded within global climate models as a parameterization
can directly improve simulation skill. The success of this methodology for improving emergent
atmospheric features such as the Madden-Julian Oscillation (MJO) has suggested the benefits of
process-resolving parameterizations [41].
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The aforementioned modeling approaches have charted a path toward global cloud-resolution
model development efforts now under way at several modeling centers [3, 34]. Global CRMs are
potentially desirable future replacements for the atmospheric component of ESMs, as their high
spatial resolution means that convective and macrophysical parameterizations are no longer needed,
in turn leading to reduced model uncertainties. Transformative advances in computing have already
availed substantial supercomputing power, with further rapid advancements in leadership-class
facilities (LCFs) expected in the near future. Nonetheless, present GCMs leverage only a fraction
of available computing power (see Section 3.3).

2.1.4 Future directions

Many outstanding questions remain on the feasibility of scaling process-resolving models to the
global domain. In particular, it is unclear at present what the needed basic assumptions are to
constrain the “search space” of possible models. For example, for CRMs: Do we require low-
order or high-order methods? Finite volume or finite element dynamics? Column-wise or 3D
radiation? What choice of microphysics parameterization? Further, future models will likely need
alternative representations of topography; the improved representation of rapidly varying orography
at high resolution may make terrain-following coordinates untenable. In its place, should we employ
immersed-boundary or cut-cell technologies [Paper 59]?

Additional investigation will be needed in order to determine how to best tackle these questions,
particularly in light of future hardware and software infrastructure. A larger challenge is to resolve
processes that connect multiple components (atmosphere, ocean, land, cryosphere) in the coupled
Earth system. For example, resolving continental scale land surface hydrology processes requires
model developments in multiple model components. One example of this at continental scales has
provided important insights on how groundwater flow influences evapotranspiration [24]. However,
coupled, global ESMs that include process-resolving models for all components will exceed the
capacity of exascale computing, and pose additional challenges for model coupling that will require
advances in applied mathematics, computational science, and software engineering.

2.2 Integrated model credibility

2.2.1 Grand challenge

Providing model credibility for ESMs has always been a priority; it is necessary for building con-
fidence in model output and analysis. However, the complexity of fully coupled global ESM has
prevented a comprehensive and integrated approach to all aspects of credibility. A good fraction
of ideas papers submitted to AXICCS concerned the many facets of creating a more integrated ap-
proach to model credibility including, for example, strategies emphasizing verification, validation,
and uncertainty quantification [Papers 14, 20, 25, 26, 34, 38, 51], new ideas for exploiting scientific
or computational insights to allow greater efficiencies in sampling sources of uncertainty [Papers 4,
8, 9, 36, 37, 38, 46, 55], and ideas for leveraging code design to more easily synthesize models and
observations [Papers 2, 3, 15, 35]. The topic that most undermines efforts to assess model credibil-
ity is the challenge to quantify the effects of model biases on model predictions, particularly when
extrapolating into regimes for which we do not have observational data [27]. Here we emphasize
structural uncertainty to call attention to the important roles that scientists have within a domain
long dominated by applied mathematics and statistics. However, the ideas that were presented
could apply to many aspects of the challenges that are faced to assess model credibility given the
often ad hoc nature of building climate models.
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The current paradigm for addressing structural uncertainties at the global scale is to compare
climate predictions from simulations across the Coupled Model Intercomparison Project (CMIP)
ensemble. Predictions that are shared among multiple independently developed models are a pow-
erful indicator of robustness insofar as many models differ numerically and exploit different notions
for how sub-gridscale processes are represented (known unknowns). However, these models are
not entirely independent and do not identify processes for which we are not aware (unknown un-
knowns). The most important additional ingredients for assessing model credibility are our scientific
understanding of the processes that are responsible for reliable predictions, robust comparisons to
observations within a historical context, and our assessment of the skill of individual models to
capture these processes. Some growth in understanding may be elicited from the analysis of multi-
model ensembles. However, pinpointing cause and effect within a multi-model ensemble can be
very difficult when one does not have the ability to perform more controlled experiments. By em-
bracing the challenge posed by structural uncertainty to include information about data, models,
and sensitivities within a single model framework, one can better align the scientific, math, and
computational solutions that are outlined below.

At present, it takes the concerted effort and computational resources of an entire community to
develop and test an advanced climate system model. This expense is a major factor limiting efforts
to explore alternate, credible solutions to simulating climate phenomena. The sampling process is
also stymied by system complexity and the dimensionality of sources of uncertainty. Strategies for
meeting limitations must be addressed if we are to make any practical progress on even small steps
in applying advances in the applied math and statistics communities. Moreover, there is not a lot
of shared experience between communities working on uncertainty quantification [Papers 17, 18,
24] and climate system models and their components. Any practical solutions will need to exploit
our understanding of the system and provide more theoretical expertise across disciplines so that
solutions make the most of limited resources.

2.2.2 Opportunities and potential solutions

A set of directions that would put us in a much stronger position to assess model credibility is
listed below in no particular order. The challenge of accounting for structural uncertainty may be
viewed as something that we can have in mind, even as we make solid progress in developing more
tools and gaining experience in how to apply more formal strategies to climate model development
and testing.

• Embedded error modeling addresses the question of how model errors affect predictions [Pa-
per 17]. The approach treats model error by “embedding” it in some of the key model
parameters, which means those parameters are treated as random variables. The distribution
of these random variables is calibrated against data on the model outputs. Consequently,
a model ensemble for sampled values of these embedded model parameters represents the
effect of model error or structural uncertainty on the model outcomes so it can be studied.
This approach is sometimes contrasted with Gaussian Process modeling [19], which uses a
discrepancy term added to model output within assessments of model likelihood as a kind of
discount when testing models against observations. The embedded error model is intended
to represent the effects of errors closer to their origin, before those errors propagate, and as
such, can capture the effect of model error on all model outcomes, even the ones for which no
calibration data are available. This approach is well suited to complex systems where it may
not be clear how errors develop. Although embedded error modeling has not been applied
to phenomena as multifaceted as the climate system, it is perhaps the most direct approach
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to quantifying structural errors on predictions. It also depends on the close collaboration
between applied mathematicians and climate scientists for its success.

• Data assimilation (DA) encompasses a broad range of mathematical methods to combine data
and models. These methods may differ widely in their degree of sophistication and applica-
tion purposes. Common goals of these model–observation syntheses are to allow models to
reside in a state close to what is being observed and to do so by taking advantage of known
sources of uncertainty in observations and models. This formal approach has several scien-
tific and computational advantages [Papers 22, 29, 35, 38]. First, it allows a model developer
to test predictions in hindcast-mode of newly introduced processes. This is what is being
done already through the strategy of developing climate system component models indepen-
dently using observations (often in the form of climatologies) as boundary conditions. This
approach is simplistic because the approach neither offers a formal way to calibrate uncertain
parameters, nor does it provide a formal mechanism to account for observational or boundary
condition uncertainties when these data are prescribed. Second, from a computational point
of view, DA allows us to initialize models for prediction without an expensive spin-up. To the
extent that the time evolution of the model to the inferred initial state carries information
that is important for predictability, we will need DA that can follow nonsteady behavior and
time-resolved observation that constrains transients. We note that while dynamic equilibrium
provides a useful simplifying concept for inferring time-mean behavior, it may be of limited
value for predicting changes in a real-world context that is governed by nonsteady dynamics
and implied time scales. Third, the use of formal DA methods allows for a more quantitative
and targeted approach to selecting phenomena and identifying observations that would be the
most informative for testing hypotheses and estimating uncertainties in model development.
A powerful, computationally efficient DA tool being explored is the adjoint or Lagrange mul-
tiplier method to solve gradient-based optimization problems. In contrast to this intrusive
method, nonintrusive approaches that operate on large complex systems are also being de-
veloped. They may have advantages in circumstances of high nonlinear dynamics. In many
cases, it helps to have the application and mathematics communities working in tandem to
tailor the approach to take advantage of application-specific knowledge of the physics and
observations.

• Multi-fidelity methods: The computational expense of initialization and running experiments
is a major factor limiting our ability to explore sources of uncertainty in model predictions.
Several papers centered around ideas for improving computational efficiencies beyond numer-
ics. One of the strategies that was mentioned repeatedly in the papers and discussions is
the use of multi-fidelity methods [Papers 3, 8, 17, 22, 25, 26]. The idea is to take advantage
of what can be learned from cheaper, possibly simplified versions of high-fidelity models to
help anticipate what would be important to learn from high-fidelity experiments. Climate
scientists often like making use of simplified versions of models for gaining scientific insights
into phenomena. The potential exists for both developing a modeling hierarchy and exploit-
ing them within a uncertainty quantification framework using multi-fidelity methods. The
challenging aspect of this effort stems from the sometimes tenuous relationship that exists
between phenomena at different levels of the hierarchy. Model versions with increasing reso-
lution are perhaps the most straightforward examples of this as is done in Multilevel Monte
Carlo (MLMC) [Paper 22]; however, one could envision different kinds of hierarchies based
on levels of interactivity/feedbacks permitted. More experience is needed with both the sci-
ence and mathematics of models with varying degrees of complexity to make this approach
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feasible.

