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Bioelectronic devices can provide an interface for feedback control of
biological processes in real-time based on sensor information tracking
biological response. The main control challenges are guaranteeing system
convergence in the presence of saturating inputs into the bioelectronic
device and complexities from indirect control of biological systems. In this
paper, we first derive a saturated-based robust sliding mode control
design for a partially unknown nonlinear system with disturbance. Next,
we develop a data informed model of a bioelectronic device for in silico
simulations. Our controller is then applied to the model to demonstrate
controlled pH of a target area. A modular control architecture is chosen to
interface the bioelectronic device and controller with a bistable phenomeno-
logical model of wound healing to demonstrate closed-loop biological
treatment. External pH is regulated by the bioelectronic device to accelerate
wound healing, while avoiding chronic inflammation. Our novel control
algorithm for bioelectronic devices is robust and requires minimum infor-
mation about the device for broad applicability. The control architecture
makes it adaptable to any biological system and can be used to enhance
automation in bioengineering to improve treatments and patient outcomes.

1. Introduction

Bioelectronic devices are a promising technology for precision medicine [1-5].
In particular, bioelectronic devices have been at the centre of smart bandages
[6,7]. Many of these bandages have advanced features on board such as sensors
to assess the state of wounds in real-time [8,9] and controlled release of
therapeutics in a variety of pathological conditions [10-12].

Applying feedback control to enhance the capabilities of smart bandages can
help to advance methods in precision medicine [4]. Feedback control is essential
to the regulation of natural biological processes and has been considered as an
approach to artificially guide or enhance existing biological systems (e.g. artificial
pancreas [13,14] and neuro-stimulation [15]). Bioelectronic devices provide an
interface between signal processing and biological tissue that allow one to pro-
gram custom feedback control strategies with sufficient resolution for enhanced
performance. To control biological systems, differential voltages are applied to
the bioelectronic device in order to drive the delivery or removal of biochemical
or biophysical signals to the extracellular environment [11,16,17]. These signalling
molecules, in turn, drive cellular response.

A feedback control algorithm then regulates applied voltages based on
observed biological response in real-time. In this application, control challenges
can arise from indirect control of biological systems, and the presence of

© 2021 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Closed-loop control architecture for a biological model interfaced with a bioelectronic device.

saturating inputs into the bioelectronic device. That is,
the bioelectronic device operates reliably only within a
bounded range of applied voltages. Voltages outside this
range can induce undesired chemical reactions. Researchers
have already demonstrated precise spatio-temporal control
over delivery of ions using bioelectronic devices [18] and
indirect control of stem cell membrane potential through this
interface [19]. However, directly addressing saturating inputs
into the bioelectronic device in controller design can guarantee
convergence for a broader set of conditions and expand
capabilities.

Many successful control techniques have already been
developed to deal with nonlinear multiple-input multiple-
output (MIMO) systems with input saturation. Most of these
methods are based on adaptive control [20-22], backstepping
[20-22], neural networks (NNs) [23-25] or combinations
thereof [24,25]. Although, all the mentioned works above
have powerful techniques to address saturation and unknown
dynamics, they require optimization, parameter estimation
and/or state observers, making them computationally
expensive or model-dependent. For example, backstepping
approaches require the system to be in a specific form,
and the need for the derivative of virtual inputs may cause
high complexity. On the other hand, adaptive NNs rely on
optimization and assume they can approximate a continuous
nonlinear function only in a specific compact set to guarantee
convergence, and this assumption might be violated in the
first initial steps of optimization in the NNss.

Here, we present a novel control method that takes
into consideration saturating signals (bounded input to the
bioelectronic device) with minimal information about
the device and reduced computational cost for real-time
implementation. The method needs no knowledge about
system parameter values and only calls for partial inform-
ation about the system’s general input-to-output structure,
which can be derived from experiments. To interface the
bioelectronic device with a biological system we choose a
modular feedback where each

control architecture,

component (either the bioelectronic device or the biological
system) can be controlled separately and the whole closed-
loop system output follows a desired behaviour (figure 1).
This architecture lets us replace the biological model in the
loop, while keeping the bioelectronic device control design
intact for broad applicability.

We apply this method to a bistable phenomenological
model of wound healing. We choose wound healing to be
our target system because its complexity necessitates a
dynamic treatment to account for different needs at each
stage of wound healing [26-28]. For example, the wound heal-
ing process can be accelerated or prolonged by artificially
manipulating pH [29,30] depending on the timing. Here, we
consider an in silico system where external pH is regulated by
the bioelectronic device to accelerate wound healing, while
avoiding chronic inflammation. To this end, we model a
bioelectronic device known as a proton pump [18,19], where
the model parameters are estimated from experimental tests
carried out with the proton pump [18]. Finally, we show accel-
erated wound closure while avoiding chronic condition. We
incorporate noise into the simulations to show this approach
to be robust to unknown disturbances such as coupling
between a bioelectronic device and its biological target.

This paper proceeds as follows. Section 2 formulates a
general class of nonlinear systems and our goal is to make
the system output follow a desired trajectory. Section 3 pre-
sents a novel saturated-based sliding mode control method
for the system described in §2, such that the system output
converges to the desired value as f— . In §4, we first
model a bioelectronic device and fit parameters to our devel-
oped model based on the experimental data. The control
algorithm developed in §3 is then applied to the model to
regulate ion concentration in a target solution. In §5, we pre-
sent a bistable wound healing model and discuss how to
interconnect that model to an ion pump and controller to
avoid chronic situation and accelerate healing. Lyapunov
analysis and phase plane trajectory design is used to generate
a reference signal for the bioelectronic device. A number of
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simulations are conducted in §6 to verify the efficacy of our
proposed approach. Finally, we conclude our work in §7.

2. Problem formulation for affine nonlinear
systems with input saturation

Bioelectronic devices, as will be verified later in this work,
can be approximated by a class of affine nonlinear systems.
We first derive a controller for the general case and then
apply it to the bioelectronic device.
Consider a MIMO affine nonlinear system with input
saturation, represented by the state space model
i = f (x) + G(x)sat(g(u)) + d(t) } 21
and y = h(x), ’
where x € R" is the state vector of the system, sat(¢(u1)) € R"
is the control input (to the bioelectronic device in this appli-
cation), and y € R (p <mn) is the system output. The
function ¢(u) is applied artificially and designed by the user.
As one will note, the incorporation of ¢(u) facilitates controller
design and analysis. Let f (x) € R" be an unknown locally
Lipschitz nonlinear function and G(x) € R"*™ be an unknown
input coefficient matrix. However, we assume the sign value of
matrix G(x) is known. Finally, d(t) € R" represents a suffi-
ciently smooth disturbance. The operator sat(-) € R" is an
operator such that

o(u)  for smin < ©(1) < Smax
sat((u)) = < Smin  for @(u) < Smin (2.2)
Smax  for @(U) > Smax.

