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Xenopus leads the way: Frogs as a pioneering model to 
understand the human brain

Cameron R. T. Exner, Helen Rankin Willsey
Department of Psychiatry and Behavioral Sciences, Langley Porter Psychiatric Institute, 
Quantitative Biosciences Institute, UCSF Weill Institute for Neurosciences, University of 
California, San Francisco, San Francisco, CA 94143, USA

Abstract

From its long history in the field of embryology to its recent advances in genetics, Xenopus has 

been an indispensable model for understanding the human brain. Foundational studies that gave us 

our first insights into major embryonic patterning events serve as a crucial backdrop for newer 

avenues of investigation into organogenesis and organ function. The vast array of tools available in 

Xenopus laevis and tropicalis allows interrogation of developmental phenomena at all levels, from 

the molecular to the behavioral, and the application of CRISPR technology has enabled the 

investigation of human disorder risk genes in a higher-throughput manner. As the only major 

tetrapod model in which all developmental stages are easily manipulated and observed, frogs 

provide the unique opportunity to study organ development from the earliest stages. All of these 

features make Xenopus a premier model for studying the development of the brain, a notoriously 

complex process that demands an understanding of all stages from fertilization to organogenesis 

and beyond. Importantly, core processes of brain development are conserved between Xenopus 
and human, underlining the advantages of this model. This review begins by summarizing 

discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental 

biology and goes on to discuss recent advances that have catapulted our understanding of brain 

development in Xenopus and in relation to human development and disease. As we engage in a 

new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover 

conserved biology underlying human brain disorders and move towards rational drug design.

Keywords

Amphibian; neural; organogenesis; genetics; birth defects

Introduction

The development of the vertebrate central nervous system is a famously intricate and 

complicated process. Human brain development is particularly difficult to characterize, due 

both to its extraordinary complexity and to its inaccessibility. Nevertheless, because it is the 

primary organ that determines how we experience and interact with the world, the brain is 
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the holy grail in terms of our desire to understand how we exist and function. A variety of 

model systems have been used to glean insight into how the brain forms and operates, and 

continue to contribute to our growing knowledge about the development of the nervous 

system and the disorders that perturb its functions.

A major goal of neurobiology has been to determine the etiology of disorders of the brain, 

which constitute a large fraction of medical diagnoses and often suffer from widespread 

stigmatization (Rössler 2016). Reaching this goal requires a thorough understanding of 

typical neurodevelopment, as well as the ability to identify and test a plethora of interacting 

genetic and environmental factors and correctly interpret their effects. Recently, impressive 

strides have been made in the discovery of disorder risk genes through massive patient 

sequencing studies at the exome or whole genome level, particularly in psychiatric and 

developmental disorders like autism (An et al. 2018; Grove et al. 2019; Satterstrom et al. 

2020; Wang et al. 2020). The result of these efforts has been an ever-growing list of genetic 

loci, each predicted to contribute in some degree to the likelihood that a disorder will present 

in an individual who exhibits variation in them. The identification of risk genes lays a 

foundation for elaborating the molecular mechanisms underlying each disorder. However, 

these genetic risks are also affected by background genetic heterogeneity and environmental 

factors, which adds complexity to the analysis of their contribution. Further complicating the 

elucidation of disorder etiology, these genes likely have pleiotropic functions in different cell 

types during different developmental periods (Sestan and State 2018). Similarly, any 

potential treatment (pharmaceutical or otherwise) may affect the activity of more than one 

target, and testing both the efficacy and the possible off-target effects of these treatments is 

critical before they can be implemented.

This scenario demands a model in which multiple factors can be investigated in a high-

throughput manner, to match the accelerating pace of gene discovery, the large number of 

genes that can carry risk for a single disorder, and the accompanying prospect of potential 

treatments (A. J. Willsey et al. 2018; Sestan and State 2018). Rodents and primates, although 

commonly employed in the investigation of brain disorders, are not appropriate for such 

large scale and exploratory work. An alternative model is required to begin to tackle the 

staggering scope of potential etiological factors and generate focused hypotheses that can 

then be tested in mammalian systems. Fortunately, mounting evidence suggests that the 

neurodevelopment of other tetrapods may be more similar to the human case than previously 

appreciated (Clinton et al. 2014; Fernandez et al. 1998; Martínez-Cerdeño et al. 2016; 

Medina and Abellán 2009; Norimoto et al. 2020; Tosches et al. 2018). Without a doubt, 

fundamental discoveries made in other models have already given invaluable insight into 

mechanisms of human brain development, in addition to guiding the establishment of new in 
vitro models, including human iPSCs and organoids (Andrews and Nowakowski 2019; 

Bhaduri et al. 2020; McCammon and Sive 2015; Munoz-Sanjuan and Brivanlou 2002; Pasca 

2018; Pollen et al. 2019; Simunovic and Brivanlou 2017).

In this review, we summarize why frogs of the genus Xenopus are an ideal model at this 

juncture. As we describe below, the same features that have made Xenopus laevis a favored 

system for embryological studies and a fertile ground for the mechanistic characterization of 

neurodevelopmental processes remain key advantages in their continued use as models of 
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human disorders. Importantly, recent technological advances in gene editing have also flung 

open the doors for Xenopus tropicalis to emerge as a higher-throughput genetic model. The 

combination of these features, especially in light of the deeply conserved nature of tetrapod 

brain development, makes Xenopus a strong member of the model organism armamentarium 

in the pursuit of an understanding of neurodevelopmental disorder biology.

Amphibian embryology sets the stage

Part of the reason that amphibians are a major model today is the richness of their history as 

a model system and the consequent deep understanding of their development that permits 

contextualization of ongoing discoveries. Over a century ago, experimentalists chose 

amphibian embryos, both anuran (frogs, including Xenopus) and urodele (newts and 

salamanders), as the ideal candidates to develop and apply the embryological techniques 

necessary to answer central questions about animal development (Gurdon and Hopwood 

2000; Wlizla, McNamara, and Horb 2018). The unique convergence of several appealing 

features of amphibian development made them the obvious choice at the time and are major 

strengths to this day. Intuitive among these are amphibian embryos’ rapid, external, and 

robust development and large size; the large number of embryos that can be obtained from a 

single mating pair; the ability to induce mating year-round in species including Xenopus; 

and the cost-effectiveness of animal care (Gurdon and Hopwood 2000; McNamara, Wlizla, 

and Horb 2018; Wlizla, McNamara, and Horb 2018). Additionally, embryos can be cultured 

easily through all developmental stages in simple saline solution and are remarkably 

amenable to explant, transplant, and ablation techniques (Schoenwolf 2001; Sive, Grainger, 

and Harland 2000). No other tetrapod model boasts this combination of traits. Aside from 

these inherent advantages, careful observation and lineage tracing using either endogenous 

pigments or applied dyes allowed the generation of reliable developmental time tables and 

fate maps, which have served as a crucial framework for future experiments (Dale and Slack 

1987; Keller 1975, 1976; Moody 1987a,b). Further advantages relevant to molecular 

investigations are discussed below.

All of these features made amphibians a favored model, and can explain why foundational 

principles of embryonic (including neural) development were discovered in this system. 

These discoveries have been thoroughly reviewed by many others (De Robertis etal. 2000; 

Gurdon and Hopwood 2000; Harland and Grainger 2011; Kimelman 2006), but for the 

purpose of contextualizing the rest of this review, two examples will be briefly summarized 

here. Famously, Mangold and Spemann used transplantation and lineage tracing techniques 

to demonstrate the powerful inducing activities of the dorsal mesoderm, which came to be 

known as the Organizer (Spemann and Mangold 1924). This tissue, like its homologs in 

other vertebrates, is responsible for establishing the dorsal-ventral axis of the embryo, 

including the induction of neural identity in the dorsal ectoderm (De Robertis et al. 2000; 

Niehrs 2004). Another major discovery, made by Barth and similarly by Holtfreter, was that 

dissociated cells of the blastula stage embryo differentiate with neural identity (Barth 1941; 

Holtfreter 1944). This led to the idea that the “default” identity of cells is to assume a neural 

fate. Following from these and other experiments came the long-standing two-step 

“activation and transformation” model of neural specification, proposed by Nieuwkoop, 

wherein the neural territory is first induced in the dorsal ectoderm with anterior identity, and 
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posterior neural fates are subsequently induced in more caudal positions (Nieuwkoop 

1952a,b; Nieuwkoop et al. 1952). This model has been deeply influential in ongoing efforts 

to characterize the mechanisms of neural induction and patterning across vertebrates (see 

below).