• Emergent constraints: One approach for reducing uncertainties using contemporary obser-
vations is to identify relationships between contemporary variability and future trends from
a suite of model results. When such a relationship is found and contemporary variability
can be bounded with observations, future trends are thereby constrained. This strategy was
employed by Hall and Qu [14], who evaluated the strength of the springtime snow albedo feed-
back (∆αS/∆TS) from 17 models used for the Intergovernmental Panel on Climate Change
(IPCC) Fourth Assessment Report and compared them with the observed springtime snow
albedo feedback from the International Satellite Cloud Climatology Project (ISCCP) and
ERA-40 reanalysis data. This approach was recently applied to the carbon cycle by Cox
et al. [7] and to constrain carbon cycle feedbacks on future atmospheric CO2 levels by [15].
While this method provides useful insights into the influence of model biases on future pro-
jections, it may not directly identify specific improvements to model structures that would
result in reduced projection uncertainties. Methods for representing and sampling structural
uncertainty within a single modeling framework could be used to determine and test metrics
that may be more robust to structural uncertainty.

2.2.3 Example: Uncertainty in water vapor feedbacks

Water vapor feedbacks have twice the impact of greenhouse gases but are not a major source of
uncertainty. The process that scientists took to gain confidence in this result provides an interesting
case study for our discussion on model credibility. We know of no law that regulates size of the

water vapor feedback. However, virtually none of the spread in multi-model simulations of 20th

century climate originated from differences in the water vapor feedback [4], maintaining a virtual
lock on relative humidity even as global climates evolve. For global warming, the region that is
most critical to water vapor feedbacks is where the concentrations are maintained in the upper
troposphere. Soden et al. [37] looked at interannual variations in upper troposphere moisture
within satellite observations and compared them to climate model simulations with and without
the water vapor feedback. The model was only able to reproduce the observed variations with
water vapor feedbacks enabled. This gave confidence that the models capture these feedbacks
in the right amplitude and location. The argument made use of multi-models to determine the
relationship between an observable (water vapor) and the amplitude of global warming. Theory
and experiments identified the upper troposphere as being critical to predictions, and an experiment
was set up with a modified version of the model to test whether models were capturing this feedback
for the right reasons. This example underscores the importance of developing methodologies for
identifying sources of uncertainty and identifying the observables that can be used to test model
skill.

2.2.4 Future directions

While there is general enthusiasm for these topics, the scientific, mathematical, and computer
science communities need more experience in understanding the science questions, models, and
methods for model–data synthesis. For this reason, it may be prudent to start with easier targets
such as inverse and forward modeling of sets of parameters deemed to be important to a tractable
science question (e.g., cloud feedbacks affecting climate sensitivity, uncertainties in ice flow ini-
tialization on rates of sea level rise). For instance, one could focus on the processes by which
observations are used to configure the components of a climate system model to generate realistic
modes of variability such as the El Niño Southern Oscillation (ENSO). Once these systems are in
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place, one could begin to explore how the formalized process could be improved through modeling
hierarchies and embedded error modeling. The development of component model adjoints and the
communities of individuals who are able to make use of such capabilities should be fostered. The
availability of model adjoints will be especially important for systems that have long-term memories
such as the ocean circulation, ice sheet states, and terrestrial and marine biogeochemistry, where
the costs associated with spin-up are prohibitively expensive and time-consuming. Clearly, any
improvements that result in greater computational efficiencies or throughput of simulating coupled
Earth system processes also result in a greater capacity to assess model credibility.

2.3 Understanding and managing climate system complexity

2.3.1 Grand challenge

Earth’s climate system consists of a balance between many complex and interrelated processes.
Omitting or misrepresenting any of these processes or their interactions in Earth system models
will lead to unrealistic predictions. Over the years, new processes have been added to climate
models in an attempt to reduce model bias. Several papers from this workshop describe additional
processes that should be included in comprehensive climate models. Developing a comprehensive
list of processes critical to climate prediction is an ongoing and important task.

It is necessary to include all relevant processes to improve climate prediction, but getting them
to work well together is challenging. Teasing out process deficiencies from observations (in which
all processes are always operating and interacting) is tricky but critically important. Further
work on techniques for decomposing observations into useful process-level information for model
development and validation would be very useful. Sufficient testing is a constant deficiency in
climate models because there are so many features and interactions to track.

Another difficulty in developing comprehensive climate models is the need for tuning to create
the best possible model out of a collection of processes. In particular, imperfections in one part
of the model will induce errors in other related pieces of the model. For example, even perfect
models for interactive vegetation or ice sheets will give poor results if provided with inaccurate
rainfall information. To avoid this, calibration is often performed on combinations of parameterized
processes (rather than focusing on one parameterization at a time). In this context, improving one
parameterization can disturb the balance of processes achieved through calibration that contains
cancelling errors. As a result, improved representation of the Earth system often results in decreased
model skill [16]. More effort to develop modularity, with tests that exercise various processes and
also highlight tuning knobs that may not be linked to Earth system behavior, is needed.

Another issue is that the processes included in climate models are often not well understood.
Interactions between multiple processes are particularly critical for capturing climate feedbacks.
One approach to understanding model uncertainty is to perform a sensitivity analysis, whereby
ensembles of simulations are performed with different values for uncertain parameters. Even if
ensemble sensitivity analysis was exhaustive in its span of parameter space (which is itself untenable
computationally), this approach is not sufficient for quantifying uncertainty because the structure of
the parameterizations (as embodied in their equations and closure assumptions) may also be wrong
[Papers 17, 36]. In addition, parametric uncertainty cannot capture the effect of processes that are
not yet included in models. Parameter sensitivity studies may not capture data uncertainties; the
initial and forcing conditions that drive the model are derived from information that is imperfect
to an undefined degree [Paper 35] and requires methods such as data assimilation [Papers 18, 22].
Developing a methodology that addresses all these uncertainties is an important challenge for the
climate and mathematics communities.
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Capturing the important timescales in the climate system (including extreme weather events,
ENSO, biogeochemical cycling, and deep ocean circulation) requires ensembles of long runs with
high spatial resolution and full system complexity. These requirements are impossible to meet with
current computational capabilities. Thus improving model efficiency and scalability are required
for solving the climate complexity challenge.

2.3.2 Opportunities and potential solutions

This workshop identified several important processes currently missing from climate models, in-
cluding, in particular, better boundary treatments [Paper 59], biogeochemical cycling [Papers 37,
43], subglacial hydrology [Paper 29], turbulence [Papers 8, 57], and human and urban systems [Pa-
pers 13, 57]. Better integration of multiple processes was also suggested, such as combining models
of the hydrological and ecosystems cycles [Paper 58] and coupling iceberg calving with global ice
sheet flow [Paper 7]. There are other highlighted areas where better processes are needed, but they
have not yet been developed to sufficient maturity [Paper 48]. In some cases, processes need to be
treated with better numerics, so that they are more accurate representations of the climate system
[Papers 11, 44].

The computational challenges surrounding model complexity, while daunting, can be tackled.
Section 3.3 describes many opportunities to improve algorithmic efficiency. It is also worth noting
that additional processes or more sophisticated process representations can be added to existing
models without increasing wall-clock time by running processes in parallel [Papers 4, 28, 33]. Imple-
menting parallel physics is, however, a challenging research question because processes running in
parallel don’t know what each other is doing, which can lead to potential conservation errors [Paper
54]. Instead of executing individual processes in parallel, performing many simulations in parallel
provides a quick way to create large ensembles. This approach to parametric sensitivity analysis is
particularly useful when the timescale of interest is relatively short [Papers 34, 46]. Automation is
useful for efficiently finding parameter settings that optimize model skill in these ensembles [Paper
24]. The need for process complexity can be balanced with computational constraints by using
detailed offline calculations to inform online models with minimal expense [Paper 37]. On a similar
note, models with very fine resolution and at high numerical accuracy can be used as benchmarks
for global models to ensure that the impact of smaller scales are captured in large-scale models
[Paper 23].