Let the actuating function ¢(u) take the following form:

e(u) = [e1(11)  ¢(12) (i) " (2.3)

and be designed by the user such that
QDi(') R— [Smin 5max}~ (24)

This simplifies sat(¢(u)) to ¢(u). We further expand the general
affine class in (2.1) by introducing a new fictitious inputv € R"
as follows:

x=f(x)+ G(x)p(u) +d(t)
u=v (2.5)
and y =h(x).

to both mitigate chattering from the sliding mode control
design and facilitate finding criteria for tracking convergence.
Our goal is to design a bounded function ¢;(-), v, and, thus,
u such that y — y; when t — oo, where y; € R? is the desired
output vector.

3. Feedback control design

In this section, we derive a sliding mode control design for
the input saturated system (2.5), and conditions for conver-
gence. Sliding mode is a control technique that constrains
the dynamics of a closed-loop system by pushing the sys-
tem’s state trajectories into a manifold. We call this
manifold ‘s’ in the paper. The manifold should be designed
such that the temporal evolution of the state should converge
to the desired state when constrained to the manifold.

3.1. Preliminary derivations
Lemma 3.1. Given the dynamic system (2.5), the second derivative
of the state vector x with respect to time can be expressed as

£ = Vof (1 + 3 (GRolu) + (1)
d

(Gl o) + ) S (o)) + i)

+ &G + GVaeti + i)

= Vof ()% + v, )% + G(x)V,e(u)it +d(t), (3.1)

= V.f (x)% +

= V.f (x)x

where the elements of matrix y(x, u) € R™" are functions of ¢
and partial derivatives of G(x). In particular, the elements of
w(x, u) are computed as follows:

W, ), = 23 g(u), (32)

“ox

where the vector g;(x) =[gn(x), §2(x), ..., im(x)] denotes the i'th
row of the matrix G(x).

Lemma 3.2. Consider the Lyapunov candidate function

1
VZESTS, (3.3)
where
s=Kx+x,
kk 0 ... 0
0 k 0 ... 0 (3.4
34
K=1|: 0 . . ],
kn—l 0
0 ... 0 k,

and k; > 0Vi. Note that if V — 0, then the state dynamics are con-
strained to x = —Kx, which converges to zero exponentially by design.
Then we have

V=55, (3.5)
where s = Kx + X. We substitute the expression for X from lemma 3.1
and get
V=55
sT(Kx + %)
T(Ki + Vof ()% + ()% 4+ G(x)Vuo(u)it + d(t))
ST((K + Vaf () + ()& + G(x)Vaug(u)v +d(t).  (3.6)

S

Let
Q" = G(x)Vuel(u), (3.7)
and
D =K+ Vaf (x) + ¢(x, u), (3.8)
then
V =sT(Di + Qv +d(t)). (3.9)

We now define control laws v and conditions for which
V < 0. We first consider the case of full state feedback
under two scenarios. In the first scenario, we assume only
partial knowledge of G(x). In particular, we assume we know
the signs of elements of G(x). In the second scenario,
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we assume full knowledge of G(x) in order to highlight the
trade-offs in robustness of the controller. Finally, we consider
the case of partial state feedback control under the same
two scenarios.

3.2. Full state feedback control

In this section, we consider the case where we want to control
the system’s states. That is, we have a desired reference for
our complete state vector x.

Theorem 3.3. Let system (2.5) be input-to-state stable (ISS) with
origin O € R" in the reachable set and y = x. Then, if there exists a
scalar p(t) >0 such that

[%[|Amax (D) + |1
/\min(QTQ)

where Apax(D) and Apin(QTQ) are maximum and minimum
eigenvalues of matrices D and Q" Q, respectively, the control signal

(3.11)

p(t) > ) (3.10)

v = —psgn(Qs),

guarantees x — 0 as t — co.

Proof. Substituting the control signal (3.10) into (3.8) gives

V = s"(Dx — pQTsgn(Qs) + d(t)). (3.12)
Using properties of matrix norms it follows that
V < sl (5] Amax(D) = \/ Amin (QTQ)p + [1]])- (3.13)

Assuming an L, norm, we replace |s|| by v2V from (3.3) to
get

V < V2V (||#] Amax (D) — 1/ Amin(QTQ)p + [|d]))-

If p satisfies the inequality in (3.9), then the coefficient of vV
on the right side of the inequality (3.13) is negative definite.

(3.14)

By the comparison lemma and finite time convergence con-
ditions [31], V-0 in finite time. Therefore, the system
dynamics converge to the designed manifolds formulated
in (3.4) in finite time. Furthermore, on that manifold, x = 0
as t— oo. u

Theorem 3.4. Let system (2.5) be input-to-state stable (ISS) with
origin O € R" in the reachable set and y = x. If there exist scalars
B>0 and p(t) >0 such that

o 1l Amax(D) — 51 BAmin (Q"Q) + ||

P(t) )‘min(QTQ)

, (3.15)

then the control signal
v =—BQs — psgn(Qs)

guarantees x — 0 as t — oo.

(3.16)

Proof. Substituting control signal (3.15) in (3.8) gives
V=—ps"Q"Qs+s" (Di—Q"sgn(Qs)p-+d(t))
<= BAamin(QT QIS +Isl1 (1] Amax (D) =1/ Amin (QTQp-+I )

<_H5||(B)‘min(QTQ)HSH_ ij|‘)\ma><(D)+\/ Amin(QTQ)p— ||d||)
(3.17)

We replace ||s|| with v2V from (3.3) to get

V< *m(ﬁAmax(QTQ)‘|5‘| — [|%/| Amax (D)

+  Auin(QTQ)p — [,

If p satisfies the inequality in (3.14), then the coefficient of vV
on the right side of the inequality (3.17) is negative definite. By
the comparison lemma and finite time convergence conditions
[31], V = 0 in finite time. Therefore, the system dynamics con-
verge to the designed manifolds formulated in (3.4) in finite
time. Furthermore, on that manifold, x — 0 as t - . [

(3.18)

3.3. Output feedback control

In this section, we consider the case where we want to control
the system output. The system output can either be simply
one of the system’s state/s, or a linear/nonlinear combination
of system states. In this approach, we define the manifold as

§ =Ky+7, (3.19)

where K € R”*? is a positive definite matrix and y =h(x) =
Cx, where C € RP*". For example, in our application to the
proton pump model, we only consider the concentration of
H as the output (to be controlled), and, therefore, can
choose C such that y represents the proton concentration.
We note that this simplification in the output function
holds for a broad set of applications and facilitates proof of
output convergence to zero in theorems 3.6 and 3.7.