These discoveries exemplify some of the most essential contributions of amphibians as 

classical embryological models. As a prelude to the explosion of molecular discoveries that 

would describe a litany of mechanistic detail, amphibians were already a preeminent model 

in the investigation of vertebrate neurodevelopment. As the field of developmental biology 

turned towards a molecular approach, additional characteristics of amphibian embryos 

served to further strengthen their position, as discussed below.

Drilling down into mechanisms: Unique opportunities presented by the 

Xenopus toolkit

The aforementioned embryological work demonstrated which embryonic tissues participate 

in neural induction, but the molecules responsible for this process remained a mystery for 

several decades, despite fervent efforts to identify them in various vertebrate models. In the 

1990s, however, unique technical capabilities of the Xenopus embryo synergized with 

elegant and creative experimental design to identify these molecules for the first time 

(references to follow in this section). This foundational work unlocked a molecular treasure 

chest for the detailed characterization of vertebrate neurodevelopment by relying on a core 

set of tools offered only by the Xenopus system. A brief summary of this essential toolkit is 

given in this section and presented graphically in Figure 1, followed by a discussion in the 

next section of major molecular discoveries made possible by Xenopus research.

Along with the embryological advantages summarized above, several key features kept 

Xenopus in the spotlight, especially as more molecular tools became available. Chief among 

these is the ability to easily inject reagents of choice into individual blastomeres at early 

stages, and, with the use of lineage tracing dyes and detailed fate maps, observe their direct 

and indirect effects throughout subsequent developmental stages (Figure 1 B,E). Injectable 

reagents include plasmids and mRNA for overexpression experiments, morpholinos for 

knockdown of maternal or zygotic expression, and, recently, CRISPR/Cas9 for genome 

editing (Aslan et al. 2017; Bhattacharya etal. 2015; Blitz et al. 2013; Guo et al. 2014; Naert 

et al. 2020; Naert and Vleminckx 2018; Nakayama, Grainger, and Cha 2020; Tandon et al. 

2017). Although all of these tools can be used in Xenopus laevis or X. tropicalis, CRISPR 

approaches have more commonly been deployed in X. tropicalis due to its diploid genome, 

whereas the pseudotetraploid X. laevis is often preferred for overexpression experiments and 

for embryological, cell biological, and biochemical approaches because of its larger size 

(Harland and Grainger 2011; Kakebeen and Wills 2019).

In both species, targeted injection of single blastomeres has been utilized extensively to 

restrict the direct effects of such perturbations to tissues of choice, such as to the dorsal 

ectoderm that gives rise to the brain (Moody 1987a,b). One important and widely used 

version of this strategy is to inject only one cell at the 2-cell stage. Crucially, in Xenopus, 
unlike the other major vertebrate models, the progeny of each of these cells stay mostly 
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restricted to either the left or the right sides of the animal, without much mixing. Thus, any 

molecules injected into only one of these two cells will be inherited by one side of the 

animal, while the other side will be left as an internal control (Figure 1 B,E). This makes it 

possible to compare manipulated tissue to contralateral control tissue within an individual 

animal, enabling the detection of subtle phenotypes that are difficult or impossible to detect 

via comparisons between individuals (DeLay et al. 2018; H. R. Willsey et al. 2018; Willsey 

et al. 2020). To complement the spatial precision afforded by targeted injections, some of the 

available tools can also achieve temporal specificity under the experimenter’s control (for 

example, drug- or heat-inducible constructs) (Chae, Zimmerman, and Grainger 2002; Horb 

et al. 2019; Roose et al. 2009; Wheeler, Hamilton, and Hoppler 2000).

Other common approaches similarly take advantage of the amphibian embryo’s size and 

accessibility. Conveniently, the aquatic nature of Xenopus development facilitates 

straightforward treatment with pharmacological agents (Figure 1 C), either on their own or 

to induce the activity of injected molecules (Tomlinson, Hendry, and Wheeler 2012; 

Wheeler and Brandli 2009; Willsey et al. 2020). Many of these can subsequently be washed 

out by returning embryos to drug-free medium. Injected reagents and drug treatments can 

also be applied in combination with explant or transplant techniques (Figure 1 D) (Dingwell 

and Smith 2018; Lowery et al. 2012), a tactic that has been applied extensively to give 

molecular insight into major embryological discoveries like the ones discussed above.

The effects of these manipulations are also easily assessed in Xenopus (Figure 1 E–l). 

Observation of gross embryonic phenotypes alone can often give a quick and convenient 

readout. In situ RNA hybridization and immunostaining techniques allow simple 

visualization of transcripts and proteins or other molecules in whole mount embryos, 

explants, or sectioned tissue. Transgenic lines expressing fluorescent reporters that facilitate 

live imaging are increasing in their availability through the efforts of individual labs and 

resource centers (Horb et al. 2019; Nenni et al. 2019; Pearl et al. 2012; Tandon et al. 2017). 

Standard molecular biology techniques like RT-PCR, co-immunoprecipitation, and Western 

blot are commonly employed to gain additional information, and tools for studying 

physiological and behavioral metrics are also readily available (references below). More 

recently, omics techniques have been applied to characterize transcript and protein 

expression, chromatin accessibility, and metabolic features in different tissues over 

developmental time, with or without experimental manipulation and often at single-cell 

resolution (Aztekin et al. 2019; Briggs et al. 2018; Kakebeen et al. 2020; Lombard-Banek, 

Choi, and Nemes 2020; Lombard-Banek et al. 2017; Niu et al. 2020; Owens et al. 2016; 

Peshkin et al. 2015; Sun, Champion, et al. 2016; Sun, Dubiak, et al. 2016; Willsey et al. 

2020). The result of all this experimental power has been a steadily growing body of 

knowledge about Xenopus development that supports ongoing work (Heasman 2006; 

Houston 2017). As described below, the application of this suite of techniques in Xenopus 
has facilitated the discovery of highly conserved molecular features fundamental to 

vertebrate neural development.
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Understanding neural induction, neural patterning, and neurogenesis: 

Fundamental discoveries made in Xenopus

Equipped by previous embryological discoveries with a knowledge of the tissue interactions 

important for neural induction and patterning, as discussed above, the field had turned an 

eager eye toward the identification of the molecular players responsible. Research 

(references to follow in this section) took advantage of the exceptional tractability of the X. 
laevis embryo to isolate and clone novel genes and to assess their functions through 

overexpression, knockdown, and rescue experiments. Several studies used an expression 

cloning approach to isolate factors whose inductive capabilities were then tested by injecting 

synthetic mRNA or morpholino oligonucleotides and observing the resulting embryonic 

phenotype, such as induction of ectopic dorsoanterior structures or reduction of head 

features. Much of the early work also made use of the animal cap, an explanted region of the 

embryonic ectoderm already known to be sensitive to inductive signals from other tissues, to 

assay the effects of candidate neural-inducing molecules; hypotheses generated by this 

approach were then tested in whole embryos to confirm their relevance. The identification of 

several molecular markers of neural identity, often of particular brain regions (see below), 

provided additional robust and definitive molecular readouts of the activity of newly 

identified factors. Once again, the remarkable amenability of the Xenopus embryo made it 

an efficient and productive system for making foundational discoveries about a growing list 

of molecular players, which would later be shown to have conserved roles in the 

neurodevelopment of other vertebrates, including humans.

During the 1990s, innovative experimentation took advantage of the unique combination of 

embryological and molecular tools available in X. laevis to identify the factors responsible 

for vertebrate neural induction for the first time. Pivotal experiments began with the isolation 

of mRNA from dorsal tissues and the construction of cDNA libraries, which were subjected 

to a variety of tests to home in on individual genes that function in dorsal induction. One 

particularly elegant approach was to inject pools of these cDNAs into embryos that had been 

ventralized by UV irradiation; single cDNA clones that could rescue the phenotype and 

induce dorsal (including neural) fates were subsequently isolated by iteratively fractionating 

and testing the cDNA pools (Smith and Harland 1991; Smith and Harland 1992; Smith et al. 