There are also several steps we could take to improve our ability to make sense of output from
complex simulations [Paper 37]. When simulations have some processes replaced by prescribed ob-
served values, one can isolate the process interactions responsible for comprehensive model behavior
of interest. The plenary talk given by Chris Bretherton emphasizes the use of idealizations to distill
the essence of complex systems into understandable pieces. Breaking climate models into individual
components is also useful for avoiding compensating errors while tuning. An easy-to-use hierarchy
of increasingly idealized climate-model configurations would make isolating the source of model
behavior and avoiding compensating errors easier. Comprehensive model evaluation packages will
also be important for ensuring that comprehensive models capture all aspects of the climate for
which they are responsible [Papers 26, 51].

2.3.3 Example: Ocean biogeochemical modeling

Ocean biogeochemical models [Papers 37, 43] provide an example of the challenges and opportunities
that come with complexity in Earth system modeling. The goal of such models is to quantify
CO2 uptake and to predict responses of marine productivity to climate change. Such predictions
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potentially involve 100s of species that respond to varying levels of different kinds of nutrients
and sunlight. As an alternative to this traditional approach, one paper [43] suggested taking a
new genome-based approach to predicting the biologic response to changing environments by using
bioinformatics to predict the biochemical pathways and estimate fluxes through ecosystem-scale
biochemical networks.

An additional challenge is that biogeochemical models require decades to centuries to equili-
brate, making the development and testing of new ideas expensive and time-consuming. Thus all
the strategies that were mentioned concerning model credibility (Section 2.2) also apply here. A
range of options exists for making the scientific and computational problem more tractable. First
is that the local problem is not as complex as it seems since there are usually only a few factors
that dominate the evolution of the local system. Which factors are important can vary in time
and space and may not always be obvious. Some ideas to manage this complexity include (1)
building statistical models to predict the behavior of unrepresented species, (2) adaptively learning
the minimum sufficient representation needed to resolve a behavior of interest, (3) making use of
process-resolving column models to inform parameterizations (in an analogy to the cloud-resolving
paradigm mentioned above), and/or (4) applying new advances in stochastic parameterization to
better represent scale-dependent parameters within a coarser grid cell. Since observations of the
primary variables (species and nutrients) are limited, computational approaches [Paper 38] will
need to be developed that optimally make use of available observations while identifying what new
observations would help constrain uncertainties in model predictions.

2.3.4 Future directions

Climate model complexity has reached a critical state that demands we take a new approach. More
formal approaches to model reduction, initialization, calibration, and testing will be needed to keep
track of future model versions. Maintaining a process-level understanding of model behavior will
be challenging in the face of this formalization. Many of the ideas proposed during this meeting
involve exploiting a process-level understanding to simplify the bigger challenge of understanding
a complex model. Much work needs to be done to bring together these strategies into a broader
work flow that synthesizes the learning that takes place within simpler contexts so that the level
of complexity that remains for the fuller system is reduced. At present, we use observational data
to accept or reject a parameterization based on how it performs within a coupled climate system
model. It would be preferable if we had developed a set of observation-based challenges that test and
possibly tune/calibrate individual model processes. Metrics and parameters could be discovered
that associate the level of accuracy required to achieve a desired level of skill. The problems listed
above are examples of problems that can help the community develop the capacity, knowledge, and
tools for driving new advances in climate system modeling.

2.4 Continuum model framework

2.4.1 Grand challenge

As Earth system models become increasingly complex, coupling states and fluxes across compo-
nent models with strongly interacting processes (e.g., land to atmosphere), finer discretizations,
and growing degrees of freedom pose a significant opportunity to improve the methodology by
which climate models connect processes across existing boundaries. However, stronger and more
integrated couplings of separate Earth system components also create a larger and more com-
plex computational challenge and require a mathematically rigorous coupling strategy to handle
the data transfers [Paper 1]. Reduced-order models employing a continuum methodology could
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have significantly fewer degrees of freedom, provide tight coupling for critical processes spanning
traditional component models, eliminate errors associated with coupling (e.g., temporal averag-
ing, remapping, converting units, and computing derived quantities), and reduce communications,
computation, and latency incurred from maintaining component model structures. In addition,
correlated information can be treated consistently and numerical instabilities minimized since the
number of different solvers can be reduced to a few or even one for some process representations.
In a continuum model framework, the role of the coupler component to provide mediated data
exchanges can be altered to drive other features such as solver execution or performance tracking,
which could improve scalability and overall computational efficiency.

2.4.2 Opportunities and potential solutions

By taking a holistic top-down view of the entire Earth system, one can envision the design of inte-
grated multiscale, multiphysics models of critical energy, water, and carbon and nutrient processes
that span ocean, land, sea and land ice, and atmosphere realms and instead separate processes
by physical coupling rather than “political” or traditional domain science boundaries. Focused on
complete algorithmic descriptions of all processes, couplings would be synchronized based on their
degree of strong-versus-weak and tight-versus-loose connections as defined by the computational
science community [20].

Finer discretizations over continuous domains could be solved with functional approaches, which
represent an infinite discretization and provide a flexible and rigorous platform for component
model coupling. This encompasses data assimilation and UQ [Paper 22], calibration [Paper 17],
and data analysis [Paper 55]. Functional approaches replace computational complexity due to finer
discretization with mathematical complexity of handling flexible functions instead of data points.
These approaches already generate very substantial activity in mathematics and statistics research
and are only beginning to be noticed in climate research [Papers 22 and 55].

It is unnecessary to build a single model spanning all realms and process timescales, so a key
strategy will focus on the determination of how each Earth system process is related to others and
performing a prioritization based on available computing resources and algorithmic techniques. This
will require additional scientific research and development into process understanding, algorithmic
tools, and computational impacts of tight coupling of processes when developing parallelization
techniques. Evaluating and constructing process parameterizations that should be solved simulta-
neously to a converged state represents a significant climate and computational science research
challenge.

2.4.3 Example: Pore-to-cloud continuum

One example to illustrate the opportunity is the connection of soil moisture reduction through
evapotranspiration to cloud condensation, precipitation, and infiltration (the pore-to-cloud contin-
uum). These tightly coupled processes could be treated together and could then be coupled to the
rest of the Earth system across interfaces determined to be more loosely connected (see Figure 1).

2.4.4 Future directions

Implementing continuum process representations to construct a new Earth system model is a high-
risk endeavor with significant implications for current climate science. A complete reorganization
of current Earth system model structures would be required, and implementation of a contin-
uum strategy will necessitate new techniques for balancing computation and communication, with
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Figure 1: Directly connecting water cycle processes across land, ocean, and atmosphere realms,
following a continuum modeling methodology, poses a significant climate and computational science
challenge, but this approach could offer a more consistent treatment, eliminate coupler-mediated
data exchanges, and improve scalability and computational efficiency. Water storage and flux units
are 103 km3 and 103 km3 year−1, respectively.

potentially large payoffs in model performance. Thus, climate scientists must work closely with
computational scientists and engineers if such a pioneering effort is to be undertaken.

Component models for land, ocean, sea ice, land ice, and the atmosphere have proved useful for
a wide variety of climate science questions, and maintaining the ability to conduct research with
component models is important for investigating domain-specific mechanisms. Since continuum
modeling is designed to solve equations of state under conditions of mass and energy conservation
throughout all parts of the Earth system, this methodology conflicts with the traditional component
model structure. However, strategies for modular design of key parameterizations could enable
dynamic “plug and play” creation of traditional component models, built from the structures
underpinning the continuum process representations. The degree to which code can be reused and
the ability to dynamically build numerically stable and accurate models of sub-components are
open questions.

One path forward for initiating a research effort to investigate continuum modeling strategies
for the design of a new Earth system model would be to select one or two continuum processes
to implement. The pore-to-cloud example described above and illustrated in Figure 1 is a prime
candidate of relevance to ongoing DOE research. Having strong connections to the mathematics
community (e.g., algorithms, solution techniques, and libraries, Section 3.3) and the statistics
community (e.g., functional data analysis, Section 3.4.2) may enable faster development and proper
implementation of the correct methodologies. Testing methods for coupling the energy cycle and
vegetation processes into this continuum model are key initial research tasks, requiring an integrated
multidisciplinary team.
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3 Cross-Cutting Issues

3.1 Addressing model (software) complexity

3.1.1 Grand challenge

The simulation of a full Earth system (atmosphere, ocean, land ice, sea ice, and land surface com-
ponents) requires that a multitude of physical processes be accurately represented over a wide range
of temporal and spatial scales. As full simulations are built across several models developed by
different domain scientists, managing complexity is a nontrivial but essential task. Tackling this is
further complicated by the fact that climate models include a large number of parameters associ-
ated with approximated quantities, which are often impossible to determine precisely. Ultimately,
climate modeling is intended to inform decision makers about possible future climate scenarios, and
this in turn relies on verification and validation. Verification centers on assessing that the computer
implementation accurately represents a conceptual description of the model and its solution, which
includes partial differential equations (PDEs) as well as other types of models and assumptions.
Yet, verification is linked to complexity management.

