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Abstract
Network alignment aims to uncover topologically similar regions in the protein–
protein interaction (PPI) networks of two or more species under the assumption that
topologically similar regions tend to perform similar functions. Although there exist a
plethora of both network alignment algorithms and measures of topological similarity,
currently no “gold standard” exists for evaluating how well either is able to uncover
functionally similar regions. Here we propose a formal, mathematically and statisti-
cally rigorous method for evaluating the statistical significance of shared GO terms in
a global, 1-to-1 alignment between two PPI networks. Given an alignment in which k
aligned protein pairs share a particular GO term g, we use a combinatorial argument
to precisely quantify the p-value of that alignment with respect to g compared to a
random alignment. The p-value of the alignment with respect to all GO terms, includ-
ing their inter-relationships, is approximated using the Empirical Brown’s Method.
We note that, just as with BLAST’s p-values, this method is not designed to guide an
alignment algorithm towards a solution; instead, just as with BLAST, an alignment is
guided by a scoring matrix or function; the p-values herein are computed after the fact,
providing independent feedback to the user on the biological quality of the alignment
that was generated by optimizing the scoring function. Importantly, we demonstrate
that among all GO-based measures of network alignments, ours is the only one that
correlates with the precision of GO annotation predictions, paving theway for network
alignment-based protein function prediction.
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1 Introduction andmotivation

1.1 Background

Network alignment aims to uncover similar network connection patterns between
two or more networks under the assumption that common network topology (which
may be easily observable) correlates with common function (which is more difficult
to observe). Network alignment algorithms abound and their number is increasing
rapidly; see for example Table 1 and recent surveys (Kuchaiev et al. 2010; Mamano
and Hayes 2017; Clark and Kalita 2014, 2015; Crawford et al. 2015; Faisal et al. 2015;
Guzzi and Milenković 2017; Balomenos et al. 2015). While most practitioners agree
on the goal of network alignment, in order to test various algorithms against each
other for the ability to recover functional similarity, one needs a way to evaluate the
functional similarity uncovered by a given network alignment. Unfortunately, there
are almost as many ways to evaluate an alignment as there are alignment algorithms.

One of the most common methods for evaluating the biological significance of
an alignment involves using the Gene Ontology’s (GO) term hierarchy (The Gene
Ontology Consortium 2008). There are several mathematical/statistical complications
that arise when attempting to evaluate an alignment using GO terms:

– Most GO terms have inter-dependencies with many other GO terms via the GO
hierarchy (Pesquita et al. 2009).

– Most genes and proteins have more than one GO annotation, and it is difficult
to create a measure that correctly evaluates similarity between two proteins with
different sets of GO terms that only partially overlap.

– Since most GO terms annotate many proteins, it is nontrivial to compute the sig-
nificance of aligning a set of protein pairs while accounting for both the frequency
and inter-relationships between GO terms that may appear in multiple pairs across
the set of aligned pairs.

– Evengiven just oneGO term g, it is nontrivial to compute the statistical significance
of the event that k protein pairs in the alignment share g.

In this paper we deal only with the last issue: given a particular global alignment
between a pair of networks in which k aligned protein pairs share a specific GO term
g, we compute the exact p-value that a random alignment would have k such aligned
pairs. The good news is that, once an exact p-value is known for each GO term g, the
Empirical Brown’s Method (Poole et al. 2016) can be used to approximately account
for the other complications above, which from a statistical significance standpoint
simply manifest as correlations between the annotations of different GO terms..

Additionally, there are non-mathematical considerations when using GO terms:
protein function is ultimately determined experimentally, so there is always experi-
mental uncertainty involved in claiming that a certain protein should be annotated with
a particularGO term;molecular and cellular biology is far frombeing fully understood,
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and so the GO term hierarchy itself is in constant flux, with new GO terms introduced
as completely novel functions are discovered, or GO terms being merged or split or
even deleted as the functional hierarchy is re-evaluated; and different authors may
disagree on which GO terms are important, reliable, etc. While these are obviously
important scientific considerations, they are beyond the scope of this paper and we
will not discuss them further.

1.2 Brief survey of existing GO-basedmeasures of network alignments

For consistency, we will use the following definitions for all methods described below.
LetC be a “cluster” of aligned proteins—this is a set of proteins that the network align-
ment, however constructed, has deemed to be “similar” to each other; the cardinality
of the set is |C | ≥ 0, and it can contain proteins from the same network, or different
networks. Some methods (such as ours described later) must have |C | = 2—in which
case we called it an “aligned pair” of proteins—but not all methods demand this. Let
the PPI networks be Gi = (Vi , Ei ) where i ≥ 2, Vi is the set of nodes (proteins) in
network Gi , and Ei is its edge list—the set of interactions. Individual nodes (proteins)
in a network may be referred to as u, v (possibly with subscripts), etc. An individual
GO term is referred to as g, and λg is the number of proteins that g annotates in a given
network. Given proteins u and v, let Au and Av be the set of GO terms that annotate
them, respectively; thus u is annotated with |Au | distinct GO terms, and v with |Av|.

To motivate our work, we first describe, to our knowledge, an exhaustive list of
GO-based methods used to evaluate functional similarity in network alignments (cf.
Table 1), and then describe some of their major drawbacks.
Jaccard Similarity (aka Functional or GO consistency) The Jaccard similarity is the
most popular method according to Table 1, though it has variously been called GO
Correctness or Consistency (GOC), as well as Functional Correctness/Consistency
(FC). Formally, given node u ∈ V1 aligned to v ∈ V2, let Au, Av be the set of GO terms
annotating u, v, respectively. Then the Jaccard/GOC/FC between u and v is defined as

FC(u, v) ≡ GOC(u, v) ≡ Jaccard(u, v) ≡ |Au ∩ Av|
|Au ∪ Av| . (1)