Lemma 3.5. Consider the Lyapunov function V = 1s' Ts'. Then

T.
S/

V=5¢
=" (Kj + 7))

s'T(KCx + Ci)

/T

(
§'T (KCxt 4 C(Vof (0)i + ()i + G(x)V,@(u)it + d(t)))
(

s'T((KC + CVf (x) + C(-))i + CG(x)V,@(u)it + Cd(t)).
(3.20)

Let
Q" = CG(x)Vye(u), D =KC+CV.f (x)+Cy(-) (3.21)
and

d'(t) = Cd(b). (3.22)

Then

V=s"(Dx+Q v+d(®). (3.23)

Theorem 3.6. Let system (2.5) be input-to-state stable (ISS) with
origin O € R" in the reachable set and h(x)=Cx, where
C € RP*". If there exists a scalar p'(t) >0 such that

[l Amax(D') + 1|

o) > -
/\min(Q/ Q/)

(3.24)

then, the control signal
v=—p'sgn(Q's), (3.25)

guarantees y — 0 as t — co.
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Figure 2. Schematic of a proton pump. lons can be delivered by applying appropriate differential voltages. Panel (a) represents the reservoir containing ions. Panel
(b) represents an area where a voltage can be applied to help regulate the rate of redistribution of ions. Panel (c) represents the target area where microscopic
readings are taken. Voltages are applied to individual electrodes here. Au/NPs, gold/nanoparticles; PDDA, poly (diallyldimethylammonium chloride); PDMS,
polydimethylsiloxane; PSS, polystyrene sulfonate; PVA, poly vinyl alcohol; SU-8, an epoxy-based negative photoresist.

Proof. The proof follows the same procedure as in theorem 3.3. =

Theorem 3.7. Let system (2.5) be input-to-state stable (ISS) with
origin O € R" in the reachable set and h(x)=Cx, where
C € RP*". If there exist scalars >0 and p'(t) >0 such that

(1) = FlAna(D) = 15 1B Amn(QQ) + 1|
)‘mm(Q,TQ,)

(3.26)

then the control signal
V= _BIQ/S/ _ p/sgn(Q/S/)

guarantees y — 0 as t — co.

(3.27)

Proof. The proof would follow the same procedure as for the-
orem 3.4. n

Remark 3.8. In order to meet inequality conditions ((3.9),
(3.14), (3.22), (3.24)), matrices QT Q and Q'TQ' should be

non-singular.

Remark 3.9. By changing equation (3.4) to

s=K(x—x5)+ (x—%), K=>0, (3.28)
or, similarly, changing equation (3.18) to
s'=K(y—vya)+H—y,), K>0, (3.29)

we can make x — x4, i = Y, respectively, as t — oo, as long as x4
and y, are in the reachable set and our system is not time-varying.
This result follows from a coordinate transformation [31].

Conditions for convergence in theorems 3.3 and 3.6 might
require high gains, which can result in noise amplification or
an oscillatory response. At the cost of knowing Q and Q’, we
can choose theorems 3.4 and 3.7 for control design with
appropriate choices for § and # to satisfy conditions (3.14)
and (3.24), respectively. Note that increasing parameters S
and f, admit lower boundary conditions for p and p/,

respectively. The lower boundary conditions cannot be arbi-
trarily decreased in theorems 3.3 and 3.6.

Actuating function ¢(u), as long as it is bounded within
the saturation thresholds, can be purposefully designed to
help us satisfy inequalities ((3.9), (3.14), (3.22), (3.24)). Increas-
ing V,¢(u), increases Amin(Q’Q), which decreases the lower
bound on p. A potential trade-off could be increased sensi-
tivity to changes in u, potentially leading to a bang-bang
like control scheme.

Finally, we note that x and y is needed to compute the
control signal. It is possible to estimate x and i with a variety
of methods. While these techniques are susceptible to sensor
noise, in our case we mitigate the noise effect by filtering
the signal after sensing. Our simulations use backwards
difference and show satisfactory results.

4. Modelling and control of a bioelectronic
device

The feedback control laws developed in the previous sections
may be applied to many types of bioelectronic devices. In this
section, we apply the control to a family of bioelectronic devices
known an ion pumps. In particular, we consider the proton
pump described in [18,19]. We develop a dynamical model of
the system where parameters are determined using input-to-
output response of the device. We first briefly describe the
device and the experimental setup used to generate the data.

4.1. Proton pump description and experiments

The proton pump (figure 2) is a particular ion pump that is able
to change the pH level in a target solution through delivery of
H" ions. This is a system with a nonlinear relation between the
input and output response. The proton pump consists of two
reservoirs: one is a source of charged ions H', and another is
a target reservoir that interfaces with a biological system.
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Figure 3. Simulation of the model compared with experimental data.

Applying voltage (Vyy.), as illustrated in figure 2, leads to redis-
tribution of ions between (a) and (c). Changes in concentration
of H" and, hence, pH of the target area are tracked with the aid
of a fluorescent dye known as SNARF [32]. The mean pixel
value of the fluorescent image of the target area can be
mapped to output pH through a linear mapping derived
through calibrations. In this case, the mapping is pH=
0.0842FMPV +4.9192, where FMPV is the fluorescent mean
pixel value. Ion concentration is mapped to pH by the relation-
ship pH = —log;o[H"]. In order to map the ion concentration to
the fluorescent image the two equations are combined to get
FMPV = —log;o[H"] — 4.9192/0.0842.

The proton pump was housed within a microfluidic chan-
nel and the [H'] indicator SNARF-1 was loaded into the
microfluidic channel with a syringe. Furthermore, the proton
pump was connected to a Raspberry Pi controller board. This
setup allowed for dynamic control over H* delivery in real-
time. In this experimental set-up, the input (applied voltage)
was determined by the feedback algorithm described in [19].
A baseline measurement of the fluorescence intensity (FI) in
the microfluidic channel was recorded and used to set the start-
ing value (FI = 25); the reference signal was programmed to be
5 fluorescence intensity units higher than this measured value
(FI=30). Over an experiment of 800s, the fluorescent micro-
scope collected images every 2s. The voltage was moderated
within the range of +/ — 1.7 V. This voltage range was selected
to avoid excess electrolysis in the system. Here, we leverage
only the input/output data generated in the experiment.

