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Abstract

Introduction: There is an increased need for the development of novel blood-based

biomarkers for early detection, prevention, or intervention inAlzheimer’s disease (AD).

This study sought to determine whether serum glycopeptide analysis holds potential

for identifying novel diagnostics and prognostics of AD.

Methods: The study involved 195 participants, including 96 patients with an AD diag-

nosis and 99 controls with no cognitive deficit. Utilizing a validated analytical mass

spectrometry method, we monitored the site-specific glycosylation of 52 serum gly-

coproteins.

Results:Partial least-squaresdiscriminant analysis revealed that changes in overall sia-

lylation and fucosylation of serum glycoproteins may be indicators of an AD disease

state. Loss of fucosylation of immunoglobulin G1 (IgG1) and IgG2was indicative of AD

diagnosis. Individual glycopeptide analysis found separation between the AD patients

and controls on complement proteins and apolipoprotein B.

Discussion:The results of this study suggest that serumglycoprofilingmaybeapromis-

ing approach for biomarker discovery.

KEYWORDS
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1 INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disease

that begins decades before the onset of symptoms and discernible

dementia.1 Medications for the treatment for AD in the later stages

of disease have been elusive, with even the newest and most promis-

ing approaches only being able to slow the progression of disease but
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not prevent or reverse it.1 Given the hallmark characteristics of AD—

namely amyloid beta (Aβ) deposition, neurofibrillary tangles involving
hyperphosphorylated tau, and neurodegeneration—the current tech-

niques for AD detection rely on cerebrospinal fluid (CSF) and plasma

biomarkers (eg Aβ42/Aβ40 ratio) and images from positron emission

tomography (PET) to evaluate the extent of neurodegeneration in

the brain.2–4 However, CSF-based biomarkers require invasive sample
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collection, the PET imaging-based detection is costly for screening pur-

poses, and these detection approaches are generally uninformative

about how to intervene to prevent or slow the progression of the dis-

ease. Thus, early, actionable detection approaches that could lead to

the development of new disease prevention strategies are urgently

needed.

Glycosylation is a common post-translational modification that

affects protein structure and function with diverse glycans. Multi-

ple studies have revealed aberrant glycosylation in AD-related pro-

teins, including amyloid precursor protein (APP), tau, Beta-secretase 1

(BACE1), and Nicastrin (NCSTN).5–8 Furthermore, dysregulated glyco-

sylation in AD brains affectsmultiple biological processes, such as neu-

roinflammation, cell adhesion, and cell signaling.8 Plasma glycan-based

measurements have proven useful for the detection of other diseases,

including ovarian cancer and breast cancer.9,10

Multiple reaction monitoring (MRM) technology has enabled large-

scale glycoproteomic profiling of blood. Here we used an established

MRM method 11,12 to evaluate the potential for plasma- or serum-

based glycoproteomic profiling as a viable biomarker approach for AD.

We used serum samples obtained from 100 AD patients and 100 age-

and gender-matched cognitively normal controls whose samples are

part of the UC Davis Alzheimer’s Disease Research Center (ADRC)

biorepository, to quantify serum glycopeptides of the most abundant

serum proteins, and to determine the potential of serum glycoprofiling

as a novel biomarker approach for AD.