Given this similarity across all aligned pairs of proteins, the FC score of the entire
alignment is the mean FC across all aligned pairs.
Common GO terms Given a network alignment, choose an integer threshold h (typ-
ically 1–5), and count the number of aligned pairs that have at least h GO terms in
common. No effort is made to account for the annotation frequencies (λ values in our
terminology), or location in the hierarchy, of any GO term.
Entropy Given a cluster of proteinsC in which d GO terms {g1, . . . , gd} appear at least
once across all the proteins in C , the entropy is defined as H(C) = −∑d

i=1 pi log pi ,

where pi is the fraction of all proteins in C that are annotated with GO term gi .
Entropy is always non-negative and lower values are better. The normalized entropy is
N (C) = H(C)/d. Alignments can then be scored using Mean Entropy (ME) or Mean
Normalized Entropy (MNE), which is just the appropriate mean across all clusters C .
The first network alignment algorithm to use MNE was IsoRankN (Liao et al. 2009).
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Resnik Resnik’s measure of semantic similarity (Resnik 1995, 1999) was originally
designed only to evaluate the similarity between two terms in an ontology by finding
their most informative common ancestor in the hierarchy, and using an information-
theoretic argument to compute their common information. Later it was extended to
measure similarity between gene products (such as proteins) withmultiple GO annota-
tions, by taking some sort of mean or maximum between the GO terms of two proteins
(see, e.g., Schlicker et al. 2006; Pesquita et al. 2008, 2009).
Schlicker’s method is a variant of Resnik’s measure tailored specifically to genes and
gene products (Schlicker et al. 2006).
Enrichment has been defined in various ways but usually measures whether the shared
annotations to genes or proteins in a “set of interest” is “enriched” beyond what is
expected compared to a “background” rate of annotations. While enrichment is one of
the few methods that accounts for the total annotation frequency across the network,
enrichment analysis would still need to be done cluster-by-cluster, and so would suffer
the same problem as all other cluster-by-cluster methods.
m-sim This measure is used only by Graemlin (Flannick et al. 2006) and MUNK (Fan
et al. 2019); the latter technically is not a network alignment algorithm, though it is
designed to find functionally similar genes or proteins between species. This is the
only method from Table 1 that takes into account the annotation frequency λg of a GO
term g across the entire network, by using only GO terms with frequency below some
threshold m.

1.3 Problems with existingmethods

Table 1 presents a list of alignment papers and the measures they use to evaluate
functional similarity. Without exception, all of these methods evaluate each pair of
aligned nodes individually, and then take the average across pairs. (Some methods
are not 1-to-1 and so the “pair” of aligned nodes we discuss must be generalized to a
cluster of aligned nodes, but this generalization does not negate our point.)

We are aware of no existing methods that consider the alignment from the perspec-
tive of one GO term’s performance globally across all clusters, rather than looking
cluster-by-cluster. The result is that all of these methods suffer major drawbacks.

1.3.1 Cluster-by-cluster analyses fail to account for completely unmatched GO terms

There is a crucially important case that is implicitly ignored by methods that evaluate
GO-based significance of network alignments by simply taking the mean of a score
evaluated cluster-by-cluster. This case is alluded to by phrases such as “consider the
GO terms shared by a pair of aligned proteins…”. The problem is when there is a GO
term g that exists in both networks, but no pair of aligned proteins share it. Then the
“consider...” phrase above implicitly misses the fact that g could have been shared by
some aligned protein pairs, but was not.1 Unless taken care of explicitly, the alignment

1 We note that the Jaccard similarity will approximately account for this because g will appear in the
denominator of some pairs but not appear in any numerator; however Jaccard has other problems, as
explained later.
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evaluation fails to penalize the alignment for failing to provide any matches for GO
term g. In contrast, our method (below) is correctly penalized for such cases: any
GO term g that occurs in both networks but is not matched by any aligned pair of
nodes receives the appropriate penalty of a p-value with little statistical significance.
Unfortunately, since many existing publications ignore this case, many published p-
values claim far more statistical significance than actually exists.

1.3.2 Average cluster scores do not distinguish good alignments from random ones

The biggest problem with evaluating a network alignment by taking the mean across
cluster-based measures is that such measures do not scale even remotely monotoni-
cally with statistical significance. To give an explicit example, we’ll use the Jaccard
Similarity, which is the most popular based on Table 1.

Consider the following simple system: networkG has n = 1000 nodes. Each node is
annotatedwith exactly oneGO term. The first 100 nodes v1, v2, . . . , v100 are each indi-
vidually annotatedwith their ownuniqueGO term,with names {g1, g2, . . . , g99, g100},
respectively. We will refer to these as the “specific” nodes, in the sense that their func-
tions are all relatively unique andwell-specified since they all have different GO terms.
The remaining 900 nodes are all annotated with the same GO term—say g0. We will
refer to these as the “common” nodes, and their functions are less well-specified, and
likely less well-understood, since all we can say is that they all participate in some
high-level, likely vague and not well specified function. From the network alignment
perspective, correctly aligning specific nodes is far more informative than aligning
common nodes to each other, since identifying individual proteins with well-specified
functions is usually more desirable than aligning one common node to another one.

For simplicity, we will align G to itself, and assume that all 101 of the GO terms are
independent, so that the p-value of the entire alignment is the product of the p-values
across the 101 GO terms.2 Then, every pair of aligned nodes constitutes a cluster, and
the only possible per-cluster FC scores are 0 and 1, so that the mean alignment-wide
FC score is simply the fraction of node pairs that have FC = 1.

If an aligned pair of nodes are annotatedwith the sameGO term,we call it a “match”.
In a random alignment of G to itself, each common node has a 90% chance of being
aligned with another common node, so that the expected number of matched common
nodes is 900×0.9 = 810.On the other hand, each specific node has only a 0.1%chance
of being aligned with its one and only match, so that in a random alignment we expect
none (or very few) of the specific nodes to match. For this example, assume we match
5 more common nodes than expected at random (815 of them), but match none of the
specific nodes (as expected). Using the Hypergeometric distribution, the probability of
matching 815 or more common nodes (and no specific ones) has probability 0.062—

2 The assumption of independence is not entirely unfounded; for example we could choose g0 to be the
Cellular Component (CC) GO term GO:0005634, which describes the location “nucleus”, and choose
the remainder of GO terms to be molecular functions (MF) that tend to occur only outside the nucleus. In
fact, in the Sept. 2018 release of the GO term database there are over 700 MF GO terms with the following
properties: (a) they annotate exactly one protein (ie., each of over 700 GO terms g has λg = 1), and (b)
for each such GO term, the one protein it annotates is not annotated with GO:0005634. The fact that over
700 such GO terms exist make our independence assumption plausible—at least in this artificial scenario.
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not statistically significant. Thus, the alignment has FC score of 0.815 (815 out of 1000
nodes having FC = 1)—making it look very good—but with a p-value of just 0.06.

