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Abstract. We discuss various methods used to investigate the geometric

complexity of earthquakes and earthquake faults, based both on a point-source

representation and the study of interrelations between earthquake focal mechanisms.

We briefly review the seismic moment tensor formalism and discuss in some detail the

representation of double-couple (DC) earthquake sources by normalized quaternions.

Non-DC earthquake sources like the CLVD focal mechanism are also considered. We

obtain the characterization of the earthquake complex source caused by summation

of disoriented DC sources. We show that commonly defined geometrical fault barriers

correspond to sources without any CLVD component. We analyze the CMT global

earthquake catalog to examine whether the focal mechanism distribution suggests that

the CLVD component is likely to be zero in tectonic earthquakes. Although some

indications support this conjecture, we need more extensive and significantly more

accurate data to answer this question fully.

Keywords: Earthquake focal mechanism, double couple, CLVD, quaternion,

geometric barriers, statistical analysis
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1. Introduction

Several statistical methods and models can be used to study the geometric

complexity of an earthquake fault zone or fault system. Some are based on representing

an earthquake as a point source, and the geometric complexity of a source reveals itself

in a complex structure of a seismic moment tensor. Another method is to investigate the

geometric complexity of the fault system as expressed in a set of earthquake locations

and their focal mechanisms. Due to the difficulty of the problem and insufficient

development of the methods, neither of these techniques would provide a complete

solution.

We also review the tools that could be used in the study of earthquake fault

statistics: analysis of the seismic moment tensor invariants and the application of

quaternion algebra to investigate the interrelation between different earthquake focal

mechanisms. Although some problems of the earthquake focal mechanism statistics,

as well as the mechanism geometric and spatial relationships could be investigated by

simpler geometrical tools, avoiding the use of quaternions (Kagan, 2005, 2007b), the

full statistical analysis would become too complex and unwieldy without the quaternion

representation.

Quaternions are widely used to describe 3-D rotations [group SO(3)] in space

satellite and airplane dynamics (Kuipers, 2002), in geodesy (Shen et al., 2006), and

in simulations of virtual reality, robotics and automation (Kuffner, 2004; Yershova

and LaValle, 2004; Hanson, 2005). There are matlab packages available to perform



4

quaternion math calculation (MathWorks, 2006), as well as the quaternion description

in matematica (MathWorld, 2004). Le Pichon et al. (1973, p. 38 and their Appendix),

Wang et al. (2006) and Chang et al. (1990) used the quaternion algebra to model the

3-D rotation in various geophysical problems.

Up to now quaternions have been discussed in mathematical textbooks and papers

that are less accessible for a geophysicist. Although two practically oriented monographs

(Kuipers, 2002; Hanson, 2005) specifically address quaternion modelling of the 3-D

rotation, because of the DC symmetry properties, the techniques considered in those

books cannot be used for the DC source without major modifications. This makes

it necessary to lay out the background summary information on quaternions and

rotations of focal mechanisms. In particular, we bring together in one place a number of

methodological results that are scattered across literature.

We apply the above-mentioned tools to a particular question: is there evidence for

CLVD sources (Knopoff and Randall, 1970) in tectonic earthquakes? As we discuss

below, the presence of CLVD sources in the focal mechanism solutions can be considered

as the simplest evidence of earthquake fault complexity, and may be the easiest problem

to solve. Such a study is especially important presently, since the most influential and

widely used earthquake catalogs are increasingly those with moment tensors.

To study the CLVD feature of complex tectonic earthquake focal mechanisms, we

first theoretically investigate whether composite sources consisting of disoriented DC

mechanisms would yield a non-zero CLVD component. We use these theoretical results

in our analysis of the global CMT catalog. We statistically investigate the spatial
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pattern of earthquake focal zones and the distribution of focal mechanism rotations

in order to infer whether the CLVD component may appear as the result of fault

complexity.

Below, Section 2 is a short review of theoretical models and several statistical

techniques that can be used to study the fault complexity. In Section 3 we briefly

consider the seismic moment tensor formalism. Section 4 discusses the CLVD component

of a focal mechanism and theoretically evaluates the component for some models of the

earthquake composite source. In Section 5 we briefly review the dot product for seismic

moment tensors. This product is the first invariant of the second-rank correlation tensor

(see Section 2.1.3) and can also be used to characterize the complexity of the focal

mechanism orientation. Section 6 describes our observational analysis of the global CMT

catalog. In Section 7 we discuss the challenges in studying the focal mechanism pattern

and the possibility of using local catalogs of focal mechanisms for these investigations.

In Appendices A and B we review the quaternion representation of the DC focal

mechanism. Appendix C discusses the Lambert azimuthal equal-area projection of a

spherical octant which is used in our graphical displays of focal mechanism distribution.

2. General theoretical background
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2.1. Models for complex earthquake sources

2.1.1. Phenomenological observations

• 1. Geologic and geophysical studies of earthquake focal zones point to significant

complexity in the rupture process (see, for example, King, 1983, 1986, Amelung and

King, 1997). Moreover, almost any large earthquake is now analyzed in detail with its

rupture history represented in time-space-focal mechanism maps which usually exhibit

an intricate moment release. Although such results suggest that an earthquake focal

zone is more complex than the standard planar model for earthquake rupture (Aki and

Richards, 2002), phenomenological investigations cannot describe the fault patterns

appropriate for its quantitative modeling. Such a description needs to be based on

statistical treatment of the observed fault geometry.

2.1.2. Point source solutions

• 2. As a first approximation, the moment tensor is a second-rank matrix (Backus

and Mulcahy, 1976a,b; Backus, 1977a,b; Kagan, 1987). The main component of the

second-rank tensor is a double-couple (Burridge and Knopoff, 1964). The presence of a
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significant non-double-couple or a CLVD component (Knopoff and Randall, 1970) is one

measure of source complexity (Section 4). In this work we assume that for earthquakes

the isotropic (explosive/implosive) component equals zero.

Julian et al. (1998) and Miller et al. (1998) discuss various physical mechanisms

thought to be responsible for the non-DC and, in particular, CLVD earthquake sources.

They review many published papers that describe the registration of the CLVD

component. Based on theoretical considerations, they indicate that most of the CLVD

cases should be seen in geothermal and volcanic areas and quote observations confirming

this. However, the complexity of an earthquake source can also produce a non-zero

CLVD component in some tectonic earthquakes. Thus, the CLVD evaluation by modern

moment tensor solutions should, in principle, quantitatively characterize the complexity

of the earthquake fault zone. Julian et al. (1998) and Miller et al. (1998) provide many

published examples of a significant CLVD component present in tectonic earthquakes.

However, recent work by Frohlich and Davis (1999), Kagan (2003), and Frohlich

(2006, pp. 228-235) appears sceptical that present inversion techniques can obtain an

accurate estimate of the CLVD component for tectonic earthquakes. Fig. 16 in Miller et

al. (1998) also demonstrates the lack of correlation between the CLVD component values

obtained from different earthquake catalogs, indicating that these non-zero CLVD values

may come from systematic effects. These results suggest that routinely determined

CLVD-values would not reliably show the deviation of earthquake focal mechanisms

from a standard DC model.

• 3. Higher-rank point seismic moment tensors were introduced by Backus and Mulcahy
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(1976a,b) and Backus (1977a,b). Silver and Jordan (1983), Silver and Masuda (1985),

Kagan (1987, 1988), McGuire et al. (2001), Chen et al. (2005) considered various aspects

of higher-rank point seismic moment tensors. Kagan (1987) argued that the third-rank

seismic moment tensor should show the complexity of the earthquake source, i.e., its

difference from the standard planar rupture model. However, with the data available

now, inversion results indicate that only the extent and directivity of the planar rupture

can be obtained by analyzing higher-rank tensors.

2.1.3. Sets of earthquake focal mechanisms

• 4. Higher-rank correlation tensors (Kagan and Knopoff, 1985b; Kagan, 1992a)

more completely describe the interrelation between focal mechanisms and their spatial

distribution. However, their interpretation is still difficult and the low accuracy of

focal mechanism solutions and earthquake locations (Kagan, 2003) in available catalogs

makes conclusions uncertain. Below (Section 5) we consider one of the invariants of the

correlation tensor (tensor dot product for two arbitrary solutions).