Verification in the presence of complexity, uncertainty, and simulation parameters is discussed
in different contexts within many papers including Papers 10, 14, 26. Numerical accuracy and
its relationship with parameter calibration [Papers 44, 53] were highlighted in the presentation
associated with Paper 53 using an example based on an existing climate capability. In this case,
multiple inaccuracies cancel and give the appearance of a validated solution. This can easily
occur when models are erroneously calibrated with defective sub-components, as was called out
in Section 2.3. That is, the calibration might falsely correct for deficiencies. Not only does this
lead to inaccuracies, but it skews future assessments of potentially improved sub-components (e.g.,
with better accuracy/stability properties) if the assessment employs poorly calibrated parameters
(determined with a previously errant sub-component).

3.1.2 Opportunities and potential solutions

Properly managing simulation complexity provides great benefits to domain scientists, to compu-
tational mathematicians, and to computer scientists. Many papers touched on complexity and the
needed to improve simulation confidence (e.g., Papers 17, 26, 51). Ideas from computer science and
computational mathematics can help manage complexity. This includes ideas from verification,
software ideas associated with modularity, software engineering ideas and practices, and software
ideas associated with programming environments for cross-platform performance on sophisticated
computer hardware.

The presentation associated with Paper 53 highlighted opportunities to improve numerical ac-
curacy/stability or, more generally, enhance verification at the most fundamental level. To address
current concerns, rigorous benchmarking and testing of important algorithm kernels must be pro-
moted. These tests must include examples that employ representative grids over realistic geometries
(using typical elements types and aspect ratios that are characteristic of how a sub-component is
utilized in larger simulations). More generally, tests should include increasing levels of complexity
and be made available for those exploring potential sub-component improvements. Such tests might
include mesh convergence studies perhaps employing the method of manufactured solutions. In ad-
dition to improving simulation confidence, benchmarks and published tests provide entry points for
computer scientists and mathematicians to explore new concepts, algorithms, and implementations
and to make meaningful comparisons with published results. Most likely, the computer science and
applied mathematics communities would develop new benchmarks and publish additional results.
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In an another direction, uncertainty quantification techniques can also assist in investigating and
analyzing the sources of different types of errors. For example, Paper 17 emphasizes the need to
understand both structural errors as well as spatial and temporal discretization errors and how
certain novel UQ techniques (based on carefully embedding statistical model error terms in model
parameters) can possibly account for structural errors.

An important consideration for improving complexity management is a closer association be-
tween mathematical concepts and software components. That is, the software framework should
be designed to mirror mathematical relations (e.g., software abstractions based on vectors, fields,
matrices, vector spaces, function evaluators, etc.). Mathematics is a universal precise language.
Software written in this way is generally accessible to a wide community. For example, the dis-
cussion associated with Papers 50 and 54 noted that experimenting with time integrators can be
cumbersome if it is not easy to associate any piece of code with the discretized form of the time
level update to the ordinary differential equation. Papers 2, 3, and 4 touch on a related theme,
that is, tools that help increase modularity and the building of sophisticated software by combining
already developed agile components. This idea was adopted in the PISCEES project using the
Albany and Chombo frameworks to build the FELIX and BISICLES ice sheet models [Papers 39,
45]. By leveraging preexisting development, newly developed dynamical cores can be built rapidly
with advanced features (e.g., AMR or UQ). While these examples are mathematical, there are also
software/performance incentives. A number of developments are under way associated with lan-
guages that facilitate asynchronous many-task programming as well as capabilities that facilitate
performance optimization across multiple platforms (e.g., Intel Phi and NVIDIA GPUs). These
software projects and their abstractions allow developers to obtain high performance over a set of
different complex hardware platforms at a reduced effort [Papers 12, 28, 31]. It should be noted
that existing refactorization efforts that leverage next generation platforms provide an opportunity
to introduce much greater modularity and improve the management of complexity overall.

3.1.3 Future directions

The future is likely to bring increased complexities to the science of climate modeling. These
increases will be due to the inclusion/combination of more physically realistic models, the greater
availability of climate data, and the use of more sophisticated hardware platforms.

At this point, it is unclear exactly how these changes will impact climate model design decisions.
However, it is clear that greater modularity and an increased emphasis on sub-component flexibil-
ity, testing, and performance will be necessary. This will allow climate scientists to manage the
growth in complexity while leveraging contributions and foster collaborations from computational
scientists in the applied mathematics and computer science fields. As noted above, modularity
should consider a closer association between mathematical concepts and software components. Ad-
ditionally, future modularity efforts should consider the separation of software implementation from
the underlying hardware design while at the same time exposing fine-grain parallelism and allow
for the possibility of task-based programming models that can address the heterogeneous nature of
climate simulations.

While this section has focused on modularity and the importance of verifying individual modules
as a means to addressing complexities, model interactions are extremely important and will grow in
importance over the next decade. Paper 1 discusses a framework for addressing important aspects
of heterogeneous numerical methods in a mathematically rigorous way. An important idea here
revolves around using optimization and control ideas to provide a solid mathematical coupling
strategy so that dissimilar numerical methods can function within a unified simulation. Paper 51
focuses on understanding the interactions between models that have been developed independently.
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Models that do not directly interact with each other (noncontiguous model components) might have
indirect effects on each other, so pragmatically understanding this propagation can be challenging.
Despite the challenges of component fractionation (where each model has its own data, assumptions,
and quality measures), the climate community will need to develop approaches for full-system model
evaluation. This in turn requires computer science tasks such as building an infrastructure that can
efficiently and flexibly transfer data between a large number of models as well as mathematical tasks
such as developing appropriate full system metrics that might involve several model ensembles.

3.2 New hardware

3.2.1 Grand challenge

Historically, processor performance has generally followed Moore’s law, the observation that the
computing power that can be cost-effectively integrated on an integrated circuit doubles every 24
months [26]. Unfortunately, the performance of climate simulations has not kept pace with the
improvements in processor performance because all improvements have been more than consumed
by increased degrees of freedom and model complexity. In addition, performance is likely affected
by several fundamental changes in processor scaling and architecture.

Despite the end of Dennard scaling (constant power density scaling) [9], processor performance
has continued to improve according to Moore’s law without exponential increases in power. This
has been realized primarily through design changes such as energy-efficient circuits, core architec-
tures designed for energy efficiency at lower frequencies, massive increases in parallelism (multicore,
manycore, wide vector), and more software-controlled functionality (e.g., scratch pad memories).
Lower frequencies tend to increase latencies and overheads (bottlenecks in strong-scaled climate
simulations), while the massive increase in hardware parallelism has demanded a commensurate
increase in parallelism expressed in the software. Until recently, many compilers for commodity
hardware would fail to vectorize even the simplest stencil codes (let alone iterative point-wise equa-
tions or complex microphysics routines). Additionally, users’ attempts to thread their simulations
often ran afoul of bottlenecks in the maximum theoretical parallelization. Programming models
and hardware that once virtualized data movement now increasingly demand programmers micro-
manage data movement through the memory hierarchy, including exploitation of any data locality.
Failure to do so can result in substantial performance degradation.

Over the past decade, while peak processor performance continued to scale well, main memory
bandwidth scaled much more slowly [30]. As a result, many processors and accelerators available
today have machine balances of less than 0.1 Bytes of memory bandwidth per Flop, which is far
below what is needed in many algorithms to achieve good parallel efficiency in general. The future
trends in semiconductor manufacturing will only exacerbate and compound these challenges. In
the strictest sense, Moore’s law is dead (exponential performance progresses at a slower pace than
doubling every 2 years). By 2016, we were already observing the implications on vendor processor
performance and roadmaps. For example, Intel’s “tick-tock” cadence, which alternated between
process shrinks and novel architectural changes on a regular 2-year basis for the past decade, has
been abandoned with the introduction of Kaby Lake between the 14nm SkyLake architectural
“tick” and the 10nm Cannon Lake “tock”. Similarly, it required 4 years for Intel’s Knights Landing
(2016) processor to double the performance of the Knights Corner processor (2012).