Now consider a second alignment with the same FC score: here we also match 5
more than the expected number of nodes, but this time they are all specific nodes—
noting that the expected number is zero; we assume that the common nodes get the 810
expectedmatches. Thus, themean FC score across clusters is (810+5)/1000 = 0.815,
exactly as in the previous case. By the Hypergeometric distribution, matching 810 or
more out of 900 common nodes has a p-value of 0.555. However, each specific node
has probability only 10−3 of aligning to itself in a random alignment, so the p-value of
matching 5 of them is 10−15; the p-value of the other 95 not matching is 0.999 each,
or 0.91 total. So the total p-value of the second alignment is slightly less than 10−15.

Thus, both alignments have a mean FC of 0.815, yet—to the nearest order-of-
magnitude—the first has virtually nil statistical significance, while the second has
a p-value below 10−15. From a statistical significance standpoint, the second one
is—quite literally—an astronomically better alignment. It’s also easy to see that the
p-value of any alignment that aligns k of the “specific” nodes will have a p-value of
about 10−3k , which is better than the first case for any k > 0.

The takeaway message is that any method that evaluates functional signifi-
cance cluster-by-cluster and then takes the mean across clusters—as do all existing
methods—can lead to verymisleading conclusions bymakingnear-randomalignments
look just as good as excellent ones.

1.3.3 The problemwith ignoring GO terms close to the root of the hierarchy

A common practice (Pesquita et al. 2009) involves arbitrarily ignoring GO terms in
the top few levels of the GO hierarchy on the assumption that, when a GO term
annotates so many proteins, a protein pair that matches it has little value. A known
problem (Pesquita et al. 2009) with this suggestion is the definition of “top few levels”:
even GO terms at the same level but different regions of the GO hierarchy can have
vastly different values of λ, so that it is difficult to choose which GO terms to ignore.
While there are sometimes valid reasons for ignoring such common GO terms—such
as the fact that they may be “catch-all” terms with little meaning or with very low
confidence—there may be cases where ignoring them is unjustified.

From the network alignment perspective, ignoring these common GO terms has
the opposite problem to that of Sect. 1.3.1 in that, rather than failing to penalize a bad
alignment, this procedure fails to adequately reward alignments that are “good” in the
following sense. Assume a GO term g annotates 10% of proteins in each network,
and that these annotations are not simply low-confidence, “catch-all” GO terms. This
can be a substantial number of proteins (e.g., over 1700 in human and almost 700
in mouse), and such a GO term is likely to be high in the hierarchy. However, if a
network alignment matches a substantially larger fraction of this plethora of pairs
than is expected at random, it is a sign that large regions of functional similarity are
being correctly aligned to each other, even if individual proteins are not. In other
words, perhaps similar pathways are being correctly mapped to each other even if
the individual proteins in the pathway are incorrectly mapped. A network alignment
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that successfully matches such large regions should be rewarded for doing so, but if
“common” GO terms are disregarded, this won’t happen.

2 Method: GO-term p-values by exhaustive enumeration of
alignments

2.1 Network alignment and functional similarity

Given two networks G1, G2, let the node sets V1, V2 represent n1 and n2 proteins
respectively, and the edge sets E1, E2 represent protein–protein interactions (PPIs).
Assuming (without loss of generality) that n1 ≤ n2, a pairwise global network align-
ment (PGNA) is a 1-to-1 mapping f : V1 → V2 in which every node in V1 is mapped
to exactly one node in V2.

Once an alignment is specified, we usually wish to use it to measure, infer, or
predict functional similarity between proteins and/or pathways aligned between the
two networks. As discussed above, most existing methods perform a cluster-by-
cluster analysis and then take a mean across clusters. In addition to the shortcoming
alreadymentioned, taking an average across clusters—aligned node pairs in our case—
assumes that each pair is independent of all the others. This is not true because the pair-
ings themselves are inter-dependent via the alignment itself, which is built globally. For
example, in a 1-to-1 alignment, each node from each network can appear at most once
across the entire alignment, a property which destroys the independence assumption.

Our solution to this problem is to look at an alignment from the viewpoint of one
GO term at a time, rather than one aligned pair of proteins at a time. To that effect, we
now describe how to compute the exact p-value that exactly k aligned protein pairs
share a particular GO term g.

2.2 Computing the total number of possible alignments

In the following exposition, we must discuss in great detail the combinatoric structure
of a given alignment. To aid visualization, we use what I call the “Pegs and Holes”
analogy: given networks G1, G2 with n1, n2 nodes, we imagine G2’s nodes as n2
identical “holes” drilled into a large board, and G1’s nodes as n1 identical “pegs” that
can each fit into any hole. To enforce the global 1-to-1 property, there are two cases:

1. n1 ≤ n2, so every peg is placed into some hole, leaving n2−n1 empty holes. There
are

(n2
n1

)
ways to choose which holes to use, and n1! ways to place the pegs.

2. n1 > n2, so every hole is filled with some peg, leaving n1 − n2 pegs unplaced.
There are

(n1
n2

)
ways to choose which pegs to place, and n2! ways to place them.