1995). A parallel strategy was to demonstrate dorsal-inducing activity by injecting into the 

ventral side of un-irradiated embryos to identify clones able to induce a secondary axis (Cho 

et al. 1991; Sasai et al. 1994; Sokol et al. 1991). These experiments were only possible in 

Xenopus, due to the ability to easily generate embryos in large enough numbers and to 

screen plasmid libraries via injection with rapid phenotyping. Other tests, which required a 

similarly large number of embryos, involved in situ mRNA hybridization staining to 

demonstrate specific expression in endogenous or experimentally-induced dorsal tissues. 

These approaches identified many molecules expressed by the Organizer and anterior 

endoderm that are capable of inducing dorsal identity. Further experiments in X. laevis 
showed that several of these molecules are BMP antagonists, and their activity is required to 

prevent the neural ectoderm from being converted to epidermal fate by BMP signals 

produced on the ventral side (Fainsod et al. 1997; Khokha et al. 2005; Piccolo et al. 1996; 

Zimmerman, De Jesús-Escobar, and Harland 1996). Likewise, their ectopic overexpression 
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is sufficient to induce a secondary axis, which explains at the molecular level how 

transplantation of an Organizer into a new host has the same consequence. Three of these 

antagonists (Chordin, Noggin, and Xnr3) were originally discovered in Xenopus using these 

strategies (Sasai et al. 1994; Smith and Harland 1992; Smith et al. 1995), and their function 

in dorsal induction is conserved throughout vertebrates. Indeed, their activity is so central to 

neural induction that they are exploited by current protocols that generate neurons from 

human iPSCs in culture (Lee, Lee, and Moody 2014; Sasai et al. 2008).

This work constituted a major breakthrough, and served as a crucial turning point in 

neurodevelopmental biology for at least three reasons. First, it highlighted some previously 

unappreciated parallels between core principles of Drosophila and vertebrate neural 

development, namely that BMP antagonism is required for neural induction, even though 

many of the vertebrate genes involved were novel (i.e., had no known fly ortholog). 

Importantly, these vertebrate genes had been discovered not by intentionally testing 

invertebrate players, but by the independent approach of expression screening experiments 

described above. This discovery inspired the targeted investigation of other vertebrate 

homologs of genes known to regulate Drosophila neural development (see below). Second, 

although most publications focused only on one or two genes at a time, the expression 

cloning approach had generated vast libraries of plasmids encoding candidate regulators of 

neural specification, neural patterning, and neurogenesis. This trove of potential molecular 

regulators was the subject of systematic investigation over the coming years, and has 

continued to reliably identify new players to this day. Third, this work generated an 

invaluable experimental paradigm for the rapid characterization of new molecules, whether 

brought to attention due to homology with Drosophila genes or directly through empirical 

methods in vertebrates. The endogenous neural plate of Xenopus had become a simple, 

robust, and familiar ground for assaying neural identity. Furthermore, the identification of 

BMP antagonists as powerful neural inducers allowed investigators to reproducibly generate 

large quantities of neural tissue in the form of neuralized animal caps, which could then be 

subjected to further manipulations to characterize candidate regulators.

Indeed, many experiments capitalized on the accessibility of animal caps or explanted neural 

plates to test for novel functions in neural patterning. A common approach involved 

injection of mRNA encoding suspected anteriorizing or posteriorizing factors directly into 

the embryo; explants could then interrogated via in situ mRNA hybridization, Western blot, 

RT-PCR, or other assays to detect regional neural markers (e.g., otx2 for the anterior neural 

plate, egr2 (krox20) for rhombomeres 3/5 of the hindbrain, or hoxb9 for the spinal cord 

(Nieto, Bradley, and Wilkinson 1991; Pannese et al. 1995; Wright et al. 1990). Neural 

identity could be similarly queried after coculture with other regions of the embryo, 

especially after overexpression or knockdown of candidate regulators in these regions. 

Explants thus provided a straightforward readout of the effects of such manipulations on 

neural fate. Meanwhile, the intact Xenopus embryo was readily available to test the resulting 

hypotheses in a more physiological context. Overexpression and depletion experiments in 

whole embryos were often assessed through phenotypic readouts or by in situ mRNA 

hybridization for regional neural markers. Importantly, these stains in whole embryos 

allowed for a spatially intact comparison between regional markers, to distinguish the effects 

of candidate regulators on different regions along the anteroposterior axis. For example, co-
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staining for otx2, krox20, and hoxb9 within the same embryo could show a loss of one 

domain, a shift in another, and an expansion in the third. Furthermore, unilateral 

perturbations through targeted blastomere injection further empowered these analyses by 

permitting comparison to the contralateral control. This retention of spatial information 

within embryos was critical for detecting the effects of signaling gradients and counter 

gradients of secreted antagonists (see below).

Patterning of identities within the neural ectoderm was pioneered using these approaches in 

Xenopus, fueled by previous expression screens and with a growing focus on major 

developmental signaling pathways as likely regulators. Again, the demand for an efficient 

system in which many candidate molecules could be tested quickly, rigorously, and in a 

uniform manner made Xenopus a central model during this era. Discoveries in Xenopus 
showed that, as neural specification proceeds, Wnt, FGF, and retinoic acid (RA) signals 

produced in caudal regions of the embryo induce posterior neural identities in those 

positions (Cox and Hemmati-Brivanlou 1995; Durston et al. 1989; Holowacz and Sokol 

1999; Kiecker and Niehrs 2001; Kolm and Sive 1997; Kolm, Apekin, and Sive 1997; 

McGrew, Hoppler, and Moon 1997; Pownall et al. 1996; Ribisi et al. 2000; Sharpe 1991). 

Echoing the role of BMP antagonism in establishing neural identity, and giving molecular 

character to the “default” model, inhibitors of these signaling pathways preserve the anterior 

character of the rostral neurectoderm (Bouwmeester et al. 1996; Glinka et al. 1998; 

Kazanskaya, Glinka, and Niehrs 2000; Leyns et al. 1997; Pera and De Robertis 2000; 

Piccolo et al. 1999; Shibata et al. 2000; Wang et al. 1997). Several of these inhibitors, 

including the Wnt antagonists Dickkopf-1 and Frzb and the trivalent BMP, Nodal, and Wnt 

inhibitor Cerberus, were identified as anterior neural inducers by work in X. laevis before 

being shown to have the same role in other vertebrates. Targets of these patterning pathways 

were also described in Xenopus and continue to be used as markers of different regions of 

the brain and spinal cord. The evidence supports the major tenets of the “activation and 

transformation” model (Carron and Shi 2016; De Robertis et al. 2000), although 

modifications to this model have been proposed, also based on work in Xenopus (Polevoy et 

al. 2019). These events and players are, as usual, highly conserved among vertebrates.

Another major area of contribution by work in Xenopus has been in the discovery and 

functional characterization of molecules that regulate neurogenesis. Much of this work has 

used primary neurogenesis as a model, due in large part to its early occurrence during 

embryogenesis and its easy visualization on the dorsal surface of the amphibian embryo 

(Chitnis et al. 1995; Hartenstein 1989, 1993). Mechanisms of neurogenesis discovered in 

Drosophila were frequently functionally tested in vertebrates for the first time using 

Xenopus, through gain-and loss-of-function schemes in whole embryos via the techniques 

described above. Once again, the visual and experimental accessibility of the amphibian 

embryo made it a powerful platform for the isolation and functional characterization of a 

host of new molecules. Now-famous proneural factors, including the Neurogenin, NeuroD, 

and AscI families, were functionally characterized for the first time in X. laevis in the 1990s 

(Ferreiro et al. 1993, 1994; Lee et al. 1995; Ma, Kintner, and Anderson 1996). Likewise, the 

function of the Notch/Delta pathway in lateral inhibition in the neurogenic ectoderm, as well 

as its interactions with proneural genes, was elucidated in Xenopus (Chitnis et al. 1995; 

Chitnis and Kintner 1996; Wettstein, Turner, and Kintner 1997), with some striking 
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similarities to the Drosophila system. Moreover, the regulation of neurogenesis by these 

factors has been shown to operate in many instances of neuron production, including in the 

frog brain at later stages (D’Amico, Boujard, and Coumailleau 2013; Thuret, Auger, and 

Papalopulu 2015; Wullimann et al. 2005) and also in the mammalian brain (del Corral and 

Storey 2001).