• 5. The geometric connections between the double-couple earthquake mechanism

solutions (Kagan, 1982, 1990, 1991, 1992b, 2000, 2005) describe the interrelation

between the pairs of earthquake focal mechanisms by determining the 3-D angle between

two DC solutions (Appendix B) and considers the angle distribution in space-time. The

angle is distributed according to the Cauchy law and increases with time and distance
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interval between earthquakes. However, as we will see later, the fault complexity

depends not only on the pairwise distribution of 3-D rotation angles, but also on the

distribution of rotation poles on a reference unit sphere.

2.2. Geometric complexity of earthquake faulting

2.2.1. Theoretical models

The geometric complexity of the earthquake fault zone and that of the earthquake fault

system are interrelated. Their comparability is the result of a general self-similarity of

earthquake occurrence: earthquake rupture propagates over a complex fault pattern.

This pattern is then seen in occurrence of aftershocks and other dependent events.

Therefore, we may assume that the fault pattern complexity, when considered for small

time intervals, would approach the geometric complexity of each earthquake rupture.

Fractal features of the spatial distribution of earthquake hypocenters and epicenters

(Kagan, 2007a) support this conjecture.

An important condition which contributes to the complexity of the earthquake

fault system is the compatibility of elastic displacement: there should be no voids or
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material overlap created in fault configurations (Gabrielov et al., 1996). In that study

the authors developed a mathematical framework for calculating the kinematic and

geometric incompatibility in tectonic block systems, both rigid and deformable. They

concluded that due to geometric incompatibilities at fault junctions, new ruptures must

be created to accommodate large plate tectonic deformations.

Historically, earthquake fault mechanics was patterned along the lines of

engineering fracture mechanics (see, for example, Anderson, 2005), where the tensile

fracture (formation of cracks) in materials and bodies is a major concern. Voids

are created in tensile cracks; therefore the displacement incompatibility condition is

not satisfied. However, earthquakes occur in Earth’s interior, where a considerable

lithostatic pressure should prevent the appearance of voids.

Moreover, engineering concepts as opposed to physical theories generally cannot

be transferred into a new scientific field without major experimental work. This may

explain why fracture mechanics did not significantly improve our understanding of

earthquake rupture process (Kagan, 2006). Similarly, another engineering science

discipline, the study of friction, is mostly based on experiments with man-made surfaces.

Though widely used in earthquake mechanics, its contribution to the theoretical

foundations of this science is still uncertain (ibid).
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2.2.2. CLVD sources and complexity

Here we concentrate on analyzing the CLVD component of the seismic moment tensor.

The CLVD is the simplest measure of earthquake focal zone complexity.

Many measurements of focal zone geometry indicate that a planar earthquake fault

is only a first approximation; rupture is usually non-planar. However, it is important

to know whether the focal zone of a single earthquake or the fault systems of many

earthquakes can be represented by a distribution of small dislocations with the DC

mechanism. If no CLVD component is present in tectonic earthquakes, one degree of

freedom for each rupture patch can be excluded with a great savings in representing

earthquake rupture patterns.

Frohlich et al. (1989) and Frohlich (1990) studied the CLVD distribution for

earthquakes with the rupture slip along surfaces of revolution and found that a certain

geometric slip pattern produces a significant CLVD component. However, such smooth

surfaces of revolution are unlikely during a real earthquake rupture. Our results

(Kagan, 1992a,b, 2000, 2007a) rather suggest that both the fault rupture system and

focal mechanisms, associated with the rupture, are non-smooth everywhere. They are

controlled by fractal distributions.
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3. Tensor invariants

A seismic moment tensor can be represented as a symmetric 3× 3 matrix

m =

∣∣∣∣∣∣∣∣∣∣∣

m11 m12 m13

m21 m22 m32

m31 m32 m33

∣∣∣∣∣∣∣∣∣∣∣

, (1)

and as such it has six degrees of freedom. The moment tensor is considered to be

traceless or deviatoric (Aki and Richards, 2002). Hence its number of degrees of freedom

is reduced to five.

The eigenvectors of matrix (1) are vectors

t = [ 1, 0, 0 ];

p = [ 0, 1, 0 ];

b = [ 0, 0, 1 ] . (2)

For known eigenvectors t and p, the DC source tensor can be calculated as (Aki

and Richards, 2002, Eq. 3.21)

mij = µ [ niuj + njui]

= µ [ (ti + pi) (tj − pj) + (tj + pj) (ti − pi) ]/2 , (3)

where µ is a shear modulus, n is a normal to a fault plane, and u is a slip vector

(see Fig. 1). Therefore, if we know the orientation of two eigenvectors, the moment

components can be calculated.

The invariants of the deviatoric seismic moment tensor tensor m can be calculated
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as (Kagan and Knopoff, 1985a)

I1 = Tr [m] = m11 + m22 + m33

= λ1 + λ2 + λ3 ≡ 0 , (4)

where ‘Tr’ is a trace of the tensor and λi are the eigenvalues of a moment tensor. The

second invariant or the norm of the tensor

I2 = − (m11m22 + m11m33 + m22m33) + m2
12 + m2

13 + m2
23

= − (λ1λ2 + λ1λ3 + λ2λ3) . (5)

For a traceless tensor (4)

I2 = m2
12 + m2

13 + m2
23 + (m2

11 + m2
22 + m2

23)/2

=
1

2

3∑

i=1

3∑

j=1

m2
ij = (λ2

1 + λ2
2 + λ2

3)/2 , (6)

(Jaeger and Cook, 1979, p. 33). The scalar seismic moment is

M =
√

I2 . (7)

To normalize the tensor we divide it by M

m′ = m/M . (8)

In the rest of the paper, unless specifically indicated, we use only the normalized

moment tensors (m = m′).

The third invariant is a determinant of a tensor matrix

I3 = Det[m] = m11m22m33 + 2m12m13m23

− (m11m
2
23 + m22m

2
13 + m33m

2
12) = λ1λ2λ3 . (9)
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For a double-couple (DC) earthquake source

I3 ≡ 0 , (10)

i.e.,

min[ |λ1|, |λ2|, |λ3| ] ≡ 0 . (11)

Thus, the normalized DC moment tensor has 3 degrees of freedom.

4. CLVD and Gamma index

The Gamma index (Kagan and Knopoff, 1985a; Frohlich, 1990; Richardson and

Jordan, 2002) is

Γ =
3
√

3

2
× I3

I
3/2
2

, (12)

(see Eqs. 5–10). For a DC source

Γ ≡ 0 , (13)

(Eq. 10). The Γ-index ranges from −1 to 1; |Γ| = 1 corresponds to a pure CLVD source

(Knopoff and Randall, 1970; Kagan and Knopoff, 1985a).

4.1. Gamma index for purely random rotation

Kagan and Knopoff (1985a) considered the problem of a CLVD index distribution

for a composite source

m =
N∑

i=1

Ri m
(i) RT

i , (14)
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where Ri is a random rotation matrix and RT
i is its transpose. In a quaternion notation,

(14) can be expressed as

M (q) =
N∑

i=1

M (q× r(i)) , (15)

where the operator M is given by Eq. B13 (see Appendix B) and r is a random rotation

quaternion that can be obtained using Marsaglia’s (1972) algorithm (see more in Kagan,

2005).

Kagan and Knopoff (1985a, their Fig. 1a) used simulation to show that for the

sum of randomly oriented DC sources the Γ-index is distributed uniformly over the

interval [−1, 1] for a large number of summands. Even for two DCs, the distribution

is close to uniform. This result may be used to explain the non-zero Γ-index value,

sometimes obtained for earthquakes with a complex fault zone, i.e., an earthquake

source comprising several DC components of different orientation. However, there are

both theoretical and observational arguments suggesting that the structure of a source is

complex for tectonic earthquakes but precludes the appearance of a CLVD component.