4.2. Proton pump modelling

Let xp, be the concentration of H" in the target area and x, the
H" concentration in reservoir (a) (figure 2). If no voltage is
applied to the system, the ions are redistributed between the
two volumes by diffusion. If control input voltage ¢(u) is
applied, the ions move from one volume to another depending
on the sign of ¢(u1). The model of the proton pump may be writ-
ten as

. ~ c1X
Xp :D(ksz _xpl) +¢(”)dl +ij —8Xp
2
¢(u) >0 . o,
. 2
Xp, = D(xpl _kxlﬂz) - go(u)d] +x,
2
. ~ CoX
xlil = D(kxpz _xpl) + ‘p(u)dZTZ;_gxpl
and  ¢(u) <0 ) o, .
. 1
Xpy = D(xpl 7kxP2) - ‘P(”) d, +x,
1
4.1)

time (s)

Table 1. Estimated parameters of the proton pump model.

parameters values

D 0.1190
d 20.0000
q 0.7868
9 0.0039

where D is the diffusion coefficient, c¢; , and d; , are the par-
ameters of the nonlinear functions, g is the leakage rate, kis
to keep an uneven equilibrium distribution without voltage
due to the design of the proton pump and the saturated actuat-
ing function ¢(u) satisfies (2.4). The rate of voltage-driven ion
exchange between the volumes is described by saturating non-
linear functions.

In order to estimate the parameters of the model, we fit
the model to time series data mapping device input ¢(u) to
output x,, using experimental data [18].

We used Grey-Box Estimation from the Matlab System
Identification Toolbox for the model-data fitting procedure.
An example of simulation of the model output and real
measured data is shown in figure 3. The values of the esti-
mated parameters are shown in table 1. The root mean
square error (RMSE) is commonly used to measure the differ-
ence between a model and the data that the model is trying to

capture. The formula for the RMSE is: 4/ Zfil (% — x)*/N. The

RMSE calculated for the simulation here is 0.3459 and might
vary from one experiment to another.

4.3. Proton pump control

Our goal is to control proton concentration (x,,) in the tar-
geted area (c) as depicted in figure 2. The proton pump
model (4.1) can be represented in the form of system (2.1)
as follows:

olu) > 0{ Xp = f () + Glxp)sat(e(u))
fyl’ = prl , (4‘2)
and o(u) < 0{ Xp =f(xp) + G (xp)sat(e(u))
- Yo =2Xp
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Figure 4. Setpoint regulation for the proton pump model with white noise
using the proposed control scheme.

where

D(kxpz - xl’l) —8Xp :|
D(xp, —kxp,)
C1Xpy
1711+x,,2

_axpy,
di+xp,

D(icxpz - xrﬁ) —&Xp :|
D(xp, — kxp,)
©2Xp,

, d2+x,,]

X n
dy+xp

(4.3)

We apply the control scheme developed in theorem 3.6 to
regulate x,, . We note that bioelectronic devices in general are
ISS, the corresponding matrix Q' TQ is non-singular, and, fur-
thermore, X, and x,, are bounded. This implies the existence
of a gain p’ for convergence.

We design v according to (3.23), where C=[1 0] or y = x,.
The only information we need from the proton pump model
is the sign value of CG(x,) and CG'(x,), which are both posi-
tive given x,, and x,, represent proton concentrations and are
positive. Based on the common Lyapunov function theorem
in switching systems [33], as long as there exists a gain p’
such that the inequality (3.22) holds for both systems in
(4.2), then convergence is guaranteed according to theorem
3.6. The desired manifold is

' =k(xp, — xmd) + (Xp — kmd) (44)

with k=1. We set p’ =2 and ¢(u) = 1.7sin(u), where 1.7 is the
pump actuation threshold voltage.

Choosing ¢(u) =1.7sin(u) over a monotonic function
(e.g. logistic function) has the advantage of avoiding
convergence of V,¢(u) to zero (i.e. avoiding singularity
of QTQ) as Furthermore, the set of
u={u € R|V,p(u) =1.7cos(u) =0} has measure zero and
does not affect convergence results [34].

Two numerical simulations are conducted in MATLAB

u — oo.

Simulink to verify the performance of our proposed control
scheme on the proton pump, one for setpoint regulation
(figure 4) and another one for sinusoidal trajectory tracking
(figure 5).

proton pump control
\ .

— %, 10%M
—— desired x, - 108 M
1
— o) =Vy+
- - saturation threshold (1.7V)
- = saturation threshold (-1.7V)

20 40 60 80 100
time (s)

Figure 5. Trajectory tracking for proton pump model with white noise using
the proposed control scheme.

5. Wound healing process modelling and control

5.1. lons and wound healing

There are several stages of wound healing, of which the most
important are inflammation and reparation. During inflam-
mation the immune system cleans the wound of debris and
infection. The recovery stage may be represented as prolifer-
ation and reparation; during this stage new tissue replaces
damaged tissue. In some cases, the transition from inflam-
mation to recovery does not occur and the wound becomes
chronic [28].

Controlled supply of ions may be promising in wound
healing care. For example, sodium ions are important for
immune reaction against pathogens; however, excess
sodium prevents tissue reparation [35]. Potassium ions may
exert an anti-inflammatory effect on macrophages [36] and
pH, defined by the concentration of H" ions, is important
both for inflammation and for tissue reparation [29,37].
As summarized in [29], during inflammation, wound pH
gradually decreases to approx. 5.5 and then rises to 7.5-8
at the end of granulation tissue formation. After that, in
acute wounds pH returns to 6-6.5 during re-epithelialization,
and in chronic wounds pH stays at approx. 7.5. The growth
of pathogen microorganisms is decreased at low pH [38].
Furthermore, the activity of many proteases needed for
extracellular matrix reorganization is pH-sensitive [39].
If the activity of proteases does not diminish at the
appropriate stage of reparation, chronic inflammation can
ensue [29].

5.2. A mathematical model of wound healing

In order to test applicability of the controller to wound heal-
ing, we propose a phenomenological model of wound
healing. The wound is represented as a bistable system: one
stable point corresponds to healthy tissue and another
stable point represents the chronic situation. At the initial
time of injury, the system begins to move towards the healthy
stable equilibrium point. However, in some cases, the system
may be attracted to the chronic state, which corresponds to
the wound not healing. The model of wound healing consists
of two equations:

X1 = —(x —x2)(x1 —x2 — &) (x1 — 1) }

5.1
and Xp = —yx, y>0, G-
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X X

Figure 6. Phase portrait of wound healing model, & = 0.6. (a) ¥ = 0.1, (b)
y=0.7. Dashed black lines—separatrix dividing basins of attraction of
healthy (0, 0) and chronic (1, 0) stable states. Green line—one of trajectories
corresponding to normal wound healing.

where 0<x; <1 is a measurement of inflammation with
x1 =0 indicating a healthy state and x; >0 corresponding to
inflammation. Let x, >0 be a wound media variable that
defines the state of the wound, and y is the degradation
factor for x,. For example, wound pH is known to decrease
during inflammation [29], i.e. concentration of H" ions
increases during inflammation.