It is worth emphasizing how much of an impact work like this in Xenopus has had on the 

field of neurodevelopmental biology. First, it has crucially informed work in other models, 

which has confirmed that similar mechanisms of neural specification, neural patterning, and 

neuronal differentiation are at play across vertebrates (Ozair, Kintner, and Brivanlou 2013; 

Stern 2005, 2006). Second, work in other models has been reciprocally tested in Xenopus, 
with the same outcome. As the only anamniote tetrapods, amphibians play an essential role 

in elucidating how neural development has evolved in vertebrates; characterization of 

Xenopus as representative anuran amphibians is a critical part of this investigation. Third, 

information gained from Xenopus research has been a driving force in the establishment and 

advancement of additional models of neural development, including human neural stem cell 

and organoid culture. Gurdon’s serial cloning experiments in frogs were seminal to the 

understanding of pluripotency and the invention of iPSCs (Gurdon, Elsdale, and Fischberg 

1958). Furthermore, the identification of major mechanisms of neural development by 

research in Xenopus has directed strategies for generating neural precursors and 

differentiated neurons, often with particular regional identities, in cell culture using human 

cells (Lee, Lee, and Moody 2014; Sasai et al. 2008). For example, BMP antagonists are 

applied to induce neural identity in culture, Wnt antagonists are applied to induce anterior 

fates, and Neurogenin expression is used to drive neuronal differentiation (Busskamp et al. 

2014; Khan et al. 2020; Sloan et al. 2018; Zhang et al. 2013); these decisions follow directly 

and explicitly from foundational discoveries made in Xenopus. The refinement of human 

cell culture strategies has been a major innovation whose impact and potential cannot be 

overstated: it allows the testing of hypotheses in human cells and tissues in a manner not 

previously possible, and even opens the door to testing cell lines derived from individual 

people (Busskamp et al. 2014; Sloan et al. 2018; Zhang et al. 2013). These models will be 

invaluable in the daunting effort to identify patient-specific genetic factors and treatment 

effects, especially against the backdrop of the heterogeneity and pleiotropy characteristic of 

neurodevelopmental disorders. Finally, as research in human systems creates an explosion of 

in vitro data, hypotheses generated by this work can be tested in a high-throughput manner 

in vivo using Xenopus (A. J. Willsey et al. 2018). These complementary approaches offer 

valuable opportunities for the coming decades.

Deep conservation among tetrapod brains

The similarities between amphibian and human brains extend beyond basic mechanisms of 

early neural development. Counter to tempting notions regarding the uniqueness of the 

human brain, many features of later embryonic brain development seen in humans are also 

represented in other tetrapods, including frogs (Clinton et al. 2014; Fernandez et al. 1998; 

Martínez-Cerdeño et al. 2016; Norimoto et al. 2020; Tosches et al. 2018). In fact, early 

embryonic brains from mammals and frogs resemble each other to a surprising degree, and 

lineage tracing experiments have shown that homologous embryonic regions give rise to 
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homologous adult brain structures. A brief overview of several embryonic and larval stages 

of brain development in Xenopus is shown in Figures 2 and 3.

Particularly exciting comparisons can be drawn between conserved patterning mechanisms 

that regulate regionalization of the brain, and even about further subdivision and 

neurogenesis within these regions. A thorough analysis of marker gene expression has 

shown over the last three decades that the factors that characterize various brain regions in 

mammals are largely similar in frog, although there are some differences. Briefly, amphibian 

and amniote brains are patterned by conserved signals, including BMP and Wntfrom the 

roof plate, RA from the non-neural ectoderm, Shh from the floor plate, and FGF from the 

anterior neural ridge (ANR) (Echevarria et al. 2003; Stern 2006; Vieira et al. 2010). These 

induce conserved targets in the neural tube, and pattern the alar (dorsal) and basal (ventral) 

aspects of the resulting forebrain, midbrain, and hindbrain. Two additional signaling centers, 

the midbrain-hindbrain boundary (MHB) and the zona limitans intrathalamica (ZLI) are also 

induced, and signals secreted by these regions pattern the brain at finer scales (Echevarría et 

al. 2003; Vieira et al. 2010). The expression and activity of these major signaling pathways 

in brain patterning is highly conserved between frogs and mammals, although the particulars 

of their targets’ expression varies in some cases, most often in the telencephalon (described 

further in the next section).

A summary of some commonly used markers is presented in Figure 4, and shows tetrapod-

typical expression of these factors in the developing Xenopus brain. These include foxg1, 

expressed throughout the telencephalon (Bourguignon, Li, and Papalopulu 1998); tcf4 (also 

known as fc/7/2), expressed in the alar diencephalon and midbrain (Bandin, Morona, and 

Gonzalez 2015); otx2, expressed throughout the forebrain and midbrain (Pannese et al. 

1995); gbx2, expressed in the hindbrain in addition to alar prosomere 2 of the diencephalon 

(Morona et al. 2011; Tour et al. 2001; von Bubnoff, Schmidt, and Kimelman 1996); foxa2, 
expressed in the ventral midbrain and hindbrain (Lee et al. 1997; Ruiz i Altaba, Jessell, and 

Roelink 1995); and Hox family genes, expressed in the hindbrain (Frank and Sela-

Donenfeld 2019; Pownall et al. 1996). Note also that FGF, Wnt, and en2 are expressed at the 

MHB (Brivanlou and Harland 1989; Hemmati-Brivanlou et al. 1991; Isaacs, Tannahill, and 

Slack 1992; Wolda, Moody, and Moon 1993), while Shh is expressed in the floor plate and 

the ZLI (Domínguez, González, and Moreno 2010). These patterns hold for both Xenopus 
laevis and X. tropicalis, as for other vertebrates.

Excitingly, features of brain development are even more similar between frogs and humans 

than a simple check of regional markers indicates. Recent transcriptomic analysis of isolated 

Xenopus tropicalis brains has allowed a comparative mapping to human brain development 

over a range of stages, and the pair track with each other in a surprisingly similar manner 

over time (Willsey et al., under review). The results show that stages 40-47 of Xenopus brain 

development compare closely to human mid-fetal development, as summarized in Figure 5. 

This underlines the utility of frogs, already prized for their other advantages, as promising 

models for the investigation of neurodevelopmental processes relevant to humans.
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A focus on the forebrain

It is clear that early mechanisms and core features of neurodevelopment in frogs and other 

tetrapods, including humans, are deeply conserved (Binder, Hirokawa, and Windhorst 2008; 

Medina, 2009; Medina and Abelian 2009). However, the brains of adult humans are in many 

ways obviously different from adult frog brains, both in morphology and in the kinds of 

behaviors they support. Undoubtedly, differences in neurodevelopmental programs have 

driven the disproportionate expansion of parts of the forebrain (Kriegstein, Noctor, and 

Martinez-Cerdeno 2016), in particular the cerebral cortex, and future comparative, genomic, 

and molecular studies are urgently needed to understand the conservation of these 

mechanisms across species. Such studies will be vital for translating insights from frog and 

other animal models to human. In particular, with the advent of single cell genomics 

technologies, comparative single cell molecular studies herald a new era of translating 

insights across experimental models (Arendt et al. 2016).

Many “higher order” behaviors displayed by mammals, including primates, and humans 

specifically, have been proposed to be supported by uniquely evolved neurodevelopmental 

programs executed during forebrain development in these lineages (Kriegstein, Noctor, and 

Martínez-Cerdeño 2016; Namba and Huttner 2017; Namba, Vaid, and Huttner 2019; 

Nowakowski et al. 2016). This suggestion is intuitively appealing for humans, particularly 

when trying to frame knowledge about complex psychological processes (including 

multisensory, cognitive, and emotional processes) associated with human brain function and 

human behavior. This presumed uniqueness is even more tempting with respect to 

understanding psychiatric disorders, which are human-specific by definition, and in this 

context it is frequently assumed that human brains are in a class of their own. Certainly, 

there are differences between human brain development and brain development in other 

animals. However, compelling evidence suggests that many more features of forebrain 

development are conserved among tetrapods than previously appreciated (Clinton et al. 