2 EXPERIMENTAL SECTION

2.1 Study design

A power calculation was conducted on an exploratory set of samples

involving 48 serum samples. Sample size calculation was performed

prior to the study design as multiple two-sample t-tests with an FDR-

adjusted rate of 0.05, and a K factor of 22. A sample size of 100 per

group was determined to be an adequate number of participants for a

power of 80%. In this study, samples from 195 total participants were

analyzed, which included 99 participants with no cognitive deficit as

per clinical diagnosis, and 96 participants with an AD diagnosis. All

AD patients had a clinical AD diagnosis made within 1 year of the

blood drawbased on theUCDavis ADRCclinical diagnosis criteria. The

diagnosis criteria for AD involved autopsy confirmation with BRAAK

state IV or higher with a likelihood of ADmoderate to high, with those

patients for whom autopsy confirmation was not available being diag-

nosed with “probable AD” based on the ADRC clinical diagnosis crite-

ria. All human subjects provided informed consent as per the ADRC

guidelines. The cohorts were selected to have equal percentages of

males and females in both groups. In the control group, 50% of partic-

ipants were male, whereas in the AD group 51% were male. Table 1

summarizes the demographic data of all participants including age,

sex, body mass index (BMI), apolipoprotein E (APOE) genotype, and

ethnicity, among other parameters. Among AD patients, 13.3% were

African American, 10% were Hispanic, and 77% were White. Among

RESEARCH INCONTEXT

1. Systematic Review: The authors reviewed the litera-

ture using traditional (eg, PubMed) sources and meet-

ing abstracts and presentations. Although glycosylation

alterations have been observed in the brains, cere-

brospinal fluid, and serum of patients with Alzheimer’s

disease (AD), serum glycoprofiles are not widely studied.

We sought to determine whether serum-based glycopro-

filingmay be a useful approach for biomarker discovery in

AD and related dementias.

2. Interpretation: Our results suggest that serum glycopro-

filingmay indeed be a powerful biomarker discovery plat-

form that can be harnessed to identify new markers in

diverse cohorts and new therapeutic targets, particularly

those focused on immune-relatedmechanisms.

3. Future Directions: Future studies should include the

analysis of a larger sample size, particularly in ethnically

diverse cohorts powered to account for age, sex, and eth-

nicity. Furtherwork to refine the transitionsmonitoredby

the multiple reaction monitoring (MRM) mass spectrom-

etrymethod that are specific to AD pathology would lead

to higher precision and specificity.

controls, 20% were African American, 27% were Hispanic, and 53%

were White. The median age was 79 (interquartile range [IQR]: 73-

83) for AD patients and 78 (IQR:73-82) for the normal controls. The

median BMI was 26.4 (IQR: 23.83-29.64) for AD patients and 27.70

(IQR: 25.34-31.01) for the normal controls.

2.2 Sample preparation

Serum samples were processed using a well-established protocol cou-

pled to the dynamic multiple-reaction monitoring (dMRM) analyt-

ical method developed in our laboratory.13 Briefly, serum samples

were reduced with dithiothreitol, alkylated with iodoacetamide, and

digested with trypsin in a water bath at 37˚C for 18 hours. For gly-

copeptide quantitative analysis, tryptic-digested samples were ana-

lyzeddirectlywith no further enrichment, as shown inFigure S1. Serum

samples were then spiked with a synthetic peptide standard for inter-

batch reproducibility monitoring.

2.3 UPLC−ESI-QqQ−MS analysis of serum
glycoproteomic

The mixed samples were analyzed using ultrahigh-performance liquid

chromatography (UPLC) coupled with triple quadrupole mass spec-

trometry as described previously.12 Briefly, 2 μL samples were injected
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TABLE 1 Demographics data of participants with AD and controls

Control AD

N 99 96

Age (years) (median

[IQR])

78 [73–82] 79 [78–83]

Gender=Male (%) 49 (49.5) 49 (51)

BMI (median [IQR]) 27.7 [25.3–31] 26.4 [27–29.5]

APOE genotype

e22 (%) 1 (1.08) 0 (0)

e23 (%) 13 (14) 1 (1.06)

e24 (%) 1 (1.08) 3 (3.19)

e33 (%) 55 (59.1) 35 (37.2)

e34 (%) 23 (24.7) 42 (44.7)

e44 (%) 0 (0) 13 (13.8)

APOE ε4 Positivity (%) 30 (30.3) 60 (62.5)

Ethnicity

African American (%) 20 (20.4) 12 (12.5)

Hispanic (%) 26 (26.5) 10 (10.4)

White (%) 52 (53.1) 74 (77.1)

VerbalMemory Score

(median [IQR])

0.5 [−0.13–0.94] −1.4 [−1.3–1]

Executive Function Score

(median [IQR])

0.15 [−0.11–0.48] −0.72

[−0.63–0.47]

SemanticMemory Score

(median [IQR])

0.66 [−0.013–1.2] −0.33

[−0.42–0.17]

Spatial Score (median

[IQR])

0.45 [−0.11–0.82] −0.51

[−0.47–0.14]

CDR (median [IQR]) 0 [0–0.38] 4.5 [5.3–7]

TotalWhiteMatter

Hypertension (median

[IQR])

5.7 [2.7–13] 8.4 [15–18]

Intracranial Volume

(median [IQR])

1300 [1200–1400] 1300 [1300–1400]

Note: Cognitive function scores and brainmeasurements hadmissing values

in both groups. The number of data points for eachmeasurement was listed

in Table S3.