Whether the climate science community realizes it or not, they are in a race to the bottom with
the semiconductor industry. Whereas the semiconductor industry is driving towards atom-scaled
devices with exponentially increasing performance (perhaps no longer every 2 years), the climate
community is driving towards ever-finer resolutions (e.g., global cloud-resolving models) with expo-
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nentially increasing computational demands. With perhaps only four more planar complimentary
metal oxide semiconductor (CMOS) lithographic nodes, it may not be possible for the current
trajectory of vendor processor offerings alone to enable more than a 2–4× increase in resolution.
Any further increase in resolution will require a corresponding increase in power and system cost
(e.g., 2× the resolution requires 8–16× the power and system cost). This suggests that it may
not be cost-effective to increase the resolution of climate simulations beyond that attained in the
2025–2030 time frame without radical changes to algorithm, implementation, architecture, and
semiconductor technology.

3.2.2 Opportunities and potential solutions

Several approaches have been proposed to bridge the potential performance impediments to simu-
lation and analysis.

One obvious strategy to bridge the gap is to improve methods and algorithms. Whereas changes
to (or adoption of) a linear solver may reduce computational demands by a constant factor, changes
to discretization in space or time (e.g., higher order) can result in an exponential reduction in
the computational requirements and mitigate increasing supercomputing costs [Papers 27, 41].
Unfortunately, ensuring a global benefit is an challenging prospect.

Due to the rapid size increase in both observational data and model output, a co-design effort
to develop future computational resources to meet the unique needs of large-scale climate data
analytics is needed [Paper 56]. Such systems typically require less computational capacity (e.g.,
fewer processor cores) but would benefit most from large, fast memory systems and high bandwidth
input/output (I/O). To meet the growing demands of climate analysis and model benchmarking,
a balance must be struck between high computational capacity resources and high-throughput
resources at major computing facilities.

Vendors have begun to embrace the concept of benchmarks and proxy applications as a means of
specializing their offerings for the computational demands of the various computing centers. Doing
so provides them an advantage over their competitors since, with the same process technology and
power constraints, they can deliver superior performance. Unfortunately, as vendors are profit
motivated to create general solutions that balance the cost-performance trade-off across many
computational domains, any solution for climate is likely to be suboptimal. Nevertheless, it has
become increasingly cost-effective to design general-purpose, domain-optimized supercomputers
specifically for their computational needs.

To mitigate the effects of evermore novel and complex vendor processor offerings, several dis-
cussions at the workshop focused around domain-specific languages (DSLs) [Paper 16]. The value
of a DSL is its ability to describe the functionality of a method in the context of the domain (e.g.,
PDEs on structured grids) without prescribing a solution or approach to execution (e.g., Fortran/C
with MPI+OpenMP). This separation of concerns is desirable as it amortizes the development cost
required to port to each new generation of architecture. Unfortunately, substantial investigation is
required to determine what the DSL should look like, and substantial effort is required to develop
and maintain a DSL compiler.

3.2.3 Future directions

At the workshop, a number of discussions examined alternatives to the current and emerging
computational roadblocks. These alternatives included a number of algorithmic [Papers 5, 6, 30,
40, 41] and model [Papers 13, 33] changes, performance optimization techniques [Papers 4, 28], and
advances in semiconductor technology (optical interconnects, carbon nanotubes, etc.) as well as
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cost-effective semi-custom supercomputers tailored for the needs of climate science [Paper 19].

The past decade has seen the proliferation of IP-based (intellectual property) hardware building
blocks for system-on-a-chip processor designs in everything from network routers to cell phones.
These building blocks range from memory and network controllers to full, superscalar out-of-order
cores (e.g., ARM, Tensilica). More recently, we have witnessed the emergence of open-source
hardware, including high-speed I/O circuits and memory controllers as well as full processors (e.g.,
Berkeley’s RISC V core [2]). With a fabrication-less design flow, it is possible not only to tailor
the core architecture (out-of-order, cache sizes, vector widths, frequencies, etc.) but also the entire
node (including memory) and system (including network) designs to match the computational
needs of a scientific problem [11, 23, 36, 40]. Although one may discount this approach, several
systems have successfully adopted it, including D.E. Shaw’s ANTON and ANTON2 supercomputers
designed for extremely fast and efficient molecular dynamics simulations [36]. Sunway’s TaihuLight,
the world’s fastest supercomputer, followed a similar approach and produced a system arguably
optimized for solving dense linear systems while still being capable of solving problems from other
domains [10, 13].

The cost of such systems should not be underestimated, and several researchers have extensively
tabulated the costs for such machines [8], dividing the cost into the nonrecurring engineering costs
associated with designing and implementing the system and fabrication and integration costs. As
the scale of the procurement increases, the speedup required to reach cost-performance parity with
a traditional supercomputer quickly diminishes (e.g., to break even, the custom design needs only
be 25% faster—a modest factor for domain-customized hardware—on a $100M procurement). As
a result, for large procurements, there is a clear potential cost savings by leveraging the emerging
customizable hardware market to tailor the computational capabilities of the supercomputer to the
computational requirements of a domain such as climate science.

In the climate community, one of the biggest impediments to exploit emerging manycore and
accelerated hardware is the substantial and required optimization and porting to new programming
models (CUDA, OpenACC, etc.). By contrast, the basic building blocks of these semi-custom de-
signs are traditional RISC cores, often the same as those found in commodity devices like cell
phones. As such, existing C/Fortran code written using standardized programming models is
immediately portable. To ensure one may leverage semi-custom instructions without unduly bur-
dening the programmer with intrinsics, an optimizing compiler (cognizant of the new instructions)
is auto-generated along with a synthesizable (e.g., Verilog) description of the core.

Substantial preliminary investigation is required to determine the efficacy of a domain-optimized
supercomputer for climate. Architecting a domain-optimized supercomputer requires benchmarks
to guide optimization. As the design space expands (combinatoric explosion of architectural pa-
rameters) and the evaluation infrastructure slows (from proxy hardware down to cycle-accurate
simulators), the cost of evaluating configurations becomes expensive. As such, it is incumbent
on the climate community to deliver compact, configurable benchmarks to the computer science
and applied mathematics communities. These benchmarks must be future looking and designed to
proxy the computational methods intended to be used in the 2025–35 time frame. Concurrently,
the climate community needs to track the evolution of vendor solutions to quantify the emerging
performance gap and to determine whether the architected solution can bridge the gap (constrained
by expected procurement funds). Failure to be proactive in this manner will result in hardware
and/or software solutions that are poorly matched to the computational challenges with climate
science — a continuation of the status quo.
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3.3 Model performance and time to solution

3.3.1 Grand challenge

The underlying dynamics driving changes in climate include a wide spectrum of complex interacting
physical processes with many different types of nonlinear phenomena that span a range of spatial
and temporal scales. These complexities often require high spatial resolution and drive increased
model uncertainty, which is addressed with large model ensembles. The push for high-resolution
simulations and increased ensemble size has exposed a pressing need for faster time-to-solution.
These challenges require a strong collaborative research environment that promotes interaction be-
tween computational climate scientists, applied mathematicians, and computer scientists. Domain
knowledge about the important physics of the problem is needed to inform appropriate choices
for algorithms that best suit the problem. While hardware improvements provide a bedrock for
faster completion, progress in the algorithms themselves will be essential in attaining significant
reductions in the computational time needed to simulate different features of the climate system.
A reduction in solution time allows for a combination of quicker solutions, longer simulation times
to consider longer timescales, and/or higher fidelity models that consider more complexity for a
given model execution.

3.3.2 Opportunities and potential solutions

To improve solution times, it is expected that climate simulations must leverage and drive advances
in time advancement, solvers (nonlinear and linear), adaptivity (spatial and temporal), and where
appropriate, the use of ensembles to gather statistics and sensitivities.

Ultimately, understanding the changes in our climate relies on accurately computing the spatial
and temporal dynamics of a full Earth system model. This in turn requires improvements in the
efficiency and sophistication of the discretization, for example, in finite-element strategies [Paper
6]. These schemes must generally be adapted to specific problem characteristics and must be
appropriate for increasingly complex models. As many of the underlying sub-systems involve a wide
range of spatial and temporal scales, improvements in model efficiency may come from targeting
spatial and temporal resolution at specific processes and regions as needed.

Time-to-solution is also highly dependent on the inter-node communication requirements of
spatial discretizations (latency, in particular). New spatial discretizations have the potential to
target this cost by increasing the maximum stable time-step size [Paper 5]. Also, many schemes
that support arbitrary order-of-accuracy can be tuned to enable improved performance on specific
architectures. For instance, L1/L2 cache sizes and vector widths are hardware parameters that can
provide dramatically improved performance depending on the order-of-accuracy of the numerical
method.