2014; Jímenez et al. 2020; Martínez-Cerdeño et al. 2016; Moreno and González 2017; 

Tosches and Laurent, 2019). This includes recent work using single cell RNA sequencing to 

assess the degree of conservation between progenitor and differentiated cell types in various 

regions of the forebrain, which has revealed striking similarities between reptiles and 

mammals and suggests that even mammalian-specific features appear to be elaborations of 

ancestral programs (Norimoto et al. 2020; Tosches et al. 2018). Such an analysis has not yet 

been undertaken in frogs, but other evidence in this vein comes from extensive work in 

Xenopus to catalog the expression patterns of known markers of forebrain regions and cell 

types.

Indeed, canonical forebrain markers exhibit conserved expression patterns in Xenopus and 

mammalian brains (Figure 4). As development and conservation of several regions of the 

diencephalon have been recently highlighted (Bandín, Morona, and González 2015; 

Domínguez et al. 2013; Domínguez, González, and Moreno 2014; Domínguez, González, 

and Moreno 2015; Moreno and González 2020; Moreno et al. 2017; Morona et al. 2020), we 

will restrict the present discussion to the telencephalon. Within the developing foxg1+ 
telencephalon (Figure 2), the subpallium expresses nkx2.1, isl1, ascl1, dlx2/5, gsx1/2 
(Bachy, Berthon, and Rétaux 2002; Brox et al. 2002, 2003; Hollemann and Pieler 2000; 
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Illes, Winterbottom, and Isaacs 2009; Moreno et al. 2008; Papalopulu and Kintner 1993; 

Small et al. 2000; van den Akker et al. 2008; Winterbottom et al. 2010) while the pallium is 

marked by the expression of pax6, emx1/2, ngn, neuroD, and tbr1/2 (Bachy, Berthon, and 

Rétaux 2002; Brox et al. 2004; D’Amico, Boujard, and Coumailleau 2013; Fernandez et al. 

1998; Hirsch and Harris 1997; Pannese et al. 1998; Ryan et al. 1998; Wullimann et al. 

2005). Overlapping domains of LIM-homeodomain gene expression mark various regions in 

a manner similar to that seen in mammals (Bachy, Berthon, and Retaux 2002; Bachy, 

Vernier, and Retaux 2001; Moreno et al. 2004). The developing subpallium can be 

subdivided into the lateral ganglionic eminence (LGE) and medial ganglionic eminence 

(MGE), which generate the striatum and the pallidum, respectively, as in mammals (Morona 

and Gonzalez 2013). A neurogenic territory caudal to the frog LGE and MGE has been 

proposed to be homologous to the caudal ganglionic eminence (CGE) of mammals (Moreno 

et al. 2008), but additional molecular, structural, and functional analysis must be carried out 

to determine the extent of this potential homology (Jiménez et al. 2020). The LGE expresses 

gsx2, dlx2/5, and isl1, while the MGE expresses gsx1, dlx2/5, isl1, and nkx2.1 (Bachy, 

Berthon, and Retaux 2002; Illes, Winterbottom, and Isaacs 2009; Moreno et al. 2008). A 

subset of these, nkx2.1, gsx1/2, and dlx2, are expressed both within and outside the 

subpallial VZ, whereas isl1 and dlx5 are expressed only outside the VZ (Illes, Winterbottom, 

and Isaacs 2009; Moreno et al. 2008). Neurogenesis in the subpallium is driven by ascii, 
echoing this proneural gene’s role in primary neurogenesis during earlier stages (Ferreiro et 

al. 1993, 1994). The major differentiated neuronal cell type produced by the subpallium at 

these stages is GABAergic interneurons, some of which migrate tangentially into the pallium 

(Moreno, González, and Rétaux 2008).

Likewise, the pallium can be further subdivided into the medial, dorsal, lateral, and ventral 

pallium; these give rise to the hippocampus, (neo)cortex, olfactory cortex and amygdala, and 

claustrum and amygdala, respectively (Morona and Gonzalez 2013). The ventral pallium is 

distinguished from the other regions in that it does not exhibit emx1 expression in the 

ventricular zone (VZ), and shows a comparatively higher level of pax6 and tbr2 outside the 

VZ (discussed further below) (Bachy, Berthon, and Retaux 2002; Brox et al. 2004; Moreno, 

Rétaux, and González 2008). emx2 and lhx2 are expressed throughout the pallium; pax6 is 

expressed throughout the pallial VZ; and tbr1/2 are expressed throughout the pallium outside 

the VZ (Bachy, Berthon, and Retaux 2002; Brox et al. 2004; Moreno, Rétaux, and González 

2008; Pannese et al. 1998). As is true for the subpallium, these features closely parallel the 

mammalian case. Neurogenesis in the pallium is driven by Neurogenin and NeuroD, as in 

primary neurogenesis (Lee et al. 1995; Ma, Kintner, and Anderson 1996; Wullimann et al. 

2005). Thus, not only do the same embryonic regions give rise to homologous brain regions 

in frog and human adults; the molecular features of these regions and the cell types within 

them also appear to be conserved. Furthermore, functional tests have confirmed once again 

that these conserved molecules also enact conserved regulatory programs during 

telencephalon development. For example, Pax6 is required for normal expression of 

neurogenin and subsequent neurogenesis in the pallium (Nakayama et al. 2015), and nkx2.1 
is induced by Shh signaling to confer ventral identities in the subpallium (van den Akker et 

al. 2008).
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Although most of these core features of forebrain gene expression appear to be conserved 

between Xenopus and mammals, there are a few aspects that appear to have diverged 

between these lineages. Most notably, the combinatorial expression of Lhx-family genes 

differs in frog and mouse; whereas the expression of this family shows concordance in the 

diencephalon and hypothalamus, lhx2/9 and lhx1/5 are reduced in the telencephalon of 

Xenopus compared to mouse (Bachy et al. 2001). However, while the complexities in the 

spatial overlap of these specific paralogs differs, telencephalon expression of the family 

overall is conserved. These data suggest that the family as a whole may execute conserved 

functions to regulate regionalization and connectivity in this domain, whereas the differences 

in unique paralog expression may underlie cortical differences between frogs and mammals 

(Bachy et al. 2001; Yang et al. 2020). Another striking difference is in the induction of 

nkx2.1 by Shh signaling in the ventral forebrain. In Xenopus, nkx2.1 is induced in the alar 

hypothalamus in addition to the basal hypothalamus, in contrast to its restriction to the basal 

hypothalamus in mouse (van den Akker et al. 2008). This divergence likely affects the 

patterning of the ventral forebrain and may explain some differences in pallial-hypothalamic 

connectivity between frogs and mammals (van den Akker et al. 2008), some of which are 

involved in social and maternal behaviors (Medina, 2009). A more subtle difference is 

observable in the expression of gsx1/2, which appear to overlap in the subpallium VZ in 

Xenopus but occupy more mutually exclusive domains in mouse and which may therefore 

regulate ventral forebrain neurogenesis trajectories differently between the two groups (Illes 

et al. 2009). The developmental mechanisms that drive these differences, their exact 

consequences on brain development, and their implications for brain evolution have yet to be 

fully explored.

Neurogenesis in the tetrapod pallium has been the subject of much investigation. In 

mammals, including humans, division of Pax6+ radial glia (RGs) in the VZ gives rise to 

Tbr2+ Ngn2+ intermediate progenitors (IPs) of the SVZ (Bayatti et al. 2008; Englund et al. 

2005; Haubensak et al. 2004; Noctor et al. 2001; Noctor et al. 2004; Sessa et al. 2008). 