Abbreviation: AD, Alzheimer’s disease.

and separated by an Agilent Eclipse plus C18 column (rapid resolution

high definition [RRHD] 1.8 μm, 2.1×100mm) coupledwith a C18 guard

column (RRHD1.8 μm, 2.1×5mm). AnAgilent 1290 infinity liquid chro-

matography (LC) system (Agilent Technologies, Santa Clara, CA) was

used, and the separation was performed with a 70 minute binary gra-

dient consisting of solvent A of 3% acetonitrile, 0.1% formic acid, sol-

vent B of 90% acetonitrile, and 0.1% formic acid in nano pure water

(v/v) at a flow rate of 0.5 mL per minute. The UPLC system was cou-

pled to an Agilent 6490 triple quadrupole (QQQ) mass spectrometer

(Agilent Technologies, Santa Clara, CA) with the mass spectrometry

(MS) conditions as described previously.11 The dMRM method used

predetermined collision-induced dissociation from a previously deter-

mined study; however, LC retention timeswere adjusted. The list of the

serum glycoproteins monitored are shown in Table S1, which involved

over 400 transitions. A deep learning method PB-Net (Peak Boundary

Neural Network) was used for fully automatic chromatographic peak

integration.14 Relative glycopeptide abundanceswere calculated using

the area under the curve of the glycopeptide and normalized to its ref-

erence non-glycosylated peptide as described previously.13

2.4 Data processing and statistical analysis

Instrument reproducibility was monitored with commercially avail-

able digested serum samples (Sigma-Aldrich) as quality controls. The

digested serum pool was used as a quality control for monitoring

MRM transitions every 10 samples for a total of 20 technical repli-

cates. A hierarchical clustering was then performed using the rela-

tive abundance of all glycopeptides with average linkage to detect

any outlier samples. Samples were determined to be outliers at a

branch cutoff at height 15.5 using hierarchical clustering and were

removed from analysis. The coefficient of variation (CV) was calcu-

lated for all glycopeptides based on these pooled serum samples. Gly-

copeptides thatwere below the limit of quantitation for the instrument

or with CV >30% were excluded from analysis. The naming conven-

tion of the glycopeptides used throughout the text follows the con-

vention, Protein_Glycosite_Glycan. For example, IgG1_297_5510 reads

immunoglobulin G1 at glycosite N297 with N-glycan composition of

Hex(5)HexNAc(5)Fuc(1)Neu5Ac(0).

The fractions of sialylated and fucosylated peptideswere calculated

as the sum of relative glycopeptide abundances of non-, mono-, di-, or

poly-glycosylated peptides relative to that of the total peptides. Rela-

tive glycopeptide abundances of individual glycopeptides and the frac-

tions of sialylated and fucosylated peptides were used in subsequent

analyses. All statistical analyses were performed using the R statisti-

cal package (R version 4.1.0). Linear models were constructed for uni-

variate and multivariate analysis that included each potential covari-

ate separately. Each simple multivariate model had one covariate at

a time: glycopeptide abundance ∼ Diagnosis + covariate. These sim-

plemultivariatemodels were compared to the univariatemodel, which

included diagnosis group as the only variable to evaluate the impact

of these covariates on glycopeptide concentrations. Potential covari-

ates included age, sex, ethnicity, presence of the APOE ε4 allele, and

BMI. Linear models with interaction terms were used to analyze the

sex-by-AD diagnosis interaction and ethnicity-by-AD diagnosis inter-

action: glycopeptide abundance ∼ diagnosis + sex + diagnosis * sex or

glycopeptide abundance ∼ diagnosis + ethnicity + Diagnosis * ethnic-

ity. For sex-by-AD diagnosis interaction, a post hoc analysis was done

to estimate the sex-specific diagnosis effects on serum glycopeptide

abundance.