System (5.1) has three equilibrium points (0, 0), (5, 0),
(1, 0), representing healed, intermediate and chronic situ-
ations, respectively. Applying the first method of Lyapunov
shows equilibrium points (0, 0), (1, 0) are stable and (6, 0) is
an unstable equilibrium point. Based on initial conditions,
natural wound healing can converge to the healed or chronic
situation (figure 6a).

A naive approach to accelerating wound healing might be
to increase the degradation rate y. However, note that increas-
ing the degradation rate y changes the shape of the separatrix
such that wound healing may be accelerated but the basin of
attraction for healthy wound healing is decreased (figure 6b).
Wound healing trajectories are fastest near the separatrix but
in a noisy system an amplified system response poses the
added risk of being pushed to a chronic state. In the next sec-
tion, we present a hybrid controller that accelerates wound
healing, while minimizing the risk of chronic inflammation.

5.3. Wound healing control

Our control goals are twofold. First, we would like to increase
the basin of attraction for the equilibrium point (0, 0) repre-
senting healthy tissue. In this way, we can avoid a chronic
situation independent of the initial condition. Second, we
would like to accelerate wound healing. We assume that we
can manipulate x, but not x;. However, we assume that
sensing is available for both variables.

To control wound healing via a bioelectronic device, we
use the control architecture shown in figure 7. A model of
wound healing directed by a bioelectronic ion pump can be
generally written as

)f1 = —(x1 — .Xz)(xl — Xy — 8)(3C1 — 1)
X = —yxp +wi(xq, X2) — wa(x1, X2) (5.2)
and y=x1,

where w1 (x1, X2) = xp, and wy(x1, x2) = x’p, are the concen-
tration of distinct ions delivered by a bioelectronic device.
We let w; represent additional proton injection and w,

represent a second charged molecule that neutralizes H+. In
this section, we derive the feedback control laws w;(x;, xp)
and wy(x1, x7) that do not violate any physical or biological
constraints, while accelerating wound healing. The bioelec-
tronic device is then tasked with tracking these desired
concentrations. Our main goal here is to design x,, to
avoid chronic equilibrium point for almost any initial value,
and then design xy, to accelerate healing time when we
are in the basin of attraction of the equilibrium point
representing healthy tissue.
We propose the following control design for (5.2):

|:k1x1
Xp, B

, =

X,

0

which we will show guarantees that the closed-loop system
trajectory (x1, x2) converges to (0, 0) regardless of initial
value and is accelerated in the region x; +x, <d8. We also
note that positivity of the system is conserved. That is, x; >
0 and x,>0. Two bioelectronic ion pump controllers can
be designed separately based on theorem 3.6 and control
law (3.23) to make x,, (H" concentration) follow x, in
the first ion pump (proton pump) and x',, (molecule/ion
concentration that neutralizes H") follow x'pld
ion pump.

Our first goal is to increase the basin of attraction for
healthy tissue (chronic avoidance). The following controller
ensures system (5.2) converges to (0, 0) independent of the
initial value:

:|’y(1—3)<k1<’y, if x1 +x, > 6

{ 0 }k2>o, ky > 25—y, if x1+x2 <5
kzXz

(5.3)

in the second

wl(xlr Xz) =kixy,

7(1—5)<k1<7} (5.4)

and wz(x1, xz) =0.

System (5.2) and (5.4) preserves the stable equilibrium
point (0, 0) representing healthy tissue, while shifting the
unstable point to (1, (k1/7)) and the stable point representing
chronic inflammation to ((6y/y — k1) > 1, (6k1/y — k1)). Figure 8
depicts the closed-loop phase plane of the healing process
with y=1, k;=0.6 and §=0.6, where for 0<x;, x,<1 all
trajectories go to (0, 0).

The next goal is to accelerate the healing process (while
maintaining convergence to (0, 0)) by increasing the rate of
decay for x,.

Setting

w1 (.X'1, .’XQ) =0 (55)

and wy(x1, X2) = koxo, kp >0, ky > 26— y}

preserves (0, 0) as a stable equilibrium point. To find
the basin of attraction for (0, 0) under (5.5), we define the
Lyapunov function candidate (given x;, > 0)

V(X1, .X'Z) = X1 + Xo. (56)

The derivative of V (x4, x;) along the system described by (5.2)
and (5.5) is

V(x1, x2) = %1 + X2
=—(x1 —x2)(x1 —x2 — 8)(x1 — 1) — yx2 — koxp.
(5.7)

We show the set Q5 = {x;, x, ERT U {0} | x; +x <&} =
QBl U.QBZ:{X1,XZE|R+U{O}|X1+x2<5ﬂ.X1—xZZO}
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Figure 7. Closed loop control architecture of a biological process actuated by a bioelectronic device with input saturation.
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Figure 8. Phase plane of states x; and x, for 6 = 0.6, ¥ = 1 and k; = 0.6 for
system (5.4) with a single ion pump.

U{x;, 2 ERTU{0} | x1 +x2 <8Nx; —x, <0} is a basin
of attraction to (0, 0) for (5.2) and (5.5). As 0<x;<1 and
Xp > O, in QBl

xl—XQEO
x1—1<0 (5.8)
and X1—x—06<x1+x—-06<0

which means V(xl, x2) < 0 for xq and x, in £, except (0, 0).
In QBZ

x1—x <0
x—-1<0 (5.9)
and X1—X—06<x1+x—-86<0

and V(xl, x2) can be upper bounded as below

V(Xl, Xz) < —25()(1 — Xz) - (y—l— kz)Xz, (510)

because x; >0

V(Xl, x2) < 26xp — (y—|— kz)Xz, (511)

and as k,>26—y in (6.5) and x,>0, V <0 in g, except
at (0, 0).

1.0 T T T T

0.8 — X

0.6

0.4

0 2 4 6 8 10 12
time

Figure 9. Natural wound healing trajectories based on system (5.1) for initial
value close to the chronic situation and for 5=06, y=1.

6. Simulations

In this section, a set of simulations are conducted on the phe-
nomenological wound healing model (5.1), both open-loop
and closed-loop, to verify the effectiveness of our proposed
method including chronic situation avoidance and healing
process acceleration.

6.1. Natural healing process

Figure 9 shows x; and x; trajectories for an initial value close
to the chronic situation based on model (5.1) and with no
control input. It can be observed that wound converges to chronic
point (x; = 1) and x; goes to zero. This stable equilibrium point is
undesirable and a closed-loop regulation is needed to avoid it.