Many advanced numerical techniques used in climate science rely on nonlinear and/or linear
solvers. These include implicit time integrators, numerical optimization methods, and some uncer-
tainty quantification/sensitivity analysis approaches. Preconditioner developments are often tied to
specific problem classes. This is because an effective preconditioner must roughly approximate the
inverse of a linear system, which may include interactions across a range of scales. This underscores
the importance of the need for close collaboration between climate scientists and applied mathe-
maticians in developing solvers/preconditioners that are effective for the linear systems arising in
climate modeling.

In particular, due to the wide range of temporal scales, efficient time advancement techniques
for stiff systems are essential. A number of recent advances in solver technologies have been made
to improve solver convergence and robustness. These advances should be further investigated, ex-
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tended, and adapted to climate situations. This includes implicit [Papers 30, 40], implicit-explicit
(IMEX) [Papers 50, 54], operator split, and fully explicit [Paper 5] approaches, although it was
widely agreed through ideas papers and discussions that algorithms with large time-step sizes that
minimize data transfer across nodes and provide acceptable accuracy are the goal. Future efforts
into nonlinear techniques should consider strategies to move beyond time integration advances such
as traditional Newton-Krylov (e.g., [17]) to address the increase in model complexity. Two high-
lighted examples include nonlinear composite combination and nonlinear preconditioning [Paper
30] and Anderson accelerated fixed point methods [Paper 50]. Efforts to provide additional gains
are suggested by using Newton-Krylov as a coarse operator for parallel-in-time and spectral-in-
time methods [Paper 41]. Additionally, including optimized error constants for specific problems
or methods that yield better conditioned linear sub-systems to improve linear solution times is of
interest, especially within nonlinear solvers.

For linear problems, there has been significant progress in multigrid, domain decomposition,
and physics-based solvers. Linear solver advances include convergence/robustness enhancements
for certain problem classes or PDE operators (e.g., incompressible Navier-Stokes operators and/or
Maxwell’s equations), for problems that contain particular features (e.g., discontinuities or sin-
gularities), for certain discretizations (e.g., high-order discontinuous Galerkin methods, mimetic
approaches, mixed finite elements), and to address meshes that might be thin with bad aspect ra-
tios or might include boundary layers. There have also been advances in more general solver ideas
such as multigrid methods based on K-cycles, compatible relaxation, and bootstrap- or energy-
minimization-based multigrid schemes. Additionally, there have been advances in using auxiliary
operators to precondition difficult linear systems. The general idea is that the auxiliary operator is
more amenable to solver techniques and can still be used to precondition the original operator (e.g.,
shifted Laplacians for Helmholtz operators). For extremely difficult linear systems, direct solvers
may be needed even though they typically have much higher memory and computational require-
ments. In addition to robustness/convergence enhancements for difficult problems, there continues
to be ongoing research to improve solver scalability and performance on advanced/emerging archi-
tectures that might include hundreds of thousands of computing units. This includes methods such
as communication-avoiding techniques, solvers with increased parallelism (e.g., concurrent process-
ing of levels within a multigrid hierarchy), and solvers that have increased locality (e.g., nonlinear
domain decomposition or recursive domain decomposition approaches where algorithm choices take
into account the hierarchical nature of specific compute architectures). To leverage recent solver
advances within the climate sciences, further research is vital to adapt and enhance solver ideas to
the types of realistic complex situations that arise in the modeling of Earth systems. Ultimately,
promising solver directions are often driven by a combination of domain-specific knowledge that
comes from a combination of climate science and preconditioner expertise.

Many climate processes span a wide range of dynamic scales where fine spatial or temporal
resolution is needed in a small subset of the domain in order to correctly model key dynamic
processes, while large portions of the domain exhibit much coarser-scale dynamics. Modeling the
entire system at the finest spatial and temporal resolutions needed is often both impractical and
enormously inefficient. Adaptive mesh refinement (AMR) is an emerging technology that dynam-
ically refines the grid during run-time so as to provide localized improvement in error norms and
direct computational cost where it is needed [Papers 39, 42, 49]. Spatial mesh refinement refers
to the addition of spatial degrees of freedom to specific areas of the mesh based on a refinement
criterion. Temporal adaptivity provides the additional capacity to locally modify the time-step
size based on the local resolution of the mesh, so as to ensure maximal performance while still
satisfying the local Courant-Friedrichs-Lewy (CFL) condition. AMR offers the potential to bet-
ter represent extreme weather events, such as tropical cyclones or atmospheric rivers, which are
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similarly associated with fine-scale features that require high model resolution. In ice sheet mod-
els, variable-resolution and AMR models have already shown their value due to high-resolution
requirements to resolve the dynamics of grounding lines and ice streams, which only occupy very
small portions of the continental-scale ice sheets but exert a controlling influence on the dynamics
of the entire ice sheets. Research on AMR for global climate models is ongoing, with recent work
highlighting its potential [12, 25, 38].

3.3.3 Future directions

Other concerns regarding time to solution consider methods that reclaim computational time due to
latency via context switching. One option is to simultaneously compute two ensemble simulations
and swap between ensembles when a barrier is reached. Another option is to employ parallel-in-time
physics parameterizations and perform physics computations while the barrier is in place. Also,
the need for better controls on solution accuracy in coupled systems was highlighted [Paper 53].
In several examples, the output of coupled models is no longer convergent with increasing spatial
and temporal resolution. This is an issue that needs to be continually addressed as coupled system
complexity increases, since a large part of the increased time to solution is due to the combination of
increased model complexity (more sub-models coupled together) and increased model resolution. If
the coupled system is not convergent, then it’s unclear that the increased cost is actually improving
the model results.

Currently much effort is spent tuning physical parameterizations in various models, which is
time-consuming and potentially brittle in the context of dynamic changes in climate systems. At
some of the breakouts, the idea of replacing physical parameterizations with black-box machine
learning or data tools was discussed as a promising alternative that would allow models to tune
themselves, using observational data or through deterministic or stochastic [Papers 17, 18, 24]
parameterization/superparameterization/ultraparameterization output. This would both improve
time to solution for these models and enhance confidence in model output [Papers 25, 52].

3.4 Data management and analysis

3.4.1 Grand challenge

Climate is unique in terms of the scale of production, retention, and throughput of simulation
output. This is due to the size and diversity of the international community that consumes the
output and the breadth of questions spanning broad time and space scales for which the data is
tasked to answer. Operationally, the expense of each simulation is such that all data that might
possibly be desired or required for post-processing is kept for insurance. As a result, data reduction
decisions are particularly difficult. Yet as we approach exascale, hardware constraints will force
some novel solutions including relative data reduction via in situ analysis, more extensive utilization
of low-power profile co-processors, and checking for potential data corruption. The increasing
complexity of models, while a challenge for model throughput, unlocks many opportunities for
new avenues for analyzing model output in ways that will provide understanding. However, the
expense and complexity of methods to target data from these models present their own challenges
of performance.

Uncertainty quantification and model ensembles bring further challenges to analytics that ex-
acerbate the need for scalability and require the development of new techniques. They also bring
experimental design issues for optimal exploration of model parameter space so that minimal-size
ensembles can deliver information needed for understanding of the parameter space and uncertainty.
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3.4.2 Opportunities and potential solutions

Functional data analysis The development of functional data analysis (FDA) in statistical
science [Paper 55] presents an opportunity to facilitate a gradual transition to continuum process
representations in climate science while addressing data reduction. At a high level, FDA begins
with data, converts it to nonparametric functions (splines, wavelets, Fourier, etc.), and remains
as functions for further reduction, storage, analysis, and visualization. Addressing the transition
to continuum challenge is not unlike the transition from mathematical tables to mathematical
functions that took place in the late part of the past century. We trade storage for mathematical
complexity. The same can be said about the transition from dense matrix to sparse matrix methods.
This has several consequences:

• Reduced storage and data movement from simulation to storage.

• No need to store tables of numbers. Instead, specifications of functions are stored.

• Data analysis is performed in functional space with a smaller memory footprint than tradi-
tional methods. This is where the mathematical complexity comes in, but FDA tools already
exist for common analytics such as variability attribution, principal components, canonical
correlation, clustering, and many other multivariate methods as well as new techniques that
are unique to functional data.

• Enables principled model component coupling at any resolution.

• Provides rigorous interpolation schemes for visualization.

• Allows a fallback to traditional methods because data can be reconstructed at any resolution.

Standard decompositions, such as principal components analysis (or empirical orthogonal func-
tions), can be extended to tensor decompositions (also known as higher-order principal components
analysis). Algorithms for these are already available [1] even in the functional space, but their ap-
plication to climate data remains open. Function space sampling algorithms [Paper 22] take the
functional approach to reduce computational complexity of Monte Carlo for inference and UQ by
sampling functions instead of points [6].