Differential expression analysis was performed as linear models

using the limma package in R. Coefficients related to diagnosis were

tested according to the null hypothesis (being zero) using t-tests mod-

erated in a Bayesian fashion. Raw P-values were then adjusted formul-

tiple hypothesis testing using theBenjamini-Hochberg (BH) correction.

The differences in glycopeptide abundance between normal control

and AD are presented as natural log fold-change.
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F IGURE 1 Changes in fucosylation and sialylation status in serum samples from patients with clinically diagnosed Alzheimer’s disease (AD)
compared to controls (ctrl) using partial least-squares discriminant analysis (PLS-DA). (A) The scores plot shows the distribution of subjects across
latent components 1 and 2 given the PLS-DAmodel for fucosylation status. (B)Variables with variable importance in projection (VIP) scores≥1.5
and their VIP scores in the PLS-DAmodel for fucosylation status. Variables colored in red are those selected for differential analysis and are
visualized in E-H. (C) The scores plot shows the distribution of participants across latent components 1 and 2 given the PLS-DAmodel for
sialylation status. (D)Variables with VIP scores≥1.5 and their VIP scores in the PLS-DAmodel for sialylation status. (E-H)Boxplots showing the
differences in abundance of non-fucosylated andmono-fucosylated immunoglobulin G1 (IgG1) and IgG2 proteins from control and AD samples

A partial least-squares discriminant analysis (PLS-DA) was per-

formed to assess the discriminatory potential of serum glycopeptides.

We scaled glycopeptide abundances to the variance of 1 and con-

ducted leave-one-out cross-validation (LOOCV) to identify the best

number of latent components using 1 through 20 with the train() func-

tion from the caret package. The importance of independent variables

in the PLS-DA model was measured using variable importance in pro-

jection (VIP) scores. Spearman’s correlation analysis was used to eval-

uate the association between glycopeptides, cognitive scores, Span-

ish and English Neuropsychological Assessment Scales (SENAS) scores

and clinical dementia rating (CDR).

3 RESULTS

A hierarchical clustering was first performed to target outlier sam-

ples that can result in false positives. The hierarchical clustering results

show three outlier samples that were excluded from all further analy-

sis (B10, C13, and A67) as shown in Figure S2. CVs were calculated for

all 372 glycopeptides monitored in this study and their distribution is

listed in Figure S3. Of the 372 glycopeptides monitored, 14 glycopep-

tides had CV values greater than 30% as listed in Table S2.

3.1 Fucosylated and sialylated glycopeptides in
AD

We grouped glycopeptides by their fucosylation and sialylation status

separately and assessed whether the fucosylation and sialylation sta-

tus of glycopeptides discriminates serum samples from AD patients

and normal controls by looking at patterns of fucosylated and sialy-

lated glycopeptides generated from PLS-DA analysis. The fucosyla-

tion and sialylation status of glycopeptides did not explicitly separate

AD samples from normal controls with PLS-DA models (Figure 1A,C).
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F IGURE 2 Changes in serum glycopeptide abundance in serum samples fromAlzheimer’s disease (AD) patients compared to controls using
PLS-DA. (A) The scores plot shows the distribution of participants across latent components 1 and 2 given the PLS-DAmodel for glycopeptides. (B)
Variables with VIP scores≥1.5 and their VIP scores. Variable colored in red are those selected for differential analysis and are visualized in C-E.
(C-E)Boxplots showing the differences in abundances of glycopeptides from control and AD samples. Protein complement factor I (CFAI),
apolipoprotein B (apolipoprotein B) and Complement C3 (CO3).N-glycan symbol key: yellow circles, galactose (Gal); green circles, mannose (Man);
blue squares,N-acetylglucosamine (GlcNAc); red triangles, fucose (Fuc); purple diamonds,N-acetylneuraminic acid (Neu5Ac)

However, the models show that several changes in overall sialylation

and fucosylation of serum glycoproteins may be indicators of AD dis-

ease state. The PLS-DA model for fucosylation status had 12 gly-

copeptides with VIP scores >1.5. A VIP score >1.5 is considered to

enable discrimination between groups. Notably, non-fucosylated and

mono-fucosylated immunoglobulin G1 (IgG1) and IgG2 had high con-

tributions to the model with VIP score >2, indicating the fucosyla-

tion status of IgG1 and IgG2 may be potential biomarkers for AD

(Figure 1B). The PLS-DA analysis for sialylation identified 19 glycopep-

tides with VIP scores >1.5, which includes inflammation response gly-

coproteins such as Kininogen-1 (KNG1) and immune response glyco-

proteins such asComplement factor I (CFAI) aswell as lipidmetabolism

glycoproteins Apolipoprotein C3 (APOC3) and Clusterin (CLUS)

(Figure 1D).