The simplicity of the Γ-index distribution presents a significant benefit in

characterizing the CLVD component. Many other measures of non-DC properties for an

earthquake source have been proposed (see, for example, Julian et al. 1998, Eq. 18), but

lack our statistical advantage.

4.2. Gamma index for composite sources
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4.2.1. General considerations

We will now explore the Γ-index distribution when the 3-D rotation is not

completely random, i.e., if the rotation pole is preferentially located in a DC focal

mechanism. For simplicity we assume that only two DCs comprise the composite source

(N = 2 in Eq. 15)

M (s) = q + χM (q× r) , (16)

where for generality we assume that these DC sources have different scalar moments

and their moment ratio is χ = M ′ /M ′′. Since the quaternion q is arbitrary, we can

select it to be the identity (B1). The general rotation quaternion is (B4)

r0 =
√

1− Λ2 ;

r1 = Λ sin(θ) cos(φ) ;

r2 = Λ sin(θ) sin(φ) ;

r3 = Λ cos(θ) , (17)

where

Λ = sin(Φ/2) . (18)

Here θ is colatitude and φ is longitude (see Eq. B4).

Using mathematica (Wolfram, 1999), we calculate the third invariant (9) for (16).

We find that if the rotation axis is b, i.e., θ = 0◦ in (17), I3 ≡ 0 for all Φ’s. Similarly, if
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the rotation axis is either the normal to the fault plane

φ = 45◦ and θ = 90◦ , (19)

or is a slip vector

φ = 135◦ and θ = 90◦ , (20)

the invariant is also zero for all Φ’s. This means that the sum of two DC sources is again

a DC for these rotations (Frohlich et al., 1989). The same result (I3 ≡ 0) is obtained,

if more than two DC sources are rotated around the b-axis or the n- and u-axes (see

Eq. 3) and then added with different weights (as in Eq. 16).

King (1986) specified two kinds of geometric barriers connected with a change of

earthquake failure surfaces: conservative and non-conservative. The former structure

does not require creating new faulting or void space. In our notation it would correspond

to (20).

The first case is a non-conservative system: the incompatibility of displacement

would require producing new ruptures (Gabrielov et al., 1996). Therefore, with both

kinds of barriers a complex geometric source is still a DC. Figs. 2 and 3 display cartoons

of possible fault-plane and focal mechanism arrangements for these barriers.
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4.2.2. Small rotations

If Λ in (18) is small, we can keep only lower order terms in (16) and obtain for the

third invariant (9) of the sum

I3(s) ≈ 4 Λ2 χ (1 + χ) sin2(θ)
[
cos2(φ)− sin2(φ)

]

+ 16 Λ3
√

1− Λ2 χ (1− χ)

× sin2(θ) cos(θ) sin(φ) cos(φ) . (21)

The first term in the right-hand part of the equation suggests that the invariant reaches

maximum in the equatorial plane (θ = 90◦) when the pole coincides with the t- or

p-axes (φ = 0◦ or φ = 90◦).

Fig. 4 displays the distribution of the Γ-index for the value of the rotation angle

Φ = 10◦ and for equal DC components (χ = 1.0). In calculations we use an approximate

formula (21); the exact expression (obtained by mathematica), which is too long to show

here, yields almost the same answer. The Γ-index values are very small; thus, a non-zero

CLVD component is unlikely to be obtained in the moment solutions for an earthquake

consisting of such subevents.
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4.2.3. Large rotations

Formula (21) also suggests that if φ = 45◦, for small values of the rotation angle Φ

and for non-equal DC components the third invariant is proportional to sin3(Φ/2), i.e.,

it is close to zero. In particular, if χ = 1, by employing φ = 45◦ in (21), we obtain that

I3 ≡ 0 for arbitrary values of the rotation angle Φ. This means that if the rotation pole

is located on a fault- or auxiliary-plane, the sum of two focal mechanisms (original and

rotated) has a zero CLVD component, i.e., it is a pure DC source. The effect can be

seen in Fig. 5, where the Γ-index, calculated with the exact formula, is displayed for

equal DC components. In this case, if the rotation pole is close to the t- or p-axis, the

resulting source is almost pure CLVD.

This property can be demonstrated for a few simple arrangements of sources (see

also Frohlich et al., 1989). For example, a sum of two DCs

s =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0

0 −1 0

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0

1 0 0

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (22)

can be rotated into s = diag[
√

2, −√2, 0] with I3(s) ≡ 0. This arrangement can be

represented as two strike-slip events with a fault-plane rotated by 45◦.

Another example is the rotation by 120◦ around a pole with coordinates



20

[1/
√

3, 1/
√

3, 1/
√

3], a turn which exchanges the position of coordinate axes.

s = diag[1, −1, 0] + diag[−1, 0, 1] = diag[0, −1, 1] . (23)

Again I3(s) ≡ 0.

For rotation around t-axis, for example,

s = diag[1, −1, 0] + diag[1, 0, −1] = diag[2, −1, −1] . (24)

Such a sum would have Γ = 1, i.e., it is a pure CLVD source (see Fig. 5).

The results above demonstrate that if the rotation pole is located even randomly on

nodal-planes, the resulting sum source is a DC. This may be relevant in searching for a

non-DC component in seismic moment solutions. Frohlich and Davis (1999) and Kagan

(2003) argued that the CLVD component is not presently measured with accuracy

sufficient to study its properties.

5. Tensor moment dot product

The tensor dot product has been introduced by Kagan and Knopoff (1985b) as

one of the correlation tensor invariants describing a complex earthquake fault pattern.

Alberti (2006) used it to characterize the similarity of earthquake focal mechanisms. We

compare two methods for characterizing earthquake source complexity: rotation angle

Φ and tensor dot product

D = mij nij; 2 ≥ D ≥ −2 , (25)

where the second source is rotated with regard to the first by the angle Φ.



21

The dependence of the product D on 3 parameters of 3-D rotation (B4) calculated

using mathematica, can be described as

D = 2
{

( 1− Λ2 )2 − Λ2 cos2(θ)

×
[
− 6 + 6 Λ2 + Λ2 cos2(θ)

]
+ Λ4 sin4(θ)

×
[
cos4(φ) − 6 cos2(φ) sin2(φ) + sin4(φ)

]}
, (26)

where Λ is given by (18).

In Figs. 6–8 we display the D-value for three choices of the Φ angle. The maximum

change of the D-value from D = 2, corresponding to identical DC sources, occurs when

the rotation pole is at the b-axis. For Φ = 90◦ rotation D = −2 at the b-axis and

D = 1 for other axes (cf. Eq. 24). Hence, the range of the D change is four times

greater for the b-axis rotation than for rotation at other axes. Therefore, from the

D-value alone we cannot fully infer the complexity and coherence of DC sources. Higher

order invariants of the correlation tensor need to be studied to better describe the fault

pattern complexity (Kagan, 1992a).

6. Focal mechanisms statistics

The orientation of a DC source can be characterized by the following three

quantities: a rotation angle (Φ) of the counterclockwise rotation from the first DC

source to the second, and a location of a rotation pole on a reference sphere (B4) –

colatitude, θ, and longitude, φ (Kagan 1991, 2003). Thus, to fully study the distribution

of earthquake focal mechanisms we need to investigate a six-dimensional manifold (fiber
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bundle): a product of the 3-D Euclidean space and the 3-D rotational distribution of a

DC source. This presents a double difficulty – there is no effective procedure to display

and study this pattern and we do not have sufficient data to evaluate the parameters of

the six-dimensional distribution.

Therefore, to analyze the focal mechanism pattern, we should construct only

marginal distributions of the full 6-D manifold. The examples below serve to illustrate

the theoretical methods described in previous sections.

6.1. Earthquake catalog

We study the earthquake distributions for the global catalog of moment tensor

inversions compiled by the CMT group (Ekström et al., 2005, and references therein;

see also references and earthquake statistics for 1977-1998 in Dziewonski et al., 1999).

The catalog contains 26,865 solutions over a period from 1977/1/1 to 2007/3/31. Only

shallow earthquakes (depth 0-70 km) are studied here.