A wealth of methodology for statistical analysis and wrangling of data is encapsulated in the
R Environment for Statistical Computing [32] and its thousands of packages. This includes a
variety of multivariate methods with many already available to operate in functional space. Recent
developments enable R scalability on large systems [5, 35] with various in situ options, including
sharing a communicator and data staging. These developments enable novel data analysis algorithm
scripting powered by the same scalable mathematical and communication libraries that currently
power many petascale simulation codes.

Additional strategies Other ideas were suggested to improve data processing and work flow,
which would enhance efficiency outside of the time-to-solution envelope as well as model credibility,
through reproducibility.

Clustering and empirical orthogonal functions for variability attribution are commonly used
in analysis of climate data. Their ubiquity and their potential data reduction properties make
them good candidates for in situ processing. Scalable algorithms for exascale architectures are still
lacking, although some have been developed in the past [Paper 56] and more recently in [5, 35], the
latter being able to utilize pluggable dense linear algebra co-processor libraries.
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In situ analysis as well as fast surrogates [Paper 21] provide an external observer the opportunity
to check for potential data corruption. Such data reductions rely on smoothness properties in time
or in space to detect anomalies, some of which may be corruptions. As data analysis is based on
an explicit or implicit model, it provides an opportunity for building data-based reduced models as
smart proxies. This is discussed in [Paper 9] and is also a potential result of the models in all the
other approaches discussed in this section. An overarching strategy to automate large portions of
the climate model work flow system could shift important but expensive and mundane steps in the
model development, analysis, and publication process [Paper 32].

3.4.3 Future directions

Implementing scalable in situ and post-processing analysis algorithms requires common frameworks
for data transport and data sharing. Options for in situ analysis include running on the same
resources as the simulation, sharing a communicator, or as a service on separate resources through
in-memory or burst buffer staging. Establishing middleware standards that enable these choices
with a common interface (such as ADIOS [31]) will enable the use of the same analysis software
whether in situ or in post-processing.

Analytics challenges brought by ensembles and uncertainty quantification can be addressed
by stronger connections to the statistics community, where uncertainty plays a fundamental role.
Techniques that include statistical design of experiments can lead to optimal information content
in ensembles and simplify analysis. Fundamental mathematics in analytics, such as dense and
sparse linear algebra, is available in scalable libraries and continues to be developed by the applied
mathematics community. Engaging this as infrastructure in easily reconfigurable ways is needed
for scalable analytics. This has already started in the R language [35], but a lot more needs to be
done to provide diverse scalable techniques from modern statistical science and machine learning
for climate.

4 Structure of Collaboration

4.1 Existing tools and collaborations

Due to the computational demands of modeling the climate system with high fidelity, there is
already a rich history of collaboration and communication between applied mathematicians, com-
puter scientists, statisticians, and climate scientists. In fact, climate models have led the way in
organizing successful collaborations between these disciplines in the service of improving the state
of climate science. One example of such a collaboration was through the DOE-supported ISICLES
effort. The IPCC AR5 report [39] called attention to the large uncertainties in predictions of sea
level rise resulting from the inadequacy of then-current ice sheet models to the task of modeling
the response of the Greenland and Antarctic ice sheets to projected climate forcing. As a result,
DOE ASCR, as an expansion of an existing partnership with DOE BER, issued a unique call for
ice sheet modeling efforts that would bridge the gap between computational expertise in ASCR and
the near-term needs for improved ice sheet modeling efforts within BER. The result was six funded
projects that covered a range of ice sheet modeling strategies ranging from Lagrangian particle
models to spatial meshes that better capture ice fracture. While some of the projects were more
successful than others, the net result was an infusion of applied mathematics and computer science
expertise into the relatively young field of ice sheet modeling. This helped to propel the DOE
portion of that effort forward to the point where the DOE is now a world leader in ice sheet model
sophistication and maturity.
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The joint ASCR and BER partnership in the Scientific Discovery through Advanced Computing
(SciDAC) Program is a long-term investment from the DOE Office of Science that has propelled
climate modeling to petascale and has a new call towards the exascale level of computing. It varies
with each call but generally consists of centralized mathematics and computer science “Institutes”
that support a number of “Applications Partnerships” in each of the sub-offices in the Office of
Science. This model has proved an effective way to organize the deployment of advances into the
various application fields. Climate modeling has benefited from this collaboration since the first
SciDAC program, and the key driver for success has been the joint participation from applied
mathematicians, computer scientists, and a variety of science domain experts with expertise in
climate science.

More recently, the ACME Project has stood up to create a global coupled Earth system model
that is designed to answer key science questions of interest to the DOE mission. It is achieving
its science goals through effective use of DOE leadership-class computing via a significant focus
on advanced performance, data management and workflow, and software engineering. Other in-
ternational climate centers, including the work at the United Kindgom’s European Centre for
Medium-Range Weather Forecasts (ECMWF) presented in a plenary talk by George Mozdzyn-
ski at the workshop, also recognize the importance of and invest in research to best utilize the
largest available computing resources to achieve the best modeling results for weather and climate
prediction.

4.2 Facilitation of communication across disciplines

A primary issue is communication across the various disciplines that all feed into a successful
climate modeling enterprise. While it is tempting to think of collaboration in terms of tools, as in
“which tools facilitate collaboration” or “how can we adapt tools to be of use to climate scientists,”
in the breakout session discussions of effective communication, climate scientists and mathematics
and computer science specialists invariably dwell on processes rather than concrete tools.

Embedding applied mathematics, statistics, and computer science experts in the domain science
side has proven through the successes of SciDAC and in the instantiation of ACME to be a useful
strategy for intellectual and technology transfer, particularly from the applied mathematics domain
to the climate and computer science domains. For example, applied mathematics researchers in
the ISICLES and SciDAC-funded PISCEES ice sheet projects have regularly contributed both to
applied mathematics and glaciology-related conferences and journals. Embedding works because
it creates a hybrid person who is conversant in both the specific demands of the application space
along with the mathematical background to either apply directly or to be able to communicate
back to others in the mathematical and computer science sides. The key challenge is for these
hybrid scientists to be recognized and motivated in their efforts. Recognizing statistics as distinct
from applied mathematics puts more emphasis on the increasing need for modern data analysis and
data assimilation required for analysis going forward in addition to current and future simulation
science’s use of PDE solution methodologies to advance model execution speed and accuracy.

The importance of meaningful (but tractable) benchmarks came up multiple times during AXI-
CCS discussions. Besides the significant utility in building model confidence, benchmark problems
are the way we communicate between fields, making it much easier to transfer information about
model attributes and issues rather than simply “kicking something over the fence” back to the
applied mathematics and computer science communities. A useful set of benchmark problems also
provides a well-defined path to entry into a science domain for the embedded interloper from the
mathematics side.

Discussion about colocation of applied mathematicians, computer scientists and climate sci-
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entists indicated a likely benefit, although the logistics of such an arrangement is complicated,
especially when climate scientists themselves are also not colocated, as in the case of ACME. The
biggest challenge is how to ensure continuous engagement among the climate science, mathemat-
ics and computer science communities—how to continue to find and encourage people who are
effectively trained in climate science, mathematics, and computer science. Usually, job advertise-
ments targeting the full range of postdoc to senior scientist career stages that prioritize personnel
with combined mathematics and/or computer science along with Earth science knowledge do not
generate many candidates.

4.3 Outreach and learning as potential solutions

Direct marketing to undergraduate and graduate mathematics and computer science students can
be useful—the perception that climate science is one of the grand challenge scientific problems of
our time is a strong motivator in many instances to get non-climate scientists involved. Workforce
training efforts like the DOE-managed Computational and Stewardship Science Graduate Fellow-
ships (CSGF, SSGF) and Office of Science Graduate Student Research (SCGSR) programs provide
a useful mechanism for channeling graduate students in the right directions to be able to contribute
meaningfully as early-career scientists. For example, the CSGF actively steers the courses of study
of its fellows, ensuring solid backgrounds in mathematics and computer science while maintaining
a focus on producing true computational scientists who are productive in their respective scientific
fields. The newly formed Science Graduate Student Research (SCGSR) program within DOE in-
volves graduate students being hosted at a national laboratory for a 3-month appointment. While
this is not much time to develop skills, it does start the process for future development and inter-
action. Additional venues to train multidisciplinary scientists include topical workshops, webinars,
and/or summer schools. A team composed of ACME scientists, named team “HACME,” have at-
tended the last two Oak Ridge Leadership Computing “Hackathons.” These events connect domain
scientists, mathematicians, computer scientists, and compiler vendors to learn how to optimize the
performance of their code on the Oak Ridge Leadership Computing Facility (OLCF) machines.