3.2 Identification of aberrantly fucosylated or
sialylated glycopeptides in AD

The PLS-DA analysis for fucosylation and sialylation showed that AD

and control samples were located in two clusters in the scores plot

with some overlap. We then identified fucosylated and sialylated gly-

copeptides that drive the discrimination for AD versus normal con-

trols using differential analysis. For fucosylation, six statistically sig-

nificant glycoproteins, which correspond to 10 glycopeptides, differed

(P-values < .05) between AD and normal controls in the univariate

model, including glycopeptides with a high contribution to the fuco-

sylation PLS-DAmodel (non-fucosylated IgG1, monofucosylated IgG1,

non-fucosylated IgG2, mono-fucosylated IgG2, and so on) (Figure 1E-

H and Figure S4A). For sialylation, eight proteinswith 10 glycopeptides

differed between AD and normal controls (Figure S4B).

3.3 Glycopeptide signatures of AD

We then used PLS-DA analysis to model the individual glycopeptide

data and found a separation between the AD patients and normal

controls, although as with the fucosylation and sialylation data there

was overlap between the groups (Figure 2A). The model had 51 gly-

copeptides that had a VIP score >1.5, including proteins involved in

lipid metabolism (APOB, APOC3, APOH), immunity (IgG1, IgG2, IgM),

and inflammation response (CO3, CFAI, VTNC, ANT) (Figure 2B). We

then determined whether there were significant differences between

patients and controls in the abundance of the glycopeptides that had
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F IGURE 3 Differential analysis of glycopeptides and the impact of confounders on glycopeptide abundance. (A) The heatmap shows
glycopeptides significantly different in Alzheimer’s disease (AD) patients compared to controls using univariate andmultivariate linear
regressions. The dot size shows the effect size (absolute fold change). Darker background color refers to smaller P-value (beforemultiple testing
correction). (B-C) The boxplot shows the sex specific diagnosis effects on serum glycopeptide abundance. Differences with P-value< .05 are
denoted by asterisk, whereas differences with P> .05 are denoted as “ns” (not significant). (D-E)Boxplot showing the ethnicity specific diagnosis
effects on serum glycopeptide abundance. Protein abbreviations: Inter-alpha-trypsin inhibitor heavy chain H1 (ITIH), immunoglobulin G1 (IgG1),
immunoglobulin A2 (IgA2), and immunoglobulinM (IgM).N-glycan symbol key: yellow circles, galactose (Gal); green circles, mannose (Man); blue
squares,N-acetylglucosamine (GlcNAc); red triangles, fucose (Fuc); purple diamonds,N-acetylneuraminic acid (Neu5Ac)

a high contribution to the PLS-DA model using differential analysis.

CFAI_494_5402 and CO3_85_5200 were significantly increased and

APOB_983_5401 was significantly decreased in the AD patients com-

pared to controls (P-values< .05). The three glycopeptides are all non-

fucosylated (Figure 2C-E).

3.4 Identification of aberrant glycopeptides in AD

Wenext performed differential analysis to identify which glycopeptide

abundances differed in the serum of AD patients versus normal con-

trols. With the univariate model, among the 372 glycopeptide tran-

sitions monitored accounting for 53 of the 57 glycoproteins, 35 gly-

copeptide abundances were altered in individuals with AD, including

19 upregulated glycopeptides and 16 downregulated glycopeptides (P-

values< .05, Figure 3A). Among the 35 glycopeptides that were differ-

entially expressed in AD patients, most belong to proteins involved in

immune function, including immunoglobulins and acute-phase proteins

such as alpha-1-antitrypsin (A1AT), alpha-2-macroglobulin (A2MG),

alpha-1-acid-glycoprotein (AGP1), alpha-2-HS-glycoprotein (FETUA),

and complement C3 (CO3). After adjusting for sex and age sepa-

rately, these differences remain statistically significant. With the mod-

els adjusting for ethnicity, APOE ε4, and BMI separately, the majority

of the differentially expressed glycopeptides remained statistically sig-

nificant; however, new differences were also detected in these multi-

variate models as shown in the x-axis of Figure 3A. In the final mul-

tivariate model, all covariates including sex, age, ethnicity, APOE ε4
status, and BMI were included. This analysis yielded 24 significant