The above two cases are symmetric and so, without loss of generality, we assume
n1 ≤ n2. Then, the total number of all possible alignments is

(
n2

n1

)

n1! = n2!
(n2 − n1)! ≡ P(n2, n1). (2)

The function P(·, ·) of Eq. (2) is more commonly known as k-permutations-of-n, or
P(n, k). However, P(n, k) is usually defined to be zero if n < k, whereas we will
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often need to compute the number of alignments when we don’t know which of the
two values is larger. Thus, in this paper, we will adopt a modified permutation function
π(n1, n2) as follows

π(n1, n2) =
{

P(n1, n2), if n1 ≥ n2,

P(n2, n1), if n2 > n1.
(3)

2.3 Counting alignments with exactly kmatches

Given a particular GO term g, assume g annotates λ1 pegs and λ2 holes. A peg and
the hole it sits in are, more technically, a pair of aligned nodes. We say that such
a pair “match” with respect to GO term g if they are both annotated with g. Let
λ = min(λ1, λ2), and λ = max(λ1, λ2). Given a random 1-to-1 alignment, we are
going to compute the probability p that exactly k pairs of aligned nodes share g. In our
analogy, this means that exactly k pegs—no more, no less—that are annotated with
g sit in holes that are also annotated with g. To do this, we will use a combinatorial
argument to enumerate all possible PGNAs that can exist that have exactly k matches.
Given that number, we simply divide by Eq. (2) to get the probability that a randomly
chosen alignment has exactly k matches.

2.3.1 Special cases

The following are special cases:

1. if k > λ, then p = 0.
2. if λ = 0, then p = 1 if k = 0 and p = 0 otherwise.
3. if λ2 = n2, then p = 1 if k = λ1, and p = 0 otherwise.
4. if λ1 > n2 −λ2 and k < λ1 − (n2 −λ2), then p = 0, otherwise p > 0 is computed

below.

The last case arises when λ1 > n2 − λ2, which means that there are more annotated
pegs than non-annotated holes, necessitating that at least λ1 − (n2 − λ2) annotated
pegs must align with annotated holes. (Recall we are computing the probability of
exactly k aligned pairs sharing g, so k too small in this case gives p = 0.)

Below we describe the general case in detail. In broad outline, there are three steps:
(i) create the required k matches by placing k annotated pegs into k annotated holes; (ii)
arrange to place the remaining annotated pegs away from the annotated holes in order
to keep k constant; (iii) place any remaining pegs (all of which are non-annotated) in
any still-empty holes (some of which may be annotated). In each case we either sum,
or multiply, as appropriate, the number of ways to perform the described action. In
the end we have counted all the possible ways to create an alignment that has exactly
k matches.

2.3.2 Creating exactly k matches

Out of the λ1 pegs annotated with g, pick k ≤ λ of them; there are
(
λ1
k

)
ways to do

this. We will place these k pegs into k holes that are also annotated with g; there are
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(
λ2
k

)
ways to pick the holes, and k! ways to place the k pegs into the k holes. Thus, the

total number of ways to match exactly k pairs of nodes that share g is

Mk(λ1, λ2) =
(

λ1

k

)(
λ2

k

)

k!. (4)

From this point onward, in order to keep k constant, we are committed to creating
no more matches.

2.3.3 Enumerating the ways to use the remaining annotated holes

To ensure that no more node pairs are matched, we need to ensure that none of the
remaining (λ1 − k) annotated pegs are placed into any of the remaining (λ2 − k)

annotated holes. Thus, each annotated hole must either remain empty, or take an non-
annotated peg. There are n1−λ1 available non-annotated pegs, regardless of the value
of k. Pick μ of them. Since these μ pegs are all non-annotated, they can go into any
unoccupied annotated hole without changing k. However, there are lower and upper
bounds on what μ can be, as follows:

– μ can be at most μ ≡ min(n1 − λ1, λ2 − k), since n1 − λ1 is the total number
of non-annotated pegs, and λ2 − k is the number of available annotated holes in
which to place (some of) them.

– note thatwe have n1−k pegs (of both types) remaining to place, and exactly n2−λ2
non-annotated holes, into which some (or all) of the pegs can be placed. By the
pigeon hole principle, if (n1 − k) > (n2 − λ2), then some of the pegs—and they
can only be non-annotated pegs—must go into annotated holes. Thus, μ—which
refers only to non-annotated pegs—must be at least μ ≡ (n1 − k) − (n2 − λ2) if
(n1 − k) > (n2 − λ2); otherwise μ = 0.

2.3.4 Distributing the remaining pegs

For any μ ≤ μ ≤ μ, we need to count how many alignments can be built when μ

non-annotated pegs are placed into the λ2 − k available annotated holes, as well as
what happens to all the remaining pegs. The process is as follows.

1. There are
(n1−λ1

μ

)
ways to choose μ non-annotated pegs, and π(λ2 − k, μ) ways

to align them with the open annotated holes. To simplify notation note that
n1, n2, λ1, λ2 are all fixed; thus, let γk(μ) = (n1−λ1

μ

)
π(λ2 − k, μ).

2. Recall that there are still λ1 − k annotated pegs to be placed, and that they must be
placed into non-annotated holes, so we must “reserve” λ1−k non-annotated holes,
which will be further accounted for below.

3. Onceμ annotated holes are filled with non-annotated pegs, the rest of the annotated
holes must remain empty; this leaves n1 − λ1 − μ non-annotated pegs to go into
the n2 − λ2 non-annotated holes. Keeping in mind the “reservation” above, there
are n2 − λ2 − (λ1 − k) available non-annotated holes. There are

(n2−λ2
λ1−k

)
ways

to choose which holes to use while reserving λ1 − k of them, and π(n1 − λ1 −
μ, n2 − λ2 − (λ1 − k)) ways to place the pegs into the chosen holes; let δk(μ) =(n2−λ2

λ1−k

)
π(n1 − λ1 − μ, n2 − λ2 − (λ1 − k)).
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4. Finally, we place the remaining λ1 − k annotated pegs into the reserved holes of
the same number; there are (λ1 − k)! ways to do this.