6.2. Closed-loop healing process with a single ion
pump

In this simulation, one ion pump (with existence of white
noise) is used to regulate proton injection to avoid the chronic
situation based on (5.4). Figure 10 indicates the ion pump
control voltage signal, the desired proton concentration and
the measured proton concentration, which converges to
desired one. Figure 11 depicts system trajectories of the
wound, which converge to the healed point (0, 0) as desired.
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Figure 10. Closed-loop ion concentration and control signal for initial value
close to the chronic situation and for § = 0.6, y =1, k; = 0.6 in system (5.4)
with a single ion pump.
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Figure 11. Closed-loop wound healing trajectories for system (5.4) with a
single ion pump with initial value close to the chronic situation and for
6=06, y=1and k;=0.6.
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Figure 12. Closed-loop ion concentration and control signal for the first ion
pump in system (5.3) with initial value close to the chronic situation and for
6=06, y=1, k;=06.

6.3. Closed-loop healing process with two ion pumps
Two ion pumps are controlled here based on system (5.3).
Figure 12 shows the control signal for the first ion pump regulating
proton injection. Figure 13 shows the second ion pump control
signal regulating x'p1 delivery. Figure 14 shows accelerated conver-
gence to (0, 0) when compared with figure 11 for the single ion
pump system (5.4). Accelerated wound healing is achieved with
the second ion pump which increases x, decay rate.

0.4 T T T T T T T T T
02 R
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time

Figure 13. Closed-loop ion concentration and control signal for the second
ion pump in system (5.3) with initial value close to the chronic situation and
for 6=06, y=1, k;=06.
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Figure 14. Closed-loop accelerated wound healing trajectories for initial
value close to the chronic situation and for 6 =0.6, y=1 and k;, =0.6
for system (5.3).

7. Conclusion

In summary, we propose that an effective approach to
controlling complex biological processes interfaced with a
bioelectronic device is through a modular control architecture.
The modular feedback control architecture allows one to
design the controller for the bioelectronic device independent
of the biological process in the loop. That is, our controller
design does not have any dependence on the wound healing
model. The wound healing model is instead used to inform
the desired wound environment to be achieved by the bioelec-
tronic device. We note that the time scale of the dynamical
response of the bioelectronic device to changes in voltages is
orders of magnitude faster than that of biological processes
in wound healing. Thus, we do not need to be concerned
with the required changes in pH for accelerated wound healing
happening at a time scale faster than convergence of the con-
troller. The bioelectronic device is controlled through a novel
saturated-based sliding mode control method and its respect-
ive reference signal is designed based on a desired biological
response. We applied this method to a bistable phenomenolo-
gical model of wound healing. In this work, we used Lyapunov
analysis and phase plane trajectory design to generate the refer-
ence signal for the bioelectronic device in order to avoid
chronic wounds and achieve accelerated wound closure. We
note that many biological systems exhibit multistable behav-
iour [40] and, thus, our results can generalize to a broader
range of applications. Finally, in the future, we will explore
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data-driven methods to generate reference trajectories in real-
time for optimal wound closure.
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Appendix A

Ion pumps are bioelectronic devices that interface with bio-
logical systems by controlling the concentration of ions in
solution. Ion pumps can be tuned for control of a specific
ionic species such as protons to change pH. The means of
operation for an ion pump is the application of an electric
field to induce electrophoretic movement of ions into a
target solution. In this case, a Raspberry Pi controller running
a control algorithm is used to drive the voltage on the electro-
des of an ion pump array built within a microfluidic channel
(figures 2 and 15). The device’s microfluidic channel is
loaded with a pH-responsive fluorescent dye solution
(SNARF-1), images are captured with a fluorescence micro-
scope (figure 16). The mean pixel value of the target area
from the new image is computed and mapped to ion concen-
tration in the target area. This value is fed back to the ion
pump controller and is used to drive the ion concentration
in solution to a pre-prescribed step function using a closed-
loop control algorithm. The ion pump array operates by
applying a voltage between palladium-coated array electro-
des located beneath a polyelectrolyte ion bridge and Ag/
Agcl electrodes in the target microfluidic channel. The palla-
dium electrodes selectively absorb and release H* due to a
material property of palladium and this confers selectivity
and efficiency to the system. The ion bridge that covers the
palladium electrode array spans the gap between a reservoir
channel and a target microfluidic channel and acts as a H"
source for the system. When a positive voltage is applied

\ e

\\\__ B

Figure 15. Optical image of actual device. Panel (c) Represents the area
where microscopic readings are taken. This is a 5x 5 array where voltages
can be applied to change pH in the target area.
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Figure 16. Optical image from the microscope. The dashed lines are the
columns where microelectrodes are located and can be actuated.

between the palladium electrode array and the Ag/AgCl
counter electrodes, H" are released from the ion bridge into
the target solution. When a negative voltage is applied, the
protons are pulled back into the ion bridge and are absorbed
by palladium, forming palladium hydride. The ion pumps
were connected to the Raspberry Pi controller board with a
custom adapter and 50 uM of the [H'] indicator SNARF-1
dispensed in 0.1M Tris buffer was loaded into the microflui-
dic channel with a syringe. SNARF-1 indicator has a
fluorescence intensity magnitude that is sensitive to pH.
The ion pump was fitted onto a BZ-X710 fluorescence micro-
scope (objectives: excitation 560/40 nm, emission 630/75 nm)
stage with a custom acrylic adapter. A baseline measurement
of the fluorescence intensity (FI) in the microfluidic channel
was recorded and used to set the starting value in a step func-
tion (FI =25), the step was programmed to be 5 fluorescence
intensity units higher than this measured value (FI=30).
Over an experiment of 800 s, the fluorescent microscope col-
lected images every 2s and the mean pixel fluorescence
intensity value from the target area was computed and fed
back to the ion pump control algorithm. The control algor-
ithm responded to error in the expected and real
fluorescent values of the device by modulating the voltage
within the range of +/-1.7V. This voltage range was
selected to avoid excess electrolysis in the system.