The CMT catalog includes seismic moment centroid times and locations as well as

estimates of seismic moment tensor components (Dziewonski et al., 1981; Dziewonski

and Woodhouse, 1983). Each tensor is constrained to have zero trace (first invariant),

i.e., no isotropic component. Double-couple (DC) solutions, i.e., with tensor determinant

equal to zero, are supplied as well. Almost all earthquake parameters are accompanied

by internal estimates of error.

From the original CMT catalog we created subcatalogs of well-constrained solutions

for the time period 1977/01/01–2005/01/01. These datasets are obtained by removing
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from the catalog (a) the earthquakes lacking all 6 independent components of the

moment tensor, (b) solutions with a large relative error, and (c) the solutions with large

CLVD component (Frohlich and Davis, 1999; Kagan, 2000). Since the larger earthquakes

usually have smaller errors (Kagan, 2003), fewer of these events are removed. About

85% of m ≥ 6.0 earthquakes are well-constrained, whereas for smaller earthquakes

(m ≥ 5.0) more than 2/3 have been deleted.

6.2. Centroid distribution on a focal sphere

Similarly to Table 1 in Kagan (1992b) in Table 1 here we show the distribution

of numbers of centroids in a coordinate system formed by the t-, p-, and b-axes of

earthquake focal mechanisms. Each quadrant of the focal sphere is subdivided into 110

spherical triangles and quadrilaterals with equal area (consequently covering equal solid

angles), and we calculate the number of times a centroid in projected into these cells.

We normalize the numbers, so that the total number of the entries of Table 1 equals

11,000. Therefore, if the distribution of centroids in the tpb-system were completely

random, all the numbers in the table would be equal to 100. The entries ‘Col. Angle’

give the colatitude angle corresponding to the lower edge of a segment consisting of one

or several cells. The number of pairs for each segment is shown in ‘Pair number’ column.

Table 1 shows a strong concentration of centroids near the plane going through

the t–p and the b-vectors. Therefore this plane should correspond to the fault-plane

and other plane going through the t+p and b-vectors should usually correspond to the

auxiliary plane. Most of the strong earthquakes are concentrated in subduction zones.
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Fig. 3 in Kagan and Jackson (1994) illustrates that the fault-plane should include both

the t–p and the b-vectors.

Huc and Main (2003) suggest that the vertical errors in centroid determination

would strongly influence the direction statistics between the pairs of events. Even for

M ≥ 6.0 earthquakes, about 1/3 of shallow centroids are assigned the depth of 15 km.

This means that the depth could not be accurately evaluated.

These results and those shown in Table 1 by Kagan (1992b) support the conventional

model of an earthquake fault: a rupture propagating with slight deviations along a

fault-plane. Figs. 3 and 4 suggest that an earthquake occurring on such a fault system

should have the CLVD component close to zero even if subevent focal mechanisms are

significantly disoriented by rotation around the axis normal to the fault-plane (n-axis).

6.3. Rotation angle statistics

Fig. 9 displays cumulative distributions of the rotation angle Φ for shallow

earthquake pairs separated by a distance of less than 50 km. We study whether the

rotation of focal mechanisms depends on where the second earthquake of a pair is

situated with regard to the first event. Thus we measure the rotation angle for centroids

located in 30◦ cones around each principal axis (see curves, marked the t-, p-, and

b-axes) of the first event.

The curves in Fig. 9 are narrowly clustered, and are obviously well approximated

by the DC rotational Cauchy distribution (Kagan, 1990, 1992b). This distribution is

characterized by a parameter κ; a smaller κ-value corresponds to the rotation angle Φ
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concentrated closer to zero. Thus, all earthquakes, regardless of their spatial orientation,

have focal mechanisms similar to a close-in-space event. Earthquakes in the cone around

the b-axis correspond to a smaller κ-value than the events near the other axes. These

results are similar to the results shown in Fig. 6 by Kagan (1992b).

In Fig. 10 we show how the distribution of the rotation angle Φ depends on

the magnitude threshold and the selection of the well-constrained earthquakes in the

catalog (Section 6.1). It is clear from the diagram that 1) for larger earthquakes the

angle distribution is generally more concentrated near zero, and 2) the well-constrained

earthquakes also have a smaller angle between pairs. These conclusions are easily

explained by the higher accuracy of strong event solutions (Kagan, 2003): the

disorientation of the DC solutions is caused mostly by solution errors. Kagan (2000)

indicates that the rotation angle error is on the order 10◦ for the best solutions. Fig. 4

suggests that if subevent constituents of an earthquake have small rotation (Φ ≤ 10◦),

the CLVD component would be close to zero.

6.4. Rotation pole statistics

In this subsection we show the pattern analysis for the most accurate solutions: the

well-constrained earthquakes m ≥ 6.0. The disadvantage here is their small number.

From Figs. 4–5 one can infer that the rotation pole position strongly influences

the CLVD component of a complex source. In Fig. 11 we show the distribution of the

rotation poles for the second earthquake focal mechanism on a reference sphere of the

first event. Because of the symmetry of the DC source, we reflect the point pattern at
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our reference sphere at the planes perpendicular to all axes. Thus, the distribution can

be shown on an octant of a sphere. We use the Lambert azimuthal equal-area projection

(Appendix C).

For example, if in Fig. 11, a pole is shown near the b-axis, this would mean that

in both mechanisms the axis has almost the same orientation: the second mechanism

is rotated by an angle Φ around an axis intersecting the sphere at the pole. The same

pattern occurs for the poles that are close to other axes. In the diagram, the angle is

15◦ ≤ Φ ≤ 30◦. The points seem to concentrate between t- and p-axes. Fig. 12 shows

the point density distribution, again confirming that the greatest pole concentration is

located near a nodal-plane.

In Table 2 we display the distributions of the rotation poles on a reference sphere

of the first event. In this Table, as in Table 1, we subdivide the positive octant of the

sphere into 55 spherical triangles and quadrilaterals with equal area and then calculate

the number of times the rotation axis intersects each of these cells.

The upper chart in Table 2 shows the distribution of axes for the rotation angles of

less than 15◦. The distribution is randomly uniform as can be expected, because these

rotations are caused, most probably, by random errors. For larger angles (the second

chart, 15◦ ≤ Φ ≤ 30◦) the distribution shows that the stresses of the first earthquake

influence the focal mechanism of the second earthquake in a pair.

To illustrate the data and our technique in Table 3, we show the calculations for

18 pairs of earthquakes in the lower-left corner cell of the second chart in Table 2.

Earthquakes are distributed more or less uniformly at subduction zones. As explained
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above in this Subsection, the t-axes of both solutions are almost identical. Therefore,

the rotation poles are concentrated near the axis projection, both in Table 2 and in

Fig. 11. Because the rotation angle is relatively small (15◦ ≤ Φ ≤ 30◦) the p-axes also

have close orientation.

However, the third and fourth charts of the Table calculated for the large angles

of rotation display a different behaviour. The rotation poles are concentrated near the

b- and p-axes. Inspection of these earthquake pairs indicates that 20 of 41 duos are

concentrated in an area 200 by 200 km near the New Hebrides Islands – a region of

complex subduction tectonics. These earthquakes likely result from the complicated

slab geometry.

We note that in Table 7 in Kagan (1992b) which is similar to Table 2, the plane

orthogonal to the b-axis was incorrectly rotated by 90◦ and the results collapsed on an

octant. Therefore, the number pattern at the former Table rows at p- and t-axis is a

mixture of both distributions.

7. Discussion

We studied the distribution of the non-DC (CLVD) component for a composite

earthquake source or a fault system. A source is considered complex if it consists of

two or more events with a DC focal mechanism differently oriented. The theoretical

computations detail conditions under which such a source would produce a non-zero

CLVD component. For most of the geometric barriers proposed as common features in

an earthquake fault system (King, 1983, 1986), the CLVD component should be zero.
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Frohlich et al. (1989) and Frohlich (1990) came to similar conclusions.