2.3.5 Summing the unmatched region of the alignment

Combining all of the above for fixedμ and then summing over all possibleμ, the total
number of ways that n1 − λ1 non-annotated pegs can be used to (partially or wholly)
fill λ2 − k annotated holes, and then use all the remaining pegs and holes in a manner
consistent with keeping k constant, is

Uk(λ1, λ2) ≡ (λ1 − k)!
μ∑

μ=μ

γk(μ)δk(μ). (5)

2.3.6 Final tally for exactly k matches

Combining Eq.s (4) and (5), the total number of alignments in which exactly k aligned
node pairs share GO term g is

Ck(λ1, λ2) ≡ Mk(λ1, λ2)Uk(λ1, λ2). (6)

2.4 The probability of an alignment with exactly kmatches

Equation (6) counts all possible alignments in which exactly k aligned node pairs share
GO term g. To get the probability pk of the same event, we divide by Eq. (2):

pg
k (n1, n2, λ

g
1, λ

g
2) = Cg

k (λ
g
1, λ

g
2)

π(n1, n2)
, (7)

where a superscript g has been added as appropriate to denote that this probability is
specifically tied to GO term g.

Note this refers to exactly k matches. To measure the statistical significance of m
matches, we sum Eq. (7) for k from m to λg .

2.5 Efficiently dealing with huge numbers

Though technically it is only an implementation detail, it is important to briefly discuss
how to deal with the astronomically huge numbers involved in these calculations.
Typical modern biological networks can have thousands to tens of thousands of nodes,
and some GO terms annotate thousands of genes in each network. For example, in
BioGRID 3.4.164 that we use below, the two biggest PPI networks in terms of number
of nodes are H. sapiens and A. thaliana, which contain exactly 17,200 and 9,364
unique proteins, respectively, that are involved in physical interactions. Equation (2)
in this case is approximately 1038270—an integer with over 38,000 digits in base-10,
which is far above the values typically representable on modern hardware. Luckily,
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its logarithm is easy to represent in double precision floating point, and so all of the
multiplications herein can be computed as the floating-point sum of logarithms. The
sole complication is the summation in Eq. (5), which is a sumof values, not logarithms.
We use the following trick. Given two numbers a and b, assumewe have at our disposal
only their logarithms, α = log(a) and β = log(b). Our goal is to estimate log(a + b).
Without loss of generality, assume a ≤ b. Then,

log(a + b) = β + log(1 + a/b) (8)

= β + log(1 + eα−β) (9)

= β + L(eα−β), (10)

where L(x) is some function that can provide an accurate estimate of log(1 + x) for
any |x | ≤ 1. Onemust be careful because if |x | is below the machine epsilon (≈ 10−16

in double precision), then 1+ x evaluates to 1 because x is rounded away, and a direct
evaluation of the expression log(1+x) gives zero. The solution is not hard: the built-in
library function for log can evaluate log(1+ x)with sufficient accuracy if |x | > 10−6;
for smaller values of |x |, we explicitly invoke the Taylor series, which is extremely
accurate for small values of |x |. We have tested that this method gives values for
log(a + b) that are accurate to almost machine precision for any |x | ≤ 1.

2.6 Run time

Our algorithm has several steps. Reading the OBO file and constructing the internal
representation of the GO hierarchy takes time O(|G O|2), where |G O| is the number
of GO terms in the hierarchy; expanding the explicitly listed annotations listed in
the GO database for each protein technically takes time O(|n1 + n2| × |G O|2) but
practically speaking is much faster since most protiens are annotated only by a few
GO terms rather than all GO terms (n1 and n2 are the number of proteins in the two
networks). The only other loop is through μ in Eq.5, which is performed only once
and is bounded by O(max(n1, n2)).

From a practical standpoint, the runtime is only a minute or two, even though the
code is entirely in AWK; converting to C/C++ would make the runtime completely
negligible on existing PPI or gene networks.

3 Results

3.1 Numerical validation

Staring at Ck(λ1, λ2) in Eq. (6) and tracing back through the equations that define its
components, it is not immediately obvious that the Ck(λ1, λ2), when summed over all
possible values of k, must add up to exactly π(n1, n2) independent of the choice of
λ1, λ2. Yet if Eq. (6) is correct, then this must be the case since summing pk in Eq.
(7) across all k of must give exactly 1.
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Table 2 The 8 largest networks
of BioGRID 3.4.164, sorted by
node count

Nodes Common name Official name Abbr

17,200 Human H. sapiens HS

9364 Thale cress A. thaliana AT

8728 Fruit fly D. melanogaster DM

6777 Mouse M. musculus MM

5984 Baker’s yeast S. cerevisiae SC

3194 Worm C. elegans CE

2811 Fission yeast S. pombe SP

2391 Rat R. norvegicus RN

In the calculation of pg
k in Eq. (7), the values of k and g are fixed. For a fixed g, valid

values of k range from zero to λg . If our calculations are correct, then the sum across
k of pg

k should be exactly 1 for any fixed g, n1, n2, λ1, λ2. We tested this property in
the following cases:

1. exhaustively for all 0 ≤ λ1 ≤ n1 and 0 ≤ λ2 ≤ n2 for all 0 ≤ n1 ≤ n2 ≤ 100;
2. as above but in steps of 10 in λi and ni up to n2 = 1, 000;
3. as above but in powers of 2 in λi and ni up to n2 = 32, 768;
4. several billion random quadruples of (n1, n2, λ1, λ2) with n2 chosen uniformly at

random up to 100,000, n1 chosen uniformly at random up to n2, and the λ’s chosen
uniformly at random up to their n value.

We found in all cases that the difference from 1 of the sum over k of pg
k was bounded

by 10−9. (Keep in mind that we had access only to the logarithms of the Ck ; that
the actual sum across k had to be approximated term-by-term using Eq. (10); that the
correct answer in log space is log(1) = 0; and that all operations were performing in
floating point, which incurs roundoff error.) Furthermore, in any particular case, the
numerical (floating-point roundoff) error will be dominated by the sum over μ in Eq.
(5), and so we would expect the error to be smaller (ie., sum closer to 1) when there are
fewer terms in Eq. (5). The number of terms is well-approximated bymin(n1−λ1, n2).
Indeed, we find that if the sum was S, then the value |S − 1|/min(n1 − λ1, n2) has
mean≈ 3×10−14, standard deviation≈ 3×10−13, and was never observed to exceed
3 × 10−12.