L6V01207 8L awuau) 0§ Y o Jisi/jeuinol/b10°buiysijgndanosiefos


https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202000140
https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202000140
https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202000140
https://ieeexplore.ieee.org/abstract/document/9163327
https://ieeexplore.ieee.org/abstract/document/9163327
https://ieeexplore.ieee.org/abstract/document/9163327

References

Loffler S, Melican K, Nilsson K, Richter-Dahlfors A. 2017
Organic bioelectronics in medicine. J. Intern. Med. 282,
24-36. (doi:10.1111/joim.2017.282.issue-1)

Wu H, Gao W, Yin Z. 2017 Materials, devices and
systems of soft bioelectronics for precision therapy.
Adv. Healthcare Mater. 6, 1700017. (doi:10.1002/
adhm.v6.10)

Birmingham K et al. 2014 Bioelectronic medicines: a
research roadmap. Nat. Rev. Drug Discov. 13,
399-400. (doi:10.1038/nrd4351)

Selberg J, Jafari M, Bradley C, Gomez M, Rolandi M.
2020 Expanding biological control to bioelectronics
with machine learning. APL Mater. 8, 120904.
(doi:10.1063/5.0027226)

Jia M, Rolandi M. 2020 Soft and ion-conducting
materials in bioelectronics: from conducting
polymers to hydrogels. Adv. Healthc. Mater. 9,
1901372. (doi:10.1002/adhm.v9.5)

Mostafalu P. 2018 Smart bandage for monitoring
and treatment of chronic wounds. Small 14,
€1703509. (doi:10.1002/smll.v14.33)

Farooqui MF, Shamim A. 2016 Low cost inkjet
printed smart bandage for wireless monitoring of
chronic wounds. Sci. Rep. 6, 28949. (doi:10.1038/
s1ep28949)

McLister A, McHugh J, Cundell J, Davis J. 2016 New
developments in smart bandage technologies for
wound diagnostics. Adv. Mater. 28, 5732-5737.
(doi:10.1002/adma.v28.27)

Sharp D, Gladstone P, Smith RB, Forsythe S,

Davis J. 2010 Approaching intelligent

infection diagnostics: carbon fibre sensor

for electrochemical pyocyanin detection.
Bioelectrochemistry 77, 114-119. (doi:10.1016/].
bioelechem.2009.07.008)

Williamson A et al. 2015 Controlling epileptiform
activity with organic electronic ion pumps. Adv.
Mater. 27, 3138-3144. (doi:10.1002/adma.
201500482)

Proctor CM, Chan (Y, Porcarelli L, Udabe E,
Sanchez-Sanchez A, Del Agua |, Mecerreyes D,
Malliaras GG. 2019 lonic hydrogel for accelerated
dopamine delivery via retrodialysis. Chem. Mater.
31, 7080-7084. (doi:10.1021/acs.chemmater.
9h02135)

Jonsson A, Song Z, Nilsson D, Meyerson BA, Simon
DT, Linderoth B, Berggren M. 2015 Therapy using
implanted organic bioelectronics. Sci. Adv. 1,
€1500039. (doi:10.1126/sciadv.1500039)

El-Khatib FH, Russell SJ, Nathan DM, Sutherlin RG,
Damiano ER. 2010 A bihormonal closed-loop
artificial pancreas for type 1 diabetes. Sci.

Transl. Med. 2, 27ra27. (doi:10.1126/scitransimed.
3000619)

Quiroz G. 2019 The evolution of control algorithms
in artificial pancreas: a historical perspective. Annu.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Rev. Control 48, 222-232. (doi:10.1016/j.arcontrol.
2019.07.004)

Santaniello S, Fiengo G, Glielmo L, Grill WM. 2010
(losed-loop control of deep brain stimulation: a
simulation study. /EEE Trans. Neural Syst. Rehabil.
Eng. 19, 15-24. (doi:10.1109/TNSRE.7333)
Malliaras G, Abidian MR. 2015 Organic bioelectronic
materials and devices. Adv. Mater. (Deerfield Beach,
Fla) 27, 7492. (doi:10.1002/adma.v27.46)

Noy A. 2015 Mimicking biology with nanomaterials:
carbon nanotube porins in lipid membranes.
Biophys. J. 108, 443a. (doi:10.1016/j.bpj.2014.11.
2418)

Jafari M, Marquez G, Selberg J, Jia M, Dechiraju H,
Pansodtee P, Teodorescu M, Rolandi M, Gomez M.
2020 Feedback control of bioelectronic devices using
machine leamning. [EEE Control Syst. Lett. 5,
1133-1138. (doi:10.1109/LCSYS.7782633)

Selberg J et al. 2020 Machine learning-driven
bioelectronics for closed-loop control of cells.

Adv. Intell. Syst. 2, 2000140. (doi:10.1002/aisy.
v2.12)

Farrell J, Polycarpou M, Sharma M. 2004 On-line
approximation based control of uncertain nonlinear
systems with magnitude, rate and bandwidth
constraints on the states and actuators. In Proc. of
the 2004 American Control Conf., vol. 3, pp. 2557—
2562. New York, NY: IEEE.

Wen C, Zhou J, Liu Z, Su H. 2011 Robust adaptive
control of uncertain nonlinear systems in the
presence of input saturation and external
disturbance. EEE Trans. Autom. Control 56,
1672-1678. (doi:10.1109/TAC.2011.2122730)

Chen M, Ge SS, Ren B. 2011 Adaptive tracking
control of uncertain MIMO nonlinear systems with
input constraints. Automatica 47, 452—465. (doi:10.
1016/j.automatica.2011.01.025)

Zhou S, Chen M, Ong U, Chen PC. 2016

Adaptive neural network control of uncertain MIMO
nonlinear systems with input saturation. Neural
Comput. Appl. 27, 1317-1325. (doi:10.1007/
500521-015-1935-7)

Chen M, Ge SS, How BVE. 2010 Robust adaptive
neural network control for a class of uncertain
MIMO nonlinear systems with input nonlinearities.
|EEE Trans. Neural Netw. 21, 796—812. (doi:10.1109/
TNN.2010.2042611)

Chen Z, Li Z, Chen CP. 2016 Adaptive neural control
of uncertain MIMO nonlinear systems with state and
input constraints. IEEE Trans. Neural Netw. Learn.
Syst. 28, 1318-1330. (doi:10.1109/TNNLS.2016.
2538779)

Canedo-Dorantes L, Canedo-Ayala M. 2019 Skin
acute wound healing: a comprehensive review.

Int. J. Inflam. 2019, 3706315. (doi:10.1155/2019/
3706315)

28.

29.

30.

3N

32.

33

34.

35.

36.

37.

38.

39.

40.

Wokalek H, Ruh H. 1991 Time course of wound
healing. J. Biomater. Appl. 5, 337-362. (doi:10.
1177/088532829100500405)

Krzyszczyk P, Schloss R, Palmer A, Berthiaume F.
2018 The role of macrophages in acute and chronic
wound healing and interventions to promote pro-
wound healing phenotypes. Front. Physiol. 9, 419.
(doi:10.3389/fphys.2018.00419)

Schneider LA, Korber A, Grabbe S, Dissemond J.
2007 Influence of pH on wound-healing: a

new perspective for wound-therapy? Arch.
Dermatol. Res. 298, 413—420. (doi:10.1007/500403-
006-0713-x)

Sharpe J, Harris K, Jubin K, Bainbridge N, Jordan N.
2009 The effect of pH in modulating skin cell
behaviour. Br. J. Dermatol. 161, 671-673. (doi:10.
1111/bjd.2009.161.issue-3)

Khalil HK, Grizzle JW. 2002 Nonlinear systems,

vol. 3. Upper Saddle River, NJ: Prentice Hall.
Whitaker JE, Haugland RP, Prendergast FG. 1991
Spectral and photophysical studies of benzo[c]xanthene
dyes: dual emission pH sensors. Anal. Biochem. 194,
330-344. (doi:10.1016/0003-2697(91)90237-N)
Liberzon D. 2003 Switching in systems and control.
New York, NY: Springer Science & Business Media.
Royden HL, Fitzpatrick P. 1988 Real analysis, vol. 32.
New York, NY: Macmillan.