As we discussed in Section 2.2.2, if tectonic earthquakes lack the CLVD component,

this would significantly simplify the theoretical and computer modeling of the

earthquake process. For example, Kagan (1982) proposed a stochastic model of

the process incorporating the results of statistical investigations of earthquake fault

geometry. The model was based on the propagation (governed by a critical branching

process) of infinitesimal dislocation loops. Simulations reproduce the studied geometrical

properties of hypocenter distributions (see more in Kagan, 2006). Such a model can

be implemented for extrapolation of earthquake catalogs of seismic moment solutions

(Kagan and Knopoff, 1984), thus predicting not only time, location and focal mechanism

of future earthquakes, but the extent of complex rupture.

We tried to statistically estimate whether the geometrical pattern leading to a

zero CLVD could be confirmed by analyzing an earthquake catalog of focal mechanism

solutions. However, the results shown in the previous Section are not fully convincing.

They do, however, suggest limited support for this conjecture.

Why can’t analysis of earthquake focal mechanisms in available catalogs definitively

explain the CLVD component presence? To understand shear rupture properties, we

need to investigate the behavior of the seismic moment tensor sums for distances

between events close to zero. At such distances, the intrinsic geometrical conditions

of the rupture would play a major role. At larger distances the slab geometry and its

interaction with the upper mantle would significantly influence the focal mechanisms and

pattern of earthquake hypocenters/centroids. Moreover, because of the low frequency



29

waves used in the seismic moment inversion, centroids in the CMT catalog have low

accuracy both in the horizontal plane and at depth. From Smith and Ekström’s (1997)

and Kagan’s (2003) results, horizontal accuracy in a centroid location can be estimated

on the order of 15-20 km. Centroid depth uncertainty should be the same or higher.

In our computations we use distances between the events, which should increase the

random error but decrease systematic uncertainties. The accuracy values quoted above

are comparable with the slab thickness. This means that our distributions are influenced

strongly by slab geometry.

The CMT catalog in addition to the centroid coordinates provides hypocentral

solutions as well. The latter coordinates usually have a better location accuracy (Kagan,

2003). We repeated our calculations, using the hypocentral locations for distance

determination between earthquake pairs. The results do not show any significant

difference when compared to centroid distances.

Brudzinski et al. (2007) studied slab geometry for the subduction zones using

higher accuracy (less than 10 km, see above) hypocentral global earthquake catalogs.

They found that earthquakes concentrate at two layers: double Benioff zones or the

upper and lower boundaries of a subducting slab. This means that large earthquakes

which are listed in the CMT catalog are mostly connected with the subducting plate

geometry, not with any local geometry of the rupture zone. The geometry of deforming

thin elastic sheets of material is a complex problem even if the sheet is deforming in free

space (Marder et al., 2007; Witten, 2007).

For earthquakes occurring at the double Benioff zones, the treatment of focal
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mechanisms should be modified because their symmetry properties differ from those

of earthquakes in the middle of a slab. For DC sources of earthquakes at the slab

boundary, we should be able, in principle, to identify not only which of the focal planes

is a fault-plane, but also to resolve the “up and down” of the fault-plane (Kagan, 1990,

p. 576). Hence, the only symmetry operation for such a focal mechanism is the identity

(B1). In such a case, the quaternion visualization techniques described by Hanson (2005,

Ch. 21-23) can be implemented to picture both a slab surface geometry and the frames

of earthquake rupture associated with the surface. However, the techniques proposed by

Hanson (2005) are developed for smooth rotations. As we indicated earlier (Section 2.2)

earthquakes occur on fractal sets and the orientation of their focal mechanisms is also

controlled by a non-smooth fractal distribution. Therefore, new methods need to be

created for displaying earthquake focal mechanisms and their spatial pattern.

While investigating earthquake spatial distribution (Kagan, 2007a), we were able

in some degree to make a smooth transition from a 3-D distribution of hypocenters

for small distances to a 2-D epicenter distribution for distances comparable or larger

than the thickness of seismogenic crust. After appropriate adjustments, the obtained

values of fractal dimension are comparable for both cases. It seems, however, that the

methods employed for simple point distributions in 2-D and 3-D are much more difficult

to implement for tensor quantities. The challenges are two-fold: theoretical problems of

displaying and interpreting the 6-D distributions and the more practical problem of no

high quality, massive datasets of focal mechanism solutions.

Several extensive local catalogs of focal mechanism solutions have been compiled
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(Pasyanos et al., 1996; Kubo et al., 2002; Dreger, 2003; Snoke, 2003; Hardebeck, 2006;

Clinton et al., 2006; Matsumoto et al., 2006; Pondrelli et al., 2006). They contain

thousands of events. Many of these occur near local seismographic stations and,

therefore, their solutions have good depth control. However, the largest catalogs are

based on first-motion analysis and their solutions have a significantly lower accuracy

than do catalogs of the moment-tensor inversions (Kagan, 2002, 2003). The latter

catalogs are not yet sufficiently extensive, well-documented, or tested to be used for

rigorous statistical studies. However, it is possible that in a few years these catalogs will

be significantly improved and can be studied by the methods proposed here.

8. Conclusions

• 1. The sum of earthquake DC sources may yield DC and CLVD sources;

• 2. For two slightly disoriented DC focal mechanisms (angle less than 10 degrees) their

sum is practically a DC source;

• 3. If the angle is large, CLVD component depends on the position of the rotation

axis: for geometrical barriers (King, 1986) it is close to zero no matter whether the joint

motions are conservative or not;

• 4. The angle uncertainties between earthquake pairs are about 10 degrees;

• 5. Rotations between close, well-determined earthquake pairs appear to be small, and

thus yield no evidence for CLVD due to fault complexity;

• 6. Large rotations appears to arise mostly in one spatially concentrated group;
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• 7. To thoroughly investigate statistical complexity of the earthquake fault zone more

extensive earthquake catalogs of higher accuracy are needed.
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APPENDICES:

Appendix A: Quaternions

Kagan (1982) proposed using normalized quaternions to represent earthquake

double-couple (DC) focal mechanism orientation. The DC focal mechanism has a

symmetry of a rectangular box (Kagan, 1991; 2005). Therefore, it is necessary to

modify the quaternion technique. Appendix B offers a more detailed explanation of the

quaternion representation of the DC sources.
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The quaternion q is defined as

q = q0 + q1i + q2j + q3k . (A1)

The first quaternion’s component (q0) is its scalar part, q1, q2, and q3 are components of

a ‘pure’ quaternion; the imaginary units i, j, k, obey the following multiplication rules

i2 = j2 = k2 = −1;

i× j = −j× i = k;

k× i = −i× k = j;

j× k = −k× j = i . (A2)

From (A2) note that the multiplication of quaternions is not commutative, i.e., it

depends on the order of multiplicands. Non-commutability is also a property of finite

3-D rotations. Thus, in general

q′′ × q′ 6= q′ × q′′ , (A3)

i.e., we need to distinguish between the right- and left-multiplication.

The conjugate q∗ and inverse q−1 of a quaternion are defined as

q∗ = q0 − q1 i − q2 j − q3 k and q× q−1 = 1 . (A4)

The normalized quaternion q = [ q0, q1, q2, q3 ] contains four terms which can be

interpreted as defining a 3-D sphere (S3) in 4-D space:

q2
0 + q2

1 + q2
2 + q2

3 = 1 . (A5)
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Hence the total number of degrees of freedom for the normalized quaternion is 3. For

the normalized quaternion

q∗ = q−1 . (A6)

The normalized quaternion can be used to describe a 3-D rotation: in this case the

first term in (A5) represents the angle of the rotation and the following three terms

characterize the direction of its axis (Kagan, 1991).

We use normalized quaternions to calculate a rotated vector R(v) by applying the

rules of quaternion multiplication (A2)

R(v) = q× v × q−1 . (A7)

The vector v = [q1, q2, q3] is represented in (A7) as a pure quaternion, i.e., its scalar

component is zero. In (A7) the quaternion q is a rotation operator and the pure

quaternion v is an operand (Altmann, 1986, p. 16). Similarly to (A7) the whole

coordinate system can be rotated (Kuipers, 2002).