One of the side benefits of the AXICCS workshop was a large number of side conversations
between members of the different communities who otherwise would not have met. It is likely
that at least some of these conversations will lead to productive lines of work. In the workshop,
these informal gatherings became known as the “hot tub” idea—the more chances for people from
the different fields to interact, the more chances for meaningful and substantive interaction to
take place. While it may be hard to justify in a project-driven and end-result-driven funding
ecosystem, such opportunities for cross-cutting contact and discussions stand to enormously benefit
the state of climate science as a whole, which will then feed back into the applied mathematics
and computer science disciplines. In the past, the annual SciDAC project meetings have provided
such opportunities, although by necessity they were limited to those projects already in SciDAC
collaborations and covered many subject areas beyond climate as the target area within which to
form connections.

Networking opportunities for graduate students and postdoctoral scholars have also been devel-
oped through dual-purpose (education and workshop) events such as the Dynamical Core Model
Intercomparison Project (DCMIP) summer school and workshop [18]. Every 4 years since 2008
this program has brought together students, postdoctoral researchers, application scientists, model
developers, and other experts with the objective of (a) supporting a massive learning initiative
directed at dynamical core research and (b) leveraging an enthusiastic cohort of participants to
undertake the model intercomparison. The outcome of this intercomparison has been praised by
both participants and modeling groups and featured wide support from major federal agencies. The
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event in 2016 was sponsored by the National Center for Atmospheric Research’s (NCAR) Com-
putational Information Systems Laboratory (CISL), NOAA, NASA, DOE, the National Science
Foundation (NSF), and the Office of Naval Research (ONR). Similar efforts could likewise be de-
veloped for other model intercomparisons that require mathematics and computer science experts
to bring together a cohort of experts and students, for instance, one specifically focused on coupling
of model components. However, workshops such as these rely on the target model component(s)
to have a sufficiently diverse and broad community to make intercomparison worthwhile. Further,
such an effort also relies on community agreement on a “standardized” suite of benchmarks to be
employed. Nonetheless, projects such as these provide an excellent bridge between laboratories and
academia, with positive outcomes for both education and productivity.

4.4 Possible follow-on activities

The discussions at the workshop have generated a collection of big ideas and cross-cutting issues that
climate scientists, mathematicians, and computer scientists may want to pursue collaboratively in
order to advance climate modeling and simulation. It is important to keep the momentum going so
that the big ideas can be realized. In addition, it will be beneficial to engage additional researchers
from the three communities beyond this workshop group. This allows the big ideas and cross-
cutting issues identified in this report to be fleshed out by bigger groups, and possibly motivating
additional ideas and issues. For example, follow-up workshops can be organized to focus on each
of the big ideas. Another possibility is to have special journal articles and/or issues calling for
research in such areas.

One step this group has taken is to organize a minisymposium at the upcoming SIAM Conference
on Computational Science and Engineering, which will be held at the end of February 2017. Several
members of the program committee of this workshop will present the findings in this report at the
minisymposium. As alluded to earlier, this is not meant to signal the end of the workshop. Rather,
it should be considered the beginning of a larger and broader effort.

5 Conclusions

The Advances in Mathematical and Computational Climate Modeling (AXICCS) workshop was
different from many workshops that focus on scientific discussions and brainstorming of new re-
search directions. It was unique because the format was designed so that the participants focused
on identifying future areas of research that would materially impact climate simulation without
restrictions of time, funding, or expertise. A key attribute was to discuss, in tandem, the key
mathematical and computer science advances that would be required to pursue new ideas we iden-
tified. By allowing discussions across many scientific domains and among colleagues at different
stages of their career, the goal was to provide the opportunity for many voices and ideas to be
heard and discussed.

Although many new science ideas were considered, we developed several major findings about
how to improve Earth system models into more formal strategies within Section 2. These spanned
improvements in managing model complexity, strategies to maintain and improve confidence in
these complex and interacting models, and the coupling of processes to enable a better understand-
ing of our rich and diverse Earth system and its changes. We also presented a novel path to provide
a simulation of the Earth without arbitrary boundaries fostered by community tradition.

We prioritized key tools from the mathematics and computer science communities we thought
would be most beneficial to bring these ideas to a more mature state of evaluation and implemen-
tation. These included computer science methods such as language and compiler tools to address
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upcoming and dramatic hardware changes, mathematical tools for model development that will
target the new hardware effectively to maximize space and timescale limitations, strategies to treat
and minimize software complexity so that climate scientists and non-climate scientists can develop
and evaluate code use to produce these large and interacting models, and data analysis and man-
agement, which address statistical tools to unlock the new insights within simulation output as well
as new methods for data storage and workflow to enable the more complex models to be managed.
These have been outlined in Section 3.

Finally, in Section 4, we discussed the possible path forward. Additional opportunities, through
more interactions with these and additional climate scientists, would flesh out these ideas and
also motivate additional ideas. Next steps would include workshops to generate expansions and
specifics of each idea, additional and incentivized interactions with colleagues from the climate,
mathematics, and computer science communities beyond the limited attendance of this workshop,
and more communication of these groups through traditional and novel methods, for example a
special journal article and issue calling for research in these areas.
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CISL: Computational Information Systems Laboratory
CMIP: Coupled Model Intercomparison Project
CMOS: Complimentary metal oxide semiconductor
CRM: Cloud-resolving Model
CSGF: Computational Science Graduate Fellowship
DA: Data Assimilation
DOE: U.S. Department of Energy
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ENSO: El Niño Southern Oscillation
ESM: Earth System Model
FDA: Functional Data Analysis
GCM: Global Climate Model
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IPCC: Intergovernmental Panel on Climate Change
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LES: Large Eddy Simulation
MJO: Madden-Julian Oscillation
MLMC: Multilevel Monte Carlo
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PDE: Partial Differential Equation
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	 		 Breakout	Topic	3B:		Same	as	1B	
	 		 Breakout	Topic	3C:		Same	as	1C	
	 	 	 	12:30PM	 2:00PM	 	 Lunch	
	 	 	 	2:00PM	 2:30PM	 	 Outbriefs	from	Breakout	#3	(all)	
	 	 	 	2:30PM	 3:30PM	 	 Plenary:		George	Mozdzynski,	European	Centre	for	Medium-Range	

Weather	Forecasts,	UK	
	 	 	 Addressing	Future	Scalability	and	Power	Challenges	at	the	European	

Centre	for	Medium-Range	Weather	Forecasts	(ECMWF)	
	 	 	 	3:30PM	 4:00PM	 	 Coffee	Break	
	 	 	 	4:00PM	 4:30PM	 	 Wrap-up	
	
	 	

Workshop Agenda
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Workshop	on	Advancing	X-cutting	Ideas	for	Computational	Climate	Science	
(AXICCS)	
September	12-14,	2016	
Hilton	Rockville,	1750	Rockville	Pike,	Rockville,	MD	20852	
	
Agenda	
	
Wednesday,	September	14,	2016	
	 	 	 	 	 	
Start	Time	 End	Time	 	 Topic	
	 	 	 	 	 	
8:30AM	 1:00PM	 	 PC	Only	Report	Writing	
	

Workshop Agenda
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A version of this report with the white papers included in the appendix are available online at:
https://science.energy.gov/ber/community-resources/

AXICCS: Advancing X-cutting Ideas for Computational Climate Science 39


	Table of Contents
	Executive Summary
	Introduction  
	Purpose
	Workshop overview
	Goals and structure of the report

	Big Ideas
	Process-resolving models  
	Grand challenge
	Opportunities and potential solutions
	Example: Global cloud feedbacks
	Future directions

	Integrated model credibility  
	Grand challenge
	Opportunities and potential solutions
	Example: Uncertainty in water vapor feedbacks
	Future directions

	Understanding and managing climate system complexity  
	Grand challenge
	Opportunities and potential solutions
	Example: Ocean biogeochemical modeling 
	Future directions 

	Continuum model framework  
	Grand challenge
	Opportunities and potential solutions
	Example: Pore-to-cloud continuum
	Future directions


	Cross-Cutting Issues
	Addressing model (software) complexity  
	Grand challenge
	Opportunities and potential solutions
	Future directions

	New hardware  
	Grand challenge
	Opportunities and potential solutions
	Future directions

	Model performance and time to solution  
	Grand challenge
	Opportunities and potential solutions
	Future directions

	Data management and analysis  
	Grand challenge
	Opportunities and potential solutions
	Future directions


	Structure of Collaboration  
	Existing tools and collaborations
	Facilitation of communication across disciplines
	Outreach and learning as potential solutions
	Possible follow-on activities

	Conclusions  
	Acknowledgments
	References
	Appendices
	List of Acronyms
	Workshop Participants
	Workshop Agenda
	Contributed Ideas Papers