Wilck N, Balogh A, Marko L, Bartolomaeus H, Muller
DN. 2019 The role of sodium in modulating
immune cell function. Nat. Rev. Nephrol. 15,
546-558. (doi:10.1038/541581-019-0167-y)
Erndt-Marino J, Yeisley DJ, Chen H, Levin M, Kaplan
DL, Hahn MS. 2020 Interferon-gamma stimulated
murine macrophages in vitro: impact of ionic
composition and osmolarity and therapeutic
implications. Bioelectricity 2, 48—58. (doi:10.1089/
bioe.2019.0032)

Schreml S, Szeimies RM, Karrer S, Heinlin J,
Landthaler M, Babilas P. 2010 The impact of the pH
value on skin integrity and cutaneous wound
healing. Eur. Acad. Dermatol. Venereol. 24,
373-378. (doi:10.1111/jdv.2010.24.issue-4)
Thomas LV, Wimpenny JW, Davis JG. 1993 Effect of
three preservatives on the growth of Bacillus cereus,
Vero cytotoxigenic Escherichia coli and Staphylococcus
aureus, on plates with gradients of pH and sodium
chloride concentration. Int. J. Food Microbiol. 17,
289-301. (doi:10.1016/0168-1605(93)90199-Q)
Greener B, Hughes AA, Bannister NP, Douglass J. 2005
Proteases and pH in chronic wounds. J. Wound Care
14, 59-61. (doi:10.12968/jowc.2005.14.2.26739)
Angeli D, Ferrell JIE, Sontag ED. 2004 Detection of
multistability, bifurcations, and hysteresis in a large
class of biological positive-feedback systems. Proc.
Natl Acad. Sci. USA 101, 1822-1827. (doi:10.1073/
pnas.0308265100)

L6V01207 8L awuau) 0§ Y o Jisi/jeuinol/b10°buiysijgndanosiefos E


http://dx.doi.org/10.1111/joim.2017.282.issue-1
http://dx.doi.org/10.1002/adhm.v6.10
http://dx.doi.org/10.1002/adhm.v6.10
http://dx.doi.org/10.1038/nrd4351
http://dx.doi.org/10.1063/5.0027226
http://dx.doi.org/10.1002/adhm.v9.5
http://dx.doi.org/10.1002/smll.v14.33
http://dx.doi.org/10.1038/srep28949
http://dx.doi.org/10.1038/srep28949
http://dx.doi.org/10.1002/adma.v28.27
http://dx.doi.org/10.1016/j.bioelechem.2009.07.008
http://dx.doi.org/10.1016/j.bioelechem.2009.07.008
http://dx.doi.org/10.1002/adma.201500482
http://dx.doi.org/10.1002/adma.201500482
http://dx.doi.org/10.1021/acs.chemmater.9b02135
http://dx.doi.org/10.1021/acs.chemmater.9b02135
http://dx.doi.org/10.1126/sciadv.1500039
http://dx.doi.org/10.1126/scitranslmed.3000619
http://dx.doi.org/10.1126/scitranslmed.3000619
http://dx.doi.org/10.1016/j.arcontrol.2019.07.004
http://dx.doi.org/10.1016/j.arcontrol.2019.07.004
http://dx.doi.org/10.1109/TNSRE.7333
http://dx.doi.org/10.1002/adma.v27.46
http://dx.doi.org/10.1016/j.bpj.2014.11.2418
http://dx.doi.org/10.1016/j.bpj.2014.11.2418
http://dx.doi.org/10.1109/LCSYS.7782633
http://dx.doi.org/10.1002/aisy.v2.12
http://dx.doi.org/10.1002/aisy.v2.12
http://dx.doi.org/10.1109/TAC.2011.2122730
http://dx.doi.org/10.1016/j.automatica.2011.01.025
http://dx.doi.org/10.1016/j.automatica.2011.01.025
http://dx.doi.org/10.1007/s00521-015-1935-7
http://dx.doi.org/10.1007/s00521-015-1935-7
http://dx.doi.org/10.1109/TNN.2010.2042611
http://dx.doi.org/10.1109/TNN.2010.2042611
http://dx.doi.org/10.1109/TNNLS.2016.2538779
http://dx.doi.org/10.1109/TNNLS.2016.2538779
http://dx.doi.org/10.1155/2019/3706315
http://dx.doi.org/10.1155/2019/3706315
http://dx.doi.org/10.1177/088532829100500405
http://dx.doi.org/10.1177/088532829100500405
http://dx.doi.org/10.3389/fphys.2018.00419
http://dx.doi.org/10.1007/s00403-006-0713-x
http://dx.doi.org/10.1007/s00403-006-0713-x
http://dx.doi.org/10.1111/bjd.2009.161.issue-3
http://dx.doi.org/10.1111/bjd.2009.161.issue-3
http://dx.doi.org/10.1016/0003-2697(91)90237-N
http://dx.doi.org/10.1038/s41581-019-0167-y
https://doi.org/10.1089/bioe.2019.0032
https://doi.org/10.1089/bioe.2019.0032
https://doi.org/10.1111/jdv.2010.24.issue-4
http://dx.doi.org/10.1016/0168-1605(93)90199-Q
http://dx.doi.org/10.12968/jowc.2005.14.2.26739
http://dx.doi.org/10.1073/pnas.0308265100
http://dx.doi.org/10.1073/pnas.0308265100

	A feedback control architecture for bioelectronic devices with applications to wound healing
	Introduction
	Problem formulation for affine nonlinear systems with input saturation
	Feedback control design
	Preliminary derivations
	Full state feedback control
	Output feedback control

	Modelling and control of a bioelectronic device
	Proton pump description and experiments
	Proton pump modelling
	Proton pump control

	Wound healing process modelling and control
	Ions and wound healing
	A mathematical model of wound healing
	Wound healing control

	Simulations
	Natural healing process
	Closed-loop healing process with a single ion pump
	Closed-loop healing process with two ion pumps

	Conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	Disclaimer
	Appendix A
	References