Normalized quaternion multiplication is used to represent the 3-D rotation of the

DC earthquake sources. The quaternion multiplication is

s = q× r . (A8)

The above expression can be written in components (Klein, 1932, p. 61)

s0 = q0r0 − q1r1 − q2r2 − q3r3 ;

s1 = q1r0 + q0r1 ± q2r3 ∓ q3r2 ;

s2 = q2r0 + q0r2 ± q3r1 ∓ q1r2 ;
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s3 = q3r0 + q0r3 ± q1r2 ∓ q2r1 , (A9)

where the upper sign in ± and ∓ is taken for the right-multiplication and the lower sign

for the left-multiplication: s = r× q.

Kuipers (2002, p. 133) indicates that the right-multiplication corresponds to the 3-D

rotation of an object, whereas the left-multiplication is the rotation of the coordinate

system. Distinguishing these multiplications is especially important when considering a

sequence of 3-D rotations

q(n) = q′ × q′′ × ...× q(n−1) , (A10)

is the right-multiplication sequence which we will use here. The corresponding rotation

is anti-clockwise with the rotation pole located on a 2-D reference unit sphere (Altmann,

1986).

3-D rotations for quaternions of opposite signs are equal

S [q ] = S [−q ] , (A11)

where S is a transformation operator of a 3-D rotation corresponding to a quaternion q.

This means that the group SO(3) of the 3-D rotations has a two-to-one relation to the

normalized quaternions. Altmann (1986, Ch. 10) describes the complicated topology of

rotations due to this representation.

Appendix B: DC moment tensor and quaternions

Kagan (1982) represented the orientation of a DC source by a normalized quaternion.
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When applied to the DC parametrization, the identity quaternion (zero rotation)

1 = [ 1, 0, 0, 0 ] , (B1)

is identified with the strike-slip DC source with plunge angles

αT = αP = 0◦, and αB = 90◦ , (B2)

and azimuths

βT = 0◦, and βP = 90◦ , (B3)

(Kagan, 1991, 2005). Any other DC source corresponds to a quaternion describing the

3-D rotation from the reference DC source (Eqs. B1–B3).

There are several possible representations of rotation in 3-D. Among the commonly

used are Euler angles about coordinate axes (Kuipers, 2002, Ch. 4.3) and a rotation by

the angle Φ about a rotation axis. The rotation pole is the point where the rotation axis

intersects a reference 2-D unit sphere (S2). We use the latter convention in this paper

since it is more convenient for the quaternion technique. For an arbitrary DC source,

the value of the rotation angle and the spherical coordinates, θ and φ, of the rotation

pole on a reference sphere are then

Φ = 2 arccos (q0),

θ = arccos [q3/ sin(Φ/2)],

φ = arctan (q2/q1), if φ ≤ 0◦, then φ = 360◦ + φ , (B4)

where φ is an azimuth (360◦ ≥ φ ≥ 0◦), measured clockwise from North; and θ is a

colatitude (180◦ ≥ θ ≥ 0◦), θ = 0◦ corresponds to the vector pointing down.
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We use the known correspondence between the orthogonal rotation matrix

R =

∣∣∣∣∣∣∣∣∣∣∣

t1 p1 b1

t2 p2 b2

t3 p3 b3

∣∣∣∣∣∣∣∣∣∣∣

, (B5)

and the normalized quaternion (Moran, 1975, Eq. 6; Altmann, 1986, pp. 52, 162;

Kuipers, 2002, Eq. 5.11). We obtain the following formula for the rotation matrix

R =

∣∣∣∣∣∣∣∣∣∣∣

q2
0 + q2

1 − q2
2 − q2

3 2 (−q0q3 + q1q2) 2 (q0q2 + q1q3)

2 (q0q3 + q1q2) q2
0 − q2

1 + q2
2 − q2

3 2 (−q0q1 + q2q3)

2 (−q0q2 + q1q3) 2 (q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

∣∣∣∣∣∣∣∣∣∣∣

, (B6)

to obtain the quaternion’s components. The above formula can be obtained by

applying (A7) to each of the original t, p, and b vectors (2). Kagan and Knopoff

(1985a, their Eq. 5) provide another expression for the rotation matrix using direction

cosines of the axes [the first term in the second matrix row should be corrected as

`m(1− cos Φ)−m sin Φ].

Comparing (B5) with (B6) we derive quaternion components from the rotation

matrix direction cosines (Kuipers, 2002, p. 169; Hanson, 2005, pp. 149-150). For

example, if q0 is not close to zero

q0 = (1/2)
√

t1 + p2 + b3 + 1 ;

q1 = (b2 − p3)/(4q0) ;

q2 = (t3 − b1)/(4q0) ;

q3 = (p1 − t2)/(4q0) , (B7)

Since as many as three of the quaternion components may be close to zero, it is
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computationally simpler to use the component with a maximum absolute value to

calculate the three other components.

The DC seismic moment tensor in eigenvector coordinates is m = diag[ 1, −1, 0 ].

For the general orientation of an earthquake focal mechanism, the seismic moment

tensor (1) can be calculated from the normalized quaternion as follows (Kagan and

Jackson, 1994):

m11 = q4
1 − 6q2

1q
2
2 − 2q2

1q
2
3 + 2q2

1q
2
0 + 8q1q2q3q0 + q4

2

+ 2q2
2q

2
3 − 2q2

2q
2
0 + q4

3 − 6q2
3q

2
0 + q4

0 ;

m12 = 4 (q3
1q2 − q1q

3
2 − q3

3q0 + q3q
3
0) ;

m13 = 2 (q3
1q3 − 3q2

1q2q0 − 3q1q
2
2q3 − q1q

3
3

+ 3q1q3q
2
0 + q3

2q0 + 3q2q
2
3q0 − q2q

3
0) ;

m22 = − q4
1 + 6q2

1q
2
2 − 2q2

1q
2
3 + 2q2

1q
2
0 + 8q1q2q3q0

− q4
2 + 2q2

2q
2
3 − 2q2

2q
2
0 − q4

3 + 6q2
3q

2
0 − q4

0 ;

m23 = 2 (q3
1q0 + 3q2

1q2q3 − 3q1q
2
2q0 + 3q1q

2
3q0

− q1q
3
0 − q3

2q3 + q2q
3
3 − 3q2q3q

2
0) ;

m33 = 4 (q2
1q

2
3 − q2

1q
2
0 − 4q1q2q3q0 − q2

2q
2
3 + q2

2q
2
0) . (B8)

A more complicated algorithm is needed for the rotation of any DC source into another.

The methods of quaternion algebra can be used to evaluate the 3-D rotation angle by
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which one DC source can be so transformed (Kagan, 1991). Alternatively, the standard

technique of orthogonal matrices can be applied to this calculation (Kagan, 2007b).

Given the symmetry of the DC source (Kagan and Knopoff, 1985a; Kagan, 1990;

1991) the q0 term in (A5) can always be presented as the largest positive term in this

parameterization. In particular, to obtain the standard DC quaternion representation,

we right-multiply an arbitrary normalized quaternion q by one of the elementary

quaternions (Kagan, 1991):

i = [ 0, 1, 0 , 0 ] ;

j = [ 0, 0, 1, 0 ] ;

k = [ 0, 0, 0, 1 ] , (B9)

if the second, third or fourth term has the largest absolute value, respectively. For

example, for the largest second term, q1

q′′ = q′ × i . (B10)

If the resulting first term is negative, the sign of all terms should be reversed (see

Eq. A11).

As the result of multiplication by expressions (B9) the quaternion q becomes

q × 1 = [ q0, q1, q2, q3 ];

q × i = [ q1,−q0, −q3, q2 ];

q × j = [ q2, q3, −q0, −q1 ];

q × k = [ q3,−q2, q1, −q0 ] . (B11)
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The transformations (A11, B11) describe an eight-to-one correspondence between an

arbitrary normalized quaternion and a quaternion corresponding to a normalized seismic

moment tensor. We call this operator Q. Therefore, the quaternion ξ

ξ = Q (q) , (B12)

is a one-to-one quaternion representation of a DC focal mechanism.