3.2 Validation against random alignments of real PPI networks

We downloaded the 8 largest protein–protein interaction networks from release
3.4.164 (August 2018) of BioGRID (cf. Table 2), and the GO database release of the
same month. As many authors of network alignment papers do, we then split the GO
database into two versions: one with all GO terms, and ones where sequence-based
GO terms were disallowed. For each of the

(8
2

) = 28 pairs of networks and for both
versions of the GO database, we generated 400 million random alignments, for a total
of 22.4 billion random alignments. For each GO term g, we observed the integer
frequency φ

g
k that g was shared by exactly k proteins when it annotated λ

g
1 out of n1
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Fig. 1 Scatter plot of the observed φk/N versus theoretical pk probability across 22.4 billion random
alignments between pairs of networks from BioGRID 3.4.164. The vertical axis depicts the observed
probability of an event, which is the observed frequency φ

g
k (n1, n2, λ1, λ2) divided by the number of

samples N = 4×108. The horizontal axis is the value given by Eq. (7) for the parameters of the observation.
There are 428,849 observations plotted across all observed values of n1, n2, λ

g
1 , λ

g
2 , k

proteins in network G1 and λ
g
2 proteins out of n2 in network G2. (Note that formally

φ
g
k has six parameters, φg

k (n1, n2, λ
g
1, λ

g
2), though we often abbreviate it to φ

g
k or even

just φk or φ if context is clear.) It is a non-negative integer bounded by the number
of random alignments, N = 4 × 108, and dividing it by N gives an estimate of the
probability that a randomly chosen alignment between G1 and G2 will contain exactly
k aligned protein pairs that share g.

The estimated (ie., observed) probability φ
g
k /N can be compared to pg

k of Eq. (7).
Across the 22.4 billion random alignments, we observed 428,849 unique combinations
of the six parameters g, k, n1, n2, λ

g
1, λ

g
2 that formally define φ

g
k . Figure1 is a scatter

plot of φ
g
k /N for all 428,849 of them, versus the theoretical value from Eq. (7). The

agreement is excellent. (We note that our Fig. 1 is exactly analogous to Fig. 1 of the
paper that introduced BLAST (Altschul et al. 1990), in which the authors compared
their statistical model of sequence alignment to computational experiments involving
random sequence alignments.)

The scatter in Fig. 1 increases towards the low end because events with probabil-
ity near N−1 are rarely observed, and so the estimate of their probability contains
significant sampling noise. In fact there is “width” to the scatter plot at all values of
probability, but it is difficult to observe in Fig. 1. To more clearly see the scatter, we
compute the ratio of the observed to theoretical values of probability, which will have
an expected value of 1 if Eq. (7) is an accurate and unbiased estimator of probability.
Figure2 plots the mean and standard deviation (binned in powers of 2 of the number of
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Fig. 2 Same data as Fig. 1, except that, for each point, we have computed the distance D from 1 of the

ratio of observed to predicted probability: D = |1 − φ
g
k /N

pg
k

|. Each observed frequency φ
g
k (which we will

henceforth abbreviate a φ) is converted to an observed probability φ/N , where N is the number of random
alignments (4 × 108) per pair of networks. However, φ is also the number of samples used to create the
observed probability estimate; higher φ gives a better estimate of the probability. We binned φ in powers
of 2 (ie. the bin is

⌊
log2(φ)

⌋
, and for each bin plotted the mean and standard deviation of D. We see that

as the number of samples increases, the ratio approaches 1 as the square root of the number of samples,
consistent with sampling noise

samples) of |1 − (φ
g
k /N )/pg

k | across all 428,849 observed frequencies, as a function
of the number of samples that gave rise to the probability estimate. We can clearly
see that the ratio approaches 1 asymptotically with the square root of the number of
samples, consistent with sampling noise in φ.

3.3 Demonstration of biological relevance

To demonstrate the biological and scientific relevance of our method, we are going
to demonstrate that the quality of a network alignment—as measured by its p-value
as computed herein—strongly correlates with that alignment’s ability to predict new
GO term annotations. To do this, we leverage our recent network alignments that were
used to predict GO annotations (Wang et al. 2022). In that paper, we used SANA
(Mamano and Hayes 2017) to align pairs of BioGRID networks available as of April
2010, and annotated with GO terms also available as of April 2010. In any network
alignment where a pair of proteins u and v were aligned and only one of them (say
u) was annotated with a particular GO term g, we “transferred” the annotation to the
other protein (say v), resulting in a predicted annotation of v with g. The predicted
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annotation was considered validated if the annotation of v with g appeared in the GO
database within the following decade—ie., by April 2020.

In the context of this paper, the quality of a pairwise network alignment with respect
to a particular GO term g is measured using the p-value computed in Sect. 2.4. The
assumption is that the smaller the p-value, the better the alignment. If this is true, then
wewould expect the precision of predicted annotations to improve as the p-value of an
alignment gets smaller. However, note that there is a trade-off: as the alignment quality
increases by increasing the number of “matched” protein pairs (ie., both proteins are
g-annotated), the number of unmatched g-annotated proteins in the source species
decreases, decreasing the number of possible predictions that can be made in the
target species. Ironically, if every g-annotated protein in the source species is already
matched with a g-annotated protein in the target species, then no predictions can be
made.

The species used in Wang et al. (2022) included A. thaliana, C. elegans, D.
melanogaster, S. cerevisiae, S. Pombe, and H. Sapiens. We will look at species pairs
in which human was the target (ie., a human protein p was not annotated with g as of
April 2010, and it was aligned to a protein q from another species that was annotated
with g as of April 2010.) InWang et al. (2022), we performed 100 network alignments
of each pair of species. (This makes sense since SANA is a random search algorithm,
and so different runs can produce different alignments, especially if the networks are
noisy and/or incomplete—see Wang et al. (2022).) Furthermore, note that in Wang
et al. (2022), multiple network alignments of the same pair of species were used to
formulate GO term predictions, whereas in this paper we are using the p-value of the
number of matched GO g-annotations in a single network alignment to predict new
g-annotations in the same alignment. Note also that no threshold or any criterion is
placed on the pair of proteins being aligned—we g-annotate every protein in the target
species that lacks it if it is aligned to a g-annotated protein in the source species.