AD-associated glycopeptides (Figure 3A). The glycopeptides with the

highest VIP scores in the PLS-DA model, such as CFAI_494_5402,

APOB_983_5401, A1AT_271MC_5402, FETUA_346_1101, and so on,

were also significantly different by differential expression analysis
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(P-values< .05), indicating that they are important in distinguishingAD

patients from controls.

3.5 Potential confounders

Factors including sex, ethnicity, age, BMI, and APOE ε4 genotype had

impacts on glycopeptide abundances in serum. Sex and ethnicity were

the two major confounders that influenced glycopeptide abundance

in controls and AD. We analyzed the contributions of sex and eth-

nicity on serum glycopeptide abundances as covariates in the linear

regression models. Among 372 glycopeptides, 135 glycopeptide abun-

dances differed by sex, including 50 that were significantly higher in

females and 85 that were significantly higher in males (adjusted P-

values < .05, Figure S5 A). Thirty-eight glycopeptides significantly dif-

fered across ethnicity groups, where KLKB1_127_5410 had the lowest

P-value (adjusted P-values < .05, Figure S5 B-D). The impacts of other

confounders are shown in Figure S5 E-G.

Our study also provided the evidence of sex-by-AD diag-

nosis and ethnicity-by-AD diagnosis interactions. For example,

ITIH4_517_5420/5401was decreased inmale AD patients versus con-

trols (P-value< .05) but was not different in female AD patients versus

controls (Figure 3B). In contrast, IgG1_297_5510 was increased in AD

female patients versus controls (P-value < .05) but was not different

in male patients versus controls (Figure 3C). For the ethnicity-specific

effects, diagnosis had a different effect in glycopeptides such as IgA2

_201_5511, IgM _209_5511 depending on the ethnicity of subjects

(Figure 3D,E).

3.6 Associations between glycopeptides and
clinical cognitive scores

Correlation analysis revealed associations between cognitive scores

and glycopeptides that were important in discriminating AD patients

and controls. For example, non-fucosylated and mono-fucosylated

IgG2, the former of which was increased and the latter of which was

decreased in AD, were positively and negatively correlated with the

CDR (Figure S6, A&B), respectively. CO3_85_5200, which highly con-

tributed to the PLS-DAmodel and which was increased in AD patients

versus controls, was negatively associated with semantic score, and

positively associated with CDR (Figure S6, C&D).

4 DISCUSSION

In this study we set out to determine whether serum-based glycopep-

tide analysis may be a useful approach for identifying novel action-

able diagnostics for AD. Our results suggest that serum glycopep-

tide profiling is a promising approach for the development of new

biomarkers. Even with this platform, which is not yet tailored for AD-

specific glycanmarkers, and instead is an application of an existing plat-

form developed originally for cancer diagnostics, our results indicate

that glycopeptide profiling can uncover important underlying disease

mechanisms and point to future biomarker development. The impor-

tance of the fucosylation status of IgG in discriminating between con-

trols and AD patients stood out as an important finding (Figure 1B).