It is easy to check that all the eight quaternions of the Q operator (B12) produce

the same moment tensor (B8). Thus we can write

m = M (q) = M (ξ) , (B13)

where M ( ) is an operator (B8) converting a quaternion into a seismic moment tensor

matrix.

In principle, we can use the non-normalized variables. In this case the norm of

a quaternion would correspond to that of the tensor (i.e., a scalar seismic moment M

for a DC source, see Eq. 7). However, the general deviatoric tensor (Eq. 4, see also

Section 4) has five degrees of freedom even after it has been normalized. Hence it cannot

be represented by a regular quaternion.

Similarly to (A7) rotation of a DC requires quaternion multiplication (as shown,

for example in Eq. A10). The rotated DC source then needs to be converted into a DC

standard quaternion representation using (B12).

Thus, in our representation, an arbitrary quaternion is both a rotation operator and

a DC source after simple transformations (B12) have been performed (Kagan, 2005).

Although the quaternion does not have the advantage of clearly identifying the DC
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source properties, its benefits are obvious. Multiple rotations of the DC source as well

as the inverse problem determining the rotation from one source to another are easily

computed using the methods of quaternion algebra (Kagan, 1991; Ward, 1997; Kuipers,

2002).

The fortran program which determines the 3-D rotation of DC sources is available

on the Web –

ftp://minotaur.ess.ucla.edu/pub/kagan/dcrot.for (see also fortran90 adapta-

tion of the programme by P. Bird http://peterbird.name/oldFTP/2003107-

esupp/Quaternion.f90.txt). Frohlich and Davis (1999) also discuss the program.

Kagan (2007b) supplies simplified algorithms for calculating the angle and other

parameters of the 3-D DC rotation. For majority of cases these algorithms can be

written in a few lines of computer code.

Appendix C: Lambert azimuthal equal-area projection

As the DC focal mechanism has D2 symmetry (Kagan, 1991; 2005), it is convenient

to use the Lambert azimuthal equal-area projection of an octant for a display of many

distributions associated with the source. Kaverina et al. (1996) and Kagan (2005)

proposed an equal-area projection formulas for DC source distribution. A simpler

equal-area transformation can be accomplished by using the methods developed in

geodetic map projections. The coordinates of the octant projection are (Snyder, 1987,
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p. 185)

X = C cos(θ′) sin( φ′ − φ′0 );

Y = C [ cos(θ′0) sin(θ′) − sin(θ′0) cos(θ′) cos( φ′ − φ′0 ) ] ;

C =

√
2

1 + sin(θ′0) sin(θ′) + cos(θ′0) cos(θ′) cos(φ′ − φ′0)
,

(C1)

where 180◦ ≥ φ′ ≥ −180◦ is the centered longitude (cf. Eq. B4), 90◦ ≥ θ′ ≥ −90◦ is the

latitude; φ′0 and θ′0 are the coordinates of the projection center. For octant projection

we use φ′0 = 45◦ and θ′0 = arctan 1√
2
≈ 35.26◦. Then (C1) can be simplified

X = C cos(θ′) sin( φ′′);

Y =
C√
3

[ sin(θ′) − cos(θ′) cos(φ′′) ] ;

C =

√√√√ 2
√

3√
3 + sin(θ′) +

√
2 cos(θ′) cos(φ′′)

, (C2)

where φ′′ = φ′ − 45◦. Kagan (2005, Eqs. 26-29) provides an equivalent equal-area

projection formula for an octant, if plunge angles αi (B2) of a DC solution are known.
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Figure 1. Schematic diagrams of earthquake focal mechanism. Equal-area projection

(Aki and Richards, 2002, p. 110) of quadrupole radiation patterns. The null (b) axis is

orthogonal to the t- and p-axes, or it is located on the intersection of fault and auxiliary

planes, i.e., perpendicular to the paper sheet in this display. The n-axis is the normal to

the fault-plane.

Figure 2. Schematic diagrams of earthquake focal zone. Lines show a complex fault

plane; focal mechanisms of earthquake(s) are displayed for each fault segments.

(a) Rotation around b-axis, non-conservative geometric barriers.

(b) Rotation around u-axis (slip vector), conservative geometric barriers.

Figure 3. Schematic diagrams of earthquake focal zone. Rotation around n-axis (fault-

plane normal vector), conservative geometric barrier.

(c) View from side.

(d) View from above.

Figure 4. Γ-index distribution for small rotation angles (Φ = 10◦). See Eq. 21. Two

equal DC sources, one rotated compared to another. The axis angles are shown at octant

equal-area projection (Appendix C); see also (Kagan, 2005). Dashed lines are boundaries

between different focal mechanisms. Plunge angles 30◦ and 60◦ for all mechanisms are

shown by thin solid lines.

Figure 5. Γ-index distribution for large rotation angles (Φ = 90◦). Two equal DC

sources, one rotated compared to another. Octant projection and auxiliary lines are the

same as in Fig. 4.
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Figure 6. Distribution of the tensor dot product for rotation angle Φ = 10◦. Two equal

DC sources, one rotated compared to another. Octant projection and auxiliary lines are

the same as in Fig. 4.

Figure 7. Distribution of the tensor dot product for rotation angle Φ = 45◦. Two equal

DC sources, one rotated compared to another. Octant projection and auxiliary lines are

the same as in Fig. 4.

Figure 8. Distribution of the tensor dot product for rotation angle Φ = 90◦. Two equal

DC sources, one rotated compared to another. Octant projection and auxiliary lines are

the same as in Fig. 4. The D-value is −2 at the b-axis and +1 at the t- and p-axes.

Figure 9. Distributions of rotation angles for pairs of focal mechanisms of shallow

earthquakes (depth 0-70 km) in the CMT catalog 1977/01/01–2007/03/31; centroids are

separated by distances between 0-50 km, magnitude threshold mw = 5.0. Lines from

left to right: circles – all centroids; crosses – centroids in 30◦ cones around the t-axis;

plusses – centroids in 30◦ cones around the p-axis; stars – centroids in 30◦ cones around

the b-axis; left solid line is for the Cauchy rotation with κ = 0.1; right solid line is for

the random rotation.
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Figure 10. Distributions of rotation angles for pairs of focal mechanisms of shallow

earthquakes in the CMT catalog; centroids are separated by distances between 0-50 km;

centroids in 30◦ cones around the b-axis. Lines from left to right: stars – CMT well-

constrained (Section 6.1) earthquakes, magnitude threshold mt = 6.0; plusses – CMT full

catalog, magnitude threshold mt = 6.0; circles – CMT full catalog, magnitude threshold

mt = 5.6; crosses – CMT full catalog, magnitude threshold mt = 5.0; diamonds –

CMT not well-constrained earthquakes, magnitude threshold mt = 5.0, 1977/01/01–

2005/01/01. Dashed line is for the Cauchy rotation with κ = 0.2; solid line is for the

random rotation.

Figure 11. Distributions of rotation poles for pairs of focal mechanisms of shallow well-

constrained earthquakes (Section 6.1) in the CMT catalog. Centroids are separated by

distances between 0-50 km; magnitude threshold mt = 5.6; the rotation angle 15◦ ≤ Φ ≤

30◦.

Figure 12. Map of rotation poles for pairs of focal mechanisms of shallow well-

constrained earthquakes in the CMT catalog, see Fig. 11.
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                    Normalized numbers of earthquake hypocenters in a coordinate system formed by the T-, P-, and B-axes. 
 
              For well-constrained M6 shallow earthquakes in the CMT catalog, depth limits 0--70 km, distance limits 0--50 km. 
 
 
 
                                                                           Table 1. 
 