In total, there were 1185 GO terms represented across all species as of April 2010.
However, as alluded to above, if a GO term annotates only a few proteins in the source
species (ie., the λ value is small—cf. Sect 2.4), then once enough of them are matched
to get a small p-value according to Sect 2.4, there simply won’t be enough unmatched
annotations tomake a significant number of predictions in the target species.We found
that GO terms that produced at least 10 predicted annotations in a single alignment had
both adequate predictions to compute a meaningful prediction precision, as well as
enough matched GO terms to have a meaningful p-value. Thus, a GO term g was not
considered in an alignment A if that (g,A) pair produced fewer that 10 g-annotation
predictions.After this filtering, therewere 265GO terms across hundreds of alignments
(see below) for which we could both (a) compute meaningful p-values according to
Sect. 2.4 and (b) have enough predictions to compute a meaningful validation rate for
the predictions.

To determine the relationship between the p-value of Sect. 2.4 and the validation
rate of predictions, we conglomerated all predictions across all 265 GO terms across
each pairwise network alignment A in which A had a p-value with respect to GO
term g thresholded by the first column of Table 3. As we can see, the correlation
is excellent, and gets better as we demand more stringent alignments (smaller value
in the “thresh” column). Furthermore, the Spearman correlations are significantly
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Table 3 Correlation between the precision of predictions of g-annotations to human proteins in an alignment
A versus g’s p-value in A according to Sect. 2.4

Thresh N Pearson Pearson p σ ’s Spearman Spearman p σ ’s

10−2 56,470 −0.371 9.7 × 10−1939 94.8 −0.579 1.6 × 10−6126 168.6

10−4 49,270 −0.378 1.5 × 10−1774 90.7 −0.618 2.8 × 10−6551 174.3

10−8 36,570 −0.431 2.1 × 10−1793 92.2 −0.681 8.1 × 10−6802 177.6

10−16 25,871 −0.449 8.1 × 10−1411 80.9 −0.688 5.9 × 10−5013 152.5

10−32 16,272 −0.473 9.9 × 10−1011 68.5 −0.721 2.8 × 10−3801 132.8

10−64 7688 −0.621 1.1 × 10−1037 69.4 −0.827 2.6 × 10−3580 128.9

10−128 4500 −0.711 4.1 × 10−990 67.8 −0.737 3.1 × 10−1154 73.2

The “thresh” column specifies the upper bound on the p-value of g in a particular alignment A before A’s
g-annotation predictions are included in that row; N is the number of (A, g) pairs that result, across all
alignments and GO terms with human proteins as targets. The “Pearson” column is the correlation between
(a) the fraction of g-annotation predictions that are validated in alignment A and (b) the p-value of g in the
alignment A that produced the predictions; the “Pearson p” column is the p-value of the Pearson correlation
of the previous column; and the σ ’s column is the number of standard deviations represented by the Pearson
p. The last three columns duplicate the previous three, but for the Spearman correlation. The correlations
are negative because the prediction precision increases as p-value decreases, as expected (note: the Pearson
and Spearman p’s technically decrease in significance as N decreases, though they remain highly significant
throughout.)

Fig. 3 Same data as Table 3, presented as a scatter plot of validation rate of predictions vs. p-value. Note
that p-values range from near 1.0 to 10−200; to clearly represent such an enormous range of p-values, we
plot the negative of the base-10 logarithm on a log scale—that is, the horizontal axis effectively shows the
p-value having taken the logarithm twice: the 0.001 at the far left represents p = 10−0.001 ≈ 0.9977 (not
significant), while the points at the far right have p-values approaching 10−200 (highly significant)
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stronger than the Pearsons, because we would not expect the correlation to be linear
as demanded by Pearson, but only monotonic as demanded by Spearman. The same
results are presented visually in Fig. 3.

We performed similar tests using the most popular measures from Table 1. In
particular, we tested Jaccard similarity, Common GO terms, Normalized Entropy, and
Resnik. All have mean prediction precision roughly consistent with the frequency
(λ/n) of the GO term being predicted—ie., the prediction precision is consistent with
being random. This result is independent of any threshold placed on the score of the
protein pair being used for prediction, or the mean score of the entire alignment.

To conclude: there is a strong correlation between the p-value of a network align-
ment A with respect to a particular GO term g as computed in this paper, and the
validation rate of predicted g-annotations from alignment A. In other words, as the
quality of the alignment increases (smaller p-value), its ability to predict new annota-
tions increases. No other currently availableGO-basedmeasure of network alignments
has this property.

4 Discussion

We have presented a method to rigorously compute the p-value of matches of a par-
ticular GO term in a network alignment. We have rigorously tested the correctness of
the method, and demonstrated its biological relevance by showing that higher qual-
ity alignments by our measure are better able to predict new annotations. No other
available GO-based measure has this property.

While our measure is clearly useful, it is not the end of the story. For example, if
two very different network alignments both have the same p-value for a particular GO
term g, our method can say nothing about which is “better” with respect to g; it would
then be the user’s task to look more closely to determine which alignment they prefer.

Given our rigorous p-value for each GO term g that appears in both networks, one
may then wish to compute a GO-based p-value of the entire alignment. This requires a
method of combining themultitude of “per-GO-term” p-values into a single, “holistic”
GO-based p-value for the entire alignment. Some of the problems are discussed above
(cf. Sect. 1.1). While many existing methods suffer the same problem (not account-
ing for inter-relationships), some existing methods do: Resnik’s semantic similarity
score (Resnik 1999) andMean Normalized Entropy (Liao et al. 2009) use information
theoretic/statistical physics arguments to formally account for the inter-relationships
between GO terms in the hierarchy—though our tests show that these measures do not
correlate with the validation rate of predictions. One could also imagine a combina-
torial analysis similar to the one herein, but applied to the GO hierarchy itself rather
than to annotations. Doing so rigorously is a challenging problem in itself, and is well
beyond the scope of this paper; to our knowledge nobody has yet worked out how to
rigorously account for the issues raised in our bulleted list in Sect. 1; see for example
surveys (Mistry and Pavlidis 2008; Guzzi et al. 2012; Harispe et al. 2015).