These divide and activate expression of NeuroD, which drives terminal differentiation into 

Tbr1+ postmitotic neurons, particularly glutamatergic neurons (Martynoga, Drechsel, and 

Guillemot 2012). As cells proceed down this differentiation pathway, they migrate away 

from the VZ, into the SVZ, and out into the mantle, following radial paths along continuous 

basal processes maintained by the RGs (Paridaen and Huttner 2014; Rakic 1971). This 

sequence of gene expression is thus correlated with spatial position, and it also reflects 

functional interactions between these several transcription factors (Elsen et al. 2018; 

Martynoga, Drechsel, and Guillemot 2012). Importantly, neurogenesis in the pallium of 

Xenopus also follows this sequence over developmental time and space and is driven by 

conserved functional interactions between the same factors (Brox et al. 2004; Wullimann et 

al. 2005). Indeed, some of these factors were discovered in Xenopus, including Neurogenin 

(discussed above) and Tbr2 (also known as eomesodermin (eomes), so named for its 

originally identified role in mesoderm development) (Ma, Kintner, and Anderson 1996; 

Ryan et al. 1996, 1998).

While many of these core features are clearly conserved, anuran amphibians do not exhibit a 

subventricular zone as distinct as the mammalian SVZ (Moreno and González 2017). 

Nevertheless, Tbr2 and Ngn2 are expressed in the pallium in embryonic and larval frogs 
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during neurogenesis (Figure 4), and their expression patterns are similar to those in 

mammals (Brox et al. 2004; Moreno et al. 2003; Nieber, Pieler, and Henningfeld 2009; 

Wullimann et al. 2005). While there is some debate about the proliferative state of Tbr2+ 

cells in Xenopus in stages beyond neurogenesis (Hevner 2019; Moreno and González 2017), 

birds and some reptiles, like mammals, do have Tbr2+ proliferative cells outside the VZ in 

the pallium (Cheung et al. 2007; Clinton et al. 2014; Martinez-Cerdeno et al. 2016; Montiel 

et al. 2016); consequently, amphibians are in the spotlight in terms of this cell population’s 

evolution and development. It should also be noted that although a morphologically distinct 

SVZ may be a convenient feature for nomenclature purposes, it is not a prerequisite for the 

existence of proliferative IPs in amphibians, which may merely reside within the VZ along 

with RGs.

Another difference between frogs and humans is in the construction of the cortex. In 

mammals, neurogenesis in the dorsal pallium generates a six-layered neocortex in an 

“inside-out” fashion, as newly differentiating neurons migrate out past their predecessors to 

form new layers (Molnar et al. 2006; Paridaen and Huttner 2014). The Xenopus cortex is 

considerably simpler, even in comparison to the three-layered cortex found in some 

sauropsids, and neurons migrate to their final positions in an “outside-in” order (Cárdenas 

and Borrell 2020; Moreno and González 2017). In addition, human and some other 

mammalian cortices undergo extensive folding, which amphibian brains do not (Molnár et 

al. 2006; Rakic 2009). Some questions about corticogenesis are therefore likely to be more 

completely studied in mammalian models. However, although the spatial choreography is 

less complex in frogs, the molecular mechanisms that regulate neuronal differentiation and 

migration are conserved (Brox et al. 2004; Wullimann et al. 2005). As such, Xenopus retains 

its value as a model for core elements of corticogenesis in tetrapods, and the many aspects of 

neurodevelopment that evidently are conserved cement its position as a highly useful model 

of forebrain development.

Beyond fundamentals: modeling disorders of the brain in Xenopus

The remarkable technical strengths of the Xenopus system have already made it a productive 

model for human disorders in recent years (Blum and Ott 2018; Getwan and Lienkamp 

2017; Hwang, Marquez, and Khokha 2019; McCammon and Sive 2015; Nenni et al. 2019; 

Sater and Moody 2017; Walentek and Quigley 2017). Recent improvements to both the X. 
laevis and X. tropicalis genomes have confirmed that the majority of human disorder risk 

genes are conserved in terms of sequence and syntenny in the frog (Hellsten et al. 2010; 

Mitros et al. 2019; Session et al. 2016). With this in mind, the optimization of CRISPR-

mediated genome editing in Xenopus (Aslan et al. 2017; Bhattacharya et al. 2015; Blitz et 

al. 2013; Guo et al. 2014; Naert and Vleminckx 2018; Naert et al. 2020; Nakayama, 

Grainger, and Cha 2020; Tandon et al. 2017) has allowed the targeted mutagenesis of 

disorder risk genes identified by patient sequencing efforts, with an ever-growing list to 

investigate. Many of these experiments take advantage of the unilateral mutagenesis 

approach in F0 animals to allow the identification of subtle phenotypes by comparison to the 

contralateral control. Importantly, mutant phenotypes may also be rescued by injection of 

the Xenopus or human homolog of the CRISPR-targeted gene, or by expression of suspected 

compensatory factors. Rescues can also be attempted through the use of pharmacological 
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agents, with the additional potential of large-scale drug screens on mutants after integration 

of CRISPR-induced mutations into the germline. This strategy provides an attractive 

opportunity in the search for potential drug treatments for disorders. Drugs can also be 

screened as potential causative agents that may affect the same cell populations or behaviors 

as genetic mutations. All of these approaches continue to build on the usual benefits of the 

Xenopus system, as described in previous sections.

In addition to these general advantages, several features of Xenopus make it a particularly 

powerful model for studying brain development, specifically. During early stages, the neural 

tissue exists on the surface of the embryo (Chitnis et al. 1995; Hartenstein 1989, 1993); at 

later stages, even once internalized through neurulation, the nervous system is still easily 

observed and manipulated due to its extreme dorsal position within the optically transparent 

and externally developing embryo. Conveniently, early embryonic effects of blastomere 

injection can be circumvented by electroporation techniques that target the brain directly 

(Bestman and Cline 2020). Several imaging tools, including injectable calcium dyes, in vivo 
lineage and axon tracing techniques, and transgenic animals (e.g., GcAMP6:GFP, brainbow, 

hsp70-CRE, and I-SceI lines), make the imaging of live developing brains simple compared 

to other vertebrate systems (Ablondi et al. 2020; Hiramoto and Cline 2009; Hiramoto and 

Cline 2020; Horb et al. 2019; Koser et al. 2016; Offner et al. 2020; Paudel et al. 2019; Qian 

et al. 2020; Tandon et al. 2017; Thompson et al. 2019). The Xenopus oocyte is a long-

favored model for electrophysiology studies of channel and other protein function (Kusano, 

Miledi, and Stinnakre 1977; Limon, Reyes-Ruiz, and Miledi 2008; Miledi et al. 2004; Sigel 

and Minier 2005; Ullah et al. 2015; Vindas-Smith et al. 2016), and electrophysiology tools 

have been adapted for use in embryos, tadpoles, and adults (Barkan, Zornik, and Kelley 

2017; Pratt and Khakhalin 2013). Behavioral assays in tadpoles give a window into the 

outputs and functions of the nervous system (Khakhalin 2020; Khakhalin et al., 2020), 

during typical development and after genetic, pharmacological, or surgical perturbation. 

Many of these techniques have also been used to study adults at the molecular, cellular, 

tissue, and behavioral level (Barkan, Zornik, and Kelley 2017; Kelley et al. 2017; Pratt and 

Khakhalin 2013).

Xenopus has already been established as a successful model for elucidating mechanisms of a 

wide range of disorders, some of which are commonly thought of as unique to human 

neurobiology. Frogs have been employed to make key discoveries regarding convergent 

mechanisms of complex and heterogeneous genetic disorders of the brain. One recent 

publication identifies a shared role of autism spectrum disorder risk genes in regulation of 

neural progenitor cell biology during forebrain neurogenesis (Willsey et al., under review), 

and two others suggest a specific role on microtubules (H. R. Willsey et al. 2018; Wilsey et 

al. 2020). These findings have provided long-sought hypotheses about the basis of this 

disorder, and have also given insight into the recognized comorbidity of autism with other 

congenital disorders. Xenopus has also been used to model disorders associated with 

dysregulated neuronal activity, particularly epilepsy (Sega et al. 2019), through 

developmental studies in embryos in addition to decades of electrophysiological studies 

using oocytes. Mechanisms of Fragile X syndrome have been dissected at the molecular, 

cellular, electrophysiological, and behavioral level using Xenopus (Faulkner et al. 2015; 

Truszkowski et al. 2016), which is particularly fascinating given that Xenopus does not have 
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an X chromosome, allowing the experimental isolation of the effects of single genes from 

the context of mammalian chromosomal sex determination. Recent work has also modeled 

elements of neurodegenerative disorders, such as Parkinson’s and Alzheimer’s (Horowitz et 

al. 2001; Liu et al. 2018; Paganelli et al. 2001); neuroinflammatory disorders, including 

Huntington’s (Haremaki, Deglincerti, and Brivanlou 2015); and disorders of myelination, 

such as multiple sclerosis (Kaya et al. 2012; Mannioui et al. 2018). Insights into the 

mechanisms of neuroblastoma have also resulted from work in Xenopus (Wylie et al. 2015). 