No Inter- Col. Average  Pair 
    val  Angle  Angle  number                                               B-axis 
 
 1    2  10.9  -1.29    175                                                245  231 
 2    6  19.0   4.90    271                                           122  217  223  174 
 3   12  27.0  -4.97    305                                      111  147  209  166  106   90 
 4   20  35.1  -2.26    363                                  65   92  179  212  155  122   87   73 
 5   30  43.3  -0.16    401                             57   92   92  128  207  163  111   71   87   82 
 6   42  51.8  -0.83    405                        52   65   84   73  155  158  120  125   73   73   54   68 
 7   56  60.6  -2.29    422                   54   27   52   71  120  152  152  136   95   92   68   43   41   43 
 8   72  69.8  -5.78    440              60   43   49   46  106  147  160  109  103   65   60   52   71   27   54   43 
 9   90  79.5  -2.88    562         54   63   79   79   54   95  141  136  133  117   95  106   87   57   71   52   38   71 
10  110  90.0   0.33    702    52   33   49   63   49   65  109  185  223  182  182  150   95  103   60   71   68   79   41   52 
 
 
                              T + P                   P                      T - P                      T                    T + P 



                                                                Table 2. 
 
                                    Distribution of rotation poles on a reference sphere. 
            For well-constrained M6 shallow earthquakes in the CMT catalog, depth limits 0--70 km, distance limits 0--50 km. 
             Coordinate system is formed by the T-, P-, and N-axes of earthquake focal mechanisms of the previous event. 
 
 
                                                       Rotation angle < 15 degrees 
                        B-axis 
 
    1    1    1             42 
    2    2    3             31        46 
    3    4    6             36        25        42 
    4    7   10             36        24        36        44 
    5   11   15             19        22        19        40        63 
    6   16   21             28        31        32        32        39        38 
    7   22   28             19        22        32        37        36        25        32 
    8   29   36             31        34        31        35        45        37        28        43 
    9   37   45             24        32        23        30        29        38        40        34        44 
   10   46   55             43        39        43        40        29        41        44        41        39        50 
 
                         T-axis                                                                                      P-axis 
 
                                                  15 degrees < Rotation angle < 30 degrees 
                         B-axis                  
 
    1    1    1             12 
    2    2    3             10        15 
    3    4    6             14         9        17 
    4    7   10             15        11        12        15 
    5   11   15             13         7         9        16        19 
    6   16   21             15        14         7        12        18        15 
    7   22   28             15        11        11        17        24        20        15 
    8   29   36             15        11        11        14        27        19        16        15 
    9   37   45             13        14        18        26        30        30        25        21        18 
   10   46   55             18        25        24        22        36        37        30        30        25        28 
 
                         T-axis                                                                                      P-axis 
 
                                                  30 degrees < Rotation angle < 60 degrees 
                         B-axis                  
 
    1    1    1             20 
    2    2    3             18        14 
    3    4    6              7        11        10 
    4    7   10              9         8         7         5 
    5   11   15              6         3         8         8        11 
    6   16   21              6         7         8        13        12         7 
    7   22   28             13         4         3         6         9         7         7 
    8   29   36             11         6         7        10        10        10        10        14 
    9   37   45             13         5         8        20        12        10         6        17        16 
   10   46   55              5         7        19        17        24        15        21        12        15        23 



 
                         T-axis                                                                                      P-axis 
 
                                                  60 degrees < Rotation angle < 90 degrees 
                         B-axis                  
 
    1    1    1             40 
    2    2    3             21        17 
    3    4    6              5         4         7 
    4    7   10              1         3         2         4 
    5   11   15              1         5         0         2         2 
    6   16   21              0         4         3         3         0         3 
    7   22   28              2         1         1         2         1        11         5 
    8   29   36              3         6        13         5         6         7        14         9 
    9   37   45              9         7         4        14        15         7        12        15        16 
   10   46   55              1         9         3         6         9        22        18        10        19        41 
 
                         T-axis                                                                                      P-axis 



 
                                    TABLE 3 
 
                   FIRST EVENT                      SECOND EVENT                              DIFFERENCE 
  #   Date     Lat.  Long. Dp Mw  T-axis P-axis   Date     Lat.  Long. Dp Mw T-axis P-axis     R     Φ     θ    φ      X     Y 
  
  1  77  3 18  16.4  122.6 35 7.3 69 259 19 103  77  3 19  16.8  122.6 32 6.2 71 256 19  82  49.2  19.9  84.2 181.3 -0.76 -0.37 
  2  78  7 24 -20.7  172.8 18 6.4  0 315 29 224  93  7  8 -20.6  172.4 15 6.1  1 132  8 222  44.7  21.2  84.1 354.1 -0.68 -0.39 
  3  79  8 26 -17.2  167.4 15 6.4 75  90 15 273  81  7 15 -17.3  167.3 30 7.2 72  84 18 253  25.3  19.4  99.7 184.6 -0.69 -0.32 
  4  80 10 30 -22.3  169.1 15 6.2  9  40 72 280   3 12 27 -22.1  169.3 15 6.2 12  39 77 193  23.7  21.6  82.4 181.9 -0.74 -0.34 
  5  81  6  3 -35.5  -17.0 10 6.7  1 122  8  32  98  4 25 -35.5  -16.9 15 6.3  2 121 11 212   6.7  19.0  87.7   3.4 -0.73 -0.44 
  6  84  3 23 -15.1 -173.4 43 6.0 41 180 49   8  88 12  5 -14.8 -173.5 44 6.3 39 180 46  34  40.2  17.7  96.3 358.7 -0.76 -0.36 
  7  86  9  5 -59.3  -29.6 15 6.2  9 289 18 196  89  4 28 -59.5  -29.5 15 6.1  6 290  3  21  17.8  21.7  94.6 352.5 -0.66 -0.42 
  8  88  6 18  26.8 -111.0 15 6.7  2 263 15 354   3  3 12  26.6 -110.9 15 6.4  0 266 13 176  17.2  28.2  84.3 175.4 -0.71 -0.39 
  9  88 12 13  71.1   -7.8 15 6.0  2 339 19  69   4  4 14  71.1   -7.3 12 6.0  3 336  1  66  17.0  18.3  97.8 185.3 -0.69 -0.36 
 10  89  3  8   1.1  126.4 31 6.1 82 210  1 304   1  8 27   1.3  126.6 32 6.1 81 188  1 283  29.9  21.0  98.8 178.4 -0.74 -0.32 
 11  92  3 31 -50.0 -114.8 15 6.3 15 325 28  63   3  8 28 -49.9 -115.2 15 6.3 15 324 10  56  34.8  19.2  93.5 181.3 -0.77 -0.41 
 12  93  6 29 -60.9  153.6 15 6.4 11  19 23 114   2  4  7 -61.2  153.9 15 6.3 13  20  6 111  32.7  17.3  86.2 185.5 -0.69 -0.43 
 13  95  4  1  52.0  159.7 48 6.0 76 310 14 122  99  3  8  51.8  159.9 15 6.9 72 306 17 144  45.8  21.5 100.1 356.2 -0.70 -0.31 
 14  96  7 30  14.6  119.9 43 6.1 76 294 13  94  98  8 23  14.7  119.9 45 6.0 78 284 10  75  14.6  19.0  86.7 188.4 -0.65 -0.45 
 15  97  5 27 -54.4 -135.9 15 6.1  8 156 13 248  98  8  5 -54.6 -135.4 15 6.2  8 156  2  65  37.6  15.3  91.6 180.1 -0.79 -0.43 
 16  99 12  6  57.3 -154.4 54 7.0 19 316 19 219   0  7 11  57.5 -154.2 52 6.5 18 311 41 205  22.6  25.3  82.5 187.7 -0.65 -0.38 
 17   0 11 16  -4.6  152.8 24 8.1 33 181 29 292   3  3 11  -4.5  153.1 37 6.9 34 181  8 276  34.9  25.9  89.5 182.2 -0.76 -0.46 
 18   1  4  4  -5.2  132.4 18 6.4  6 295 14  26   1  7 22  -5.2  132.5 31 6.0  4 294  1 204  13.4  15.3  93.6 173.2 -0.68 -0.44 
 
Dp – Depth; Mw -- Moment Magnitude; R – Distance (km); Φ – Rotation Angle; θ – Colatitude; φ – Azimuth;  
X, Y – Lambert Projection Coordinates 