As the most abundant antibody in human blood, the importance of

IgG in inflammation, infections, metabolic health, and autoimmunity

is well established.15,16 Specifically, an increased abundance of non-

fucosylated IgG1 and IgG2 was observed in AD patients compared

with controls (Figure 1, E&G). Previous investigations have associ-

ated dementia with IgG N-glycans; however, this previous work lacked

site-specific information and did not include a diverse cohort in the

population selection.17 The extent of IgG fucosylation and sialylation

has been found previously to be associated with the pro- versus anti-

inflammatory signaling of IgG,with non-fucosylated and non-sialylated

IgG preferentially binding to pro-inflammatory Fcγ receptors.18 In

addition, PLS-DA analysis of glycopeptides was able to separate AD

patients from controls (Figure 2A) and proteins with VIP score >1.5

also involved immunoglobulins IgG1, IgG2, IgA, and IgM, among others

(Figure 2B). Together our results highlight the dysregulation of glyco-

sylation of immune response proteins, particularly immunoglobulins, in

AD pathology. Other glycopeptides with VIP score >1.5 included pro-

teins involved in lipid metabolism (APOB, APOC3, APOH) and inflam-

mation response (CO3, CFAI, VTNC, ANT) (Figure 2B). For example,

themono-sialylated glycopeptideAPOB_N983_5401was decreased in

AD patients compared to controls (Figure 2D). Previous studies have

shown a relationship between the glycosylation state of lipoprotein-

associated proteins and the pro-inflammatory capacity and function-

ality of their lipoprotein carrier.19,20

The univariate model showed 35 altered glycopeptide abundances

in AD patients from the 372 glycopeptide transitions monitored

(Figure 3A). All altered proteins are involved in immune function and

immune response, including immunoglobulins and acute phase pro-

teins. Of interest, all immunoglobulin glycopeptides were observed to

be increased in AD patients. The study cohort involved equal num-

bers of males and females, and equal average age in both groups; thus

when adjusting for sex and age, all glycopeptide remained statistically

significant as expected. Age and sex are the covariates that are typ-

ically accounted for in biomarker discovery; however, our study sug-

gests that ethnicity is also an important variable that can contribute

to variability (Figure 3D&9). Research on racial disparities in biomark-

ers for AD has shown that analyses of molecular biomarkers of AD

should adjust for race. Given the low sample size for participants of

different ethnic groups in this preliminary study, we are not able to

fully explore the contribution of ethnicity to the variability in serum

glycopeptide profiles. However, our results indicate that serum glyco-

profiling may be an exceptionally useful tool for the development of

biomarkers in a disease such asAD, inwhich ethnic-specific differences

in disease pathophysiology and biomarker profiles are marked. For

instance, a differential effect on total tau and phosphorylated tau181

has been shown to differ in African American individuals compared

to White individuals.21 Our data revealed that certain glycopeptides

such as KLKB1_127_5410 strongly distinguished between ADpatients

and controls only in African American participants but not inWhite or
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Hispanic participants, highlighting the potential for the development of

glycan-based diagnostics that have the ability to identify individuals at

risk of developing AD across a broad diversity of individuals (Figure S5,

B-D).

Of note, our data revealed that non-fucosylated IgG2 was posi-

tively correlated with CDR while mono-fucosylated IgG2 was nega-

tively correlated with CDR (Figure S6 A and B). This result suggests

a direct relationship between immunoglobulin fucosylation and clini-

cal measures of cognitive function loss. Likewise, a non-sialylated, non-

fucosylated glycopeptide of CO3 was also positively correlated with

CDR (Figure S6 C), highlighting the loss of fucosylation and sialylation

at specific sites of immune-related proteins as a potential mediator

and/or biomarker ofAD.Major challenges in thedevelopment of blood-

based biomarkers for AD include a high degree of patient heterogene-

ity and the potential existence ofmultiple clinical phenotypes.22–24 It is

important tonote that newbiomarkers are needednot just for diagnos-

tic purposes but also for determining prognosis and monitoring ther-

apeutic efficacy. In this pilot work, we sought to determine whether

serum-based glycoprofiling may be a useful approach to address these

critical questions in the field. Our work for the first time utilized a

previously developedMRM analytical method to monitor glycan alter-

ations in serum glycoproteins in a site-specific manner to determine

whether serum glycoprofiling can discriminate between AD patients

and controls, but also simultaneously point to potential therapeutic

approaches to prevent, treat, or reverse AD. Our results suggest that

serum glycoprofiling may indeed be a powerful biomarker discovery

platform that can be harnessed to identify new markers in diverse

cohorts and new therapeutic targets, particularly those focused on

immune-related mechanisms. Future studies including a larger sample

size, particularly in ethnically diverse cohorts powered to account for

age, sex, and ethnicity, are needed to develop glycan-based biomarkers

for AD. Further work to refine the transitions monitored by the MRM

method that are specific toADwould improve the sensitivity and speci-

ficity of the biomarkers.
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