The fact that research in Xenopus has shed light on such a variety of human disorders, the 

etiologies of which involve diverse brain regions, cell types, and mechanisms, is a testament 

to its extraordinary utility as a model. The emergence of Xenopus tropicalis as a model for 

genetic disorders of the brain parallels recent recognition of its value in the endeavor to 

understand disorders of other tissues and organs (Blum and Ott 2018; Hwang, Marquez, and 

Khokha 2019; Kakebeen and Wills 2019; Nenni et al. 2019; Sater and Moody 2017), 

including the heart (Deniz et al. 2018; Duncan and Khokha 2016; Hoppler and Conlon 2020; 

Kaltenbrun et al. 2011; Warkman and Krieg 2007), kidney (Blackburn and Miller 2019; 

Blackburn et al. 2019; Krneta-Stankic, DeLay, and Miller 2017; Lienkamp 2016; Marquez et 

al. 2020), neural tube (Wallingford 2005; Wallingford et al. 2013), airways (Tu et al. 2018; 

Walentek and Quigley 2017), esophagus (Nasr et al. 2019), and neural crest (Lasser et al. 

2019; Mills et al. 2019).

Outlook on Xenopus as a model of brain development and disease

Xenopus has been a prominent model of vertebrate neural development for the last century, 

with the promise of many decades to come. Its advantages include useful characteristics 

such as size and availability, which made it an early favorite for embryology; its amenability 

to molecular, genetic, and pharmacological experimentation, which has driven the discovery 

of many fundamental mechanisms of vertebrate neurodevelopment; and its deep 

conservation with humans and recent technical advances, which have already given key 

insights into human neurodevelopmental disorders. All of these have generated knowledge 

about embryonic brain development, and have also informed the establishment of new model 

systems, particularly human cell and organoid culture. Xenopus tropicalis is poised to 

contribute further to our understanding of human disorders as a higher-throughput genetic 

model that can be used to generate targeted hypotheses about disorder risk gene function.

Beyond the aspects of brain development discussed here, frogs have also been a valuable 

system for modeling other neurodevelopmental processes. The morphogenetic movements 

and regulation of convergent extension have been studied extensively in Xenopus (Keller et 

al. 2000; Shindo 2018), with several implications for our understanding of neural tube 

closure and associated congenital defects. Axon guidance (Erdogan, Ebbert, and Lowery 

2016; Koser et al. 2016; Slater, Hayrapetian, and Lowery 2017; Thompson et al. 2019), 

synapse biology (Sakaki et al. 2020), circuit function (Barkan, Zornik, and Kelley 2017; 

Kelley et al. 2017), and behavior (Khakhalin 2020; Khakhalin et al., 2020) are all 

conveniently studied in frogs, and their evolutionary position affords them similar 

importance in answering questions about the evolution of these biological programs. Studies 

of the olfactory system and eye have shed light on how sensory organs develop and how they 

interface with different regions of the brain, in terms of both molecular interactions and 
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connectivity (Liu, Hamodi, and Pratt 2016). Frogs also have glia produced by conserved 

mechanisms (D’Amico, Boujard, and Coumailleau 2011; Goodbrand and Gaze 1991; 

Yoshida 2001), and as glia have been shown to be important in the development of a variety 

of disorders, Xenopus presents the opportunity to further investigate the roles of these cell 

types in the brain.

Of course, there are also some differences between frog and human brain development. One 

striking example is that corticogenesis in humans produces a six-layered structure, derived 

from the dorsal pallium. The cortex forms by the migration of neurons out past their recently 

differentiated sisters in the mantle, in an “inside-out” fashion (Molnár et al. 2006; Paridaen 

and Huttner 2014). The frog brain contains no such layering, and radial migration builds the 

cortex in an “outside-in” fashion more typical of non-mammalian vertebrates (Moreno and 

González 2017). However, the mechanisms that regulate neural progenitor cell proliferation 

and neuronal migration and differentiation are largely conserved (Brox et al. 2004; 

Wullimann et al. 2005), so the frog case is useful as a simplified example of cortical 

neurogenesis. Another marked difference is the elaborate folding of the human brain, 

compared to the lissencephalicfrog brain (Molnár et al. 2006, 2019; Rakic 2009). 

Mechanisms that drive this folding appear to be restricted to a few mammalian lineages, 

although the functions of the associated regulators may still be investigated effectively in 

other tetrapods.

A recently popular idea has been that the emergence of complex behaviors in some tetrapods 

(for example, mammals in general and primates more specifically) was made possible by the 

evolution of novel mechanisms of brain development proposed to be unique to those 

lineages (Briscoe and Ragsdale 2018; Molnar et al. 2019). Some of these features, such as 

the remarkable folding that generates the brains of humans and other gyrencephalic 

mammals, do appear to be innovations specific to those lineages (Sun and Hevner 2014). 

However, recent evidence has shown that some features previously thought to be restricted 

to mammalian development, such as the existence of proliferative Tbr2+ intermediate 

progenitors in an SVZ-like structure, may actually be synapomorphies among tetrapods 

(Martinez-Cerdeno et al. 2016). Deeply conserved neurodevelopment mechanisms like these 

would mean that many more aspects of human brain development can be modeled 

effectively in other tetrapods than previously appreciated, and amphibians are a crucial piece 

of that puzzle.

Fortunately, several of the existing differences between frogs and humans may provide 

hidden opportunities rather than serving as deterrents to using frogs. In general, 

understanding any differences between frogs and humans will shed light on the evolution of 

both, which is useful in itself. More specifically, frogs exhibit a few biological processes that 

humans do not, but which may give insight into human biology nonetheless. Frogs undergo 

metamorphosis, a well-characterized and major developmental event driven by circulating 

hormones whose production is regulated by the brain (Furlow and Neff 2006); this provides 

a powerful model to understand interactions between the brain, gonads, hormones, and the 

rest of the body, which has already become the subject of enthusiastic investigation in frogs 

(Buchholz 2015, 2017). Frog embryos and larvae also exhibit high regenerative capacity 

(Kakebeen and Wills 2019; Kha et al. 2019; Lee-Liu et al. 2017; Slack, Lin, and Chen 2008; 
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Tseng and Levin 2008), including of neural tissues (for example, the spinal cord and 

elements of the limb), and this capacity decreases after metamorphosis (Slack et al. 2004; 

Slack, Lin, and Chen 2008). Both the ability to regenerate and the loss of this ability provide 

attractive opportunities to study regeneration and to contrast it with the case of humans, who 

exhibit little or no regeneration of most tissues across their lifetime. Recent time-course 

single cell RNA-seq analyses of regenerating X. laevis and X. tropicalis spinal cords provide 

invaluable tools for those interested in this avenue (Aztekin et al. 2019; Kakebeen et al. 

2020).

Due to both its similarities and differences with human neurodevelopment, Xenopus 
provides some additional opportunities in areas of recent keen interest. Frogs develop a 

blood-brain barrier during embryonic stages (Andino et al. 2016; Lau, Li, and Cline 2017), 

opening the door to genetic and pharmacological studies to characterize its formation and 

function. Its aquatic development is a convenient feature for those interested in 

neuroendocrine biology (particularly given that frogs undergo metamorphosis) or the effects 

of environmental toxicants on brain development (Buchholz 2017). As in humans, the brains 

of Xenopus embryos are lateralized in their structure and function (Blackiston and Levin 

2013; Pai et al. 2012), providing the opportunity to study left/right patterning of the brain. 