Ultimately, all of the complications of the hierarchy—including even cyclic
dependencies—boil down to the simple fact that the appearance of annotations from
a GO term g1 may be correlated with the appearance of annotations of another GO
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term g2—or in fact with many such other GO terms. There are known ways to modify
p-values computed using values with known correlations, but in our case, the exact
correlations are unknown and difficult to compute. However, they can be estimated
from the data, and the recent Empirical Brown’s Method (Poole et al. 2016), which we
abbreviate as EBM, is designed precisely for the case of combining p-values between
variables whose correlations can only be estimated from the data. Our code (available
on GitHub as described elsewhere in this paper) provides the option of using EBM for
this purpose.

Our analysis is easily adapted to evaluate network alignments based on any subset
of GO terms. For example, one may wish to separately evaluate the three GO hierar-
chies of Biological Process (BP), molecular Function (MF), and Cellular Component
(CC). Additionally, if sequence information plays any role in constructing the network
alignment, one should avoid the use of sequence-based GO terms when evaluating that
alignment.

Data and code availability The code described herein, named REFANGO is available on GitHub in the
author’s NetGO as refango.sh. SANA is also on GitHub, while the BioGRID networks mentioned in
the paper are BIOGRID-3.2.101. The output of Refango applied to the 100 alignments per 28 pairs of
BioGRID species, along with the resulting predictions and validation rates, can be found at http://sana.ics.
uci.edu/Refango-Predictions.7z.
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Guzzi PH, Milenković T (2017) Survey of local and global biological network alignment: the need to
reconcile the two sides of the same coin. Brief Bioinform bbw132

Guzzi PH, MinaM, Guerra C, Cannataro M (2012) Semantic similarity analysis of protein data: assessment
with biological features and issues. Brief Bioinform 13(5):569

Harispe S, Ranwez S, Janaqi S, Montmain J (2015) Semantic similarity from natural language and ontology
analysis. Synth Lect Hum Lang Technol 8(1):1

Hashemifar S, Xu J (2014) HubAlign: an accurate and efficient method for global alignment of protein-
protein interaction networks. Bioinformatics 30(17):i438. https://doi.org/10.1093/bioinformatics/
btu450

Hashemifar S, Ma J, Naveed H, Canzar S, Xu J (2016) ModuleAlign: module-based global alignment of
protein-protein interaction networks. Bioinformatics 32(17):i658

Hashemifar S, Huang Q, Xu J (2016) Joint alignment of multiple protein-protein interaction networks via
convex optimization. J Comput Biol 23(11):903

Hu J, Kehr B, Reinert K (2014) NetCoffee: a fast and accurate global alignment approach to identify
functionally conserved proteins in multiple networks. Bioinformatics 30(4):540. https://doi.org/10.
1093/bioinformatics/btt715

Kalecky K, Cho YR (2018) PrimAlign: PageRank-inspired Markovian alignment for large biological net-
works. Bioinformatics 34(13):i537

Kazemi E, Hassani H, Grossglauser M, Modarres HP (2016) PROPER: global protein interaction network
alignment through percolation matching. BMC Bioinform 17(1):527

KuchaievO, PržuljN (2011) Integrative network alignment reveals large regions of global network similarity
in yeast and human. Bioinformatics 27:1390. https://doi.org/10.1093/bioinformatics/btr127
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Milenković T, NgWL, Hayes W, Pržulj N (2010) Optimal network alignment with graphlet degree vectors.
Cancer Inform 9:121. https://doi.org/10.4137/CIN.S4744

123

https://doi.org/10.1093/bioinformatics/btv063
https://doi.org/10.1101/gr.5235706
https://doi.org/10.1101/gr.5235706
https://doi.org/10.1093/bioinformatics/btu450
https://doi.org/10.1093/bioinformatics/btu450
https://doi.org/10.1093/bioinformatics/btt715
https://doi.org/10.1093/bioinformatics/btt715
https://doi.org/10.1093/bioinformatics/btr127
https://doi.org/10.1098/rsif.2010.0063
https://doi.org/10.1098/rsif.2010.0063
https://doi.org/10.1093/bioinformatics/btv130
https://doi.org/10.4137/CIN.S4744


   50 Page 22 of 22 W. B. Hayes

MirA,NaghibzadehM, Saadati N (2017) INDEX: incremental depth extension approach for protein-protein
interaction networks alignment. Biosystems 162:24

Mistry M, Pavlidis P (2008) Gene Ontology term overlap as a measure of gene functional similarity. BMC
Bioinform 9(1):327

Neyshabur B, Khadem A, Hashemifar S, Arab SS (2013) NETAL: a new graph-based method for global
alignment of protein-protein interaction networks. Bioinformatics 29(13):1654. https://doi.org/10.
1093/bioinformatics/btt202

Patro R, Kingsford C (2012) Global network alignment using multiscale spectral signatures. Bioinformatics
28(23):3105. https://doi.org/10.1093/bioinformatics/bts592

Pesquita C, Faria D, Bastos H, Ferreira AE, Falcão AO, Couto FM (2008) Metrics for GO based protein
semantic similarity: a systematic evaluation. BMC Bioinform 9(5):S4

Pesquita C, Faria D, Falcao AO, Lord P, Couto FM (2009) Semantic similarity in biomedical ontologies.
PLoS Comput Biol 5(7):e1000443

PooleW, Gibbs DL, Shmulevich I, Bernard B, Knijnenburg TA (2016) Combining dependent P-values with
an empirical adaptation of Brown’s method. Bioinformatics 32(17):i430

Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings
of the 14th international joint conference on artificial intelligence—volume 1, IJCAI’95. Morgan
Kaufmann Publishers Inc., San Francisco, pp 448–453. http://dl.acm.org/citation.cfm?id=1625855.
1625914

Resnik P et al (1999) Semantic similarity in a taxonomy: an information-based measure and its application
to problems of ambiguity in natural language. J Artif Intell Res JAIR 11:95
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