Frogs also provide a fascinating platform to investigate the effects of sex as a biological 

variable in brain development (Kelley 1986; Kelley et al. 2020; Zornik and Kelley 2011; 

Zornik and Kelley 2017; Zornik and Yamaguchi 2008). The experimental strengths of 

Xenopus make it an excellent platform for investigating the genetic and environmental 

factors that interface with sex and development, in the brain and other organs.

One crucial role for Xenopus in the coming years will be to serve as an in vivo model for the 

abundance of hypotheses that will inevitably be generated by work in human cell and 

organoid culture. It is already clear that many mechanisms are conserved between the two, 

as discoveries in Xenopus have directed the refinement of these human-derived models (Lee, 

Lee, and Moody 2014; Sasai et al. 2008). In turn, work in vitro is likely to have parallels in 

the embryonic brain, but these will need to be tested directly in a vertebrate model to 

ascertain their applicability outside of culture conditions (A. J. Willsey et al. 2018). Thus, 

we predict a close hand-in-hand relationship between Xenopus and cell culture in vitro 
systems, wherein iterative exchange and the complementary advantages of each model 

collaborate to drive rapid discovery.

Where Xenopus will truly shine over the next decades, though, is as a higher-throughput in 
vivo model for the growing number of disorder risk genes identified by patient sequencing 

efforts (A. J. Willsey et al. 2018). Psychiatric disorders, including autism spectrum disorder, 

schizophrenia, Tourette disorder, and obsessive compulsive disorder, have been a point of 

particularly intense focus and productivity (Cappi et al. 2020; Satterstrom et al. 2019; 

Satterstrom et al. 2020; Wang et al. 2018). For many disorders, these lists are already 

hundreds of genes long, and increasing rapidly. Some of these genes have never been 

characterized in terms of a functional role in development, and those that have been 

investigated have diverse cellular roles across developmental time and space, making it 

difficult to pinpoint which functions are relevant to disorder pathobiology (A. J. Willsey et 

al. 2018; Sestan and State 2018). For these reasons, investigating risk genes one by one is 
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both impractical and probably under-informative, and a model in which dozens or hundreds 

of genes can be studied in uniform and in parallel is therefore a necessity. Mammalian and 

other amniote models are not amenable to such large-scale approaches, and the tetraploid 

genome and more divergent brain development of teleost fish pose some technical and 

theoretical challenges to their use, although they can certainly contribute valuable insights 

nonetheless (Joo et al. 2020; Thyme et al. 2019). Due to its experimental capabilities and 

conservation of neurodevelopmental processes, Xenopus (more specifically, the diploid X. 
tropicalis) is an optimal model in which to undertake the higher-throughput genetic screens 

necessary to allow the generation of targeted hypotheses about neurodevelopmental disorder 

etiology. CRISPR-based approaches in X. tropicalis have already proven to be informative to 

human disorders in this regard, and ongoing omics approaches, including whole-organism 

single-cell analyses, will continue to support incisive discovery in this system. In addition, 

frogs can act as a much-needed higher-throughput platform for drug screening, especially as 

complementary work in other models generates further hypotheses for potential treatment 

opportunities.

Summary

Xenopus has been a trailblazer in the discovery of major events and mechanisms of brain 

development that are deeply conserved among vertebrates, in uncovering the etiology of 

human neurodevelopmental disorders, and in guiding the implementation of new models of 

human brain development. Like every other available model, frogs cannot model every 

aspect of human brain development down to the last detail; however, the use of Xenopus to 

generate targeted hypotheses for further testing in other models, and vice versa, will be 

absolutely indispensable in the face of the ongoing avalanche of disorder risk gene 

discovery. In summary, Xenopus is an ideal choice as a well-established and high-

throughput tetrapod model that the coming decades of patient sequencing and gene 

discovery will demand.
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Figure 1: Summary of key techniques used in Xenopus to study brain development.
Several important techniques core to the Xenopus neurodevelopmental biology toolkit are 

diagrammed here, although the authors note that this figure is not meant to be an exhaustive 

summary of available technologies, and that these methods are also applicable to the study 

of other developmental processes. Top panel (A): Summary of advantages of the Xenopus 
systems and brief overview of central nervous system development. Light blue indicates 

neural tissues at the embryonic and larval stages shown. Orientations: lateral view with 

animal pole to the top (oocyte, embryo), lateral view with dorsal to the right (gastrula), 
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dorsal view with anterior to the top (neurula and tadpole), lateral view with anterior to the 

left (tailbud). Middle panels (B-D): Common techniques used to manipulate Xenopus 
development, including targeted injection with any of several reagents (B), treatment with 

pharmacological agents (C), and two examples of explant techniques (D). Note that these 

methods can be used separately or in combination, as appropriate for the scientific questions 

of interest. Bottom panels (E-I): Common methods for characterizing typical development or 

assessing the consequences of experimental manipulations (see B-D) on development. 

Diagrams depict hypothetical example results based on data from several references; see text 

for citations. In (E), from left to right: mRNA in situ hybridization shows a reduction in 

krox20 and hoxb9 expression, a posterior shift in krox20 expression, and no change in otx2 
expression on the injected side of a unilaterally manipulated embryo; staining with an 

antibody against a pan-neural protein shows reduced brain size on the injected side of a 

unilaterally manipulated embryo; tracing shows axon projections from the right eye to the 

left tectum; calcium imaging shows increased activity on the injected side of a unilaterally 

manipulated embryo. (F) shows a heatmap from an omics analysis. (G) shows Western blot 

results from a co-immunoprecipitation experiment. (H) shows results comparing excitatory 

post-synaptic current (EPSC) recordings from a control animal (blue) and a manipulated 

sibling (red). (I) shows sound pulses from an advertisement vocal call.
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Figure 2: Schematic representations of the developing Xenopus brain.
Lateral views of the Xenopus brain (anterior to the left and dorsal at the top) at NF 

(Nieuwkoop & Faber) stages 38 (A), 42 (B), 46 (C), and 50 (D). Colors demarcate the 

developing telencephalon (blue), hypothalamus (purple), diencephalon (green), 

mesencephalon (pink), midbrain-hindbrain boundary (MHB, grey), and rhombencephalon 

(yellow). Images are representative of X. laevis and X. tropicalis. See text for anatomical 

references. Xenopus stages according to Nieuwkoop & Faber, 1994 (Nieuwkoop 1994). 

Abbreviations: P pallium; SP subpallium; MP medial pallium; DP dorsal pallium; LP lateral 
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pallium; VP ventral pallium; LGE lateral ganglionic eminence; MGE medial ganglionic 

eminence; a alar; b basal; p prosomere; r rhombomere; Hab habenula; MHB midbrain-

hindbrain boundary; OB olfactory bulb.
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Figure 3: Schematic representations of Xenopus forebrain sections during development
Cross-sectional views of the Xenopus telencephalon (dorsal at the top) at NF stages 38 (A), 

42 (B), 46 (C), and 50 (D). Images are representative of X. laevis and X. tropicalis. See text 

for anatomical references. Xenopus stages according to Nieuwkoop & Faber, 1994 

(Nieuwkoop 1994). Abbreviations as in Figure 2, and: V ventricle; VZ ventricular zone; 

SVZ subventricular zone; MZ marginal zone.
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Figure 4: Schematic representations of Xenopus stage 38 expression patterns.
Lateral (A, B) and telencephalon cross-sectional (C, D) views showing expression domains 

of key patterning genes at NF stage 38. Stripes indicate co-expression of genes. See key in 

figure for color coding. Expression patterns are highly conserved between frogs and 

mammals (see text for references). Xenopus stage according to Nieuwkoop & Faber, 1994 

(Nieuwkoop 1994). Dotted grey line in A indicates sectional plane shown in C and D. 

Abbreviations as in Figures 2 and 3.
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Figure 5: Comparison of Xenopus and human brain development after neural tube closure.
Summary of major events in dorsal pallium development over time (B), comparing Xenopus 
(A) and human (C) development. See key in figure for brain region color coding. Xenopus 
stages according to Nieuwkoop & Faber, 1994 (Nieuwkoop 1994). Human developmental 

epochs described as in Sestan & State, 2018 (Sestan and State 2018). Abbreviations: NF 

Nieuwkoop & Faber, PCW post-conception weeks.
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